WO2016145785A1 - 空调室外机的控制方法及系统 - Google Patents

空调室外机的控制方法及系统 Download PDF

Info

Publication number
WO2016145785A1
WO2016145785A1 PCT/CN2015/087848 CN2015087848W WO2016145785A1 WO 2016145785 A1 WO2016145785 A1 WO 2016145785A1 CN 2015087848 W CN2015087848 W CN 2015087848W WO 2016145785 A1 WO2016145785 A1 WO 2016145785A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
power
outdoor unit
fan
conditioner outdoor
Prior art date
Application number
PCT/CN2015/087848
Other languages
English (en)
French (fr)
Inventor
张雪芬
赵志刚
任鹏
蒋世用
刘克勤
冯重阳
袁金荣
姜颖异
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to AU2015386857A priority Critical patent/AU2015386857B2/en
Priority to EP15885161.8A priority patent/EP3273172B1/en
Priority to CA2967069A priority patent/CA2967069C/en
Priority to US15/526,693 priority patent/US10612810B2/en
Publication of WO2016145785A1 publication Critical patent/WO2016145785A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • F24F2005/0067Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy with photovoltaic panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • F24F2110/32Velocity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present application relates to the field of air conditioning equipment, and in particular to a method and system for controlling an outdoor unit of an air conditioner.
  • the main object of the present invention is to provide a control method and system for an outdoor unit of an air conditioner, so as to solve the problem that the air conditioner outdoor unit in the prior art cannot change the position of the fan as needed, resulting in low utilization of wind energy.
  • a control method of an outdoor unit of an air conditioner includes: obtaining an operating mode of the outdoor unit of the air conditioner; acquiring sensor parameters of the outdoor unit of the air conditioner according to the working mode, wherein the sensor parameters include: a wind direction parameter read by the wind direction sensor or a temperature parameter read by the temperature sensor; The working mode and the sensor parameters corresponding to the working mode determine the control parameters of the outdoor unit of the air conditioner; the control parameters are used to drive the speed of the fan and the angle of rotation of the wind direction adjusting device.
  • a control system for an outdoor unit of an air conditioner comprising: an energy conversion device for converting between alternating current and direct current; and a fan device through direct current
  • the busbar is connected to the energy conversion device; the compressor device is connected to the energy conversion device through the DC bus; the sensor is used to sense the sensor parameters of the outdoor unit of the air conditioner; the controller is respectively connected with the energy conversion device, the fan device, the compressor device, The sensor establishes a communication connection for acquiring the working mode of the outdoor unit of the air conditioner, and acquiring the sensor parameters of the outdoor unit of the air conditioner according to the working mode, corresponding to the working mode and the working mode After the sensor parameters, the control parameters for the outdoor unit of the air conditioner are determined; the control parameters are used to drive the speed of the fan and the angle of rotation of the wind direction adjusting device.
  • the operating mode of the outdoor unit of the air conditioner is obtained; and the sensor parameters of the outdoor unit of the air conditioner are obtained according to the working mode, wherein the sensor parameters include: a wind direction parameter read by the wind direction sensor or a temperature parameter read by the temperature sensor
  • the control parameter corresponding to the outdoor unit of the air conditioner is determined by the working mode and the sensor parameter corresponding to the working mode; the rotation speed of the fan and the rotation angle of the wind direction adjusting device are driven by the control parameter, and the outdoor unit of the air conditioner in the prior art cannot be changed as needed.
  • the location of the fan leads to a problem of low utilization of wind energy.
  • the orientation of the air vent of the air conditioner outdoor unit is adjusted according to the wind direction, and the utilization of the wind energy utilization rate is improved.
  • FIG. 1 is a system structural diagram of an outdoor unit of an air conditioner according to an embodiment of the present application.
  • FIG. 2 is a system structural diagram of an optional air conditioner outdoor unit according to an embodiment of the present application.
  • FIG. 3 is a system structural diagram of an optional air conditioner outdoor unit according to an embodiment of the present application.
  • FIG. 4 is a system structural diagram of an optional air conditioner outdoor unit according to an embodiment of the present application.
  • FIG. 5 is a system block diagram of a control system of an outdoor unit of an air conditioner according to Embodiment 1 of the present application;
  • FIG. 6 is a system block diagram of a preferred control system for an outdoor unit of an air conditioner according to an embodiment of the present application
  • FIG. 7 is a system block diagram of a preferred control system for an outdoor unit of an air conditioner according to an embodiment of the present application.
  • FIG. 8 is a system block diagram of a preferred control system for an outdoor unit of an air conditioner according to an embodiment of the present application.
  • FIG. 9 is a flowchart of a control method of an outdoor unit of an air conditioner according to Embodiment 2 of the present application.
  • FIG. 1 is a system configuration diagram of an air conditioner outdoor unit using a control system of an air conditioner outdoor unit according to an embodiment of the present application.
  • the control system of the air conditioner outdoor unit will be described in detail based on the system structure diagram of the air conditioner outdoor unit.
  • the embodiment of the present application provides a control system for an outdoor unit of an air conditioner.
  • FIG. 5 is a system configuration diagram of an air conditioner outdoor unit system according to an embodiment of the present application.
  • the air conditioner outdoor unit includes an energy conversion device 10, a fan device 12, a compressor device 14, a sensor 16, and a controller 18.
  • the energy conversion device 10 is configured to convert between alternating current and direct current; the fan device 12 is connected to the energy conversion device 10 through a DC bus; the compressor device 14 is connected to the energy conversion device 10 through a DC bus; the sensor 16, The controller 18 is configured to establish a communication connection with the energy conversion device 10, the fan device 12, the compressor device 14, and the sensor 16, respectively, for acquiring an operation mode of the air conditioner outdoor unit; and acquiring the air conditioner outdoor unit according to the working mode.
  • the sensor parameter is determined by the working mode and the sensor parameter corresponding to the working mode, and the control parameter is used to drive the fan speed and the rotation angle of the wind direction adjusting device.
  • the energy conversion device 10, the fan device 12, the compressor device 14, the sensor 16, and the controller 18 are used to collect sensor parameters corresponding to the operation mode according to the operation mode of the air conditioner outdoor unit.
  • the working mode includes at least a power mode and a power generation mode.
  • the DC bus is used to connect the electrical components of the energy conversion device 10, the fan device 12 and the compressor device 14 and to transmit a transmission medium of DC power.
  • the controller reads the temperature value of the temperature sensor installed inside the air conditioner outdoor unit, and can control the air conditioner outdoor unit to adjust the rotation speed of the fan according to the change of the actual temperature inside the air conditioner. This not only meets the heat dissipation requirements, but also saves energy and saves electricity.
  • the controller When the air conditioner outdoor unit is in the power generation mode, the controller reads the wind direction parameter of the wind direction sensor disposed outside the air conditioner outdoor unit, and can control the air conditioner outdoor unit to adjust the wind direction adjustment device according to the actual wind direction outside the air conditioner, thereby making the air available outdoors.
  • the inside and outside of the machine are exchanged, so as to utilize the flow of air as much as possible to drive the fan to rotate. In this way, the efficiency of power generation by the fan is improved.
  • the energy conversion device 10 in the above embodiment of the present application may include: an isolation transformer 101, and a grid-connected inverter 103.
  • the isolation transformer 101 is connected to the power grid; the grid-connected inverter 103 is connected to the DC bus and the isolation transformer 101, respectively.
  • the energy conversion device 10 can include an isolation transformer and a grid-connected inverter.
  • the isolation transformer and the grid-connected converter are used to convert the alternating current of the grid and the direct current in the outdoor unit of the air conditioner.
  • the alternating current power transmitted by the grid can be converted into direct current through the energy conversion device including the isolation transformer and the grid-connected inverter to be sent to the DC bus.
  • the air conditioner outdoor unit When the air conditioner outdoor unit is in the power generation mode, it can use the energy conversion device including the isolation transformer and the grid-connected inverter, and utilize the boosting method or the interleaving modulation technology (interlaced modulation technology, which refers to the condition of the wide bus voltage range)
  • the DC voltage is interleaved for amplitude modulation and pulse width modulation to ensure that the DC voltage is modulated to meet the motor drive operating voltage modulation technique.
  • the fan unit 12 includes a fan 121, a fan inverter 123, and a wind direction adjusting device 125.
  • the DC inverter In the power mode, the DC inverter is inverted by the fan converter 123, and the driving fan 121 is actively rotated to drive the air to dissipate heat to the interior of the air conditioner outdoor unit, and is changed by the wind direction adjusting device 125 for heat dissipation. The direction of the air flow.
  • the fan 121 In the power generation mode, the fan 121 is reversely driven by the air flow to generate power; the generated power is rectified by the fan inverter 123 to be converted into direct current, and the wind direction adjusting device 125 is configured to adjust the air flow into the fan according to the wind direction. direction.
  • the wind direction adjusting device 125 adjusts the direction of the air flow entering the fan according to the wind direction, and may be provided with a wind deflector on the inner side and/or the outer side of the fan 121 to change the direction of air flow entering the air conditioner outdoor unit; It is possible to change the direction of the air flow into the outdoor unit of the air conditioner by changing the working angle of the entire fan 121 by setting the rotating shaft in the longitudinal and/or transverse directions of the fan.
  • the problem that the air conditioner outdoor unit cannot change the position of the fan according to the need, and the utilization rate of the wind energy is low is solved, and the orientation of the air exchange port of the outdoor unit of the air conditioner is adjusted according to the wind direction, and the utilization of the wind energy utilization rate is improved.
  • the sensor 16 includes: at least one temperature sensor 161.
  • the temperature sensor 161 is installed inside the outdoor unit of the air conditioner and establishes a communication connection with the controller 18 for reading the temperature value inside the outdoor unit of the air conditioner.
  • the controller determines the first control parameter for controlling the fan speed value by obtaining the actual power value of the compressor of the air conditioner outdoor unit and comparing the actual power value of the compressor with the rated power value of the compressor. Thereby achieving hierarchical control of the compressor fan.
  • the DC-AC Direct Current-to-Alternating Current
  • the fan rotates to the air conditioner.
  • the controller controls the maximum heat dissipation capability of the fan synchronous output to provide a heat dissipation capability that matches the heat dissipation requirement of the module at this time.
  • fan speed can be adjusted by the following formula:
  • ⁇ f K*(a*P com +b*Table(T mod ,P ref ));
  • the power output of the fan is adjusted according to the temperature value obtained by reading the temperature sensor, so that the power output of the fan matches the temperature heat dissipation requirement.
  • the fan speed is slowed down when the temperature is low; when the internal temperature of the air conditioner outdoor unit is high, the heat dissipation requirement inside the air conditioner outdoor unit increases, and the fan speed is adjusted to meet the heat dissipation. Reduce the energy consumption while achieving the grading heat dissipation;
  • the fan is always at the maximum power for heat dissipation, resulting in excessive consumption of electric energy, and also prolongs the service life of the fan.
  • At least two temperature sensors are included in the outdoor unit of the air conditioner, and the temperature sensors respectively establish a communication connection with the controller, and when the temperature sensor is installed at different positions in the outdoor unit of the air conditioner, the controller is internally connected to the outdoor unit according to the temperature.
  • the actual temperature value of at least two temperature sensors installed at different positions inside the air conditioner outdoor unit is further compared to determine an area where the internal temperature of the air conditioner outdoor unit is high. .
  • By adjusting the rotation angle of the wind direction adjusting device it is possible to preferentially dissipate heat in a region where the internal temperature of the air conditioner outdoor unit is high.
  • the controller is in addition to the actual speed of the fan and the air conditioner.
  • the rotation direction of the wind direction adjustment device is linked with the highest temperature region in the outdoor unit of the air conditioner, and the fan inlet/outlet angle is adjusted in real time to rapidly dissipate the interior of the air conditioner outdoor unit. , balance the actual temperature of each area.
  • T env_1 , T env_2 , ..., T env_n are the actual temperatures of the individual temperature sensors.
  • the wind direction can be adjusted by the following formula:
  • ⁇ f K*Table(coordinate(T env_max ), ⁇ ref );
  • K is the weighting coefficient and is a variable value
  • T env_max Max (T env_1 , T env_2 , ..., T env_n )
  • T env_1 , T env_2 , ..., T env_n are the actual temperature sensors Temperature
  • ⁇ ref is a fixed angle value
  • the fixed angle value is a preset angle value of a position point relative to the fan.
  • the highest point of the internal temperature of the air conditioner outdoor unit is determined, and the fan angle is adjusted, so that the fan outlet point matches the position of the highest temperature inside the air conditioner outdoor unit, and the speed is fast.
  • the heat dissipation effect keeps the temperature field inside the air conditioner outdoor unit relatively balanced.
  • the senor 16 includes a wind direction sensor 163.
  • the wind direction sensor 163 is installed outside the air conditioner outdoor unit and is connected to the controller 18 for acquiring wind direction information.
  • the controller reads the wind direction parameter of the outdoor unit of the air conditioner. Calculating the rotation angle value that the wind direction adjustment device needs to rotate according to the wind direction parameter, and generating a second control parameter for controlling the rotation angle of the adjustment device according to the rotation angle value.
  • the windward angle of the fan is adjusted according to the wind direction outside the outdoor unit of the air conditioner, so that the angle of the fan matches the wind direction, and the optimal power generation angle is obtained, thereby improving the power generation efficiency of the fan.
  • the system further includes: an energy storage unit 20.
  • the energy storage unit 20 establishes a connection with the DC bus for storing the electrical energy generated by the fan device in the power generation mode.
  • the controller in the power mode, can divide 24 hours a day, and can be divided into several time intervals as needed. According to the characteristics of each time interval, a power consumption scheme corresponding to the time interval is set, wherein the power consumption scheme at least includes: using the power of the power grid, using the energy of the energy storage unit, and the same The electrical energy of the grid and the energy storage unit is used.
  • the controller matches the current time with the preset time interval to determine the power plan that should be used at the current time.
  • the power consumption scheme can be adjusted according to the time interval, thereby achieving peak-peak peak-shaving operation and providing certain guarantee for grid security.
  • the power generation power of the fan is read by the controller, and the power generated by the fan is compared with a preset power threshold to adjust the power recovery strategy according to the power generation of the fan. To achieve maximum use of recycled energy.
  • the fan reverses power generation, and the fan converter is rectified by the freewheeling diode (when the fan converter is a four-quadrant converter, the fan converter operates in a rectified state)
  • the energy generated by the DC power generation and the reverse power generation of the fan can be classified and recovered in the following ways:
  • the energy is used to charge the energy storage unit through a stored-current DC-DC (Direct Current-to-Direct Current) converter. Reversing energy by means of storage;
  • the fan reversal energy When the fan reversal energy is greater than the preset threshold, it indicates that the energy generated by the fan power reaches the grid-connected condition, and the grid-connected converter and the isolating transformer (the isolation transformer can be installed according to the stability of the electric energy conversion) are connected to the grid. Use of other loads within the grid;
  • the boosting method or the interleaving modulation technique refers to interpolating the DC voltage for amplitude modulation and pulse width modulation for a wide bus voltage range
  • the energy is recovered and connected to the grid by a modulation technique that ensures that the DC voltage is modulated to meet the operating voltage of the motor.
  • the wind turbine By comparing the power generation power with a preset threshold value, when the wind power generation power and the voltage are less than a preset threshold value, the wind turbine reverses the power generation, and passes through the AC/DC converter of the air conditioner outdoor unit fan itself.
  • the power generation can be reversely rectified to obtain direct current, and then the energy storage unit is charged to increase the recovery rate of the reverse power generation of the fan; at the same time, the energy storage unit can release energy to the DC bus of the air conditioner when the air conditioner needs it.
  • the converter is commutated by the compressor for use by the air conditioner to improve the direct utilization of the power generated by the fan.
  • the fan When the wind power and voltage are greater than a certain threshold, the fan reverses the power generation to facilitate grid connection (when no boosting step or boosting capacity is small), the fan reverse power generation is driven by the air conditioner outside the fan. Part of the DC/AC converter, reverse rectification to obtain DC power, and to the DC bus of the air conditioner, through the grid-connected converter DC / AC feedback to the grid for other loads in the network, thereby reducing the power from the mains Take power, reduce grid load, and ensure grid security.
  • the system further includes: a renewable energy device. twenty two.
  • the renewable energy device 22 establishes a connection relationship with the DC bus.
  • the renewable energy device 22 includes any one or more of the following: a photovoltaic power generation device 221, a geothermal power generation device 222, a bioenergy generation device 223, and a tidal power generation device. 224.
  • the system further includes: a DC power distribution board 24, respectively, and the energy conversion device 10, the fan device 12, the compressor device 14, the renewable energy device 22, and the energy storage unit.
  • the controller 20 is coupled to the controller 18 for generating energy distribution commands to the fan unit 12, the compressor unit 14, and the energy conversion unit 10 in accordance with control commands from the controller 18.
  • the DC power distribution board can perform an energy distribution function on the DC load, so that after determining the power recovery strategy and the power consumption scheme, the controller generates an allocation instruction for the energy through the DC power distribution board.
  • the system can directly distribute energy through a grid-connected inverter.
  • the controller may obtain the energy value of the energy storage unit before determining the power recovery strategy by comparing the power generated by the wind turbine in the power generation mode with the preset power threshold. Determine the size of the energy value.
  • the energy storage module is charged when the energy value in the energy storage unit is less than or equal to a preset threshold.
  • the energy value in the energy storage unit may be first determined.
  • the energy storage unit is preferentially charged to ensure sufficient power in the energy storage unit.
  • the air conditioner outdoor unit when the air conditioner outdoor unit is operating in the power mode, first ensure that the energy storage unit has sufficient power.
  • the energy storage unit can preferentially release the stored energy to the DC bus of the air conditioner.
  • the machine is powered by the inverter to achieve peak-to-peak peaking operation and improve the direct utilization of the fan's reversal energy.
  • the control system of the outdoor unit of the air conditioner proposed in the above embodiment improves the efficiency of converting the energy of the wind energy under the premise of not changing the structure as much as possible, and at the same time, when the air conditioner dissipates heat, the fan speed is linked with the actual temperature inside the air conditioner outdoor unit to reduce heat. The energy consumption in the power mode.
  • the embodiment of the present application provides a control method for an outdoor unit of an air conditioner.
  • FIG. 9 is a flowchart of a control method of an outdoor unit of an air conditioner according to an embodiment of the present application.
  • air conditioning The outdoor unit includes: a fan, a compressor, a wind direction adjusting device, at least one temperature sensor, a wind direction sensor and a controller, and the controller is respectively connected to the fan, the compressor, the wind direction adjusting device and the temperature sensor, and the method comprises the following steps:
  • step S11 an operation mode of the outdoor unit of the air conditioner is obtained.
  • Step S13 Acquire sensor parameters of the outdoor unit of the air conditioner according to the working mode, wherein the sensor parameters include: a wind direction parameter read by the wind direction sensor or a temperature parameter read by the temperature sensor.
  • step S15 the control parameters of the outdoor unit of the air conditioner are determined by the working mode and the sensor parameters corresponding to the working mode.
  • step S17 the rotation speed of the fan and the rotation angle of the wind direction adjusting device are driven using the control parameters.
  • the sensor parameters corresponding to the working mode are collected according to the working mode of the outdoor unit of the air conditioner through the above steps S11 to S17.
  • the working mode includes at least a power mode and a power generation mode.
  • the controller reads the temperature value of the temperature sensor installed inside the air conditioner outdoor unit, and can control the air conditioner outdoor unit to adjust the rotation speed of the fan according to the change of the actual temperature inside the air conditioner. This not only meets the heat dissipation requirements, but also saves energy and saves electricity.
  • the controller When the air conditioner outdoor unit is in the power generation mode, the controller reads the wind direction parameter of the wind direction sensor disposed outside the air conditioner outdoor unit, and can control the air conditioner outdoor unit to adjust the wind direction adjustment device according to the actual wind direction outside the air conditioner, thereby making the air available outdoors.
  • the inside and outside of the machine are exchanged, so as to utilize the flow of air as much as possible to drive the fan to rotate. In this way, the efficiency of power generation by the fan is improved.
  • the problem that the air conditioner outdoor unit cannot change the position of the fan according to the need, and the utilization rate of the wind energy is low is solved, and the orientation of the air exchange port of the outdoor unit of the air conditioner is adjusted according to the wind direction, and the utilization of the wind energy utilization rate is improved.
  • the sensor parameter of the air conditioner outdoor unit acquired according to the working mode is a temperature parameter, wherein the working mode and the step are performed in step S15.
  • the sensor parameters corresponding to the working mode determine the control parameters for the outdoor unit of the air conditioner, and the steps include:
  • Step S151a determining a first control parameter for controlling the fan speed by comparing the actual power value of the compressor with the rated power value of the compressor.
  • Step S153a when the actual power value is equal to the rated power, determining that the first control parameter is the rated maximum speed of the fan.
  • Step S155a when the actual power value is less than the rated power value, determining that the first control parameter is the calculated rotational speed value of the wind turbine.
  • the step of determining that the first control parameter is the calculated rotational speed value of the fan in step S155a may include:
  • Step 1551a calculating a percentage of power of the actual power value of the compressor to the rated power value
  • step 1552a the speed value is calculated according to the power percentage and the temperature parameter, and the calculated speed value of the fan is obtained.
  • the controller determines the first control parameter for controlling the fan speed value by obtaining the actual power value of the compressor of the air conditioner outdoor unit and comparing the actual power value of the compressor with the rated power value of the compressor. Thereby achieving hierarchical control of the compressor fan.
  • the fan converter DC/AC operates in the inverter state, and the fan rotates to dissipate heat to the air conditioner outside:
  • the controller controls the maximum heat dissipation capability of the fan synchronous output to provide a heat dissipation capability that matches the heat dissipation requirement of the module at this time.
  • fan speed can be adjusted by the following formula:
  • the power output of the fan is adjusted according to the temperature value obtained by reading the temperature sensor, so that the power output of the fan matches the temperature heat dissipation requirement.
  • the fan speed is slowed down when the temperature is low; when the internal temperature of the air conditioner outdoor unit is high, the heat dissipation requirement inside the air conditioner outdoor unit increases, and the fan speed is adjusted to meet the heat dissipation. Reduce the energy consumption while achieving the grading heat dissipation;
  • the fan is always at the maximum power for heat dissipation, resulting in excessive consumption of electric energy, and also prolongs the service life of the fan.
  • Step S17 uses the control parameter to drive the rotational speed of the fan and the rotation angle of the wind direction adjusting device.
  • the steps include:
  • step S171a the rotational speed of the fan is driven using the first control parameter.
  • Step S173a comparing the actual temperature values of the respective temperature sensors, the position of the temperature sensor having the highest actual temperature value is obtained.
  • step S175a the rotation angle of the wind direction adjusting device is adjusted according to the position of the temperature sensor having the highest temperature value.
  • the controller controls the fan speed of the air conditioner outdoor unit according to the actual temperature inside the air conditioner outdoor unit according to the above steps S171a to S175a.
  • at least two of the different positions inside the air conditioner outdoor unit are further adopted.
  • the actual temperature values of the temperature sensors are compared to determine the area where the internal temperature of the outdoor unit of the air conditioner is high.
  • By adjusting the rotation angle of the wind direction adjusting device it is possible to preferentially dissipate heat in a region where the internal temperature of the air conditioner outdoor unit is high.
  • the controller performs the linkage control between the actual rotation speed of the fan and the temperature inside the air conditioner outdoor unit, and the rotation direction of the wind direction adjustment device and the highest temperature region in the outdoor unit of the air conditioner.
  • Linkage control adjust the fan's inlet and outlet angles in real time to quickly dissipate the interior of the air conditioner outdoor unit and balance the actual temperature of each area.
  • T env_1 , T env_2 , ..., T env_n are the actual temperatures of the individual temperature sensors.
  • the wind direction can be adjusted by the following formula:
  • ⁇ f K*Table(coordinate(T env_max ), ⁇ ref );
  • K is the weighting coefficient and is a variable value
  • T env_max Max (T env_1 , T env_2 , ..., T env_n )
  • T env_1 , T env_2 , ..., T env_n are the actual temperature sensors Temperature
  • ⁇ ref is a fixed angle value
  • the fixed angle value is a preset angle value of a position point relative to the fan.
  • the highest point of the internal temperature of the air conditioner outdoor unit is determined, and the fan angle is adjusted, so that the fan outlet point matches the position of the highest temperature inside the air conditioner outdoor unit, and the speed is fast.
  • the heat dissipation effect keeps the temperature field inside the air conditioner outdoor unit relatively balanced.
  • the air conditioner outdoor unit further includes: an energy storage unit, wherein the energy storage unit establishes a connection relationship with the air conditioner outdoor unit, respectively, wherein before the operation mode of the air conditioner outdoor unit is acquired in step S11,
  • the law also includes:
  • step S101 the daily time is divided into at least two time intervals.
  • Step S103 setting a power consumption scheme of the outdoor unit of the air conditioner according to the time interval, wherein the power consumption scheme at least includes: using the power of the power grid, using the power of the energy storage unit, and simultaneously using the power of the power grid and the energy storage unit.
  • the above-mentioned steps S101 to S103 are divided into 24 hours a day, and may be divided into a plurality of time intervals as needed. According to the characteristics of each time interval, a power consumption scheme corresponding to the time interval is set, wherein the power consumption scheme at least includes: using the power of the power grid, using the energy of the energy storage unit, and simultaneously using the power of the power grid and the energy storage unit.
  • the method further includes:
  • step S121 the current time is acquired.
  • step S122 the current time is matched with the time interval to obtain a matching result.
  • Step S123 determining a power consumption plan of the outdoor unit of the air conditioner according to the matching result.
  • the current time is acquired, and the current time is matched with a preset time interval to determine a power consumption scheme that should be used at the current time.
  • the power consumption scheme can be adjusted according to the time interval, thereby achieving peak-peak peak-shaving operation and providing certain guarantee for grid security.
  • the sensor parameter of the outdoor unit of the air conditioner is obtained as the wind direction parameter according to the working mode, wherein the working mode and the working mode are corresponding to the step S15.
  • the sensor parameters are determined in the control parameters of the air conditioner outdoor unit, and the steps include:
  • Step S151b determining, by the wind direction parameter, a second control parameter for controlling a rotation angle of the wind direction adjusting device.
  • the wind direction parameter of the air conditioner outdoor unit is read by the above step S151b. And calculating a rotation angle value that the wind direction adjustment device needs to rotate according to the wind direction parameter, and generating a second control parameter for controlling the rotation angle of the adjustment device according to the rotation angle value.
  • the windward angle of the fan is adjusted according to the wind direction outside the outdoor unit of the air conditioner, so that the angle of the fan matches the wind direction, and the optimal power generation angle is obtained, thereby improving the power generation efficiency of the fan.
  • the air conditioner outdoor unit further includes an energy storage unit, and the energy storage unit respectively establishes a connection relationship with the air conditioner outdoor unit, wherein, in step S151b, the wind direction parameter is used to determine the rotation angle of the wind direction adjustment device.
  • the method further includes:
  • step S16 the power recovery strategy is determined by comparing the power generated by the fan with a preset power threshold.
  • the power generation power of the fan is read by the controller, and the read fan power generation power is compared with a preset power threshold value, thereby adjusting the power recovery strategy according to the fan power generation power. To achieve maximum use of recycled energy.
  • the steps of determining the power recovery strategy include any one or more of the implementations:
  • Manner 1 The power generation power is determined to be less than or equal to the first power threshold. Where the power generation power is less than or equal to the first usage threshold, the electrical energy generated by the outdoor unit of the air conditioner is stored in the energy storage unit.
  • Manner 2 determining whether the generated power is greater than the first power threshold and less than or equal to the second power threshold, wherein when the generated power is greater than the first power threshold and less than or equal to the second power threshold, the power generated by the outdoor unit of the air conditioner is processed After output to the grid.
  • Manner 3 determining whether the power generation power is greater than a second power threshold, wherein when the power generation power is greater than the second power threshold, the power generated by the air conditioner outdoor unit is directly output to the power grid.
  • the fan when the air conditioner outdoor unit is operating in the power generation mode, the fan reverses power generation, and the fan converter is rectified by a freewheeling diode (when the fan converter is a four-quadrant converter, the fan converter operates at The rectification state) obtains the direct current, and the energy generated by the reverse power generation of the fan can be classified and recovered in the following ways:
  • the energy is used in a regulated DC-DC converter through the energy storage link to charge the energy storage unit and pass the reverse energy through the storage. Way to recycle;
  • the fan reversal energy When the fan reversal energy is greater than the preset threshold, it indicates that the energy generated by the fan power reaches the grid-connected condition, and the grid-connected converter and the isolating transformer (the isolation transformer can be installed according to the stability of the electric energy conversion) are connected to the grid. Use of other loads within the grid;
  • the energy generated by the reverse rotation of the fan is close to the grid-connected condition, the energy is recovered and connected to the grid by a boosting method or an interleaving modulation technique.
  • the wind turbine By comparing the power generation power with a preset threshold value, when the wind power generation power and the voltage are less than a preset threshold value, the wind turbine reverses the power generation, and passes through the AC/DC converter of the air conditioner outdoor unit fan itself.
  • the power generation can be reversely rectified to obtain direct current, and then the energy storage unit is charged to increase the recovery rate of the reverse power generation of the fan; at the same time, the energy storage unit can release energy to the DC bus of the air conditioner when the air conditioner needs it.
  • the converter is commutated by the compressor for use by the air conditioner to improve the direct utilization of the power generated by the fan.
  • the fan When the wind power and voltage are greater than a certain threshold, the fan reverses the power generation to facilitate the grid connection. (When there is no need to go through the boosting step or the boosting section has a small capacity), the fan reverses the power generation through the DC/AC converter of the external fan of the air conditioner, and reversely rectifies the DC power and goes to the DC bus of the air conditioner.
  • the grid-connected converter DC/AC is fed back to the grid for use by other loads in the network, thereby reducing the amount of power taken from the mains, reducing the load on the grid, and ensuring grid security.
  • the method before the step of determining the power recovery strategy by comparing the power generation power of the wind turbine in the power generation mode with the power threshold set in advance, the method further includes:
  • Step S1601 Acquire an energy value of the energy storage unit.
  • Step S1602 When the energy value is less than or equal to a preset threshold, the energy storage module is charged.
  • the energy value in the energy storage unit may be first determined.
  • the energy storage unit is preferentially charged to ensure sufficient power in the energy storage unit.
  • the air conditioner outdoor unit when the air conditioner outdoor unit is operating in the power mode, first ensure that the energy storage unit has sufficient power.
  • the energy storage unit can preferentially release the stored energy to the DC bus of the air conditioner.
  • the machine is powered by the inverter to achieve peak-to-peak peaking operation and improve the direct utilization of the fan's reversal energy.
  • the control method of the outdoor unit of the air conditioner proposed in the above embodiment improves the efficiency of converting the energy of the wind energy under the premise of not changing the structure as much as possible, and simultaneously reduces the fan speed and the actual temperature inside the air conditioner outdoor unit when the air conditioner dissipates heat, and reduces the heat.
  • the energy consumption in the power mode improves the efficiency of converting the energy of the wind energy under the premise of not changing the structure as much as possible, and simultaneously reduces the fan speed and the actual temperature inside the air conditioner outdoor unit when the air conditioner dissipates heat, and reduces the heat.
  • the energy consumption in the power mode improves the efficiency of converting the energy of the wind energy under the premise of not changing the structure as much as possible, and simultaneously reduces the fan speed and the actual temperature inside the air conditioner outdoor unit when the air conditioner dissipates heat, and reduces the heat.
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the unit described as a separate component may or may not be physically separated as a unit display
  • the illustrated components may or may not be physical units, ie may be located in one place or may be distributed over multiple network elements. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, mobile terminal, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .

Abstract

一种空调室外机的控制方法,包括:获取空调室外机的工作模式;根据工作模式获取空调室外机的传感器参数,其中,传感器参数包括:通过风向传感器(163)读取到的风向参数或通过温度传感器(161)读取到的温度参数;通过工作模式和与工作模式对应的传感器参数,确定对空调室外机的控制参数;使用控制参数驱动风机(121)的转速和风向调节装置(125)的旋转角度。另外还涉及一种空调室外机的控制系统。

Description

空调室外机的控制方法及系统 技术领域
本申请涉及空调设备领域,具体而言,涉及一种空调室外机的控制方法及系统。
背景技术
目前,环保节能的需求越来越强烈,使得无论是家用空调还是轻型商用空调,空调制造厂商在对空调完成变频化以提高空调器本身效率的发展阶段之后,越来越多的将目光转向采用新型能源对空调进行供电上,以达到进一步节能减排的目标。
在市面上,逐渐出现光伏空调、其他新能源空调。其中,微风力发电空调因其基本不用增加额外成本,对现有结构不做较大改变的特点慢慢被人关注。但这种通过风力发的电空调因受空调室外机的安装位置限制等,当空调处于发电工作模式时,所能提供的电能较少。
针对现有技术中空调室外机不能根据需要改变风机位置,导致风能利用率低的问题,目前尚未提出有效的解决方案。
发明内容
本发明的主要目的在于提供一种空调室外机的控制方法及系统,以解决现有技术中空调室外机不能根据需要改变风机位置,导致风能利用率低的问题。
为了实现上述目的,根据本发明实施例的一个方面,提供了一种空调室外机的控制方法。该方法包括:获取空调室外机的工作模式;根据工作模式获取空调室外机的传感器参数,其中,传感器参数包括:通过风向传感器读取到的风向参数或通过温度传感器读取到的温度参数;通过工作模式和与工作模式对应的传感器参数,确定对空调室外机的控制参数;使用控制参数驱动风机的转速和风向调节装置的旋转角度。
为了实现上述目的,根据本发明实施例的另一方面,提供了一种空调室外机的控制系统,该系统包括:能源转换装置,用于在交流电与直流电之间进行转换;风机装置,通过直流母线与能源转换装置连接;压缩机装置,通过直流母线与能源转换装置连接;传感器,用于感测得到空调室外机的传感器参数;控制器,分别与能源转换装置、风机装置、压缩机装置、传感器建立通讯连接,用于获取空调室外机的工作模式,并根据工作模式获取空调室外机的传感器参数,在通过工作模式和与工作模式对应的 传感器参数之后,确定对空调室外机的控制参数;使用控制参数驱动风机的转速和风向调节装置的旋转角度。
根据发明实施例,通过获取空调室外机的工作模式;根据工作模式获取空调室外机的传感器参数,其中,传感器参数包括:通过风向传感器读取到的风向参数或通过温度传感器读取到的温度参数;通过工作模式和与工作模式对应的传感器参数,确定对空调室外机的控制参数;使用控制参数驱动风机的转速和风向调节装置的旋转角度,解决了现有技术中空调室外机不能根据需要改变风机位置,导致风能利用率低的问题。实现了根据风向调整空调室外机换气口的朝向,提高利用风能利用率的效果。
附图说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请实施例的一种空调室外机的系统结构图;
图2是根据本申请实施例的一种可选的空调室外机的系统结构图;
图3是根据本申请实施例的一种可选的空调室外机的系统结构图;
图4是根据本申请实施例的一种可选的空调室外机的系统结构图;
图5是根据本申请实施例一的空调室外机的控制系统的系统框图;
图6是根据本申请实施例一优选的空调室外机的控制系统的系统框图;
图7是根据本申请实施例一优选的空调室外机的控制系统的系统框图;
图8是根据本申请实施例一优选的空调室外机的控制系统的系统框图;以及
图9是根据本申请实施例二的空调室外机的控制方法的流程图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例1
图1是根据本申请实施例的使用空调室外机的控制系统的空调室外机的系统结构图。根据空调室外机的系统结构图对空调室外机的控制系统进行详细说明。
在其最基本的配置中,本申请实施例提供了一种空调室外机的控制系统。
如图5所示,图5是根据本申请实施例的空调室外机系统的系统结构图。空调室外机包括:能源转换装置10、风机装置12、压缩机装置14、传感器16和控制器18。
其中,能源转换装置10,用于在交流电与直流电之间进行转换;风机装置12,通过直流母线与能源转换装置10连接;压缩机装置14,通过直流母线与能源转换装置10连接;传感器16,设置于空调室外机上;控制器18,分别与能源转换装置10、风机装置12、压缩机装置14、传感器16建立通讯连接,用于获取空调室外机的工作模式;根据工作模式获取空调室外机的传感器参数;通过工作模式和与工作模式对应的传感器参数,确定对空调室外机的控制参数;使用控制参数驱动风机的转速和风向调节装置的旋转角度。
在本申请上述实施例的方案中,通过上述能源转换装置10、风机装置12、压缩机装置14、传感器16和控制器18,根据空调室外机的工作模式,采集与工作模式对应的传感器参数。其中,工作模式至少包括用电模式和发电模式。直流母线时用于连接能源转换装置10、风机装置12和压缩机装置14这些电器部件并传输直流电能的传输媒介。
当空调室外机处于用电模式时,控制器读取设置于空调室外机内部的温度传感器的温度数值,可以控制空调室外机根据空调内部实际温度的变化,调整风机的旋转速度。这样既满足散热需求,又可节能省电的目的。
当空调室外机处于发电模式时,控制器读取设置于空调室外机外部的风向传感器的风向参数,可以控制空调室外机根据空调外部的实际风向,调整风向调节装置,从而,使空气可以在室外机的内外进行交换,从而尽可能的利用空气的流动带动风机进行转动。这样,提高了利用风机进行发电的效率。
优选地,本申请上述实施例中的能源转换装置10可以包括:隔离变压器101,和并网换流器103。
其中,隔离变压器101,与电网建立连接;并网换流器103,分别与直流母线和隔离变压器101连接。
结合图6可知,上述提供的能源转换装置10可以包括隔离变压器和并网换流器。通过隔离变压器和并网换流器来使电网的交流电和空调室外机中的直流电间相互进行转换。
当空调室外机处于用电模式时,可以通过包含有隔离变压器和并网换流器的能源转换装置将电网传输的交流电变为直流电是送至直流母线中。
当空调室外机处于发电模式时,可以通过包含有隔离变压器和并网换流器的能源转换装置,利用升压的方式或者交错调制技术(交错调制技术,指的是针对宽母线电压范围条件下,将直流电压交错进行幅值调制和脉宽调制,以保证直流电压经过调制后可满足电机驱动运行电压的一种调制技术)对能量进行回收并网。
优选地,在本申请上述实施例中,风机装置12包括:风机121,风机换流器123,和风向调节装置125。
其中,在用电模式下,通过风机换流器123对直流电进行逆变处理,驱动风机121正向主动旋转带动空气流动对空调室外机的内部进行散热,并借助风向调节装置125改变用于散热的空气流动的方向。
在发电模式下,通过空气流动带动风机121反转进行发电;并将所发电能通过风机换流器123进行整流变为直流电,而风向调节装置125用于根据风向,调整进入风机的空气流动的方向。
其中,风向调节装置125根据风向,调整进入风机的空气流动的方向的实现方式,可以是在风机121的内侧和/或外侧设置风向导流板来改变进入空调室外机的空气流动的方向;也可以是通过在风机的纵和/或横两个轴向设置转轴,通过改变风机121整体的工作角度来实现改变进入空调室外机的空气流动的方向。
通过上述实施例,解决了现有技术中空调室外机不能根据需要改变风机位置,导致风能利用率低的问题,实现了根据风向调整空调室外机换气口的朝向,提高利用风能利用率的效果。
优选地,在本申请上述实施例中,传感器16包括:至少一个温度传感器161。
其中,温度传感器161,安装于空调室外机的内部,与控制器18建立通讯连接,用于读取空调室外机内部的温度值。
具体的,控制器通过获取空调室外机的压缩机的实际功率值,并对压缩机的实际功率值与压缩机的额定功率值进行比对,确定用于控制风机转速值的第一控制参数。从而实现对压缩机风机的分级控制。
在实际应用当中,当空调室外机工作在用电模式时,风机换流器DC/AC(Direct Current-to-Alternating Current,直流-交流)工作在逆变状态,风机正转对空调外机进行散热;
当空调的压缩机工作在最大负荷时,控制器控制风机同步输出最大散热能力,以提供匹配此时模块散热需求的散热能力。
当压缩机工作在其他负荷条件时,压缩机的逆变器模块的散热需求与压缩机处于额定功率运行时的需求有所不同。控制器根据通过温度传感器读取到的实际温度值Tmod及压缩机工作功率Pcom,调整风机转速ωf=f(Tmod,Pcom)。从而实现通过风机输出的散热能力与空调室外机内部需求的散热能力相匹配。
进一步的,可以通过如下计算公式对风机转速进行调节:
ωf=K*(a*Pcom+b*Table(Tmod,Pref));
其中,a,b为加权系数,为可变值;K=k1n/Pn,ωn为额定转速,Pn为额定功率,k1为加权系数;Table(Tmod,Pref)为不同工况下温度与功率的预置表(根据经验值可进行修正)。
根据读取温度传感器得到的温度值调节风机的功率输出,使得风机的功率输出与温度散热需求相匹配。在温度较低时,空调室外机内部温度较低时,调整风机转速变慢;当空调室外机内部温度较高时,空调室外机内部的散热需求增大,调整风机转速变快,以满足散热能力的同时降低对能量的消耗,实现分级散热;
通过控制器对风机与空调室外机内部温度的联动控制,避免了风机一直处于最大功率进行散热,造成的对电能的过量消耗,同时也能延长风机的使用寿命。
进一步的,在空调室外机中至少包括两个温度传感器,温度传感器分别与控制器建立通讯连接,并且温度传感器被安装于空调室外机中的不同位置时,在控制器根据温度对空调室外机内部的实际温度来控制空调室外机的风机转速的情况下,进一步通过对设置于空调室外机内部不同位置的至少两个温度传感器的实际温度值进行比对,确定空调室外机内部温度较高的区域。通过调整风向调节装置的旋转角度,来实现优先对空调室外机内部温度较高的区域进行散热。
在实际应用当中,通过上述实施例的方法,控制器除了对风机的实际转速与空调 室外机内部的温度进行联动控制外,还对风向调节装置的旋转方向与空调室外机中的最高温度区域进行联动控制,实时调整风机的进\出风角度以便对空调室外机的内部进行快速散热,平衡各个区域的实际温度。
当空调室外机内部的温度出现不平衡时,风向调节装置的旋转角度值,通过θf=f(Tenv_max,Tenv_1,......,Tenv_n)进行控制,具体的旋转角度值θf取决于空调室外机内部的最高温度点。其中,Tenv_1、Tenv_2、…、Tenv_n为各个温度传感器的实际温度。
进一步的,当空调室外机内部的温度出现不平衡时,可以通过如下计算公式对风向进行调节:
θf=K*Table(coordinate(Tenv_max),θref);
其中:K为加权系数,为可变值;Tenv_max=Max(Tenv_1,Tenv_2,......,Tenv_n),Tenv_1、Tenv_2、…、Tenv_n为各个温度传感器的实际温度;θref为固定角度值,固定角度值为个位置点相对于风机的预设角度数值。
通过上述方法,根据空调室外机内部既有温度传感器的检测,确定空调室外机内部温度的最高点,调整风机角度,使风机出风点与空调室外机内部的温度最高点的位置匹配,达到快速散热的效果,同时使空调室外机内部的温度场保持相对平衡。
优选地,在本申请上述实施例中,传感器16包括:风向传感器163。
其中,风向传感器163,安装于空调室外机于空调室外机的外部,与控制器18建立通讯连接,用于获取风向信息。
具体的,控制器对空调室外机的风向参数进行读取。根据风向参数计算得出风向调节装置需要旋转的旋转角度值,根据旋转角度值生成用于控制调节装置旋转角度的第二控制参数。
在实际应用当中,根据空调室外机外的风向调整风机的迎风面角度,使风机角度与风向匹配,处于最佳发电角度,从而提高风机的发电效率。
优选地,在本申请上述实施例中,系统还包括:储能单元20。
如图7所示,储能单元20与直流母线建立连接,用于储存风机装置在发电模式下产生的电能。
具体的,结合图2所示,在用电模式下,控制器可以对每日24小时进行划分,可以根据需要划分为若干个时间区间。根据每个时间区间的特点,设置与时间区间对应的用电方案,其中,用电方案至少包括:使用电网的电能、使用储能单元的电能、同 时使用电网和储能单元的电能。
在空调室外机处于用电模式下,控制器通过获取到的当前时间,并将当前时间与预先设置好的时间区间进行匹配,以确定当前时间应该使用的用电方案。
在实际应用中,当储能单元的剩余能源较为充足时,可以根据时间区间对用电方案进行调节,从而实现错峰调峰运行,为电网安全提供一定的保障。
在发电模式下,通过控制器读取风机的发电功率,并将读取到的风机发电功率与预先设置的功率阈值进行比对,从而根据风机发电功率调整电力回收的策略。以实现回收能源的最大程度的利用。
进一步的,当空调室外机工作在发电模式时,风机反转发电,风机换流器通过续流二极管进行整流(当风机换流器为四象限换流器时,风机换流器工作在整流状态)得到直流电,风机反转发电产生的能量,可以通过以下几种方式进行分级回收:
当风机反转能量小于预先设定的阈值时,该能量通过储能环节用于稳压的直流-直流(DC/DC,Direct Current-to-Direct Current)换流器,对储能单元进行充电,将反转能量通过储存的方式进行回收;
当风机反转能量大于预先设置的阈值时,说明风机发电产生的能量达到并网条件,通过并网换流器、隔离变压器(隔离变压器可根据电能转换的稳定程度选择安装)进行并网,供给电网内的其他负载使用;
当风机反转产生的能量接近并网条件时,通过升压方式或者交错调制技术(交错调制技术,指的是针对宽母线电压范围条件下,将直流电压交错进行幅值调制和脉宽调制,以保证直流电压经过调制后可满足电机驱动运行电压的一种调制技术)等对该能量进行回收并网。
通过对发电功率与预先设置的阈值进行比对的方式,当风力发电功率、电压小于预设阈值时,风机反转发电,并通过空调室外机风机自身的交直流(DC/AC)换流器,将其所发电能反向整流得到直流电,然后对储能单元进行充电,提高风机反向发电能量的回收率;同时,该储能单元在空调器需要时可以释放能量至空调的直流母线,通过压缩机换流器换流供空调器使用,提高风机发电能量的直接利用率。
当风力发电功率、电压大于某个设定阈值时,风机反转发电能量方便进行并网时(无需经过升压环节或者升压环节容量较小时),风机反转发电通过空调器外风机自身驱动部分的DC/AC换流器,反向整流得到直流电,并至空调器直流母线中,通过并网换流器DC/AC反馈至电网,供网络内的其他负载使用,从而减少从市电的取电量,降低电网负荷,保障电网安全。
优选地,结合图2所示,在本申请上述实施例中,系统还包括:可再生能源设备 22。
如图2所示,可再生能源设备22,与直流母线建立连接关系。
具体的,为了使空调系统的运行更加节能环保,可以在空调的室外机添加其他的可再生能源设备,以供空调室外机在用电模式下,尽量自给自足,降低对电网的依赖程度。
优选地,如图3所示,在本申请上述实施例中,可再生能源设备22包括以下任意一个或多个设备:光伏发电设备221、地热发电设备222、生物能发电设备223和潮汐发电设备224。
优选地,如图4所示,在本申请上述实施例中,系统还包括:直流配电盘24,分别与能源转换装置10、风机装置12、压缩机装置14、可再生能源设备22、储能单元20和控制器18连接,用于根据控制器18的控制指令,生成对风机装置12、压缩机装置14和能源转换装置10的能源分配指令。
具体的,该直流配电盘可以对直流负载进行能量分配功能,使得控制器在确定电力回收策略和用电方案后,通过直流配电盘生成对能源的分配指令。当然,在没有直流配电盘的空调室外机的控制系统中,系统可以直接通过并网换流器对能量进行分配。
进一步的,控制器在通过比对风机在发电模式的发电功率与预先设置的功率阈值,确定电力回收策略的步骤之前,还可以获取储能单元的能量值。判断能量值的大小。当储能单元内的能量值小于或等于预先设置的阈值时,对储能模块进行充电。
具体的,在发电模式下,在确定电力回收策略之前,可以先对储能单元中的能量值进行判断。在储能单元中的能量值小于预先设置的阈值时,优先对储能单元进行充电,以确保储能单元中由足够的电量。
在实际当中,当空调室外机工作在用电模式时,首先确保储能单元有足够电量,当电网处于高峰运行时段时,储能单元就可以优先释放储存能量至空调的直流母线,在通过压缩机换流器进行供电,以达到错峰调峰运行,同时提高了风机反转能量的直接利用率。
上述实施例提出的空调室外机的控制系统,在尽量不对结构变动的前提下,提高风能转换电能的效率,同时在空调散热时,将风机转速与空调室外机内部的实际温度进行联动散热,降低了用电模式下的能量消耗。
实施例2
本申请实施例提供了一种空调室外机的控制方法。
图9是根据本申请实施例的空调室外机的控制方法的流程图。如图9所示,空调 室外机包括:风机、压缩机、风向调节装置、至少一个温度传感器、风向传感器和控制器,控制器分别与风机、压缩机、风向调节装置、温度传感器,该方法包括步骤如下:
步骤S11,获取空调室外机的工作模式。
步骤S13,根据工作模式获取空调室外机的传感器参数,其中,传感器参数包括:通过风向传感器读取到的风向参数或通过温度传感器读取到的温度参数。
步骤S15,通过工作模式和与工作模式对应的传感器参数,确定对空调室外机的控制参数。
步骤S17,使用控制参数驱动风机的转速和风向调节装置的旋转角度。
在本申请上述实施例的方案中,通过上述步骤S11至步骤S17,根据空调室外机的工作模式,采集与工作模式对应的传感器参数。其中,工作模式至少包括用电模式和发电模式。
当空调室外机处于用电模式时,控制器读取设置于空调室外机内部的温度传感器的温度数值,可以控制空调室外机根据空调内部实际温度的变化,调整风机的旋转速度。这样既满足散热需求,又可节能省电的目的。
当空调室外机处于发电模式时,控制器读取设置于空调室外机外部的风向传感器的风向参数,可以控制空调室外机根据空调外部的实际风向,调整风向调节装置,从而,使空气可以在室外机的内外进行交换,从而尽可能的利用空气的流动带动风机进行转动。这样,提高了利用风机进行发电的效率。
通过上述实施例,解决了现有技术中空调室外机不能根据需要改变风机位置,导致风能利用率低的问题,实现了根据风向调整空调室外机换气口的朝向,提高利用风能利用率的效果。
优选地,在本申请上述实施例中,当空调室外机的工作模式为用电模式时,根据工作模式获取到的空调室外机的传感器参数为温度参数,其中,在步骤S15通过工作模式和与工作模式对应的传感器参数,确定对空调室外机的控制参数中,步骤包括:
步骤S151a,通过比对压缩机的实际功率值与压缩机的额定功率值,确定用于控制风机转速的第一控制参数。
步骤S153a,当实际功率值等于额定功率时,确定第一控制参数为风机的额定最高转速。
步骤S155a,当实际功率值小于额定功率值时,确定第一控制参数为风机的计算转速值。
其中,在步骤S155a确定第一控制参数为风机的计算转速值的步骤中,可以包括:
步骤1551a,计算得出压缩机的实际功率值占额定功率值的功率百分比;
步骤1552a,根据功率百分比和温度参数进行转速值计算,得到风机的计算转速值。
具体的,控制器通过获取空调室外机的压缩机的实际功率值,并对压缩机的实际功率值与压缩机的额定功率值进行比对,确定用于控制风机转速值的第一控制参数。从而实现对压缩机风机的分级控制。
在实际应用当中,当空调室外机工作在用电模式时,风机换流器DC/AC工作在逆变状态,风机正转对空调外机进行散热:
当空调的压缩机工作在最大负荷时,控制器控制风机同步输出最大散热能力,以提供匹配此时模块散热需求的散热能力。
当压缩机工作在其他负荷条件时,压缩机的逆变器模块的散热需求与压缩机处于额定功率运行时的需求有所不同。控制器根据通过温度传感器读取到的实际温度值Tmod及压缩机工作功率Pcom,调整风机转速ωf=f(Tmod,Pcom)。从而实现通过风机输出的散热能力与空调室外机内部需求的散热能力相匹配。
进一步的,可以通过如下计算公式对风机转速进行调节:
ωf=K*(a*Pcom+b*Table(Tmod,Pref))
其中,a,b为加权系数,为可变值;K=k1n/Pn,ωn为额定转速,Pn为额定功率,k1为加权系数;Table(Tmod,Pref)为不同工况下温度与功率的预置表(根据经验值可进行修正)。
根据读取温度传感器得到的温度值调节风机的功率输出,使得风机的功率输出与温度散热需求相匹配。在温度较低时,空调室外机内部温度较低时,调整风机转速变慢;当空调室外机内部温度较高时,空调室外机内部的散热需求增大,调整风机转速变快,以满足散热能力的同时降低对能量的消耗,实现分级散热;
通过控制器对风机与空调室外机内部温度的联动控制,避免了风机一直处于最大功率进行散热,造成的对电能的过量消耗,同时也能延长风机的使用寿命。
优选地,在本申请上述实施例中,在空调室外机中至少包括两个温度传感器,温度传感器分别与控制器建立通讯连接,并且温度传感器被安装于空调室外机中的不同位置,其中,在步骤S17使用控制参数驱动风机的转速和风向调节装置的旋转角度中, 步骤包括:
步骤S171a,使用第一控制参数驱动风机的转速。
步骤S173a,比对各个温度传感器的实际温度值,获取实际温度值最高的温度传感器的位置。
步骤S175a,根据温度值最高的温度传感器的位置,调节风向调节装置的旋转角度。
具体的,通过上述步骤S171a至步骤S175a,在控制器根据温度对空调室外机内部的实际温度来控制空调室外机的风机转速的情况下,进一步通过对设置于空调室外机内部不同位置的至少两个温度传感器的实际温度值进行比对,确定空调室外机内部温度较高的区域。通过调整风向调节装置的旋转角度,来实现优先对空调室外机内部温度较高的区域进行散热。
在实际应用当中,通过上述实施例的方法,控制器除了对风机的实际转速与空调室外机内部的温度进行联动控制外,还对风向调节装置的旋转方向与空调室外机中的最高温度区域进行联动控制,实时调整风机的进\出风角度以便对空调室外机的内部进行快速散热,平衡各个区域的实际温度。
当空调室外机内部的温度出现不平衡时,风向调节装置的旋转角度值,通过θf=f(Tenv_max,Tenv_1,......,Tenv_n)进行控制,具体的旋转角度值θf取决于空调室外机内部的最高温度点。其中,Tenv_1、Tenv_2、…、Tenv_n为各个温度传感器的实际温度。
进一步的,当空调室外机内部的温度出现不平衡时,可以通过如下计算公式对风向进行调节:
θf=K*Table(coordinate(Tenv_max),θref);
其中:K为加权系数,为可变值;Tenv_max=Max(Tenv_1,Tenv_2,......,Tenv_n),Tenv_1、Tenv_2、…、Tenv_n为各个温度传感器的实际温度;θref为固定角度值,固定角度值为个位置点相对于风机的预设角度数值。
通过上述方法,根据空调室外机内部既有温度传感器的检测,确定空调室外机内部温度的最高点,调整风机角度,使风机出风点与空调室外机内部的温度最高点的位置匹配,达到快速散热的效果,同时使空调室外机内部的温度场保持相对平衡。
优选地,在本申请上述实施例中,空调室外机还包括:储能单元,储能单元分别与空调室外机建立连接关系,其中,在步骤S11获取空调室外机的工作模式之前,方 法还包括:
步骤S101,将每日至少划分为两个时间区间。
步骤S103,按照时间区间,设定空调室外机的用电方案,其中,用电方案至少包括:使用电网的电能、使用储能单元的电能、同时使用电网和储能单元的电能。
具体的,通过上述步骤S101至步骤S103,对每日24小时进行划分,可以根据需要划分为若干个时间区间。根据每个时间区间的特点,设置与时间区间对应的用电方案,其中,用电方案至少包括:使用电网的电能、使用储能单元的电能、同时使用电网和储能单元的电能。
优选地,在本申请上述实施例中,在步骤S11获取空调室外机的工作模式之后,方法还包括:
步骤S121,获取当前时间。
步骤S122,将当前时间与时间区间进行匹配,得到匹配结果。
步骤S123,根据匹配结果,确定空调室外机的用电方案。
具体的,通过上述步骤S121至步骤S123,获取当前时间,并将当前时间与预先设置好的时间区间进行匹配,以确定当前时间应该使用的用电方案。
在实际应用中,当储能单元的剩余能源较为充足时,可以根据时间区间对用电方案进行调节,从而实现错峰调峰运行,为电网安全提供一定的保障。
优选地,在本申请上述实施例中,当空调室外机的工作模式为发电模式时,根据工作模式获取空调室外机的传感器参数为风向参数,其中,在步骤S15通过工作模式和与工作模式对应的传感器参数,确定对空调室外机的控制参数中,步骤包括:
步骤S151b,通过风向参数,确定用于控制风向调节装置旋转角度的第二控制参数。
具体的,通过上述步骤S151b,对空调室外机的风向参数进行读取。并根据风向参数计算得出风向调节装置需要旋转的旋转角度值,根据旋转角度值生成用于控制调节装置旋转角度的第二控制参数。
在实际应用当中,根据空调室外机外的风向调整风机的迎风面角度,使风机角度与风向匹配,处于最佳发电角度,从而提高风机的发电效率。
优选地,在本申请上述实施例中,空调室外机还包括储能单元,储能单元分别与空调室外机建立连接关系,其中,在步骤S151b通过风向参数,确定用于控制风向调节装置旋转角度的第二控制参数之后,方法还包括:
步骤S16,通过比对风机的发电功率与预先设置的功率阈值,确定电力回收策略。
具体的,通过上述步骤S16,通过控制器读取风机的发电功率,并将读取到的风机发电功率与预先设置的功率阈值进行比对,从而根据风机发电功率调整电力回收的策略。以实现回收能源的最大程度的利用。
优选地,在本申请上述实施例中,当功率阈值包括第一功率阈值和第二功率阈值时,第一功率阈值小于第二功率阈值,其中,步骤S16通过比对风机在发电模式的发电功率与预先设置的功率阈值,确定电力回收策略的步骤包括任意一种或多种实施方式:
方式一:判断发电功率是否小于或等于第一功率阈值,其中,在发电功率小于或等于第一用率阈值的情况下,将空调室外机产生的电能存储入储能单元。
方式二:判断发电功率是否大于第一功率阈值且小于或等于第二功率阈值,其中,在发电功率大于第一功率阈值且小于或等于第二功率阈值时,将空调室外机产生的电能经过处理后输出至电网。
方式三:判断发电功率是否大于第二功率阈值,其中,在发电功率大于第二功率阈值时,将空调室外机产生的电能直接输出至电网。
在实际应用当中,当空调室外机工作在发电模式时,风机反转发电,风机换流器通过续流二极管进行整流(当风机换流器为四象限换流器时,风机换流器工作在整流状态)得到直流电,风机反转发电产生的能量,可以通过以下几种方式进行分级回收:
当风机反转能量小于预先设定的阈值时,该能量通过储能环节用于稳压的直流-直流(DC/DC)换流器,对储能单元进行充电,将反转能量通过储存的方式进行回收;
当风机反转能量大于预先设置的阈值时,说明风机发电产生的能量达到并网条件,通过并网换流器、隔离变压器(隔离变压器可根据电能转换的稳定程度选择安装)进行并网,供给电网内的其他负载使用;
当风机反转产生的能量接近并网条件时,通过升压方式或者交错调制技术等对该能量进行回收并网。
通过对发电功率与预先设置的阈值进行比对的方式,当风力发电功率、电压小于预设阈值时,风机反转发电,并通过空调室外机风机自身的交直流(DC/AC)换流器,将其所发电能反向整流得到直流电,然后对储能单元进行充电,提高风机反向发电能量的回收率;同时,该储能单元在空调器需要时可以释放能量至空调的直流母线,通过压缩机换流器换流供空调器使用,提高风机发电能量的直接利用率。
当风力发电功率、电压大于某个设定阈值时,风机反转发电能量方便进行并网时 (无需经过升压环节或者升压环节容量较小时),风机反转发电通过空调器外风机自身驱动部分的DC/AC换流器,反向整流得到直流电,并至空调器直流母线中,通过并网换流器DC/AC反馈至电网,供网络内的其他负载使用,从而减少从市电的取电量,降低电网负荷,保障电网安全。
优选地,在本申请上述实施例中,在步骤S16通过比对风机在发电模式的发电功率与预先设置的功率阈值,确定电力回收策略的步骤之前,方法还包括:
步骤S1601,获取储能单元的能量值。
步骤S1602,当能量值小于或等于预先设置的阈值时,对储能模块进行充电。
具体的,通过步骤S1601至步骤S1062,在发电模式下,在确定电力回收策略之前,可以先对储能单元中的能量值进行判断。在储能单元中的能量值小于预先设置的阈值时,优先对储能单元进行充电,以确保储能单元中由足够的电量。
在实际当中,当空调室外机工作在用电模式时,首先确保储能单元有足够电量,当电网处于高峰运行时段时,储能单元就可以优先释放储存能量至空调的直流母线,在通过压缩机换流器进行供电,以达到错峰调峰运行,同时提高了风机反转能量的直接利用率。
上述实施例提出的空调室外机的控制方法,在尽量不对结构变动的前提下,提高风能转换电能的效率,同时在空调散热时,将风机转速与空调室外机内部的实际温度进行联动散热,降低了用电模式下的能量消耗。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显 示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、移动终端、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种空调室外机的控制方法,其特征在于,所述空调室外机包括:风机、压缩机、风向调节装置、至少一个温度传感器、风向传感器和控制器,所述控制器分别与所述风机、所述压缩机、所述风向调节装置、所述温度传感器,所述方法包括:
    获取空调室外机的工作模式;
    根据所述工作模式获取所述空调室外机的传感器参数,其中,所述传感器参数包括:通过所述风向传感器读取到的风向参数或通过所述温度传感器读取到的温度参数;
    通过所述工作模式和与所述工作模式对应的所述传感器参数,确定对所述空调室外机的控制参数;
    使用所述控制参数驱动所述风机的转速和所述风向调节装置的旋转角度。
  2. 根据权利要求1所述的方法,其特征在于,当所述空调室外机的所述工作模式为用电模式时,根据所述工作模式获取到的所述空调室外机的传感器参数为所述温度参数,其中,通过工作模式和与工作模式对应的传感器参数,确定对所述空调室外机的控制参数的步骤包括:
    通过比对所述压缩机的实际功率值与所述压缩机的额定功率值,确定用于控制所述风机转速的第一控制参数;
    当所述实际功率值等于额定功率时,确定所述第一控制参数为所述风机的额定最高转速;
    当所述实际功率值小于额定功率值时,确定所述第一控制参数为所述风机的计算转速值;
    其中,确定所述第一控制参数为所述风机的计算转速值的步骤包括:计算得出所述压缩机的所述实际功率值占所述额定功率值的功率百分比;根据所述功率百分比和所述温度参数进行转速值计算,得到所述风机的计算转速值。
  3. 根据权利要求2所述的方法,其特征在于,所述空调室外机中至少包括两个所述温度传感器,所述温度传感器分别与所述控制器建立通讯连接,所述温度传感器被安装于所述空调室外机中的不同位置,其中,使用所述控制参数驱动所述风机的转速和所述风向调节装置的旋转角度的步骤包括:
    使用所述第一控制参数驱动所述风机的转速;
    比对各个温度传感器的实际温度值,获取所述实际温度值最高的所述温度传 感器的位置;
    根据所述温度值最高的所述温度传感器的位置,调节所述风向调节装置的所述旋转角度。
  4. 根据权利要求2或3中任意一项所述的方法,其特征在于,所述空调室外机还包括:储能单元,所述储能单元分别与所述空调室外机建立连接关系,其中,在获取空调室外机的工作模式之前,所述方法还包括:
    将每日至少划分为两个时间区间;
    按照所述时间区间,设定所述空调室外机的用电方案,其中,所述用电方案至少包括:使用电网的电能、使用储能单元的电能、同时使用所述电网和所述储能单元的电能。
  5. 根据权利要求4所述的方法,其特征在于,在获取空调室外机的工作模式之后,所述方法还包括:
    获取当前时间;
    将所述当前时间与所述时间区间进行匹配,得到匹配结果;
    根据所述匹配结果,确定所述空调室外机的所述用电方案。
  6. 根据权利要求1所述的方法,其特征在于,当所述空调室外机的所述工作模式为发电模式时,根据所述工作模式获取所述空调室外机的传感器参数为所述风向参数,其中,通过所述工作模式和与所述工作模式对应的所述传感器参数,确定对所述空调室外机的控制参数的步骤包括:
    通过所述风向参数,确定用于控制所述风向调节装置旋转角度的第二控制参数。
  7. 根据权利要求6所述的方法,其特征在于,所述空调室外机还包括储能单元,所述储能单元分别与所述空调室外机建立连接关系,其中,在通过所述风向参数,确定用于控制所述风向调节装置旋转角度的第二控制参数之后,所述方法还包括:
    通过比对所述风机的发电功率与预先设置的功率阈值,确定电力回收策略。
  8. 根据权利要求7所述的方法,其特征在于,当所述功率阈值包括第一功率阈值和第二功率阈值时,所述第一功率阈值小于所述第二功率阈值,其中,通过比对所述风机在所述发电模式的发电功率与预先设置的功率阈值,确定电力回收策略的步骤包括如下任意一种或多种实施方式:
    方式一:判断所述发电功率是否小于或等于所述第一功率阈值,其中,在所 述发电功率小于或等于第一用率阈值的情况下,将所述空调室外机产生的电能存储入储能单元;
    方式二:判断所述发电功率是否大于所述第一功率阈值且小于或等于所述第二功率阈值,其中,在所述发电功率大于所述第一功率阈值且小于或等于所述第二功率阈值时,将所述空调室外机产生的电能经过处理后输出至电网;
    方式三:判断所述发电功率是否大于所述第二功率阈值,其中,在所述发电功率大于所述第二功率阈值时,将所述空调室外机产生的电能直接输出至所述电网。
  9. 根据权利要求7所述的方法,其特征在于,在通过比对所述风机在所述发电模式的发电功率与预先设置的功率阈值,确定电力回收策略的步骤之前,所述方法还包括:
    获取所述储能单元的能量值;
    当所述能量值小于或等于预先设置的阈值时,对储能模块进行充电。
  10. 一种空调室外机的控制系统,其特征在于,所述系统包括:
    能源转换装置,用于在交流电与直流电之间进行转换;
    风机装置,通过直流母线与所述能源转换装置连接;
    压缩机装置,通过所述直流母线与所述能源转换装置连接;
    传感器,用于感测得到空调室外机的传感器参数;
    控制器,分别与所述能源转换装置、所述风机装置、所述压缩机装置、所述传感器建立通讯连接,用于获取空调室外机的工作模式,并根据所述工作模式获取所述空调室外机的传感器参数,在通过所述工作模式和与所述工作模式对应的所述传感器参数,确定对所述空调室外机的控制参数之后,使用所述控制参数驱动风机的转速和风向调节装置的旋转角度。
  11. 根据权利要求10所述的系统,其特征在于,所述能源转换装置包括:
    隔离变压器,与电网建立连接;
    并网换流器,分别与所述直流母线和所述隔离变压器连接。
  12. 根据权利要求10所述的系统,其特征在于,所述风机装置包括:
    风机;
    风机换流器;
    风向调节装置,用于调节进/出所述风机气流的方向。
  13. 根据权利要求12所述的系统,其特征在于,所述传感器包括:
    至少一个温度传感器,安装于所述空调室外机的内部,与所述控制器建立通讯连接,用于读取所述空调室外机内部的温度值。
  14. 根据权利要求10至13中任意一项所述的系统,其特征在于,所述传感器包括:
    风向传感器,安装于所述空调室外机于所述空调室外机的外部,与所述控制器建立通讯连接,用于获取风向信息。
  15. 根据权利要求14所述的系统,其特征在于,所述系统还包括:
    储能单元,与所述直流母线建立连接,用于储存所述风机装置在发电模式下产生的电能。
  16. 根据权利要求15所述的系统,其特征在于,所述系统还包括:
    可再生能源设备,与所述直流母线建立连接关系。
  17. 根据权利要求16所述的系统,其特征在于,所述可再生能源设备包括以下任意一个或多个设备:光伏发电设备、地热发电设备、生物能发电设备和潮汐发电设备。
  18. 根据权利要求17所述的系统,其特征在于,所述系统还包括:直流配电盘,分别与所述能源转换装置、所述风机装置、所述压缩机装置、所述可再生能源设备、所述储能单元和所述控制器连接,用于根据所述控制器的控制指令生成对所述风机装置和所述压缩机装置的能源分配指令。
PCT/CN2015/087848 2015-03-16 2015-08-21 空调室外机的控制方法及系统 WO2016145785A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2015386857A AU2015386857B2 (en) 2015-03-16 2015-08-21 Method and system for controlling air conditioner outdoor unit
EP15885161.8A EP3273172B1 (en) 2015-03-16 2015-08-21 Method and system for controlling air conditioner outdoor unit
CA2967069A CA2967069C (en) 2015-03-16 2015-08-21 Method and system for controlling air conditioner outdoor unit
US15/526,693 US10612810B2 (en) 2015-03-16 2015-08-21 Method and system for controlling air conditioner outdoor unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510115436.XA CN104633869B (zh) 2015-03-16 2015-03-16 空调室外机的控制方法及系统
CN201510115436.X 2015-03-16

Publications (1)

Publication Number Publication Date
WO2016145785A1 true WO2016145785A1 (zh) 2016-09-22

Family

ID=53212908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087848 WO2016145785A1 (zh) 2015-03-16 2015-08-21 空调室外机的控制方法及系统

Country Status (6)

Country Link
US (1) US10612810B2 (zh)
EP (1) EP3273172B1 (zh)
CN (1) CN104633869B (zh)
AU (1) AU2015386857B2 (zh)
CA (1) CA2967069C (zh)
WO (1) WO2016145785A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109241025A (zh) * 2017-07-07 2019-01-18 深圳市辉宏技术有限公司 一种htm效率数据库构建方法、装置及系统

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104633869B (zh) * 2015-03-16 2017-06-06 珠海格力电器股份有限公司 空调室外机的控制方法及系统
CN104990210B (zh) * 2015-06-24 2017-12-12 广东美的制冷设备有限公司 空调器、空调器的室内机及其的功率估算控制方法、装置
CN105674475B (zh) * 2015-12-18 2018-11-13 奥克斯空调股份有限公司 一种具有按时限电功能的智能空调的控制方法
CN105910226A (zh) * 2016-04-19 2016-08-31 青岛海信日立空调系统有限公司 一种空调室外机、空调及其控制方法
CN107238180B (zh) * 2017-06-23 2020-07-07 特灵空调系统(中国)有限公司 风冷冷水机组的风量控制方法及系统
CN107166681B (zh) * 2017-06-27 2020-02-21 珠海格力电器股份有限公司 空调及其空调控制方法和装置
CN108281952B (zh) * 2018-02-10 2024-04-16 珠海格力电器股份有限公司 光伏供电系统及其供电控制方法
CN108759295B (zh) * 2018-07-18 2020-08-07 长虹美菱股份有限公司 一种冰箱冷凝器风机转速控制方法
CN108759296B (zh) * 2018-07-18 2020-11-27 长虹美菱股份有限公司 一种风冷冰箱的风机转速控制方法
CN111352114B (zh) * 2018-12-20 2022-11-29 广东美的环境电器制造有限公司 电器设备的控制方法及装置、电器设备及存储介质
CN110081560B (zh) * 2019-05-07 2020-06-16 珠海格力电器股份有限公司 风机运行频率的调整方法及装置
CN110425671A (zh) * 2019-08-14 2019-11-08 珠海格力电器股份有限公司 一种具有储能装置的空调系统及其控制方法
CN110567139B (zh) * 2019-08-30 2021-02-26 珠海格力电器股份有限公司 光伏空调的限频及降频控制方法、装置及光伏空调
CN110850156B (zh) * 2019-10-09 2022-03-29 广东美的制冷设备有限公司 功率检测方法、装置、空调器以及存储介质
CN111102700A (zh) * 2019-12-02 2020-05-05 珠海格力电器股份有限公司 一种节能控制装置、空调器及其节能控制方法
CN111818781B (zh) * 2020-08-13 2022-10-11 国网黑龙江省电力有限公司鹤岗供电公司 机房温度均衡化的辅助调节装置
CN111998514A (zh) * 2020-09-08 2020-11-27 佛山市顺德区美的电子科技有限公司 空调器的控制方法、空调器及计算机可读存储介质
CN113251628B (zh) * 2021-04-16 2022-09-06 青岛海尔空调器有限总公司 用于控制空调室外机出风的方法及装置、空调室外机
CN113294902B (zh) * 2021-05-31 2022-10-14 厦门科灿信息技术有限公司 空调的节能控制方法、节能控制装置及空调控制终端
CN113485239B (zh) * 2021-06-22 2023-06-30 郭恩训 一种指按器及控制电路
CN113531823A (zh) * 2021-06-24 2021-10-22 江苏云洲智能科技有限公司 一种空调外机控制方法、电子设备及存储介质
CN113465132B (zh) * 2021-06-25 2023-06-23 Tcl空调器(中山)有限公司 空调器的启动控制方法、装置、空调器和存储介质
CN113504786B (zh) * 2021-07-08 2022-06-14 中国南方电网有限责任公司超高压输电公司大理局 一种基于风向的无人机飞行调整方法及装置
CN113587179B (zh) * 2021-07-26 2022-12-09 青岛海信日立空调系统有限公司 一种多联机空调系统
CN113677164A (zh) * 2021-08-31 2021-11-19 合肥美的暖通设备有限公司 电控盒的散热控制方法、装置以及空调器
CN114636238B (zh) * 2022-04-19 2023-04-28 珠海格力电器股份有限公司 电机温升控制方法
KR20230152496A (ko) * 2022-04-27 2023-11-03 삼성전자주식회사 공기 조화기 및 그 제어 방법
CN115273398A (zh) * 2022-07-20 2022-11-01 浙江鹿枫户外用品有限公司 户外求助信息发送方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2932188Y (zh) * 2006-06-29 2007-08-08 杨春梅 风能驱动民用空调器
CN102003223A (zh) * 2010-11-04 2011-04-06 Tcl空调器(中山)有限公司 空调器风力发电装置及其供电方法
JP2011085336A (ja) * 2009-10-16 2011-04-28 Panasonic Corp 換気装置
JP2011196584A (ja) * 2010-03-18 2011-10-06 Fujitsu General Ltd 空気調和機
WO2013073930A1 (en) * 2011-11-17 2013-05-23 Universiti Malaya Wind and exhaust air energy recovery system
CN203756438U (zh) * 2014-04-09 2014-08-06 天津网士通科技有限公司 一种利用空调室外机排风口发电的风力发电装置
CN104410343A (zh) * 2014-12-22 2015-03-11 珠海格力电器股份有限公司 励磁控制方法、系统、控制器及空调外机
CN104633869A (zh) * 2015-03-16 2015-05-20 珠海格力电器股份有限公司 空调室外机的控制方法及系统
CN204574366U (zh) * 2015-03-16 2015-08-19 珠海格力电器股份有限公司 空调室外机的控制系统

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0152113B1 (ko) * 1994-12-16 1998-11-02 윤종용 공기조화기의 운전제어방법
ID19087A (id) * 1996-09-12 1998-06-11 Samsung Electronics Co Ltd Alat kontrol arus angin dari dari mesin penyejuk udara dan metoda kerjanya
JP2001263767A (ja) * 2000-03-17 2001-09-26 Fujitsu General Ltd 空気調和機の制御方法
US7249931B2 (en) * 2002-03-30 2007-07-31 University Of Central Florida Research Foundation, Inc. High efficiency air conditioner condenser fan with performance enhancements
JP2005214496A (ja) * 2004-01-29 2005-08-11 Toshiba Kyaria Kk 空気調和機
US20090013703A1 (en) * 2007-07-09 2009-01-15 Werner Ronald F Natural air enery saving temperature assist system for central air conditioning / heating system
TWI346266B (en) * 2007-10-30 2011-08-01 Univ Nat Taiwan Device for conditioning temperature and humidity
ES2733595T3 (es) * 2008-02-04 2019-12-02 Delta T Llc Sistema de control automático para ventilador de techo basado en diferenciales de temperatura y humedad
JP2011099597A (ja) * 2009-11-05 2011-05-19 Hitachi Appliances Inc 空気調和機
KR20110085646A (ko) * 2010-01-21 2011-07-27 엘지전자 주식회사 송풍장치 및 이를 구비하는 실외기
US8442694B2 (en) * 2010-07-23 2013-05-14 Lg Electronics Inc. Distribution of airflow in an HVAC system to optimize energy efficiency and temperature differentials
US20120036878A1 (en) * 2010-08-11 2012-02-16 Mitsubishi Electric & Electronics Usa, Inc. Low ambient cooling kit for variable refrigerant flow heat pump
GB2482733A (en) * 2010-08-13 2012-02-15 David Stenhouse Water extractor for dwellings
CN201943894U (zh) 2011-01-04 2011-08-24 陈玉万 空调压缩机风力发电机组合
US9228750B2 (en) * 2011-01-24 2016-01-05 Rocky Research HVAC/R system with multiple power sources and time-based selection logic
JP2014074554A (ja) * 2012-10-05 2014-04-24 Mitsubishi Electric Corp 換気システム、換気方法、換気制御装置及びプログラム
JP2016065643A (ja) * 2012-12-28 2016-04-28 日揮株式会社 液化ガス製造設備
US20140214213A1 (en) * 2013-01-29 2014-07-31 Rocky Research Utility control of hvac with integral electrical storage unit
WO2014120651A1 (en) * 2013-01-30 2014-08-07 Trane International Inc. Multiple load control for variable frequency drive harmonic mitigation
CN203321746U (zh) * 2013-05-29 2013-12-04 上海跃风新能源科技有限公司 一种可调节风力发电机
CN103438504A (zh) * 2013-08-21 2013-12-11 苏州张扬能源科技有限公司 一种空调节能控制系统
JP5846226B2 (ja) * 2014-01-28 2016-01-20 ダイキン工業株式会社 空気調和装置
US20150267946A1 (en) * 2014-03-18 2015-09-24 Suntrac Solar Manufacturing, Llc Solar panel interface with air conditioning and/or heat pump unit system
US20150338111A1 (en) * 2014-05-23 2015-11-26 Lennox lndustries lnc. Variable Speed Outdoor Fan Control
WO2016056141A1 (ja) * 2014-10-10 2016-04-14 三菱電機株式会社 熱交換換気装置
JP6397050B2 (ja) * 2014-11-26 2018-09-26 日立ジョンソンコントロールズ空調株式会社 空気調和機
KR102436704B1 (ko) * 2015-03-23 2022-08-25 엘지전자 주식회사 팬 모터 구동장치 및 이를 구비하는 공기조화기
KR20180033634A (ko) * 2016-09-26 2018-04-04 삼성전자주식회사 공기 조화기 및 그 제어 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2932188Y (zh) * 2006-06-29 2007-08-08 杨春梅 风能驱动民用空调器
JP2011085336A (ja) * 2009-10-16 2011-04-28 Panasonic Corp 換気装置
JP2011196584A (ja) * 2010-03-18 2011-10-06 Fujitsu General Ltd 空気調和機
CN102003223A (zh) * 2010-11-04 2011-04-06 Tcl空调器(中山)有限公司 空调器风力发电装置及其供电方法
WO2013073930A1 (en) * 2011-11-17 2013-05-23 Universiti Malaya Wind and exhaust air energy recovery system
CN203756438U (zh) * 2014-04-09 2014-08-06 天津网士通科技有限公司 一种利用空调室外机排风口发电的风力发电装置
CN104410343A (zh) * 2014-12-22 2015-03-11 珠海格力电器股份有限公司 励磁控制方法、系统、控制器及空调外机
CN104633869A (zh) * 2015-03-16 2015-05-20 珠海格力电器股份有限公司 空调室外机的控制方法及系统
CN204574366U (zh) * 2015-03-16 2015-08-19 珠海格力电器股份有限公司 空调室外机的控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3273172A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109241025A (zh) * 2017-07-07 2019-01-18 深圳市辉宏技术有限公司 一种htm效率数据库构建方法、装置及系统

Also Published As

Publication number Publication date
EP3273172B1 (en) 2020-02-12
CA2967069A1 (en) 2016-09-22
EP3273172A4 (en) 2018-02-28
CA2967069C (en) 2019-03-12
CN104633869A (zh) 2015-05-20
AU2015386857A1 (en) 2017-06-01
AU2015386857B2 (en) 2018-06-07
US10612810B2 (en) 2020-04-07
CN104633869B (zh) 2017-06-06
US20170314802A1 (en) 2017-11-02
EP3273172A1 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
WO2016145785A1 (zh) 空调室外机的控制方法及系统
CN104040829B (zh) 用于光伏系统的太阳能同步的负载
US9172249B2 (en) Intelligent microgrid controller
CN101050770B (zh) 多风机并联型风光互补提水系统
US11025062B2 (en) Apparatus for use in a microgrid and methods of operating the same
CN102959820A (zh) 可再生能量回收系统
WO2016101644A1 (zh) 空调系统
CN101635466A (zh) 采用多相发电机和多电平变换器的兆瓦级变速风电机组
Manojkumar et al. Power electronics interface for hybrid renewable energy system—A survey
CN109668282A (zh) 一种使太阳能光伏空调系统独立运行的控制方法
US11867412B2 (en) Device and method for converting solar PV energy into thermal energy storage using combined heat-pump and resistive heating elements in water heater
CN204574366U (zh) 空调室外机的控制系统
CN103196194A (zh) 一种电网互补型太阳能变频空调
CN205332407U (zh) 空调室外机及空调器
US11936327B2 (en) Hybrid power system with electric generator and auxiliary power source
US20220042708A1 (en) Hvac system and control methods for operation within a microgrid
CN117811457A (zh) 电机的控制电路、方法、装置、电子设备和存储介质
Chishiki et al. Potential for New Energy Management by Variable Distribution Voltage Based on Electricity Consumption within Consumers
CN201013618Y (zh) 中功率多风机并联型风光互补提水系统
Hossain et al. Study of Harmonic Mitigation in PMSG Wind Turbine Energy Conversion Systems
CN110783956A (zh) 一种太阳能板组网与市电混合供电的空调控制方式
Sabry et al. Review on A DC Environment for PV-Powered Household Appliances

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2967069

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15526693

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015885161

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015386857

Country of ref document: AU

Date of ref document: 20150821

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE