WO2016145722A1 - 超广角大光圈高像质光学镜头组件 - Google Patents
超广角大光圈高像质光学镜头组件 Download PDFInfo
- Publication number
- WO2016145722A1 WO2016145722A1 PCT/CN2015/077759 CN2015077759W WO2016145722A1 WO 2016145722 A1 WO2016145722 A1 WO 2016145722A1 CN 2015077759 W CN2015077759 W CN 2015077759W WO 2016145722 A1 WO2016145722 A1 WO 2016145722A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- lens assembly
- wide
- large aperture
- ultra
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/34—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/004—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0955—Lenses
- G02B27/0961—Lens arrays
Definitions
- the invention relates to the technical field of optical lenses, in particular to an ultra-wide-angle large aperture high-quality optical lens assembly.
- the present invention provides an ultra-wide-angle large-aperture high-quality optical lens assembly, which can ensure high image quality under the premise of miniaturization: proper lens structure and lens layout make light passing through the lens more gentle, like The correction of the difference is more reasonable; the aberration of the off-axis field of view can be further corrected; the distortion of the image is small and the definition is high, which ensures that the picture is clear, the color is full, and the layering is rich.
- the technical solution adopted by the present invention is: an ultra-wide-angle large aperture high-quality optical lens assembly, including a first lens, a second lens, a third lens, a fourth lens, a filter, and the like arranged from the object side to the image side.
- the lens assembly satisfies The following relationship: 0.9 ⁇ TTL / f1 ⁇ 2.5; 0.5 ⁇ f /
- a further improvement of the above technical solution is that the radius of curvature R4 of the side surface of the second lens image and the focal length f of the lens assembly satisfy the following relationship: -1.2 ⁇ R4 / f ⁇ -1.8.
- a further improvement of the above technical solution is that the distance T12 between the first lens and the second lens on the optical axis and the distance T23 between the second lens and the third lens on the optical axis satisfy the following relationship: T12 /T23 ⁇ 1.
- a further improvement of the above technical solution is that the Abbe number Vdn of the first lens, the second lens, the third lens, and the fourth lens satisfies the following relationship: (Vd1+Vd3)/(Vd2+Vd4)>2.
- a further improvement of the above technical solution is that the refractive index n1 of the first lens and the refractive index n2 of the second lens satisfy the following relationship: 1.5 ⁇ n1 ⁇ 1.6 ⁇ n2 ⁇ 1.7.
- This optical lens is designed for the current high-pixel camera digital products. It has the characteristics of super wide-angle, large aperture and high image quality. The object's field of view angle is above 80 degrees, which can capture more scenes. 2.0 large aperture, increase the shooting. The amount of light makes the picture brighter and enhances the effect of night shooting.
- the first lens of the optical lens assembly has a positive power
- the second lens has a negative power
- the third lens is also a lens having a positive power
- the fourth lens is a lens having a negative power.
- the fourth lens object side surface is designed with an inflection point, which effectively concentrates the off-axis light, so that the angle of incidence on the photosensitive element is more consistent with the preset angle of the chip, and the aberration of the off-axis field of view can be further corrected.
- the center of the fourth lens is substantially flush with the edge, avoiding the problem of severe stray light caused by the central protrusion.
- the optical distortion of the optical lens assembly is less than 2%, the field curvature is less than 0.1mm, the spherical aberration is less than 0.1mm, the distortion of the image is small, the definition is high, the picture is clear, the color is full, and the layering is rich.
- the lens assembly of the present invention can ensure a high degree under the premise of miniaturization.
- FIG. 1 is a schematic structural view of a super wide-angle large aperture high-quality optical lens assembly according to Embodiment 1 of the present invention
- Embodiment 2 is a field curvature and a distortion curve of a super wide-angle large aperture high-quality optical lens assembly according to Embodiment 1 of the present invention
- Embodiment 3 is a spherical aberration curve of a super wide-angle large aperture high-quality optical lens assembly according to Embodiment 1 of the present invention
- FIG. 4 is a schematic structural view of a super wide-angle large aperture high-quality optical lens assembly according to Embodiment 2 of the present invention.
- FIG. 6 is a spherical aberration curve of a super wide-angle large aperture high-quality optical lens assembly according to Embodiment 2 of the present invention.
- FIG. 7 is a schematic structural view of an ultra-wide-angle large aperture high-quality optical lens assembly according to Embodiment 3 of the present invention.
- Embodiment 9 is a spherical aberration curve of a super wide-angle large aperture high-quality optical lens assembly according to Embodiment 3 of the present invention.
- FIG. 10 is a schematic structural view of a super wide-angle large aperture high-quality optical lens assembly according to Embodiment 4 of the present invention.
- FIG. 11 is a field curvature and a distortion curve of a super wide-angle large aperture high-quality optical lens assembly according to Embodiment 4 of the present invention.
- FIG. 13 is a schematic structural view of an ultra-wide-angle large aperture high-quality optical lens assembly according to Embodiment 5 of the present invention.
- FIG. 16 is a schematic structural view of an ultra-wide-angle large aperture high-quality optical lens assembly according to Embodiment 6 of the present invention.
- FIG. 19 is a schematic structural view of an ultra-wide-angle large aperture high-quality optical lens assembly according to Embodiment 7 of the present invention.
- 21 is a spherical aberration curve of an ultra-wide-angle large aperture high-quality optical lens assembly according to Embodiment 7 of the present invention.
- the ultra-wide-angle large aperture high-quality optical lens assembly of the present invention is composed of four plastic (resin) lenses, including a first lens 1 and a second array arranged from the object side to the imaging side.
- the first lens 1 has a positive power and has a convex surface toward the image side; the second lens 2 has a negative power and has a concave surface toward the object side; the third lens 3 has a positive power, and the fourth lens 4 has a negative
- the power is aspherical, and both the object side and the image side are aspherical, and the object side surface of the fourth lens 4 is provided with an inflection point.
- the lens assembly, the first lens 1, the second lens 2, the third lens 3, and the fourth lens 4 satisfy the following relationship: 0.9 ⁇ TTL/f1 ⁇ 2.5; 0.5 ⁇ f/
- the center thickness of the first lens 1 is 0.735 to 0.945 mm
- the center thickness of the second lens 2 is 0.256 to 0.484 mm
- the center thickness of the third lens 3 is 0.512 to 0.733 mm
- the fourth lens 4 is The center thickness is 0.486 to 0.615 mm.
- the aspheric surfaces of the first lens 1, the second lens 2, the third lens 3, and the fourth lens 4 satisfy the formula:
- z is the z coordinate value of each point on the surface of the lens
- r is the Y-axis coordinate value of each point on the lens surface
- c is the reciprocal of the radius of curvature R of the lens surface
- k is the conic coefficient
- ⁇ 1 , ⁇ 2 , ⁇ 3 ⁇ 4 , ⁇ 5 , ⁇ 6 , ⁇ 7 , and ⁇ 8 are high-order aspheric coefficients.
- the field curvature and distortion curve of the lens assembly are referred to FIG. 2; and the spherical aberration curve is referred to FIG. 3.
- the optical distortion of the lens assembly is less than 2%
- the curvature of field is less than 0.1 mm
- the distortion of the image is small
- the definition is high.
- the spherical aberration of the lens assembly is less than 0.1 mm.
- the lens assembly, the first lens 1, the second lens 2, the third lens 3, and the fourth lens 4 are satisfied.
- the center thickness of the first lens 1 is 0.535 to 0.745 mm
- the center thickness of the second lens 2 is 0.256 to 0.484 mm
- the center thickness of the third lens 3 is 0.612 to 0.833 mm
- the fourth lens 4 is The center thickness is 0.386 to 0.515 mm.
- the aspheric surfaces of the first lens 1, the second lens 2, the third lens 3, and the fourth lens 4 satisfy the formula:
- z is the z coordinate value of each point on the surface of the lens
- r is the Y-axis coordinate value of each point on the lens surface
- c is the reciprocal of the radius of curvature R of the lens surface
- k is the conic coefficient
- ⁇ 1 , ⁇ 2 , ⁇ 3 ⁇ 4 , ⁇ 5 , ⁇ 6 , ⁇ 7 , and ⁇ 8 are high-order aspheric coefficients.
- the field curvature and distortion curve of the lens assembly are referred to FIG. 5; and the spherical aberration curve is referred to FIG.
- the optical distortion of the lens assembly is less than 2%
- the curvature of field is less than 0.1 mm
- the distortion of the image is small
- the definition is high.
- the spherical aberration of the lens assembly is less than 0.1 mm.
- the lens assembly, the first lens 1, the second lens 2, the third lens 3, and the fourth lens 4 are satisfied.
- f is the focal length of the lens assembly
- f1 is the focal length of the first lens 1
- f4 is the focal length of the fourth lens 4
- D1 is the thickness of the first lens 1 on the optical axis
- D4 is the fourth lens 4 on the optical axis Up Thickness
- TTL is the total length of the lens assembly
- n1 is the refractive index of the first lens 1
- n2 is the refractive index of the second lens 2.
- the center thickness of the first lens 1 is 0.735 to 0.945 mm
- the center thickness of the second lens 2 is 0.256 to 0.484 mm
- the center thickness of the third lens 3 is 0.612 to 0.833 mm
- the fourth lens 4 is The center thickness is 0.486 to 0.615 mm.
- the aspheric surfaces of the first lens 1, the second lens 2, the third lens 3, and the fourth lens 4 satisfy the formula:
- z is the z coordinate value of each point on the surface of the lens
- r is the Y-axis coordinate value of each point on the lens surface
- c is the reciprocal of the radius of curvature R of the lens surface
- k is the conic coefficient
- ⁇ 1 , ⁇ 2 , ⁇ 3 ⁇ 4 , ⁇ 5 , ⁇ 6 , ⁇ 7 , and ⁇ 8 are high-order aspheric coefficients.
- the field curvature and distortion curve of the lens assembly are referred to FIG. 8; and the spherical aberration curve is referred to FIG.
- the optical distortion of the lens assembly is less than 2%
- the curvature of field is less than 0.1 mm
- the distortion of the image is small
- the definition is high.
- the spherical aberration of the lens assembly is less than 0.1 mm.
- the super wide-angle large aperture high-quality optical lens assembly, the lens assembly, the first lens 1, the second lens 2, the third lens 3, and the fourth lens 4 satisfy the following relationship Formula: 0.9 ⁇ TTL / f1 ⁇ 2.5; 0.5 ⁇ f /
- the center thickness of the first lens 1 is 0.621 to 0.848 mm
- the center thickness of the second lens 2 is 0.386 to 0.512 mm
- the center thickness of the third lens 3 is 0.538 to 0.769 mm
- the fourth lens 4 is The center thickness is 0.402 to 0.643 mm.
- the aspheric surfaces of the first lens 1, the second lens 2, the third lens 3, and the fourth lens 4 satisfy the formula:
- z is the z coordinate value of each point on the surface of the lens
- r is the Y-axis coordinate value of each point on the lens surface
- c is the reciprocal of the radius of curvature R of the lens surface
- k is the conic coefficient
- ⁇ 1 , ⁇ 2 , ⁇ 3 ⁇ 4 , ⁇ 5 , ⁇ 6 , ⁇ 7 , and ⁇ 8 are high-order aspheric coefficients.
- the field curvature and distortion curve of the lens assembly are referred to FIG. 11; and the spherical aberration curve is referred to FIG.
- the optical distortion of the lens assembly is less than 2%
- the curvature of field is less than 0.1 mm
- the distortion of the image is small
- the definition is high.
- the spherical aberration of the lens assembly is less than 0.1 mm.
- the lens assembly, the first lens 1, the second lens 2, the third lens 3, and the fourth lens 4 in this embodiment satisfy the following relationship: 0.9 ⁇ TTL / f1 ⁇ 2.5 0.5 ⁇ f/
- the center thickness of the first lens 1 is 0.451 to 0.648 mm, and the center thickness of the second lens 2 is 0.216 to 0.442 mm, the center thickness of the third lens 3 is 0.538 to 0.769 mm, and the center thickness of the fourth lens 4 is 0.302 to 0.543 mm.
- the aspheric surfaces of the first lens 1, the second lens 2, the third lens 3, and the fourth lens 4 satisfy the formula:
- z is the z coordinate value of each point on the surface of the lens
- r is the Y-axis coordinate value of each point on the lens surface
- c is the reciprocal of the radius of curvature R of the lens surface
- k is the conic coefficient
- ⁇ 1 , ⁇ 2 , ⁇ 3 ⁇ 4 , ⁇ 5 , ⁇ 6 , ⁇ 7 , and ⁇ 8 are high-order aspheric coefficients.
- the field curvature and distortion curve of the lens assembly are referred to FIG. 14; and the spherical aberration curve is referred to FIG.
- the optical distortion of the lens assembly is less than 2%
- the curvature of field is less than 0.1 mm
- the distortion of the image is small
- the definition is high.
- the lens assembly The spherical aberration is less than 0.1 mm.
- the lens assembly, the first lens 1, the second lens 2, the third lens 3, and the fourth lens 4 in this embodiment satisfy the following relationship: 0.9 ⁇ TTL / f1 ⁇ 2.5 ;0.5 ⁇ f/
- the center thickness of the first lens 1 is 0.421 to 0.648 mm
- the center thickness of the second lens 2 is 0.203 to 0.412 mm
- the center thickness of the third lens 3 is 0.438 to 0.669 mm
- the center thickness of the fourth lens 4 is 0.356 to 0.543. Mm.
- the aspheric surfaces of the first lens 1, the second lens 2, the third lens 3, and the fourth lens 4 satisfy the formula:
- z is the z coordinate value of each point on the surface of the lens
- r is the Y-axis coordinate value of each point on the lens surface
- c is the reciprocal of the radius of curvature R of the lens surface
- k is the conic coefficient
- ⁇ 1 , ⁇ 2 , ⁇ 3 ⁇ 4 , ⁇ 5 , ⁇ 6 , ⁇ 7 , and ⁇ 8 are high-order aspheric coefficients.
- the field curvature and distortion curve of the lens assembly are referred to FIG. 17; and the spherical aberration curve is referred to FIG.
- the optical distortion of the lens assembly is less than 2%
- the curvature of field is less than 0.1 mm
- the distortion of the image is small
- the definition is high.
- the spherical aberration of the lens assembly is less than 0.1 mm.
- the super wide-angle large aperture high-quality optical lens assembly, the lens assembly, the first lens 1, the second lens 2, the third lens 3, and the fourth lens 4 satisfy the following relationship Formula: 0.9 ⁇ TTL / f1 ⁇ 2.5; 0.5 ⁇ f /
- the center thickness of the first lens 1 is 0.321 to 0.548 mm
- the center thickness of the second lens 2 is 0.186 to 0.312 mm
- the center thickness of the third lens 3 is 0.538 to 0.769 mm
- the fourth lens 4 is The center thickness is 0.202 to 0.443 mm.
- the aspheric surfaces of the first lens 1, the second lens 2, the third lens 3, and the fourth lens 4 satisfy the formula:
- z is the z coordinate value of each point on the surface of the lens
- r is the Y-axis coordinate value of each point on the lens surface
- c is the reciprocal of the radius of curvature R of the lens surface
- k is the conic coefficient, ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 ,
- ⁇ 5 , ⁇ 6 , ⁇ 7 , and ⁇ 8 are high-order aspherical coefficients.
- the field curvature and distortion curve of the lens assembly are referred to FIG. 20; and the spherical aberration curve is referred to FIG.
- the optical distortion of the lens assembly is less than 2%
- the curvature of field is less than 0.1 mm
- the distortion of the image is small
- the definition is high.
- the spherical aberration of the lens assembly is less than 0.1 mm.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种超广角大光圈高像质光学镜头组件,包括第一透镜(1),具有正光焦度以及朝向像侧的凸面;第二透镜(2),具有负光焦度以及朝向物侧的凹面;第三透镜(3),具有正光焦度;第四透镜(4),具有负光焦度,物侧与像侧面均为非球面。这种镜头组件满足下列关系式:0.9<TTL/f1<2.5;0.5<f/|f4|<1.6;0.4<D4/D1<0.9。这种透镜结构和镜片布局,使得光线经过镜头组件时更加平缓,像差的修正也较为合理,且能进一步修正离轴视场的像差,成像画面失真小,清晰度高,在满足微型化的前提下,保证较高的成像质量。
Description
本申请要求2015年03月18日提交中国专利局、申请号为201510119950.0、发明名称为“超广角大光圈高像质光学镜头组件”的发明专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及光学镜头技术领域,特别是涉及超广角大光圈高像质光学镜头组件。
在科技日新月异的今天,随着各类数码产品功能的日益增多,对照相画质的要求也与时俱进。回顾从2000年照相手机诞生的十多年以来,照相功能逐步渗透手机,并逐渐成熟,单从像素这个角度看,镜头已经从原先的几十万像素变化到目前主流的百万像素镜头,图像质量逐渐趋好;另外一个方面,在对于移动终端不断轻薄化的要求带动下,手机、平板照相模块的尺寸也在不断的微小化,厚度轻薄化。如何在微型化的前提下又能保证高的成像质量是目前手机镜头设计需要解决的难题。
发明内容
为解决上述问题,本发明提供超广角大光圈高像质光学镜头组件,在满足微型化的前提下,能保证较高的成像质量:恰当的透镜结构和镜片布局使得光线经过透镜更加平缓,像差的修正更为合理;能进一步修正离轴视场的像差;成像画面失真小,清晰度高,能够保证拍摄图片清晰,色彩饱满,层次感丰富。
本发明所采用的技术方案是:超广角大光圈高像质光学镜头组件,包括自物侧至像侧依次排列的第一透镜、第二透镜、第三透镜、第四透镜、滤光片以及设置于所述第二透镜与物方之间的光阑,所述第一透镜具有正光焦度以及朝向像侧的凸面;所述第二透镜具有负光焦度以及朝向物侧的凹面;所述第三透镜具有正光焦度;所述第四透镜具有负光焦度,且物侧面与像侧面均为非球面,第四透镜物侧表面设有反曲点;该镜头组件满足
下列关系式:0.9<TTL/f1<2.5;0.5<f/|f4|<1.6;0.4<D4/D1<0.9;其中,f为该镜头组件的焦距;f1为所述第一透镜的焦距;f4为所述第四透镜的焦距;D1为所述第一透镜于光轴上的厚度;D4为所述第四透镜于光轴上的厚度;TTL为该镜头组件的总长。
对上述技术方案的进一步改进为,所述第二透镜像侧表面的曲率半径R4与该镜头组件的焦距f满足下列关系式:-1.2<R4/f<-1.8。
对上述技术方案的进一步改进为,所述第一透镜、第二透镜之间于光轴上的距离T12与第二透镜、第三透镜之间于光轴上的距离T23满足如下关系式:T12/T23<1。
对上述技术方案的进一步改进为,所述第一透镜、第二透镜、第三透镜以及第四透镜的阿贝数Vdn满足下列关系式:(Vd1+Vd3)/(Vd2+Vd4)>2。
对上述技术方案的进一步改进为,所述第一透镜的折射率n1与第二透镜的折射率n2满足下列关系式:1.5<n1<1.6<n2<1.7。
本发明所述的超广角大光圈高像质光学镜头组件,相比现有技术的有益效果是:
1)本光学镜头针对当前高像素拍照数码产品而设计,具有超广角大光圈高像质的特点,物方视场角达到80度以上,能够摄取更多景物;2.0大光圈,增大拍摄进光量,使得画面明亮并提高夜晚拍摄的效果。
2)该光学镜头组件第一透镜具有正的光焦度,第二透镜具有负的光焦度,第三透镜亦为具有正光焦度的透镜,第四透镜为具有负光焦度的透镜,这样一正一负相互交叠组合的结构,使得光线经过透镜更加平缓,像差的修正也较为合理。
3)第四透镜物侧表面上设计有反曲点,有效汇聚离轴光线,使其入射到感光元件上的角度与芯片预设的角度更加吻合,并且可进一步修正离轴视场的像差。同时,第四透镜的中心与边缘基本平齐,避免了中心凸起而导致的杂光严重的问题。
4)本光学镜头组件的光学畸变小于2%,场曲小于0.1mm,球差小于0.1mm,成像画面失真小,清晰度高,保证拍摄图片清晰,色彩饱满,层次感丰富。
综上所述,本发明所述镜头组件在满足微型化的前提下,能保证较高
的成像质量。
图1为本发明实施例1超广角大光圈高像质光学镜头组件的结构示意图;
图2为本发明实施例1超广角大光圈高像质光学镜头组件的场曲、畸变曲线;
图3为本发明实施例1超广角大光圈高像质光学镜头组件的球差曲线;
图4为本发明实施例2超广角大光圈高像质光学镜头组件的结构示意图;
图5为本发明实施例2超广角大光圈高像质光学镜头组件的场曲、畸变曲线;
图6为本发明实施例2超广角大光圈高像质光学镜头组件的球差曲线;
图7为本发明实施例3超广角大光圈高像质光学镜头组件的结构示意图;
图8为本发明实施例3超广角大光圈高像质光学镜头组件的场曲、畸变曲线;
图9为本发明实施例3超广角大光圈高像质光学镜头组件的球差曲线;
图10为本发明实施例4超广角大光圈高像质光学镜头组件的结构示意图;
图11为本发明实施例4超广角大光圈高像质光学镜头组件的场曲、畸变曲线;
图12为本发明实施例4超广角大光圈高像质光学镜头组件的球差曲线;
图13为本发明实施例5超广角大光圈高像质光学镜头组件的结构示意图;
图14为本发明实施例5超广角大光圈高像质光学镜头组件的场曲、畸变曲线;
图15为本发明实施例5超广角大光圈高像质光学镜头组件的球差曲
线;
图16为本发明实施例6超广角大光圈高像质光学镜头组件的结构示意图;
图17为本发明实施例6超广角大光圈高像质光学镜头组件的场曲、畸变曲线;
图18为本发明实施例6超广角大光圈高像质光学镜头组件的球差曲线;
图19为本发明实施例7超广角大光圈高像质光学镜头组件的结构示意图;
图20为本发明实施例7超广角大光圈高像质光学镜头组件的场曲、畸变曲线;
图21为本发明实施例7超广角大光圈高像质光学镜头组件的球差曲线。
下面将结合附图对本发明作进一步的说明。
实施例1:
参照图1,本发明所述的超广角大光圈高像质光学镜头组件,是由四片塑胶(树脂)镜片组合而成,包括自物体侧至成像侧依次排列的第一透镜1、第二透镜2、第三透镜3、第四透镜4、滤光片5,以及光阑6,其中光阑6设置于第二透镜2与物方之间。第一透镜1具有正光焦度,且具有朝向像侧的凸面;第二透镜2具有负光焦度,且具有朝向物侧的凹面;第三透镜3具有正光焦度,第四透镜4具有负光焦度,且物侧面与像侧面均为非球面,且第四透镜4物侧表面设有反曲点。
其中,该镜头组件、第一透镜1、第二透镜2、第三透镜3、第四透镜4满足下列关系式:0.9<TTL/f1<2.5;0.5<f/|f4|<1.6;0.4<D4/D1<0.9;1.5<n1<1.6<n2<1.7。
其中,f为该镜头组件的焦距;f1为第一透镜1的焦距;f4为第四透
镜4的焦距;D1为第一透镜1于光轴上的厚度;D4为第四透镜4于光轴上的厚度;TTL为该镜头组件的总长;n1为第一透镜1的折射率,n2为第二透镜2的折射率。
其中,该实施例中第一透镜1的中心厚度为0.735~0.945mm,第二透镜2的中心厚度为0.256~0.484mm,第三透镜3的中心厚度为0.512~0.733mm,第四透镜4的中心厚度为0.486~0.615mm。
另外,第一透镜1、第二透镜2、第三透镜3、第四透镜4的非球面满足公式:
可以根据上述公式中各个参数的具体数据进一步设置该镜头组件,数据举例如表一(F=2.49mm,FNO=2.0,FOV=84°)
表一 该镜头组件各透镜数据表
根据上述各个参数,该镜头组件的场曲和畸变曲线,参照图2;球差曲线参照图3。由图2可以看出,该镜头组件的光学畸变小于2%,场曲小于0.1mm,成像画面失真小,清晰度高。由图3可以看出,该镜头组件的球差小于0.1mm。
实施例2:
参照图4,与实施例1不同的是,所述超广角大光圈高像质光学镜头组件中,该镜头组件、第一透镜1、第二透镜2、第三透镜3、第四透镜4满足下列关系式:
0.9<TTL/f1<2.5;0.5<f/|f4|<1.6;0.4<D4/D1<0.9;-1.2<R4/f<-1.8;1.5<n1<1.6<n2<1.7。
其中,f为该镜头组件的焦距;f1为第一透镜1的焦距;f4为第四透镜4的焦距;D1为第一透镜1于光轴上的厚度;D4为第四透镜4于光轴上的厚度;TTL为该镜头组件的总长;R4为第二透镜2像侧表面的曲率半径;n1为第一透镜1的折射率,n2为第二透镜2的折射率。
其中,该实施例中第一透镜1的中心厚度为0.535~0.745mm,第二透镜2的中心厚度为0.256~0.484mm,第三透镜3的中心厚度为0.612~0.833mm,第四透镜4的中心厚度为0.386~0.515mm。
第一透镜1、第二透镜2、第三透镜3、第四透镜4的非球面满足公式:
可以根据上述公式中各个参数的具体数据进一步设置该镜头组件,数据举例如表二(F=2.48mm,FNO=2.0,FOV=84°)
表二 该镜头组件各透镜数据表
根据上述各个参数,该镜头组件的场曲和畸变曲线,参照图5;球差曲线参照图6。由图5可以看出,该镜头组件的光学畸变小于2%,场曲小于0.1mm,成像画面失真小,清晰度高。由图6可以看出,该镜头组件的球差小于0.1mm。
实施例3:
参照图7,与实施例1不同的是,所述超广角大光圈高像质光学镜头组件中,该镜头组件、第一透镜1、第二透镜2、第三透镜3、第四透镜4满足下列关系式:
0.9<TTL/f1<2.5;0.5<f/|f4|<1.6;0.4<D4/D1<0.9;1.5<n1<1.6<n2<1.7。其中,f为该镜头组件的焦距;f1为第一透镜1的焦距;f4为第四透镜4的焦距;D1为第一透镜1于光轴上的厚度;D4为第四透镜4于光轴上的
厚度;TTL为该镜头组件的总长;n1为第一透镜1的折射率,n2为第二透镜2的折射率。
其中,该实施例中第一透镜1的中心厚度为0.735~0.945mm,第二透镜2的中心厚度为0.256~0.484mm,第三透镜3的中心厚度为0.612~0.833mm,第四透镜4的中心厚度为0.486~0.615mm。
第一透镜1、第二透镜2、第三透镜3、第四透镜4的非球面满足公式:
可以根据上述公式中各个参数的具体数据进一步设置该镜头组件,数据举例如表三(F=2.50mm,FNO=2.0,FOV=84°)
表三 该镜头组件各透镜数据表
根据上述各个参数,该镜头组件的场曲和畸变曲线,参照图8;球差曲线参照图9。由图8可以看出,该镜头组件的光学畸变小于2%,场曲小于0.1mm,成像画面失真小,清晰度高。由图9可以看出,该镜头组件的球差小于0.1mm。
实施例4:
参照图10,与实施例1不同的是,所述超广角大光圈高像质光学镜头组件,镜头组件、第一透镜1、第二透镜2、第三透镜3、第四透镜4满足下列关系式:0.9<TTL/f1<2.5;0.5<f/|f4|<1.6;0.4<D4/D1<0.9;1.5<n1<1.6<n2<1.7;(Vd1+Vd3)/(Vd2+Vd4)>2。
其中,f为该镜头组件的焦距;f1为第一透镜1的焦距;f4为第四透镜4的焦距;D1为第一透镜1于光轴上的厚度;D4为第四透镜4于光轴上的厚度;TTL为该镜头组件的总长;n1为第一透镜1的折射率,n2为第二透镜2的折射率;Vdn为第n透镜的阿贝数。
其中,该实施例中第一透镜1的中心厚度为0.621~0.848mm,第二透镜2的中心厚度为0.386~0.512mm,第三透镜3的中心厚度为0.538~0.769mm,第四透镜4的中心厚度为0.402~0.643mm。
另外,第一透镜1、第二透镜2、第三透镜3、第四透镜4的非球面满足公式:
可以根据上述公式中各个参数的具体数据进一步设置该镜头组件,数据举例如表四(F=2.50mm,FNO=2.0,FOV=84°)
表四 该镜头组件各透镜数据表
根据上述各个参数,该镜头组件的场曲和畸变曲线,参照图11;球差曲线参照图12。由图11可以看出,该镜头组件的光学畸变小于2%,场曲小于0.1mm,成像画面失真小,清晰度高。由图12可以看出,该镜头组件的球差小于0.1mm。
实施例5:
参照图13,与实施例4不同的是,该实施例中镜头组件、第一透镜1、第二透镜2、第三透镜3、第四透镜4满足下列关系式:0.9<TTL/f1<2.5;0.5<f/|f4|<1.6;0.4<D4/D1<0.9;1.5<n1<1.6<n2<1.7;(Vd1+Vd3)/(Vd2+Vd4)>2。
其中,f为该镜头组件的焦距;f1为第一透镜1的焦距;f4为第四透镜4的焦距;D1为第一透镜1于光轴上的厚度;D4为第四透镜4于光轴上的厚度;TTL为该镜头组件的总长;n1为第一透镜1的折射率,n2为第二透镜2的折射率;Vdn为第n透镜的阿贝数。
第一透镜1的中心厚度为0.451~0.648mm,第二透镜2的中心厚度为
0.216~0.442mm,第三透镜3的中心厚度为0.538~0.769mm,第四透镜4的中心厚度为0.302~0.543mm。
第一透镜1、第二透镜2、第三透镜3、第四透镜4的非球面满足公式:
可以根据上述公式中各个参数的具体数据进一步设置该镜头组件,数据举例如表五(F=2.45mm,FNO=2.0,FOV=82°)
表五 该镜头组件各透镜数据表
根据上述各个参数,该镜头组件的场曲和畸变曲线,参照图14;球差曲线参照图15。由图14可以看出,该镜头组件的光学畸变小于2%,场曲小于0.1mm,成像画面失真小,清晰度高。由图15可以看出,该镜头组件
的球差小于0.1mm。
实施例6:
参照图16,与实施例1不同的是,该实施例中镜头组件、第一透镜1、第二透镜2、第三透镜3、第四透镜4满足下列关系式:0.9<TTL/f1<2.5;0.5<f/|f4|<1.6;0.4<D4/D1<0.9;-1.2<R4/f<-1.8;(Vd1+Vd3)/(Vd2+Vd4)>2;T12/T23<1;1.5<n1<1.6<n2<1.7。
其中,f为该镜头组件的焦距;f1为第一透镜1的焦距;f4为第四透镜4的焦距;D1为第一透镜1于光轴上的厚度;D4为第四透镜4于光轴上的厚度;TTL为该镜头组件的总长;R4为第二透镜2像侧表面的曲率半径;T12为第一透镜1与第二透镜1之间于光轴上的距离;T23为第二透镜2与第三透镜3之间于光轴上的距离;n1为第一透镜1的折射率,n2为第二透镜2的折射率;Vdn为第n透镜的阿贝数。
第一透镜1的中心厚度为0.421~0.648mm,第二透镜2的中心厚度为0.203~0.412mm,第三透镜3的中心厚度为0.438~0.669mm,第四透镜4的中心厚度为0.356~0.543mm。
另外,第一透镜1、第二透镜2、第三透镜3、第四透镜4的非球面满足公式:
可以根据上述公式中各个参数的具体数据进一步设置该镜头组件,数据举例如表六(F=2.0mm,FNO=2.18,FOV=89°)
表六 该镜头组件各透镜数据表
根据上述各个参数,该镜头组件的场曲和畸变曲线,参照图17;球差曲线参照图18。由图17可以看出,该镜头组件的光学畸变小于2%,场曲小于0.1mm,成像画面失真小,清晰度高。由图18可以看出,该镜头组件的球差小于0.1mm。
实施例7:
参照图19,与实施例1不同的是,所述超广角大光圈高像质光学镜头组件,镜头组件、第一透镜1、第二透镜2、第三透镜3、第四透镜4满足下列关系式:0.9<TTL/f1<2.5;0.5<f/|f4|<1.6;0.4<D4/D1<0.9;-1.2<R4/f<-1.8;T12/T23<1;1.5<n1<1.6<n2<1.7。
其中,f为该镜头组件的焦距;f1为第一透镜1的焦距;f4为第四透镜4的焦距;D1为第一透镜1于光轴上的厚度;D4为第四透镜4于光轴上的厚度;TTL为该镜头组件的总长;R4为第二透镜2像侧表面的曲率半径;n1为第一透镜1的折射率,n2为第二透镜2的折射率;T12为第一透镜1与第二透镜2之间于光轴上的距离,T23为第二透镜2与第三透镜3
之间于光轴上的距离。
其中,该实施例中第一透镜1的中心厚度为0.321~0.548mm,第二透镜2的中心厚度为0.186~0.312mm,第三透镜3的中心厚度为0.538~0.769mm,第四透镜4的中心厚度为0.202~0.443mm。
另外,第一透镜1、第二透镜2、第三透镜3、第四透镜4的非球面满足公式:
α5、α6、α7、α8为高阶非球面系数。
可以根据上述公式中各个参数的具体数据进一步设置该镜头组件,数据举例如表七(F=2.03mm,FNO=2.0,FOV=87°)
表七 该镜头组件各透镜数据表
根据上述各个参数,该镜头组件的场曲和畸变曲线,参照图20;球差曲线参照图21。由图20可以看出,该镜头组件的光学畸变小于2%,场曲小于0.1mm,成像画面失真小,清晰度高。由图21可以看出,该镜头组件的球差小于0.1mm。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 超广角大光圈高像质光学镜头组件,包括自物侧至像侧依次排列的第一透镜(1)、第二透镜(2)、第三透镜(3)、第四透镜(4)、滤光片(5)以及设置于所述第二透镜(2)与物方之间的光阑(6),其特征在于:所述第一透镜(1)具有正光焦度以及朝向像侧的凸面;所述第二透镜(2)具有负光焦度以及朝向物侧的凹面;所述第三透镜(3)具有正光焦度;所述第四透镜(4)具有负光焦度,且物侧面与像侧面均为非球面,第四透镜(4)物侧表面设有反曲点;该镜头组件满足下列关系式:0.9<TTL/f1<2.5;0.5<f/|f4|<1.6;0.4<D4/D1<0.9;其中,f为该镜头组件的焦距;f1为所述第一透镜(1)的焦距;f4为所述第四透镜(4)的焦距;D1为所述第一透镜(1)于光轴上的厚度;D4为所述第四透镜(4)于光轴上的厚度;TTL为该镜头组件的总长。
- 根据权利要求1所述的超广角大光圈高像质光学镜头组件,其特征在于:所述第二透镜(2)像侧表面的曲率半径R4与该镜头组件的焦距f满足下列关系式:-1.2<R4/f<-1.8。
- 根据权利要求1或2所述的超广角大光圈高像质光学镜头组件,其特征在于:所述第一透镜(1)、第二透镜(2)之间于光轴上的距离T12与第二透镜(2)、第三透镜(3)之间于光轴上的距离T23满足如下关系式:T12/T23<1。
- 根据权利要求1或2所述的超广角大光圈高像质光学镜头组件,其特征在于:所述第一透镜(1)、第二透镜(2)、第三透镜(3)以及第四透镜(4)的阿贝数Vdn满足下列关系式:(Vd1+Vd3)/(Vd2+Vd4)>2。
- 根据权利要求1所述的超广角大光圈高像质光学镜头组件,其特征在于:所述第一透镜(1)的折射率n1与第二透镜(2)的折射率n2满足下列关系式:1.5<n1<1.6<n2<1.7。
- 超广角大光圈高像质光学镜头组件,包括自物侧至像侧依次排列的第一透镜(1)、第二透镜(2)、第三透镜(3)、第四透镜(4)、滤光片(5) 以及设置于所述第二透镜(2)与物方之间的光阑(6),其特征在于:所述第一透镜(1)具有正光焦度以及朝向像侧的凸面;所述第二透镜(2)具有负光焦度以及朝向物侧的凹面;所述第三透镜(3)具有正光焦度;所述第四透镜(4)具有负光焦度,且物侧面与像侧面均为非球面,第四透镜(4)物侧表面和像侧表面均设有反曲点;该镜头组件满足下列关系式:0.9<TTL/f1<2.5;0.5<f/|f4|<1.6;0.4<D4/D1<0.9;其中,f为该镜头组件的焦距;f1为所述第一透镜(1)的焦距;f4为所述第四透镜(4)的焦距;D1为所述第一透镜(1)于光轴上的厚度;D4为所述第四透镜(4)于光轴上的厚度;TTL为该镜头组件的总长。
- 根据权利要求6所述的超广角大光圈高像质光学镜头组件,其特征在于:所述第二透镜(2)像侧表面的曲率半径R4与该镜头组件的焦距f满足下列关系式:-1.2<R4/f<-1.8。
- 根据权利要求6或7所述的超广角大光圈高像质光学镜头组件,其特征在于:所述第一透镜(1)、第二透镜(2)之间于光轴上的距离T12与第二透镜(2)、第三透镜(3)之间于光轴上的距离T23满足如下关系式:T12/T23<1。
- 根据权利要求6或7所述的超广角大光圈高像质光学镜头组件,其特征在于:所述第一透镜(1)、第二透镜(2)、第三透镜(3)以及第四透镜(4)的阿贝数Vdn满足下列关系式:(Vd1+Vd3)/(Vd2+Vd4)>2。
- 根据权利要求6所述的超广角大光圈高像质光学镜头组件,其特征在于:所述第一透镜(1)的折射率n1与第二透镜(2)的折射率n2满足下列关系式:1.5<n1<1.6<n2<1.7。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/558,175 US10495846B2 (en) | 2015-03-18 | 2015-04-29 | Ultra-wide-angle and large-aperture optical lens assembly with high image quality |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510119950.0 | 2015-03-18 | ||
CN201510119950.0A CN104777594B (zh) | 2015-03-18 | 2015-03-18 | 超广角大光圈高像质光学镜头组件 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016145722A1 true WO2016145722A1 (zh) | 2016-09-22 |
Family
ID=53619160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/077759 WO2016145722A1 (zh) | 2015-03-18 | 2015-04-29 | 超广角大光圈高像质光学镜头组件 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10495846B2 (zh) |
CN (1) | CN104777594B (zh) |
WO (1) | WO2016145722A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113467056A (zh) * | 2021-07-28 | 2021-10-01 | 辽宁中蓝光电科技有限公司 | 一种超短光学总高的广角镜头 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI626465B (zh) * | 2016-03-24 | 2018-06-11 | 先進光電科技股份有限公司 | 光學成像系統 |
US11385441B2 (en) * | 2017-12-04 | 2022-07-12 | Zhejiang Sunny Optical Co., Ltd. | Projection lens assembly |
US11092781B2 (en) * | 2018-03-27 | 2021-08-17 | Samsung Electro-Mechanics Co., Ltd. | Optical imaging system |
TWI689747B (zh) * | 2019-04-19 | 2020-04-01 | 新鉅科技股份有限公司 | 四片式雙波段成像鏡片組 |
CN114252974B (zh) * | 2020-09-21 | 2023-11-03 | 光燿科技股份有限公司 | 光学成像镜头 |
CN113534419A (zh) * | 2021-09-15 | 2021-10-22 | 宁波永新光学股份有限公司 | 一种超高清车载光学成像镜头 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120113529A1 (en) * | 2010-11-09 | 2012-05-10 | Hon Hai Precision Industry Co., Ltd. | Lens system having wide-angle, high resolution, and large aperture |
TW201329494A (zh) * | 2011-10-21 | 2013-07-16 | Lg Innotek Co Ltd | 攝像鏡頭 |
US20130265652A1 (en) * | 2012-04-06 | 2013-10-10 | Chi Ho An | Photographic Lens Optical System |
CN103913820A (zh) * | 2012-12-28 | 2014-07-09 | 大立光电股份有限公司 | 摄像镜头系统 |
CN104330877A (zh) * | 2014-07-11 | 2015-02-04 | 玉晶光电(厦门)有限公司 | 光学成像镜头及应用该光学成像镜头的电子装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009145597A (ja) * | 2007-12-13 | 2009-07-02 | Sharp Corp | 撮像レンズ、撮像ユニット、及び該撮像ユニットを搭載した携帯型情報端末 |
TWI516790B (zh) * | 2012-08-27 | 2016-01-11 | 玉晶光電股份有限公司 | Optical imaging lens and the application of the lens of the electronic device |
CN103123414A (zh) | 2012-11-15 | 2013-05-29 | 玉晶光电(厦门)有限公司 | 一种可携式电子装置与其光学成像镜头 |
JP2015102849A (ja) | 2013-11-28 | 2015-06-04 | カンタツ株式会社 | 撮像レンズ |
JP6324824B2 (ja) * | 2014-06-27 | 2018-05-16 | カンタツ株式会社 | 撮像レンズ |
CN204496092U (zh) * | 2015-03-18 | 2015-07-22 | 广东旭业光电科技股份有限公司 | 超广角大光圈高像质光学镜头组件 |
-
2015
- 2015-03-18 CN CN201510119950.0A patent/CN104777594B/zh active Active
- 2015-04-29 WO PCT/CN2015/077759 patent/WO2016145722A1/zh active Application Filing
- 2015-04-29 US US15/558,175 patent/US10495846B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120113529A1 (en) * | 2010-11-09 | 2012-05-10 | Hon Hai Precision Industry Co., Ltd. | Lens system having wide-angle, high resolution, and large aperture |
TW201329494A (zh) * | 2011-10-21 | 2013-07-16 | Lg Innotek Co Ltd | 攝像鏡頭 |
US20130265652A1 (en) * | 2012-04-06 | 2013-10-10 | Chi Ho An | Photographic Lens Optical System |
CN103913820A (zh) * | 2012-12-28 | 2014-07-09 | 大立光电股份有限公司 | 摄像镜头系统 |
CN104330877A (zh) * | 2014-07-11 | 2015-02-04 | 玉晶光电(厦门)有限公司 | 光学成像镜头及应用该光学成像镜头的电子装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113467056A (zh) * | 2021-07-28 | 2021-10-01 | 辽宁中蓝光电科技有限公司 | 一种超短光学总高的广角镜头 |
Also Published As
Publication number | Publication date |
---|---|
US20180074288A1 (en) | 2018-03-15 |
CN104777594A (zh) | 2015-07-15 |
US10495846B2 (en) | 2019-12-03 |
CN104777594B (zh) | 2017-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016145722A1 (zh) | 超广角大光圈高像质光学镜头组件 | |
TWI434096B (zh) | 光學攝像透鏡組 | |
TWI437312B (zh) | 影像擷取鏡片系統 | |
TWI598657B (zh) | 光學鏡片組 | |
TWI627468B (zh) | 光學鏡片組 | |
WO2018010246A1 (zh) | 摄像镜头 | |
CN108227148B (zh) | 摄像光学镜头 | |
WO2017148078A1 (zh) | 超广角摄像镜头 | |
WO2020140521A1 (zh) | 摄像光学镜头 | |
US20190121090A1 (en) | Camera optical lens | |
CN110618524B (zh) | 定焦镜头及成像系统 | |
CN108646387A (zh) | 日夜两用监控镜头 | |
WO2017113557A9 (zh) | 摄像镜头 | |
CN112505902B (zh) | 广角镜头及成像设备 | |
WO2020062476A1 (zh) | 微型摄像镜头 | |
US20190121079A1 (en) | Camera Optical Lens | |
WO2022266902A1 (zh) | 光学镜头、摄像模组及电子设备 | |
CN104730692A (zh) | 微单数码相机全幅镜头 | |
CN116774407B (zh) | 光学镜头 | |
TW201732364A (zh) | 光學鏡片組 | |
TW201819978A (zh) | 光學成像鏡頭 | |
CN115480380B (zh) | 一种2g4p广角镜头及成像装置 | |
WO2020134269A1 (zh) | 摄像光学镜头 | |
CN206115010U (zh) | 一种摄影镜头以及摄影设备 | |
TWI662293B (zh) | 五片式廣角鏡片組 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15885105 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15558175 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15885105 Country of ref document: EP Kind code of ref document: A1 |