WO2016145725A1 - 一种太阳能自主移动式增氧系统 - Google Patents

一种太阳能自主移动式增氧系统 Download PDF

Info

Publication number
WO2016145725A1
WO2016145725A1 PCT/CN2015/077910 CN2015077910W WO2016145725A1 WO 2016145725 A1 WO2016145725 A1 WO 2016145725A1 CN 2015077910 W CN2015077910 W CN 2015077910W WO 2016145725 A1 WO2016145725 A1 WO 2016145725A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
dissolved oxygen
gps
mobile station
aerator
Prior art date
Application number
PCT/CN2015/077910
Other languages
English (en)
French (fr)
Inventor
赵德安
孙月平
秦云
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2016145725A1 publication Critical patent/WO2016145725A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/042Introducing gases into the water, e.g. aerators, air pumps

Definitions

  • the invention relates to a water body aeration device, in particular to a solar energy autonomous mobile aeration system for aquaculture.
  • the purpose of the aerator is to increase the dissolved oxygen to the water, it can be integrated
  • the use of physical, chemical and biological functions not only solves the problem of fish floating heads caused by lack of oxygen in pond culture, but also eliminates harmful gases, promotes convective exchange of water, improves water quality conditions, and improves fish pond activity and primary productivity. It can increase the stocking density, increase the feeding intensity of the cultured objects, promote the growth, and greatly increase the yield per mu, and fully achieve the purpose of increasing the income of the breeding.
  • aerators such as impeller aerators, waterwheel aerators, inflatable aerators, and water aerators.
  • the existing traditional aerators are mainly fixed-point oxygenation, and the aerator is fixed at a certain position in the breeding pond, showing the tendency that the farther away from the aerator is, the weaker the oxygen-enhancing effect is.
  • the present invention addresses the above problems and the deficiencies thereof, and proposes a solar autonomous mobile aeration system which can specifically provide oxygen for aquaculture waters and provide a driving force for the entire aerator, and the system is intelligent. High, highly autonomous search and navigation capabilities.
  • the present invention is achieved as follows:
  • a solar autonomous mobile aeration system comprising a solar autonomous mobile aerator, a GPS navigation module, a dissolved oxygen detection module;
  • the solar autonomous mobile aerator comprises a hull, and a perforated wheel on the hull
  • the central controller is respectively connected with a perforated open-wheel oxygen booster, a host computer, a wireless data transmission receiver, a GPS navigation module, Obtaining the information of the dissolved oxygen sensor, positioning and navigating, and driving the operation of the perforated augmentation propeller with the hole, thereby automatically realizing the aeration of the dissolved oxygen deficiency area in the aquaculture water;
  • the perforated open-wheel oxygen booster is used for aeration
  • the utility model is further provided for providing a driving force of the whole aerator, comprising a motor controller, a DC gear motor and a perforated wheel, wherein the motor controller is connected to the control DC
  • the hull is of a catamaran type.
  • the perforated paddle wheel is located on both sides of the hull, and is a double-leaf paddle wheel.
  • the center frame is between the two-leaf paddles, and each of the perforated pad wheels is uniformly distributed with six sizes and the same size. Round hole.
  • the aerator when the rotating wheel has the same rotating speed on both sides of the hull and the rotating direction is the same, the aerator is driven forward or backward; when the rotating direction is opposite, the aerator is rotated in place. Exercise for deep oxygenation.
  • the dissolved oxygen detecting module comprises a small solar panel, a small charge and discharge controller, a small battery, a wireless data transmission transmitter, a dissolved oxygen sensor, and the small charge and discharge controller and the small solar battery, respectively.
  • the board, the small battery, the wireless data transmission transmitter, and the dissolved oxygen sensor are connected.
  • the dissolved oxygen detecting module is distributed in a plurality of corners, edges, and central regions of the aquaculture water.
  • the solar panel is four, each solar panel is fixed at the top of the hull by a bracket, and the wireless digital receiver, the mobile station GPS main antenna, and the mobile station GPS sub antenna are respectively fixed. Above the gap between the solar panels, the central controller and the mobile station GPS receiver are mounted on the underside of the solar panel.
  • the GPS navigation module includes a base station GPS antenna, a base station GPS receiver, a base station radio, a base station radio antenna, a mobile station radio antenna, a mobile station radio, a mobile station GPS main antenna, a mobile station GPS sub-antenna, a mobile station GPS receiver, the base station GPS antenna is configured to receive fixed-point positioning information of the GPS satellite, and then parsed by the base station GPS receiver, and send the data to the base station station, where the base station radio antenna is used to transmit the band to the outside, and move The station radio antenna receives and is processed by the mobile station radio and transmitted to the mobile station GPS receiver; the mobile station GPS receiver is used for correction of the positioning information, the mobile station GPS main antenna is used for positioning, and the mobile station GPS sub-antenna cooperates with the mobile station The GPS main antenna is used to orient and determine the attitude of the hull.
  • the central controller selects a chip MINI2440 type development board with an embedded ARM9 core.
  • the present invention adopts the above design scheme, when solar energy supplies power to the entire system, and when the solar energy is insufficient, the battery is powered.
  • the twin-body pontoon equipped with a paddle aerodynamic propeller not only provides the power to drive the aerator, but also effectively increases oxygen during operation.
  • the dissolved oxygen content measured by the dissolved oxygen sensor placed in the relevant position of the culture water area determines where oxygenation is required.
  • the control is controlled by the central controller.
  • Oxygen propeller The autonomous mobile aerator of the present invention can independently complete the aeration operation according to the set track.
  • the aerator of the present invention can also be powered by a solar panel, without the need for an external power source.
  • the aerator can contact and circulate water in a wider water area, promote water convection exchange, and solve the problem that the dissolved oxygen in the aquaculture water is centered on the aerator.
  • the automatic control in the true sense is realized, and the utility model can also be used normally in the non-electrical area, and the specific beneficial effects of the present invention are as follows:
  • the aerator of the invention is autonomously movable, does not require any manual operation, saves energy, saves labor and material resources, and improves oxygenation efficiency. Compared with the conventional fixed-point aerator, it can improve the limitation of oxygenation, especially in the larger water area. At the same time, the aerator will carry out autonomous movement of oxygen in accordance with the planned aerobic trajectory, which can make the dissolved oxygen content of the whole culture area nearly uniform, and is also conducive to the uniform distribution of fish, shrimp and crab, and improve the yield and quality of aquatic products.
  • the open-wheel oxygen booster of the aerator of the present invention can both increase oxygen and provide the driving force of the entire aerator, which can effectively save the space of the working vessel without adding other additional oxygenation costs, the paddle wheel
  • the rotation and aeration of the aerator can also promote the convective exchange and circulation of the upper and lower water bodies.
  • the oxygenation range is larger, the oxygenation effect is more significant, and the practical value is higher.
  • the power of the aerator of the present invention comes from a solar power supply system, does not require external charging, and is at night and rainy The sky can also work normally, without the need for personnel to guard, and the degree of automation is high.
  • Figure 1 is a plan view of the aerator of the present invention
  • FIG. 2 is a control block diagram of the entire control system of the present invention.
  • FIG. 3 is a block diagram showing the structure of the solar power supply system of the present invention.
  • Figure 5 is a schematic view of a dissolved oxygen detecting module device of the present invention.
  • a solar autonomous mobile aeration system of the present invention comprises a solar autonomous mobile aerator, a GPS navigation module 28, and a dissolved oxygen detection module;
  • the solar autonomous mobile aerator comprises a hull 1 and is disposed on the hull 1
  • the central controller 5 is connected to the perforated augmentation propeller 26 and the upper computer respectively 25.
  • the wireless data transmission receiver 3 and the GPS navigation module 28 are configured to acquire the collection information of the dissolved oxygen sensor 35 in the water of different positions, locate and navigate, and drive the operation of the perforated augmentation booster 26 with holes, thereby automatically realizing the breeding. Oxygenation in areas of dissolved oxygen in the waters.
  • the hull 1 is a catamaran type, and a perforated open-wheel oxygen booster 26 is installed on both sides of the hull.
  • the solar power supply system is fixed at the top of the hull with a bracket for fully receiving illumination, the central controller 5 and the mobile station GPS receiver. 6 Installed on the lower surface of the solar panel 7 to facilitate heat dissipation and waterproofing.
  • the solar power supply system comprises a solar panel 7, a charge and discharge controller 16, and a battery 15.
  • the solar panel 7 is the core of the solar power supply system, and the function is to convert the solar radiation energy into electrical energy and supply the loader.
  • the battery is charged and charged;
  • the charge and discharge controller 16 functions to control the working state of the entire solar power supply system, and functions as an overcharge and overdischarge protection for the battery;
  • the function of the battery 15 is to use the solar panel when there is light. A portion of the supplied electrical energy is stored and released for use in an aerator at night or in rainy weather.
  • the perforated paddle aerator booster 26 includes a DC geared motor 13, a motor controller 14, a perforated double-leaf paddle 10, and the like.
  • the system is driven by a DC geared motor 13 with large torque, low cost, simple control, good speed regulation, and can be reversed; the double-leaf paddle 10 with holes adopts a hole structure, and each of the paddle blades is designed. Holes of the same size and number.
  • the movement of the paddle wheel drives the movement of the water body, not only plays the role of increasing oxygen, but also, when the motor controller 14 adjusts the control amount, it can also drive the hull to perform various movements to realize the forward and backward movement of the hull 1 and the left turn and the right turn. This provides an underlying hardware foundation for autonomous navigation movement.
  • the structure of the paddle propulsion although the propulsion efficiency is lower than that of the propeller, but under the aerobic operation without pursuing the speed of the ship, the hull can be operated normally in the dense place of the grass and in the shallow water, and there is no need to suck the grass, Breaking the propeller or even stranding.
  • the central controller 5 determines the need for oxygenation according to the dissolved oxygen content information transmitted by the dissolved oxygen sensor module disposed at the relevant position in the culture water area, and plans the aerator flight path to collect the GPS navigation module 28 The position and other signals are processed by the navigation control algorithm, and finally the control quantity is sent to the motor controller 14 to allow the aerator to perform oxygenation according to the planned route.
  • the GPS navigation module 28 is configured to provide navigation information for the hull, including a base station GPS antenna and receiver, a mobile station GPS antenna and receiver, a base station station, and a mobile station station.
  • the role of the base station station and the mobile station is to transmit the position correction value data chain solved by the base station GPS receiver to the mobile station GPS receiver for higher precision positioning. In this way, precise aeration can be performed in a small pond. Without the waste of energy.
  • the dissolved oxygen detecting module is configured to collect information of the water dissolved oxygen sensor 35 at different positions, including: a small solar power supply system, a wireless data transmission transmitter, and a dissolved oxygen sensor.
  • the dissolved oxygen detecting module of the present invention is usually disposed in the corner, the edge, the center and the like of the aquaculture water area, and the small solar power supply system is used to supply the wireless data transmission transmitter and the dissolved oxygen sensor, and the dissolved oxygen sensor transmits the dissolved oxygen degree through wireless data transmission. Send to the central controller to determine the target point for the aerator to travel.
  • the aerator of the invention mainly comprises a hull 1, a solar energy solar panel 7, a perforated open-wheel oxygen booster 26, a central controller 5, a GPS navigation module 28, and the like.
  • the hull 1 of the invention adopts a double-body floating ship as a motion carrier of the whole aeration system, and carries various modules required for aeration: the hull is almost covered by four solar panels 7 of the same specification, and each solar panel 7 is supported by a bracket. It is fixed at the top of the hull and fixed to the outside by fixing bolts 8.
  • the mobile station GPS main antenna 2 and the mobile station GPS sub-antenna 19 cannot be blocked by the solar panel 7, and should be fixed above the gap of the solar panel 7.
  • the wireless data receiver 3 should also be above it, facilitating long-distance data transmission.
  • the bow is also placed with a central controller 5 and a mobile station GPS receiver 6, both of which are fixed in the iron central control cabinet 4 to protect against rain and sun and to reduce electromagnetic interference.
  • the stern portion is equipped with a mobile station station 17 and a mobile station station antenna 18 in addition to the two solar panels 7 and the mobile station GPS sub-antenna 19.
  • Placed in the middle of the boat is a 24V battery 15, and the charge and discharge controller 16 is fixed above the battery 15 for powering each module.
  • the thruster is composed of a motor controller 14, a DC geared motor 13, and a perforated paddle wheel 10.
  • the DC geared motor 13 is coupled and fixed to the center frame 11 of the perforated paddle wheel 10 via a coupling 12.
  • the motor controller 14 performs speed control on the DC gear motor 13 based on the speed control amount and the direction control amount output from the center controller 5, and performs steering control by the difference in the number of revolutions of the left and right DC gear motor 13.
  • the aerator When the left and right perforated wheels 10 have the same rotation speed and the rotation direction is the same, the aerator will travel forward or backward; when the rotation direction is opposite, the aerator will rotate in place to achieve deep oxygenation.
  • the size of the perforated paddle wheel 10 needs to be sufficiently large, which can increase the oxygenation amplitude, and can also function as a living water to increase oxygen in deeper waters.
  • FIG. 2 it is the control block diagram of the whole system.
  • the central controller 5 is the core of the whole control system.
  • the MINI2440 type development board of the embedded ARM9 core is selected.
  • the trajectory planning of the host computer 25 is performed on the system, and the host computer 25 writes the latitude and longitude information of the dissolved oxygen sensor module disposed in the aquaculture region in the aquaculture water region to the central controller 5.
  • the information of the dissolved oxygen sensor 35 received by the wireless data transmission receiver 3, that is, the value of the solubility determines whether oxygenation is required, and when oxygenation is required, the latitude and longitude of the position is set to the target latitude and longitude, and then collected by the serial port.
  • the latitude and longitude information of the GPS navigation module 28 determines the target heading angle by the angle between the direction determined by the two points and the true north. Then, compared with the real-time heading angle collected by the GPS navigation module 28, the PD (proportional-differential) algorithm is used to calculate the control amount to be distributed to the motor controller 14 on the left and right sides of the perforated open-wheel oxygen booster 26, and finally realize autonomous navigation.
  • PD proportional-differential
  • the solar power supply system includes a solar panel 7, a charge and discharge controller 16, a battery 15, and a power management system.
  • the charge and discharge controller 16 is respectively connected to the solar panel 7, the battery 15, and the power management system. It is used to control the working state of the whole solar power supply system, and overcharge and overdischarge protection of the battery; on the other hand, it is used for the motor controller 14, the GPS navigation module 28, the central controller 5, and the wireless data transmission receiver, respectively. 3 provide the required power; because the maximum supply voltage of the whole system is 24V, the charge and discharge controller 16 and the battery 15 All should be 24V working voltage.
  • the system is connected in series by four solar panels 7 of the same specification to provide more power to supply power to the entire system, and to supply excess energy to the battery 15 and store it for night and rainy days. Power supply ensures the operation of the aerator. The conversion of these energies is achieved by the charge and discharge controller 16. Finally, a stable voltage output is realized by the charge and discharge controller 16 to the power management system 27. After voltage conversion, 24V voltage is used for the motor controller 14, 12V voltage is used for the GPS navigation module 28, and 5V is used for the central controller 5 and the wireless number. Pass the receiver 3 and so on.
  • the GPS navigation module 28 adopts an RTK-GPS positioning method, that is, carrier phase differential positioning, which is mainly divided into a base station and a mobile station.
  • the method has high positioning accuracy, good real-time performance, high reliability, and can realize dual antenna attitude measurement.
  • the basic principle is that the base station GPS receiver and the mobile station GPS receiver receive signals transmitted by the same GPS satellite at the same time, and the observation values obtained by the base station are compared with the known position information, and the GPS differential correction value is obtained. Then, the GPS differential correction value is transmitted to the mobile station in a data link form in a timely manner by the radio station, so that the GPS observation value is refined, thereby obtaining accurate real-time position information of the mobile station after the differential correction.
  • the GPS navigation module 28 includes a base station GPS antenna 21, a base station GPS receiver 22, a base station station 23, a base station station antenna 24, a mobile station station antenna 18, a mobile station station 17, a mobile station GPS main antenna 2, a mobile station GPS sub-antenna 19.
  • the mobile station GPS receiver 6; the mobile station GPS main antenna 2, the mobile station GPS sub-antenna 19 are used to locate and determine the hull attitude of the solar autonomous mobile aerator; the base station GPS antenna 21, the base station GPS The receiver 22, the base station station 23, the base station station antenna 24, the mobile station station antenna 18, the mobile station station 17, and the mobile station GPS receiver 6 are sequentially wirelessly connected for correcting the positioning information.
  • the base station is mainly composed of a base station GPS antenna 21, a base station GPS receiver 22, a base station station 23, and a base station station antenna 24.
  • the base station GPS antenna 21 receives the fixed point positioning information of the GPS satellite 20, analyzes it by the base station GPS receiver 22, transmits the data to the base station station 23, and transmits the band to the outside through the base station station antenna 24, and receives it via the mobile station radio antenna 18. After being processed by the mobile station station 17, it is transmitted to the mobile station GPS receiver 6 for correction of the positioning information.
  • the mobile station GPS main antenna 2 is used for positioning, and the mobile station GPS sub-antenna 19 is used in conjunction with the mobile station GPS main antenna 2 for orientation to determine the attitude of the hull 1.
  • the two antennas should coincide with the vertical neutral line of the hull 1 and maintain a certain distance to ensure that the GPS navigation system 28 has sufficient attitude accuracy and measurement accuracy.
  • the position and attitude information processed by the mobile station GPS receiver 6 is transmitted to the central controller 5 through the serial port, and the central controller 5 controls the output of the corresponding control amount to control the motor speed.
  • the dissolved oxygen detecting module includes a small solar panel 29, a small charge and discharge controller 31, a small battery 32, a wireless data transmission transmitter 30, a dissolved oxygen sensor 35, and the small charge and discharge controller 31 and a small solar panel, respectively. 29, small The battery 32, the wireless data transmitter 30, and the dissolved oxygen sensor 35 are connected.
  • the small solar panel 29 is mounted on the topmost end of the fixed bracket 33 for fully receiving solar energy, and the small charge and discharge controller 31 and the 12V small battery 32 are mounted below the wireless data transmission transmitter 30, which operates in the same manner as the solar power supply system described above. For use in the wireless data transmission transmitter 30 and the dissolved oxygen sensor 35.
  • the wireless data transmission transmitter 30 is mounted below the small solar panel 29 for receiving the dissolved oxygen measured by the dissolved oxygen sensor 35 at a certain depth below the water surface 34, and wirelessly transmitted to the aerator of the aerator.
  • Device 3. The central processor 5 is informed of the latitude and longitude of the point position, and the point is set as the target point of the aerator to travel, and the aerator is informed that the dissolved oxygen is insufficient in the vicinity of the point, and oxygenation is required. It should be noted that in order to prevent the aerobic ship from colliding with the fixed bracket 33 of the target point, the target point has been avoided when the upper machine plans the path. The area near the target point is considered to have reached the target area.
  • the hull structure of the present invention and the specific structure of the perforated paddle wheel can be changed according to the needs of the specific water condition and the size of the area, and the central control of the present invention.
  • the device can also be controlled by a circuit device such as a DSP development board to control the perforated open-wheel oxygen booster, the wireless data receiver, and the GPS navigation module.
  • the dissolved oxygen detecting module of the present invention is not limited to relying on small
  • the solar panel is powered by a wireless data transmission transmitter and a dissolved oxygen sensor, and can also be powered by a wind power generation system.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

一种用于水产养殖的太阳能自主移动式增氧系统,包括太阳能自主移动式增氧机、GPS导航模块(28)、溶解氧检测模块;所述太阳能自主移动式增氧机中,中央控制器(5)分别连接带孔明轮增氧推进器(26)、上位机(25)、无线数传接收器(3)、GPS导航模块(28),用于获取溶解氧传感器(35)的信息,定位导航,并驱动带孔明轮增氧推进器(26)的运转,进而自动实现对养殖水域溶解氧不足区域的增氧。

Description

一种太阳能自主移动式增氧系统 技术领域
本发明涉及一种水体增氧装置,特别是涉及一种用于水产养殖的太阳能自主移动式增氧系统。
背景技术
我国是水产养殖世界大国,仅池塘养殖面积就达到约2000万亩,养殖产量位居世界第一位。近来,随着我国水产养殖面积和养殖密度不断扩大,天气条件越来越恶劣,水产品对溶解氧的要求越来越高,低溶解氧使之呼吸加快,再低则浮头,甚至死亡。
一般情况下,鱼塘缺氧往往是在夜间,特别是黎明气压低时,溶氧最低,养殖户为观察鱼群而彻夜坚守,增氧机的目的主要是向水体增加溶氧,它可综合利用物理、化学和生物等功能,不但可以解决池塘养殖中因为缺氧而产生的鱼浮头的问题,而且可以消除有害气体,促进水体对流交换,改善水质条件,提高鱼塘活性和初级生产率,从而可提高放养密度,增加养殖对象的摄食强度,促进生长,使亩产大幅提高,充分达到养殖增收的目的。
增氧机种类很多,主要有叶轮增氧机、水车式增氧机、充气式增氧机、喷水式增氧机等。现有传统的增氧机主要都是定点增氧,增氧机固定在养殖池塘中的某个位置,呈现出离增氧装置越远,增氧效果越弱的趋势。为了比较均匀地给池塘的各个区域增氧,需要间隔均匀地配置多台增氧机,设施的投入较大,给渔民造成了较大的负担。
目前,市场上存在少量的移动式增氧机,也仅仅是一些遥控式,或者半自动式的,需要人为的进行遥控以及蓄电池的充电。例如专利申请CN103039397A依赖外接电源和电线供电,但是没有解决动力供应的问题;专利申请CN202476286U尽管采用太阳能供电,但是其增氧机并不具有节能的自主移动增氧的功能,也不具备有效针对性的增氧的能力,在现有水产养殖模式下,水产品对溶解氧的要求较高,依赖性较强,溶氧量不足会大大降低水产品产量。因此,针对上述增氧机存在的缺陷与不足,开发一种太阳能自主移动式的增氧机具有很高的实用价值。
发明内容
本发明针对上述问题以及所存在的不足,提出了一种既能有针对性的为养殖水域增氧,又能为整个增氧机提供推动力的太阳能自主移动式增氧系统,该系统智能化高,具有高度自主性搜索导航能力。
为达到上述目的,本发明是这样实现的:
一种太阳能自主移动式增氧系统,包括太阳能自主移动式增氧机、GPS导航模块、溶解氧检测模块;所述太阳能自主移动式增氧机包括船体,以及设置在船体上的带孔明轮增氧推进器、太阳能供电系统、上位机、中央控制器、无线数传接收器;所述中央控制器分别连接带孔明轮增氧推进器、上位机、无线数传接收器、GPS导航模块,用于获取溶解氧传感器的信息,定位导航,并驱动带孔明轮增氧推进器的运转,进而自动实现对养殖水域溶解氧不足区域的增氧;所述带孔明轮增氧推进器用于增氧,又用于提供整个增氧机的推动力,包括电机控制器、直流减速电机、带孔明轮,所述电机控制器连接控制直流减速电机,所述直流减速电机通过联轴器连接固定在带孔明轮的中心轴架上;所述太阳能供电系统包括太阳能电池板、充放电控制器、蓄电池、电源管理系统,所述充放电控制器分别和太阳能电池板、蓄电池、电源管理系统相连,一方面用于控制整个太阳能供电系统的工作状态,并对蓄电池起到过充电,过放电保护;另一方面分别用于为电机控制器、GPS导航模块、中央控制器、无线数传接收器提供所需电源;所述上位机用于将养殖水域内设置为增氧区域的溶解氧传感器模块的经纬度信息写入中央控制器;所述无线数传接收器用于接收溶解氧检测模块中的溶解氧传感器的采集信息;所述GPS导航模块用于确定船体的姿态,为太阳能自主移动式增氧机提供导航信息;所述溶解氧检测模块用于获取所在水域内的溶氧度信息,并将太阳能自主移动式增氧机所需行进目标点发送给无线数传接收器。
作为本发明的进一步改进,所述船体为双体船型。
作为本发明的进一步改进,所述带孔明轮位于所述船体两侧,为双叶明轮,双叶明轮之间为中心轴架,每个带孔明轮上均匀分布有六个大小尺寸相同的圆孔。
作为本发明的进一步改进,所述带孔明轮在船体两侧转速相同、旋转方向一致时,增氧机则向前或向后行驶;当其旋转方向相反时,则增氧机作原地旋转运动,用于实现深度增氧。
作为本发明的进一步改进,所述溶解氧检测模块包括小型太阳能电池板、小型充放电控制器、小型蓄电池、无线数传发送器、溶解氧传感器,所述小型充放电控制器分别和小型太阳能电池板、小型蓄电池、无线数传发送器、溶解氧传感器相连接。
作为本发明的进一步改进,所述溶解氧检测模块分布在养殖水域的角落、边缘、中心区域,为多个。
作为本发明的进一步改进,所述太阳能电池板为四块,每块太阳能电池板都用支架固定于船体最上方,无线数传接收器、移动站GPS主天线、移动站GPS副天线分别固定 在太阳能电池板的缝隙间的上方,中央控制器和移动站GPS接收机安装在太阳能电池板的下方阴面。
作为本发明的进一步改进,所述GPS导航模块包括基站GPS天线、基站GPS接收机、基站电台、基站电台天线、移动站电台天线、移动站电台、移动站GPS主天线、移动站GPS副天线、移动站GPS接收机,所述基站GPS天线用于接收GPS卫星的固定点定位信息后经基站GPS接收机进行解析,并将数据发送给基站电台,基站电台天线用于向外界发送波段,经由移动站电台天线接收且由移动站电台处理,并发送给移动站GPS接收机;移动站GPS接收机用于进行定位信息的修正,移动站GPS主天线用来定位,移动站GPS副天线配合移动站GPS主天线用来定向,确定船体的姿态。
作为本发明的进一步改进,所述中央控制器选用嵌入式ARM9内核的芯片MINI2440型开发板。
本发明由于采取以上设计方案,当太阳能给整个系统供电,太阳能不足时,由蓄电池供电。双体浮船搭载明轮增氧推进器不仅可提供增氧机行驶的动力,还能在运行过程中有效增氧。通过布置在养殖水域相关位置的溶解氧传感器测出的溶氧度含量决定何处需要进行增氧,根据上位机的路径规划以及GPS导航模块的导航信息,经过中央控制器处理后控制明轮增氧推进器。本发明所述自主移动式增氧机可根据设定航迹自主完成增氧作业。本发明所述增氧机还可以通过太阳能板作为动力来源,无需外部电源供电。相较其它传统增氧机,该增氧机能与更广水域的水体接触、循环、促进水体对流交换,解决了养殖水域中溶氧度以增氧机为中心呈梯度分布的问题。而且实现了真正意义上的全自动控制,且在无电区域也能正常使用,本发明的具体有益效果表现为:
1)本发明增氧机是自主移动式的,无需任何人工操作,节约能源,节省劳力物力,提高增氧效率。与普通的定点增氧机相比,可改善其增氧的局限性,尤其是在面积比较大的水域更能凸显其优越性。同时,增氧机按照规划好的增氧轨迹进行自主移动增氧,能够使得整个养殖区域的溶解氧含量近乎均匀分布,也有利于鱼虾蟹类的均匀分布,提高水产品的产量与质量。
2)本发明增氧机的明轮增氧推进器既能增氧,又能提供整个增氧机的推动力,可以有效节省作业船的空间,而且不会增加其他附加增氧费用,明轮的转动和增氧机旋转深度增氧还可以促进上下水体的对流交换与循环,相较其他平面式增氧机,增氧范围更大,增氧效果更显著,实用价值更高。
3)本发明增氧机的动力来自太阳能供电系统,无需外部充电,而且在晚上和阴雨 天也能正常工作,无需人员看守,自动化程度高。
附图说明
图1是本发明的增氧机的俯视图;
图2是本发明的是整个控制系统的控制框图;
图3是本发明的太阳能供电系统结构框图;
图4是本发明的RTK-GPS导航模块硬件连接图;
图5本发明的溶解氧检测模块装置简图。
图中,1-船体;2-移动站GPS主天线;3-无线数传接收器;4-中央控制柜;5-中央控制器;6-移动站GPS接收机;7-太阳能电池板;8-固定螺栓;9-圆孔;10-带孔明轮;11-中心轴架;12-联轴器;13-直流减速电机;14-电机控制器;15-蓄电池;16-充放电控制器;17-移动站电台;18-移动站电台天线;19-移动站GPS副天线;20-GPS卫星;21-基站GPS天线;22-基站GPS接收机;23-基站电台;24-基站电台天线;25-上位机;26-带孔明轮增氧推进器;27-电源管理系统;28-GPS导航模块;29-小型太阳能电池板;30-无线数传发送器;31-小型充放电控制器;32-小型锂电池;33-固定支架;34-水面;35-溶解氧传感器。
具体实施方式
以下对本发明的技术要点作进一步的概述。
本发明的一种太阳能自主移动式增氧系统,包括太阳能自主移动式增氧机、GPS导航模块28、溶解氧检测模块;所述太阳能自主移动式增氧机包括船体1,以及设置在船体1上的带孔明轮增氧推进器26、太阳能供电系统、上位机25、中央控制器5、无线数传接收器3;所述中央控制器5分别连接带孔明轮增氧推进器26、上位机25、无线数传接收器3、GPS导航模块28,用于获取不同位置水域的溶解氧传感器35的采集信息,定位导航,并驱动带孔明轮增氧推进器26的运转,进而自动实现对养殖水域溶解氧不足区域的增氧。
所述船体1为双体船型,中间两侧装有带孔明轮增氧推进器26,太阳能供电系统用支架固定于船体最上方,用于充分接受光照,中央控制器5和移动站GPS接收机6安装在太阳能电池板7的下方阴面,有利于散热与防水。
所述太阳能供电系统包括太阳能电池板7、充放电控制器16、蓄电池15,太阳能电池板7是太阳能供电系统的核心,其作用是将太阳的辐射能量转换为电能,供给负载工 作和给蓄电池充电;充放电控制器16作用是控制整个太阳能供电系统的工作状态,并对蓄电池起到过充电,过放电保护的作用;蓄电池15的作用是在有光照时将太阳能电池板所提供的电能的一部分储存起来,到晚上或者阴雨天气时再释放出来供增氧机作业。
所述带孔明轮增氧推进器26包括直流减速电机13、电机控制器14、带孔双叶明轮10等。本系统采用直流减速电机13驱动,转矩大,成本低,控制简单,调速性好,并且能够正反转;带孔双叶明轮10采用孔式结构,每片明轮叶片上设计了大小、数量相同的孔。明轮的运动带动水体的运动,不仅起到增氧的作用,而且,通过电机控制器14调节控制量时,还能带动船体做各种运动,实现船体1的前进后退和左转右转,这样便能为实现自主导航移动提供底层硬件基础。采用明轮推进的结构,虽然推进效率比螺旋桨低,但在不追求船速的增氧作业下,保证了船体在水草密集处,以及浅水处也能正常作业,而不会出现吸卷水草、打坏螺旋桨甚至搁浅的情况。
所述中央控制器5根据布置在养殖水域相关位置的溶解氧传感器模块通过无线传输发来的溶氧含量信息,决定何处需要进行增氧,并规划增氧机航行路径,采集GPS导航模块28的位置航向等信号,经过导航控制算法运算处理,最后将控制量送入到电机控制器14,让增氧机按照规划的路线航行实现增氧。
所述GPS导航模块28用于为船体提供导航信息,包括基站GPS天线和接收机、移动站GPS天线和接收机、基站电台和移动站电台。基站电台和移动电台的作用是将基站GPS接收机解算的位置修正值数据链传输到移动站GPS接收机,实现更高精度的定位。如此,便能在较小池塘中,也能进行精密增氧。而不致能源的浪费。
所述溶解氧检测模块用于采集不同位置的水域溶解氧传感器35的信息,包括:小型太阳能供电系统、无线数传发送器和溶解氧传感器。本发明的溶解氧检测模块通常设置于养殖水域的角落,边缘、中心等区域,小型太阳能供电系统用来给无线数传发送器和溶解氧传感器供电,溶解氧传感器通过无线数传将溶氧度发送给中央控制器,以确定增氧机行进的目标点。
下面结合附图1~5进一步详细介绍本发明的具体实施例。
参见图1,该发明增氧机主要包括船体1、太能阳电池板7、带孔明轮增氧推进器26、中央控制器5、GPS导航模块28等。
本发明船体1采用双体浮船作为整个增氧系统的运动载体,承载着增氧所需的各个模块:船身几乎被4块相同规格太阳能电池板7覆盖,每块太阳能电池板7都用支架固定于船体最上方,外边由固定螺栓8固定。为了不妨碍GPS接收GPS卫星20信号,移 动站GPS主天线2和移动站GPS副天线19不能被太阳能电池板7所遮挡,故应固定在太阳能电池板7的缝隙上方。同理,无线数传接收器3也应在其上方,有利于远距离的数据传输。船头还放置有中央控制器5以及移动站GPS接收机6,该两者都固定于铁质的中央控制柜4里面,既能防雨防晒,又能减弱电磁干扰。船尾部分除了2块太阳能电池板7和移动站GPS副天线19外,还装有移动站电台17和移动站电台天线18。船中间放置的是24V的蓄电池15,充放电控制器16固定于蓄电池15的上方,用于各个模块的用电。
船中间两侧安装两个带孔明轮增氧推进器26,用来定向移动和移动增氧。该推进器由电机控制器14、直流减速电机13和带孔明轮10组成。直流减速电机13通过联轴器12连接固定在带孔明轮10的中心轴架11上。电机控制器14根据中央控制器5输出的速度控制量和方向控制量,对直流减速电机13进行调速控制,通过左右直流减速电机13的转速差做转向控制。左右带孔明轮10转速相同、旋转方向一致时,增氧机则向前或向后行驶;当其旋转方向相反时,则增氧机作原地旋转运动,实现深度增氧。带孔明轮10上均匀分布有六个大小尺寸相同的圆孔9,利于水体与空气的充分接触。另外,在不超过船体1长度的情况下,带孔明轮10的尺寸需足够大,这样能增大增氧幅度,对较深水域也能起到活水增氧的作用。
如图2,即是整个系统的控制框图,中央控制器5是整个控制系统的核心,选用的是嵌入式ARM9内核的芯片MINI2440型开发板。首先,对系统进行上位机25轨迹规划,上位机25将养殖水域内设置为增氧区域的溶解氧传感器模块的经纬度信息写入中央控制器5。同时,通过无线数传接收器3接收到的溶解氧传感器35的信息,即溶解度的值确定是否需要增氧,当需要增氧时,将该位置的经纬度设置为目标经纬度,再由串口采集到GPS导航模块28的经纬度信息,通过该两点所确定的方向与正北方的夹角确定目标航向角。再与GPS导航模块28采集到的实时航向角作比较,运用PD(比例-微分)算法,算出控制量分配给带孔明轮增氧推进器26左右两边的电机控制器14,最终实现自主导航。
如图3,太阳能供电系统包括太阳能电池板7、充放电控制器16、蓄电池15、电源管理系统,所述充放电控制器16分别和太阳能电池板7、蓄电池15、电源管理系统相连,一方面用于控制整个太阳能供电系统的工作状态,并对蓄电池起到过充电,过放电保护;另一方面分别用于为电机控制器14、GPS导航模块28、中央控制器5、无线数传接收器3提供所需电源;因整个系统的最大供电电压为24V,故充放电控制器16与蓄电池15 都应为24V工作电压。该系统由4块规格一样的太阳能电池板7串联起来,提供更大功率的电能给整个系统供电,并将多余的能量提供给蓄电池15,并储存起来,以待夜晚及阴雨天,由蓄电池15供电保证增氧机的工作。而这些能量的转换就是通过充放电控制器16来实现的。最终通过充放电控制器16实现稳定的电压输出给电源管理系统27,经过电压转换,24V电压用于电机控制器14,12V电压用于GPS导航模块28,5V用于中央控制器5与无线数传接收器3等。
如图4,GPS导航模块28采用的是RTK-GPS定位方法,即载波相位差分定位,该定位方式主要分为基站和移动站。该方法定位精度高,实时性好,可靠性高,而且还能实现双天线测姿。其基本原理为,基站GPS接收机和移动站GPS接收机会接收同一GPS卫星同一时间发射的信号,基准站所获得的观测值将与已知位置信息进行比较,得到了GPS差分改正值。然后通过无线电电台以数据链形式将GPS差分改正值及时地传递给移动站,使得GPS观测值精化,从而得到经过差分改正后的移动站较准确的实时位置信息。
所述GPS导航模块28包括基站GPS天线21、基站GPS接收机22、基站电台23、基站电台天线24、移动站电台天线18、移动站电台17、移动站GPS主天线2、移动站GPS副天线19、移动站GPS接收机6;所述移动站GPS主天线2、移动站GPS副天线19用来对太阳能自主移动式增氧机进行定位和确定船体姿态;所述基站GPS天线21、基站GPS接收机22、基站电台23、基站电台天线24、移动站电台天线18、移动站电台17、移动站GPS接收机6依次无线连接,用来进行定位信息的修正。
具体过程为,基站主要由基站GPS天线21、基站GPS接收机22、基站电台23和基站电台天线24构成。基站GPS天线21接收GPS卫星20的固定点定位信息后经基站GPS接收机22进行解析,将数据发送给基站电台23,通过基站电台天线24再向外界发送波段,经由移动站电台天线18接收并由移动站电台17处理后,发送给移动站GPS接收机6进行定位信息的修正。移动站GPS主天线2用来定位,移动站GPS副天线19配合移动站GPS主天线2用来定向,确定船体1的姿态。所以,两个天线之间应该与船体1的垂直中性线重合,并保持一定距离,以保证GPS导航系统28具有足够的姿态精度与测量精度。最后,由移动站GPS接收机6处理过后的位置与姿态等信息通过串口传输给中央控制器5,由中央控制器5控制输出相对应的控制量控制电机转速。
如图5,增氧机行进目标点的确定,是通过溶解氧检测模块实现的。所述溶解氧检测模块包括小型太阳能电池板29、小型充放电控制器31、小型蓄电池32、无线数传发送器30、溶解氧传感器35,所述小型充放电控制器31分别和小型太阳能电池板29、小 型蓄电池32、无线数传发送器30、溶解氧传感器35相连接。小型太阳能电池板29安装在固定支架33的最顶端,用于充分接收太阳能,小型充放电控制器31和12V小型蓄电池32安装在无线数传发送器30的下方,与上述太阳能供电系统工作原理相同,用于无线数传发送器30和溶解氧传感器35用电。无线数传发送器30安装在小太阳能电池板29的下方,用于接收水面34下一定深度的溶解氧传感器35测量的溶氧度,并通过无线发送到增氧机船体上的无线数传接收器3。告知中央处理器5该点位置的经纬度等信息,将该点设置为增氧机行进的目标点,告知增氧机该点附近区域溶解氧不足,需要增氧。需要注意的是,为防止增氧船与目标点的固定支架33碰撞损坏,该目标点在上位机规划路径时,已然避开。在目标点附近区域被认为是已经达到目标区域。
除了以上实施例之外,本发明的还有很多种实现方式,本发明的船体结构以及带孔明轮的具体结构可根据具体水域状况、面积的大小的需要而做出改变,本发明的中央控制器还可以采用诸如DSP开发板之类的电路器件,实现对带孔明轮增氧推进器、无线数传接收器、GPS导航模块的控制,本发明的溶解氧检测模块并不局限于仅仅依靠小型太阳能电池板为无线数传发送器、溶解氧传感器供电,也可以采用风力自主发电系统供电实现。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
以上对本发明所提供的一种太阳能自主移动式增氧系统,并对此进行了详细介绍,本文应用了具体个例对本发明的原理和实施方式进行了阐述,所要说明的是,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种太阳能自主移动式增氧系统,其特征在于,包括太阳能自主移动式增氧机、GPS导航模块(28)、溶解氧检测模块;
    所述太阳能自主移动式增氧机包括船体(1),以及设置在船体(1)上的带孔明轮增氧推进器(26)、太阳能供电系统、上位机(25)、中央控制器(5)、无线数传接收器(3);
    所述中央控制器(5)分别连接带孔明轮增氧推进器(26)、上位机(25)、无线数传接收器(3)、GPS导航模块(28),用于获取溶解氧传感器(35)的信息,定位导航,并驱动带孔明轮增氧推进器(26)的运转,进而自动实现对养殖水域溶解氧不足区域的增氧;
    所述带孔明轮增氧推进器(26)用于增氧,又用于提供整个增氧机的推动力,包括电机控制器(14)、直流减速电机(13)、带孔明轮(10),所述电机控制器(14)连接控制直流减速电机(13),所述直流减速电机(13)通过联轴器(12)连接固定在带孔明轮(10)的中心轴架(11)上;
    所述太阳能供电系统包括太阳能电池板(7)、充放电控制器(16)、蓄电池(15)、电源管理系统,所述充放电控制器(16)分别和太阳能电池板(7)、蓄电池(15)、电源管理系统相连,一方面用于控制整个太阳能供电系统的工作状态,并对蓄电池起到过充电,过放电保护;另一方面分别用于为电机控制器(14)、GPS导航模块(28)、中央控制器(5)、无线数传接收器(3)提供所需电源;
    所述上位机(25)用于将养殖水域内设置为增氧区域的溶解氧传感器模块的经纬度信息写入中央控制器(5);
    所述无线数传接收器(3)用于接收溶解氧检测模块中的溶解氧传感器(35)的采集信息;
    所述GPS导航模块(28)用于确定船体(1)的姿态,为太阳能自主移动式增氧机提供导航信息;
    所述溶解氧检测模块用于获取所在水域内的溶氧度信息,并将太阳能自主移动式增氧机所需行进目标点发送给无线数传接收器(3)。
  2. 根据权利要求1所述的太阳能自主移动式增氧系统,其特征在于,所述船体(1)为双体船型。
  3. 根据权利要求1所述的太阳能自主移动式增氧系统,其特征在于,所述带孔明轮 (10)位于所述船体(1)两侧,为双叶明轮,双叶明轮之间为中心轴架(11),每个带孔明轮上均匀分布有六个大小尺寸相同的圆孔(9)。
  4. 根据权利要求1或3所述的太阳能自主移动式增氧系统,其特征在于,所述带孔明轮(10)在船体(1)两侧转速相同、旋转方向一致时,增氧机则向前或向后行驶;当其旋转方向相反时,则增氧机作原地旋转运动。
  5. 根据权利要求1所述的太阳能自主移动式增氧系统,其特征在于,所述溶解氧检测模块包括小型太阳能电池板(29)、小型充放电控制器(31)、小型蓄电池(32)、无线数传发送器(30)、溶解氧传感器(35),所述小型充放电控制器(31)分别和小型太阳能电池板(29)、小型蓄电池(32)、无线数传发送器(30)、溶解氧传感器(35)相连接。
  6. 根据权利要求5所述的太阳能自主移动式增氧系统,其特征在于,所述溶解氧检测模块分布在养殖水域的角落、边缘、中心区域,为多个。
  7. 根据权利要求1所述的太阳能自主移动式增氧系统,其特征在于,所述太阳能电池板(7)为四块,每块太阳能电池板(7)都用支架固定于船体最上方,无线数传接收器(3)、移动站GPS主天线(2)、移动站GPS副天线(19)分别固定在太阳能电池板(7)的缝隙间的上方,中央控制器(5)和移动站GPS接收机(6)安装在太阳能电池板(7)的下方阴面。
  8. 根据权利要求1所述的太阳能自主移动式增氧系统,其特征在于,所述GPS导航模块(28)包括基站GPS天线(21)、基站GPS接收机(22)、基站电台(23)、基站电台天线(24)、移动站电台天线(18)、移动站电台(17)、移动站GPS主天线(2)、移动站GPS副天线(19)、移动站GPS接收机(6);
    所述基站GPS天线(21)用于接收GPS卫星(20)的固定点定位信息后经基站GPS接收机(22)进行解析,并将数据发送给基站电台(23);基站电台天线(24)用于向外界发送波段,经由移动站电台天线(18)接收且由移动站电台(17)处理,并发送给移动站GPS接收机(6);移动站GPS接收机(6)用于进行定位信息的修正;移动站GPS主天线(2)用来定位,移动站GPS副天线(19)配合移动站GPS主天线(2)用来定向,确定船体(1)的姿态。
  9. 根据权利要求1所述的太阳能自主移动式增氧系统,其特征在于,所述中央控制器(5)选用嵌入式ARM9内核的芯片MINI2440型开发板。
PCT/CN2015/077910 2015-03-19 2015-04-30 一种太阳能自主移动式增氧系统 WO2016145725A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510121607.XA CN104737968B (zh) 2015-03-19 2015-03-19 一种太阳能自主移动式增氧系统
CN201510121607.X 2015-03-19

Publications (1)

Publication Number Publication Date
WO2016145725A1 true WO2016145725A1 (zh) 2016-09-22

Family

ID=53578690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077910 WO2016145725A1 (zh) 2015-03-19 2015-04-30 一种太阳能自主移动式增氧系统

Country Status (2)

Country Link
CN (1) CN104737968B (zh)
WO (1) WO2016145725A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106647835A (zh) * 2017-03-09 2017-05-10 福建强闽信息科技有限公司 一种基于窄带物联网的智能增氧机及溶解氧立体监测方法
CN106774097A (zh) * 2017-02-24 2017-05-31 天津大学 砾石土料掺配过程信息自动采集装置
CN106970196A (zh) * 2017-05-08 2017-07-21 黄淮学院 一种风光互补型水质自动监测装置
CN107372289A (zh) * 2017-07-26 2017-11-24 张国余 一种用于增氧机的叶轮
CN107646783A (zh) * 2017-11-06 2018-02-02 张俊 增氧机
CN108496885A (zh) * 2018-04-26 2018-09-07 何珠贞 一种渔业专用养殖装置
CN109717129A (zh) * 2019-02-22 2019-05-07 珠海聚能精密工业有限公司 叶轮活水增氧机
CN109964871A (zh) * 2019-05-14 2019-07-05 盐城师范学院 滩涂水产养殖池自动增氧机
CN110663632A (zh) * 2019-10-14 2020-01-10 珠海市光普太阳能科技有限公司 一种智能太阳能直流鱼塘增氧机系统
CN110839588A (zh) * 2019-12-20 2020-02-28 盐城师范学院 滩涂养鱼池增氧机
CN111718074A (zh) * 2020-06-30 2020-09-29 南京信息工程大学 基于生物修复的自巡陀螺仪
CN112042588A (zh) * 2020-08-27 2020-12-08 上海珠宇工程咨询管理有限公司 一种移动式太阳能增氧曝气设备
CN112462020A (zh) * 2020-11-25 2021-03-09 烟台职业学院 风光互补型双体式无人水质监测船
CN113016704A (zh) * 2021-03-12 2021-06-25 中国海洋大学 一种基于owc原理的自航式掺气增氧船及其增氧方法
CN113796346A (zh) * 2020-06-17 2021-12-17 谢京波 铝合金镀铜防腐蚀材料十字轴四正方形箱体浮筒人字立轴竖板叶轮底孔浸水旋转风力增氧机
CN114190326A (zh) * 2020-09-18 2022-03-18 东元电机股份有限公司 控制系统及其具有双出轴马达的陆上移动式增氧机
CN114766413A (zh) * 2022-05-18 2022-07-22 李宏波 一种水产养殖用具有均匀增氧功能的养殖装置及方法
CN116621374A (zh) * 2023-05-30 2023-08-22 日照市日照水库管理运行中心 一种水库水质净化设备
CN117193107A (zh) * 2023-09-28 2023-12-08 广东胜昌科技有限公司 一种基于人工智能技术的增氧机智能控制方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106094852A (zh) * 2016-06-29 2016-11-09 南京信息工程大学 一种保持无人船姿态稳定的控制系统
CN106069994A (zh) * 2016-08-02 2016-11-09 广西大学 自主移动式光伏射流增氧平台
CN106275297B (zh) * 2016-11-04 2018-04-10 安徽工业大学 一种用于鱼塘养殖的太阳能增氧船
CN106342744B (zh) * 2016-11-04 2022-03-22 安徽工业大学 一种移动式太阳能增氧系统及增氧方法
CN106771042A (zh) * 2017-01-20 2017-05-31 广州三环保有限公司 一种带gps的环境监测供氧机
CN108353843B (zh) * 2018-01-29 2020-04-24 途揆食品(上海)有限公司 一种基于物联网的用于水中增氧的智能增氧设备
CN108353845A (zh) * 2018-03-26 2018-08-03 飞力泵业有限公司 太阳能水车式增氧机及渔业养殖系统
CN108862650A (zh) * 2018-07-04 2018-11-23 武汉永清环保科技工程有限公司 一种可实施网格化无人自动巡航的太阳能曝气机
CN109496960B (zh) * 2018-11-28 2021-02-26 浙江福霸机电有限公司 一种利用力可相互抵消原理实现定位的水车式增氧机
CN112269376B (zh) * 2020-09-14 2022-11-18 江苏大学 一种移动式增氧机的作业路径规划及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201821767U (zh) * 2010-09-26 2011-05-11 攀枝花市银江金勇工贸有限责任公司 鱼塘用太阳能多功能机
CN102426441A (zh) * 2011-09-05 2012-04-25 西北农林科技大学 面向水产养殖的智能化补氧系统
CN203200089U (zh) * 2013-04-13 2013-09-18 江门市江海区雷迅太阳能科技有限公司 一种太阳能全自动水产养殖增氧灭菌多功能船
CN103910424A (zh) * 2014-03-28 2014-07-09 上海电力学院 太阳能可移动式水生态维护机器人
CA2801812A1 (en) * 2013-01-14 2014-07-14 El Bilali, Jason Mobile wind and solar powered water mixing and measuring raft

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900423A1 (en) * 2006-09-13 2008-03-19 National Huwei University of Science and Techn. Aeration equipment
TW201236560A (en) * 2011-03-14 2012-09-16 Univ Nat Formosa Aeration apparatus
CN202190640U (zh) * 2011-08-11 2012-04-18 郑成忠 移动式增氧装置
CN103734071A (zh) * 2012-10-17 2014-04-23 徐乃美 一种水产养殖增氧控制系统
CN203451293U (zh) * 2013-09-10 2014-02-26 孟祥凤 移动式气动旋臂增氧机
CN103676906A (zh) * 2013-12-25 2014-03-26 苏州市阳澄湖渔业科技中心有限公司 一种集约化水产养殖监测系统
CN203882219U (zh) * 2014-03-21 2014-10-15 浙江海洋学院 池塘水体环境远程监控装置
CN204579554U (zh) * 2015-03-19 2015-08-26 江苏大学 一种太阳能自主移动式增氧系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201821767U (zh) * 2010-09-26 2011-05-11 攀枝花市银江金勇工贸有限责任公司 鱼塘用太阳能多功能机
CN102426441A (zh) * 2011-09-05 2012-04-25 西北农林科技大学 面向水产养殖的智能化补氧系统
CA2801812A1 (en) * 2013-01-14 2014-07-14 El Bilali, Jason Mobile wind and solar powered water mixing and measuring raft
CN203200089U (zh) * 2013-04-13 2013-09-18 江门市江海区雷迅太阳能科技有限公司 一种太阳能全自动水产养殖增氧灭菌多功能船
CN103910424A (zh) * 2014-03-28 2014-07-09 上海电力学院 太阳能可移动式水生态维护机器人

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106774097A (zh) * 2017-02-24 2017-05-31 天津大学 砾石土料掺配过程信息自动采集装置
CN106647835A (zh) * 2017-03-09 2017-05-10 福建强闽信息科技有限公司 一种基于窄带物联网的智能增氧机及溶解氧立体监测方法
CN106970196B (zh) * 2017-05-08 2023-03-24 黄淮学院 一种风光互补型水质自动监测装置
CN106970196A (zh) * 2017-05-08 2017-07-21 黄淮学院 一种风光互补型水质自动监测装置
CN107372289A (zh) * 2017-07-26 2017-11-24 张国余 一种用于增氧机的叶轮
CN107646783A (zh) * 2017-11-06 2018-02-02 张俊 增氧机
CN108496885A (zh) * 2018-04-26 2018-09-07 何珠贞 一种渔业专用养殖装置
CN109717129A (zh) * 2019-02-22 2019-05-07 珠海聚能精密工业有限公司 叶轮活水增氧机
CN109964871B (zh) * 2019-05-14 2024-03-26 盐城师范学院 滩涂水产养殖池自动增氧机
CN109964871A (zh) * 2019-05-14 2019-07-05 盐城师范学院 滩涂水产养殖池自动增氧机
CN110663632A (zh) * 2019-10-14 2020-01-10 珠海市光普太阳能科技有限公司 一种智能太阳能直流鱼塘增氧机系统
CN110663632B (zh) * 2019-10-14 2024-04-30 珠海市光普太阳能科技有限公司 一种智能太阳能直流鱼塘增氧机系统
CN110839588A (zh) * 2019-12-20 2020-02-28 盐城师范学院 滩涂养鱼池增氧机
CN110839588B (zh) * 2019-12-20 2024-04-09 盐城师范学院 滩涂养鱼池增氧机
CN113796346A (zh) * 2020-06-17 2021-12-17 谢京波 铝合金镀铜防腐蚀材料十字轴四正方形箱体浮筒人字立轴竖板叶轮底孔浸水旋转风力增氧机
CN111718074A (zh) * 2020-06-30 2020-09-29 南京信息工程大学 基于生物修复的自巡陀螺仪
CN112042588A (zh) * 2020-08-27 2020-12-08 上海珠宇工程咨询管理有限公司 一种移动式太阳能增氧曝气设备
CN114190326B (zh) * 2020-09-18 2022-11-01 东元电机股份有限公司 控制系统及其具有双出轴马达的陆上移动式增氧机
CN114190326A (zh) * 2020-09-18 2022-03-18 东元电机股份有限公司 控制系统及其具有双出轴马达的陆上移动式增氧机
CN112462020A (zh) * 2020-11-25 2021-03-09 烟台职业学院 风光互补型双体式无人水质监测船
CN113016704A (zh) * 2021-03-12 2021-06-25 中国海洋大学 一种基于owc原理的自航式掺气增氧船及其增氧方法
CN114766413A (zh) * 2022-05-18 2022-07-22 李宏波 一种水产养殖用具有均匀增氧功能的养殖装置及方法
CN114766413B (zh) * 2022-05-18 2023-11-03 湛江一特生物科技有限公司 一种水产养殖用具有均匀增氧功能的养殖装置及方法
CN116621374A (zh) * 2023-05-30 2023-08-22 日照市日照水库管理运行中心 一种水库水质净化设备
CN117193107A (zh) * 2023-09-28 2023-12-08 广东胜昌科技有限公司 一种基于人工智能技术的增氧机智能控制方法

Also Published As

Publication number Publication date
CN104737968B (zh) 2017-04-05
CN104737968A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2016145725A1 (zh) 一种太阳能自主移动式增氧系统
CN203528772U (zh) 虾、蟹塘投饵及水质监测双体遥控船
CN101776676B (zh) 一种移动型水体在线综合监测浮标
CN204579554U (zh) 一种太阳能自主移动式增氧系统
CN103875358B (zh) 一种用于河蟹养殖的全自动水草清理机器船
CN106494579B (zh) 一种无人驾驶太阳能渔业辅助三体船
CN206892658U (zh) 一种基于太阳能供电的行走式智能增氧机器人
CN107980685B (zh) 一种水面自主巡航式太阳能投饵方法
CN108639237B (zh) 一种侧体可上浮下潜的太阳能近海渔业功能三体无人艇
CN106342744B (zh) 一种移动式太阳能增氧系统及增氧方法
CN205922531U (zh) 自主移动式太阳能射流增氧平台
CN106774549B (zh) 一种基于太阳能供电的行走式智能增氧机器人
CN107969366B (zh) 一种适用于渔业养殖的太阳能投饵系统
CN107521629B (zh) 一种清除水面漂浮物的自动船
CN108901976A (zh) 一种智能多用型养殖设备
CN208746199U (zh) 一种智能渔业养殖无人船
CN106069994A (zh) 自主移动式光伏射流增氧平台
CN103588309A (zh) 一种养殖池塘底层水体移动式增氧装置
CN110001872A (zh) 一种小型水质监测及应急处置船
CN109699556A (zh) 一种风光互补式自动投饵系统
CN110803256A (zh) 一种坐底式可移动多功能浮标
CN203735090U (zh) 一种用于河蟹养殖的全自动水草清理机器船
CN210364297U (zh) 一种无人船控制系统
CN211711014U (zh) 一种坐底式可移动多功能浮标
CN108427121A (zh) 一种海洋渔业捕捞用鱼群追踪装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885108

Country of ref document: EP

Kind code of ref document: A1