WO2016146869A1 - Sistema para el control y regulación de la iluminación de un tramo de un túnel - Google Patents

Sistema para el control y regulación de la iluminación de un tramo de un túnel Download PDF

Info

Publication number
WO2016146869A1
WO2016146869A1 PCT/ES2016/070154 ES2016070154W WO2016146869A1 WO 2016146869 A1 WO2016146869 A1 WO 2016146869A1 ES 2016070154 W ES2016070154 W ES 2016070154W WO 2016146869 A1 WO2016146869 A1 WO 2016146869A1
Authority
WO
WIPO (PCT)
Prior art keywords
tunnel
lighting
control unit
parameters
detect
Prior art date
Application number
PCT/ES2016/070154
Other languages
English (en)
French (fr)
Inventor
Antonio MOROLLON PEREZ
Jesus CAMPUZANO RIOS
Vicente VILANOVA MARTINEZ-FALERO
Original Assignee
Mantenimiento De Infraestructuras, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mantenimiento De Infraestructuras, S.A. filed Critical Mantenimiento De Infraestructuras, S.A.
Publication of WO2016146869A1 publication Critical patent/WO2016146869A1/es

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/165Controlling the light source following a pre-assigned programmed sequence; Logic control [LC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light

Definitions

  • the invention is applied in the field of lighting and more specifically in that of tunnel lighting. It refers particularly to systems to control and regulate the lighting inside the tunnels depending on the existing conditions, among which may be exterior lighting, weather, or traffic flow, respecting the requirements of the applicable regulations,
  • the lighting during the day must be dimmed so as to ensure sufficient vision for possible obstacles over the coffeepot, even if there is a first abrupt reduction of the existing and external lighting levels, but that is acceptable.
  • the levels of are gradually reduced. illumination.
  • The. transition zone can have a variable length depending on the speed of circulation, the installation of the lighting must be designed to alleviate its adaptation effect, continuing with a gradual decrease in the lighting levels until completion of the l: process of adaptation of the eye to reach the interior area, where a level lighting is provided lighting constant.
  • the lighting In the exit zone, with a length approximately equal to fa safety distance, the lighting should be progressively reinforced by raising the lighting levels, so as to facilitate the drivers .
  • the two-way tunnels! is the lighting in the exit zone will be identical or similar to the entrance area.
  • safety distance also known as stopping distance
  • the distance traveled by a vehicle forced to stop as quickly as possible measured from its location at the time the object that motivates the arrest appears, understand the distance traveled during the times of perception, reaction and braking and therefore is directly proportional to the speed at which the vehicle circulates and also include other factors such as the condition of the road - wet, dry, ⁇ te.- or the state and type of vehicle.
  • the threshold zone is key for the traffic inside the tunnel, since it is where the contrast has to be reduced more sharply, but optimally, by means of the appropriate luminaires; In this area you have to keep a quantity of candles per square meter and luxes sufficient in relation to the outside, since if it is lower at the beginning you will not be able to observe anything of what is inside. In the next zone, the transition zone, there is a new reduction to finally adapt to the interior area. Obviously, towards the exit, the luminosity must be increased again so as not to have glare at the end of the tunnel.
  • the entrance area which includes threshold and transition, is the one that requires the most electrical consumption and, in turn, is the one that has the greatest variations since they are mainly those that need a greater adaptation of the initial lighting of the tunnel to the external lighting conditions, which on the other hand vary according to the time of day and the time of year.
  • the lighting regulation at the entrances of the tunnels is based on the information of a iuxometer placed at the entrance.
  • U luxómeiro is an analog sensor device that measures the lightness, in lux, of light environmental, and ia converts into a current loop signal; but this sensor does not represent the sensation of the human eye, but simply offers the value of the environmental illuminance received at a specific point.
  • This information of the Iuxometers is sometimes complemented with that provided by astronomical clocks to differentiate between day and night throughout the year. For each of the steps or lighting levels, the different luminaire circuits previously defined are switched on. With this system, it is not necessary to include any control device for management, such as PLG type Programmable Logic Controller or in English Prc-grammable Logic Controller).
  • PLC-based solutions are already known for the energy management of facilities such as buildings, open-cast sections or tunnels and allows automating electromechanical processes. Unlike general-purpose computers, the PLC is designed for multiple input and output signals , extended temperature ranges, immunity to electrical noise and resistance to vibration and impact.
  • the programs or logics for the system operation control, for example a lighting system, are usually stored in backup batteries or in non-volatile memories.
  • the present invention relates in a differentiating way, in a first aspect, to a system for the control and regulation of a lighting system in one or several sections of a tunnel comprising at least one illuminance device arranged to detect the luminance parameters in the threshold zone of the tunnel, at least one device arranged to detect the parameters of the meteorological conditions in and outside the tunnel, at least one device arranged to detect the number parameter. of vehicles that access the tunnel per unit of time, at least one iuxó device . subway. arranged to detect the luminance parameters inside the tunnel and a control unit adapted to interrogate and collect the parameters of the previous devices.
  • control unit is connected and arranged to act through at least one output on a lighting system of said section of the tunnel and where said control unit was at least two levels of adaptation of the lighting of the luminaires of said lighting system for each of the lighting zones of said tunnel section.
  • the system of the present invention improves the adaptation and automation of lighting control in tunnels, taking as input variables those supplied by Sos equipment installed in the vicinity of the mouths, mainly at the entrance.
  • luminandmet ' fos to capture exterior lighting allows a better measurement of what the human eye perceives, unlike the lux meters, thus offering more precise interior lighting regulation.
  • Figure 1 shows, schematically, the different lighting zones and the degree of illumination that can typically be found in a tunnel, as well as the relation of the safety displacement, mainly with the threshold zone and the transition zone.
  • Figure 2 shows two graphs with the comparison, on the one hand of the situation of the adaptation of the illuminance in the current systems, with few lighting levels, and on the other the situation achievable with the proposed invention, where the lighting levels can being many more and therefore it is possible to act more precisely on the different areas of the tunnel segment with the consequent energy savings.
  • Figure 3 shows, schematically, the architecture of both the elements that are part of the system of the invention and those with which it relates.
  • the present invention focuses on improving the adaptation and automation of the establishment of the lighting of the tunnels, taking as input variables for such adaptation those supplied by one or several devices installed in the vicinity of the tunnel mouths , mainly input.
  • the equipment or devices of the system responsible for collecting the parameters of the exterior of the tunnel for the control and adaptation of the interior light are the following: a) Luminancimeters (200). Such devices allow to obtain measurements of the luminance level at the tunnel entrance, mainly in the threshold zone of a tunnel. In the proposed system there must be at least one, although there may be more and more installed. preferably two, which will allow redundancy in case of failure of one of the devices.
  • an iurainancimeter (200) with a measuring range (vision cone) preferably of 20 degrees must be used, thus complying with the regulatory limitations, positioned at the stopping or safety distance before the entry point of! tunnel
  • the luci antro 200 is: located 4 or 5 meters high on the side of the road. It can go in a separate staff or on one of an outdoor luminaire. If two uminancimers are placed; It is usual to place one on each side of the tunnel entrance road.
  • the umjnane ⁇ rnetro (200) in the usual way, is composed of the optics, necessary for the measurement of the 20 degree cone, a silicon photodetector with a spectral curve approximated to that of the eye, signal conditioning electronics with sensitivity and preferably a twelve-bit analog-digital converter to transmit the information collected in the form of values or parameters.
  • the different elements found in the vicinity of the tunnels have different iumlnaneias: trees, sky, road, rocks, buildings, walls, etc. Depending on the percentage of each of them within the vision cone with 20 degrees, the driver's sensation will be different and, therefore, the illumination at the tunnel entrance will also vary.
  • This device generally obtains instantaneous values of the Iuminancia,. although it may be arranged to obtain an average value of this magnitude in a given period of time, which allows to avoid oscillations in the lighting due to alterations in the measure resulting from transient external conditions such as reflections, clouds that momentarily hide the sun, etc.
  • Weather station with roadway sensor (300) This type of device is arranged to detect the parameters of the weather conditions in e! tunnel exterior
  • the system proposed by this invention will have at least one located outside the tunnel entrance. It is very important to be able to detect and collect the parameters with the meteorological conditions of the mouths of the tunnel, mainly in the case of wet roads, since it will affect the stopping distance or safety and, therefore, the length of the zones of threshold and transition.
  • meteorological stations may be arranged to collect, among others, parameters of ambient temperature, ambient humidity !, wind speed and direction, state of the road - wet, wet, dry, with ice, with snow, etc.-, road temperature, water sheet size, ice or level, solar radiation level, atmospheric pressure, fog, etc.
  • this device (300) will provide the system with minimum parameters that indicate if there is rain, fog, wind or frost at the road level.
  • Traffic capacity station (400) This type of device is ready to count or detect e! number of vehicles that pass through a specific point, in this specific case, ios that access the tunnel. You can count this capacity per unit of time.
  • the system will have at least one such device (400) located in e! outside near the tunnel entrance.
  • these types of devices (400) also allow differentiating the type of vehicle, for example heavy vehicles or light vehicles, or the average speed of passage thereof.
  • the most common models of capacity stations (400) are usually implemented from a pair of electromagnetic turns installed in each lane of the road, which detect the passage and presence of the vehicle, calculating a series of data of interest such as the weight, length or speed at which the vehicles circulate. Radar type devices are also used on porches.
  • a) Luxometers ⁇ 500 ⁇ It is an analog sensor device arranged to measure the luminance. lux- of light. environments, and converts it into a current loop signal.
  • this device does not represent ed -Feeling human eye, simply provides the 'value of environmental lumlnaftc ⁇ a and can check if ja illumination system arranged Ei in. That moment is correct and complies with the regulations. It also allows, to release alarms when the level of lighting received does not match what it should have at that time.
  • a control unit (100) adapted to request and. collect the parameters detected from the previous devices, that is, by means of a meter (200. ⁇ , weather stations (300), capacity stations (400) and üxdmeters (500). Said control unit (100) is connected to a system lighting d a section of the tunnel (900), although it can be used to control everything: the tunnel.
  • the system proposed in this invention will have at least one unit of this type (100) per electrical control panel.
  • control unit (100) for the proposed invention, such as a general purpose computer with a controllers software, but in a preferred embodiment the Implementation is through a PLC (Programmer Logic Controller), since it is possible to save time in its deployment, having, in general, a small size and low cost maintenance.
  • PLC Protein Logic Controller
  • the parameters collection elements can be implemented with different communication interfaces, both analog and digital. For example, it is normal for ios luminance meters (200) to have one of these interfaces, but preferably for this invention, the lumjnane ⁇ etro (200) will use digital interface via transmission via RS-485 with the control unit ⁇ 100 ⁇ . This same type of interface may be valid, in a preferred embodiment, for communication between the capacity control station (400) and the control unit (100) type PLC.
  • the weather stations (300) usually have Ethernet interfaces and a possible piemeniacton . of this network with the serious control unit through a mobile network communication (GPRS, 3G, LTE, etc.), although a wired Ethernet could also be established.
  • the luxomer (500) although it can also have a digital interface
  • the preferred embodiment, of this invention has a - 4-20 mA current loop analog interface.
  • control unit (100) will be arranged to interrogate each of the previous devices - ium inane ⁇ meters (200), weather stations (300), capacity control stations - (400) or luxometers (500) - on their measurements, both instantaneous and average or to receive them directly, mainly in case of devices with analog interface.
  • Said control unit is programmed to analyze said parameters and to act, through one or several analog (1 10) and / or digital (120) outputs on the circuits of a lighting system of a section of a tunnel (900 ) or all the tunnel.
  • the analog outputs (110) will be in the range of 4 ⁇ 20mA and there may be at least 6 outputs while at least 12 digital outputs (120) will be counted.
  • luminaires such as for VSAP (high pressure sodium vapor) or LED type luminaires.
  • LED type luminaires usually support analogue regulation, for example, in a range from 0 to 10, while other luminaires only support a digital value, turn on or off, but several luminaires of a system can be regulated off or on -One yes and you'll hear no- based on superimposing circuits.
  • the control unit (100) or PLC optionally, will also have communication with a monitoring system based on SCADA (700) (Supervision, Control and Acquisition of. Data or acronym of Supervisory Control And Data Acquisition) and / or with a web server (800) that displays the information in real time and can operate on it the proposed system, for example, for maintenance tasks.
  • SCADA Supervisory Control And Data Acquisition
  • the interrogation period for the collection of parameters may vary depending on the characteristics of the tunnel and even: on the basis of the measures previously analyzed. D this way the system can autoatiapt. As an example, requiring parameters every 15 minutes would be a good, initial option.
  • the unit 'control (1 0) is programmed to calculate the' iuminancia required for each ios sections of tunnel segment, mainly in the zone threshold and in the transaction and set the values of output, analog (110) and / or digital (1.20), to act on the circuits of the lighting system (80.0) to which the unit of: centered !.
  • the lighting at the entrance to the tunnel is a function of the lighting outside and the sensation in the driver's eye when approaching the tunnel. This value is what detects e !.
  • Illuminator (200) is programmed to calculate the' iuminancia required for each ios sections of tunnel segment, mainly in the zone threshold and in the transaction and set the values of output, analog (110) and / or digital (1.20), to act on the circuits of the lighting system (80.0) to which the unit of: centered !.
  • the lighting at the entrance to the tunnel is a function of the lighting outside and the sensation in the driver's eye when approaching the tunnel. This value is what detects
  • the control unit (100) In the case of : ios parameters received from the luminaneimeter ⁇ 200), the control unit (100) usually reads the average luminaneias, which avoids unwanted changes in the lighting due to momentary variations of the environmental conditions. The higher the value of the light meter (200), the more lighting will be needed at the beginning of the tunnel to facilitate the adaptation of the eye. human, that is, greater activation of outputs and much greater illumination; and vice versa, the lower value collected from the luminance meter (200) will be operated, by the unit of. control (100), requiring less lighting to the lighting system (900). This required or calculated lighting by the control unit (100) results in the superposition of circuits on the ios that must be acted to reach the level of lighting that is needed in each case in the Lighting system (900).
  • the system will have two luminanemeters (200) and it will be checked »by the control unit (100), in each interrogation cycle, if at least one of said luminaries (100) is operative to be able to apply the analysis or calculation on the parameters received automatically.
  • the control unit applies in its calculations a reduction factor to the Initial illumination calculated with the information of the luminanemeters (200).
  • the values of the meteorological station (400) will affect in case of rain, fog, etc., also causing it to influence the lurninance calculations and therefore the increase or reduction of lighting.
  • a wet road situation will usually directly influence the speed in the tunnel and may even involve the temporary modification of the maximum speed, which is what marks and stopping distance; that logically with wet soil increases, and that it is the same distance as the length in which. the threshold and transition lighting must be prolonged. That is why the road is so important, wet, so that the length with threshold and transition lighting, the highest of the largest tunnel power, affect the shortest length and, therefore, the lowest consumption occurs.
  • Said modification or adaptation of the tunnel speed depending on the weather conditions can occur through the operation of the control unit (100) acting on variable signaling at the tunnel entrance, to decrease it to the point where keep the same stopping distance that existed with dry pavement.
  • the values provided by the weather station (300) received by the control unit (100) will affect the calculations of the required illuminations in each of the areas of the tune segment! to the extent that they affect the. maximum speed of the vehicles and therefore to the variable of the distance of safety or stop. This calculation therefore not only influences the amount of lighting but also the length of the areas to be illuminated, mainly in the transit zone; the longer the stop required, the greater the transit zone.
  • control unit (100) will act on the lighting system (900) increasing the size of the areas of the tunnel segment on which it acts when the parameters of the weather station indicate that the road is not dry outside; mainly about the transition zone. It will also act in the case of wet roads, if so determined, activating a variable signaling for the regulation of the speed of the vehicles that access the tunnel
  • the outputs (110, 120 ⁇ will be generated that will affect the different established circuits.
  • the number of outputs (110, 120) can vary and therefore obtain an optimal and adjusted adaptation with respect to the lighting conditions existing in the exterior of the tunnels, mainly when there is a lot of lighting outside, for example on sunny days, and therefore The consumption is higher.
  • the parameters obtained from the luxometers (500) located inside the tunnel that make it possible to obtain the luminance at one point make it possible to compare the real illuminance with that calculated by the control unit (100) in each interaction and therefore detect if there are deviations and if this is the case, the control unit (00) will send the corresponding alert or alarm to the supervision systems (700, 800).
  • the performance of the control unit (100 :) on the lighting system (900) can be specified in a certain range of lighting levels, one of which is selected in each iteration based on the luminosity calculated for each zone of the tunnel segment Each level of lighting corresponds to the action, by the control unit (100) on some ' circuits. ' specific; of the lighting system ⁇ 900 ⁇ for each of fas areas of the tunnel segment.
  • the lighting levels can be very varied, but mainly they will be concentrated in the daytime and more specifically in sunny moments, while the circuits to be activated in each case for each of the areas can also be numerous, but usually they will have some limitation in number.
  • these lighting levels and the corresponding circuits to be activated at each level could be established;
  • the system through the eontrol unit (1QG) or PLC, will send for its • information the information with the decisions taken, including, among others, the parameters received and the calculations or analyzes made, with which it will be possible get theoretical statistics of consumption and its evolutions, as! as consumption estimates to compare company data. All this information will be available on the SCADA system (700) and / or on a web server (800) in real time. Optionally, it is also possible to extract this information for registration via SD cards to a PC for data processing.
  • the system will have an "incident" mode that will give full illumination for cases of accidents or incidents within the tunnel. Likewise, the system can be rescued or recovered from the command post (70.0, 800) in order to act above any system programming, such as when a deviation between the sensors is detected. Ijuroinance data calculated by the control unit (100) and collected by the iuxometers (500) inside the tunnel.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

Sistema para el control y regulación dé un sistema de iluminación de un tramo de un túnel que comprende: al menos un dispositivo luminancímetro (200) dispuesto para detectar los parámetros de luminancia en la zona umbral del túnel, al menos un dispositivo (300) dispuesto para detectar los parámetros de las condiciones meteorológicas en el exterior del túnel, al menos un dispositivo (400) dispuesto para detectar el parámetro de número de vehículos que acceden al túnel por unidad de tiempo, al menos un dispositivo luxometro (500) dispuesto para detectar los parámetros de luminancia en el Interior del túnel y una unidad de control adaptada para interrogar y recoger los parámetros de los dispositivos anteriores, donde la unidad de control (100) está conectada y dispuesta para actuar a través de al menos una salida sobre un sistema de iluminación (900) de dicha sección de túnel y donde dicha unidad de contra! (100) establece al menos dos niveles de adaptación de las luminarias de dicho sistema de iluminación (900) para cada una de las zonas de iluminación de dicho tramo de túnel. Además dicha unidad de control (100) dispone de salidas para activar dispositivos de señalización variable y salidas de datos para su interacción vía web o bien el SCADA de gestión del túnel.

Description

DESCRIPCIÓN
Sistema para el control y regulación de la iluminación de un tramo de un túnel Campo de la invención
La invención se aplica en el campo de la iluminación y más concretamente e el de la iluminación en túneles. Se refiere particularmente a los sistemas para controlar y regular la iluminación en el interior de ios túneles en función de las condiciones existentes, entre las que pueden esta la iluminación exterior, climáticas, o flujo del tráfico, respetando las exigencias de la normativa aplicable,
En el momento en que un conductor se acerca a un túnel, su ojo ha de adaptarse a ios cambios de niveles de íuminancías a los que será sometido. Según sí la adaptación es suave o brusca, podrán presentarse ío que se conocen como ios efectos de Inducción o "agujero negro", es decir, la entrada se presenta al conductor como una mancha oscura en cuyo interior no se puede distinguir nada. Est© problema,, que se presenta cuando se está a una distancia considerable del túnel, se debe a que la iumínancia ambiental, en el exterior es mucho mayor que la de la entrada.
Desde el punto de vista luminoíécnfoo en ios túneles, principalmente en los llamados "túneles largos" se diferencian las. siguientes zonas tal y como se observa de forma esquemática en la Figura 1 ; la de acceso, la de entrada constituida por las zonas de umbral y de transición, y finalmente la de salida. Por razones económicas no es posible establecer en la zona de entrada de los túneles condiciones de iluminación similares a las existentes durant el día en el exterior, estableciéndose normalmente un porcentaje de la iluminación exterior
En la zona de umbral situada justo a la entrada del túnel, con una longitud aproximadamente igual a la distancia de seguridad, el alumbrado durante el día debe díménsíonarse de forma que asegure una visión suficiente ante eventuales obstáculos sobre la cafzada, aunque se produzca una primera reducción brusca de los niveles de iluminación existentes e el exterior, pero que resulte aceptable.. En la segunda parte de la zona de umbral se reducen progresivamente los niveles de. iluminación. La. zona de transición puede tener una longitud variable en función de la velocidad de circulación, la instalación del alumbrado deba concebirse para paliar si efecto de adaptación, continuando con una disminución paulatina de los niveles de iluminación hasta haber completado l: proceso de adaptación del ojo ai llegar a ta zona de interior, donde se dispone un alumbrado con nivel constante de iluminación. En la zona de salida, con una longitud aproximadamente igual a fa distancia de seguridad, debe reforzarse de forma progresiva el alumbrado elevando ios niveles de iluminación, de manera que se facilite a los conductores la. adaptación a las condiciones luminosas exteriores, E ios túneles bidirecciona!es el alumbrado en la zona de salida será Idéntico o similar ai de ia zona de entrada, Hay que entender como distancia de seguridad, también conocid como distancia de parada, la. distancia total recorrida por un vehículo obligado a detenerse tan rápidamente como Je sea posible, medida desde su situación en el momento de aparecer el objeto que motiva la detención, Comprend la distancia recorrida durante ios tiempos de percepción, reacción y frenado y por tanto es directamente proporcional a la velocidad a fa que circula ei vehículo y también Incluyen otros factores como ei estado de la calzada -húmeda, seca, ©te.- o el estado y í po de vehículo.
Así, se observa que la zona umbral es clave para el transito dentro del túnel, ya que es donde se tiene que reducir el contraste de forma más brusca, pero óptima, por medio de las luminarias adecuadas; en esta zona se tiene que mantener una cantidad de candelas por metro cuadrado y luxes suficiente en relación con eí exterior, ya que sí es más bajo al principio no s podrá observar nada de lo que hay en ei interior. En la siguiente zona, la de transición, se produce una nueva reducción para adaptarse finalmente a la zona de interior.. Obviamente, hacia la salida, se debe incrementa nuevamente la luminosidad para no tener deslumbramiento al terminar el túnel Por tanto, desde el punto de vista energético, la zona de entrada, que incluyen umbral y transición, es ia que mayor consum eléctrico requiere y, a su vez, es la que mayores variaciones tiene ya que son principalmente las que necesitan una mayor adaptación de la iluminación inicial del túnel a las condiciones exteriores de iluminación, que por otro lado varían según la hora del día y la época del año. Actualmente, mayorítaríamente, ia regulación de la iluminación en las entradas d los túneles está basada en la información de un iuxómetro colocado en la entrada.
U luxómeiro es un dispositivo sensor analógico que mide la üuminancía, en lux, de la luz ambiental, y ia convierte en una señal en lazo de corriente; pero este sensor no representa ia sensación del ojo humano, sino que simplemente ofrece el valor de la iluminancia ambiental recibida en un punto mu concreto.
Esta solución basada en Iuxómetro, por tante, permite diferenciar en varios escalones, corno por .ejemplo soleado, nublado/crepuscular y nocturno tal y como se refleja en la primera gráfica de la Figura 2. Pero si se .utiliza solo u iuxómetro, simplemente se medirá ia iluminancia en un punto, pero no se tendrá en cuenta los elementos adyacentes que. tanta influencia tienen en ei efecto "agujero negro". Además los iuxómetros miden solo iluminadas mientras que io que ef ojo humano percibe son las lumtnanclas (candelas por metro cuadrado) y por ío tanto nunca un Iuxómetro podrá determinar con exactitud la percepción del ojo humano
Esta información de ios Iuxómetros en ocasiones se complementa con la aportada por los relojes astronómicos para diferenciar entre dia y noche a lo largo del año. Para cada uno de los escalones o niveles de alumbrado se enciende los distintos circuitos de luminarias previamente definidos. Con este sistema, por simple, no es necesario incluir ningún dispositivo controladqr para su gestión, como por ejemplo tipo PLG Controiador Lógico Programable o en inglés Prc-grammable Logic Controller).
Pero esta solución es poco eficiente desde el punto de vista energético, ya que solamente suelen .existir 3 o 4 escalones o niveles de alumbrado para modelar todas las posibles, situaciones de! día y el porcentaje sobre el consumo que representa el escalón de soleado que describe esta solución, ei de mayor consumo, está en torno a un 40-42%.
Las soluciones basadas en PLC ya son conocidas para la gestión energética de instalaciones como edificios, tramos a cielo abierto o túneles y permite automatizar procesos electromecánicos, A diferencia de las computadoras de propósito general, el PLC está diseñado par múltiples señales de entrada y de salida, rangos de temperatura ampliados, inmunidad ai ruido eléctrico y resistencia a la vibración y ai Impacto. Los programas o lógicas para el control de funcionamiento del sistema, por ejemplo un sistema de íumina ias, se suelen almacenar e baterías copia de seguridad o en memorias no volátiles.
Descri ción de la invención
Es necesario ofrecer una alternativa al estado de la técnica que cubra las lagunas encontradas en la misma, y de forma particular e relación con la eficiencia energética en ia iluminación en túneles y en la facilidad de la visión tie ios usuarios cuando entran y atraviesan dichos túneles.
Con este fin, la presente invención se refiere de forma diferenciadora, en un primer aspecto, a un sistema para eí control y regulación de un sistema d iluminación en uno o varios tramos de un túnel que comprende al menos un dispositivo iuminanctmetro dispuesto para detectar los parámetros de luminancía en la zona umbral del túnel, al menos un dispositivo dispuesto para detectar ios parámetros de las condiciones meteorológicas en e exterior del túnel, ai menos un dispositivo dispuesto para detectar el -parámetro de número. de vehículos que acceden al túnel por unidad de tiempo, al menos un dispositivo iuxó.metro. dispuesto para detectar los parámetros de luminancía en el interior del túnel y una unidad de control adaptada para interrogar y recoger ios parámetros de ios dispositivos anteriores.
Y donde, a diferencia de los sistemas conocidos, la unidad de control esta conectada y dispuesta para actuar a través de al menos una salida sobre un sistema de iluminació de dicho tramo del túnel y donde dicha unidad de control estabíecé ai menos dos niveles de adaptación del alumbrado de las luminarias de dicho sistema de iluminación para cada una de las- zonas de Iluminación de dicha sección de túnel.
Por tanto, el sistema y el método de conformidad con los aspectos de ia invención descritos anteriormente presentan una serie de ventajas con respecto a la técnica anterior, que se pueden resumir como sigue:
* El sistema de la presente invención mejora la adaptación y automatización del control de la iluminación en túneles, tomando como variables de entrada las suministradas por Sos equipos instalados en las inmediaciones de las bocas, principalmente en la entrada.
* Se ofrec un sistema fácil de imptementar (por ejemplo instalando un controlador tipo PLC en ios cuadros de mando de los sistema de iluminación del túnel), con una lógica o método que optimiza el encendido y/o apagado de los circuitos de las luminarias del interior, disponiendo la. iluminación necesaria durante el tiempo estrictamente necesario.
* Soluciona el problema de inducción o "agujero negro" que se presenta a los conductores en la entrada los túneles con adaptaciones de las luminarias más ajustadas a las condiciones de luz existentes en el exterio del túnel.
« Se estima que, a diferencia de ias soluciones existentes, mejora Ja. eficiencia energética. Por ejemplo, en la soluciones basadas solo en un iuxómetto, donde se tiene por ejemplo un solo escalón o nivel de alumbrado en soleado (ver gráfica 1 de la Figura 2), se requiere u 42% del consumo en este tramo, mientras que con la invención propuesta, con varios escalones para soleado (ver gráfica 2 de ¡a Figura 2) gestionados dinámicamente (por ejemplo 2 o 3), el ahorro sobre el consumo puede estar entre un 15-20%.
• El uso cíe lumínandmet'fos para captar la iluminación exterior permite obtener un mejor medida de lo que percibe el ojo humano, a diferencia de ios lux© metros, ofreciendo por tanto una regulación de la iluminación interior más precisa.
Estas y otras ventajas se ven evidentes a la luz de la descripción detallada de la invención.
Los elementos definidos en esta descripción detallada se proporcionan para ayudar a una comprensión global de la invención. En consecuencia, los expertos en la técnica reconocerá que variaciones y modificaciones- de las realizaciones descritas en este documento pueden realizarse sin apartarse del alcance y espíritu de la invención.
Breve descripción de los dibujos
Las anteriores y otras ventajas y características -se entenderán más completamente a partir de la siguiente descripción detallada de realizaciones, con referencia a ios. dibujos adjuntos, que deben considerarse de una manera ilustrativa y no limitativa, e los. que: ta figura 1 muestra, esquemáticamente, las distintas zonas de iluminación y el grado de iluminación que se pueden encontrar típicamente e un túnel, así como ia relación de la dislancia de seguridad, principalmente con la zona de umbral y la zona de transición.
La figura 2 muestra dos gráficas con la comparativa, por u lado de la situación de la adaptación de la iuminancia en los sistemas actuales, con pocos niveles de alumbrado, y por otro ia situación alcanzable con la invención propuesta, donde ios niveles de alumbrado pueden ser muchos más y por lo tanto se puede actuar de forma más precisa sobre las distintas zonas del segmento de túnel con el consiguiente ahorro energético.
La figura 3 muestra, esquemáticamente, la arquitectura tanto de los elementos que forman parte del sistema de la invención como aquellos co lo que se relaciona.
Descripción detal iada de ia invención
Los elementos definidos en esta descripción detallada se proporciona para ayudar a una comprensión global de la invención. En consecuencia., ios expertos en la técnica reconocerán que variaciones y modificaciones de las realizaciones descritas, en este documento pueden realizarse sin apartarse del alcance y espíritu de la invención. Además, la descripción detallada de las funciones y elementos suficientemente conocidos se omitan po razones de claridad y concisión.
Por supuesto, las distintas . funcionalidades deja invención pueden ser implernentadas con diferentes variaciones de arquitectura, protocolos o dispositivos. Cualquier implernentación presentada a continuación es incluida con el propósito de ilustrar y hacer comprensiva la invención y no con la intención de limitar aspectos de la misma,
Gomo se ha mencionado anteriormente la presente invención se centra en mejorar la adaptación y automatización del establecimiento de la iluminación de ios túneles, tomando como -variables de entrada para dicha adaptación las suministradas por uno o varios dispositivos instalados en las inmediaciones de las bocas del túnel, principalmente de entrada.
Los equipos o dispositivos del sistema encargados de recoger los parámetros del exterior del túnel para el control y adaptación de la luz interior son los siguientes: a) Lumínancímetros (200). Este tipo de dispositivos permiten obtener mediciones del nivel de luminancia en l entrada del túnel, principalmente en ía zona de umbral de un túnel. En el sistema propuesto tiene que haber al menos uno, aunque puede haber instalados más y. preferiblemente dos, lo que permitirá tener redundancia en caso de fallo de uno de los dispositivos.
En la práctica debe usarse un: iurainancímetro (200) con un campo de medición (cono de visión) preferiblemente de 20 grados cumpliendo así co las limitaciones normativas, posicsonado a la distancia de parada o seguridad antes de Ja boca de entrada de! túnel .
Es un instrumento de medida que reproduce ja sensación del ojo humano al acercarse un túnel. Normalmente, el lu i anci etro (200) se: sitúa a 4 ó 5 metros de altura en el lateral de la calzada. Puede ir en un báculo independiente o sobre uno de una luminaria de exterior. Si se sitúan dos uminancímeíros lo; usual es colocar uno a cada lado de la calzada de entrada al túnel.
El íumjnaneírnetro (200), de forma habitual, se compone de la óptica, necesaria para Ja medida del cono de 20 grados, un fotodetector de silicio de curva espectral aproximada a la del ojo, electrónica de acondicionamiento de señal áe alia sensibilidad y preferiblemente un conversor analógico-digitai de doce bits para transmitir 1.a información recogida en forma de valores o parámetros.
La ventaja de la uíií¾ación de lurninancírnetros: (2:00) en el control de iluminación en ias entradas de ios: túneles, a diferencia respecto al uso de iuxómetros, radica, como ya se ha indicado antes, en que verdaderamente representan a sensación de! ojo humano al acercarse ai mismo, considerando el efecto de ios elementos adyacentes y ajustando la iluminación interior a la realmente necesaria para la adaptación del ojo humano.
Los distintos elementos que se encuentran $n las inmediaciones de los túneles tienen distintas iumlnaneias: árboles, cielo, calzada, rocas, edificios, muros, etc. En función del porcentaje de cada uno de ellos dentro del cono de visión con 20 grados, ia sensación del conductor será distinta y, por tanto, la iluminación en la entrada del túnel también variará.
Si, por el .contrarío, se utiliza' un. luxómetro, simplemente se mide fe iuminancia en un punto, pero no se tendrá en cuenta los elementos adyacentes que tanta influencia tienen en el efecto "agujero negro". Así por ejemplo, un día soleado en. un túnel situado en una trinchera profunda con praderas en sus taludes, si se utiliza un luxómetro se dispondrá una mayor iluminación en la entrada que si se considera un luminanclmetro- (200), ya qué reducirá el efecto al disminuir ia iuminancia por el efecto de la presencia de las praderas. Un efecto similar ocurre con túneles situados en orientación Este-Oeste respecto a los orientados Norte-Sur
Este dispositivo de forma general obtiene valores instantáneos de la Iuminancia,. aunqu puede estar dispuesto para obtener un valor medio de esta magnitud en un determinado periodo de tiempo, lo que permite evitar oscilaciones en el alumbrado debidas a alteraciones en la medida fruto de condiciones externas transitorias como puedan ser reflejos, nubes que ocultan momentáneamente el sol, etc. b) Estación meteorológica con sensor de calzada (300), Este tipo de dispositivo está dispuesto para detectar ios parámetros de las condiciones meteorológicas en e! exterior del túnel. ES sistema propuesto por esta invención contará con al menos uno situado en el exterior cercano a ta entrada del túnel. Es muy importante poder detectar y recoger los parámetros con las condiciones meteorológicas de ias bocas del túnel, principalmente en el caso de calzada mojada, ya que afectará a la distancia d© parada o seguridad y, por tanto, a la longitud de las zonas de umbral y transición.
Este tipo dé. dispositivos o: estaciones meteorológicas (300) pueden estar dispuestas para recoger, entre otros, parámetros de de temperatura ambiental, humedad ambienta!, velocidad y dirección del viento, estado de la calzada -húmeda, mojada, seca, con hielo, con nieve, etc.-, temperatura do la calzada, tamaño de la lámina de agua, hielo o nivel, nivel de radiación solar, presión atmosférica, niebla, etc..
De forma preferida, este dispositivo (300) aportará ai sistema como mínimos ios parámetros que indican si a nivel de calzada hay lluvia, niebla,, viento o helada. e) Estación de aforo de tráfico (400). Este tipo de dispositivo está dispuesta para contabilizar o detectar e! número de vehículos que pasan por un punto concreto, en este caso concreto, ios que acceden al túnel. Se puede contabilizar este aforo por unidad dé tiempo. En el caso de esta invención, el sistema contará con ai menos un dispositivo (400) de este tipo situado en e! exterior cercano a la entrada del túnel.
En ocasiones este tipo de dispositivos (400) también permiten diferenciar el tipo de vehículo, por ejemplo vehículos pesados o vehículos ligeros, o la velocidad medía de paso de los mismos.
Los modelos más habituales de estaciones de aforo (400) se suelen implemeniar a partir de una pareja de espiras electromagnéticas instaladas en cada carril de la calzada, que detectan el paso y la presencia del vehículo, calculando una serie de datos de interés como son el peso, longitud o velocidad a la que circulan ios vehículos. También se emplean dispositivos tipo radar sobre pórticos.
Gon ios datos suministrados por la estación de aforo (400), se puede reducir el nivel de iluminación a determinadas horas, cuando el tráfico es mu reducido, á) Luxómetros {500}. Se trata de u dispositivo sensor analógico dispuesto para medir la s!uminancia. lux- de la luz. ambientas, y la convierte en una señal en lazo de corriente. En la invención propuesta existe al menos un dispositivo (500) de este tipo y estará situado en ei Interior del túnel y a! menos uno de ellos de forma preferid estará ubicado en la zona de umbral o en la zona de transición.
Generalmente está basado en un foto-sensor de silicio, que es sensible, e un rango próximo ai de la luz vlsiole. Como se ya se ha comentado, a diferencia del lumlnancímetro, este dispositivo (500) no representa ía -sensación del ojo humano, simplemente ofrece el 'valor de la lumlnaftcía ambiental, pudiendo comprobar si ja iluminación dispuesta por eí sistema, en. ese momento, es ja correcta y cumple con la normativa. También permite, lanzar alarmas cuando eí nivel de iluminación recibido no coincide con el que debería tene en ese momento.
Una unidad dé control (100) adaptada para solicitar y. recoger los parámetros detectados ios dispositivos anteriores, es decir, por iumsnancí etros (200.}, estaciones meteorológicas (300), estaciones de aforo (400) y iüxdmetros (500). Dicha unidad de control (100) está conectada -a un sistema de iluminación d una sección del túnel (900), aunque puede ser utilizada para controlar todo: el. túnel. El sistema propuesto en - esta invención contará con al menos una unidad de este tipo (100) por cuadro de mando eléctrico.
Se puede utilizar diferentes impiementacsones como unidad de control (100) para la invención propuesta, como por ejemplo un ordenador de propósito general con un software conírolador, pero en una realización de preferida la Implementadón es a través de un PLC (Conírolador Lógico Programadle}, ya que es posible ahorrar tiempo en su despliegue, teniendo, por lo general, un reducido tamaño y mantenimiento de bajo costo.
Los elementos de recogida de parámetros pueden ser impiementados co distintas Interfaces dé comunicación, tanto analógicas como digitales. Por ejemplo, es normal que ios luminanclmétros (200) tengan una de estas interfaces, pero de forma preferida para esta invención el lumjnaneí etro (200) usará interfaz digital a través de transmisió por RS-485 con la unidad de control {100}. Este mismo tipo de interfaz puede ser válida, en una realización preferida, para la comunicación entre la estación d control de aforo (400) y ía unidad de control (100) tipo PLC. Las estaciones meteorológicas (300), por el contrario, suelen contar con interfaces Ethernet y una posible i piemeníactón. de esta red con la unidad de control seria a través de una comunicación de red móvil (GPRS, 3G, LTE, etc.), aunque también se podría establecer una Ethernet por cable. Finalmente, dentro de los elementos de -los que se puede recibir parámetros en la unidad d control (100), el luxómeiro (500), aunque también puede dispone de interfaz digital, en la realización preferida, de -esta invención cuenta con -una- interfaz analógica en bucle de corriente de 4-20 mA.
Oe forma general, la unidad de control (100) estará dispuesta para interrogar a cada uno de ios dispositivos -anteriores - ium inane ¡metros (200), estaciones meteorológicas (300), estaciones de control de aforo -(400) o luxómetros (500)- sobre sus medidas, tanto instantáneas como medias o para recibirlas directamente, principalmente en caso de lo dispositivos con interfaz analógica.
Dicha unidad de control, está programada para analizar dichos parámetros y para actuar, a través de una o varias salidas analógicas (1 10) y/o digitales (120) sobre los circuitos de un sistema de iluminación de un tramo de un túnel (900) o todo ei túnel.
En una realización, preferida las salidas analógicas (110) estarán en el rango de 4~20mA y podrá haber al menos 6 salidas mientras que sé contará co ai menos12 salidas digitales (120).
Con este tipo de salidas se puede abarcar tolas las necesidades para las instalaciones o sistemas de luminarias en cuanto a número de circuitos y tipo de. luminaria, como por ejemplo para luminarias de tipo VSAP (vapor de sodio a alta presión) o LED. Por ejemplo, las luminarias tipo LED suelen admitir regulación analógica, por ejemplo, en un rango del 0 al 10, mientras que otras luminarias solo admiten un valor digital, enciende o apaga, pero varias luminarias de un sistema se pueden regular su apagado o encendido -unas sí y oirás no- en base a superponer circuitos.
La unidad de control (100) o PLC, de forma opcional, tendrá también comunicación con un sistema de supervisión basado en SCADA (700) (Supervisión, Control y Adquisición de. Datos o acrónirno de Supervisory Control And Data Adquisition) y/o con un servidor web (800) que muestra la información en tiempo real y- uede operar sobre él sistema de propuesto, por ejemplo, para tareas de mantenimiento.
Desde el punto de vista funcional la unidad de control (100) del sistema o preferiblemente: el PLC está programado para interrogar periódicamente a los distintos dispositivos de. medición— lumlnancfmetros (200), estaciones meteorológicas (200), estaciones de control de aforo (400) o .luxómentros (500)-. El periodo de interrogación para la recogida de parámetros puede variar en función de fas características del túnel e incluso: en función de las medidas analizadas con anterioridad. D esta forma el sistema se puede autoatiaptar. Como ejemplo,, requerir parámetros cada 15 minutos sería una buena, opción de inicial.
En función: del análisis de dichos parámetros, la unidad' de control (1 0) está programada para calcular la 'iuminancia requerida para cada uno de ios tramos del segmento de túnel, principalmente en ía zona de umbral y en la zona de transacción y establecer los valores de salida, analógicos (110) y/o digitales (1.20), para actuar sobre ios circuitos del sistema de iluminación (80.0) al que está conectado la unidad de: centra!. ta iluminación en la entrada del túnel es función de la iluminación en el exterior y de la sensación en el ojo del conductor cuando se acerca ai túnel. Este valor os el que detecta e!. iuminancímetro (200). En l caso de: ios parámetros recibidos de los luminaneimetro {200), por lo general la unidad de control (100) lee las luminaneias medias, lo que evita cambios indeseados en la iluminación debidos a variaciones momentáneas de las condiciones ambientales. A mayor valor del lumlnanclmetro (200), mayor iluminación se necesitará en el comienzo del túnel para facilitar la adaptación del: ojo. humano, es decir, mayor activación de salidas y po tanto mayor iluminación; y viceversa, a menor valor recogido del luminancimetro (200) se actuará, por parte d ia unidad de. control (100), requ lerendo menor iluminación al sistema de iluminación (900). Esta iluminación requerida o calculada po la unidad de control (100) da como resultado la superposición de circuitos sobre ios que hay que actuar para alcanzar el nivel de iluminación que se necesita en cada caso en el sistema de Iluminación (900)..
En la configuración preferid el sistema contará con dos luminaneimetros (200) y se comprobará» por parte de la unidad de control (100), en cada ciclo de interrogación, si ai menos uno de dichos lumínancímeíros (100) está operativo para poder aplicar el análisis o cálculo sobre ios parámetros recibidos de forma automática. En f nción de las características del túnel, si los parámetros interrogados y suministrados por la estación de aforo (300) están por debajo de un determinado umbral en un momento dado o periodo de tiempo, es decir, .el. tráfico es más reducido de lo norma!, la unidad de control aplica en sus cálculos un factor de reducción a la Iluminación inicialmenie calculada con la Información de los luminaneimetros (200). Los valores de la estació meteorológica (400) afectarán en caso de lluvia, niebla, etc.. haciendo igualmente que Influya en los cálculos de la lurninancia y por tanto en el aumento o reducción de la iluminación.
Por ejemplo., una situación de calzada mojada generalmente influirá directamente e ia velocidad en el túnel e incluso puede suponer la modificación temporal de ia velocidad máxima, que es la que marca i distancia de parada; que lógicamente con suelo mojado aumenta, y que es ja misma distancia que la longitud en ia que. se tiene que prolongar la iluminación umbral y de transición. Por eso es tan Importante la calzada, mojada, para que Ja longitud con iluminación umbral y de transición, la más elevada del túnel de mayor potencia, afecte a la menor longitud y, por tanto, se produzca el menor consumo.
Dicha modificación o adaptación de velocidad en e¡ túnel en función de las condiciones meteorológicas se puede producir a través de ia actuación de la unidad de control (100) actuando sobre señalización variable a ia entrada dei túnel, para disminuirla hasta el punto en que se conserve ia misma distancia de parada que existía con pavimento seco.
En definitiva, ios valores proporcionados por la estación meteorológica (300) recibidos por la unidad de control (100) afectarán a ios cálculos de las iuminancías requeridas en cada una de las -zonas dei segmento de tune! en la medida en que afectan a la. velocidad máxima de ios vehículos y por tanto a la variable de la distancia de seguridad o parada. Este cálculo por tanto no solo influye en la cantidad de iluminación sino en ta longitud de las zonas a iluminar, principalmente en la zona de tránsito; a mayor distancia d parada requerida mayor será ia zona de tránsito.
Concretamente, la unidad de control (100) actuará sobre el sistema de iluminación (900) aumentando el tamaño de las zonas dei segmento del túnel sobre las que actúa cuando ios parámetros dei de la estación meteorológica Indiquen que en exterior la calzada no está seca; principalmente sobre ¡a zona de transición. También actuará en el caso de calzada húmeda, si así se ha determinado, activando una señalización variable para la regulación de la velocidad de ios vehículos que acceden al túnel
Tras ia interpretación de todos los parámetros po el programa instalado en la unidad de control (100) y su ejecución, se generarán las salidas (110, 120} que afectarán a ios distintos circuitos establecidos. Dado la flexibilidad del sistema, el numero de saíidas (110, 120) puede variar y por tanto obtener una adaptación óptima y ajustada con respecto a ías condiciones de iluminación .existentes en el exterio de los túneles, principalmente cuando hay mucha iluminación en el exterior, por ejemplo en días soleados, y por tanto el consumo es mayor.
Los parámetros obtenidos de los luxómetros (500) situados en el interior del túnel que permiten obtener la luminancia en un punto permite comparar el la iuminancía real con la calculada por la unidad de control (100) en cada interacción y por tanto detectar si hay desviaciones y si es el caso, la unidad de control ( 00) enviará la correspondiente alerta o alarma a los sistemas de .supervisión (700, 800). ta actuación de la unidad de control (100:) sobre el sistema de iluminación (900) se puede concretar en un determinado rango de niveles de alumbrado, uno de los cuales es seleccionado en cada iteración en función de ta luminosidad calculada para cada zona del segmento del túnel Cada nivel de alumbrado se corresponde con la actuación, por parte de la unidad de control (100) sobre unos 'circuitos .'específicos; dei sistema de iluminación {900} para cada una de fas zonas del segmento del túnel.
Como se puede observar., ios niveles de alumbrados pueden ser muy variados, pero principalmente se concentrarán e la parte diurna y más concretamente en momentos soleados, mientras que los circuitos a activar en cada caso para cada una de las zonas también pueden ser numerosos, pero por lo general tendrán cierta limitación en número.
Corno ejemplo no limitativo, de forma preferida se podrían establecer estos niveles de iluminación y los correspondientes circuitos a activar en cada nivel;
Nfee! cíe Atamhrado Cireuites Activos
Nocturno Per aneiíte
Día Crepuscular : t ;Pen^ente-- :C-¾p¾-^aiai¾
Día Nublado Permanente + .'Crepuscular + .Nublado
Día soleado (50%) Permanente. + Cre¡>«se«¼r * Nublado. ÷ §o% Soleado
_ Día soleado (ioo%) Permanente + Crepueeitfar * Nobládo jpe% Soleado
Lógicamente se deduce -que., aquellos circuitos que no son necesarios activar en un momento dado pero lo estaban previamente, son desactivados durante la actuación del unidad de control (100) en el sistema de iluminación {900}
Opdonafmente, el sistema, a través de la unidad de eontrol (1QG) o PLC, enviará para su registro la información con las decisiones tomadas, incluyendo, entre otros, ios parámetros recibidos y ios cálculos o análisi realizados, con ios que se podrá obtener estadísticas teóricas de consumos y sus evoluciones, as! como estimaciones de consumo para comparar co los datos de compañía. Toda esta información estará disponible en el sistema SCADA (700) y/o en un servidor web (800) en tiempo real, Opcionalmente también es posible extraer esta información para registro mediante tarjetas SD a un PC para el tratamiento de los datos.
El sistema dispondrá de un modo "incidencia" que dará una iluminación plena para casos de accidentes o incidentes dentro del túnel. Así mismo se podrá rescatar o recuperar el sistema desde el puesto de mando (70.0, 800) para poder actuar por encima de cualquier programación del sistema, como por ejemplo cuando se detecte una desviación entre los datos de ijuroinancia calculados por la unidad de control (100) y los recogidos por los iuxómetrps (500) en el interior del túnel.

Claims

REIVINDICACIONES
1. Sistema para el control y regulación de la Iluminación de un. tramo Interior de un tunef que comprende: a) al menos un dispositivo luminancímetro (200) dispuesto para detectar los parámetros de luminaneia en la zona umbral del túnel, b) ai .menos un dispositivo (300) dispuesto para detectar los parámetros de las condiciones meteorológicas en et exterior del túnel, c) al menos un dispositivo (400) dispuesto para detectar el parámetro de número de vehículos que acceden ai túnel por unidad de tiempo, d) al menos un dispositivo luxómetro (400) dispuesto para detectar ios parámetros de luminancia en el Interior del túnel, e y una unidad de control (100) adaptada para interrogar recoger los parámetros detectados por el ai menos un dispositivo furoinancímetro (200), el al menos un dispositivo (300) dispuesto para detectar los parámetros de las condiciones meteorológicas en el exterior del túnel, el al menos un dispositivo (400) dispuesto para detectar el parámetro de número de vehículos que acceden al túnel por unidad de tiempo y el ai menos un dispositivo luxómetro (500), donde dicha unidad de control (100) está conectada y dispuesta para actuar a través de ai menos una salida (1 10, 120) sobre un sistema de iluminación de dicha sección de tonel (900) y donde dicha unidad de control (100) estable at menos dos niveles, de alumbrado de las luminarias de dicho sistema de iluminación para cada una de las zonas de iluminación de dicha sección de túnel.
2. Sistema para el control y regulación de un sistema de iluminación de un tramo interior de u túnel de acuerdo con la reivindicación 1 donde el número de fuminancímetros (200) es al menos dos y están dispuestos para obtener como dicho parámetro de luminancia el valor medio de la luminancia en un determinado período de tiempo.
3. Sistema para el control y adaptación de un sistema d iluminación de una sección de túnel de acuerdo con la reivindicación 1 donde el ai menos un dispositivo (300) dispuesto para detectar los parámetros de las condiciones meteorológicas, en el exterior del túnel está dispuesto para ai menos detectar a nivel de cal ada parámetros que indican si hay lluvia, niebla, viento o helada.
Sistema para el control y adaptación de un sistema de iluminación de un tramo interior de un túnel de acuerdo con ia reivindicación 1 donde la unidad de control (100) es un PIC (Gontrolador Lógico Programabie)
Sistema para el control y adaptación de un sistema de iluminación de un tramo interio de un túnel de acuerdo con ia reivindicación 1 donde dichas salidas (110:, 120) de dicha unidad de control (100) son salidas analógicas (110) y/o digitales (120) y donde dichas salidas están dispuestas para actuar sobre uno o varios circuitos de dicho sistema de iluminación (900).
Sistema para el control y adaptación de un sistema de Iluminación de un tramo interior de un túnel de acuerdo con ia reivindicación 1 donde la unidad de control (100), ad icio na tm ente, envía la información con los parámetros recibidos y los análisis realizados a un sistema SCADA (700) y/o un servidor web (800).
Sistema para el control y adaptación de un sistema de iluminación de un tramo interior de un íúnei de acuerdo con la reivindicación 1 donde la unidad de control (100) actúa sobre dicho sistema de iluminación (900) teniendo en cuenta los parámetros interrogados y recogidos del al menos un dispositivo iuminancimetro (200), eí al menos un .dispositivo dispuesto (300) para detectar los parámetros de las condiciones meteorológicas en el exterior del túnel, el al menos un dispositivo (400) dispuesto para detectar el parámetro de número de vehículos que acceden al túnel por unidad de tiempo y el ai menos un dispositivo luxómetro (500),
Sistema para el control y adaptación de un sistema de iluminación de un tramo interior de un íúnei de acuerdo con la reivindicación 7 donde ia unidad de control (100) actúa: a) disminuyendo ios valor de ia lumínaneia en las zonas del segmento del túnel cuando el parámetro de iuminancia recibido del iuminancimetro (200) disminuye y aumentándola cuando aumenta dicho valor de Iuminancia, b) . aplicando un factor de reducción ai valor de iuminancia del paso a) cuando el parámetro de al menos un dispositivo (300) dispuesto para detectar eí número de vehículos que acceden al túnel por unidad de tiempo indica que el número de vehículos es menor de un umbral establecido. c) aumentando e! tamaño .de fas zonas del segmento de túnel sobre tas que actuar cuando ios parámetros de! al menos un dispositivo (400) dispuesto para detectar las condiciones meteorológicas en el exterior del túnel indican que las ta calzada no est seca, o bien actuando sobre señalización variable a la entrada de! tune!, para disminuirla .hasta el punto en que se conserve la misma distancia de parada que existía con pavimento seco.
Sistema para el control y adaptación de un sistema de iluminación de un tramo de un túnel de acuerdo con ías reivindicaciones 7 a 8 donde vatores establecidos por la unidad de control (100} para la actuación sobre el sistema de iluminación (900) se disponen e un rango de niveles de alumbrado y donde dichos niveles de alumbrado so corresponden con la activació de unos circuitos determinados para cada zona dé dicho sistema de iluminación (000).
Sistema para el control y adaptación de un sistema de iluminación de un tramo de un túnel de acuerdo con las reivindicació 1 donde, si la unidad de control (100) detecta que el parámetro con e4 valor de Suminancía recibido de u luxómetro (500) no se corresponde co el valor de Iuminancla establecido por la unidad .de control se genera una alarma.
PCT/ES2016/070154 2015-03-13 2016-03-11 Sistema para el control y regulación de la iluminación de un tramo de un túnel WO2016146869A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201530323 2015-03-13
ES201530323A ES2586478B1 (es) 2015-03-13 2015-03-13 Sistema para el control y regulación de la iluminación de un tramo de un túnel.

Publications (1)

Publication Number Publication Date
WO2016146869A1 true WO2016146869A1 (es) 2016-09-22

Family

ID=56918430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070154 WO2016146869A1 (es) 2015-03-13 2016-03-11 Sistema para el control y regulación de la iluminación de un tramo de un túnel

Country Status (2)

Country Link
ES (1) ES2586478B1 (es)
WO (1) WO2016146869A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110856311A (zh) * 2019-12-04 2020-02-28 驻马店市公路事业发展中心 一种公路照明用led智慧路灯的控制方法和系统
CN111753246A (zh) * 2020-06-28 2020-10-09 华南理工大学 一种消除隧道出口眩光现象的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101699925A (zh) * 2009-11-30 2010-04-28 江西方兴科技有限公司 高速公路隧道照明智能控制器
CN201774718U (zh) * 2010-08-27 2011-03-23 何熠 一种可自动调节的隧道照明控制系统
CN201875559U (zh) * 2010-10-20 2011-06-22 黄涛 光感自动控制亮度模式的隧道照明系统
KR101458396B1 (ko) * 2013-08-21 2014-11-05 한국건설기술연구원 터널조명 시스템 및 그 제어방법
KR20150024160A (ko) * 2013-08-26 2015-03-06 주식회사 아이라이트 에너지 절약형 터널 휘도제어 시스템 및 그 조명제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101699925A (zh) * 2009-11-30 2010-04-28 江西方兴科技有限公司 高速公路隧道照明智能控制器
CN201774718U (zh) * 2010-08-27 2011-03-23 何熠 一种可自动调节的隧道照明控制系统
CN201875559U (zh) * 2010-10-20 2011-06-22 黄涛 光感自动控制亮度模式的隧道照明系统
KR101458396B1 (ko) * 2013-08-21 2014-11-05 한국건설기술연구원 터널조명 시스템 및 그 제어방법
KR20150024160A (ko) * 2013-08-26 2015-03-06 주식회사 아이라이트 에너지 절약형 터널 휘도제어 시스템 및 그 조명제어방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110856311A (zh) * 2019-12-04 2020-02-28 驻马店市公路事业发展中心 一种公路照明用led智慧路灯的控制方法和系统
CN110856311B (zh) * 2019-12-04 2020-10-30 驻马店市公路事业发展中心 一种公路照明用led智慧路灯的控制方法和系统
CN111753246A (zh) * 2020-06-28 2020-10-09 华南理工大学 一种消除隧道出口眩光现象的方法

Also Published As

Publication number Publication date
ES2586478A1 (es) 2016-10-14
ES2586478B1 (es) 2017-06-02

Similar Documents

Publication Publication Date Title
CN105282947B (zh) 一种基于监控图像的隧道照明节能智慧控制系统
US20110035140A1 (en) Vehicle sensing system utilizing smart pavement markers
CN104278648A (zh) 一种太阳能智能斑马线装置
CN105744705A (zh) 一种基于来车实时检测的隧道照明系统的控制装置及方法
CN104853469A (zh) 路灯照明控制系统
CN203181282U (zh) 应用地磁车辆检测的隧道照明智能控制装置
CN108535793B (zh) 一种公路交通气象条件监测和告警系统
WO2018227724A1 (zh) 一种路灯控制方法及装置
WO2016146869A1 (es) Sistema para el control y regulación de la iluminación de un tramo de un túnel
KR20100029959A (ko) 보행자 보호용 조명장치
CN106758911A (zh) 一种智能道路可变标线
EP3390990B1 (en) Lighting control system
CN111885772A (zh) 一种隧道照明智能控制方法、设备、存储介质和系统
US11790770B2 (en) Illumination system for crossing zone
KR101082218B1 (ko) 가로등 원격 제어 시스템
CN203759879U (zh) 一种车联网路侧信息预警系统
CN205622953U (zh) 一种基于来车实时检测的隧道照明系统的控制装置
CN207833705U (zh) 一种智能控制道路预警亮化系统
KR200440380Y1 (ko) 안개 경보 시스템
CN103974489A (zh) 小区灯光智能管理系统
CN203606950U (zh) 一种人行道红绿灯
KR100647743B1 (ko) 터널 조명등 원격 제어시스템
KR102313374B1 (ko) 자가발전 기반 도로 표지병 및 그 제어방법
KR20170081857A (ko) 차도에서 안전확보를 위한 경고장치
CN102307414A (zh) 基于测定车流量的智能路灯系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764276

Country of ref document: EP

Kind code of ref document: A1