WO2016145837A1 - 一种信号变频电路以及信号变频方法 - Google Patents
一种信号变频电路以及信号变频方法 Download PDFInfo
- Publication number
- WO2016145837A1 WO2016145837A1 PCT/CN2015/092097 CN2015092097W WO2016145837A1 WO 2016145837 A1 WO2016145837 A1 WO 2016145837A1 CN 2015092097 W CN2015092097 W CN 2015092097W WO 2016145837 A1 WO2016145837 A1 WO 2016145837A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- filter
- stage
- conversion
- post
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/16—Multiple-frequency-changing
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/16—Multiple-frequency-changing
- H03D7/161—Multiple-frequency-changing all the frequency changers being connected in cascade
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D2200/00—Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
- H03D2200/0041—Functional aspects of demodulators
- H03D2200/0066—Mixing
- H03D2200/0072—Mixing by complex multiplication
Definitions
- the present invention relates to the field of communications, and in particular, to a signal frequency conversion circuit and a signal frequency conversion method.
- the multi-carrier IF link is shown in Figure 1.
- the main receiving process in the uplink direction is: the RF air interface signal is received by the antenna, and then subjected to duplex filter (DUP) filtering and low noise amplifier (LNA) amplification.
- DUP duplex filter
- LNA low noise amplifier
- the digital intermediate frequency signal is output after being sampled by a high-precision analog-to-digital converter (ADC), and then the digital down converter (DDC) and the sample rate converter (SRC)
- ADC analog-to-digital converter
- DDC digital down converter
- SRC sample rate converter
- the main process of the downlink transmission direction is: SRC outputs the high-speed baseband signal after the sampling rate conversion of the low-speed baseband signal, and then passes the digital
- the frequency converter (DUC) converts the digital intermediate frequency signal, and then the digital-to-analog converter (DAC) converter becomes the analog intermediate frequency signal, which is modulated by the modulator (MIXER), the power amplifier (PA), and the duplex filter ( DUP) becomes a radio frequency signal after filtering.
- DUC digital The frequency converter
- DAC digital-to-analog converter
- MIXER modulator
- PA power amplifier
- DUP duplex filter
- the signal down conversion of the digital intermediate frequency signal into the baseband signal is an implementation structure using a combination of DDC and SRC
- the signal upconversion of converting the baseband signal into a digital intermediate frequency signal is an implementation structure using a combination of DUC and SRC.
- the implementation structure using DDC or DUC and SRC is combined.
- the implementation of DUC generally adopts CORDIC (angle rotation method) and Its way of improvement, its The structure principle is shown in Figure 2, where the input of the phase rotator is the frequency control word and the phase control word, and the output is the rotation angle:
- the butterfly circuit is used to generate the sinusoidal sin ⁇ and the cosine signal cos ⁇ .
- the complex multiplication circuit realizes multiplication of the original IQ signal and the cos+j*sin complex signal:
- I out and Q out are the outputs of the complex multiplication circuit
- I in and Q in are the input original IQ signals
- sin ⁇ and cos ⁇ are the sinusoidal signals generated by the butterfly circuit and the cosine signals, so that the entire DUC outputs the digital mixed signals
- the DUC outputs a sine or cosine signal.
- HBF decimation or interpolation
- FIR finite impulse response filter
- the existing inverter circuit is a single-stage frequency conversion, so the NCO needs to be realized on a high-multiplier clock, and the CORDIC algorithm used by the NCO needs to implement complex logic such as a multiplier and an adder to perform calculations on various transcendental functions.
- complex logic such as multipliers and adders on high-multiplier clocks will largely complicate the hardware circuit, thereby increasing the circuit resource cost of the inverter circuit.
- Embodiments of the present invention provide a signal frequency conversion circuit for reducing circuit resource cost of signal frequency conversion.
- the first aspect of the present invention provides a signal frequency conversion circuit, including:
- the preamplifier module includes a first filter and a digitally controlled oscillator NCO, an output of the first filter being coupled to an input of the NCO;
- Each of the post-stage conversion modules includes a second filter and a post-stage conversion unit, and an output end of the second filter is connected to an input end of the post-stage conversion unit;
- An output of the NCO is coupled to an input of a second filter of the first stage post-stage conversion module of the at least one series-connected post-stage conversion module.
- the NCO is used to implement signal conversion in a range of 0 to 1/N*Fs, and the Fs is an input sampling rate of the NCO.
- the post-stage conversion unit is configured to implement signal conversion of 0 or 1/N*Fd, and the Fd is an input sampling rate of the post-stage conversion unit.
- the value of N includes 2, 4, 8, or 16.
- the first filter and the second The filter is an interpolated half-band filter HBF.
- the interpolation multiple of the interpolated HBF is two.
- the NCO and the rear-stage frequency conversion unit are used for implementing up-conversion .
- the first filter and the second The filter is the extracted HBF.
- the extraction coefficient of the extracted HBF is 2.
- the NCO and the rear-stage frequency conversion unit are used to implement down-conversion .
- a first embodiment of the first aspect of the present invention a second embodiment of the first aspect of the present invention, a third embodiment of the first aspect of the present invention, and a first embodiment of the fourth aspect of the present invention
- the NCO is implemented by an angular rotation method CORDIC algorithm.
- a second aspect of the present invention provides a signal conversion method, including:
- the first filter in the pre-stage conversion module receives the input signal
- the first filter processes the input signal, and sends the first filter processed signal to an NCO in the pre-stage conversion module;
- the NCO performs pre-conversion on the signal processed by the first filter to obtain an intermediate signal, and sends the intermediate signal to a second filter in the post-stage conversion module;
- the second filter processes the intermediate signal, and sends the signal processed by the second filter to a post-stage conversion unit in the post-stage conversion module;
- the post-stage frequency conversion unit performs post-stage conversion on the signal processed by the second filter to obtain a target signal.
- the processing, by the first filter, the input signal includes:
- the first filter performs interpolation filtering on the input signal
- the first filter performs decimation filtering on the input signal.
- the NCO performs pre-conversion on the signal processed by the first filter to obtain an intermediate signal, which is specifically:
- the NCO outputs an intermediate signal to the signal processed by the first filter in a range of 0 to 1/N*Fs, and the Fs is an input sampling rate of the NCO.
- the processing, by the second filter, the intermediate signal includes:
- the second filter performs interpolation filtering on the intermediate signal
- the second filter performs decimation filtering on the intermediate signal.
- the post-stage conversion unit performs post-stage conversion on the signal processed by the second filter to obtain a target signal, which is specifically:
- the post-stage conversion unit performs a 0-conversion on the signal processed by the second filter
- the post-stage conversion unit performs 1/N*Fd frequency conversion on the signal processed by the second filter, and the Fd is an input sampling rate of the post-stage conversion unit.
- the post-stage conversion unit performs post-stage conversion on the signal processed by the second filter to obtain a target signal, and further includes:
- the rear-stage frequency conversion unit transmits the target signal to the second filter of the next-stage post-stage conversion module.
- the embodiment of the present invention has the following advantages: the signal frequency conversion circuit outputs the intermediate signal after the first frequency conversion of the input signal through the pre-stage frequency conversion module, and then the intermediate signal is performed by at least one rear-stage frequency conversion module.
- the primary frequency conversion obtains the target signal that meets the frequency conversion requirement, that is, the scheme achieves the frequency conversion requirement of the signal by multiple frequency conversion.
- the NCO used in the scheme is one.
- the NCO implemented at a lower multiple of the clock frequency relative to the prior art avoids the complex processing logic such as multipliers and adders required to implement the NCO on a high multiple clock, thereby effectively reducing the complexity. Achieve the circuit cost and power consumption of the NCO.
- 1 is a schematic diagram of a multi-carrier intermediate frequency link in wireless communication
- FIG. 2 is a structural schematic diagram of an angular rotation CORDIC and a modification thereof;
- FIG. 3 is a schematic diagram of the implementation of HBF
- FIG. 4 is a schematic diagram of an embodiment of a signal frequency conversion circuit in an embodiment of the present invention.
- FIG. 5 is a schematic diagram of another embodiment of a signal frequency conversion circuit according to an embodiment of the present invention.
- FIG. 6 is a schematic diagram of another embodiment of a signal frequency conversion circuit in an embodiment of the present invention.
- FIG. 7 is a schematic diagram of an embodiment of a signal frequency conversion method in an embodiment of the present invention.
- the embodiment of the invention provides a signal frequency conversion circuit for realizing the frequency conversion requirement of the input signal through multi-stage frequency conversion, thereby avoiding implementing the multiplier on the high multiple NCO and reducing the signal frequency conversion circuit.
- the complexity reduces the cost and power consumption of the signal conversion circuit.
- an embodiment of a signal frequency conversion circuit in an embodiment of the present invention includes:
- the pre-stage frequency conversion module 401 is configured to perform pre-processing on the received input signal and output an intermediate signal
- At least one series-connected post-stage conversion module 402 is configured to process the intermediate signal output by the pre-stage conversion module to output a target signal;
- the pre-stage conversion module 401 includes:
- the first filter 4011 is configured to perform a conversion process on the sampling rate of the received input signal and output it to the NCO;
- An NCO 4012 configured to perform pre-conversion of the signal processed by the first filter 4011 to obtain an intermediate signal and output the signal;
- the post-stage conversion module 402 includes:
- a second filter 4021 configured to perform a conversion process of the sampling rate on the received signal and output the signal to the post-stage conversion unit;
- the post-stage converting unit 4022 is configured to perform post-stage conversion on the signal processed by the second filter to obtain a target signal.
- the NCO 4012 is used to implement signal conversion in the range of 0 to 1/N*Fs, where Fs is the The input sampling rate of the NCO4012, the post-stage conversion module 4022 is used to implement signal conversion of 0 or 1/N*Fd, and Fd is the input sampling rate of the subsequent-stage conversion module 4022, and the value of N may be 2, 4, 8 or 16, can also be the other power of 2 power, determined according to the actual circuit, not limited here.
- the implementation of the rear-stage frequency conversion unit is as follows:
- Imag[(I+jQ)*(cos(2*pi*1/N*fd*t)+j*sin(2*pi*1/N*fd*t))] I* Sin(pi/2*(0:n-1))+Q*cos(pi/2*(0:n-1)), sequentially outputting Q0, I1, -Q2, -I3, ...
- I and Q are IQ signals outputted by HBF
- fd is the input sampling rate of the subsequent stage frequency conversion unit
- t is time
- n is a discrete sampling sequence
- (0:n-1) represents a sequence of 0 to n-1.
- pi ⁇ .
- the NCO is implemented by the CORDIC algorithm of the angle rotation method.
- the NCO may be implemented in other manners, which is not limited herein.
- the signal frequency conversion circuit outputs the intermediate signal after the first frequency conversion of the input signal by the pre-stage frequency conversion module, and then at least one frequency conversion of the intermediate signal by at least one second-stage frequency conversion module to obtain a target signal that meets the frequency conversion requirement, that is,
- the scheme achieves the frequency conversion requirement of the signal by multiple frequency conversion.
- the NCO used in the scheme is a lower multiple than the prior art.
- the NCO implemented at the clock frequency avoids the complex processing logic such as multipliers and adders required to implement NCO on high-multiplier clocks, thereby effectively reducing the circuit cost and power consumption for implementing NCO.
- the signal frequency conversion circuit in the embodiment of the present invention may be specifically used for signal up-conversion or signal down-conversion, which are respectively described below:
- the signal frequency conversion circuit is used for signal up-conversion
- another embodiment of the signal conversion circuit in the embodiment of the present invention includes:
- the pre-stage frequency conversion module 501 is configured to perform pre-processing on the received input signal and output an intermediate signal
- the pre-stage conversion module 501 includes:
- the NCO 4012 is configured to perform pre-upconversion of the signal processed by the interpolation half-band filter HBF5011 to obtain an intermediate signal and output the signal;
- the post-stage conversion module 502 includes:
- Interpolating half-band filter HBF5021 for performing interpolation conversion processing on the received signal and outputting to the post-stage conversion unit 5022;
- the post-stage frequency conversion unit 5022 is configured to perform post-stage up-conversion of the signal processed by the interpolation half-band filter HBF5021 to obtain a target signal.
- the NCO 5012 is used to implement a signal of 0 to 1/N*Fs range, wherein Fs is the input sampling rate of the NCO 4012, and the rear-stage conversion module 5022 is used to implement signal up-conversion of 0 or 1/N*Fd.
- Fd is the input sampling rate of the rear-stage frequency conversion module 5022
- the value of N may be 2, 4, 8, or 16, or may be other power-of-power values of 2, which are determined according to actual circuits, and are not limited herein. .
- the signal frequency circuit is used for signal down conversion
- another embodiment of the signal frequency conversion circuit in the embodiment of the present invention includes:
- the pre-stage frequency conversion module 601 is configured to perform pre-processing on the received input signal and output an intermediate signal
- the preamplifier module 601 includes:
- the NCO 6012 is configured to perform pre-downconversion of the signal processed by the extracted HBF6011 to obtain an intermediate signal and output the signal;
- the post-stage conversion module 602 includes:
- the post-stage frequency conversion unit 6022 is configured to perform post-stage down-conversion of the signal processed by the extracted HBF6021 to obtain a target signal.
- the NCO6012 is used to implement signal down conversion in the range of 0 to 1/N*Fs, where Fs is the input sampling rate of the NCO 6012, and the rear stage conversion module 6022 is used to implement signal down conversion of 0 or 1/N*Fd.
- Fd is the input sampling rate of the rear-stage frequency conversion module 6022
- the value of N may be 2, 4, 8, or 16, or may be other power-of-power values of 2, which are determined according to actual circuits, and are not limited herein. .
- the signal frequency conversion circuit in the embodiment of the present invention is described above. Based on the signal frequency conversion circuit, the embodiment of the present invention further provides a signal frequency conversion method. The following describes the signal frequency conversion method in the embodiment of the present invention:
- an embodiment of a signal frequency conversion method in an embodiment of the present invention includes:
- the first filter in the pre-stage frequency conversion module receives an input signal.
- the first filter in the pre-stage conversion module receives the input signal as an input terminal of the entire signal conversion circuit.
- the first filter may be an interpolated HBF or an extracted HBF, which is not limited herein.
- the first filter processes the input signal, and sends the signal processed by the first filter to the NCO in the pre-stage conversion module;
- the first filter processes the input signal, and sends the signal processed by the first filter to the NCO in the pre-stage conversion module.
- the first filter may process the input signal by: the first filter interpolates the input signal when performing signal up-conversion, or the first filter pair when performing signal down-conversion
- the input signal is subjected to decimation filtering, which is not limited herein.
- the NCO performs pre-conversion on the signal processed by the first filter to obtain an intermediate signal, and sends the intermediate signal to a second filter in the post-stage conversion module.
- the NCO pre-converts the signal processed by the first filter to obtain an intermediate signal, and sends the intermediate signal to the second filter in the post-stage conversion module.
- the NCO performs pre-conversion on the signal processed by the first filter to obtain an intermediate signal, where the NCO converts the signal processed by the first filter into a frequency range of 0 to 1/N*Fs. After the intermediate signal is output, Fs is the input sampling rate of the NCO.
- the second filter processes the intermediate signal, and sends the signal processed by the second filter to a post-stage conversion unit in the post-stage conversion module.
- the second filter in the post-stage conversion module processes the intermediate signal, and sends the signal processed by the second filter to the subsequent stage in the post-stage conversion module. Frequency conversion unit.
- the second filter may be an interpolated HBF or an extracted HBF, which is not limited herein.
- the second filter processes the input signal by: the second filter interpolates the input signal when performing signal up-conversion, or the second filter pair when performing signal down-conversion
- the input signal is subjected to decimation filtering, which is not limited herein.
- the post-stage frequency conversion unit performs post-stage conversion on the signal processed by the second filter to obtain a target signal.
- the post-stage frequency conversion unit performs post-stage conversion on the signal processed by the second filter to obtain a target signal.
- the post-stage conversion unit performs post-stage conversion on the signal processed by the second filter.
- the post-stage conversion unit performs 0-conversion on the signal processed by the second filter, or the second-stage conversion unit performs the second filtering.
- the processed signal is subjected to 1/N*Fd frequency conversion, and Fd is the input sampling rate of the subsequent stage frequency conversion unit.
- the signal frequency conversion circuit outputs the intermediate signal after the first frequency conversion of the input signal by the pre-stage frequency conversion module, and then at least one frequency conversion of the intermediate signal by at least one second-stage frequency conversion module to obtain a target signal that meets the frequency conversion requirement, that is,
- the scheme achieves the frequency conversion requirement of the signal by multiple frequency conversion.
- the NCO used in the scheme is a lower multiple than the prior art.
- the NCO implemented at the clock frequency avoids the complex processing logic such as multipliers and adders required to implement NCO on high-multiplier clocks, thereby effectively reducing the circuit cost and power consumption for implementing NCO.
- the latter frequency conversion unit in the latter frequency conversion unit sends the target signal to the next signal.
- the second filter of the post-stage inverter module is processed until the target signal obtained after multiple frequency conversions satisfies the frequency conversion requirement.
- the disclosed system, device and method The law can be implemented in other ways.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Superheterodyne Receivers (AREA)
Abstract
一种信号变频电路,包括:前级变频模块(401, 501, 601)以及至少一个串联的后级变频模块(402, 502, 602);所述前级变频模块(401, 501, 601)包括第一滤波器(4011, 5011, 6011)以及数字控制振荡器NCO(4012, 5012, 6012),所述第一滤波器(4011, 5011, 6011)的输出端与所述NCO(4012, 5012, 6012)的输入端相连;每一个后级变频模块(402, 502, 602)包括第二滤波器(4021, 5021, 6021)以及后级变频单元(4022, 5022, 6022),所述第二滤波器(4021, 5021, 6021)的输出端与所述后级变频单元(4022, 5022, 6022)的输入端相连;所述NCO(4012, 5012, 6012)的输出端与所述至少一个串联的后级变频模块(402, 502, 602)中第一级后级变频模块(402, 502, 602)的第二滤波器(4021, 5021, 6021)的输入端相连。该信号变频电路通过多级变频实现输入信号的变频要求,避免了在高倍数时钟上实现NCO以及实现NCO所需的乘法器、加法器等复杂处理逻辑,从而降低了信号变频电路的成本和功耗。
Description
本申请要求于2015年3月17日提交中国专利局、申请号为201510117704.1、发明名称为“一种信号变频电路以及信号变频方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及通信领域,尤其涉及一种信号变频电路以及信号变频方法。
随着移动通信的发展,通信系统已经由单载波系统发展到多载波系统,同时,采用数字中频技术来完成载波的选频处理也成为当前通信领域的常用技术。
随着MBB(移动宽带)时代的到来,无线接入从4G(第4代)演进到4.5G/5G(第4.5/5代),系统的天线数将从1~2天线上升到64~128天线,带宽从20M上升到1000M,因此需要考虑适合5G时代的高效上下变频电路技术。
在无线通信中,多载波中频链路如图1所示,上行方向的主要接收过程为:射频空口信号由天线接收,依次经双工滤波器(DUP)滤波、低噪放(LNA)放大,再由解调器(DEMOD)进行一次变频到中频频点后,通过高精度模数转换器(ADC)采样后输出数字中频信号,再由数字下变频器(DDC)以及采样率转换器(SRC)进行信号变频以及采样率转换后输出低速基带信号,通过光纤回传到基带处理单元,下行发送方向的主要过程是:SRC对低速基带信号进行采样率转换后输出高速基带信号,再通过数字上变频器(DUC)变频后输出数字中频信号,再由数模转换器(DAC)转换器变成模拟中频信号,依次经调制器(MIXER)调制,功率放大器(PA)放大以及双工滤波器(DUP)滤波后变成射频信号。。
在现有的技术中,将数字中频信号转换为基带信号的信号下变频是使用DDC与SRC组合的实现结构,将基带信号转换为数字中频信号的信号上变频是使用DUC与SRC组合的实现结构,即在现有技术中,无论信号上变频还是信号下变频,都是使用DDC或DUC与SRC组合的实现结构,以DUC与SRC组合为例,DUC的实现一般采用CORDIC(角度旋转法)及其改进方式,其
结构原理如图2所示,其中,相位旋转器的输入是频率控制字和相位控制字,输出是旋转角度:
而蝶形电路用于产生正弦sinθ和余弦信号cosθ。
当有IQ(同相正交)信号输入时,复乘电路实现原始IQ信号和cos+j*sin复信号的相乘:
Iout=Iin*cosθ-Qin*sinθ;
Qout=Iin*sinθ+Qin*cosθ;
其中,Iout、Qout为复乘电路的输出,Iin、Qin为输入的原始IQ信号,sinθ、cosθ为蝶形电路产生的正弦信号以及余弦信号,从而整个DUC输出数字混频信号,当没有IQ信号输入时,DUC输出正弦或余弦信号。
SRC的实现结构一般采用抽取或者插值HBF,HBF是特殊系数的FIR(有限脉冲响应滤波器),有一半系数为0,其实现原理如图3所示,其中x(n)是输入信号,y(n)是SRC的输出,h(n)是滤波器的系数。
但是,现有的这种变频电路是单级变频,因而需要在高倍数时钟上实现NCO,而由于NCO采用的CORDIC算法需要实现乘法器、加法器等复杂逻辑来完成对各种超越函数的计算,而在高倍数时钟上实现乘法器、加法器等复杂逻辑会很大程度上使得硬件电路更为复杂,从而增加了变频电路的电路资源代价。
发明内容
本发明实施例提供了一种信号变频电路,用于降低信号变频的电路资源成本。
有鉴于此,本发明第一方面提供了一种信号变频电路,包括:
前级变频模块以及至少一个串联的后级变频模块;
所述前级变频模块包括第一滤波器以及数字控制振荡器NCO,所述第一滤波器的输出端与所述NCO的输入端相连;
每一个后级变频模块包括第二滤波器以及后级变频单元,所述第二滤波器的输出端与所述后级变频单元的输入端相连;
所述NCO的输出端与所述至少一个串联的后级变频模块中第一级后级变频模块的第二滤波器的输入端相连。
结合本发明第一方面,本发明第一方面的第一实施方式中,所述NCO用于实现0~1/N*Fs范围的信号变频,所述Fs为所述NCO的输入采样率,所述后级变频单元用于实现0或1/N*Fd的信号变频,所述Fd为所述后级变频单元的输入采样率。、
结合本发明第一方面的第一实施方式,本发明第一方面的第二实施方式中,所述N的取值包括2、4、8或16。
结合本发明第一方面、本发明第一方面的第一实施方式或本发明第一方面的第二实施方式,本发明第一方面的第三实施方式中,所述第一滤波器以及第二滤波器为插值半带滤波器HBF。
结合本发明第一方面的第三实施方式,本发明第一方面的第四实施方式中,所述插值HBF的插值倍数为2。
结合本发明第一方面的第三实施方式或本发明第一方面的第四实施方式,本发明第一方面的第五实施方式中,所述NCO和所述后级变频单元用于实现上变频。
结合本发明第一方面、本发明第一方面的第一实施方式或本发明第一方面的第二实施方式,本发明第一方面的第六实施方式中,所述第一滤波器以及第二滤波器为抽取HBF。
结合本发明第一方面的第六实施方式,本发明第一方面的第七实施方式中,所述抽取HBF的抽取系数为2。
结合本发明第一方面的第六实施方式或本发明第一方面的第七实施方式,本发明第一方面的第八实施方式中,所述NCO和所述后级变频单元用于实现下变频。
结合本发明第一方面、本发明第一方面的第一实施方式、本发明第一方面的第二实施方式、本发明第一方面的第三实施方式、本发明第四方面的第一实
施方式、本发明第一方面的第五实施方式、本发明第六方面的第一实施方式、本发明第七方面的第一实施方式或本发明第八方面的第一实施方式,本发明第一方面的第九实施方式中,所述NCO采用角度旋转法CORDIC算法实现。
本发明第二方面提供了一种信号变频方法,包括:
前级变频模块中的第一滤波器接收输入信号;
所述第一滤波器对所述输入信号进行处理,并将所述第一滤波器处理后的信号发送至所述前级变频模块中的NCO;
所述NCO对所述第一滤波器处理后的信号进行前级变频后得到中间信号,并将所述中间信号发送至后级变频模块中的第二滤波器;
所述第二滤波器对所述中间信号进行处理,并将所述第二滤波器处理后的信号发送至所述后级变频模块中的后级变频单元;
所述后级变频单元对所述第二滤波器处理后的信号进行后级变频得到目标信号。
结合本发明第二方面,本发明第二方面的第一实施方式中,所述第一滤波器对所述输入信号进行处理包括:
所述第一滤波器对所述输入信号进行插值滤波,
或,
所述第一滤波器对所述输入信号进行抽取滤波。
结合本发明第二方面,本发明第二方面的第二实施方式中,所述NCO对所述第一滤波器处理后的信号进行前级变频得到中间信号具体为:
所述NCO对所述第一滤波器处理后的信号进行0~1/N*Fs范围内的变频后输出中间信号,所述Fs为所述NCO的输入采样率。
结合本发明第二方面,本发明第二方面的第三实施方式中,所述第二滤波器对所述中间信号进行处理包括:
所述第二滤波器对所述中间信号进行插值滤波,
或,
所述第二滤波器对所述中间信号进行抽取滤波。
结合本发明第二方面,本发明第二方面的第三实施方式中,所述后级变频单元对所述第二滤波器处理后的信号进行后级变频得到目标信号具体为:
所述后级变频单元对所述第二滤波器处理后的信号进行0变频,
或,
所述后级变频单元对所述第二滤波器处理后的信号进行1/N*Fd变频,所述Fd为所述后级变频单元的输入采样率。
结合本发明第二方面、本发明第二方面的第一实施方式、本发明第二方面的第二实施方式或本发明第二方面的第三实施方式,本发明第二方面的第四实施方式中,所述后级变频单元对所述第二滤波器处理后的信号进行后级变频得到目标信号之后还包括:
若所述目标信号不满足变频要求,则所述后级变频单元将所述目标信号发送至下一级后级变频模块的第二滤波器。
从以上技术方案可以看出,本发明实施例具有以下优点:信号变频电路通过前级变频模块对输入信号进行第一次变频后输出中间信号,再由至少一个后级变频模块对中间信号进行至少一次变频得到满足变频要求的目标信号,即本方案通过多次变频达到信号的变频要求,相较于现有技术而言,由于本方案采用多级变频的方式,因而本方案使用的NCO是一个在相对于现有技术而言更低倍数的时钟频率上实现的NCO,即避免了在高倍数时钟上实现NCO,以及实现NCO所需的乘法器、加法器等复杂处理逻辑,从而有效降低了实现NCO的电路成本和功耗。
图1为无线通信中多载波中频链路示意图;
图2为角度旋转发CORDIC及其改进方式的结构原理图;
图3为HBF的实现原理图;
图4本发明实施例中信号变频电路的一个实施例示意图;
图5本发明实施例中信号变频电路的另一个实施例示意图;
图6本发明实施例中信号变频电路的另一个实施例示意图;
图7本发明实施例中信号变频方法的一个实施例示意图。
本发明实施例提供了一种信号变频电路,用于通过多级变频实现输入信号的变频要求,从而避免了在高倍数NCO上实现乘法器,降低了信号变频电路
的复杂度,从而降低了信号变频电路的成本和功耗。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
请参阅图4,本发明实施例中信号变频电路的一个实施例包括:
前级变频模块401,用于对接收到输入信号进行前级处理并输出中间信号;
至少一个串联的后级变频模块402,用于对所述前级变频模块输出的所述中间信号进行处理输出目标信号;
其中所述前级变频模块401包括:
第一滤波器4011,用于对接收到输入信号进行采样率的变换处理并输出到NCO;
NCO4012,用于对所述第一滤波器4011处理后的信号进行前级变频得到中间信号并输出;
所述后级变频模块402包括:
第二滤波器4021,用于对接收到的信号进行采样率的变换处理并输出到后级变频单元;
后级变频单元4022,用于对所述第二滤波器处理后的信号进行后级变频得到目标信号。
本实施例中NCO4012用于实现0~1/N*Fs范围的信号变频,其中Fs为该
NCO4012的输入采样率,后级变频模块4022用于实现0或1/N*Fd的信号变频,Fd为该后级变频模块4022的输入采样率,N的取值可以是2、4、8或16,也可以是其他2的幂次方数值,具体根据实际电路确定,此处不做限定。
在本实施例以及后续实施例中,该后级变频单元的实现如下:
实部输出,即Re[(I+jQ)*(cos(2*pi*1/N*fd*t)+j*sin(2*pi*1/N*fd*t))]=I*cos(pi/2*(0:n-1))-Q*sin(pi/2*(0:n-1))。依次循环输出I0、-Q1、-I2、Q3,……
虚部输出,即Imag[(I+jQ)*(cos(2*pi*1/N*fd*t)+j*sin(2*pi*1/N*fd*t))]=I*sin(pi/2*(0:n-1))+Q*cos(pi/2*(0:n-1)),依次循环输出Q0、I1、-Q2、-I3,……
其中,I、Q为HBF输出的IQ信号,fd为该后级变频单元的输入采样率,t为时间,n表示离散的采样序列,(0:n-1)表示0到n-1的序列,t=(0:n-1)*T=(0:n-1)*1/Fd,pi=∏,后续实施例中,该后级变频单元的实现不再赘述。
需要说明的是,本实施例中,NCO采用角度旋转法CORDIC算法实现,在实际应用中,NCO还可以采用其他方式实现,具体此处不做限定。
本发明实施例中信号变频电路通过前级变频模块对输入信号进行第一次变频后输出中间信号,再由至少一个后级变频模块对中间信号进行至少一次变频得到满足变频要求的目标信号,即本方案通过多次变频达到信号的变频要求,相较于现有技术而言,由于本方案采用多级变频的方式,因而本方案使用的NCO是一个在相对于现有技术而言更低倍数的时钟频率上实现的NCO,即避免了在高倍数时钟上实现NCO,以及实现NCO所需的乘法器、加法器等复杂处理逻辑,从而有效降低了实现NCO的电路成本和功耗。
在实际应用中,本发明实施例中的信号变频电路可具体用于信号上变频或信号下变频,下面分别进行描述:
一、该信号变频电路用于信号上变频;
请参阅图5,本发明实施例中信号变频电路的另一个实施例包括:
前级变频模块501,用于对接收到输入信号进行前级处理并输出中间信号;
至少一个串联的后级变频模块502,用于对所述前级变频模块输出的所述中间信号进行处理输出目标信号;
其中所述前级变频模块501包括:
插值半带滤波器HBF5011,用于对接收到输入信号进行采样率的插值变换处理并输出到NCO;
NCO4012,用于对所述插值半带滤波器HBF5011处理后的信号进行前级上变频得到中间信号并输出;
所述后级变频模块502包括:
插值半带滤波器HBF5021,用于对接收到的信号进行采样率的插值变换处理并输出到后级变频单元5022;
后级变频单元5022,用于对所述插值半带滤波器HBF5021处理后的信号进行后级上变频得到目标信号。
本实施例中NCO5012用于实现0~1/N*Fs范围的信号尚变频,其中Fs为该NCO4012的输入采样率,后级变频模块5022用于实现0或1/N*Fd的信号上变频,Fd为该后级变频模块5022的输入采样率,N的取值可以是2、4、8或16,也可以是其他2的幂次方数值,具体根据实际电路确定,此处不做限定。
二、该信号电频电路用于信号下变频;
请参阅图6,本发明实施例中信号变频电路的另一个实施例包括:
前级变频模块601,用于对接收到输入信号进行前级处理并输出中间信号;
至少一个串联的后级变频模块602,用于对所述前级变频模块输出的所述中间信号进行处理输出目标信号;
其中所述前级变频模块601包括:
抽取HBF6011,用于对接收到输入信号进行采样率的抽取变换处理并输出到NCO;
NCO6012,用于对所述抽取HBF6011处理后的信号进行前级下变频得到中间信号并输出;
所述后级变频模块602包括:
抽取HBF6021,用于对接收到的信号进行采样率的抽取变换处理并输出到后级变频单元6022;
后级变频单元6022,用于对所述抽取HBF6021处理后的信号进行后级下变频得到目标信号。
本实施例中NCO6012用于实现0~1/N*Fs范围的信号下变频,其中Fs为该NCO6012的输入采样率,后级变频模块6022用于实现0或1/N*Fd的信号下变频,Fd为该后级变频模块6022的输入采样率,N的取值可以是2、4、8或16,也可以是其他2的幂次方数值,具体根据实际电路确定,此处不做限定。
上面描述了本发明实施例中的信号变频电路,基于该信号变频电路,本发明实施例还提供了一种信号变频方法,下面对本发明实施例中信号变频方法进行描述:
请参阅图7,本发明实施例中信号变频方法的一个实施例包括:
701、前级变频模块中的第一滤波器接收输入信号;
本实施例中,前级变频模块中的第一滤波器作为整个信号变频电路的输入端,接收输入信号。
需要说明的是,在实际应用中,该第一滤波器可以是插值HBF或抽取HBF,具体此处不做限定。
702、该第一滤波器对该输入信号进行处理,并将该第一滤波器处理后的信号发送至前级变频模块中的NCO;
本实施例中,该第一滤波器接收到输入信号后,对该输入信号进行处理,并将该第一滤波器处理后的信号发送至前级变频模块中的NCO。
需要说明的是,第一滤波器对输入信号进行处理可以是:在进行信号上变频时,第一滤波器对该输入信号进行插值滤波,或,在进行信号下变频时,第一滤波器对该输入信号进行抽取滤波,具体此处不做限定。
703、该NCO对该第一滤波器处理后的信号进行前级变频后得到中间信号,并将该中间信号发送至后级变频模块中的第二滤波器;
本实施例中,该NCO对该第一滤波器处理后的信号进行前级变频得到中间信号,并将该中间信号发送至后级变频模块中的第二滤波器。
需要说明的是,该NCO对该第一滤波器处理后的信号进行前级变频得到中间信号具体为:NCO对该第一滤波器处理后的信号进行0~1/N*Fs范围内的变频后输出中间信号,Fs为该NCO的输入采样率。
704、该第二滤波器对该中间信号进行处理,并将该第二滤波器处理后的信号发送至后级变频模块中的后级变频单元;
本实施例中,后级变频模块中的第二滤波器接收到该中间信号后,对该中间信号进行处理,并将该第二滤波器处理后的信号发送至后级变频模块中的后级变频单元。
在实际应用中,该第二滤波器可以是插值HBF或抽取HBF,具体此处不做限定。
需要说明的是,第二滤波器对输入信号进行处理可以是:在进行信号上变频时,第二滤波器对该输入信号进行插值滤波,或,在进行信号下变频时,第二滤波器对该输入信号进行抽取滤波,具体此处不做限定。
705、该后级变频单元对该第二滤波器处理后的信号进行后级变频得到目标信号。
本实施例中,后级变频单元对该第二滤波器处理后的信号进行后级变频得到目标信号。
后级变频单元对该第二滤波器处理后的信号进行后级变频可以是:后级变频单元对该第二滤波器处理后的信号进行0变频,或,后级变频单元对该第二滤波器处理后的信号进行1/N*Fd变频,Fd为该后级变频单元的输入采样率。
本发明实施例中信号变频电路通过前级变频模块对输入信号进行第一次变频后输出中间信号,再由至少一个后级变频模块对中间信号进行至少一次变频得到满足变频要求的目标信号,即本方案通过多次变频达到信号的变频要求,相较于现有技术而言,由于本方案采用多级变频的方式,因而本方案使用的NCO是一个在相对于现有技术而言更低倍数的时钟频率上实现的NCO,即避免了在高倍数时钟上实现NCO,以及实现NCO所需的乘法器、加法器等复杂处理逻辑,从而有效降低了实现NCO的电路成本和功耗。
需要说明的是,在实际应用中,若中间信号经过后级变频模块的一次变频后得到的目标信号不满足变频要求,则该后级变频中的后级变频单元将该目标信号发送至下一级后级变频模块的第二滤波器进行处理,直至经过多次变频后得到的目标信号满足变频要求为止。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方
法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (17)
- 一种信号变频电路,其特征在于,包括:前级变频模块以及至少一个串联的后级变频模块;所述前级变频模块包括第一滤波器以及数字控制振荡器NCO,所述第一滤波器的输出端与所述NCO的输入端相连;每一个后级变频模块包括第二滤波器以及后级变频单元,所述第二滤波器的输出端与所述后级变频单元的输入端相连;所述NCO的输出端与所述至少一个串联的后级变频模块中第一级后级变频模块的第二滤波器的输入端相连。
- 根据权利要求1所述的信号变频电路,其特征在于,所述NCO用于实现0~1/N*Fs范围的信号变频,所述Fs为所述NCO的输入采样率,所述后级变频单元用于实现0或1/N*Fd的信号变频,所述Fd为所述后级变频单元的输入采样率。
- 根据权利要求2所述的信号变频电路,其特征在于,所述N的取值为2的幂次方。
- 根据权利要求1-3中任一项所述的信号变频电路,其特征在于,所述第一滤波器以及第二滤波器为插值半带滤波器HBF。
- 根据权利要求4所述的信号变频电路,其特征在于,所述插值HBF的插值倍数为2。
- 根据权利要求4或5所述的信号变频电路,其特征在于,所述NCO和所述后级变频单元用于实现上变频。
- 根据权利要求1-3中任一项所述的信号变频电路,其特征在于,所述第一滤波器以及第二滤波器为抽取HBF。
- 根据权利要求7所述的信号变频电路,其特征在于,所述抽取HBF的抽取系数为2。
- 根据权利要求7或8所述的信号变频电路,其特征在于,所述NCO和所述后级变频单元用于实现下变频。
- 根据权利要求1至9中任一项所述的信号变频电路,其特征在于,所述NCO采用角度旋转法CORDIC算法实现。
- 一种信号变频方法,其特征在于,包括:前级变频模块中的第一滤波器接收输入信号;所述第一滤波器对所述输入信号进行处理,并将所述第一滤波器处理后的信号发送至所述前级变频模块中的NCO;所述NCO对所述第一滤波器处理后的信号进行前级变频后得到中间信号,并将所述中间信号发送至后级变频模块中的第二滤波器;所述第二滤波器对所述中间信号进行处理,并将所述第二滤波器处理后的信号发送至所述后级变频模块中的后级变频单元;所述后级变频单元对所述第二滤波器处理后的信号进行后级变频得到目标信号。
- 根据权利要求11所述的信号变频方法,其特征在于,所述第一滤波器对所述输入信号进行处理包括:所述第一滤波器对所述输入信号进行插值滤波,或,所述第一滤波器对所述输入信号进行抽取滤波。
- 根据权利要求11或12所述的信号变频方法,其特征在于,所述NCO对所述第一滤波器处理后的信号进行前级变频得到中间信号具体为:所述NCO对所述第一滤波器处理后的信号进行0~1/N*Fs范围内的变频后输出中间信号,所述Fs为所述NCO的输入采样率。
- 根据权利要求11至13中任一项所述的信号变频方法,其特征在于,所述第二滤波器对所述中间信号进行处理包括:所述第二滤波器对所述中间信号进行插值滤波,或,所述第二滤波器对所述中间信号进行抽取滤波。
- 根据权利要求11至14中任一项所述的信号变频方法,其特征在于,所述后级变频单元对所述第二滤波器处理后的信号进行后级变频得到目标信号具体为:所述后级变频单元对所述第二滤波器处理后的信号进行0变频,或,所述后级变频单元对所述第二滤波器处理后的信号进行1/N*Fd变频,所述Fd为所述后级变频单元的输入采样率。
- 根据权利要求11至15中任一项所述的信号变频方法,其特征在于,所述后级变频单元对所述第二滤波器处理后的信号进行后级变频得到目标信号之后还包括:若所述目标信号不满足变频要求,则所述后级变频单元将所述目标信号发送至下一级后级变频模块的第二滤波器。
- 根据权利要求13至16所述中任一项所述的信号变频方法,其特征在于,所述N的取值为2的幂次方。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15876399.5A EP3098964B1 (en) | 2015-03-17 | 2015-10-16 | Signal frequency conversion circuit and signal frequency conversion method |
US15/342,214 US9780729B2 (en) | 2015-03-17 | 2016-11-03 | Signal frequency conversion circuit and signal frequency conversion method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510117704.1 | 2015-03-17 | ||
CN201510117704.1A CN104811143B (zh) | 2015-03-17 | 2015-03-17 | 一种信号变频电路以及信号变频方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/342,214 Continuation US9780729B2 (en) | 2015-03-17 | 2016-11-03 | Signal frequency conversion circuit and signal frequency conversion method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016145837A1 true WO2016145837A1 (zh) | 2016-09-22 |
Family
ID=53695706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/092097 WO2016145837A1 (zh) | 2015-03-17 | 2015-10-16 | 一种信号变频电路以及信号变频方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9780729B2 (zh) |
EP (1) | EP3098964B1 (zh) |
CN (1) | CN104811143B (zh) |
WO (1) | WO2016145837A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104811143B (zh) | 2015-03-17 | 2018-05-29 | 华为技术有限公司 | 一种信号变频电路以及信号变频方法 |
CN110545102B (zh) * | 2019-09-03 | 2021-03-26 | 中国原子能科学研究院 | 一种基于数字锁相环的全数字低电平系统 |
CN114024553B (zh) * | 2021-09-28 | 2022-10-25 | 伟乐视讯科技股份有限公司 | 多通道基带至射频的上变频方法、系统及电子设备 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020142748A1 (en) * | 2001-04-02 | 2002-10-03 | Earls Jeffrey D. | Conversion spur avoidance in a multi-conversion radio frequency receiver |
CN101119356A (zh) * | 2007-07-10 | 2008-02-06 | 京信通信系统(中国)有限公司 | 多通道数字上变频系统及其数字上变频方法 |
CN201114160Y (zh) * | 2007-07-31 | 2008-09-10 | 京信通信系统(中国)有限公司 | 基于数字中频技术的多载波发射机 |
CN102098005A (zh) * | 2010-12-13 | 2011-06-15 | 新邮通信设备有限公司 | 数字下变频器和数字上变频器 |
CN102176656A (zh) * | 2011-01-21 | 2011-09-07 | 成都凯腾四方数字广播电视设备有限公司 | 一种宽带上变频器及上变频方法 |
KR20120070806A (ko) * | 2010-12-22 | 2012-07-02 | 펄스텔레콤(주) | 디지털 무선주파수 상향 변환 장치 |
CN203086407U (zh) * | 2012-12-03 | 2013-07-24 | 长沙贝士德电气科技有限公司 | 一种多次变频的ehf频段上变频器 |
CN104811143A (zh) * | 2015-03-17 | 2015-07-29 | 华为技术有限公司 | 一种信号变频电路以及信号变频方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5579341A (en) * | 1994-12-29 | 1996-11-26 | Motorola, Inc. | Multi-channel digital transceiver and method |
US5872810A (en) * | 1996-01-26 | 1999-02-16 | Imec Co. | Programmable modem apparatus for transmitting and receiving digital data, design method and use method for said modem |
US6343207B1 (en) * | 1998-11-03 | 2002-01-29 | Harris Corporation | Field programmable radio frequency communications equipment including a configurable if circuit, and method therefor |
US6975685B1 (en) * | 2000-10-24 | 2005-12-13 | Agere Systems Inc. | Apparatus and method for multi-channel communications system |
DE10155179B4 (de) * | 2001-11-12 | 2006-11-23 | Andrew Wireless Systems Gmbh | Digitaler Repeater mit Bandpassfilterung, adaptiver Vorentzerrung und Unterdrückung der Eigenschwingung |
US7369873B2 (en) * | 2004-03-10 | 2008-05-06 | Samsung Electronics Co., Ltd. | Apparatus and method for remotely modifying reconfigurable hardware in a mobile station |
WO2006023726A1 (en) * | 2004-08-19 | 2006-03-02 | Intrinsix Corporation | Hybrid heterodyne transmitters and receivers |
JP4583196B2 (ja) * | 2005-02-04 | 2010-11-17 | 富士通セミコンダクター株式会社 | 通信装置 |
DE102007022970A1 (de) * | 2007-05-16 | 2008-11-20 | Rohde & Schwarz Gmbh & Co. Kg | Verfahren und Vorrichtung zur dynamischen Rekonfiguration eines Funkkommunikationssystems |
CN101262240A (zh) * | 2008-04-25 | 2008-09-10 | 浙江大学 | 一种易于硬件实现的全数字频率变换的方法及其装置 |
CN201464557U (zh) * | 2009-03-16 | 2010-05-12 | 邵啸 | 一种中频频谱监测装置 |
CA2789267A1 (en) | 2010-02-08 | 2011-08-11 | Ole K. Nilssen | Evaporation cooled lamp |
FR2976426B1 (fr) * | 2011-06-10 | 2013-05-31 | Thales Sa | Systeme d'amplification de signaux generes par une unite de generation de signaux d'un satellite. |
US9571036B2 (en) * | 2011-12-07 | 2017-02-14 | Telefonaktiebolaget Lm Ericsson (Publ) | Heterodyne receiver structure, multi chip module, multi integrated circuit module, and method for processing a radio frequency signal |
CN103248380B (zh) * | 2013-04-25 | 2015-05-20 | 中国电子科技集团公司第三十六研究所 | 一种无模拟变频射频数字化接收机的设计方法及其接收机 |
-
2015
- 2015-03-17 CN CN201510117704.1A patent/CN104811143B/zh active Active
- 2015-10-16 EP EP15876399.5A patent/EP3098964B1/en active Active
- 2015-10-16 WO PCT/CN2015/092097 patent/WO2016145837A1/zh active Application Filing
-
2016
- 2016-11-03 US US15/342,214 patent/US9780729B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020142748A1 (en) * | 2001-04-02 | 2002-10-03 | Earls Jeffrey D. | Conversion spur avoidance in a multi-conversion radio frequency receiver |
CN101119356A (zh) * | 2007-07-10 | 2008-02-06 | 京信通信系统(中国)有限公司 | 多通道数字上变频系统及其数字上变频方法 |
CN201114160Y (zh) * | 2007-07-31 | 2008-09-10 | 京信通信系统(中国)有限公司 | 基于数字中频技术的多载波发射机 |
CN102098005A (zh) * | 2010-12-13 | 2011-06-15 | 新邮通信设备有限公司 | 数字下变频器和数字上变频器 |
KR20120070806A (ko) * | 2010-12-22 | 2012-07-02 | 펄스텔레콤(주) | 디지털 무선주파수 상향 변환 장치 |
CN102176656A (zh) * | 2011-01-21 | 2011-09-07 | 成都凯腾四方数字广播电视设备有限公司 | 一种宽带上变频器及上变频方法 |
CN203086407U (zh) * | 2012-12-03 | 2013-07-24 | 长沙贝士德电气科技有限公司 | 一种多次变频的ehf频段上变频器 |
CN104811143A (zh) * | 2015-03-17 | 2015-07-29 | 华为技术有限公司 | 一种信号变频电路以及信号变频方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3098964A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3098964A4 (en) | 2017-07-26 |
CN104811143A (zh) | 2015-07-29 |
US9780729B2 (en) | 2017-10-03 |
CN104811143B (zh) | 2018-05-29 |
US20170054414A1 (en) | 2017-02-23 |
EP3098964A1 (en) | 2016-11-30 |
EP3098964B1 (en) | 2019-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2755716C (en) | Methods and apparatuses for compensation of i/q imbalance | |
EP2652875B1 (en) | Integrated demodulator, filter and decimator (dfd) for a radio receiver | |
US9148162B2 (en) | Digital down converter with equalization | |
WO2016145837A1 (zh) | 一种信号变频电路以及信号变频方法 | |
CN102163956B (zh) | 用于预失真器的信号反馈回路和方法、以及功率放大设备 | |
CN112019471A (zh) | 一种基于多相结构的削峰方法、装置及计算机存储介质 | |
CN101895354B (zh) | 数字域测量信号误差矢量幅度的方法 | |
CN105306397A (zh) | 一种dqpsk中频差分解调方法 | |
CN102904653A (zh) | 数字域测量信号误差矢量幅度的方法及其实现装置 | |
US9634679B1 (en) | Digital down converter with equalization | |
CN115996162A (zh) | 一种串行高效通信时域o&m定时同步方法 | |
WO2018006423A1 (zh) | 数字预失真处理装置 | |
Ghosh et al. | Reconfigurable signal processing and DSP hardware generator for 5G transmitters | |
US9923737B2 (en) | Analog-digital compatible re-sampling | |
CN102694761B (zh) | 接收信号的方法及系统、收发信号的方法及系统 | |
EP3435550B1 (en) | Digital up-converter and method therefor | |
CN104320207A (zh) | 一种矢量信号分析装置及方法 | |
CA2977865A1 (en) | Data processor, data processing method and communication device | |
Tachwali et al. | Implementation of a bpsk transceiver on hybrid software defined radio platforms | |
CN101917376B (zh) | 一种多载波数字接收机中数字下变频系统的两级变频方法 | |
Amulya et al. | Design and implementation of a reconfigurable digital down converter for 4G systems using MATLAB and FPGA-a review | |
CN103001908B (zh) | 一种多载波的聚合、分离方法及设备 | |
CN111064502A (zh) | 高码速率数传终端 | |
Huang et al. | A 28 nm CMOS 7.04 Gsps polar digital front-end processor for 60 GHz transmitter | |
CN114024553B (zh) | 多通道基带至射频的上变频方法、系统及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REEP | Request for entry into the european phase |
Ref document number: 2015876399 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015876399 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15876399 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |