WO2016145738A1 - 一种基于虚拟上位机的数控系统 - Google Patents

一种基于虚拟上位机的数控系统 Download PDF

Info

Publication number
WO2016145738A1
WO2016145738A1 PCT/CN2015/081292 CN2015081292W WO2016145738A1 WO 2016145738 A1 WO2016145738 A1 WO 2016145738A1 CN 2015081292 W CN2015081292 W CN 2015081292W WO 2016145738 A1 WO2016145738 A1 WO 2016145738A1
Authority
WO
WIPO (PCT)
Prior art keywords
computer
human
virtual
numerical control
control system
Prior art date
Application number
PCT/CN2015/081292
Other languages
English (en)
French (fr)
Inventor
杨建中
冯冰艳
惠恩明
丁国涛
陆永亮
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US15/113,345 priority Critical patent/US10162336B2/en
Priority to JP2016575824A priority patent/JP6503387B2/ja
Publication of WO2016145738A1 publication Critical patent/WO2016145738A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/409Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using manual data input [MDI] or by using control panel, e.g. controlling functions with the panel; characterised by control panel details or by setting parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • G05B19/4142Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller characterised by the use of a microprocessor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/23Pc programming
    • G05B2219/23067Control, human or man machine interface, interactive, HMI, MMI

Definitions

  • the invention belongs to the technical field of numerical control systems, and particularly relates to a numerical control system based on a virtual upper computer.
  • CNC machine tool is a flexible, high-performance, high-precision automatic machine tool that can solve complex, precise, small-volume, multi-variety parts processing problems. It is generally composed of CNC system, machine tool body and other auxiliary devices. .
  • the numerical control system is the core of the whole CNC machine tool. It integrates the position (track), speed and torque control. It performs some or all of the numerical control functions according to the code instructions to realize the motion control of one or more mechanical devices.
  • the general numerical control system is composed of an input/output device, a numerical control device, a programmable controller (PLC), a servo system, a detection feedback device, etc., wherein the numerical control device is the center of the numerical control system.
  • PLC programmable controller
  • the numerical control device may include a display module, an input/output module, a decoder, a motion planner, an axis motion controller, a memory, and the like.
  • the display module is an important medium for human-computer interaction, which provides an intuitive operating environment for the user;
  • the input/output module is an interface for data and information exchange between the numerical control device and the outside world, including numerical control machining programs, control parameters, compensation amounts, etc.
  • the interface module of the device and the servo drive system is mainly responsible for position control; the memory is responsible for storing information such as part processing program, system configuration parameters and system inherent data.
  • the software and hardware systems of mainstream high-end CNC systems at home and abroad are mostly upper and lower machine structures: the upper computer is responsible for the system non-real-time tasks, and the lower computer is responsible for the system real-time motion control and logic control tasks.
  • the application of the upper and lower machine structure in the field of numerical control is very mature, and its communication and control are relatively easy to implement.
  • the numerical control system based on the upper and lower position machine structure has the distributed characteristics, and supports the user's secondary research and development and independent upgrade to a certain extent.
  • the upper computer and the lower computer are generally installed next to the machine tool, and each is equipped with an industrial computer.
  • the two industrial computers are connected by bus or network and realize communication, as shown in Fig. 2.
  • the traditional upper and lower machine architecture makes the intelligent system of numerical control system difficult to adapt to the increasingly complex manufacturing process, which forms the main bottleneck of the development of numerical control system to intelligent and digital, and brings great performance for improving the performance of numerical control system. difficult.
  • the applicant's prior patent application CN104298175A discloses a numerical control system based on virtualization technology, which comprises a local numerical control device and a remotely located server, which is interconnected with a local numerical control device network for
  • the numerical control system provides high-end value-added function services, such as fast programming, data acquisition and processing, G code quality analysis and optimization, etc., and can also undertake some non-real-time tasks in the traditional upper and lower machine numerical control system, such as decoding, processing simulation, Input/pre-processing, etc.;
  • the server and the numerical control device are interconnected by a remote desktop client installed on the numerical control device, the client running on the numerical control device system, which enables the operator to be in the numerical control device by using virtual technology
  • the human interaction device performs virtual operations on the server to realize remote operation control of the server, and the two cooperate to realize the use of the intelligent software service and the numerical control processing control.
  • the technical solution adopts the idea of a remote server, and provides a high-end intelligent function service for the numerical control system by setting a remote server, and can also transfer some non-real-time functions of the traditional numerical control system upper computer to a remote server for processing, thereby improving the numerical control.
  • the numerical control system in the above scheme is actually a traditional upper and lower machine architecture, which only adds a server for it, provides third-party services for the numerical control system, and does not break through the traditional architecture.
  • this kind of architecture can make the numerical control system have certain expansion ability in function, it still has many defects: First, most of the calculations related to processing (such as interpolation, speed planning, etc.) are still done locally.
  • HMI Human Machine Interaction Unit
  • the present invention provides a numerical control system based on a virtual upper computer, which realizes a virtual upper computer by setting a numerical control system upper computer in a virtual machine manner in a remote server.
  • the new design of the upper and lower machine structure of the numerical control system solves the problems of data processing capability, HMI function expansion and remote processing limitation of the current numerical control system.
  • a numerical control system based on a virtual upper computer which utilizes a virtualization technology to set a host computer in a virtual machine manner in a remote server to form a virtual upper computer, and utilizes the virtual upper computer.
  • the position machine and the local lower position machine (hereinafter referred to as the local lower position machine) are configured to form a new upper and lower machine structure, and use the interaction of the two to complete the machine tool machining control, wherein the numerical control system mainly comprises setting on the remote server.
  • the virtual upper computer, the local numerical control system lower computer, and the human-computer interaction device for human-computer interaction, the virtual upper computer and the human-machine interaction device, and the virtual upper computer and the local lower-level computer pass Internet connection;
  • the human-machine interaction device is configured to provide a human-computer interaction input/output interface, and the numerical control machining instruction is input through the human-machine interaction device; the human-computer interaction module for realizing human-computer interaction is integrated on the virtual upper computer; a non-real-time/semi-real-time task execution unit that performs numerical control processing of non-real-time/semi-real-time tasks (such as decoding, offline speed planning), and a lower-level machine control unit for controlling machine tool processing, the virtual upper computer passes the
  • the human-computer interaction module receives the numerical control machining instruction input by the human-machine interaction device, and processes the non-real-time/semi-real-time task execution unit to form a machine tool control instruction, and then transmits the control data to the network through the lower computer control unit to the control unit.
  • the underground position machine receives the control data provided by the virtual upper computer, thereby controlling the machine tool to perform real-time motion control and logic control.
  • the invention utilizes virtualization technology to deploy the human-computer interaction module to the virtual machine of the remote server to form a virtual upper computer, so as to replace the traditional local numerical control system upper computer, and interact with the local numerical control system lower computer through the network, and build based on Virtualization technology's new CNC system upper and lower machine architecture breaks the traditional CNC system software and hardware system to improve the system's processing performance and function, simplify local CNC equipment, and greatly weaken the CNC system service capability and production cost. The contradiction between them reduces the difficulty of maintenance of the CNC system in the workshop and the production cost of the enterprise.
  • a remote desktop client is integrated in the human-computer interaction device, and information interaction can be performed with a remote desktop server integrated in the remote server.
  • the interface displayed by the human-machine interaction device is a virtual interface, which is generated by the human-computer interaction device by retrieving the desktop image information of the upper computer from the virtual upper computer, which is essentially a virtual upper computer desktop. Copy of.
  • the number of virtual upper computers in the single remote server may be multiple to correspond to a plurality of local lower computers, so that a single remote server can simultaneously serve multiple local lower computers.
  • the same numerical control system can be provided with a plurality of human-machine interaction devices, which are respectively connected to the virtual upper computer through a network to provide a human-computer interaction interface, and multiple human-computer interactions corresponding to the same virtual upper computer
  • the interactive interface displayed by the device is synchronized.
  • the human-machine interaction device can be located at a location that is reachable by any other network, local or non-local.
  • the human-machine interaction device may be a portable terminal.
  • the human-computer interaction device of the invention is only responsible for simple human-computer interaction tasks, that is, display output and user instruction (such as mouse, keyboard, etc.) input, does not participate in the response of the control command and direct control of the local lower-level machine, but the user The instructions are fed back to the virtual host computer for processing.
  • display output and user instruction such as mouse, keyboard, etc.
  • user instruction such as mouse, keyboard, etc.
  • the remote server and the virtual upper computer are not felt, and the operation mode is the same as that of the traditional numerical control system, and the traditional numerical control operation is realized. Highly compatible, as well as localization of operations.
  • the invention preferentially selects the data lightweighting technology on the real-time image data transmission between the virtual upper computer and the human-computer interaction device, so that the general industrial bandwidth can meet the requirements, and at the same time, the speed of real-time refreshing of the human-computer interaction interface is solved.
  • the problem is preferably to adopt a rectangular area refresh method to fully guarantee the user experience of the operator.
  • the human-computer interaction module uses the virtual upper computer as the carrier, and can conveniently integrate the third-party software to provide high-end intelligent services for the numerical control system.
  • the human-computer interaction module is integrated in the virtual upper computer by means of application software, which has cross-platform characteristics and high portability.
  • application software which has cross-platform characteristics and high portability.
  • the remote server is set as the host of the virtual upper computer, and the high-performance kernel, the flexible memory and the hard disk space, and the powerful computing capability are provided for the virtual upper computer, and the processing of the numerical control system upper computer is optimized and improved. performance.
  • the virtual host computer-based numerical control system is provided with a system backup unit on the remote server for the virtual upper computer.
  • the virtual recovery device can be quickly recovered from the backup unit, thereby improving the The reliability of the entire CNC system.
  • the present invention proposes a brand new numerical control system architecture, which uses virtualization technology to re-arrange the structure of the upper and lower position of the traditional numerical control system, replaces the local upper computer with the virtual upper computer, and constructs with the local lower computer.
  • Forming a new CNC system upper and lower machine architecture simplifying local CNC equipment, greatly reducing the production cost of the enterprise and the difficulty of maintenance of the CNC system.
  • the above-mentioned system architecture of the present invention can make the function development and performance improvement of the numerical control system host computer no longer limited by local hardware and software resources, and can improve the superior software of the host computer by relying on the powerful software and hardware resources and computing performance of the remote server. Data processing capability to optimize the processing performance of the CNC system.
  • the human-computer interaction module described in the present invention does not depend on a specific operating system, and once the requirements for running in a new environment or an operating system are available, the module can be easily transplanted.
  • the virtual upper computer in the present invention is provided with a system backup unit on the remote server where it is located, When an irreversible fault occurs in the bit machine, the quick recovery can be obtained from the backup unit, which improves the reliability of the numerical control system.
  • the invention is based on the virtualization technology, and can flexibly allocate, expand or upgrade virtual hardware and software resources for the virtual host computer according to the processing requirements of the numerically controlled machine tool, thereby greatly improving the scalability and resource utilization of the numerical control system.
  • the invention utilizes virtualization technology to enable the remote desktop client to integrate on any human-computer interaction device, including a PC, a tablet computer, a mobile phone, etc., and realizes that the numerical control processing process is no longer limited by monitoring equipment and monitoring. Location, indirectly improve the reliability and productivity of machine tool processing.
  • the virtual upper computer in the present invention can conveniently integrate third-party software, and can improve the current situation that the numerical control system of the numerical control system restricts the development of the numerical control system to the intelligent and multifunctional, and improves the service capability of the numerical control system. At the same time, it also provides conditions for the operator to expand the functions of the CNC system according to actual needs.
  • FIG. 1 is a schematic structural view of a numerical control system and a machine tool structure in the prior art
  • the upper computer is an HMI, which is responsible for the non-real-time tasks of the system
  • the lower computer is the NCU and the PLC, and is responsible for the real-time motion control and logic control of the system;
  • FIG. 3 is a schematic structural diagram of a local numerical control system based on a virtual upper computer according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a remote numerical control system based on a virtual upper computer according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a control flow of an operator of a numerical control system based on a virtual upper computer to a local lower computer according to an embodiment of the present invention.
  • the numerical control architecture in this mode includes a virtual upper computer, a local lower computer, and a local numerical control display device, which is referred to as a local numerical control system in this embodiment.
  • the virtual host computer runs on the remote server and is responsible for non-real-time/semi-real-time tasks of the CNC system, including rapid programming, decoding, G code simulation and optimization, offline speed planning, and analysis and storage of processing data.
  • the control data is provided to the local lower computer; the local lower computer is responsible for receiving the control data provided by the virtual upper computer, performing the system real-time motion control and logic control tasks;
  • the local numerical control display device is responsible for providing the virtual human interface for the operator locally. And send user instructions to the virtual host computer for processing.
  • the above mode allows the numerical control system to retain only the lower position machine and the simple display device locally, which greatly simplifies the local hardware and software equipment of the numerical control system, and reduces the production cost of the enterprise and the maintenance difficulty of the numerical control system.
  • Operator When the machining operation is performed on the local numerical control display device, the remote server and the virtual upper computer are not felt, which is no different from the operation of the traditional numerical control system. That is, the mode is compatible with the traditional machining operation by means of remote operation localization.
  • the method also enhances the intelligence degree of the numerical control system.
  • the processing performance of the machine tool is improved by improving the data processing capability of the upper computer of the numerical control system.
  • the human-machine interaction device in this mode is not a local numerical control display device, but a non-local display terminal that is reachable by any network, including a PC and a tablet.
  • the mobile phone, etc. the operator can remotely monitor the numerical control processing by remotely accessing the virtual upper computer, so the numerical control system in this mode is called the remote numerical control system.
  • This mode allows the CNC system to keep the lower position machine locally, further simplifying the local numerical control equipment.
  • the human-computer interaction equipment can be set at any position that is reachable by the network, the operator avoids the noisy workshop working environment and improves its The accuracy of the machining operation.
  • Figure 5 is the remote control flow of the human-machine interaction device to the local lower-level machine.
  • the operator directly controls the machining process of the machine through the remote human-machine interaction device, and does not feel the remote server and virtual upper-level running in the background. machine.
  • the virtual upper computer in the above two embodiments all use the remote server as the carrier, relying on the powerful software and hardware resources of the server, in the control performance and system scalability, the numerical control system host computer has been greatly improved, and the numerical control system is improved. Service capacity and processing efficiency, and reduce production costs.
  • the human-computer interaction module set in the virtual upper computer is integrated by means of application software, and is responsible for providing a virtual human-computer interaction interface for the human-computer interaction device.
  • the specific working process is as follows:
  • the human-machine interaction device sends a login request to the virtual host computer
  • the human-computer interaction device re-renders the desktop image information transmitted by the virtual upper computer to its own screen
  • the human-computer interaction application in the virtual host computer creates a network connection with the local lower-level machine
  • the virtual upper computer presents a numerical control processing interface, and sends the interface update information to the human-machine interaction device;
  • the human-computer interaction device updates the virtual interface output by itself according to the update information of the upper computer interface, and provides the virtual CNC machining operation interface to the user;
  • the update information is sent to the human-machine interaction device to refresh the virtual human-computer interaction interface in real time.
  • the human-computer interaction interface (HMI) operated by the user is actually only a "picture", which is a copy of the desktop image of the virtual upper computer.
  • the human-computer interaction device is only responsible for receiving the user instruction, and feeding back the user instruction to the virtual upper computer, processing the user instruction by the virtual upper computer, then forming a control signal to the local lower computer, and transmitting the desktop image update information to the human machine.
  • Interactive devices, so the human-computer interaction device is not directly involved in the processing control, but indirectly through the virtual host computer.
  • the human-computer interaction module is preferably developed by using QML technology.
  • QML is a descriptive scripting language, and supports programming control in the form of JavaScript. It is mainly used to develop applications based on user interfaces, and has cross-platform, The advantages of strong portability, short development cycle, high scalability, and smooth interface development.
  • the human-computer interaction module in the present invention can be quickly installed on systems such as Windows and Linux, and does not depend on a specific operating system and deployment environment.
  • the human-computer interaction application actively requests to establish a network connection with the local lower-level computer. If the connection is successful, the HMI interface is normally displayed. Otherwise, the startup fails. When the network connection is successful, the human-computer interaction module will be based on the virtual upper-level.
  • the resolution of the machine interface automatically adjusts its display size to maintain the best display effect, ensuring the operator's application experience.
  • the above-mentioned human-computer interaction module uses the virtual upper computer as the carrier, which can easily integrate the third-party software. This can improve the computing performance of the original numerical control system, and can also flexibly expand the functions of the numerical control system and improve the service capability of the numerical control system. It provides conditions for the operator to expand the functions of the CNC system according to actual needs, so that the CNC system can flexibly adapt to different application fields and on-site processing needs.
  • each virtual upper computer corresponds to a unique local lower computer, that is, the virtual upper computer and the local lower computer are in one-to-one correspondence, so that the virtual upper computer can personally configure its own resources according to the processing requirements of the corresponding machine tool. , including kernel performance, memory, hard disk space, required third-party software libraries, and more.
  • the remote server acts as the host of the virtual upper computer. If each server is configured with only one virtual upper computer, each server can only serve one local lower computer. This will not only cause a lot of waste of resources, but even The production cost of the enterprise is increased.
  • multiple virtual upper computers are set on each server, and each virtual upper computer maintains relatively independent resources, so that a single server can simultaneously serve multiple local lower computers.
  • a set of numerical control system needs at least one human-machine interaction device, but in the present invention, one human-computer interaction device can simultaneously run multiple through the remote desktop client.
  • Virtual human-computer interaction interface then a single human-computer interaction device can serve multiple sets of CNC systems, as shown in Figure 4, which further reduces the production cost of the enterprise, and is also conducive to the unified monitoring and management of CNC machining in the workshop. .
  • the present invention provides a virtual machine with a host computer system backup unit on the remote server. When it is faulty, it can be quickly recovered from the backup system, which improves the reliability of the CNC system.
  • the virtual kernel performance, memory resources, and disk space of the virtual upper computer are configured according to the processing requirements of the local lower computer, so that the server resources are fully and effectively utilized.
  • the virtual upper computer created on a single server is deployed according to the total load that all virtual upper computers may bear, so as to ensure that the server is not overloaded, thereby ensuring the stability of the entire numerical control system.
  • the virtual upper computer if it does not receive the feedback signal of the human-computer interaction device or the local lower-level machine within a certain period of time, it will automatically enter the sleep mode to reduce the running resources of the server and improve the running performance of the un-sleeping virtual upper computer.
  • the virtual upper computer When it receives the service request from the human-computer interaction device or the local lower-level machine, it will immediately “wake up” and switch to the normal working mode.
  • the general real-time image data transmission method occupies a large amount of workshop network bandwidth, which affects the transmission of control data and affects the accuracy and stability of the numerical control processing.
  • the data lightweighting technology is preferably used to compress the real-time transmitted image data. It greatly reduces the occupancy rate of real-time image data to the workshop network bandwidth, so that the general workshop network can meet the demand.
  • the present invention preferably adopts a rectangular area refreshing method, that is, the virtual upper computer only covers the image information of the smallest rectangular area of the changed area, instead of the image information of the entire desktop.
  • the human-computer interaction device refreshes the changed interface area according to the update information sent by the virtual upper computer, which speeds up the real-time data transmission and accelerates the virtual human-computer interaction interface.
  • the refresh rate ensures the operator's application experience.
  • virtualization means that the application software runs on a virtual software and hardware platform, and the virtualization technology can significantly improve the performance, function, and intelligence of the numerical control system while reducing the cost of hardware and software.
  • the realization of the numerical control system host computer virtualization is the most effective way to solve the above problems, that is, using the virtualization technology, the human-computer interaction module is deployed on the virtual machine on the remote server to form a virtual upper computer, replacing the traditional Local host computer.
  • the application of PC virtualization technology in the field of CNC machining will greatly promote the development of CNC technology to the high-end intelligent direction, and indirectly promote the continuous improvement of its application field.
  • the application of virtualization technology can easily affect the stability of the CNC system, increase the failure rate and test difficulty of the CNC system, and even affect the accuracy of CNC machining, so ensure the stability and machining accuracy of the CNC system is virtualized in the CNC.
  • the transmission and processing of real-time image data is also one of the difficulties in realizing the virtualization of the host computer, because the transmission of real-time image data will occupy a large network bandwidth, thus affecting the transmission of real-time processing control data, reducing the efficiency of CNC machining, and it is difficult to guarantee.
  • the application experience of the operator The development threshold of the human-computer interaction interface of the numerical control system is relatively high. Developers must have a deeper understanding of the CNC system architecture.
  • the human-computer interaction module of the current CNC system relies on a specific operating system. Once there is a demand for running in a new environment or operating system, it often takes a lot of cost. Labor modification and porting, rather than cross-platform application framework, API of specific operating system, non-cross-platform third-party library and other factors hinder cross-platform development of human-computer interaction module, and also for the development of host computer virtualization It brings a lot of difficulty.
  • the numerical control system based on virtual upper computer proposed by the invention in particular, adopts QML technology, can overcome the problem that the human-computer interaction module depends on a specific operating system, and can utilize high compression amount based on data lightweight technology in real-time image data transmission. The data compression method reduces the occupancy rate of the workshop network bandwidth.
  • the architecture of the present invention adopts a frame buffering technique and a rectangular area refreshing method, which fully guarantees the application experience of the operator; in addition, when the numerical control processing data transmission conflicts with the operator's request signal to the virtual upper computer, When the virtual upper computer can process the processing data preferentially to ensure the reliability and efficiency of the numerical control processing, the invention also adopts the load balancing optimization technology of the virtual machine cluster and the backup system of the upper computer system to ensure the stability of the numerical control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

一种基于虚拟上位机的数控系统,包括设置在远程服务器上的虚拟上位机、位于本地的数控系统下位机、以及用于人机交互的人机交互设备,其中人机交互设备用于提供人机交互输入/输出接口;虚拟上位机上集成有人机交互模块、非实时/半实时性任务执行单元、以及下位机控制单元,上位机接收数控加工指令并通过非实时/半实时任务执行单元进行处理以形成机床控制指令,进而通过下位机控制单元将控制数据利用网络传输至本地下位机;本地下位机控制机床执行实时性的运动控制和逻辑控制。该系统基于虚拟化技术实现对数控系统上下位机架构的全新设计,解决目前数控系统存在的数据处理能力、HMI功能扩展以及远程加工受限的问题。

Description

一种基于虚拟上位机的数控系统 【技术领域】
本发明属于数控系统技术领域,具体涉及一种基于虚拟上位机的数控系统。
【背景技术】
数控机床是一种柔性的、高效能的、高精度的自动化机床,能较好地解决复杂、精密、小批量、多品种的零件加工问题,一般由数控系统、机床主体和其他辅助装置等组成。数控系统是整个数控机床的核心,集位置(轨迹)、速度、扭矩控制为一体,根据代码指令执行部分或全部数值控制功能,实现一台或多台机械设备的动作控制。如图1所示,一般数控系统由输入/输出装置、数控装置、可编程控制器(PLC)、伺服系统、检测反馈装置等组成,其中数控装置是数控系统的中枢。
数控装置可以包括显示模块、输入/输出模块、译码器、运动规划器、轴运动控制器、存储器等。其中,显示模块是人机交互的重要媒介,它向用户提供一个直观的操作环境;输入/输出模块是数控装置与外界进行数据和信息交换的接口,包括数控加工程序、控制参数、补偿量等数据的输入以及伺服驱动、轨迹控制等信息的输出;译码器主要用于对数控加工程序的程序段进行译码处理;运动规划器主要完成速度处理以及插补运算;轴运动控制器是数控装置与伺服驱动系统的接口模块,主要负责位置控制;存储器负责零件加工程序、系统配置参数和系统固有数据等信息的存储。
目前国内外主流高档数控系统的软硬件体系多为上下位机结构:上位机负责系统统非实时性任务,下位机负责系统实时性的运动控制和逻辑控制任务。上下位机结构在数控领域的应用已非常成熟,其通信和控制比较容易实现,基于上下位机结构的数控系统已具备分布式的特点,在一定程度上支持用户的二次研发和自主升级。在传统的数控系统架构中,上位机与下位机一般均安装在机床旁边,并分别配有一个工控机,两个工控机通过总线或网络相连并实现通信,如图2所示。
根据数控加工领域的现状,用户对数控系统的功能与性能要求越来越高,那么无论是传统的单机结构或上下位机结构,都面临相同的挑战:如何在保持或降低生产成本的同时提高数控系统的性能与服务能力。近年来数控系统越来越复杂的计算过程和智能化功能的集成要求,都对数控装置的内核与内存提出了更高的要求,造成生产成本上升的压力。传统的上下位机体系结构也在一定程度上增加了数控系统的开发与升级难度,阻滞了数控技术的发展。另一个相关问题是,数控系统的复杂功能在车间的吵杂、混乱环 境下难以被机床操作人员有效地操作,造成资源浪费,影响企业生产效率。
目前这种传统的上下位机体系结构导致数控系统智能化技术难以适应日益复杂的制造过程,形成了数控系统向智能化、数字化发展的主要瓶颈,为改善数控系统的性能带来了很大的困难。
申请人在先的专利申请CN104298175A中公开了一种基于虚拟化技术的数控系统,其中包括设置在本地的数控装置以及设置在远程的服务端,其与本地的数控装置网络互连,用于为数控系统提供高端加值功能服务,如快速编程、数据采集与处理、G代码质量分析与优化等,同时可承担传统上下位机数控系统中的部分非实时性任务,如译码、加工仿真、输入/预处理等;服务端与数控装置通过安装在所述数控装置上的远程桌面客户端实现互连,该客户端运行在数控装置系统上,其通过利用虚拟技术使操作人员可在数控装置的人交互设备上对服务器进行虚拟操作,实现对服务端的远程操作控制,两者协调配合实现智能软件服务的使用和数控加工控制。
该技术方案中采用了远程服务器的思想,通过设置远程服务器,为数控系统提供高端智能功能服务,同时可将传统数控系统上位机的部分非实时性功能移至远程服务器中进行处理,从而提高数控系统的服务能力以及加工处理性能。但是,上述方案中的数控系统实际上还是一种传统的上下位机架构,仅是为其增加了一个服务端,为数控系统提供第三方服务,并没有突破传统的架构。这种架构尽管可以使数控系统在功能上得到了一定的扩展能力,但是其还是存在较多缺陷:首先,由于与加工相关的大部分计算(如插补、速度规划等)还是在本地完成,数控系统的加工性能与效率并没有得到较大提升;其次,人机交互单元(HMI)依然位于本地,使操作人员必须在现场才能进行数控加工操作,导致存在广泛需求的远程加工控制受到很大的限制;再次,人机交互模块集成于本地数控装置,使HMI的功能开发与性能提升受限于本地软硬件资源,严重制约了数控系统的发展。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于虚拟上位机的数控系统,其通过将数控系统上位机以虚拟机的方式设置在远程服务器中形成虚拟上位机,从而实现对数控系统上下位机架构的全新设计,解决目前数控系统存在的数据处理能力、HMI功能扩展以及远程加工受限的问题。
为实现上述目的,按照本发明,提供一种基于虚拟上位机的数控系统,其利用虚拟化技术,将上位机以虚拟机的方式设置在远程服务器中形成虚拟上位机,利用该虚拟上 位机和位于本地的下位机(以下称为本地下位机)配置形成全新的上下位机架构,并利用两者的交互完成机床加工控制,其特征在于,该数控系统主要包括设置在远程服务器上的虚拟上位机、位于本地的数控系统下位机、和用于人机交互的人机交互设备,所述虚拟上位机和人机交互设备之间,以及虚拟上位机和本地下位机之间均通过网络连接;
其中,所述人机交互设备用于提供人机交互输入/输出接口,数控加工指令通过该人机交互设备被输入;所述虚拟上位机上集成有用于实现人机交互的人机交互模块、用于执行数控加工非实时/半实时性任务(如译码、离线速度规划)的非实时/半实时性任务执行单元、以及用于控制机床加工的下位机控制单元,该虚拟上位机通过所述人机交互模块接收所述人机交互设备输入的数控加工指令,并通过其中的非实时/半实时任务执行单元进行处理以形成机床控制指令,进而通过下位机控制单元将控制数据利用网络传输至本地下位机;所述本地下位机接收虚拟上位机提供的控制数据,进而控制机床执行实时性的运动控制和逻辑控制。
本发明利用虚拟化技术,将人机交互模块部署到远程服务器的虚拟机中,形成虚拟上位机,以取代传统的本地数控系统上位机,并通过网络与本地数控系统下位机进行交互,构建基于虚拟化技术的全新的数控系统上下位机体系架构,打破传统数控系统软硬件体系对提高系统加工性能与功能的束缚,简化本地数控设备,在很大程度上弱化数控系统服务能力与生产成本之间的矛盾,降低车间数控系统维护难度和企业生产成本。
作为本发明的改进,所述人机交互设备中集成有远程桌面客户端,可与集成在所述远程服务器中的远程桌面服务端进行信息交互。
作为本发明的改进,所述人机交互设备显示的界面为虚拟界面,其由所述人机交互设备通过从虚拟上位机获取上位机的桌面图像信息后重绘生成,实质是虚拟上位机桌面的拷贝。
作为本发明的改进,所述单台远程服务器中的虚拟上位机可以为多个,以分别对应位于本地的多个下位机,从而单台远程服务器可以同时为多个本地下位机提供服务。
作为本发明的改进,该同一个数控系统可设置多个人机交互设备,其分别通过网络与所述虚拟上位机连接,以提供人机交互接口,且同一个虚拟上位机对应的多个人机交互设备显示的交互界面是同步的。
作为本发明的改进,所述人机交互设备可位于本地或者非本地的其他任意网络可达的位置。
作为本发明的改进,所述人机交互设备可以为便携式终端。
本发明的人机交互设备只负责简单的人机交互任务,即显示输出和用户指令(如鼠标、键盘等)输入,并不参与控制指令的响应以及本地下位机的直接控制,而是将用户指令反馈到虚拟上位机中进行处理。操作人员在上述人机交互设备提供的人机交互界面上进行加工操作时,感觉不到远程服务器与虚拟上位机的存在,操作方式与操作传统的数控系统无异,实现了与传统数控操作的高度兼容,以及操作的本地化。
本发明在虚拟上位机和人机交互设备之间的实时图像数据传输上,优先选用了数据轻量化技术,使一般的工业带宽即可满足要求,同时,为解决人机交互界面即时刷新的速度问题,优选采用了矩形区域刷新的方法,充分保证操作人员的用户体验。
本发明中,人机交互模块以虚拟上位机为载体,可以很方便地集成第三方软件,为数控系统提供高端智能化的服务。优选地,所述人机交互模块以应用软件的方式集成在虚拟上位机中,其具备跨平台特性,移植性能高。人机交互软件在启动时,会主动请求与本地下位机建立网络连接,并获取虚拟上位机的桌面尺寸,以自动调整虚拟人机交互界面的分辨率,保证其在客户端达到最佳的显示效果。
本发明中,设置在远程的服务器作为虚拟上位机的宿主机,为虚拟上位机提供高性能的内核,弹性的内存和硬盘空间,以及强大的计算能力等,优化改善了数控系统上位机的加工性能。
本发明中,所述基于虚拟上位机的数控系统为虚拟上位机在远程服务器上设置有系统备份单元,当虚拟上位机出现不可逆转的故障时,可以从备份单元中得到快速恢复,从而提高了整个数控系统的可靠性。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:
(1)本发明提出了一种全新的数控系统体系架构,该架构利用虚拟化技术对传统的数控系统上下位机结构进行重新布局,以虚拟上位机取代本地上位机,并与本地下位机构建形成全新的数控系统上下位机架构,简化本地数控设备,大大降低了企业生产成本和数控系统维护难度。
(2)本发明的上述体系架构,可以使得数控系统上位机的功能开发与性能提升不再受限于本地软硬件资源,并可依托远程服务器强大的软硬件资源和计算性能,提高上位机的数据处理能力,优化数控系统的加工性能。
(3)本发明中所述人机交互模块不依赖特定的操作系统,一旦有了在新的环境或者操作系统上运行的需求,可以很方便地完成模块的移植。
(4)本发明中的虚拟上位机在其所在的远程服务器上设置有系统备份单元,当上 位机发生不可逆转的故障时,可从备份单元中得到快速恢复,提高了数控系统的可靠性。
(5)本发明基于虚拟化技术,可以根据数控机床的加工需求,弹性地为虚拟上位机分配、扩展或升级虚拟软硬件资源,大大提高数控系统的可扩展性以及资源利用率。
(6)本发明利用虚拟化技术,使远程桌面客户端可在任意人机交互设备上进行集成,包括PC机、平板电脑、手机等,实现了数控加工过程不再受限于监控设备与监控地点,间接提高机床加工的可靠性和生产效率。
(7)本发明中的虚拟上位机可以很方便地集成第三方软件,可以改善当前数控系统上下位机架构制约数控系统向智能化、多功能化方向发展的现状,提高数控系统的服务能力,同时也为操作人员根据实际需要,自行扩展数控系统的功能提供了条件。
【附图说明】
图1是现有技术中的数控系统与机床结构的结构示意图;
图2是现有技术中的数控系统的上下位机结构示意图,上位机为HMI,负责系统非实时性任务,下位机为NCU和PLC,负责系统实时性的运动控制和逻辑控制;
图3是按照本发明实施例的基于虚拟上位机的本地式数控系统的结构示意图;
图4是按照本发明实施例的基于虚拟上位机的远程式数控系统的结构示意图;
图5是按照本发明实施例的基于虚拟上位机的数控系统的操作人员对本地下位机的控制流程示意图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供的一种典型模式如附图3所示,该模式下的数控架构包括虚拟上位机,本地下位机,以及本地数控显示装置,本实施例中称其为本地式数控系统。其中,虚拟上位机运行在远程服务器上,负责数控系统非实时/半实时性任务,包括快速编程、译码、G代码仿真与优化、离线速度规划、以及加工数据的分析与存储等,并将控制数据提供给本地下位机;本地下位机负责接收虚拟上位机提供的控制数据,执行系统实时性的运动控制和逻辑控制任务;本地数控显示装置负责在本地为操作人员提供虚拟的人机交互接口,并将用户指令发送至虚拟上位机进行处理。
上述模式允许数控系统在本地只保留下位机和简单的显示装置,这在很大程度上简化了数控系统的本地软硬件设备,降低了企业生产成本和数控系统的维护难度。操作人 员在本地数控显示装置上进行加工操作时,感觉不到远程服务器和虚拟上位机的存在,与操作传统的数控系统无异,即该模式既利用远程操作本地化的方式兼容了传统的加工操作方式,也增强了数控系统的智能化程度,同时,通过提高数控系统上位机的数据处理能力,改善了机床加工性能。
本发明实施例提供的另一种典型模式如图4所示,该模式下的人机交互设备不是本地数控显示装置,而是非本地的任意网络可达的显示终端,包括PC机、平板电脑、手机等,操作人员可通过远程访问虚拟上位机实现数控加工的远程监控,所以本发明将该模式下的数控系统称为远程式数控系统。该模式允许数控系统在本地只需保留下位机,进一步简化本地数控设备,另外,由于人机交互设备可设置在网络可达的任意位置,使操作人员避开了嘈杂的车间工作环境,提高其加工操作的准确性。
图5是人机交互设备对本地下位机的远程控制流程,从表面上来看,操作人员是直接通过远程人机交互设备控制机床加工过程的,也感觉不到运行在后台的远程服务器和虚拟上位机。
以上两种实施例中的虚拟上位机均以远程服务器为载体,依托服务器强大的软硬件资源,在控制性能与系统扩展性上,对数控系统上位机进行了很大的改进,提高了数控系统的服务能力与加工效率,并降低了企业生产成本。
虚拟上位机中设置的人机交互模块,以应用软件的方式进行集成,负责为人机交互设备提供虚拟的人机交互接口,其具体工作过程如下:
(1)人机交互设备向虚拟上位机发送登陆请求;
(2)虚拟上位机将自身桌面图像信息发送至人机交互设备;
(3)人机交互设备根据虚拟上位机传输来的桌面图像信息,将其重新绘制到自身屏幕上;
(4)通过上述人机交互设备屏幕上的虚拟界面,命令虚拟上位机启动人机交互应用程序;
(5)虚拟上位机中的人机交互应用程序与本地下位机创建网络连接;
(6)虚拟上位机呈现数控加工界面,并将该界面更新信息发送至人机交互设备;
(7)人机交互设备根据上位机界面的更新信息,对自身输出的虚拟界面也进行即时更新,向用户提供虚拟的数控加工操作接口;
(8)用户通过人机交互设备上的虚拟人机交互界面进行加工操作,这与操作传统的数控系统无异;
在加工操作过程中,一旦虚拟上位机桌面图像有了变化,便将更新信息发送至人机交互设备,以实时刷新虚拟的人机交互界面。
由以上信息可知,用户操作的人机交互界面(HMI)实质上只是一张“图片”,该“图片”是虚拟上位机桌面图像的拷贝。人机交互设备只负责接收用户指令,并将用户指令反馈至虚拟上位机,由虚拟上位机对用户指令进行处理,然后形成控制信号发送至本地下位机,并将桌面图像更新信息发送至人机交互设备,所以,人机交互设备并不直接参与加工控制,而是通过虚拟上位机间接实现。
本实施例中,人机交互模块优选采用QML技术进行开发,QML是一种描述性的脚本语言,支持JavaScript形式的编程控制,主要用于开发以用户界面为主的应用程序,具有跨平台、可移植性强、开发周期短、可扩展性高、开发的界面流畅等优点。本发明中的人机交互模块可在Windows、Linux等系统上得到快速安装,不依赖于特定的操作系统及部署环境。人机交互应用程序在启动过程中,主动请求与本地下位机建立网络连接,若连接成功,则正常显示HMI界面,否则启动失败,当两者网络连接成功后,人机交互模块会根据虚拟上位机界面的分辨率自动调整自身的显示尺寸,以保持最佳的显示效果,充分保证操作人员的应用体验。上述人机交互模块以虚拟上位机为载体,可以很方便地集成第三方软件,这在改善原有数控系统计算性能的同时,还可以灵活扩展数控系统的功能,提高数控系统的服务能力,也为操作人员根据实际需要自行扩展数控系统的功能提供了条件,以使数控系统灵活适应不同的应用领域及现场加工需要。
为了保证机床加工的安全性,每台虚拟上位机对应唯一的本地下位机,即虚拟上位机与本地下位机是一一对应的,可使虚拟上位机根据对应机床的加工需求个性化配置自身资源,包括内核性能、内存、硬盘空间、所需第三方软件库等。远程服务器作为虚拟上位机的宿主机,如果每一台服务器只配置一个虚拟上位机,那么每一台服务器只能为一台本地下位机服务,这样不但会造成很大的资源浪费,甚至反而会增加企业的生产成本,所以本发明中,每一台服务器上设置多个虚拟上位机,每个虚拟上位机在资源上保持相对独立,那么单台服务器就可以同时为多台本地下位机提供服务。另外,在传统上下位机架构下的数控系统中,一套数控系统至少需要配置一台人机交互设备,但在本发明中,一台人机交互设备通过远程桌面客户端可同时运行多个虚拟人机交互界面,那么单台人机交互设备就可通过服务于多套数控系统,如图4所示,这在进一步降低企业生产成本的同时,也有利于车间数控加工的统一监控与管理。
在传统的数控系统上下位机架构下,一旦上位机发生不可逆转的故障,会导致整个数控系统陷入瘫痪状态,本发明为虚拟上位机在远程服务器上设置有上位机系统备份单元,当上位机遇到故障时,可从备份系统得到快速恢复,提高了数控系统的可靠性。本发明中,虚拟上位机的虚拟内核性能、内存资源、以及磁盘空间均根据本地下位机的加工需求进行配置,保证服务器资源得到充分有效的利用。另外,单台服务器上创建的虚拟上位机是根据所有虚拟上位机的可能承担的总负荷量进行部署的,以保证服务器不过载运行,进而保证整个数控系统的稳定性。本发明中,虚拟上位机如果在一定时间内没有收到人机交互设备或本地下位机的反馈信号,会自动转入休眠模式,以降低服务器的运行资源,提高未休眠虚拟上位机的运行性能,当其收到人机交互设备或本地下位机的服务请求后,会立即“苏醒”,转入正常工作模式。
因为虚拟上位机和人机交互设备之间存在实时图像数据的传输与刷新。一般的实时图像数据传输方式会占用大量的车间网络带宽,进而影响控制数据的传输,影响数控加工的精度与稳定性,本实施例中优选利用数据轻量化技术,对实时传输的图像数据进行压缩,在很大程度上降低了实时图像数据对车间网络带宽的占用率,使一般的车间网络即可满足需求。在解决客户端实时图像界面实时刷新的速度问题上,本发明优选采用了矩形区域刷新的方法,即虚拟上位机只将覆盖变化区域的最小矩形区的图像信息,而不是整个桌面的图像信息,发送至人机交互设备,人机交互设备便根据虚拟上位机发来的更新信息,对应地刷新变化了的界面区域,这在降低实时数据传输量的同时,也加快了虚拟人机交互界面的刷新速度,充分保证了操作人员的应用体验。
本发明中,虚拟化是指应用软件运行在虚拟的软硬件平台上,虚拟化技术在降低软硬件成本的同时,还可以显著提高数控系统的性能、功能以及智能化程度。基于服务器虚拟化技术,实现数控系统上位机虚拟化是解决上述问题最有效的方法,即利用虚拟化技术,将人机交互模块部署在远程服务器上的虚拟机上,形成虚拟上位机,取代传统的本地上位机。上位机虚拟化技术在数控加工领域的应用将在很大程度上推动数控技术向高端智能化方向的发展,间接促进其应用领域的不断进步。实际上,虚拟化技术的应用很容易影响数控系统的稳定性,增加数控系统的故障率和测试难度,甚至会影响数控加工的精度,所以保证数控系统的稳定性与加工精度是虚拟化在数控加工领域应用的最大技术难点。实时图像数据的传输及处理也是实现上位机虚拟化的难点之一,因为实时图像数据的传输会占用很大的网络带宽,从而影响实时加工控制数据的传输,降低数控加工的效率,也难以保证操作人员的应用体验。数控系统人机交互界面的开发门槛较高, 开发者必须对数控系统架构有较深入的了解,另外,当前数控系统的人机交互模块依赖特定的操作系统,一旦有了在新的环境或者操作系统上运行的需求,则往往需要花费大量的劳力进行修改和移植,而非跨平台的应用程序框架、特定操作系统的API、非跨平台的第三方库等因素均阻碍了人机交互模块的跨平台开发,也为上位机虚拟化的开发带来了很大的难度。本发明提出的基于虚拟上位机的数控系统,具体地,采用QML技术,可以克服人机交互模块依赖特定操作系统的问题,在实时图像数据的传输上,可以基于数据轻量化技术利用高压缩量的数据压缩方法,降低其对车间网络带宽的占用率。针对实时图像的重绘,本发明的架构采用了帧缓存技术和矩形区域刷新方法,充分保证了操作人员的应用体验;另外,当数控加工数据传输与操作人员对虚拟上位机的请求信号发生冲突时,可以设置虚拟上位机优先处理加工数据,保证数控加工的可靠性和效率,本发明还采用了虚拟机集群的负载均衡优化技术和上位机系统备份方案,保证了数控系统的稳定性。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于虚拟上位机的数控系统,其通过将上位机以虚拟机的方式设置在远程服务器中形成虚拟上位机,利用该虚拟机上位机和位于本地的下位机配置形成上下位机架构,并利用两者的交互完成机床加工控制,其特征在于,该数控系统包括设置在远程服务器上的虚拟上位机、位于本地的数控系统下位机、以及用于人机交互的人机交互设备,所述虚拟上位机和人机交互设备之间、以及虚拟上位机和本地下位机之间均通过网络连接,其中,
    所述人机交互设备用于提供人机交互输入/输出接口,数控加工指令通过该人机交互设备被输入;
    所述虚拟上位机上集成有用于实现人机交互的人机交互模块、用于执行数控加工非实时/半实时性任务的非实时/半实时性任务执行单元、以及用于控制机床加工的下位机控制单元,该虚拟上位机通过所述人机交互模块接收所述人机交互设备输入的数控加工指令,并通过其中的非实时/半实时任务执行单元进行处理以形成机床控制指令,进而通过下位机控制单元将控制数据利用网络传输至本地下位机;
    所述本地下位机接收虚拟上位机提供的控制数据,进而控制机床执行实时性的运动控制和逻辑控制。
  2. 根据权利要求1所述的基于虚拟上位机的数控系统,其中,所述人机交互设备显示的界面为虚拟界面,其由所述人机交互设备通过从虚拟上位机获取相应信息后绘制生成,即其实质是虚拟上位机界面的拷贝。
  3. 根据权利要求1或2所述的基于虚拟上位机的数控系统,其中,所述人机交互设备上虚拟界面的绘制生成采用矩形区域刷新的方式实现。
  4. 根据权利要求1-3中任一项所述的基于虚拟上位机的数控系统,其中,所述数控系统可设置多个人机交互设备,其分别通过网络与所述虚拟上位机连接,以提供人机交互接口,同一个虚拟上位机对应的多个人机交互设备显示的交互界面同步,所述人机交互设备也可同时运行多个不同虚拟上位机对应的人机交互界面。
  5. 根据权利要求1-4中任一项所述的基于虚拟上位机的数控系统,其中,所述人机交互设备可位于本地或者非本地的其他任意网络可达的位置。
  6. 根据权利要求1-5中任一项所述的基于虚拟上位机的数控系统,其中,所述人机交互设备可以为便携式终端。
  7. 根据权利要求1-6中任一项所述的基于虚拟上位机的数控系统,其中,单台远程服务器中的虚拟上位机可以为多个,以分别对应位于本地的多个下位机,从而单台远程服务器可以同时为多个本地下位机提供服务。
  8. 根据权利要求1-7中任一项所述的基于虚拟上位机的数控系统,其中,所述虚拟上位机可通过其所在的远程服务器进行备份。
  9. 根据权利要求1-8中任一项所述的基于虚拟上位机的数控系统,其中,所述虚拟上位机中集成的人机交互模块具备跨平台特性,所以虚拟上位机的系统可以为Windows、Linux或Android等。
  10. 根据权利要求1-9中任一项所述的基于虚拟上位机的数控系统,其中,所述人机交互设备中显示界面可根据所述虚拟上位机的桌面分辨率调整,以适应不同尺寸的显示设备而达到最佳的显示效果。
PCT/CN2015/081292 2015-03-13 2015-06-12 一种基于虚拟上位机的数控系统 WO2016145738A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/113,345 US10162336B2 (en) 2015-03-13 2015-06-12 Numerical control system based on virtual host computer
JP2016575824A JP6503387B2 (ja) 2015-03-13 2015-06-12 仮想上位機器に基づく数値制御システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510111457.4 2015-03-13
CN201510111457.4A CN104808592B (zh) 2015-03-13 2015-03-13 一种基于虚拟上位机的数控系统

Publications (1)

Publication Number Publication Date
WO2016145738A1 true WO2016145738A1 (zh) 2016-09-22

Family

ID=53693519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081292 WO2016145738A1 (zh) 2015-03-13 2015-06-12 一种基于虚拟上位机的数控系统

Country Status (4)

Country Link
US (1) US10162336B2 (zh)
JP (1) JP6503387B2 (zh)
CN (1) CN104808592B (zh)
WO (1) WO2016145738A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112015503A (zh) * 2020-07-30 2020-12-01 平顶山中选自控系统有限公司 基于私有云的选煤厂智能系统

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10509390B2 (en) 2015-02-12 2019-12-17 Glowforge Inc. Safety and reliability guarantees for laser fabrication
CN107438495B (zh) 2015-02-12 2021-02-05 格罗弗治公司 云控制激光制造
EP3130975A1 (en) * 2015-08-14 2017-02-15 Tomologic AB An industrial machine system and a method of controlling an industrial machine
CN109669763A (zh) * 2015-12-11 2019-04-23 北京奇虎科技有限公司 虚拟输入控制的方法、装置及系统
CN105719462A (zh) * 2016-03-31 2016-06-29 苏州工业园区威斯威尔智能科技有限公司 基于多终端个人热点控制的工业设备的控制系统及其控制方法
CN105912339B (zh) * 2016-04-15 2019-01-29 华中科技大学 一种数控系统中应用的开发与集成方法及系统
CN106406212A (zh) * 2016-08-30 2017-02-15 深圳天珑无线科技有限公司 一种机构位置调节系统及方法
WO2018098399A1 (en) * 2016-11-25 2018-05-31 Glowforge Inc. Controlled deceleration of moveable components in a computer numerically controlled machine
WO2018098393A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Housing for computer-numerically-controlled machine
WO2018098395A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Improved engraving in a computer numerically controlled machine
WO2018098398A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Preset optical components in a computer numerically controlled machine
WO2018098397A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Calibration of computer-numerically-controlled machine
WO2018098396A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Multi-user computer-numerically-controlled machine
CN110226137A (zh) 2016-11-25 2019-09-10 格罗弗治公司 借助图像跟踪进行制造
CN106681294A (zh) * 2017-03-06 2017-05-17 上海锡明光电科技有限公司 基于数据库的软件工控系统
CN109426498B (zh) * 2017-08-24 2023-11-17 北京迪文科技有限公司 一种人机交互系统后台开发方法和装置
JP6781242B2 (ja) * 2018-02-19 2020-11-04 ファナック株式会社 制御装置、機械学習装置及びシステム
CN108776463A (zh) * 2018-05-28 2018-11-09 西安工程大学 一种智能花式纱线控制系统及方法
CN108804109B (zh) * 2018-06-07 2021-11-05 北京四方继保自动化股份有限公司 基于多路功能等价模块冗余仲裁的工业部署和控制方法
CN108762193A (zh) * 2018-07-31 2018-11-06 吉林大学 数控机床远程数据采集及分析系统
CN109259783A (zh) * 2018-08-23 2019-01-25 伦琴(浙江)工业技术有限公司 一种计算机断层扫描远程处理系统
CN109324818A (zh) * 2018-09-27 2019-02-12 苏州热工研究院有限公司 虚拟化服务器上位机系统及相关升级技术
JP2020197835A (ja) * 2019-05-31 2020-12-10 ファナック株式会社 産業用機械のデータ収集設定装置
WO2021000275A1 (zh) * 2019-07-03 2021-01-07 深圳市中联创新自控系统有限公司 一种数据分配器及其通信方法
DE102019117954A1 (de) * 2019-07-03 2021-01-07 Beckhoff Automation Gmbh Laufzeitserver zum gleichzeitigen Ausführen mehrerer Laufzeitsysteme einer Automatisierungsanlage
CN110597094A (zh) * 2019-09-10 2019-12-20 宁波舜宇智能科技有限公司 加工控制方法、系统、可读存储介质和设备
CN111443659A (zh) * 2020-06-02 2020-07-24 湖北理工学院 一种用于数控机床的远程监测控制系统
CN112666889A (zh) * 2020-12-18 2021-04-16 深圳渊联技术有限公司 一种工业控制系统及工业控制方法
US11740608B2 (en) 2020-12-24 2023-08-29 Glowforge, Inc Computer numerically controlled fabrication using projected information
CN112856218B (zh) * 2020-12-25 2022-09-23 北京动力机械研究所 一种基于液氧流量调节自动流程控制及其保护方法
US11698622B2 (en) 2021-03-09 2023-07-11 Glowforge Inc. Previews for computer numerically controlled fabrication
CN113406905A (zh) * 2021-05-20 2021-09-17 大族激光科技产业集团股份有限公司 一种双PC机架构的EtherCAT总线控制系统
CN114397860A (zh) * 2021-12-10 2022-04-26 无锡中车时代智能装备有限公司 针对转子铜排加工的机床远程控制方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102736553A (zh) * 2012-06-20 2012-10-17 武汉华中数控股份有限公司 一种基于虚拟机床模型的云端数控系统实现方法及系统
CN102749885A (zh) * 2012-07-18 2012-10-24 石毅 云数控系统
WO2013069886A1 (en) * 2011-11-09 2013-05-16 Lg Electronics Inc. Facilities control system and operating method of the same
CN104298175A (zh) * 2014-09-26 2015-01-21 华中科技大学 一种基于虚拟化技术的数控系统及方法
US20150032248A1 (en) * 2012-04-11 2015-01-29 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Machine Maintenance Using a Service Computer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412085A (en) * 1977-06-29 1979-01-29 Oki Electric Ind Co Ltd Timely controlled data presenting method in nc
US6067477A (en) * 1998-01-15 2000-05-23 Eutech Cybernetics Pte Ltd. Method and apparatus for the creation of personalized supervisory and control data acquisition systems for the management and integration of real-time enterprise-wide applications and systems
US6788980B1 (en) * 1999-06-11 2004-09-07 Invensys Systems, Inc. Methods and apparatus for control using control devices that provide a virtual machine environment and that communicate via an IP network
US20020133264A1 (en) * 2001-01-26 2002-09-19 New Jersey Institute Of Technology Virtual reality system for creation of design models and generation of numerically controlled machining trajectories
US7292900B2 (en) * 2001-07-13 2007-11-06 Siemens Aktiengesellschaft Power distribution expert system
US7151966B1 (en) * 2002-06-04 2006-12-19 Rockwell Automation Technologies, Inc. System and methodology providing open interface and distributed processing in an industrial controller environment
ES2305938T3 (es) * 2005-04-22 2008-11-01 Trumpf Laser Gmbh + Co. Kg Sistema y procedimiento para acceso remoto seguro.
JP2007026171A (ja) * 2005-07-19 2007-02-01 Fanuc Ltd 数値制御装置
DE102007030396B4 (de) * 2007-06-29 2014-11-27 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Vorrichtung zur Steuerung einer Maschine sowie Fernkommunikationssystem
DE102008030317A1 (de) * 2008-06-30 2009-12-31 Trumpf Werkzeugmaschinen Gmbh + Co. Kg System und Verfahren zur Fernkommunikation zwischen einem zentralen Computer und einer Maschinensteuerung
JP5712534B2 (ja) * 2010-09-15 2015-05-07 セイコーエプソン株式会社 制御装置、表示装置及び表示装置の制御方法
GB201302534D0 (en) * 2013-02-13 2013-03-27 Qatar Foundation Feedback control as a cloud service

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069886A1 (en) * 2011-11-09 2013-05-16 Lg Electronics Inc. Facilities control system and operating method of the same
US20150032248A1 (en) * 2012-04-11 2015-01-29 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Machine Maintenance Using a Service Computer
CN102736553A (zh) * 2012-06-20 2012-10-17 武汉华中数控股份有限公司 一种基于虚拟机床模型的云端数控系统实现方法及系统
CN102749885A (zh) * 2012-07-18 2012-10-24 石毅 云数控系统
CN104298175A (zh) * 2014-09-26 2015-01-21 华中科技大学 一种基于虚拟化技术的数控系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112015503A (zh) * 2020-07-30 2020-12-01 平顶山中选自控系统有限公司 基于私有云的选煤厂智能系统

Also Published As

Publication number Publication date
JP6503387B2 (ja) 2019-04-17
CN104808592B (zh) 2016-06-01
JP2017520853A (ja) 2017-07-27
US10162336B2 (en) 2018-12-25
US20170045879A1 (en) 2017-02-16
CN104808592A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
WO2016145738A1 (zh) 一种基于虚拟上位机的数控系统
WO2016045414A1 (zh) 一种基于虚拟化技术的数控系统及方法
CN103558473B (zh) 基于人机交互界面的变频器现场调试系统及其方法
US8442958B2 (en) Server change management
WO2017177695A1 (zh) 一种数控系统中应用的开发与集成方法及系统
US9122269B2 (en) Method and system for operating a machine from the field of automation engineering
KR20220001008A (ko) 분산 훈련 방법, 시스템, 기기, 저장 매체 및 프로그램
CN104898573A (zh) 一种基于云计算的数控系统数据采集及处理方法
CN106161644B (zh) 数据处理的分布式系统及其数据处理方法
CN104471523A (zh) 计算机系统及其控制方法
CN106774277A (zh) 一种多虚拟控制器之间的数据共享方法
WO2019027597A1 (en) WORKFLOW MANAGEMENT FRAMEWORK
CN110908756A (zh) 一种云端桌面实时融合切换方法及系统
CN111360813A (zh) 一种基于边缘云服务的多机器人控制器
CN106412013A (zh) 一种基于Linux的光伏并网Web监测系统
CN111125451B (zh) 数据生产加工方法、装置、电子设备及存储介质
CN116244905A (zh) 机器人生产过程中状态实时监控方法、系统、终端及介质
CN104951346A (zh) 一种用于嵌入式系统的进程管理方法及系统
CN112540824B (zh) 基于异构cpu的虚拟机迁移方法
CN103617077A (zh) 智能型云端化移转的方法与系统
CN214851313U (zh) 一种上位机虚拟化系统
CN112463276A (zh) 基于Electron技术的云桌面工具栏管理方法
CN211741913U (zh) 一种图形化逻辑解译器和dcs控制站
US20220397891A1 (en) Coordinating a single program running on multiple host controllers
CN112738282B (zh) 一种5g通信虚拟化网元桌面的远程控制方法和系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15113345

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016575824

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885121

Country of ref document: EP

Kind code of ref document: A1