WO2016147385A1 - 冷凍空調用圧縮機及び冷凍空調装置 - Google Patents

冷凍空調用圧縮機及び冷凍空調装置 Download PDF

Info

Publication number
WO2016147385A1
WO2016147385A1 PCT/JP2015/058276 JP2015058276W WO2016147385A1 WO 2016147385 A1 WO2016147385 A1 WO 2016147385A1 JP 2015058276 W JP2015058276 W JP 2015058276W WO 2016147385 A1 WO2016147385 A1 WO 2016147385A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compressor
polyol ester
refrigerating
alkyl group
Prior art date
Application number
PCT/JP2015/058276
Other languages
English (en)
French (fr)
Inventor
茂紀 松本
Original Assignee
ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー (ホンコン) リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー (ホンコン) リミテッド filed Critical ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー (ホンコン) リミテッド
Priority to US15/539,171 priority Critical patent/US10167438B2/en
Priority to JP2017505979A priority patent/JP6343391B2/ja
Priority to PCT/JP2015/058276 priority patent/WO2016147385A1/ja
Priority to EP15885481.0A priority patent/EP3272838B1/en
Priority to CN201580067976.3A priority patent/CN107109277B/zh
Publication of WO2016147385A1 publication Critical patent/WO2016147385A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/42Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids
    • C10M105/44Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids derived from the combination of monocarboxylic acids, dicarboxylic acids and dihydroxy compounds only and having no free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • C10M2207/302Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monocarboxylic acids, dicarboxylic acids and dihydroxy compounds only and having no free hydroxy or carboxyl groups
    • C10M2207/3025Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monocarboxylic acids, dicarboxylic acids and dihydroxy compounds only and having no free hydroxy or carboxyl groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/102Polyesters
    • C10M2209/1023Polyesters used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/106Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/101Containing Hydrofluorocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0207Lubrication with lubrication control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/02Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/047Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units

Definitions

  • the present invention relates to a compressor for refrigeration air conditioning and a refrigeration air conditioning apparatus.
  • R410A has been used for room air conditioners, packaged air conditioners, etc., and HFC134a (1,1,1,2- Tetrafluoroethane) is frequently used.
  • R410A is a mixed refrigerant of 50% by mass of HFC32 (difluoromethane) and 50% by mass of HFC125 (pentafluoroethane), and has a global warming potential (GWP) of 2088.
  • the HFC 134a has a GWP of 1430.
  • Refrigerating machine oil is used for the compressor provided in the refrigeration air conditioner.
  • the refrigeration oil plays various roles such as lubrication of the sliding portion, cooling of the electric motor, sealing of the refrigerant, and the like inside the compressor.
  • the compatibility between the refrigerating machine oil and the refrigerant is low, the refrigerating machine oil and the refrigerant are not sufficiently mixed, and the refrigerating machine oil phase and the refrigerant phase are separated.
  • separated from refrigerating machine oil obstructs contact with refrigerating machine oil and a sliding part locally. As a result, proper lubrication with refrigerating machine oil is not performed, and the durability of the compressor may be impaired.
  • a part of the refrigeration oil is vaporized or splashed inside the compressor, goes out of the compressor together with the refrigerant, and circulates through the refrigeration cycle. If the compatibility between the refrigerating machine oil and the refrigerant is low, the refrigerating machine oil aggregates inside piping and the like and stays in the refrigerating cycle. And the return amount of the refrigerator oil to a compressor falls, and the function of a compressor will fall by the reduction
  • COP Coefficient Of Performance
  • Patent Document 1 discloses at least one neopentyl polyol selected from pentaerythritol, dipentaerythritol, tripentaerythritol, trimethylolethane, trimethylolpropane, and neopentylglycol, and linear and branched aliphatic carboxylic acids. It is described that the lubricant is an ester base oil composed of a reaction product of at least one aliphatic carboxylic acid selected from acids or one or more esterified derivatives of such acids. .
  • the environmental performance of the refrigeration air conditioner can be improved by adopting an alternative refrigerant having a low GWP such as difluoromethane.
  • coolant with low GWP generally has the tendency for a latent heat to be high, when difluoromethane is employ
  • coolant the amount of refrigerant
  • conventional refrigerating machine oils based on polyol esters are not compatible with good compatibility with difluoromethane and moderately high viscosity.
  • Conventional polyol esters generally tend to have too low a viscosity. Accordingly, when difluoromethane is further mixed with the polyol ester, the refrigerating machine oil hardly reaches the viscosity level normally required. In other words, the conventional refrigerating machine oil based on polyol ester cannot sufficiently fulfill the role of lubrication of the sliding portion in the compressor.
  • reaction product described in Patent Document 1 is a mixture of compounds having various molecular structures, and has a molecular structure suitable for expressing good compatibility with difluoromethane and high viscosity. Not. Therefore, it is not suitable for keeping the efficiency of the refrigeration air conditioner at a sufficient level.
  • an object of the present invention is to provide a compressor for refrigerating and air conditioning and a refrigerating and air conditioning apparatus capable of achieving both good environmental performance and good efficiency.
  • the compressor for refrigerating and air-conditioning has the following general formula (1) [wherein R1 and R2 are each independently a linear or branched alkyl group. N represents an integer of 2 or more.
  • a refrigerating machine oil comprising a polyol ester having a structural unit represented by formula (II) and a refrigerant containing difluoromethane are encapsulated, and the polyol ester is a cyclic polyol formed by polymerizing molecular chains having the structural unit in a cyclic manner.
  • a refrigerating and air-conditioning apparatus includes the above-described refrigerating and air-conditioning compressor.
  • FIG. 1 It is a schematic diagram which shows the structure of the air conditioner (refrigeration air conditioner) which concerns on one Embodiment of this invention. It is a longitudinal cross-sectional view of the compressor for refrigerating and air-conditioning which concerns on one Embodiment of this invention. It is a conceptual diagram explaining the compatibility of the refrigerating machine oil enclosed with the compressor for refrigerating and air conditioning which concerns on one Embodiment of this invention, and a refrigerant
  • FIG. 1 is a mimetic diagram showing composition of an air harmony machine (refrigeration air conditioner) concerning one embodiment of the present invention.
  • an air conditioner 100 according to the present embodiment includes an outdoor unit 1 and an indoor unit 3.
  • the outdoor unit 1 includes a compressor (a compressor for refrigeration and air conditioning) 5, a four-way valve 10, an expansion valve 6, an outdoor heat exchanger 2, and a propeller fan 9.
  • the indoor unit 3 includes an indoor heat exchanger 4 and a cross-flow fan 8.
  • the outdoor unit 1 and the indoor unit 3 are connected by a pipe 7.
  • the pipe 7 forms a circulation channel through which the refrigerant circulates between the outdoor unit 1 and the indoor unit 3.
  • a four-way valve 10, a compressor 5, an outdoor heat exchanger 2, an expansion valve 6, and an indoor heat exchanger 4 are connected to the pipe 7.
  • the refrigerant flows through the four-way valve 10, the outdoor heat exchanger 2, the expansion valve 6, the indoor heat exchanger 4, and the compressor 5 in this order, and can be circulated so as to return to the four-way valve 10 again.
  • the refrigerant flows through the four-way valve 10, the compressor 5, the indoor heat exchanger 4, the expansion valve 6, and the outdoor heat exchanger 2 in this order by switching the four-way valve 10, and returns to the four-way valve 10 again. Can be circulated.
  • the air conditioner 100 shown in FIG. 1 has a heat pump type that can be switched between a cooling operation and a heating operation by a four-way valve 10.
  • the refrigerant circulation direction in the cooling operation is indicated by solid line arrows.
  • the refrigerant circulation direction in the heating operation is indicated by a broken line arrow.
  • the outdoor heat exchanger 2 functions as a condenser and the indoor heat exchanger 4 functions as an evaporator.
  • the gaseous refrigerant that has been compressed by the compressor 5 to a high temperature and high pressure is supplied to the outdoor heat exchanger 2 through the four-way valve 10.
  • the refrigerant exchanges heat with the outside air in the outdoor heat exchanger 2.
  • the outside air takes heat, and the high-temperature and high-pressure gaseous refrigerant becomes a low-temperature and high-pressure liquid refrigerant.
  • the propeller fan 9 sucks or exhausts outside air to promote heat exchange.
  • the refrigerant is supplied to the indoor heat exchanger 4 after being brought into a two-phase state of a low-temperature and low-pressure gas refrigerant and a liquid refrigerant by the expansion valve 6.
  • the refrigerant exchanges heat with the inside air in the indoor heat exchanger 4.
  • the low-temperature and low-pressure refrigerant is vaporized by heat exchange and takes heat from the inside air.
  • the cross-flow fan 8 blows the cooled inside air into the room.
  • the refrigerant is compressed again by the compressor 5 and circulates in the heat pump cycle (refrigeration cycle).
  • the indoor heat exchanger 4 functions as a condenser and the outdoor heat exchanger 2 functions as an evaporator.
  • the gaseous refrigerant that has been compressed by the compressor 5 to a high temperature and high pressure is supplied to the indoor heat exchanger 4 via the four-way valve 10.
  • the refrigerant exchanges heat with the inside air in the indoor heat exchanger 4.
  • the inside air takes heat, and the high-temperature and high-pressure gaseous refrigerant becomes a high-pressure liquid refrigerant.
  • the cross-flow fan 8 blows warmed indoor air into the room.
  • the refrigerant is supplied to the outdoor heat exchanger 2 after being brought into a two-phase state of a low-temperature and low-pressure gas refrigerant and a liquid refrigerant by the expansion valve 6.
  • the refrigerant exchanges heat with the outside air in the outdoor heat exchanger 2.
  • the low-temperature and low-pressure refrigerant is vaporized by heat exchange and takes heat from the outside air.
  • the propeller fan 9 sucks or exhausts outside air to promote heat exchange.
  • the refrigerant is compressed again by the compressor 5 and circulates in the heat pump cycle.
  • a refrigerant containing difluoromethane is sealed in the pipe 7 of the air conditioner 100.
  • the refrigerant either a single refrigerant made of difluoromethane or a mixed refrigerant containing difluoromethane and another refrigerant may be enclosed.
  • the mixed refrigerant a refrigerant containing 50% by mass or more of difluoromethane is preferable, a refrigerant containing 70% by mass or more of difluoromethane is more preferable, and a refrigerant containing 90% by mass or more of difluoromethane is more preferable.
  • the mixed refrigerant is, for example, trans-1,3,3,3-tetrafluoropropene (HFO1234ze), propene (R1270), propane (R290), pentafluoroethane (R125), 1,1,1. , 2-tetrafluoroethane (R134a), fluoroethane (R161), 1,1-difluoroethane (R152a), and the like.
  • FIG. 2 is a longitudinal sectional view of a compressor for refrigeration and air conditioning according to an embodiment of the present invention.
  • the compressor (compressor) 5 for refrigerating and air-conditioning according to the present embodiment includes a compression mechanism unit including a turning scroll 11 and a fixed scroll 12, an electric motor 13, and a sealed container 14. ing.
  • the compressor 5 is a scroll type hermetic compressor.
  • the electric motor 13 drives the compression mechanism, and the compression mechanism compresses the refrigerant.
  • the sealed container 14 houses the compression mechanism and the electric motor 13.
  • the compression mechanism part is arrange
  • FIG. the compression mechanism part is comprised by the turning scroll 11, the fixed scroll 12, the flame
  • a liquid reservoir 15 in which refrigerating machine oil is stored is disposed on the lower side in the sealed container 14.
  • An electric motor 13 is disposed in an intermediate part sandwiched between the compression mechanism part and the liquid reservoir 15.
  • the fixed scroll 12 is composed of an end plate 12b and a spiral wrap 12a standing on the end plate 12b.
  • the fixed scroll 12 is fixed to the frame 17 joined to the inner surface of the sealed container 14 with bolts 16.
  • a discharge port 12c is provided so as to penetrate therethrough.
  • a suction port 12d is provided on the side of the wrap 12a of the fixed scroll 12.
  • the orbiting scroll 11 is composed of an end plate 11b and a spiral wrap 11a erected on the end plate 11b.
  • the wrap 11a of the orbiting scroll 11 and the wrap 12a of the fixed scroll 12 are provided so as to mesh with each other.
  • the compression chamber 20 is formed when the wraps 11a and 12a mesh with each other.
  • An orbiting bearing 11 c is fixed to the center of the back surface of the end plate 11 b of the orbiting scroll 11.
  • the orbiting scroll 11 is supported between the fixed scroll 12 and the frame 17 by a crankshaft 18 that is pivotally supported by the orbiting bearing 11c.
  • the Oldham ring 21 is provided between the orbiting scroll 11 and the frame 17.
  • the key the Oldham ring 21 has on the upper side is engaged with a key groove provided on the back surface of the end plate 11 b of the orbiting scroll 11.
  • a key on the lower side is engaged with a key groove provided in the frame 17.
  • the orbiting scroll 11 that performs the orbiting motion is prevented from rotating by the Oldham ring 21.
  • the electric motor 13 includes a crankshaft 18 in the center of the rotor.
  • the crankshaft 18 is rotatably supported by the main bearing 17 a on the upper side of the compressor 5.
  • the lower bearing 19 is rotatably supported.
  • a crank eccentric from the main shaft of the crankshaft 18 is provided at the upper end of the crankshaft 18, and the crank is pivotally supported by the slewing bearing 11c.
  • a suction pipe 15 a is provided below the lower end of the crankshaft 18. One end of the suction pipe 15 a is inserted into the oil reservoir 15.
  • the crankshaft 18 has an oil supply passage 18a provided so as to penetrate in the axial direction.
  • the oil supply passage 18a is branched at a height that is pivotally supported by the swing bearing 11c, the main bearing 17a, and the lower bearing 19. These branches penetrate toward the side surface of the crankshaft 18, and a flow path for the refrigerating machine oil from the oil reservoir 15 to the sliding portion of the swing bearing 11 c, the main bearing 17 a or the lower bearing 19 is formed.
  • a suction pipe 14 a is provided on the upper portion of the compressor 5.
  • the suction pipe 14 a communicates between the pipe 7 (see FIG. 1) constituting the refrigeration cycle and the suction port 12 d leading to the compression chamber 20.
  • a discharge pipe 14b is provided on the side of the compressor 5. The discharge pipe 14 b communicates between the pipe 7 (see FIG. 1) constituting the refrigeration cycle and the space below the frame 17.
  • the orbiting scroll 11 orbits along an orbit eccentric with respect to the fixed scroll 12.
  • the compression chamber 20 sandwiched between the wraps 11a and 12a and airtight is moved from the outer side in the circumferential direction of the wraps 11a and 12a to the center side by this turning motion. As the volume of the compression chamber 20 decreases with this movement, the refrigerant is compressed.
  • the refrigerant flowing through the pipe 7 (see FIG. 1) constituting the refrigeration cycle is sucked from the suction pipe 14a by the operation of the electric motor 13, transferred to the compression chamber 20 through the suction port 12d, and compressed. . Then, the compressed refrigerant reaches the discharge pressure chamber 14c through the discharge port 12c. Then, it is taken out from the discharge pipe 14 b through the communication hole provided in the frame 17 and circulates again through the pipe 7.
  • the refrigerating machine oil stored in the oil reservoir 15 is sucked up by the suction pipe 15a due to a pressure difference or the like.
  • the refrigerating machine oil is supplied to sliding parts such as the slewing bearing 11c, the main bearing 17a, the lower bearing 19, and the compression mechanism part through the oil supply passage 18a. This contributes to lubrication of the sliding portion, cooling of the electric motor 13, sealing of the refrigerant, and the like.
  • a part of the refrigerating machine oil is vaporized or splashed with the operation of the compressor 5, flows through the pipe 7 together with the refrigerant, and then returns to the compressor 5 again.
  • the refrigerating machine oil has the following general formula (1) [wherein, R1 and R2 each independently represent a linear or branched alkyl group, and n represents an integer of 2 or more. ]
  • the polyol ester which has a structural unit represented by this is included.
  • the polyol ester having the structural unit represented by the general formula (1) is configured to consist of only one or both of a cyclic polyol ester and a crosslinked polyol ester.
  • the structural unit of poly [2,2-di (alkanoyloxymethyl) oxytrimethylene] represented by the general formula (1) has a repeating number (n) of at least 2 or more.
  • Such a structural unit constitutes at least a part of the molecular chain (main chain) of the polyol ester.
  • the side chain of the alkanoyloxymethyl group that is, the side chain having the alkyl group represented by R1 and R2 and the carbonyl group is bonded to the main chain.
  • FIG. 3 is a conceptual diagram illustrating easy compatibility between the refrigerating machine oil and the refrigerant sealed in the refrigerating and air-conditioning compressor according to the embodiment of the present invention.
  • the refrigerant difluoromethane (HFC32) is a strong polar molecule.
  • the hydrogen atom of difluoromethane is electrically positive (+)
  • the fluorine atom is electrically negative ( ⁇ ).
  • the polyol ester having the structural unit represented by the general formula (1) has a carbonyl group and an alkyl group.
  • the molecular chain 200 of the polyol ester passes through the oxygen atom of the carbonyl group, which is negatively charged ( ⁇ ), to form the difluoromethane. It can be coordinated to the hydrogen atom side.
  • the molecular chains 300 and 400 of the polyol ester can be coordinated to the fluorine atom side of difluoromethane via a hydrogen atom of an alkyl group that is electrically positive (+).
  • the alkyl group of the molecular chain 300 is linear, and the alkyl group of the molecular chain 400 is branched, but is not necessarily limited to such a combination. Further, these alkyl group and carbonyl group may be present in either the same molecular chain or different molecular chains.
  • FIG. 4 is a conceptual diagram illustrating the principle of high viscosity expression of refrigeration oil enclosed in a refrigeration / air conditioning compressor according to an embodiment of the present invention.
  • the polyol ester having the structural unit represented by the general formula (1) has a repeating structural unit in which two side chains are bonded to one carbon atom 500 in the main chain. .
  • the number of repeating structural units is 2 or more, and the side chain bonded to the carbon atom 500 is repeatedly arranged in the polymerization direction.
  • the oxygen atom 501 of the side chain carbonyl group is electrically negative (-).
  • the oxygen atoms constituting the main chain are also relatively negative ( ⁇ ).
  • the spatial arrangement (conformation) is restricted by such electrical repulsion between oxygen atoms. Specifically, repulsion occurs between two side chain carbonyl groups bonded to one carbon atom 500 in the main chain, or between the side chain carbonyl group and the main chain oxygen atom. Also, repulsion occurs between side chain carbonyl groups arranged repeatedly in the polymerization direction. As a result, the side chain of the polyol ester is oriented in the direction rising from the main chain. Then, a planar structure having a two-dimensional spread as shown by the hatching in FIG. 4 can be formed in the molecules of the polyol ester.
  • Polyol esters can interact more strongly with each other by forming such a planar structure. Further, the orientation of the side chain makes it easy for the main chain (molecular chain) of the polyol ester to take an elongated three-dimensional structure. Therefore, a strong interaction between the molecules of the polyol ester is formed along the polymerization direction of the molecular chain. By such an action mechanism, the polyol ester having the structural unit represented by the general formula (1) exhibits a good high viscosity.
  • the increase in viscosity by such a mechanism of action can be realized without upgrading the polyol ester. Therefore, it becomes possible to make the refrigerating machine oil have an appropriate high viscosity without impairing the compatibility with difluoromethane by upgrading. Further, since the heat capacity of the polyol ester does not need to be increased by upgrading, the heat dissipation of the refrigerating machine oil is not easily impaired. Therefore, it is suitable for increasing the efficiency of the refrigeration air conditioner.
  • the polyol ester having the structural unit represented by the general formula (1) has structural features in the main chain itself in addition to such side chain features.
  • This polyol ester consists of only one or both of cyclic polyol ester and crosslinked polyol ester, and the molecular chain (main chain) having the structural unit represented by the general formula (1) has a predetermined higher order molecular structure. It is what you have.
  • the cyclic polyol ester has a cyclic structure formed by polymerizing a molecular chain having a structural unit represented by the general formula (1) in a cyclic manner. Since the main chain is polymerized cyclically, the cyclized molecular chain of the cyclic polyol ester can take a three-dimensional structure having a planar extension in the biaxial direction. Therefore, when the cyclic polyol ester is subjected to an external force in the liquid phase, the molecules can be aligned in the coaxial direction with each other.
  • the cyclic structure which cyclic polyol ester has may exist in the molecule
  • the cross-linked polyol ester has a cross-linked structure in which molecular chains having the structural unit represented by the general formula (1) are cross-linked with each other via cross-linked structural units that are polymerized into this structural unit. Since the molecular chains are cross-linked with each other, each molecular chain of the cross-linked polyol ester can take a three-dimensional structure having a planar extension in the biaxial direction. Therefore, the cross-linked polyol ester can be oriented in a coaxial direction with each other when subjected to an external force in the liquid phase.
  • the cross-linked structural unit of the cross-linked polyol ester constitutes at least part of the molecular chain (main chain) of the polyol ester together with the structural unit represented by the general formula (1). Similar to the structural unit represented by the general formula (1), the cross-linked structural unit has a main chain of an oxytrimethylene structure.
  • the polyfunctional group is not particularly limited as long as it is a group having a structure different from the structural unit represented by the general formula (1), but is preferably a bifunctional group, more preferably a dicarboxylate, and a linear chain. More preferred are branched or branched alkanedicarboxylates.
  • the planar structure formed by the side chain alignment (see FIG. 4) is easily arranged in parallel. Therefore, the interaction between molecules through these planar structures is further strengthened by the polyol ester receiving an external force. Accordingly, the cyclic polyol ester and the cross-linked polyol ester are aligned with each other due to the shear stress generated at the sliding portion of the compressor 5, thereby exhibiting a higher viscosity, and lubrication of the sliding portion and sealing of the refrigerant. Can exhibit excellent performance.
  • the cyclic polyol ester As the cyclic polyol ester, the following general formula (2) [wherein R1 and R2 each independently represents a linear or branched alkyl group, and n represents an integer of 2 or more. . ]
  • the compound represented by this is preferable.
  • This compound has a molecular structure in which only the structural unit represented by the general formula (1) is polymerized cyclically. Such a compound is advantageous in that it has a good compatibility with difluoromethane and an appropriate high viscosity, but also has a reduced heat capacity.
  • R1 and R2 each independently represent a linear or branched alkyl group.
  • * represents a bonding position to **, a bonding position of a hydrogen atom, a bonding position of a linear or branched alkyl group, or a bonding position of a linear or branched alkanoyl group
  • * * represents the bonding position with * or ***, the bonding position of a hydroxy group, the bonding position of a linear or branched alkoxy group, or the bonding position of a linear or branched alkanoyloxy group.
  • X represents a linear or branched alkanediyl group or a double bond
  • *** represents a bonding position with **
  • n represents an integer of 3 or more.
  • the compound which has each of the structural unit represented by this is preferable.
  • molecular chains each having a structural unit represented by the general formula (3) and a cross-linked structural unit represented by the general formula (4) polymerized to the structural unit are represented by the general formula (4). It is bridge
  • the bifunctional group represented by the general formula (5) is bonded to form a bridge.
  • the cross-linked polyol ester may be a compound in which chain molecular chains are cross-linked, a compound in which cyclic molecular chains are cross-linked, or a compound in which chain molecular chains and cyclic molecular chains are cross-linked. There may be.
  • the degree of polymerization of each molecular chain to be crosslinked may be the same or different from each other. However, among these, a preferable compound is a compound in which chain molecular chains are cross-linked. Since a chain-like molecular chain has a relatively high synthesis yield, such a crosslinked polyol ester improves the synthesis efficiency.
  • the number of molecular chains constituting the crosslinked polyol ester is not particularly limited.
  • the cross-linked polyol ester having orientation can be obtained by cross-linking at least two molecules of a molecular chain having a structural unit represented by the general formula (1), that is, the general formula (3).
  • the number of molecular chains is preferably 3 molecules or less and more preferably 2 molecules from the viewpoint of making the refrigerating machine oil have a moderately high viscosity and not impairing the heat dissipation of the refrigerating machine oil.
  • the number of crosslinks constituting the crosslinked polyol ester is not particularly limited.
  • the crosslinked polyol ester having orientation can be obtained if it is crosslinked by at least one polyfunctional group (such as a structural unit represented by the general formula (5)).
  • the cross-linking position in each molecular chain may be the middle part of the main chain or the end of the main chain.
  • the number of crosslinks is preferably 2 or more, and more preferably 2 or more between a pair of molecular chains, from the viewpoint of enhancing the orientation of the crosslinked polyol ester.
  • the number of crosslinks is 2 or more, the cross-linked polyol ester becomes more stable in a planar molecular structure having a two-dimensional extension. Therefore, when an external force is applied, molecules can be aligned in parallel and interact more strongly between molecules.
  • the crosslinked polyol ester preferably has a linear or branched alkanoyl group or a linear or branched alkyl group at the end of the chain molecular chain.
  • an alkanoyl group that is, an O-terminal (indicated by * in the general formula (3)) is an alkanoyl group, and a C-terminal (indicated by ** in general formulas (3) and (4))
  • an alkanoyloxy group is provided or an alkyl group is provided at the end of a chain molecular chain, that is, an alkyl group is provided at the O-terminus and an alkoxy group is provided at the C-terminus
  • difluoromethane is electrically positive (+). It becomes easier to interact with charged hydrogen atoms.
  • the viscosity of the crosslinked polyol ester is further increased.
  • the crosslinked polyol ester may have a linear or branched alkyl group at the end of the chain molecular chain when the repeating number (n) is 3 or more.
  • a molecular chain having an alkyl group at the end of a chain molecular chain, that is, an alkyl group at the O-terminal and an alkoxy group at the C-terminal, is obtained while controlling the polymerization direction during the synthesis of the crosslinked polyol ester. It is further advantageous in that it can.
  • the crosslinked polyol ester As the crosslinked polyol ester, the following general formula (6) [wherein R1, R2, R3 and R4 each independently represents a linear or branched alkyl group, and R5, R6, R7. And R8 each independently represents a hydrogen atom, a linear or branched alkyl group, or a linear or branched alkanoyl group, and X represents a linear or branched alkyl group. Represents an alkanediyl group or a double bond, p, q, r and s each independently represent an integer of 0 or more, at least one of p and q is an integer of 3 or more, and at least one of r and s Is an integer of 3 or more. ] The compound represented by this is more preferable.
  • two molecular chains each having a structural unit represented by the general formula (3) and a cross-linked structural unit represented by the general formula (4) polymerized to the structural unit are represented by the general formula It is crosslinked via the cross-linked structural unit represented by (4).
  • the bifunctional group represented by the general formula (5) is bonded to form one bridge.
  • an alkanoyloxy group is bonded to the uncrosslinked group of the cross-linked structural unit.
  • the number of repetitions (n) in each of the above general formulas is an integer of 2 or more in the cyclic polyol ester, preferably an integer of 3 or more, more preferably an integer of 4 or more.
  • the crosslinked polyol ester it is an integer of 3 or more, preferably an integer of 4 or more.
  • the viscosity of the polyol ester can be increased by the large number of oriented side chains.
  • the upper limit of n is preferably 10 or less, more preferably 8 or less, and even more preferably 6 or less.
  • alkyl group in each general formula examples include linear alkyl groups such as a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-pentyl group, an isopropyl group, an isobutyl group, and a sec-butyl group.
  • alkanoyl group in each general formula examples include linear alkanoyl such as methanoyl group (formyl group), ethanoyl group (acetyl group), n-propanoyl group (propionyl group), n-butanoyl group, and n-pentanoyl group.
  • linear alkanoyl such as methanoyl group (formyl group), ethanoyl group (acetyl group), n-propanoyl group (propionyl group), n-butanoyl group, and n-pentanoyl group.
  • alkoxy group in each general formula examples include linear alkoxy groups such as methoxy group, ethoxy group, n-propoxy group, n-butoxy group, n-pentoxy group, isopropoxy group, isobutoxy group, sec- Branched alkoxy such as butoxy, tert-butoxy, isopentoxy, 1-methylbutoxy, 2-methylbutoxy, 1-ethylpropoxy, 1,2-dimethylpropoxy, neopentoxy, tert-pentoxy Groups and the like.
  • alkanoyloxy group in each general formula examples include linear alkanoyloxy groups such as methanoyloxy group, ethanoyloxy group, n-propanoyloxy group, n-butanoyloxy group, and n-pentanoyloxy group.
  • isopropanoyloxy group isobutanoyloxy group, sec-butanoyloxy group, tert-butanoyloxy group, isopentanoyloxy group, 1-methylbutanoyloxy group, 2-methylbutanoyloxy group
  • branched alkanoyloxy groups such as 1-ethylpropanoyloxy group, 1,2-dimethylpropanoyloxy group, neopentanoyloxy group, and tert-pentanoyloxy group.
  • alkanediyl group in each general formula examples include a linear alkanediyl group such as a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, and a pentamethylene group, a propylene group, and a propane-2,2-diyl group.
  • branched alkanediyl groups such as butane-1,2-diyl group, butane-1,3-diyl group, 2-methylpropane-1,3-diyl group, and the like.
  • R1 and R2 are preferably an alkyl group having 1 to 5 carbon atoms, and more preferably an alkyl group having 3 to 5 carbon atoms.
  • the alkyl group has 1 to 5 carbon atoms
  • the polyol ester has good compatibility with difluoromethane and high viscosity.
  • the heat capacity of the polyol ester does not become excessive, the heat dissipation of the refrigerating machine oil can be improved.
  • R1 and R2 may be the same or different from each other.
  • R1 and R2 are preferably a hybrid of a linear alkyl group and a branched alkyl group, and more preferably a branched alkyl group.
  • Branched alkyl groups tend to form interactions with difluoromethane and other polyol esters, even with low carbon numbers. Therefore, the polyol ester is suitable for achieving both an appropriate high viscosity and good compatibility while suppressing the length of the side chain.
  • hydrogen atoms bonded to secondary carbon atoms hydrogen atoms bonded to tertiary carbon atoms can also be coordinated to difluoromethane.
  • Hybridization of the linear alkyl group and the branched alkyl group may be in an appropriate ratio.
  • the branched alkyl group can be substituted at a molar ratio of 50% or more.
  • the alkoxy group, alkanoyl group and alkanoyloxy group in each general formula each independently preferably have 1 to 5 carbon atoms, and more preferably 3 to 5 carbon atoms.
  • carbon number may be the same for every kind of substituent, and may mutually differ.
  • the number of carbon atoms may be the same between the bonding positions of the substituents or may be different from each other. When the carbon number is 1 or more and 5 or less, the same effect as in the alkyl group can be obtained.
  • the alkoxy group, alkanoyl group and alkanoyloxy group in each general formula are preferably a mixture of a straight chain and a branched chain, and more preferably a branched chain.
  • Each type of substituent may be either linear or branched, and may be a mixture of linear and branched with respect to the same type of substituent. When the substituent is branched, the same effect as in the alkyl group can be obtained.
  • cyclic polyol ester examples include the compounds (2-1) to (2-9) shown below. However, the cyclic polyol ester is not limited to these compounds.
  • crosslinked polyol ester examples include compounds (6-1) to (6-6) shown below.
  • the crosslinked polyol ester is not limited to these compounds.
  • the cyclic polyol ester and the crosslinked polyol ester can be obtained using known starting materials and synthesis methods. For example, pentaerythritol can be subjected to polycondensation with trimethylolpropane, monohydric alcohol or the like, if necessary, to obtain a cyclic polyol with a cyclized main chain or a linear polyol with a main chain. . Next, the cyclic polyol ester is obtained by esterifying the cyclic polyol with a fatty acid or the like.
  • cross-linked polyol is cross-linked by dicarboxylic acid, dicarboxylic acid halide, diester, acid anhydride, etc., and uncrosslinked groups remaining without cross-linking reaction are esterified with fatty acid or the like, thereby cross-linking polyol. Esters are obtained.
  • the polyol ester which is the base oil of the refrigerating machine oil may contain a plurality of types of compounds having different degrees of polymerization and substituents as the cyclic polyol ester, and the degree of polymerization, substituents and cross-linked structures are different as the crosslinked polyol ester. Multiple types of compounds may be included.
  • the polyol ester is more preferably composed of only one of a cyclic polyol ester and a crosslinked polyol ester, more preferably at least one of a polymerization degree, a substituent, and a crosslinked structure is composed of the same compound. It is particularly preferable that it consists of one kind of compound.
  • the kinematic viscosity at 40 ° C. of the refrigerating machine oil is preferably 30 mm 2 / s to 100 mm 2 / s.
  • the refrigerating machine oil may contain other components such as a stabilizer, a flame retardant, an extreme pressure additive, an antiwear agent, an antifoaming agent, and an acid scavenger along with the polyol ester as the base oil.
  • a stabilizer include diene compounds, phosphates, phenol compounds, and epoxides.
  • flame retardants examples include tri (2-chloroethyl) phosphate, (chloropropyl) phosphate, tri (2,3-dibromopropyl) phosphate, tri (1,3-dichloropropyl) phosphate, diammonium phosphate, halogenated Aromatic compounds, antimony oxide, aluminum trihydrate, polyvinyl chloride, fluorinated iodocarbon, fluorinated bromocarbon, trifluoroiodomethane, perfluoroalkylamines, bromofluoroalkylamines and the like can be mentioned.
  • the refrigeration oil may contain other types of compounds as refrigeration oil together with the polyol ester.
  • other compounds include mineral oil, silicone oil, polyalkylbenzenes, polyalkylene glycols, polyalkylene glycol esters, polyvinyl ethers, polyalphaolefins and the like.
  • the polyol ester is preferably included as a base oil, and is preferably included in an amount of 50% by mass or more.
  • the refrigerating and air-conditioning apparatus of the present invention is not limited to an air conditioner, and may be another refrigeration cycle apparatus such as a refrigerator or a heat pump type water heater.
  • the compressor of the present invention is not limited to the scroll type, and may be a piston type, a rotary type, a screw type, a diaphragm type, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lubricants (AREA)

Abstract

 本発明は、良好な環境性能と良好な冷凍サイクル効率とを両立することが可能な冷凍空調用圧縮機及び冷凍空調装置を提供する。冷凍空調用圧縮機は、ポリオールエステルを含んでなる冷凍機油と、ジフルオロメタンを含む冷媒とが封入されている。前記ポリオールエステルは、繰り返し数が2以上のポリ[2,2-ジ(アルカノイルオキシメチル)オキシトリメチレン]を構造単位として有している。また、前記ポリオールエステルは、前記構造単位を有する分子鎖が環状に重合してなる環状ポリオールエステル、及び、前記構造単位を有する分子鎖同士が前記構造単位に重合している被架橋構造単位を介して互いに架橋されてなる架橋ポリオールエステルのいずれか一方のみ又は両方からなるものである。

Description

冷凍空調用圧縮機及び冷凍空調装置
 本発明は、冷凍空調用圧縮機及び冷凍空調装置に関する。
 冷凍空調装置の分野においては、地球環境保全の観点から、より環境負荷が小さく、高効率な代替冷媒が求められている。特に、古くから用いられてきたCFC(ChloroFluorocarbons)やHCFC(HydroChloroFluoroCarbons)は、オゾン層破壊や地球温暖化を防止するためにHFC(HydroFluoroCarbons)への転換が急速に行われている。代替冷媒の性能としては、環境負荷が小さいことに加え、エネルギ効率が高く、毒性が弱く、燃焼性が低いこと等が求められる。
 気候変動枠組条約第3回締約国会議(COP3)以降、ルームエアコン、パッケージエアコン等においては、R410Aが使用されるようになり、また、カーエアコンにおいては、HFC134a(1,1,1,2-テトラフルオロエタン)が多用されるようになっている。R410Aは、HFC32(ジフルオロメタン)50質量%とHFC125(ペンタフルオロエタン)50質量%との混合冷媒であり、地球温暖化係数(GWP:Global Warming Potential)が2088とされている。また、HFC134aは、GWPが1430とされている。
 しかしながら、EU(欧州連合)において、2011年以降GWPが150を超える冷媒を使用したカーエアコンの搭載が禁止されるなど、更なる規制拡大の可能性が生じている。そこで、近年、R410A等に代わる新たな代替冷媒の検討が加速している。代替冷媒の候補としては、HFC32(ジフルオロメタン)、HFO1234yf(2,3,3,3-テトラフルオロ-1-プロペン)、HFO1234ze(トランス-1,3,3,3-テトラフルオロプロペン)等の単独冷媒や、これらの混合組成による混合冷媒が挙げられている。
 冷凍空調装置に備えられる圧縮機には冷凍機油が使用される。冷凍機油は、圧縮機の内部において、摺動部の潤滑、電動機の冷却、冷媒の密封等の各種の役割を担う。しかしながら、冷凍機油と冷媒との相溶性が低いと、冷凍機油と冷媒とが十分に混和せず、冷凍機油相と冷媒相とが分離してしまう。そして、冷凍機油と分離した冷媒は、冷凍機油と摺動部との接触を局所的に妨げる。その結果、冷凍機油による適切な潤滑が行われず、圧縮機の耐久性が損なわれる恐れが生じる。
 また、冷凍機油の一部は、圧縮機の内部で気化又は飛沫化し、冷媒と共に圧縮機の外部に出て冷凍サイクルを循環する。冷凍機油と冷媒との相溶性が低いと、冷凍機油は、配管類等の内部で凝集し、冷凍サイクル中に滞留してしまう。そして、圧縮機への冷凍機油の戻り量が低下し、冷凍機油の減量により圧縮機の機能が低下してしまう。また、冷凍サイクル中に滞留する冷凍機油は、冷媒の循環や熱交換を妨げることがある。その結果、冷凍空調装置のCOP(Coefficient Of Performance)等の効率が低下するに至る。したがって、代替冷媒への転換に際しては、冷媒と併用される冷凍機油も適切な種類に転換することが求められる。
 従来、HFC32(ジフルオロメタン)との併用に適した冷凍機油としては、ポリオールエステルを基油とした冷凍機油が知られている。特許文献1には、ペンタエリトリトール、ジペンタエリトリトール、トリペンタエリトリトール、トリメチロールエタン、トリメチロールプロパン及びネオペンチルグリコールから選択されるネオペンチルポリオールの少なくとも1種と、線状及び分岐鎖の脂肪族カルボン酸類から選択される脂肪族カルボン酸の少なくとも1種又はかかる酸の1種もしくは複数種の被エステル化性誘導体との反応生成物からなるエステル基質の油を潤滑剤とすることについて記載されている。
 冷凍空調装置の環境性能は、ジフルオロメタンのようにGWPが低い代替冷媒を採用することによって向上させることができる。しかも、GWPが低い代替冷媒は一般に潜熱が高い傾向があるため、ジフルオロメタンを代替冷媒として採用すると、冷凍空調装置に封入すべき冷媒量を削減することができる。そして、冷媒量が削減されることによって、冷凍空調装置に備えられる配管類を細径化することも可能になる。
特表平08-502769号公報
 しかしながら、従来のポリオールエステルを基油とした冷凍機油は、ジフルオロメタンとの良好な相溶性と、適度な高粘性とが両立したものとはなっていない。従来のポリオールエステルは、一般に、粘度が低過ぎる傾向がある。したがって、ポリオールエステルに更にジフルオロメタンが混和した状態ともなると、冷凍機油は、通常求められる水準の粘度には殆ど達しなくなってしまう。つまり、従来のポリオールエステルを基油とした冷凍機油では、圧縮機の内部において摺動部の潤滑等の役割を十分に果たすことができない。
 ポリオールエステルのような高分子の粘度を高める方法としては、高分子の高級化に拠るものがある。ところが、従来のポリオールエステルは、ジフルオロメタンとの相溶性が良好に備わっていない。そのため、特許文献1に記載されているように、エステル化に際してヘプタン酸等を用いて高級化を行うと、ポリオールエステルの非極性度が強まり過ぎて、ジフルオロメタンとの相溶性が大きく損なわれてしまう恐れがある。また、分子量の増大に伴って冷凍機油の放熱性も低下してしまう。したがって、圧縮機の機能の低下や、冷凍空調装置の効率の低下を招く可能性が高い。
 また、特許文献1に記載されている反応生成物は、種々の分子構造の化合物が混在しており、ジフルオロメタンとの良好な相溶性や高粘度を発現するのに適した分子構造とはなっていない。そのため、冷凍空調装置の効率を十分な水準に保つのには適していない。
 そこで、本発明は、良好な環境性能と良好な効率とを両立することが可能な冷凍空調用圧縮機及び冷凍空調装置を提供することを目的とする。
 前記課題を解決するために本発明に係る冷凍空調用圧縮機は、下記一般式(1)[但し、式中において、R1及びR2は、それぞれ独立して直鎖状若しくは分枝状のアルキル基を表し、nは、2以上の整数を表す。]で表される構造単位を有するポリオールエステルを含んでなる冷凍機油と、ジフルオロメタンを含む冷媒とが封入され、前記ポリオールエステルは、前記構造単位を有する分子鎖が環状に重合してなる環状ポリオールエステル、及び、前記構造単位を有する分子鎖同士が前記構造単位に重合している被架橋構造単位を介して互いに架橋されてなり、前記構造単位におけるnが3以上である架橋ポリオールエステルのいずれか一方のみ又は両方からなることを特徴とする。
 また、本発明に係る冷凍空調装置は、前記の冷凍空調用圧縮機を備えることを特徴とする。
 本発明によれば、良好な環境性能と良好な効率とを両立することが可能な冷凍空調用圧縮機及び冷凍空調装置を提供することができる。
本発明の一実施形態に係る空気調和機(冷凍空調装置)の構成を示す模式図である。 本発明の一実施形態に係る冷凍空調用圧縮機の縦断面図である。 本発明の一実施形態に係る冷凍空調用圧縮機に封入される冷凍機油と冷媒との易相溶性を説明する概念図である。 本発明の一実施形態に係る冷凍空調用圧縮機に封入される冷凍機油の高粘性発現原理を説明する概念図である。
 以下、本発明の一実施形態に係る冷凍空調用圧縮機及び冷凍空調装置について、詳細に説明する。なお、以下の説明では、冷凍空調用圧縮機を備える冷凍空調装置の一例として、空気調和機を例にとって説明する。また、各図において共通する構成については、同一の符号を付し、重複した説明を省略する。
<空気調和機>
 図1は、本発明の一実施形態に係る空気調和機(冷凍空調装置)の構成を示す模式図である。
 図1に示すように、本実施形態に係る空気調和機100は、室外機1と、室内機3とを有している。室外機1は、圧縮機(冷凍空調用圧縮機)5と、四方弁10と、膨張弁6と、室外熱交換器2と、プロペラファン9とを備えている。一方、室内機3は、室内熱交換器4と、貫流ファン8とを備えている。
 室外機1と室内機3との間は、配管7によって接続されている。配管7は、冷媒が室外機1と室内機3との間を循環する循環流路を形成している。配管7には、四方弁10、圧縮機5、室外熱交換器2、膨張弁6、室内熱交換器4がそれぞれ接続されている。冷媒は、四方弁10、室外熱交換器2、膨張弁6、室内熱交換器4、圧縮機5のそれぞれをこの順に通流し、再び四方弁10に戻るように循環することができる。また、冷媒は、四方弁10の切り替えによって、四方弁10、圧縮機5、室内熱交換器4、膨張弁6、室外熱交換器2のそれぞれをこの順に通流し、再び四方弁10に戻るように循環することができる。
 図1に示す空気調和機100は、冷房運転と暖房運転とを四方弁10によって切り替えることが可能なヒートポンプ式の形態とされている。図1では、冷房運転における冷媒の循環方向を実線矢印で示している。また、暖房運転における冷媒の循環方向を破線矢印で示している。
 冷房運転においては、室外熱交換器2が凝縮器、室内熱交換器4が蒸発器として機能する。圧縮機5によって圧縮されて高温高圧となった気体冷媒は、四方弁10を経て室外熱交換器2に供給される。そして、冷媒は、室外熱交換器2において外気と熱交換する。熱交換によって、外気は熱を奪い、高温高圧の気体冷媒は低温高圧の液体冷媒となる。この間に、プロペラファン9は、外気を吸気又は排気して熱交換を促進する。
 次いで、冷媒は、膨張弁6によって低温低圧の気体冷媒と液体冷媒との二相状態となった後、室内熱交換器4に供給される。そして、冷媒は、室内熱交換器4において内気と熱交換する。熱交換によって低温低圧の冷媒は気化し、内気から熱を奪う。この間に、貫流ファン8は、冷却された内気を室内に送風する。その後、冷媒は、再び圧縮機5によって圧縮されてヒートポンプサイクル(冷凍サイクル)を循環する。
 一方、暖房運転においては、室内熱交換器4が凝縮器、室外熱交換器2が蒸発器として機能する。圧縮機5によって圧縮されて高温高圧となった気体冷媒は、四方弁10を経て室内熱交換器4に供給される。そして、冷媒は、室内熱交換器4において内気と熱交換する。熱交換によって、内気は熱を奪い、高温高圧の気体冷媒は高圧の液体冷媒となる。この間に、貫流ファン8は、加温された内気を室内に送風する。
 次いで、冷媒は、膨張弁6によって低温低圧の気体冷媒と液体冷媒との二相状態となった後、室外熱交換器2に供給される。そして、冷媒は、室外熱交換器2において外気と熱交換する。熱交換によって低温低圧の冷媒は気化し、外気から熱を奪う。この間に、プロペラファン9は、外気を吸気又は排気して熱交換を促進する。その後、冷媒は、再び圧縮機5によって圧縮されてヒートポンプサイクルを循環する。
 空気調和機100の配管7には、ジフルオロメタンを含む冷媒が封入される。冷媒としては、ジフルオロメタンからなる単独冷媒及びジフルオロメタンと他の冷媒を含む混合冷媒のいずれが封入されてもよい。混合冷媒としては、ジフルオロメタンを50質量%以上含む冷媒が好ましく、ジフルオロメタンを70質量%以上含む冷媒がより好ましく、ジフルオロメタンを90質量%以上含む冷媒がさらに好ましい。
 混合冷媒は、他の冷媒として、例えば、トランス-1,3,3,3-テトラフルオロプロペン(HFO1234ze)、プロペン(R1270)、プロパン(R290)、ペンタフルオロエタン(R125)、1,1,1,2-テトラフルオロエタン(R134a)、フルオロエタン(R161)、1,1-ジフルオロエタン(R152a)等を含む混成とすることができる。
<圧縮機>
 図2は、本発明の一実施形態に係る冷凍空調用圧縮機の縦断面図である。
 図2に示すように、本実施形態に係る冷凍空調用圧縮機(圧縮機)5は、旋回スクロール11や固定スクロール12によって構成される圧縮機構部と、電動機13と、密閉容器14とを備えている。この圧縮機5は、スクロール方式の密閉型の圧縮機とされている。電動機13は圧縮機構部を駆動し、圧縮機構部は冷媒を圧縮する。密閉容器14は、これら圧縮機構部や電動機13を収納している。
 密閉容器14内の上部側には、圧縮機構部が配置されている。圧縮機構部は、詳細には、旋回スクロール11、固定スクロール12、フレーム17、オルダムリング21等によって構成されている。また、密閉容器14内の下部側には、冷凍機油が溜められた液溜15が配置されている。圧縮機構部と液溜15とに挟まれた中間部には、電動機13が配置されている。
 固定スクロール12は、端板12bと、端板12b上に立設された渦巻状のラップ12aとによって構成されている。固定スクロール12は、密閉容器14の内面に接合されているフレーム17に、ボルト16によって固定されている。固定スクロール12の端板12bの中央には、吐出口12cが貫通して設けられている。また、固定スクロール12のラップ12aの側方には、吸入口12dが設けられている。
 旋回スクロール11は、端板11bと、端板11b上に立設された渦巻状のラップ11aとによって構成されている。旋回スクロール11のラップ11aと、固定スクロール12のラップ12aとは、互いに噛み合うように設けられている。ラップ11a,12a同士が互いに噛み合うことによって、圧縮室20が形成される。旋回スクロール11の端板11bの背面中央には、旋回軸受11cが固定されている。旋回スクロール11は、旋回軸受11cに軸支されるクランク軸18によって、固定スクロール12とフレーム17との間で旋回運動可能に支持されている。
 オルダムリング21は、旋回スクロール11とフレーム17との間に備えられている。オルダムリング21が上部側に有するキーは、旋回スクロール11の端板11bの背面に設けられたキー溝と係合している。一方、下部側に有するキーは、フレーム17に設けられたキー溝と係合している。旋回運動を行う旋回スクロール11は、オルダムリング21によって自転運動が防止される。
 電動機13は、ロータの中央にクランク軸18を備えている。クランク軸18は、圧縮機5の上部側においては、主軸受17aに回動可能に支持されている。一方、圧縮機5の下部側においては、下軸受19に回動可能に支持されている。クランク軸18の上端には、クランク軸18の主軸から偏心したクランクが設けられており、クランクは、旋回軸受11cに軸支されている。一方、クランク軸18の下端の下方には吸引管15aが連設されている。吸引管15aの一端は、油溜15内に挿入されている。
 クランク軸18は、軸方向に貫通するように設けられた給油通路18aを有している。給油通路18aは、旋回軸受11c、主軸受17a及び下軸受19にそれぞれ軸支される高さにおいて分岐している。これらの分岐は、クランク軸18の側面に向けて貫通しており、油溜15から旋回軸受11c、主軸受17a又は下軸受19の摺動部に至る冷凍機油の流路が形成されている。
 圧縮機5の上部には、吸込パイプ14aが設けられている。吸込パイプ14aは、冷凍サイクルを構成する配管7(図1参照)と、圧縮室20に通じる吸入口12dとの間を連通している。また、圧縮機5の側部には、吐出パイプ14bが設けられている。吐出パイプ14bは、冷凍サイクルを構成する配管7(図1参照)と、フレーム17の下方の空間との間を連通している。
 圧縮機5において電動機13が作動すると、旋回スクロール11は固定スクロール12に対して偏心した軌道で旋回運動する。ラップ11a,12aに挟まれて気密化されている圧縮室20は、この旋回運動によって、ラップ11a,12aの周方向外側から中心側に移動していく。この移動に伴って圧縮室20の容積が縮小していくことで、冷媒の圧縮が行われる。
 すなわち、冷凍サイクルを構成する配管7(図1参照)を通流する冷媒は、電動機13の稼働によって、吸込パイプ14aから吸い込まれ、吸入口12dを通って圧縮室20に移送されて圧縮される。そして、圧縮された冷媒は、吐出口12cを通って吐出圧室14cに至る。その後、フレーム17に設けられた連通孔を通って吐出パイプ14bから取り出され、再び配管7を循環する。
 冷媒の圧縮に伴い、油溜15に溜められている冷凍機油は、圧力差等によって吸引管15aに吸い上げられる。次いで、冷凍機油は、給油通路18aを通って、旋回軸受11c、主軸受17a、下軸受19、圧縮機構部等の摺動部に供給される。そして、摺動部の潤滑、電動機13の冷却、冷媒の密封等に寄与する。また、冷凍機油の一部は、圧縮機5の稼働に伴って気化又は飛沫化し、冷媒と共に配管7を通流した後、再び圧縮機5に戻る。
<冷凍機油>
 冷凍機油は、下記一般式(1)[但し、式中において、R1及びR2は、それぞれ独立して直鎖状若しくは分枝状のアルキル基を表し、nは、2以上の整数を表す。]で表される構造単位を有するポリオールエステルを含んでいる。一般式(1)で表される構造単位を有するポリオールエステルは、環状ポリオールエステル及び架橋ポリオールエステルのいずれか一方のみ又は両方からなるように構成されている。
Figure JPOXMLDOC01-appb-C000006
 一般式(1)で表されるポリ[2,2-ジ(アルカノイルオキシメチル)オキシトリメチレン]の構造単位は、繰り返し数(n)が少なくとも2以上である。このような構造単位が、ポリオールエステルの分子鎖(主鎖)の少なくとも一部を構成している。そして、主鎖に対しては、アルカノイルオキシメチル基の側鎖、すなわち、R1及びR2で表されるアルキル基とカルボニル基とを有する側鎖が結合している。ここで、このような側鎖を有するポリオールエステルを含む冷凍機油の作用効果について説明する。
 図3は、本発明の一実施形態に係る冷凍空調用圧縮機に封入される冷凍機油と冷媒との易相溶性を説明する概念図である。
 冷媒のジフルオロメタン(HFC32)は、強い極性分子である。図3に示すように、ジフルオロメタンの水素原子は、電気的に陽性(+)を帯び、フッ素原子は、電気的に陰性(-)を帯びている。一方、一般式(1)で表される構造単位を有するポリオールエステルは、カルボニル基とアルキル基とを有している。
 冷凍機油と冷媒のジフルオロメタンとが混合すると、図3に示すように、ポリオールエステルの分子鎖200は、電気的に陰性(-)を帯びているカルボニル基の酸素原子を介して、ジフルオロメタンの水素原子側に配位することができる。また、ポリオールエステルの分子鎖300,400は、電気的に陽性(+)を帯びているアルキル基の水素原子を介して、ジフルオロメタンのフッ素原子側に配位することができる。なお、分子鎖300のアルキル基は直鎖状であり、分子鎖400のアルキル基は分枝状であるが、必ずしもこのような組み合わせに制限されない。また、これらのアルキル基とカルボニル基とは、同一分子鎖及び異なる分子鎖のいずれに存在していてもよい。
 図3において網掛けで示すように、分子鎖200のカルボニル基の酸素原子とジフルオロメタンの水素原子との間、及び、分子鎖300,400のアルキル基の水素原子とジフルオロメタンのフッ素原子との間には、比較的強い双極子相互作用が形成される。このような強い双極子相互作用は、ポリオールエステルのジフルオロメタンに対する配位をエネルギ的に安定させる。このような作用機序により、一般式(1)で表される構造単位を有するポリオールエステルは、ジフルオロメタンに対して良好な相溶性を示すものとなる。
 図4は、本発明の一実施形態に係る冷凍空調用圧縮機に封入される冷凍機油の高粘性発現原理を説明する概念図である。
 一般式(1)で表される構造単位を有するポリオールエステルは、図4に示すように、主鎖中の一つの炭素原子500に二本の側鎖が結合した繰り返し構造単位を有している。また、この構造単位の繰り返し数は2以上であり、炭素原子500に結合した側鎖は重合方向に繰り返し配列している。そして、図4に示すように、側鎖のカルボニル基の酸素原子501は、電気的に陰性(-)を帯びている。また、主鎖を構成する酸素原子も、陰性(-)が比較的強い状態にある。
 ポリオールエステルの側鎖は、このような酸素原子同士の電気的な反発によって、空間的配置(コンホメーション)が制約される。具体的には、主鎖中の一つの炭素原子500に結合している二本の側鎖のカルボニル基同士や、側鎖のカルボニル基と主鎖の酸素原子との間で反発が生じる。また、重合方向に繰り返し配列している側鎖のカルボニル基同士においても反発が生じる。その結果、ポリオールエステルの側鎖は、主鎖から立ち上がる方向に配向することになる。そして、ポリオールエステルの分子には、図4において網掛けで示すような二次元的な広がりを持った平面的構造が形成され得るようになる。
 ポリオールエステルは、このような平面的構造が形成されることにより、分子同士でより強く相互作用することができる。また、側鎖が配向することにより、ポリオールエステルの主鎖(分子鎖)は、伸長した立体構造をとり易くなる。そのため、ポリオールエステルの分子同士の強い相互作用が、分子鎖の重合方向にわたって形成されるようになる。このような作用機序により、一般式(1)で表される構造単位を有するポリオールエステルは、良好な高粘度を示すものとなる。
 また、このような作用機序による高粘度化は、ポリオールエステルを高級化すること無く実現し得るものである。したがって、高級化によってジフルオロメタンとの相溶性を損なうこと無く、冷凍機油を適切な高粘度にすることが可能になる。また、高級化によってポリオールエステルの熱容量を増大させ無くて済むので、冷凍機油の放熱性は損なわれ難い。そのため、冷凍空調装置の効率を高水準にするのに適している。
 一般式(1)で表される構造単位を有するポリオールエステルは、このような側鎖の特徴に加えて、さらに主鎖自体にも構造上の特徴を有している。このポリオールエステルは、環状ポリオールエステル及び架橋ポリオールエステルのいずれか一方のみ又は両方からなり、一般式(1)で表される構造単位を有する分子鎖(主鎖)が、所定の高次分子構造を有するものである。
 環状ポリオールエステルは、一般式(1)で表される構造単位を有する分子鎖が環状に重合してなる環状構造を有する。主鎖が環状に重合していることにより、環状ポリオールエステルの環化した分子鎖は、二軸方向に平面的な広がりを持った立体構造を採り得るようになっている。そのため、環状ポリオールエステルは、液相中において外力を受けると分子同士で互いに同軸方向に配向することができる。
 なお、環状ポリオールエステルが有する環状構造は、環状ポリオールエステルの分子内に単数存在していてもよいし、複数存在していてもよい。すなわち、環状ポリオールエステルは、一本の分子鎖の両末端が環化した単環式であってもよいし、複数の独立した環状構造を有するか、或いは、単環が分子鎖で架橋された環状構造を有する複環式であってもよい。
 一方、架橋ポリオールエステルは、一般式(1)で表される構造単位を有する分子鎖同士がこの構造単位に重合している被架橋構造単位を介して互いに架橋されてなる架橋構造を有する。分子鎖同士が互いに架橋されていることにより、架橋ポリオールエステルの各分子鎖は、二軸方向に平面的な広がりを持った立体構造を採り得るようになっている。そのため、架橋ポリオールエステルは、液相中において外力を受けると分子同士で互いに同軸方向に配向することができる。
 なお、架橋ポリオールエステルが有する被架橋構造単位は、一般式(1)で表される構造単位と共に、ポリオールエステルの分子鎖(主鎖)の少なくとも一部を構成する。被架橋構造単位は、一般式(1)で表される構造単位と同様に、オキシトリメチレン構造の主鎖を有する。複数のポリオールエステルの分子鎖がそれぞれ有している被架橋構造単位に、他の多官能基が結合することによって、各分子鎖同士が架橋されることになる。多官能基としては、一般式(1)で表される構造単位と異なる構造の基であれば、特に制限されるものではないが、二官能基が好ましく、ジカルボキシラートがより好ましく、直鎖状若しくは分枝状のアルカンジカルボキシラートがさらに好ましい。
 環状ポリオールエステルや架橋ポリオールエステルが分子同士で互いに同軸方向に配向すると、側鎖の配向により形成される平面的構造(図4参照)が並列状に配列し易くなる。そのため、これらの平面的構造を介した分子間の相互作用は、ポリオールエステルが外力を受けることによって、より強められることになる。したがって、環状ポリオールエステルや架橋ポリオールエステルは、圧縮機5の摺動部で発生するせん断応力によって分子同士で配向することにより、一層高い粘度を示すようになり、摺動部の潤滑や冷媒の密封に優れた性能を発揮することができる。
 環状ポリオールエステルとしては、下記一般式(2)[但し、式中において、R1及びR2は、それぞれ独立して直鎖状若しくは分枝状のアルキル基を表し、nは、2以上の整数を表す。]で表される化合物が好ましい。この化合物は、一般式(1)で表される構造単位のみが環状に重合した分子構造を有するものである。このような化合物は、ジフルオロメタンとの良好な相溶性と適切な高粘度とを有していながら熱容量も抑えられている点で有利である。
Figure JPOXMLDOC01-appb-C000007
 一方、架橋ポリオールエステルとしては、下記一般式(3)、(4)及び(5)[但し、式中において、R1及びR2は、それぞれ独立して直鎖状若しくは分枝状のアルキル基を表し、*は、**との結合位置、水素原子の結合位置、直鎖状若しくは分枝状のアルキル基の結合位置、又は、直鎖状若しくは分枝状のアルカノイル基の結合位置を表し、**は、*又は***との結合位置、ヒドロキシ基の結合位置、直鎖状若しくは分枝状のアルコキシ基の結合位置、又は、直鎖状若しくは分枝状のアルカノイルオキシ基の結合位置を表し、Xは、直鎖状若しくは分枝状のアルカンジイル基若しくは二重結合を表し、***は、**との結合位置を表し、nは、3以上の整数を表す。]で表される構造単位のそれぞれを有する化合物が好ましい。
 この化合物は、一般式(3)で表される構造単位と、この構造単位に重合する一般式(4)で表される被架橋構造単位とをそれぞれ有する分子鎖同士が、一般式(4)で表される被架橋構造単位を介して架橋されるものである。一般式(4)で表される被架橋構造単位には、一般式(5)で表される二官能基が結合することによって架橋が形成される。このような化合物は、ジフルオロメタンとの相溶性が良好であり、分子同士の配向性の制御にも適し、高粘度化させ易い点で有利である。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 架橋ポリオールエステルとしては、鎖状の分子鎖同士が架橋された化合物、環状の分子鎖同士が架橋された化合物、及び、鎖状の分子鎖と環状の分子鎖とが架橋された化合物のいずれであってもよい。また、架橋される各分子鎖の重合度は、同一であってもよいし、互いに異なっていてもよい。但し、これらの中でも好ましい化合物は、鎖状の分子鎖同士が架橋された化合物である。鎖状の分子鎖は合成収率が比較的高いため、このような架橋ポリオールエステルであれば合成効率が良くなる。
 架橋ポリオールエステルを構成する分子鎖の数は、特に制限されるものではない。配向性を有する架橋ポリオールエステルは、一般式(1)、すなわち一般式(3)で表される構造単位を有する分子鎖の少なくとも二分子以上を互いに架橋させることで得ることができる。但し、分子鎖の数は、冷凍機油を適度な高粘度とし冷凍機油の放熱性を損なわないようにする観点からは、3分子以下が好ましく、2分子がより好ましい。
 架橋ポリオールエステルを構成する架橋の数は、特に制限されるものではない。配向性を有する架橋ポリオールエステルは、少なくとも一つの多官能基(一般式(5)で表される構造単位など)によって架橋されていれば得ることができる。また、各分子鎖における架橋のの結合位置は、主鎖の中間部であってもよいし、主鎖の末端であってもよい。架橋の数は、架橋ポリオールエステルの配向性を高める観点からは、2以上あることが好ましく、一対の分子鎖間に2以上あることがより好ましい。架橋の数が2以上あると、架橋ポリオールエステルは、二次元的な広がりを持った平面的な分子構造をより安定にとるようになる。そのため、外力が加えられた場合には、分子同士で並列状に配向して分子間でより強く相互作用することができる。
 架橋ポリオールエステルは、鎖状の分子鎖の末端に、直鎖状若しくは分枝状のアルカノイル基、又は、直鎖状若しくは分枝状のアルキル基を有することが好ましい。鎖状の分子鎖の末端にアルカノイル基、すなわちO末端(一般式(3)において*で示す)においてはアルカノイル基、C末端(一般式(3)及び(4)において**で示す)においてはアルカノイルオキシ基が備えられ、或いは、鎖状の分子鎖の末端にアルキル基、すなわちO末端においてはアルキル基、C末端においてはアルコキシ基が備えられると、ジフルオロメタンが電気的に陽性(+)を帯びた水素原子とより相互作用し易くなる。また、架橋ポリオールエステルの粘度もより高められる。
 架橋ポリオールエステルは、繰り返し数(n)が3以上である場合には、鎖状の分子鎖の末端に、直鎖状若しくは分枝状のアルキル基を有していてもよい。鎖状の分子鎖の末端にアルキル基、すなわちO末端においてはアルキル基、C末端においてはアルコキシ基が備えられている分子鎖は、架橋ポリオールエステルの合成時において、重合方向の制御を行いつつ得ることができる点でさらに有利である。
 架橋ポリオールエステルとしては、下記一般式(6)[但し、式中において、R1、R2、R3及びR4は、それぞれ独立して直鎖状若しくは分枝状のアルキル基を表し、R5、R6、R7及びR8は、それぞれ独立して水素原子、又は、直鎖状若しくは分枝状のアルキル基、又は、直鎖状若しくは分枝状のアルカノイル基を表し、Xは、直鎖状若しくは分枝状のアルカンジイル基若しくは二重結合を表し、p、q、r及びsは、それぞれ独立して0以上の整数を表し、p及びqの少なくとも一方は3以上の整数であり、r及びsの少なくとも一方は3以上の整数である。]で表される化合物がより好ましい。
 この化合物は、一般式(3)で表される構造単位と、この構造単位に重合する一般式(4)で表される被架橋構造単位とをそれぞれ有する二本の分子鎖同士が、一般式(4)で表される被架橋構造単位を介して架橋されたものである。一般式(4)で表される被架橋構造単位には、一般式(5)で表される二官能基が一基結合することによって架橋が形成されている。また、被架橋構造単位の未架橋基には、アルカノイルオキシ基が結合している。このような化合物は、ジフルオロメタンとの良好な相溶性と適切な高粘度とを有していながら熱容量も抑えられている点で有利である。
Figure JPOXMLDOC01-appb-C000011
 以上の各一般式における繰り返し数(n)は、環状ポリオールエステルにおいては、2以上の整数であり、好ましくは3以上の整数であり、より好ましくは4以上の整数である。一方、架橋ポリオールエステルにおいては、3以上の整数であり、好ましくは4以上の整数である。繰り返し数(n)が増すと、配向する多数の側鎖により、ポリオールエステルの粘度をより高くすることができる。一方、繰り返し数(n)が過大であると、冷凍機油の粘性が適切な水準を逸脱したり、分子同士の配向が実現され難くなり得る。そのため、nの上限は、10以下とすることが好ましく、8以下とすることがより好ましく、6以下とすることがさらに好ましい。
 各一般式におけるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基等の直鎖状のアルキル基や、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、1-メチルブチル基、2-メチルブチル基、1-エチルプロピル基、1,2-ジメチルプロピル基、ネオペンチル基、tert-ペンチル基等の分岐状のアルキル基等が挙げられる。
 各一般式におけるアルカノイル基としては、例えば、メタノイル基(ホルミル基)、エタノイル基(アセチル基)、n-プロパノイル基(プロピオニル基)、n-ブタノイル基、n-ペンタノイル基等の直鎖状のアルカノイル基や、イソプロパノイル基、イソブタノイル基、sec-ブタノイル基、tert-ブタノイル基、イソペンタノイル基、1-メチルブタノイル基、2-メチルブタノイル基、1-エチルプロパノイル基、1,2-ジメチルプロパノイル基、ネオペンタノイル基、tert-ペンタノイル基等の分岐状のアルカノイル基等が挙げられる。
 各一般式におけるアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、n-ペントキシ基等の直鎖状のアルコキシ基や、イソプロポキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、イソペントキシ基、1-メチルブトキシ基、2-メチルブトキシ基、1-エチルプロポキシ基、1,2-ジメチルプロポキシ基、ネオペントキシ基、tert-ペントキシ基等の分岐状のアルコキシ基等が挙げられる。
 各一般式におけるアルカノイルオキシ基としては、例えば、メタノイルオキシ基、エタノイルオキシ基、n-プロパノイルオキシ基、n-ブタノイルオキシ基、n-ペンタノイルオキシ基等の直鎖状のアルカノイルオキシ基や、イソプロパノイルオキシ基、イソブタノイルオキシ基、sec-ブタノイルオキシ基、tert-ブタノイルオキシ基、イソペンタノイルオキシ基、1-メチルブタノイルオキシ基、2-メチルブタノイルオキシ基、1-エチルプロパノイルオキシ基、1,2-ジメチルプロパノイルオキシ基、ネオペンタノイルオキシ基、tert-ペンタノイルオキシ基等の分岐状のアルカノイルオキシ基等が挙げられる。
 各一般式におけるアルカンジイル基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基等の直鎖状のアルカンジイル基や、プロピレン基、プロパン-2,2-ジイル基、ブタン-1,2-ジイル基、ブタン-1,3-ジイル基、2-メチルプロパン-1,3-ジイル基等の分岐状のアルカンジイル基等が挙げられる。
 以上の各一般式において、R1及びR2は、炭素数が1以上5以下のアルキル基であることが好ましく、炭素数が3以上5以下のアルキル基であることがより好ましい。炭素数が1以上5以下のアルキル基であると、ポリオールエステルはジフルオロメタンとの相溶性と高粘度とを良好に兼ね備えるものとなる。また、ポリオールエステルの熱容量が過大にならないため、冷凍機油の放熱性を良好にすることができる。なお、R1及びR2は、同一であっても、互いに異なっていてもよい。
 各一般式において、R1及びR2は、直鎖状のアルキル基と分枝状のアルキル基との混成であることが好ましく、分枝状のアルキル基であることがより好ましい。分枝状のアルキル基は、低炭素数であっても、ジフルオロメタンや他のポリオールエステルとの間で相互作用を形成し易い。そのため、ポリオールエステルについて、側鎖の長さを抑えつつ、適切な高粘度と良好な相溶性とを両立させるのに適している。また、二級炭素原子に結合している水素原子に加えて、三級炭素原子に結合している水素原子も、ジフルオロメタンに配位させることができる。直鎖状のアルキル基と分枝状のアルキル基との混成は適宜の比率であってよく、例えば、分枝状のアルキル基を50%以上のモル比に置換させることができる。
 各一般式におけるアルコキシ基、アルカノイル基及びアルカノイルオキシ基は、それぞれ独立して、炭素数が1以上5以下であることが好ましく、炭素数が3以上5以下であることがより好ましい。なお、炭素数は、置換基の種類毎に同一であってもよいし、互いに異なっていてもよい。また、炭素数は、置換基の結合位置間で同一であってもよいし、互いに異なっていてもよい。炭素数が1以上5以下であると、アルキル基においてと同様の効果を得ることができる。
 各一般式におけるアルコキシ基、アルカノイル基及びアルカノイルオキシ基は、直鎖状と分枝状との混成であることが好ましく、分枝状であることがより好ましい。なお、置換基の種類毎に直鎖状及び分枝状のいずれかであってもよいし、同一種類の置換基について直鎖状と分枝状との混成であってもよい。置換基が分枝状であると、アルキル基においてと同様の効果を得ることができる。
 環状ポリオールエステルの具体例としては、例えば、以下に示す化合物(2-1)~化合物(2-9)が挙げられる。但し、環状ポリオールエステルは、これらの化合物に制限されるものではない。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 架橋ポリオールエステルの具体例としては、例えば、以下に示す化合物(6-1)~化合物(6-6)が挙げられる。但し、架橋ポリオールエステルは、これらの化合物に制限されるものではない。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 環状ポリオールエステル及び架橋ポリオールエステルは、公知の出発物質及び合成方法を用いて得ることができる。例えば、ペンタエリスリトールを、必要に応じてトリメチロールプロパン、一価アルコール等と共に、縮重合させることによって、主鎖が環化した環状ポリオールや主鎖が直鎖状の鎖状ポリオールを得ることができる。次いで、環状ポリオールを脂肪酸等でエステル化することによって、環状ポリオールエステルが得られる。また、鎖状ポリオールを、ジカルボン酸、ジカルボン酸ハロゲン化物、ジエステル、酸無水物等によって架橋すると共に、架橋反応すること無く残存している未架橋基を脂肪酸等でエステル化することによって、架橋ポリオールエステルが得られる。
 冷凍機油の基油であるポリオールエステルは、環状ポリオールエステルとして、重合度や置換基が異なる複数種類の化合物を含んでいてもよいし、架橋ポリオールエステルとして、重合度や置換基や架橋構造が異なる複数種類の化合物を含んでいてもよい。但し、ポリオールエステルは、環状ポリオールエステル及び架橋ポリオールエステルのいずれか一方のみからなることがより好ましく、重合度、置換基及び架橋構造のうち少なくともいずれかが同一の化合物からなることがさらに好ましく、単一種類の化合物からなることが特に好ましい。ポリオールエステル同士の分子構造が類似していると、冷凍機油が外力を受けた場合に、ポリオールエステルの分子同士が互いに同軸方向に配向し易くなる。そのため、冷凍機油は、せん断応力に対する抵抗力が増し、より良好な高粘度を示すことができる。冷凍機油の40℃における動粘度は、30mm/s以上100mm/s以下であることが好ましい。
 冷凍機油は、基油としてのポリオールエステルと共に、安定剤、難燃剤、極圧添加剤、摩耗防止剤、消泡剤、酸捕捉剤等の他の成分を含んでいてもよい。安定剤としては、例えば、ジエン系化合物類、ホスフェート類、フェノール化合物類、エポキシド類等が挙げられる。難燃剤としては、例えば、トリ(2‐クロロエチル)ホスフェート、(クロロプロピル)ホスフェート、トリ(2,3‐ジブロモプロピル)ホスフェート、トリ(1,3‐ジクロロプロピル)ホスフェート、リン酸二アンモニウム、ハロゲン化芳香族化合物、酸化アンチモン、アルミニウム三水和物、ポリ塩化ビニル、フッ素化ヨードカーボン、フッ素化ブロモカーボン、トリフルオロヨードメタン、ペルフルオロアルキルアミン類、ブロモフルオロアルキルアミン類等が挙げられる。
 以上、本発明の一実施形態に係る冷凍空調用圧縮機及び冷凍空調装置について説明したが、前記の冷凍機油は、前記のポリオールエステルと共に、他の種類の化合物を冷凍機油として含んでいてもよい。他の化合物としては、例えば、鉱油、シリコーン油、ポリアルキルベンゼン類、ポリアルキレングリコール類、ポリアルキレングリコールエステル類、ポリビニルエーテル類、ポリアルファオレフィン類等が挙げられる。但し、前記のポリオールエステルが基油として含まれていることが好ましく、50質量%以上含まれていることが好ましい。
 また、本発明の冷凍空調装置としては、空気調和機に制限されるものではなく、冷蔵庫、ヒートポンプ式給湯器等の他の冷凍サイクル装置であってもよい。また、本発明の圧縮機としては、スクロール型に制限されるものではなく、ピストン型、ロータリ型、スクリュ型、ダイアフラム型等であってもよい。
 1   室外機
 2   室外熱交換器
 3   室内機
 4   室内熱交換器
 5   圧縮機(冷凍空調用圧縮機)
 6   膨張弁
 7   配管
 8   貫流ファン
 9   プロペラファン
 10  四方弁
 11  旋回スクロール
 11c 旋回軸受
 12  固定スクロール
 12c 吐出口
 12d 吸入口
 13  電動機
 14  密閉容器
 14a 吸込パイプ
 14b 吐出パイプ
 14c 吐出圧室
 15  液溜
 15a 吸引管
 17  フレーム
 17a 主軸受
 18  クランク軸
 18a 給油通路
 19  下軸受
 20  圧縮室
 21  オルダムリング
 100 空気調和機(冷凍空調装置)

Claims (9)

  1.  下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    [但し、式中において、R1及びR2は、それぞれ独立して直鎖状若しくは分枝状のアルキル基を表し、nは、2以上の整数を表す。]
    で表される構造単位を有するポリオールエステルを含んでなる冷凍機油と、ジフルオロメタンを含む冷媒とが封入され、
     前記ポリオールエステルは、前記構造単位を有する分子鎖が環状に重合してなる環状ポリオールエステル、及び、前記構造単位を有する分子鎖同士が前記構造単位に重合している被架橋構造単位を介して互いに架橋されてなり、前記構造単位におけるnが3以上である架橋ポリオールエステルのいずれか一方のみ又は両方からなることを特徴とする冷凍空調用圧縮機。
  2.  前記環状ポリオールエステルは、下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    [但し、式中において、R1及びR2は、それぞれ独立して直鎖状若しくは分枝状のアルキル基を表し、nは、2以上の整数を表す。]で表され、
     前記架橋ポリオールエステルは、下記一般式(3)、(4)及び(5)
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    [但し、式中において、R1及びR2は、それぞれ独立して直鎖状若しくは分枝状のアルキル基を表し、*は、**との結合位置、水素原子の結合位置、直鎖状若しくは分枝状のアルキル基の結合位置、又は、直鎖状若しくは分枝状のアルカノイル基の結合位置を表し、**は、*又は***との結合位置、ヒドロキシ基の結合位置、直鎖状若しくは分枝状のアルコキシ基の結合位置、又は、直鎖状若しくは分枝状のアルカノイルオキシ基の結合位置を表し、Xは、直鎖状若しくは分枝状のアルカンジイル基若しくは二重結合を表し、***は、**との結合位置を表し、nは、3以上の整数を表す。]で表される構造単位のそれぞれを有することを特徴とする請求項1に記載の冷凍空調用圧縮機。
  3.  前記アルキル基が、炭素数が1以上5以下のアルキル基であることを特徴とする請求項1又は請求項2に記載の冷凍空調用圧縮機。
  4.  前記アルキル基が、炭素数が3以上5以下のアルキル基であることを特徴とする請求項1又は請求項2に記載の冷凍空調用圧縮機。
  5.  前記アルキル基が、分枝状のアルキル基であることを特徴とする請求項1又は請求項2に記載の冷凍空調用圧縮機。
  6.  前記架橋ポリオールエステルは、前記分子鎖の末端に直鎖状若しくは分枝状のアルキル基を有することを特徴とする請求項1又は請求項2に記載の冷凍空調用圧縮機。
  7.  前記ポリオールエステルが、前記環状ポリオールエステル及び前記架橋ポリオールエステルのいずれか一方のみからなることを特徴とする請求項1又は請求項2に記載の冷凍空調用圧縮機。
  8.  前記冷媒が、ジフルオロメタンのみからなることを特徴とする請求項1又は請求項2に記載の冷凍空調用圧縮機。
  9.  請求項1又は請求項2に記載の冷凍空調用圧縮機を備えることを特徴とする冷凍空調装置。
PCT/JP2015/058276 2015-03-19 2015-03-19 冷凍空調用圧縮機及び冷凍空調装置 WO2016147385A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/539,171 US10167438B2 (en) 2015-03-19 2015-03-19 Compressor for refrigeration and air conditioning, and refrigeration and air conditioning device
JP2017505979A JP6343391B2 (ja) 2015-03-19 2015-03-19 冷凍空調用圧縮機及び冷凍空調装置
PCT/JP2015/058276 WO2016147385A1 (ja) 2015-03-19 2015-03-19 冷凍空調用圧縮機及び冷凍空調装置
EP15885481.0A EP3272838B1 (en) 2015-03-19 2015-03-19 Compressor for refrigeration and air conditioning, and refrigeration and air conditioning device
CN201580067976.3A CN107109277B (zh) 2015-03-19 2015-03-19 制冷空调用压缩机和制冷空调装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/058276 WO2016147385A1 (ja) 2015-03-19 2015-03-19 冷凍空調用圧縮機及び冷凍空調装置

Publications (1)

Publication Number Publication Date
WO2016147385A1 true WO2016147385A1 (ja) 2016-09-22

Family

ID=56918748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058276 WO2016147385A1 (ja) 2015-03-19 2015-03-19 冷凍空調用圧縮機及び冷凍空調装置

Country Status (5)

Country Link
US (1) US10167438B2 (ja)
EP (1) EP3272838B1 (ja)
JP (1) JP6343391B2 (ja)
CN (1) CN107109277B (ja)
WO (1) WO2016147385A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11162705B2 (en) 2019-08-29 2021-11-02 Hitachi-Johnson Controls Air Conditioning, Inc Refrigeration cycle control
WO2022130655A1 (ja) * 2020-12-14 2022-06-23 三菱電機株式会社 鉄道車両用空調装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3885690B1 (en) * 2018-11-22 2022-10-26 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
US11493242B2 (en) * 2018-11-27 2022-11-08 Aktiebolaget Skf Cooling system for a refrigerant lubricated bearing assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195630A (ja) * 2010-03-17 2011-10-06 Jx Nippon Oil & Energy Corp 冷凍機油および冷凍機用作動流体組成物
JP2011195631A (ja) * 2010-03-17 2011-10-06 Jx Nippon Oil & Energy Corp 冷凍機油および冷凍機用作動流体組成物
JP2013076533A (ja) * 2011-09-30 2013-04-25 Hitachi Appliances Inc 冷凍空調用圧縮機及び冷凍空調装置
JP2013170255A (ja) * 2012-02-22 2013-09-02 Jx Nippon Oil & Energy Corp 冷凍機油組成物及びその製造方法、冷凍機用作動流体組成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3378527A (en) * 1966-09-08 1968-04-16 Leslie C. Case Ester ether-acetal copolymers and process of preparing same
GB9221217D0 (en) 1992-10-09 1992-11-25 Ici Plc Working fluid composition
GB9917537D0 (en) * 1999-07-26 1999-09-29 Unilever Plc Fabric conditioning concentrate
US8419968B2 (en) 2008-11-13 2013-04-16 Chemtura Corporation Lubricants for refrigeration systems
KR20110111285A (ko) * 2009-01-16 2011-10-10 켐트라 코포레이션 냉각 및 공기 조절 시스템을 위한 이산화 탄소계 작동 유체
EP2382288B1 (en) * 2009-01-26 2017-03-01 Chemtura Corporation Production of polyol ester lubricants for refrigeration systems
US8865015B2 (en) * 2010-01-21 2014-10-21 Chemtura Corporation Production of polyol ester lubricants for refrigeration systems
BR112012022734A2 (pt) * 2010-04-06 2018-05-22 Chemtura Corp fluido de trabalho para um dispositivo de transferência de calor e processo para preparação de uma composição lubrificante de poliol éster
US9133380B2 (en) * 2012-02-15 2015-09-15 Chemtura Corporation Polyester lubricant for working fluids comprising difluoromethane
US8691109B2 (en) * 2012-02-15 2014-04-08 Chemtura Corporation Working fluids comprising difluoromethane and di-pentaerythritol ester
EP2930228B1 (en) 2012-12-05 2019-08-07 JX Nippon Oil & Energy Corporation Cooling-equipment working-fluid composition
CN104093822B (zh) * 2013-02-05 2016-11-16 科聚亚公司 含有烃制冷剂的制冷油和组合物
EP3183282B1 (de) * 2014-08-18 2018-08-15 Basf Se Polyestermodifizierte polybutadienole zur herstellung von polyurethan-elastomeren und thermoplastischen polyurethanen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195630A (ja) * 2010-03-17 2011-10-06 Jx Nippon Oil & Energy Corp 冷凍機油および冷凍機用作動流体組成物
JP2011195631A (ja) * 2010-03-17 2011-10-06 Jx Nippon Oil & Energy Corp 冷凍機油および冷凍機用作動流体組成物
JP2013076533A (ja) * 2011-09-30 2013-04-25 Hitachi Appliances Inc 冷凍空調用圧縮機及び冷凍空調装置
JP2013170255A (ja) * 2012-02-22 2013-09-02 Jx Nippon Oil & Energy Corp 冷凍機油組成物及びその製造方法、冷凍機用作動流体組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3272838A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11162705B2 (en) 2019-08-29 2021-11-02 Hitachi-Johnson Controls Air Conditioning, Inc Refrigeration cycle control
WO2022130655A1 (ja) * 2020-12-14 2022-06-23 三菱電機株式会社 鉄道車両用空調装置

Also Published As

Publication number Publication date
CN107109277A (zh) 2017-08-29
EP3272838A4 (en) 2018-10-31
EP3272838B1 (en) 2022-05-11
JP6343391B2 (ja) 2018-06-13
JPWO2016147385A1 (ja) 2017-07-27
EP3272838A1 (en) 2018-01-24
CN107109277B (zh) 2019-10-25
US10167438B2 (en) 2019-01-01
US20170355921A1 (en) 2017-12-14

Similar Documents

Publication Publication Date Title
US20230097829A1 (en) Refrigeration cycle apparatus
US20200333054A1 (en) Compressor
EP2267311B1 (en) Freezing device
JP2020143292A5 (ja)
EP2267309B1 (en) Refrigerating apparatus
CN109072895B (zh) 电动压缩机及冷冻空调装置
JP6343391B2 (ja) 冷凍空調用圧縮機及び冷凍空調装置
JP2012031239A (ja) 冷凍空調用圧縮機及び冷凍空調装置
CN104145006A (zh) 冷冻机用工作流体组合物、冷冻机油以及其制造方法
JP5339788B2 (ja) 圧縮機および冷凍サイクル装置
KR20110023764A (ko) 2,3,3,3-테트라플루오로프로펜을 이용한 냉동 공조 장치
JP2023085275A (ja) トリフルオロエチレン系組成物とその使用
JP6450896B1 (ja) 冷媒組成物及びこれを用いた冷凍サイクル装置
CN111895672B (zh) 冷冻机、冷冻机用工作流体及冷冻机油
JP2010031728A (ja) 冷媒圧縮機
JP2020514512A (ja) テトラフルオロプロペンをベースにした組成物
WO2015093183A1 (ja) 空調装置
JP2003336916A (ja) 冷凍サイクル及びヒートポンプ式給湯機
WO2020031801A1 (ja) 密閉型電動圧縮機及びこれを用いた冷凍空調装置
JP2000129275A (ja) 冷凍・空調機用作動媒体組成物及び該組成物を用いた冷凍・空調装置
JP6522345B2 (ja) 冷凍装置及び密閉型電動圧縮機
WO2020050022A1 (ja) 電動圧縮機及びこれを用いた冷凍空調装置
JP2016023902A (ja) 空気調和機
CN113789156B (zh) 一种传热组合物及其应用与传热系统
WO2015140918A1 (ja) 冷媒装置及び冷媒装置用圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885481

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505979

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15539171

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015885481

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE