JPS61128165A - Liquid chromatograph apparatus - Google Patents

Liquid chromatograph apparatus

Info

Publication number
JPS61128165A
JPS61128165A JP24914884A JP24914884A JPS61128165A JP S61128165 A JPS61128165 A JP S61128165A JP 24914884 A JP24914884 A JP 24914884A JP 24914884 A JP24914884 A JP 24914884A JP S61128165 A JPS61128165 A JP S61128165A
Authority
JP
Japan
Prior art keywords
wavelength
separation column
detection
section
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24914884A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Watabe
悦幸 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP24914884A priority Critical patent/JPS61128165A/en
Publication of JPS61128165A publication Critical patent/JPS61128165A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors

Abstract

PURPOSE:To accurately perform the simultaneous analysis of a plurality of components having different max. absorption wavelengths, by providing a control mechanism capable of performing the wavelength change-over setting of a detected optimum UV wavelength to the required component from a separation column on the holding time thereof by an UV detector. CONSTITUTION:A liquid chromatograph apparatus 1 is constituted of a flow passage formed of a moving phase storage tank 2, a high pressure liquid feed pump 3, a specimen injection part 4, a separation column 5 equipped with a thermostatic tank 51 and the flow cell set in an UV detection part. The UV detection part is constituted of an optical system equipped with a deuterium lamp 12, a slit 13, a diffraction lattice 10, a concave mirror 14, a slit 15 and a photomultiplier tube. The diffraction lattice 16 is adjusted in its angle by a stepping motor 11. The change-over of a wavelength suitable for each component is performed by said optical system, a control part 18, an injection detection sensor 41 and a key input part 9 to perform accurate analysis.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、液体クロマトグラフ装置に関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to a liquid chromatograph device.

さらに詳しくは、検出器として紫外吸収(Uv)検出器
で有し、ことに単一のUV波長に対する感度が顕著に異
なる複数の成分を含有する試料の分離分析に有用な液体
クロマトグラフ装置に関する。
More specifically, the present invention relates to a liquid chromatography device that has an ultraviolet absorption (Uv) detector as a detector and is particularly useful for separating and analyzing samples containing a plurality of components with significantly different sensitivities to a single UV wavelength.

(ロ)従来技術 検出器としてUV検出器を用いた液体クロマトグラフ装
置、ことに扁速液体クロマトグラフ装置が従来から汎用
されている。
(b) Prior Art Liquid chromatography devices using UV detectors as detectors, particularly flat liquid chromatography devices, have been widely used in the past.

しかしながら、かかる液体クロマトグラフ装置に3いて
は、検出波長が単一波長に設定されているため、その波
長に対する感度すなわちモル吸光係数が顕著に異なる成
分間では、ピークの大きさに著しい差異が見られる。こ
と(ζ最近種々のビタミン成分や興奮剤成分を配合した
ドリンク剤例えば滋養強壮剤や清涼飲料水等が市販され
ているが、これらに含まれる代表的な成分であるビタミ
ンC9B1. B3 、B6  カフェインit液体ク
ロマトグラフィで分析しようとする際には、各成分の極
大吸収波長が異なるため得られたピークの大きさに著し
い差異が見られ、各成分それぞれについて正確な定量分
析を行なえないという問題点があった。
However, in such liquid chromatography devices, the detection wavelength is set to a single wavelength, so there is a significant difference in peak size between components that have significantly different sensitivities to that wavelength, that is, molar extinction coefficients. It will be done. (ζRecently, drinks containing various vitamin components and stimulant components, such as nutritional tonics and soft drinks, are on the market, but the representative components contained in these are vitamins C9, B1, B3, B6, and Café). When trying to analyze using in-it liquid chromatography, the maximum absorption wavelength of each component is different, so there are significant differences in the size of the peaks obtained, making it impossible to perform accurate quantitative analysis for each component. was there.

P→発明の目的 この発明は、上記従来の問題点を解消すべくなされたも
のであり、各被検成分の極大吸収波長が顕著に異なる場
合においても正確な分離定理1分析を行ない得る液体ク
ロマトグラフ装glt提供しようとするものである。
P→Purpose of the Invention The present invention was made to solve the above-mentioned conventional problems, and provides a liquid chromatograph capable of performing accurate separation theorem 1 analysis even when the maximum absorption wavelengths of each test component are significantly different. It is intended to provide a graphical representation of glt.

に)発明の構成 かくしてこの発明によれば、移動相貯槽、送液ポンプ、
試料注入部、分離カラム及びUV検出部を順次備えてな
り、分離カラムからの所定のフラクション成分について
の検出至適υV波長をその保持時間に基づいて上記UV
検出部で適宜切換設定できる波長切換制御機構を設けた
ことを特徴とする液体クロマトグラフ装置が提供される
B) Structure of the Invention According to the present invention, a mobile phase storage tank, a liquid feeding pump,
It is equipped with a sample injection section, a separation column, and a UV detection section in sequence, and detects the optimal υV wavelength for detection of a predetermined fraction component from the separation column based on its retention time.
A liquid chromatograph device is provided, which is characterized by being provided with a wavelength switching control mechanism that can be appropriately switched and set in a detection section.

この発明は、UV検出部における測定UV波長を目的と
するフラクションごとにかつこれら各フラクションの検
出至適波長(通常、極大吸収波長に設定して検出上行な
うことにより、目的の各成分についての正確な定麓分析
を行ないうるよう(ζ構成したものである。
This invention enables accurate detection of each component of interest by setting the measurement UV wavelength in the UV detection section to the optimum detection wavelength (usually the maximum absorption wavelength) for each fraction. It is constructed in such a way that it is possible to conduct a constant foot analysis.

この発明における装置は種々の混合成分を含む試料中の
水溶性有機物の分離分析に適しており、ことに前述した
ドリンク剤のごとき複数のビタミン成分や興奮剤等を含
む試料の分析に好適である。
The apparatus of the present invention is suitable for separating and analyzing water-soluble organic substances in samples containing various mixed components, and is particularly suitable for analyzing samples containing multiple vitamin components, stimulants, etc., such as the aforementioned drink. .

かかる試料の分析条件としては、逆相モードに設定する
のが適しており移動相として、pH2,1前後の酸性リ
ン酸塩JII衝液と少量の極性有機溶iを混合しさらに
少量のイオンペア(例えば、ナトリウムオクタデシルス
ルホネート等のアニオン系界記活性剤)を配合したもの
を用い、固定相としてシリカ担体にシリコンポリマーと
化学結合させたいわゆるODSカラムを用い、ざら(こ
カラム温度40±5℃下で行なうことが好ましい。また
、上記少量添加する極性有機溶媒としてはアセトン以上
の極性を有するものが適しており、アセトニトリルが好
ましい。
As for the analysis conditions for such samples, it is suitable to set the reversed phase mode, and as a mobile phase, an acidic phosphate JII solution with a pH of around 2.1 is mixed with a small amount of polar organic solution i, and a small amount of ion pairs (e.g. , anionic surfactants such as sodium octadecyl sulfonate), and a so-called ODS column in which silicone polymer is chemically bonded to a silica carrier as the stationary phase. Furthermore, as the polar organic solvent to be added in a small amount, one having a polarity higher than that of acetone is suitable, and acetonitrile is preferable.

(ホ)実施例 以下この発明を実施例により詳説するが、これ1ζより
この発明は限定されるものではない。
(E) Examples The present invention will be explained in detail with reference to examples below, but the invention is not limited by these examples.

第1図に示すfi+は、この発明の装置の一実施例であ
る高速液体クロマトグラフ装g1を示す構成説明図であ
る。図において、高速肢体クロマトグラフ装fffl+
は基本的に、移動相好1fi(2+、高圧送液ポンプ(
3)、試料注入M5(<1、分離カラム(5)及びUV
検出部内に設定されたフローセル())とから流路構成
されてなりドレインHに接続されている。一方、UV検
出部は、重水素ランプからなる光源O匈、回折格子側、
スリット醤、αシ、凹面鑓a引及び光電子増倍管からな
る受光器(6)を備えた光学系から構成されてなる。回
折格子u(Mはステッピングモータ(1りにより設定角
It調整しつるよう構成されてなり、これらと制g部(
8)、注入検知センナ刈及びキー人力部(9)とにより
この発明における波長切換制卸機構が構成されている。
Fi+ shown in FIG. 1 is a configuration explanatory diagram showing a high performance liquid chromatograph g1 which is an embodiment of the apparatus of the present invention. In the figure, high-speed limb chromatography equipment fffl+
Basically, mobile phase 1fi (2+, high pressure liquid pump (
3), sample injection M5 (<1, separation column (5) and UV
A flow path is formed from a flow cell ( ) set in the detection section, and is connected to a drain H. On the other hand, the UV detection section includes a light source consisting of a deuterium lamp, a diffraction grating side,
It consists of an optical system equipped with a light receiver (6) consisting of a slit, an α-shape, a concave a-shape, and a photomultiplier tube. The diffraction grating u (M is configured to adjust the setting angle It by a stepping motor (1), and the g control part (
8), the injection detection sensor and the key manual section (9) constitute the wavelength switching control mechanism of the present invention.

制a部(8)は第2図に示すごとくマイクロプロセッサ
(81ンi用いたマイクロコンピュータ制WIJmから
なる。(82)はROM部であり、システムプログラム
部(821)、波長切換プログラム部(822)及び演
算プログラム部(82B)とからなり、(8a)はRA
MP、(84)はパスラインである。システムプログラ
ム部(821)には試料注入部(4)に付設されたフォ
トカプラからなる注入検知センナ(υの出力(試料注入
信号)に基づいてマイクロプロセッサ(81)とリンク
して作動するタイマーが設定されている。RAM部(8
8)は、分析金意図する各成分の基5!保持時間a+b
、c+d・・・・・・及びこれら各成分の極大吸収波長
α、β171δ・・・・・・のデータが記!されており
、これらのデータは各成分の8!sMLに基づいて分析
前にキー人力部(9)から入力される。演算プログラム
部(82ftりには、RAM t?f(8a)に入力さ
れた各成分の基準保持時間a、bc、d・・・・・・に
対応して各成分のフラクションの立上り直前の時間(補
正保持時間)A、B、C,D・・・・・・・・・f:g
出し再びRAMP(813)にストアするプログラムが
設定されてなり、通常、基準保持時間alb+c1d・
・・・・・からそれぞれ半m幅程度の時間を減算して立
上りM前の時間A、B、C,D・・・・・・・・・が算
出される。
As shown in FIG. 2, the control section a (8) consists of a microcomputer system WIJm using a microprocessor (81i). (82) is a ROM section, which includes a system program section (821), a wavelength switching program section (822 ) and an arithmetic program section (82B), (8a) is an RA
MP, (84) is a pass line. The system program section (821) has a timer that is linked to the microprocessor (81) based on the output (sample injection signal) of the injection detection sensor (υ), which is a photocoupler attached to the sample injection section (4). The RAM section (8
8) is the basis of each component intended for analysis. Retention time a+b
, c+d...and the maximum absorption wavelengths α, β171δ... of each of these components are recorded! These data are based on 8! of each ingredient. It is input from the key human power section (9) before analysis based on sML. The calculation program section (82ft) calculates the time immediately before the rise of the fraction of each component corresponding to the reference retention times a, bc, d, etc. of each component input to the RAM t?f (8a). (Corrected holding time) A, B, C, D... f: g
A program is set to output and store it again in RAMP (813), and normally the standard holding time alb+c1d.
The times A, B, C, D, etc. before the rising edge M are calculated by subtracting the time of about half m width from each of them.

一方、波長切換プログラム@ (822)には、上記F
rfr/iJデータA、B、C,D・・・・・・・・・
とタイマーの時間データとの比較プログラム及びその結
果によりD/A  コンバータ(85)にモータ駆動信
号(データ)を出力するプログラムが設定されている。
On the other hand, the wavelength switching program @ (822) includes the above F
rfr/iJ data A, B, C, D...
A program is set for comparing the time data and time data of the timer, and a program for outputting a motor drive signal (data) to the D/A converter (85) based on the comparison result.

モータ駆動信号は前記極大吸収波長α、β、γ、δ・・
・・・・に比例した重みのデータとしてD/A コンバ
−タ(85)に出力され、それに対応してドライバ(8
6)  t″介してステッピングモータ(11)が所定
時間駆動されて回折格子(]0)の角度がvR察され、
その結果所定の波長α、β+ 7 rδ・・・・・・が
測定波長として適宜切換設定される。なお、上記波長切
換プログラムn(822)のメインルーチンをタイマー
とリンクして第8図に示した。
The motor drive signal is based on the maximum absorption wavelengths α, β, γ, δ...
It is output to the D/A converter (85) as data with a weight proportional to..., and correspondingly the data is output to the D/A converter (85).
6) The stepping motor (11) is driven for a predetermined time via t'', and the angle of the diffraction grating (]0) is detected as vR;
As a result, predetermined wavelengths α, β+7rδ, . . . are appropriately switched and set as measurement wavelengths. The main routine of the wavelength switching program n (822) is shown in FIG. 8, linked to a timer.

かかる構成の液体クロマトグラフ装置fl)において、
ドリンク剤等の試料は注入口(4)から注入され、恒温
槽(51)により約35〜45℃、に設定された分離カ
ラム(5)に導入される。次いで分離された各フラクシ
ョンはフローセル(7)に送液され、そこでUV検出さ
れ、インテグレータ(61)に記録されるが、この際の
U’l/波長は、前述した波長切換側aSSにより、分
析を意図する各フラクション成分毎に極大吸収波長に制
御されるため、各成分について正確な定量分析′C汚な
うことができる、なお、上記装置を用いてビタミンB1
 + B3 + B6及びカフェインを主成分として含
む市販ドリンク剤を分析した。予め入力した(保持時間
)/(Iii大吸収波長)のデータは、それぞれ、ビタ
ミンB1:(10,9分)/(254nm+、ビタミン
B3:(8,05分)/(290nm)、ビタミンB6
:(4,98分)/(270nm)  、カフェイン:
(7,8分)/(265nm)である。また、分析条件
は以下の通りである。
In the liquid chromatograph apparatus fl) having such a configuration,
A sample such as a drink is injected from an injection port (4) and introduced into a separation column (5) set at about 35 to 45°C by a constant temperature bath (51). Next, each separated fraction is sent to the flow cell (7), where it is UV detected and recorded in the integrator (61). At this time, U'l/wavelength is analyzed by the wavelength switching side aSS described above. Since the maximum absorption wavelength is controlled for each intended fraction component, accurate quantitative analysis of each component can be performed.
Commercially available drinks containing + B3 + B6 and caffeine as main components were analyzed. The data of (retention time)/(III large absorption wavelength) input in advance are respectively vitamin B1: (10,9 minutes)/(254 nm+, vitamin B3: (8,05 minutes)/(290 nm), vitamin B6
:(4,98 minutes)/(270nm), Caffeine:
(7,8 minutes)/(265 nm). Moreover, the analysis conditions are as follows.

移動相:60mMリン酸塩緩衝液(pH2,1;80m
Mリン酸1ナトリウム+80mMリン酸)(90容量部
)とアセトニト リル(10容量部)とナトリウムオク タデシルスルホネー)(1mM)との 混合液 固定相:   C18のODSカラム 流速:   1.5d/分 分離カラム温度: 40℃ この分析結果を、波長切換設定せず固定波長(254n
m)でUV検出する従来の装置を用いた比較例の結果と
共に第4図(イ)、(ロ)に示した。図中、イ)は前記
実施例を、(ロ)は比較例を示すものである、 このようfζ、この発明の装置によれば、従来の固定波
長検知式の装置ではほとんど検出されず定虚困難なビタ
ミンB6について明確なピークが検出されて壇り、カフ
ェイン(こついても感度が増大していることが判る。従
って各成分についての正確で理想的な定it−行なうこ
とができる。
Mobile phase: 60mM phosphate buffer (pH 2,1; 80mM
Mixture of M monosodium phosphate + 80 mM phosphoric acid (90 parts by volume), acetonitrile (10 parts by volume), and sodium octadecylsulfone (1 mM) Stationary phase: C18 ODS column Flow rate: 1.5 d/min Separation column Temperature: 40°C This analysis result was calculated using a fixed wavelength (254n) without wavelength switching.
Figures 4(a) and 4(b) show the results of a comparative example using a conventional device for UV detection in (m). In the figure, (a) shows the above-mentioned example, and (b) shows a comparative example. As shown in the figure, fζ is almost undetectable by the conventional fixed wavelength detection type device and is constant. A clear peak was detected for the difficult vitamin B6, and it can be seen that the sensitivity is increased even for caffeine. Therefore, an accurate and ideal determination of each component can be made.

なお、この発明の波長切換制御機構は前記実施例(こ限
定されることなく、例えば回転切換式の干渉フィルタを
用いたものや、石英プリズムを用いたものであってもよ
い。
Note that the wavelength switching control mechanism of the present invention is not limited to the above-mentioned embodiments, and may be, for example, one using a rotary switching type interference filter or one using a quartz prism.

また、波長についても紫外域の極大吸収波長に紙格に設
定する必要はなく、適当な極大吸収波長付近すなわち検
出至適UV波長に設定すればよい。
Furthermore, the wavelength does not necessarily have to be set to the maximum absorption wavelength in the ultraviolet region, but may be set to an appropriate maximum absorption wavelength, that is, a UV wavelength suitable for detection.

しかしながら、少なくとも前記構成に示されるごとく、
試料導入検知センサと、該試料導入検知センサの信号に
より駆動するタイマーと、所定の各成分の保持時間及び
極大吸収波長を記憶するデータ記憶部と、データ記憶部
の保持時間に半値幅程度の補正値を減算してこの補正保
持時間を再びデータ記憶部にストアする演算部と、上記
データ記憶部(こおける補正保持時間とタイマーの時間
とを比較し、この大小(ζ基づいて樋械的にUV検出器
におけるUV波長:a−適宜切換設定しつる上長設定部
とから波長切換制御機構を構成するのが適している。
However, at least as shown in the above configuration,
A sample introduction detection sensor, a timer driven by a signal from the sample introduction detection sensor, a data storage section that stores the retention time and maximum absorption wavelength of each predetermined component, and a correction of about half width to the retention time of the data storage section. An arithmetic unit that subtracts the value and stores this corrected holding time in the data storage unit again, and a calculation unit that compares the corrected holding time in the data storage unit and the timer time, and mechanically calculates the value (based on ζ) It is suitable to configure a wavelength switching control mechanism from a UV wavelength in the UV detector: a--a length setting section for appropriately switching and setting.

(へ)発明の効采 この発明の装置[!lζよれば、従来の液体クロマトグ
ラフ装置のごとき固定波長)こよる分離成分の感度の差
Iこよるピーク不揃いや誤差を解消することができ、異
なる極大吸収波長を有する複数成分の同時定量を正確:
4行なうことができる。
(to) Effect of the invention The device of this invention [! According to lζ, it is possible to eliminate peak irregularities and errors caused by the difference in sensitivity of separated components due to the fixed wavelength of conventional liquid chromatography equipment, and it is possible to accurately quantify multiple components having different maximum absorption wavelengths simultaneously. :
You can do 4 things.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の液体クロマトグラフ装置の一実施
例を示す構成説明図、第2図は、兎1図における制御部
の基本構成を示す説明図、第8図はF!X2図に詔ける
波長切換プログラム部のメインルーチンを示すフローチ
ャート図、第4図は、この発明の装置で得られた分析チ
ャートの一例を比較例と共)ζ示すグラフである。 +11・・・高速液体クロマトグラフ装置、(2)・・
・移動相貯槽、  (3)・・・高圧送液ポンプ、(4
)・・・試料注入部、  (6)・・・分離カラム、(
6)・・・受光器、17+・・・フローセル、(8)・
・・制@部、    (′J)・・・キー人力部、叫・
・・回折格子、   (11)・・ステッピングモータ
、+121・・・光源、      IJ3 、05)
・・・スリット、(141・・・凹面m、on・・・ド
レイン、圓・・・注入検知センサ、(61)・・・イン
テグレータ。 刊:
FIG. 1 is an explanatory diagram showing the configuration of an embodiment of the liquid chromatograph apparatus of the present invention, FIG. 2 is an explanatory diagram showing the basic configuration of the control section in FIG. FIG. 4 is a flowchart showing the main routine of the wavelength switching program section that can be performed in FIG. +11...High performance liquid chromatography device, (2)...
・Mobile phase storage tank, (3)...High pressure liquid pump, (4
)...Sample injection section, (6)...Separation column, (
6)...Receiver, 17+...Flow cell, (8)...
...Control @ Department, ('J)...Key Human Resources Department, Shout-
...Diffraction grating, (11)...Stepping motor, +121...Light source, IJ3, 05)
...Slit, (141...concave m, on...drain, circle...injection detection sensor, (61)...integrator. Published by:

Claims (1)

【特許請求の範囲】[Claims] 1、移動相貯槽、送液ポンプ、試料注入部、分離カラム
及びUV検出部を順次備えてなり、分離カラムからの所
定のフラクション成分についての検出至適UV波長をそ
の保持時間に基づいて上記UV検出部で適宜切換設定で
きる波長切換制御機構を設けたことを特徴とする液体ク
ロマトグラフ装置。
1. A mobile phase storage tank, a liquid sending pump, a sample injection section, a separation column, and a UV detection section are sequentially provided, and the optimum UV wavelength for detection of a predetermined fraction component from the separation column is determined based on the retention time of the UV wavelength. 1. A liquid chromatograph apparatus characterized by being provided with a wavelength switching control mechanism that can be appropriately switched and set in a detection section.
JP24914884A 1984-11-26 1984-11-26 Liquid chromatograph apparatus Pending JPS61128165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24914884A JPS61128165A (en) 1984-11-26 1984-11-26 Liquid chromatograph apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24914884A JPS61128165A (en) 1984-11-26 1984-11-26 Liquid chromatograph apparatus

Publications (1)

Publication Number Publication Date
JPS61128165A true JPS61128165A (en) 1986-06-16

Family

ID=17188625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24914884A Pending JPS61128165A (en) 1984-11-26 1984-11-26 Liquid chromatograph apparatus

Country Status (1)

Country Link
JP (1) JPS61128165A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198867A (en) * 1987-02-14 1988-08-17 Shimadzu Corp Array type spectrophotometric detector
JPH05508018A (en) * 1990-06-22 1993-11-11 ビーティージー・インターナショナル・リミテッド spectrometer
JP2007237918A (en) * 2006-03-08 2007-09-20 Toyota Motor Corp Control device for steering wheel
GB2487941A (en) * 2011-02-09 2012-08-15 Agilent Technologies Inc Fluid separation system for determining an injection time
WO2016147415A1 (en) * 2015-03-19 2016-09-22 株式会社島津製作所 Control device for chromatograph
WO2017149794A1 (en) * 2016-03-01 2017-09-08 株式会社島津製作所 Chromatograph device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198867A (en) * 1987-02-14 1988-08-17 Shimadzu Corp Array type spectrophotometric detector
JPH05508018A (en) * 1990-06-22 1993-11-11 ビーティージー・インターナショナル・リミテッド spectrometer
JP2007237918A (en) * 2006-03-08 2007-09-20 Toyota Motor Corp Control device for steering wheel
GB2487941A (en) * 2011-02-09 2012-08-15 Agilent Technologies Inc Fluid separation system for determining an injection time
WO2016147415A1 (en) * 2015-03-19 2016-09-22 株式会社島津製作所 Control device for chromatograph
JPWO2016147415A1 (en) * 2015-03-19 2017-10-19 株式会社島津製作所 Chromatographic control device
WO2017149794A1 (en) * 2016-03-01 2017-09-08 株式会社島津製作所 Chromatograph device
JPWO2017149794A1 (en) * 2016-03-01 2018-10-18 株式会社島津製作所 Chromatographic equipment
US10746709B2 (en) 2016-03-01 2020-08-18 Shimadzu Corporation Chromatograph device

Similar Documents

Publication Publication Date Title
Brestrich et al. Selective protein quantification for preparative chromatography using variable pathlength UV/Vis spectroscopy and partial least squares regression
GB1007224A (en) Method and apparatus for performing multiple analysis
US8570495B2 (en) Whole blood immunity measuring device and whole blood immunity measuring method
US3503683A (en) Automatic analysis apparatus
Verheggen et al. Feasibility of capillary zone electrophoresis with suppression of electroendosmotic flow in completely closed systems
JPS61128165A (en) Liquid chromatograph apparatus
JPS6250641A (en) Analyzing instrument having absorption spectrophotometer
Ramieri Jr et al. New method for rapid determination of carboxyhemoglobin by use of double-wavelength spectrophotometry
GB1510174A (en) Method of and apparatus for quantitative analysis
Mondino A new system of automatic amino acid analysis: Part I
Rolinger et al. Monitoring of ultra-and diafiltration processes by Kalman-filtered Raman measurements
JPH0131583B2 (en)
CN201449370U (en) Multi-wavelength nucleic acid protein chromatographic separation detection device
US4497898A (en) Spectrophotometric method for simultaneously analyzing protein and fat contents in milk
US20210405001A1 (en) Liquid analyzer system with on-line analysis of samples
JPS63101734A (en) Automatic chemical analyzer
US3464794A (en) Variable volume conduit
JPH0514855B2 (en)
Summers Micridetermination of serum copper
JPH1183828A (en) Catecholamine analyzer
JP4793413B2 (en) Differential refractive index detector
RU2161791C2 (en) Device to monitor liquid biological medium
EP4088808A1 (en) Method for monitoring a filtration process
JPH0310076B2 (en)
JPS5919839A (en) Treatment of detected component in liquid chromatography