JP2009180706A - Spectrofluorometric detection apparatus for liquid chromatograph - Google Patents

Spectrofluorometric detection apparatus for liquid chromatograph Download PDF

Info

Publication number
JP2009180706A
JP2009180706A JP2008022529A JP2008022529A JP2009180706A JP 2009180706 A JP2009180706 A JP 2009180706A JP 2008022529 A JP2008022529 A JP 2008022529A JP 2008022529 A JP2008022529 A JP 2008022529A JP 2009180706 A JP2009180706 A JP 2009180706A
Authority
JP
Japan
Prior art keywords
wavelength
fluorescence
excitation light
sample
light wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008022529A
Other languages
Japanese (ja)
Inventor
Hajime Bungo
一 豊後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008022529A priority Critical patent/JP2009180706A/en
Publication of JP2009180706A publication Critical patent/JP2009180706A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily find analytical conditions in a short time such as an excitation light wavelength and a fluorescence wavelength optimal for highly accurate determination of each sample component separated by a column. <P>SOLUTION: A target sample while being fixed to a prescribed excitation light wavelength and a prescribed fluorescence wavelength is analyzed by liquid chromatography (S1 and S2). When an intensity value takes a threshold value or greater, and its amount of change becomes small, a sample component is considered to have appeared (S3-S6) to obtain a retention time at the time and temporarily halt liquid feeding to the column (S7 and S8). With an eluate containing the sample component retained in a flow cell, an excitation light wavelength and a fluorescence wavelength are each scanned at high speed to obtain a schematic three-dimensional spectrum and store it with the retention time (S9-S10). At each time a sample component separated by the column has appeared, this is repeated to determine a three-dimensional spectrum corresponding to each sample component. A peak top having maximum intensity in the three-dimensional spectrum is searched for to find the excitation light wavelength and the fluorescence wavelength that provide the peak and display them with the retention time. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液体クロマトグラフのカラムで時間方向に成分分離された試料中の各成分を順次検出するための分光蛍光検出装置に関する。   The present invention relates to a spectroscopic fluorescence detection apparatus for sequentially detecting each component in a sample separated in a time direction by a liquid chromatograph column.

分光蛍光分析法は蛍光性を有する又は蛍光性を付与された物質しか検出できないという制約はあるものの、光の吸収を利用した吸光分析法に比べて格段に高感度の分析が可能であるという特徴を有しており、液体クロマトグラフの検出器として広く利用されている。図8は例えば特許文献1などにおいて従来知られている一般的な分光蛍光検出装置の概略構成図である。   Although spectrofluorimetric analysis is limited in that it can detect only fluorescent or fluorescent substances, it can perform analysis with much higher sensitivity than absorption spectrophotometry using light absorption. It is widely used as a detector for liquid chromatographs. FIG. 8 is a schematic configuration diagram of a general spectral fluorescence detection apparatus conventionally known in, for example, Patent Document 1.

この分光蛍光検出装置1においては、紫外域から近赤外域まで幅広い連続スペクトルを有するキセノンランプ等の光源10から発せられた光が励起側分光器11に導入され、特定の波長(励起光波長EX)を持つ単色光が取り出され、試料溶液13が貯留された試料セル12に励起光として照射される。この励起光の照射により試料溶液13から放出された微弱な蛍光は蛍光側分光器14に導入され、特定の波長(蛍光波長EM)を持つ蛍光のみが取り出され光電子増倍管15に入射される。光電子増倍管15は入射光の強度に応じた電流信号を出力し、電流/電圧(I/V)変換部16で変換された電圧信号がA/D変換部17でデジタル値に変換され、データ処理部18に入力される。データ処理部18は、この検出データを解析処理することにより、試料溶液13中の特定成分の定量値を計算する。   In this spectral fluorescence detection apparatus 1, light emitted from a light source 10 such as a xenon lamp having a wide continuous spectrum from the ultraviolet region to the near infrared region is introduced into an excitation-side spectroscope 11 and a specific wavelength (excitation light wavelength EX ) Is extracted, and is irradiated as excitation light to the sample cell 12 in which the sample solution 13 is stored. The weak fluorescence emitted from the sample solution 13 by the irradiation of this excitation light is introduced into the fluorescence side spectroscope 14, and only the fluorescence having a specific wavelength (fluorescence wavelength EM) is taken out and incident on the photomultiplier tube 15. . The photomultiplier tube 15 outputs a current signal corresponding to the intensity of incident light, and the voltage signal converted by the current / voltage (I / V) converter 16 is converted into a digital value by the A / D converter 17. The data is input to the data processing unit 18. The data processing unit 18 analyzes the detection data to calculate a quantitative value of the specific component in the sample solution 13.

分光蛍光分析において高精度の定量を行うには、試料の種類に応じて適切な励起光波長EX及び蛍光波長EMを分析条件として決める必要がある。一般に、こうした分析条件の決定には十分な経験や熟練が必要であり、経験の乏しいオペレータは設定波長条件を変えながら何回も予備測定を行って最適な波長条件を見い出さなければならない。そのため、分析に時間が掛かり、効率が悪い。また、予備測定のために多量の試料が余分に必要になる。   In order to perform high-precision quantification in spectrofluorimetric analysis, it is necessary to determine appropriate excitation light wavelength EX and fluorescence wavelength EM as analysis conditions according to the type of sample. In general, determination of such analysis conditions requires sufficient experience and skill, and an inexperienced operator must find the optimum wavelength condition by performing preliminary measurements several times while changing the set wavelength condition. Therefore, analysis takes time and efficiency is poor. In addition, a large amount of sample is required for preliminary measurement.

液体クロマトグラフのカラムで成分分離した試料を分光蛍光検出装置で検出する際には、上記のような分析条件の決定は一層面倒で手間が掛かる作業となる。何故なら、通常、分析対象の試料には多数の試料成分が含まれており、試料成分毎に適切な励起光波長と蛍光波長とが相違するからである。また、液体クロマトグラフでは1回の測定に短くても数分程度、長ければ数十分もの時間が掛かり、予備測定を何回も繰り返して最適な分析条件を決めるような作業は実用的でない。そのため、結局のところ、オペレータの経験や勘などに頼らざるを得ないのが実状であり、それによって分析の精度も左右されることになる。   When a sample separated by a liquid chromatograph column is detected by a spectrofluorescence detection apparatus, determination of the analysis conditions as described above is a more complicated and time-consuming work. This is because the sample to be analyzed usually contains a large number of sample components, and the appropriate excitation light wavelength and fluorescence wavelength are different for each sample component. Further, in a liquid chromatograph, it takes several minutes at least for a single measurement, and it takes tens of minutes if it is long, and it is not practical to determine the optimal analysis conditions by repeating preliminary measurements many times. Therefore, in the end, it is the actual situation that the operator has to rely on the experience and intuition of the operator, and this also affects the accuracy of the analysis.

特開2006−300632号公報(段落0002、図2)Japanese Unexamined Patent Publication No. 2006-300632 (paragraph 0002, FIG. 2)

本発明は上記課題を解決するために成されたものであり、その目的とするところは、経験の乏しい者であっても、各試料成分に対して適切な励起光波長及び蛍光波長を容易に且つ効率よく決めることができる液体クロマトグラフ用分光蛍光検出装置を提供することにある。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to easily set an appropriate excitation light wavelength and fluorescence wavelength for each sample component even for those who have little experience. Another object of the present invention is to provide a spectrofluorometric detection apparatus for liquid chromatography that can be determined efficiently.

上記課題を解決するためになされた本発明は、液体クロマトグラフのカラムで分離された試料成分を検出する分光蛍光検出装置であって、光源と、該光源からの出射光を分光して所定波長の光を取り出す励起側分光手段と、該励起側分光手段により取り出された励起光に対して試料から得られる蛍光を分光して所定波長の光を取り出す蛍光側分光手段と、該蛍光側分光手段により取り出された蛍光を検出する光検出器と、前記励起側分光手段及び前記蛍光側分光手段のそれぞれについて取り出される光の波長を変更する波長変更手段と、を具備する液体クロマトグラフ用分光蛍光検出装置において、
a)前記波長変更手段により予め定められた励起光波長及び蛍光波長を設定した状態で前記カラムからの溶出液に対する検出を行い、その検出信号に基づいて試料成分の出現を検知する成分検知手段と、
b)前記成分検知手段により試料成分の出現が検知されるとカラムへの送液を一時的に停止するように指示を与える指示手段と、
c)前記指示手段による指示に応じて送液が停止した状態で、前記波長変更手段により励起光波長及び蛍光波長の走査をそれぞれ行い、励起光波長、蛍光波長及び信号強度をディメンジョンとする3次元スペクトルを取得するスペクトル取得手段と、
d)前記3次元スペクトルに対し、最大の信号強度を持つ又は相対的に大きな信号強度を持つピークを与える励起光波長と蛍光波長との組合せを探索する探索手段と、
e)前記探索手段により得られた励起光波長及び蛍光波長と、その3次元スペクトルが取得された試料成分が出現した時間情報とを併せて出力する出力手段と、
を備えることを特徴としている。
The present invention made in order to solve the above-mentioned problems is a spectral fluorescence detection device for detecting a sample component separated by a column of a liquid chromatograph, wherein a light source and light emitted from the light source are dispersed to obtain a predetermined wavelength. Excitation-side spectroscopic means for taking out the light from the sample; fluorescence-side spectroscopic means for separating the fluorescence obtained from the sample with respect to the excitation light extracted by the excitation-side spectroscopic means; A fluorescence detector for liquid chromatography, comprising: a photodetector for detecting fluorescence extracted by the light source; and a wavelength changing means for changing the wavelength of light extracted for each of the excitation-side spectroscopic means and the fluorescence-side spectroscopic means. In the device
a) component detection means for detecting the eluate from the column in a state where the excitation light wavelength and the fluorescence wavelength predetermined by the wavelength changing means are set, and detecting the appearance of a sample component based on the detection signal; ,
b) an instruction means for giving an instruction to temporarily stop the liquid feeding to the column when the appearance of the sample component is detected by the component detection means;
c) In a state where liquid feeding is stopped according to the instruction from the instruction means, the wavelength changing means scans the excitation light wavelength and the fluorescence wavelength, respectively, and uses the excitation light wavelength, the fluorescence wavelength and the signal intensity as dimensions. Spectrum acquisition means for acquiring a spectrum;
d) search means for searching for a combination of an excitation light wavelength and a fluorescence wavelength that gives a peak having a maximum signal intensity or a relatively large signal intensity with respect to the three-dimensional spectrum;
e) an output means for outputting the excitation light wavelength and the fluorescence wavelength obtained by the search means together with the time information at which the sample component from which the three-dimensional spectrum was acquired appears;
It is characterized by having.

上記指示手段による指示に応じてカラムへの送液を一時的に停止するには、例えばカラムへ移動相を送給する送液ポンプの動作を停止させる、或いは、流路の切替えによりカラムへの移動相の流入を別の流路に迂回させる等の方法を採り得る。   In order to temporarily stop the liquid feeding to the column in response to the instruction from the instruction means, for example, the operation of the liquid feeding pump for feeding the mobile phase to the column is stopped, or the flow to the column is switched by switching the flow path. A method such as diverting the inflow of the mobile phase to another flow path may be employed.

上記のようにカラムへの送液を一時的に停止すると、カラムからの溶出液の流れが一時的に滞留するから、本発明に係る分光蛍光検出装置では溶出液中の同じ試料成分を検出し続けることになる。波長変更手段による励起光波長と蛍光波長の走査には或る程度の時間が掛かるが、その間、同じ試料成分が検出位置に留まるため、その試料成分に対する3次元スペクトルを取得することができる。送液を停止すると、分離された成分が流路内で拡散し、分離能が下がるとともにピークの位置ずれも生じる。したがって、正確さを要求される測定には好ましくないが、ここでは、各試料成分毎に最適又はそれに近い励起光波長及び蛍光波長を見い出すことが目的であるため、分離能の低下やピークの位置ずれは殆ど問題とならない。   When the liquid supply to the column is temporarily stopped as described above, the flow of the eluate from the column temporarily stays. Therefore, the spectrofluorescence detection apparatus according to the present invention detects the same sample component in the eluate. Will continue. The scanning of the excitation light wavelength and the fluorescence wavelength by the wavelength changing means takes a certain amount of time, but during that time, the same sample component remains at the detection position, so that a three-dimensional spectrum for the sample component can be acquired. When the liquid feeding is stopped, the separated components are diffused in the flow path, so that the separation ability is lowered and the peak is displaced. Therefore, although it is not preferable for measurement that requires accuracy, the purpose here is to find the excitation light wavelength and fluorescence wavelength that are optimal or close to each sample component. Misalignment is hardly a problem.

本発明に係る分光蛍光検出装置において、成分検知手段は例えば、検出信号のレベルが予め定めた閾値以上になったときにその信号の時間的な変化量を観察し始め、その変化量が大きな状態から或る閾値以下に小さくなったときに、試料成分が出現したと判断する構成とすることができる。そして、送液を停止することで検知した試料成分を検出位置に滞留させた状態で3次元スペクトルを取得し、取得が終了すると送液を再開させて、次にカラムから溶出してくる試料成分の出現を待つ。こうした処理を繰り返すことで、試料中に含まれる複数の試料成分について、それぞれ別々に3次元スペクトルを作成し、最大の信号強度を持つ又は相対的に大きな信号強度を持つピークを与える励起光波長と蛍光波長との組合せを見い出すことができる。なお、送液を停止している時間は保持時間に含まれないのはもちろんである。   In the spectral fluorescence detection apparatus according to the present invention, for example, the component detection means starts observing the temporal change amount of the signal when the level of the detection signal is equal to or higher than a predetermined threshold, and the change amount is large. Therefore, it can be determined that the sample component has appeared when it becomes smaller than a certain threshold value. Then, the three-dimensional spectrum is acquired in a state where the detected sample component is retained at the detection position by stopping the liquid supply. When the acquisition is completed, the liquid supply is resumed, and then the sample component eluted from the column. Wait for the appearance of. By repeating such processing, a three-dimensional spectrum is separately created for each of a plurality of sample components contained in the sample, and the excitation light wavelength that gives a peak having the maximum signal intensity or a relatively large signal intensity is obtained. Combinations with fluorescence wavelengths can be found. Of course, the holding time is not included in the time during which the liquid feeding is stopped.

目的試料について1回の液体クロマトグラフ測定を実行しさえすれば、その試料に含まれる全ての試料成分に対する適切な励起光波長、蛍光波長が判明するから、出力手段により提供される情報に基づいて、目的試料に対する2回目の、詳細な液体クロマトグラフ測定の条件設定を行うことができる。もちろん、そうした条件設定がユーザの手を煩わせることなく自動的に行われるようにしてもよい。但し、3次元スペクトル上に複数のピークが存在する場合、最大の信号強度を示すピークの励起光波長・蛍光波長が条件として最適であるとは限らない場合もあるから、複数の候補を提示してユーザが選択できるようにしておくのもよい。   If only one liquid chromatographic measurement is performed on the target sample, the appropriate excitation light wavelength and fluorescence wavelength for all the sample components contained in the sample can be determined. Based on the information provided by the output means The second detailed liquid chromatographic measurement conditions can be set for the target sample. Of course, such condition setting may be performed automatically without bothering the user. However, if there are multiple peaks on the three-dimensional spectrum, the excitation light wavelength and fluorescence wavelength of the peak showing the maximum signal intensity may not be optimal as a condition. It is also possible to allow the user to make a selection.

また、本発明に係る分光蛍光検出装置の一態様として、前記スペクトル取得手段により取得された3次元スペクトルを描出するとともに前記探索手段により見い出されたピークを認識可能に表示する表示手段と、該表示手段に表示された3次元スペクトル上でユーザがピークの選択指示を行う操作手段と、該操作手段による選択指示に応じて指定されたピークを与える励起光波長及び蛍光波長を次の分析条件として設定する分析条件設定手段と、をさらに備える構成としてもよい。   Further, as one aspect of the spectral fluorescence detection apparatus according to the present invention, a display means for rendering the three-dimensional spectrum acquired by the spectrum acquisition means and recognizing the peaks found by the search means, and the display On the three-dimensional spectrum displayed on the means, the operation means for the user to select a peak, and the excitation light wavelength and the fluorescence wavelength that give the peak specified according to the selection instruction by the operation means are set as the next analysis conditions It is good also as a structure further provided with the analysis condition setting means to do.

この構成によれば、ユーザは3次元スペクトルを目視で確認しながら操作が可能であるので、操作ミスが軽減される。また、例えば測定に何らかの不具合が生じた(例えば意図しない夾雑物が多量に混入している)ことを容易に認識することができ、無駄な詳細測定を実行することを回避できる。   According to this configuration, since the user can perform an operation while visually confirming the three-dimensional spectrum, an operation error is reduced. Further, for example, it is possible to easily recognize that some trouble has occurred in the measurement (for example, a large amount of unintended impurities are included), and it is possible to avoid performing unnecessary detailed measurement.

なお、スペクトル取得手段による3次元スペクトル取得はあくまでも分析条件決めが目的であるので、可能な限りそれに要する時間を短縮することが望ましい。そこで、例えばスペクトル取得手段による3次元スペクトル取得の際の励起光波長及び蛍光波長の波長範囲をそれぞれユーザが設定するための波長設定手段をさらに備えるようにし、必要に応じてユーザが波長範囲を限定することで測定時間を短縮できるようにするとよい。また、走査の際の波長ステップもユーザが設定できるようにしておくとよい。   The acquisition of the three-dimensional spectrum by the spectrum acquisition means is only for the purpose of determining analysis conditions, so it is desirable to reduce the time required for it as much as possible. Therefore, for example, the wavelength setting unit is further provided for the user to set the wavelength range of the excitation light wavelength and the fluorescence wavelength when the three-dimensional spectrum is acquired by the spectrum acquisition unit, and the user limits the wavelength range as necessary. By doing so, the measurement time should be shortened. It is also preferable that the user can set the wavelength step during scanning.

本発明に係る液体クロマトグラフ用分光蛍光検出装置によれば、目的試料について1回の液体クロマトグラフ測定を実行するだけで、その目的試料に含まれる各種の成分をそれぞれ高い精度で定量分析するために最適な励起光波長及び蛍光波長の情報を自動的に収集することができる。これにより、経験の浅いオペレータでも効率よく、且つ高い精度で分析を実行することができる。また、多数回の予備的な測定を実行せずに済むので、目的試料の量も少なくて済み、装置の消耗品(例えば液体クロマトグラフのカラムなど)の無駄な消耗も抑制することができる。   According to the spectrofluorometric detection apparatus for a liquid chromatograph according to the present invention, various components contained in the target sample can be quantitatively analyzed with high accuracy by performing only one liquid chromatographic measurement on the target sample. It is possible to automatically collect information on the optimum excitation light wavelength and fluorescence wavelength. Thereby, even an inexperienced operator can perform analysis efficiently and with high accuracy. Further, since it is not necessary to perform many preliminary measurements, the amount of the target sample can be reduced, and wasteful consumption of the consumables of the apparatus (for example, a liquid chromatograph column) can be suppressed.

以下、本発明に係る分光蛍光検出装置を利用した液体クロマトグラフの一実施例について、図を参照して詳細に説明する。図1は本実施例の液体クロマトグラフの要部の構成図である。なお、図8により説明した構成と同じ構成要素には同じ符号を付して説明を略す。   Hereinafter, an embodiment of a liquid chromatograph using the spectral fluorescence detection apparatus according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of a main part of the liquid chromatograph of the present embodiment. In addition, the same code | symbol is attached | subjected to the same component as the structure demonstrated with FIG. 8, and description is abbreviate | omitted.

この液体クロマトグラフでは、送液ポンプ3により移動相容器2に貯留されている移動相が吸引されて、略一定流量でインジェクタ4を経てカラム5に送給される。インジェクタ4により移動相中に試料が注入されると、その試料は移動相の流れに乗ってカラム5に導入され、カラム5を通過する間に試料に含まれる各種成分が分離され、時間的に差がついてカラム5の出口端から溶出し、フローセル6を通過した後に排出される。分光蛍光検出装置1はフローセル6を通過する溶出液中の試料成分を検出する。送液ポンプ3の動作やインジェクタ4による試料注入動作は分析制御部7により制御される。   In this liquid chromatograph, the mobile phase stored in the mobile phase container 2 is sucked by the liquid feed pump 3 and fed to the column 5 through the injector 4 at a substantially constant flow rate. When a sample is injected into the mobile phase by the injector 4, the sample is introduced into the column 5 along the flow of the mobile phase, and various components contained in the sample are separated while passing through the column 5. The difference eluates from the outlet end of the column 5 and is discharged after passing through the flow cell 6. The spectroscopic fluorescence detection apparatus 1 detects sample components in the eluate passing through the flow cell 6. The operation of the liquid feed pump 3 and the sample injection operation by the injector 4 are controlled by the analysis control unit 7.

分光蛍光検出装置1において、A/D変換部17からの検出データを受けるデータ処理部18は、走査タイミング決定処理部181、データ記憶部182、ピーク探索部183などを含む。走査タイミング決定処理部181による制御信号は、励起側分光器11において回折格子111を回動させるモータ112と蛍光側分光器14において回折格子141を回動させるモータ142とを制御する走査制御部19、及び分析制御部7に入力される。また、データ処理部18には、ユーザが操作する操作部20や表示部21が付設されている。なお、データ処理部18の機能の全て又は一部、操作部20、表示部21などはパーソナルコンピュータにより具現化するようにしてもよい。   In the spectral fluorescence detection apparatus 1, a data processing unit 18 that receives detection data from the A / D conversion unit 17 includes a scanning timing determination processing unit 181, a data storage unit 182, a peak search unit 183, and the like. A control signal from the scanning timing determination processing unit 181 is sent from a scanning control unit 19 that controls a motor 112 that rotates the diffraction grating 111 in the excitation side spectroscope 11 and a motor 142 that rotates the diffraction grating 141 in the fluorescence side spectroscope 14. And input to the analysis control unit 7. Further, the data processing unit 18 is provided with an operation unit 20 and a display unit 21 operated by a user. Note that all or part of the functions of the data processing unit 18, the operation unit 20, the display unit 21, etc. may be embodied by a personal computer.

次に本実施例の液体クロマトグラフにおける特徴的な分析動作を説明する。この液体クロマトグラフでは、まず目的試料に含まれる各種成分を適切に定量分析するための条件を決めるために、1回目の測定を行い、その条件が決まった後に、同じ目的試料に対し詳細測定を実行する。図2はその1回目の測定の際の手順及び処理を示すフローチャートである。   Next, a characteristic analysis operation in the liquid chromatograph of the present embodiment will be described. In this liquid chromatograph, first, in order to determine the conditions for appropriate quantitative analysis of various components contained in the target sample, the first measurement is performed, and after the conditions are determined, detailed measurement is performed on the same target sample. Execute. FIG. 2 is a flowchart showing the procedure and processing in the first measurement.

まず、オペレータは適宜の励起光波長EX及び蛍光波長EMを操作部20から測定条件として入力する。この波長はそれほど厳密なものでなくてよいので、目的試料の種類などに応じて適宜決めておけばよい。走査制御部19はこの指示に応じた波長がそれぞれ選択されるように、各分光器11、14のモータ112、142を制御する(ステップS1)。次に分析制御部7は、送液ポンプ3を作動させてカラム5に一定流量で移動相を送給し、インジェクタ4により所定のタイミングで目的試料を移動相中に注入する。これにより液体クロマトグラフ(LC)分析が開始される(ステップS2)。LC分析の開始とともに、分光蛍光検出装置1においては、走査タイミング決定処理部181が入力される検出データの強度値のモニタを開始する(ステップS3)。   First, the operator inputs appropriate excitation light wavelength EX and fluorescence wavelength EM from the operation unit 20 as measurement conditions. Since this wavelength does not have to be so strict, it may be appropriately determined according to the type of the target sample. The scanning control unit 19 controls the motors 112 and 142 of the spectroscopes 11 and 14 so that the wavelengths corresponding to the instructions are selected (step S1). Next, the analysis control unit 7 operates the liquid feed pump 3 to feed the mobile phase to the column 5 at a constant flow rate, and the injector 4 injects the target sample into the mobile phase at a predetermined timing. Thereby, a liquid chromatograph (LC) analysis is started (step S2). With the start of the LC analysis, in the spectral fluorescence detection apparatus 1, the scanning timing determination processing unit 181 starts monitoring the intensity value of the detection data input (step S3).

走査タイミング決定処理部181では、フローセル6を通過する溶出液に対する検出データが得られると、その強度値が予め設定された閾値TH1以上であるか否かを判定する(ステップS4)。強度値が閾値TH1未満であればステップS4からS13へ進み、分析終了でなければステップS3へと戻る。例えば図5に示すように、或る試料成分がカラム5出口から溶出してフローセル6に導入されると、強度値は上昇し始め閾値TH1を超える(図5でt1の時点)。すると、ステップS4からS5へ進み、今度は強度値の時間的変化量を繰り返し計算し始める。時間的変化量は、図5に示すように、一定の微小時間Δt中の強度値の変化量ΔIである。   When the detection data for the eluate passing through the flow cell 6 is obtained, the scanning timing determination processing unit 181 determines whether the intensity value is equal to or greater than a preset threshold value TH1 (step S4). If the intensity value is less than the threshold value TH1, the process proceeds from step S4 to S13, and if the analysis is not completed, the process returns to step S3. For example, as shown in FIG. 5, when a sample component elutes from the outlet of the column 5 and is introduced into the flow cell 6, the intensity value starts to rise and exceeds the threshold value TH1 (at time t1 in FIG. 5). Then, the process proceeds from step S4 to S5, and this time, it starts to repeatedly calculate the temporal change amount of the intensity value. As shown in FIG. 5, the temporal change amount is the change amount ΔI of the intensity value during a certain minute time Δt.

一般的に、クロマトグラムにおいて或る成分によるピークが出現したときに、ピークの立ち上がり部分では時間的変化量が大きく、ピークトップが近づくに従い時間的変化量が小さくなる。そこで、この時間的変化量が所定の閾値以下になったか否かを判定し(ステップS6)、時間的変化量が閾値以下になったならば(図5でt2の時点)、試料成分の出現が検知されたとみなし、そのときの保持時間(リテンションタイム)を求める(ステップS7)。また、分析制御部7に対して制御信号を送出し、送液ポンプ3の動作を一時的に停止させる(ステップS8)。それにより、カラム5への移動相の供給が停止され、フローセル6内にその直前に導入された溶出液がそのまま保持される。   In general, when a peak due to a certain component appears in the chromatogram, the temporal change amount is large at the rising portion of the peak, and the temporal change amount becomes smaller as the peak top approaches. Therefore, it is determined whether or not the temporal change amount is equal to or less than a predetermined threshold value (step S6). If the temporal change amount is equal to or less than the threshold value (at time t2 in FIG. 5), the appearance of the sample component appears. Is detected, and the retention time (retention time) at that time is obtained (step S7). Further, a control signal is sent to the analysis control unit 7 to temporarily stop the operation of the liquid feeding pump 3 (step S8). Thereby, the supply of the mobile phase to the column 5 is stopped, and the eluate introduced immediately before in the flow cell 6 is held as it is.

なお、送液ポンプ3のオン・オフ制御の代わりに、流路の切替えを行ってカラム5に送給される移動相を別の流路に流すようにすることで、カラム5での試料の送りを一時停止させるようにしてもよい。なお、このように送液が停止されている期間には、保持時間を計測するタイマの計時も停止し、保持時間がずれることを回避する。   In place of the on / off control of the liquid feed pump 3, the flow of the mobile phase fed to the column 5 is changed to flow through another flow path by switching the flow path so that the sample in the column 5 is flown. The feeding may be temporarily stopped. In addition, during the period in which the liquid feeding is stopped in this way, the time measurement of the timer for measuring the holding time is also stopped to prevent the holding time from shifting.

上記のようにフローセル6内に溶出液が滞留した状態で、走査制御部19は走査タイミング決定処理部181からの指示に基づいて、励起側分光器11及び蛍光側分光器14でそれぞれ波長走査を行う(ステップS9)。データ処理部18はこの波長走査に伴って得られる検出データを収集することで3次元スペクトルを取得する(ステップS10)。これについては後で詳述する。得られた3次元スペクトルデータと保持時間とは対応付けてデータ記憶部182に格納される(ステップS11)。   In the state where the eluate stays in the flow cell 6 as described above, the scanning control unit 19 performs wavelength scanning with the excitation side spectroscope 11 and the fluorescence side spectroscope 14 based on an instruction from the scanning timing determination processing unit 181. Perform (step S9). The data processing unit 18 acquires the three-dimensional spectrum by collecting the detection data obtained along with this wavelength scanning (step S10). This will be described in detail later. The obtained three-dimensional spectrum data and the holding time are stored in the data storage unit 182 in association with each other (step S11).

その後、分析制御部7は送液ポンプ3による移動相の送給を再開し、再びLC分析が先の続きから行われる(ステップS12)。そして、例えば予め定めた終了時間が経過する等、分析終了の条件が満たされたか否かを判定し(ステップS13)、未だ分析終了でない場合にはステップS3へと戻る。したがって、分析終了まで、検出データの強度値が閾値TH1を超えるような変化を生じる毎に3次元スペクトルが取得され、その3次元スペクトルが保持時間とともにデータ記憶部182に格納される。即ち、試料成分の時間的な重なりがない限り、或いは、始めに設定された励起光波長及び蛍光波長では出現検知できない試料成分がない限り、試料成分の数だけ3次元スペクトルが作成されることになる。   After that, the analysis control unit 7 resumes the supply of the mobile phase by the liquid feed pump 3, and the LC analysis is performed again from the previous time (step S12). Then, for example, it is determined whether or not the analysis end condition is satisfied, for example, a predetermined end time has passed (step S13). If the analysis has not ended yet, the process returns to step S3. Therefore, until the end of the analysis, a three-dimensional spectrum is acquired every time a change occurs such that the intensity value of the detected data exceeds the threshold value TH1, and the three-dimensional spectrum is stored in the data storage unit 182 together with the holding time. In other words, as long as there is no temporal overlap of sample components, or there are no sample components that cannot be detected at the excitation light wavelength and fluorescence wavelength set at the beginning, three-dimensional spectra are created for the number of sample components. Become.

次に、上記ステップS9、S10における波長走査に伴う3次元スペクトルの取得の手順について図3により説明する。この例では、200〜750nmの波長範囲(紫外域〜可視域)を1nmの波長ステップで波長走査を行うものとする。   Next, a procedure for acquiring a three-dimensional spectrum accompanying the wavelength scanning in steps S9 and S10 will be described with reference to FIG. In this example, it is assumed that wavelength scanning is performed at a wavelength step of 1 nm in a wavelength range of 200 to 750 nm (ultraviolet region to visible region).

まず、励起光波長EX、蛍光波長EMがともに開始波長(200nm)に設定されるように分光器11、14のモータ112、142が制御される(ステップS21)。次に、そのときの励起光波長EXが終了波長(750nm)以下であるか否かを判定し(ステップS22)、終了波長以下であればさらに次に蛍光波長EMが終了波長(750nm)以下であるか否かを判定する(ステップS23)。蛍光波長EMが終了波長以下であれば、そのときにA/D変換部17から得られる検出データを読み込んで記憶し(ステップS24)、蛍光波長EMを1nmだけ増加させて(ステップS25)ステップS23へ戻る。したがって、まず励起光波長EXが200nmである励起条件の下で、ステップS23〜S25の繰り返しにより、蛍光波長EMが200〜750nmである波長範囲を1nmずつ変化させながら検出データ、つまり蛍光強度値を収集する。   First, the motors 112 and 142 of the spectrometers 11 and 14 are controlled so that both the excitation light wavelength EX and the fluorescence wavelength EM are set to the start wavelength (200 nm) (step S21). Next, it is determined whether or not the excitation light wavelength EX at that time is equal to or less than the end wavelength (750 nm) (step S22). If it is equal to or less than the end wavelength, then the fluorescence wavelength EM is equal to or less than the end wavelength (750 nm). It is determined whether or not there is (step S23). If the fluorescence wavelength EM is less than or equal to the end wavelength, then the detection data obtained from the A / D converter 17 is read and stored (step S24), and the fluorescence wavelength EM is increased by 1 nm (step S25). Return to. Therefore, first, under the excitation condition where the excitation light wavelength EX is 200 nm, the detection data, that is, the fluorescence intensity value is changed while the wavelength range where the fluorescence wavelength EM is 200 to 750 nm is changed by 1 nm by repeating steps S23 to S25. collect.

蛍光波長EMが750nmを超えるとステップS23からS26へ進み、蛍光波長EMを開始波長に戻し、今度は励起光波長EXを1nmだけ増加させて(ステップS27)ステップS22へ戻る。したがって、励起光波長EX=200nmの次にはEX=201nmの励起条件の下で、200〜750nmの波長範囲を1nmステップで蛍光波長EMが走査され、検出データが収集される。こうして励起光波長EXを1nmずつ増加させながら200〜750nmの波長範囲の蛍光スペクトルデータを収集していき、励起光波長EXが750nmを超えるとステップS22からS28へ進み、励起光波長EX、蛍光波長EMを元の状態に戻して処理を終了する。   When the fluorescence wavelength EM exceeds 750 nm, the process proceeds from step S23 to S26, the fluorescence wavelength EM is returned to the start wavelength, this time the excitation light wavelength EX is increased by 1 nm (step S27), and the process returns to step S22. Accordingly, the fluorescence wavelength EM is scanned in a 1 nm step in the wavelength range of 200 to 750 nm under the excitation condition of the excitation light wavelength EX = 200 nm and then EX = 201 nm, and the detection data is collected. Thus, the fluorescence spectrum data in the wavelength range of 200 to 750 nm is collected while increasing the excitation light wavelength EX by 1 nm. When the excitation light wavelength EX exceeds 750 nm, the process proceeds from step S22 to S28, and the excitation light wavelength EX and the fluorescence wavelength are collected. The EM is returned to the original state and the process is terminated.

以上のような波長走査を伴ったデータの収集により、波長範囲が200〜750nmである励起光波長EX、波長範囲が200〜750nmである蛍光波長EM、及び信号強度、の3つのディメンジョンを有する3次元スペクトルが得られ、これがデータ記憶部182に格納される。この3次元スペクトルの3次元表示の一例を図6に示す。前述したように、液体クロマトグラフのインジェクタ4で試料が注入された時点を基準とし、試料成分がカラム5から溶出してフローセル6に導入される毎に図6に示したような3次元スペクトルの取得が実行される。   By collecting data with wavelength scanning as described above, 3 having three dimensions of excitation light wavelength EX with a wavelength range of 200 to 750 nm, fluorescence wavelength EM with a wavelength range of 200 to 750 nm, and signal intensity 3 A dimensional spectrum is obtained and stored in the data storage unit 182. An example of the three-dimensional display of this three-dimensional spectrum is shown in FIG. As described above, the sample component is eluted from the column 5 and introduced into the flow cell 6 every time the sample is injected by the injector 4 of the liquid chromatograph, and the three-dimensional spectrum as shown in FIG. Acquisition is performed.

上記3次元スペクトルは専ら分析条件(励起光波長及び蛍光波長)を決めるための概略的な波形を得るためのものであるので、強度値や波長の分解能は重要ではなく、走査速度を重視することが好ましい。したがって、各波長における電荷蓄積時間は短くてよく、また波長ステップは大きくてもよいが、回折格子111、141を駆動するモータ112、142の動作とA/D変換部17における信号のサンプリングのタイミングとは同期させることが必要である。   The above three-dimensional spectrum is used exclusively for obtaining a rough waveform for determining the analysis conditions (excitation light wavelength and fluorescence wavelength). Therefore, the intensity value and the wavelength resolution are not important, and the scanning speed should be emphasized. Is preferred. Therefore, although the charge accumulation time at each wavelength may be short and the wavelength step may be large, the operation of the motors 112 and 142 that drive the diffraction gratings 111 and 141 and the timing of signal sampling in the A / D converter 17 Need to be synchronized.

一例として、分光器11、14において回折格子111、141を回動させるモータ(ステッピングモータ)112、142の波長分解能が1ステップ=1nmであり、走査時にはモータ112、142を2000ppsで定速動作させる場合を想定する。この場合、蛍光波長EMの波長ステップを1nm、励起光波長EXの波長ステップを2nmとすると、蛍光波長EXを200〜750nmの範囲走査させるのに必要な時間は、
(1/2000[pps])×(750[step]−200[step]+1)=275.5[ms]
である。1回の蛍光波長走査の後に蛍光波長EMを200nmに戻し、励起光波長EXを2nmだけ増加させる必要があるから、それに要する時間を74.5msと仮定し、励起光波長EXを200〜750nmの範囲で2nm毎に走査すると、
(275.5[ms]+74.5[ms])×{(750[step]−200[step])/2+1)=96.5[s]
となる。これが1つの3次元スペクトルの取得に要する時間である。但し、実際の蛍光分析は、蛍光波長EM>励起光波長EXの範囲だけ行えば十分であるため、励起光波長EXに応じて蛍光波長EMの走査範囲を限定することができ、実際に掛かる時間は上記の概算値よりも短い時間となる。
As an example, the wavelength resolution of the motors (stepping motors) 112 and 142 for rotating the diffraction gratings 111 and 141 in the spectroscopes 11 and 14 is 1 step = 1 nm, and the motors 112 and 142 are operated at a constant speed of 2000 pps during scanning. Assume a case. In this case, if the wavelength step of the fluorescence wavelength EM is 1 nm and the wavelength step of the excitation light wavelength EX is 2 nm, the time required for scanning the fluorescence wavelength EX in the range of 200 to 750 nm is:
(1/2000 [pps]) × (750 [step] −200 [step] +1) = 275.5 [ms]
It is. Since it is necessary to return the fluorescence wavelength EM to 200 nm after one fluorescence wavelength scan and increase the excitation light wavelength EX by 2 nm, the time required for this is assumed to be 74.5 ms, and the excitation light wavelength EX is set to 200 to 750 nm. When scanning every 2 nm in the range,
(275.5 [ms] +74.5 [ms]) × {(750 [step] −200 [step]) / 2 + 1) = 96.5 [s]
It becomes. This is the time required to acquire one three-dimensional spectrum. However, since it is sufficient to perform the actual fluorescence analysis only in the range of the fluorescence wavelength EM> the excitation light wavelength EX, the scanning range of the fluorescence wavelength EM can be limited according to the excitation light wavelength EX, and the time actually taken Is shorter than the above estimated value.

さて、上記のような3次元スペクトルが得られた後に、その3次元スペクトルに対しピーク探索部183でピークトップ判定処理が実行され、適切な励起光波長及び蛍光波長が探索される。このピークトップ判定処理は、図2に示したような1回のLC分析が終了した後に全ての3次元スペクトルに対して順に実行される(いわゆるバッチ処理)ようにしてもよいし、或いは、LC分析実行中に新たな3次元スペクトルが取得される毎にすぐに実行される(いわゆる)逐次処理)ようにしてもよい。波長走査とは異なりピークトップ判定処理は機械的な駆動を伴わないので、短時間で行うことができ、逐次処理でも時間的な問題はない。   Now, after the three-dimensional spectrum as described above is obtained, a peak top determination process is executed by the peak search unit 183 for the three-dimensional spectrum, and appropriate excitation light wavelength and fluorescence wavelength are searched. This peak top determination process may be executed sequentially for all three-dimensional spectra after one LC analysis as shown in FIG. 2 is completed (so-called batch process), or LC You may be made to perform immediately (what is called sequential processing) whenever a new three-dimensional spectrum is acquired during analysis execution. Unlike wavelength scanning, the peak top determination process does not involve mechanical driving, so it can be performed in a short time, and there is no time problem even with sequential processing.

図4は1つの3次元スペクトルに対するピークトップ判定処理の手順を示すフローチャートである。
まず励起光波長EX、蛍光波長EMがともに開始波長(200nm)に設定されるとともに、最大強度値MAX、最大強度値を与える励起光波長EXmax、最大強度値を与える蛍光波長EMmaxがいずれもゼロに初期化される(ステップS31)。次にそのときの励起光波長EXが終了波長(750nm)以下であるか否かを判定し(ステップS32)、終了波長以下であればさらに次に蛍光波長EMが終了波長(750nm)以下であるか否かを判定する(ステップS33)。蛍光波長EMが終了波長以下であれば、3次元スペクトルの中でそのときの励起光波長及び蛍光波長に対する強度値Dをデータ記憶部182から読み出し(ステップS34)、その強度値Dが最大強度値MAXよりも大きいか否かを判定する(ステップS35)。
FIG. 4 is a flowchart showing a procedure of peak top determination processing for one three-dimensional spectrum.
First, both the excitation light wavelength EX and the fluorescence wavelength EM are set to the start wavelength (200 nm), and the maximum intensity value MAX, the excitation light wavelength EXmax giving the maximum intensity value, and the fluorescence wavelength EMmax giving the maximum intensity value are all zero. Initialization is performed (step S31). Next, it is determined whether or not the excitation light wavelength EX at that time is equal to or less than the end wavelength (750 nm) (step S32). If it is equal to or less than the end wavelength, then the fluorescence wavelength EM is equal to or less than the end wavelength (750 nm). Is determined (step S33). If the fluorescence wavelength EM is equal to or less than the end wavelength, the intensity value D for the excitation light wavelength and the fluorescence wavelength at that time is read from the data storage unit 182 in the three-dimensional spectrum (step S34), and the intensity value D is the maximum intensity value. It is determined whether it is larger than MAX (step S35).

強度値Dが最大強度値MAXよりも大きければ、最大強度値MAXを強度値Dに更新し、そのときの励起光波長EX及び蛍光波長EMをそれぞれEXmax、EMmaxに格納する(ステップS36)。一方、ステップS35で強度値Dが最大強度値MAX以下であれば、MAX、EXmax、EMmaxを更新する必要はないのでステップS36をパスし、いずれも蛍光波長EMを1nmだけ増加させて(ステップS37)ステップS33へ戻る。したがって、まず励起光波長EX=200nmの条件の下で、ステップS33〜S37の繰り返しにより、最大の強度値が探索され、その最大強度値を与える蛍光波長EMが求まる。   If the intensity value D is larger than the maximum intensity value MAX, the maximum intensity value MAX is updated to the intensity value D, and the excitation light wavelength EX and the fluorescence wavelength EM at that time are stored in EXmax and EMmax, respectively (step S36). On the other hand, if the intensity value D is less than or equal to the maximum intensity value MAX in step S35, it is not necessary to update MAX, EXmax, and EMmax, so step S36 is passed, and all increase the fluorescence wavelength EM by 1 nm (step S37). ) Return to Step S33. Therefore, first, under the condition of the excitation light wavelength EX = 200 nm, the maximum intensity value is searched by repeating Steps S33 to S37, and the fluorescence wavelength EM giving the maximum intensity value is obtained.

蛍光波長EMが750nmを超えるとステップS33からS38へ進み、蛍光波長EMを開始波長に戻し、今度は励起光波長EXを1nmだけ増加させて(ステップS39)ステップS32へ戻る。したがって、励起光波長EX=200nmの次にはEX=201nmに対し、200〜750nmの波長範囲の蛍光スペクトルの中でそれ以前に求まった最大強度値を超えるものがあるか否かが探索される。励起光波長EXが750nmを超えるとステップS32でNOと判定されて処理を終了する。したがって、処理終了時点で3次元スペクトルの中で最大の強度値がMAXに、そのときの励起光波長EX及び蛍光波長EMがそれぞれEXmax、EMmaxに格納された状態となる。つまり、これが最大の信号強度を持つピークを与える励起光波長及び蛍光波長の条件であるから、これら波長の組合せとその3次元スペクトルを取得したときの保持時間とを表示部21に表示することでユーザに知らせる。   When the fluorescence wavelength EM exceeds 750 nm, the process proceeds from step S33 to S38, the fluorescence wavelength EM is returned to the start wavelength, this time the excitation light wavelength EX is increased by 1 nm (step S39), and the process returns to step S32. Therefore, next to the excitation light wavelength EX = 200 nm, with respect to EX = 201 nm, it is searched whether there is any fluorescent spectrum in the wavelength range of 200 to 750 nm that exceeds the previously determined maximum intensity value. . If the excitation light wavelength EX exceeds 750 nm, NO is determined in step S32 and the process ends. Accordingly, the maximum intensity value in the three-dimensional spectrum is stored in MAX at the end of the process, and the excitation light wavelength EX and the fluorescence wavelength EM at that time are stored in EXmax and EMmax, respectively. That is, since this is a condition of the excitation light wavelength and the fluorescence wavelength that gives a peak having the maximum signal intensity, the combination of these wavelengths and the retention time when the three-dimensional spectrum is acquired are displayed on the display unit 21. Tell the user.

各3次元スペクトルに対しそれぞれ上記のようなピークトップ判定処理が実行されるから、例えば図7に示すように、保持時間t、励起光波長EX、蛍光波長EMを組とする情報が作成され、これが表示部21より出力される。これに基づいて、励起光波長及び蛍光波長を設定するプログラムを組み、目的試料に対して2回目の詳細な分析を実行することで、目的試料に含まれる各種成分の含有量を正確に反映した強度値を得ることができ、この強度値から高精度の定量分析を行うことができる。また、図7に示したような分析条件情報に基づいて、各保持時間に対し励起光波長及び蛍光波長が自動的に変更されるようにしてもよい。   Since the peak top determination process as described above is performed for each three-dimensional spectrum, for example, as shown in FIG. 7, information including a holding time t, an excitation light wavelength EX, and a fluorescence wavelength EM is created, This is output from the display unit 21. Based on this, a program for setting the excitation light wavelength and the fluorescence wavelength was assembled, and the second detailed analysis was performed on the target sample, thereby accurately reflecting the contents of various components contained in the target sample. An intensity value can be obtained, and high-precision quantitative analysis can be performed from this intensity value. Further, the excitation light wavelength and the fluorescence wavelength may be automatically changed for each holding time based on the analysis condition information as shown in FIG.

なお、上記ピークトップ判定処理は、1つの3次元スペクトルに対して強度値が最大である1つのピークのみを探索していたが、同様の手法で、強度値が2番目に大きいもの、3番目に大きいもの、など複数のピークを探索して、そのピークを得るための励起光波長及び蛍光波長をユーザに知らせるようにしてもよい。この場合には、同一の保持時間に対し励起光波長及び蛍光波長の組が複数提示されるから、詳細分析を実行する際にどの組合せを利用するのかをユーザが選択する必要がある。したがって、そうした選択を促す表示を行ったり、選択が容易な態様での表示を行うとよい。   In the above peak top determination process, only one peak having the maximum intensity value is searched for one three-dimensional spectrum. It is also possible to search for a plurality of peaks such as a large one and inform the user of the excitation light wavelength and the fluorescence wavelength for obtaining the peak. In this case, since a plurality of pairs of excitation light wavelengths and fluorescence wavelengths are presented for the same holding time, it is necessary for the user to select which combination is to be used when performing the detailed analysis. Therefore, it is advisable to perform a display that prompts such a selection or display in an easy-to-select manner.

例えば、表示部21の画面上に図6に示したような3次元スペクトルを表示させるとともに、強度値が大きなピークが識別可能である(例えば表示色の変更)ようにし、そうした複数のピークのいずれかをマウス等のポインティングデバイスで選択指示することで、指示されたピークに対応した励起光波長及び蛍光波長が自動的に分析条件として設定されるようにしてもよい。このようなグラフィカルなユーザインターフェースを利用することで、操作ミスを軽減することができる。   For example, a three-dimensional spectrum as shown in FIG. 6 is displayed on the screen of the display unit 21 and a peak having a large intensity value can be identified (for example, a display color is changed). By selecting and instructing with a pointing device such as a mouse, the excitation light wavelength and the fluorescence wavelength corresponding to the instructed peak may be automatically set as analysis conditions. By using such a graphical user interface, operational errors can be reduced.

なお、上記実施例はいずれも本発明の一例にすぎず、本発明の趣旨の範囲で適宜変形、修正、追加などを行っても、本願特許請求の範囲に包含されることは当然である。   Each of the above embodiments is merely an example of the present invention, and it will be understood that the present invention is encompassed by the scope of the claims of the present application, even if appropriate changes, modifications, additions, etc. are made within the scope of the present invention.

本発明の一実施例による液体クロマトグラフの要部の構成図。The block diagram of the principal part of the liquid chromatograph by one Example of this invention. 本実施例の液体クロマトグラフにおける分析条件決定を目的とした測定の際の手順及び処理を示すフローチャート。The flowchart which shows the procedure and process in the case of the measurement in order to determine the analysis conditions in the liquid chromatograph of a present Example. 波長走査に伴う3次元スペクトルの取得の手順を示すフローチャート。The flowchart which shows the procedure of acquisition of the three-dimensional spectrum accompanying wavelength scanning. 1つの3次元スペクトルに対するピークトップ判定処理の手順を示すフローチャート。The flowchart which shows the procedure of the peak top determination process with respect to one three-dimensional spectrum. 試料成分の出現の検知動作を説明するための概略図。Schematic for demonstrating the detection operation of appearance of a sample component. 3次元スペクトルの一例を示す図。The figure which shows an example of a three-dimensional spectrum. ピークトップ判定処理の結果の出力例を示す図。The figure which shows the example of an output of the result of a peak top determination process. 一般的な分光蛍光検出装置の概略構成図。1 is a schematic configuration diagram of a general spectral fluorescence detection apparatus.

符号の説明Explanation of symbols

1…分光蛍光検出装置
10…光源
11…励起側分光器
12…試料セル
14…蛍光側分光器
111、141…回折格子
112、142…モータ
15…光電子増倍管
16…I/V変換部
17…A/D変換部
18…データ処理部
181…走査タイミング決定処理部
182…データ記憶部
183…ピーク探索部
19…走査制御部
20…操作部
21…表示部
2…移動相容器
3…送液ポンプ
4…インジェクタ
5…カラム
6…フローセル
7…分析制御部
DESCRIPTION OF SYMBOLS 1 ... Spectral fluorescence detection apparatus 10 ... Light source 11 ... Excitation side spectroscope 12 ... Sample cell 14 ... Fluorescence side spectroscope 111, 141 ... Diffraction gratings 112, 142 ... Motor 15 ... Photomultiplier 16 ... I / V conversion part 17 ... A / D conversion unit 18 ... data processing unit 181 ... scanning timing determination processing unit 182 ... data storage unit 183 ... peak search unit 19 ... scanning control unit 20 ... operation unit 21 ... display unit 2 ... mobile phase container 3 ... liquid feeding Pump 4 ... Injector 5 ... Column 6 ... Flow cell 7 ... Analysis control unit

Claims (3)

液体クロマトグラフのカラムで分離された試料成分を検出する分光蛍光検出装置であって、光源と、該光源からの出射光を分光して所定波長の光を取り出す励起側分光手段と、該励起側分光手段により取り出された励起光に対して試料から得られる蛍光を分光して所定波長の光を取り出す蛍光側分光手段と、該蛍光側分光手段により取り出された蛍光を検出する光検出器と、前記励起側分光手段及び前記蛍光側分光手段のそれぞれについて取り出される光の波長を変更する波長変更手段と、を具備する液体クロマトグラフ用分光蛍光検出装置において、
a)前記波長変更手段により予め定められた励起光波長及び蛍光波長を設定した状態で前記カラムからの溶出液に対する検出を行い、その検出信号に基づいて試料成分の出現を検知する成分検知手段と、
b)前記成分検知手段により試料成分の出現が検知されるとカラムへの送液を一時的に停止するように指示を与える指示手段と、
c)前記指示手段による指示に応じて送液が停止した状態で、前記波長変更手段により励起光波長及び蛍光波長の走査をそれぞれ行い、励起光波長、蛍光波長及び信号強度をディメンジョンとする3次元スペクトルを取得するスペクトル取得手段と、
d)前記3次元スペクトルに対し、最大の信号強度を持つ又は相対的に大きな信号強度を持つピークを与える励起光波長と蛍光波長との組合せを探索する探索手段と、
e)前記探索手段により得られた励起光波長及び蛍光波長と、その3次元スペクトルが取得された試料成分が出現した時間情報とを併せて出力する出力手段と、
を備えることを特徴とする液体クロマトグラフ用分光蛍光検出装置。
A spectrofluorescence detection device for detecting a sample component separated by a column of a liquid chromatograph, comprising: a light source; an excitation-side spectroscopic means for separating light emitted from the light source and extracting light of a predetermined wavelength; and the excitation side A fluorescence-side spectroscopic means for separating the fluorescence obtained from the sample with respect to the excitation light extracted by the spectroscopic means and extracting light of a predetermined wavelength; a photodetector for detecting the fluorescence extracted by the fluorescence-side spectroscopic means; In the spectral fluorescence detection apparatus for a liquid chromatograph, comprising: a wavelength changing unit that changes a wavelength of light extracted for each of the excitation side spectroscopic unit and the fluorescence side spectroscopic unit,
a) component detection means for detecting the eluate from the column in a state where the excitation light wavelength and the fluorescence wavelength predetermined by the wavelength changing means are set, and detecting the appearance of a sample component based on the detection signal; ,
b) an instruction means for giving an instruction to temporarily stop the liquid feeding to the column when the appearance of the sample component is detected by the component detection means;
c) In a state where liquid feeding is stopped according to the instruction from the instruction means, the wavelength changing means scans the excitation light wavelength and the fluorescence wavelength, respectively, and uses the excitation light wavelength, the fluorescence wavelength and the signal intensity as dimensions. Spectrum acquisition means for acquiring a spectrum;
d) search means for searching for a combination of an excitation light wavelength and a fluorescence wavelength that gives a peak having a maximum signal intensity or a relatively large signal intensity with respect to the three-dimensional spectrum;
e) an output means for outputting the excitation light wavelength and the fluorescence wavelength obtained by the search means together with the time information at which the sample component from which the three-dimensional spectrum was acquired appears;
A spectral fluorescence detection apparatus for liquid chromatography, comprising:
請求項1に記載の液体クロマトグラフ用分光蛍光検出装置であって、前記スペクトル取得手段による3次元スペクトル取得の際の励起光波長及び蛍光波長の波長範囲をそれぞれユーザが設定するための波長設定手段をさらに備えることを特徴とする液体クロマトグラフ用分光蛍光検出装置。   2. The spectral fluorescence detection apparatus for liquid chromatograph according to claim 1, wherein a user sets a wavelength range of an excitation light wavelength and a fluorescence wavelength when acquiring a three-dimensional spectrum by the spectrum acquisition unit. A spectral fluorescence detection apparatus for liquid chromatography, further comprising: 請求項1又は2に記載の液体クロマトグラフ用分光蛍光検出装置であって、前記スペクトル取得手段により取得された3次元スペクトルを描出するとともに前記探索手段により見い出されたピークを認識可能に表示する表示手段と、該表示手段に表示された3次元スペクトル上でユーザがピークの選択指示を行う操作手段と、該操作手段による選択指示に応じて指定されたピークを与える励起光波長及び蛍光波長を次の分析条件として設定する分析条件設定手段と、をさらに備えることを特徴とする液体クロマトグラフ用分光蛍光検出装置。   3. The spectrofluorescence detection apparatus for liquid chromatograph according to claim 1 or 2, wherein the three-dimensional spectrum acquired by the spectrum acquisition means is rendered and the peak found by the search means is displayed in a recognizable manner. Means, an operation means for a user to select a peak on the three-dimensional spectrum displayed on the display means, and an excitation light wavelength and a fluorescence wavelength that give a peak specified according to the selection instruction by the operation means And an analysis condition setting means for setting as an analysis condition for the liquid chromatograph.
JP2008022529A 2008-02-01 2008-02-01 Spectrofluorometric detection apparatus for liquid chromatograph Pending JP2009180706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008022529A JP2009180706A (en) 2008-02-01 2008-02-01 Spectrofluorometric detection apparatus for liquid chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008022529A JP2009180706A (en) 2008-02-01 2008-02-01 Spectrofluorometric detection apparatus for liquid chromatograph

Publications (1)

Publication Number Publication Date
JP2009180706A true JP2009180706A (en) 2009-08-13

Family

ID=41034786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008022529A Pending JP2009180706A (en) 2008-02-01 2008-02-01 Spectrofluorometric detection apparatus for liquid chromatograph

Country Status (1)

Country Link
JP (1) JP2009180706A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092766A1 (en) * 2010-01-28 2011-08-04 株式会社 日立ハイテクノロジーズ Spectrophotofluorometer and fluorescence detector for liquid chromatograph
JP2013113623A (en) * 2011-11-25 2013-06-10 Canon Inc Stimulated raman scattering measuring apparatus
CN103389520A (en) * 2013-07-30 2013-11-13 中煤科工集团西安研究院 Method for distinguishing water bursting source of coal mine
JP2015028463A (en) * 2013-06-27 2015-02-12 株式会社リガク Thermal stimulation current measuring device, thermal stimulation current measuring program, and thermal stimulation current measuring method
JP2015062026A (en) * 2014-11-25 2015-04-02 キヤノン株式会社 Stimulated raman scattering measuring apparatus and stimulated raman scattering measuring method
CN104730053A (en) * 2015-03-20 2015-06-24 中国科学技术大学 Monitoring method for reflecting running state of urban sewage plant by using three-dimensional fluorescence spectrum
JP2017201323A (en) * 2017-07-06 2017-11-09 ソニー株式会社 Data display method and micro-particle analysis device
US10147209B2 (en) 2010-04-28 2018-12-04 Sony Corporation Microparticle analyzing apparatus and data displaying method
US10585041B2 (en) 2017-11-17 2020-03-10 Hitachi High-Tech Science Corporation Sample analysis system, display method, and sample analysis method
CN113242970A (en) * 2018-12-20 2021-08-10 株式会社岛津制作所 Analysis control device, liquid chromatograph analysis system, and analysis method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244342A (en) * 1988-03-26 1989-09-28 Shimadzu Corp Liquid chromatograph
JP2006153460A (en) * 2004-11-25 2006-06-15 Hitachi High-Technologies Corp Fluorescence detection method, detection device and fluorescence detection program
JP2006300632A (en) * 2005-04-19 2006-11-02 Shimadzu Corp Excitation spectrum correction technique in fluorescencespectrophotometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244342A (en) * 1988-03-26 1989-09-28 Shimadzu Corp Liquid chromatograph
JP2006153460A (en) * 2004-11-25 2006-06-15 Hitachi High-Technologies Corp Fluorescence detection method, detection device and fluorescence detection program
JP2006300632A (en) * 2005-04-19 2006-11-02 Shimadzu Corp Excitation spectrum correction technique in fluorescencespectrophotometer

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153945A (en) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp Spectrofluorometer and fluorescence detector for liquid chromatograph
US20120298881A1 (en) * 2010-01-28 2012-11-29 Izumi Ogata Spectrophotofluorometer and fluorescence detector for liquid chromatograph
WO2011092766A1 (en) * 2010-01-28 2011-08-04 株式会社 日立ハイテクノロジーズ Spectrophotofluorometer and fluorescence detector for liquid chromatograph
US10147209B2 (en) 2010-04-28 2018-12-04 Sony Corporation Microparticle analyzing apparatus and data displaying method
US11727612B2 (en) 2010-04-28 2023-08-15 Sony Corporation Microparticle analyzing apparatus and data displaying method
US11074727B2 (en) 2010-04-28 2021-07-27 Sony Corporation Microparticle analyzing apparatus and data displaying method
JP2013113623A (en) * 2011-11-25 2013-06-10 Canon Inc Stimulated raman scattering measuring apparatus
US9207183B2 (en) 2011-11-25 2015-12-08 Canon Kabushiki Kaisha Stimulated raman scattering measurement apparatus
JP2015028463A (en) * 2013-06-27 2015-02-12 株式会社リガク Thermal stimulation current measuring device, thermal stimulation current measuring program, and thermal stimulation current measuring method
CN103389520A (en) * 2013-07-30 2013-11-13 中煤科工集团西安研究院 Method for distinguishing water bursting source of coal mine
JP2015062026A (en) * 2014-11-25 2015-04-02 キヤノン株式会社 Stimulated raman scattering measuring apparatus and stimulated raman scattering measuring method
CN104730053A (en) * 2015-03-20 2015-06-24 中国科学技术大学 Monitoring method for reflecting running state of urban sewage plant by using three-dimensional fluorescence spectrum
JP2017201323A (en) * 2017-07-06 2017-11-09 ソニー株式会社 Data display method and micro-particle analysis device
US10585041B2 (en) 2017-11-17 2020-03-10 Hitachi High-Tech Science Corporation Sample analysis system, display method, and sample analysis method
CN113242970A (en) * 2018-12-20 2021-08-10 株式会社岛津制作所 Analysis control device, liquid chromatograph analysis system, and analysis method

Similar Documents

Publication Publication Date Title
JP2009180706A (en) Spectrofluorometric detection apparatus for liquid chromatograph
CN103376301B (en) Chromatographic tandem four polar form mass spectrometer
JP5804070B2 (en) Chromatogram data processing apparatus and processing method
JP5516486B2 (en) Spectrometer and program
JP6041041B2 (en) Preparative chromatograph
JP6620894B2 (en) Data analyzer for chromatographic mass spectrometry
EP1544612A1 (en) Chromatography system and method for operating the same
CN103389345A (en) Data-processing system for chromatographic mass spectrometry
JP5181650B2 (en) Analysis system
JP2010276362A (en) Spectrofluorophotometer and spectroscopic analysis photometer
US10585041B2 (en) Sample analysis system, display method, and sample analysis method
WO2011092766A1 (en) Spectrophotofluorometer and fluorescence detector for liquid chromatograph
JP5962845B2 (en) Chromatogram data processing apparatus and processing method
CN109073615B (en) Data processing apparatus
US9784616B2 (en) Spectrophotometer
JPWO2017208300A1 (en) Chromatographic equipment
JP5092851B2 (en) Preparative liquid chromatograph system
JP7012989B2 (en) Liquid chromatograph and detector output value fluctuation correction means for liquid chromatograph
JP2005227120A (en) Spectrophotometer
US20230273162A1 (en) Preparative Liquid Chromatograph Apparatus and Method for Assisting Determination of Preparative Separation Conditions
JP6361816B2 (en) Chromatographic control device
JP2023049244A (en) Analytical strategy development assistance method and analytical strategy development assistance program
JP2853274B2 (en) Wavelength switching time setting method
JP2012018011A (en) Spectrophotometer
JPH0678981B2 (en) Automatic analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100419

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100419

A977 Report on retrieval

Effective date: 20111130

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20111220

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605