WO2016144054A1 - 레인 센서 및 이를 포함하는 와이퍼 구동 장치 - Google Patents
레인 센서 및 이를 포함하는 와이퍼 구동 장치 Download PDFInfo
- Publication number
- WO2016144054A1 WO2016144054A1 PCT/KR2016/002197 KR2016002197W WO2016144054A1 WO 2016144054 A1 WO2016144054 A1 WO 2016144054A1 KR 2016002197 W KR2016002197 W KR 2016002197W WO 2016144054 A1 WO2016144054 A1 WO 2016144054A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- sensing electrode
- reaction layer
- electrode
- sensing
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/04—Wipers or the like, e.g. scrapers
- B60S1/06—Wipers or the like, e.g. scrapers characterised by the drive
- B60S1/08—Wipers or the like, e.g. scrapers characterised by the drive electrically driven
- B60S1/0818—Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
- B60S1/0822—Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
- B60S1/0825—Capacitive rain sensor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/04—Wipers or the like, e.g. scrapers
- B60S1/06—Wipers or the like, e.g. scrapers characterised by the drive
- B60S1/08—Wipers or the like, e.g. scrapers characterised by the drive electrically driven
- B60S1/0818—Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
- B60S1/0822—Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/04—Wipers or the like, e.g. scrapers
- B60S1/06—Wipers or the like, e.g. scrapers characterised by the drive
- B60S1/08—Wipers or the like, e.g. scrapers characterised by the drive electrically driven
- B60S1/0818—Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
- B60S1/0822—Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
- B60S1/0851—Resistive rain sensor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/04—Wipers or the like, e.g. scrapers
- B60S1/06—Wipers or the like, e.g. scrapers characterised by the drive
- B60S1/08—Wipers or the like, e.g. scrapers characterised by the drive electrically driven
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/06—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/22—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
- G01N27/223—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/14—Rainfall or precipitation gauges
Definitions
- the embodiment relates to a rain sensor, and more particularly, to a rain sensor and a wiper driving device including the same, which can determine whether or not rainfall and rainfall based on an impedance change amount, and drive the wiper based thereon.
- a windshield wiper is installed on the front windshield of the vehicle to overcome a clock obstacle caused by rain in the rain, and the wiper has a stepwise control of the wiper according to the degree of rainwater dropping.
- the speed control system of the wiper is adjusted in only a few steps, the driver cannot move the wiper at a desired speed according to the amount of rainwater.
- the circuit board equipped with the light source and the sensor which is a light receiving element, is inclined with respect to the surface of the wind shield, thereby minimizing the influence of light reflected from the surface of the wind shield, while receiving only the optical signal reflected by the raindrop itself.
- the light reflected directly from the wind shield falls outside the light receiving range of the light receiving element and is reflected by the wind shield to minimize the amount of light received by the light receiving element, while receiving only the amount of light reflected from the raindrops on the light receiving element.
- the circuit board including the light source and the light receiving element is disposed to be inclined at an angle with respect to the windshield surface so as to detect only the diffuse reflection signal.
- the light emitted from the light source may be directly absorbed by the light receiving element even in a product in which the light source and the light receiving element are inclined with respect to the windshield surface of the vehicle by the circuit board as described above, in terms of the efficiency of rain sensing It is somewhat incomplete and lacking. That is, the light emitted from the light source is spread over a certain angle range, even if the light source and the light receiving element is inclined with respect to the surface of the wind shield, some of the light is directly emitted toward the light receiving element, in addition to the light falling out of the wind shield. Due to the interference light absorbed by the light-receiving element, there is no problem that the raindrop detection efficiency is somewhat reduced, and thus, there is a rather insufficient surface for perfection in terms of rain sensing efficiency.
- a rain sensor and a wiper driving apparatus including the same may be provided by detecting a change in impedance caused by raindrops falling on a windshield of a vehicle and determining rainfall and rainfall.
- the embodiment provides a rain sensor and a wiper driving device including the rain sensor that can determine whether the rainfall and rainfall using the carbon micro coil device, and thereby control whether the wiper is driven and the driving speed of the wiper.
- Rain sensor the substrate; A sensing electrode formed on the first surface of the substrate; A reaction layer formed on the first surface of the substrate and filling the upper surface of the substrate and the sensing electrode; A driving unit electrically connected to a sensing electrode formed on the first surface of the substrate and processing a sensing signal transmitted through the sensing electrode; And a protective layer formed surrounding the driving unit, wherein the reaction layer includes a change in an impedance value according to a change in at least one of a force and a dielectric constant generated by rainfall.
- the detection signal for the amount of change in the impedance value of the layer is transmitted to the driver.
- reaction layer includes a carbon micro coil material.
- reaction layer includes a carbon micro coil material, a resin, and a dispersant.
- the sensing electrode having a predetermined thickness is disposed on the formed substrate.
- the sensing electrodes may be formed in plural, and each of the plurality of sensing electrodes may include a first electrode portion disposed in an edge region of the substrate, and a second electrode extending in a length direction of the substrate from one end of the first electrode portion.
- An electrode part is included, and an inner angle between the first electrode part and the second electrode part has an obtuse angle.
- the semiconductor device may further include vias formed through the substrate, one end of which is connected to the sensing electrode and the other end of which is connected to the driver.
- reaction layer is a change in the positive imaginary part of the impedance due to the force applied by the rainfall generation, and the change in the negative imaginary part of the impedance due to the change of the dielectric constant by the object present on the second surface Occurs.
- the wiper driving apparatus is a front glass; A sensor unit attached to the first surface of the windshield and whose impedance is changed by an object in contact with the second surface of the windshield; And a control unit configured to receive a detection signal according to the change amount of the impedance value through the sensor unit, determine whether the rainfall is based on the received detection signal, and drive the wiper according to the determined rainfall.
- the sensor unit may further include a substrate, a sensing electrode formed on the first surface of the substrate, a reaction layer formed on the first surface of the substrate, and filling the upper surface of the substrate and the sensing electrode;
- a driving unit electrically connected to a sensing electrode formed on one surface, and configured to process a sensing signal transmitted through the sensing electrode, and a protective layer surrounding the driving unit, wherein the reaction layer is formed by the contact object.
- the impedance value changes, and the sensing electrode transfers the sensing signal for the impedance value of the reaction layer to the driver.
- reaction layer includes a carbon micro coil material.
- reaction layer includes a carbon micro coil material, a resin, and a dispersant.
- the sensing electrode having a predetermined thickness is disposed on the formed substrate.
- the sensing electrodes may be formed in plural, and each of the plurality of sensing electrodes may include a first electrode portion disposed in an edge region of the substrate, and a second electrode extending in a length direction of the substrate from one end of the first electrode portion.
- An electrode part is included, and an inner angle between the first electrode part and the second electrode part has an obtuse angle.
- the semiconductor device may further include vias formed through the substrate, one end of which is connected to the sensing electrode and the other end of which is connected to the driver.
- the sensor unit the impedance by the change in the imaginary part of the positive impedance due to the force applied to the second surface of the windshield by the contact object, and the change in dielectric constant by the object present on the second surface Detects rainfall and rainfall based on changes in the negative imaginary part of.
- the apparatus may further include an adhesive member disposed between the first surface of the windshield and the rain sensor unit.
- the controller may set whether the wiper is driven and a driving speed based on the change amount of the impedance value.
- the embodiment by determining whether the rainfall and rainfall by using a carbon micro coil device, it provides a rain sensor of the characteristics (response characteristics, precision, accuracy, power consumption, miniaturization, etc.) differentiated from the conventional optical method can do.
- FIG. 1 is a side view showing a state in which the rain sensor is mounted on the windshield of the vehicle according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view showing a detailed structure of the rain sensor shown in FIG.
- FIG. 3 is a view showing the reaction layer shown in FIG.
- FIG. 4 is a plan view of the sensing electrode illustrated in FIG. 2.
- FIG. 5 is a view for explaining the manufacturing method of the rain sensor 20 shown in FIG.
- FIG. 6 is a view illustrating a wiper driving apparatus according to an embodiment.
- FIG. 7 and 8 are diagrams for describing driving conditions of a wiper according to an exemplary embodiment of the present invention.
- FIG. 9 is a flowchart for explaining a method of operating a rain sensor according to an exemplary embodiment of the present disclosure.
- Combinations of each block and each step of the flowchart in the accompanying drawings may be performed by computer program instructions.
- These computer program instructions may be mounted on a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment such that the instructions executed by the processor of the computer or other programmable data processing equipment are executed in each block or flowchart of the figure. It will create means for performing the functions described in the steps.
- These computer program instructions may be stored in a computer usable or computer readable memory that can be directed to a computer or other programmable data processing equipment to implement functionality in a particular manner, and thus the computer usable or computer readable memory.
- Instructions stored therein may produce an article of manufacture containing instruction means for performing the functions described in each step of each block or flowchart of the figure.
- Computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operating steps may be performed on the computer or other programmable data processing equipment to create a computer-implemented process to create a computer or other programmable data. Instructions for performing the processing equipment may also provide steps for executing the functions described in each block of the figures and in each step of the flowchart.
- each block or step may represent a portion of a module, segment or code that includes one or more executable instructions for executing a specified logical function (s).
- a specified logical function s.
- the functions noted in the blocks or steps may occur out of order.
- the two blocks or steps shown in succession may in fact be executed substantially concurrently or the blocks or steps may sometimes be performed in the reverse order, depending on the functionality involved.
- FIG. 1 is a side view showing a state in which a rain sensor is mounted on the windshield of the vehicle according to an embodiment of the present invention
- Figure 2 is a cross-sectional view showing a detailed structure of the rain sensor shown in Figure 1
- Figure 3 is 4 is a plan view showing the reaction layer shown
- FIG. 4 is a plan view of the sensing electrode shown in FIG.
- the rain sensor 20 is mounted on the windshield 10 of the vehicle.
- the rain sensor 20 is installed to face the windshield 10 of the vehicle, and detects a change in impedance according to the presence or absence of raindrops falling on the windshield 10.
- the rain sensor 20 forms a sensing region at a predetermined position of the windshield 10 of the vehicle, and thus detects information according to a state of raindrops generated in the sensing region.
- the rain sensor 20 includes a substrate 21, a sensing electrode 22, a reaction layer 23, a driver 24, and a protective layer 25.
- the rain sensor 20 as described above provides information for driving the wiper by detecting an impedance change according to the presence of raindrops falling on the windshield 10 in a predetermined region inside the windshield 10 of the vehicle.
- the substrate 21 is a base substrate on which the sensing electrode 22, the reaction layer 23, and the driver 24 are mounted.
- the sensing electrode 22 is formed on the substrate 21.
- the sensing electrode 22 is formed on the upper surface of the substrate 21 while being buried by the reaction layer 23.
- the sensing electrode 22 is formed in plural and senses an impedance that changes as a reaction of the reaction layer 23 occurs by a material formed on the surface of the reaction layer 23.
- the sensing electrode 22 may include a first sensing electrode having a positive polarity and a second sensing electrode having a negative polarity.
- the reaction layer 23 is formed on the substrate 21, and is formed by filling the upper surface of the substrate 21 and the sensing electrode 22.
- the reaction layer 23 has a predetermined thickness and is formed on the substrate 21 on which the sensing electrode 22 is formed.
- the reaction layer 23 is formed of a conductive material and has a property of changing impedance according to a change in force or dielectric constant generated by an external material.
- the reaction layer 23 is a carbon micro coil (CMC) having a spring shape. That is, the reaction layer 23 is formed by depositing at least one of hydrocarbon-based, acetylene, methane, propane and benzene on the substrate 21 by a chemical vapor deposition (CVD) process.
- CMC carbon micro coil
- reaction layer 23 may be manufactured using a metal catalyst based on nickel or nickel-iron.
- the CMC may have a shape that is curled like a pig tail rather than a straight line, and is an amorphous carbon fiber having a unique structure that the fiber material may not have. And, CMC has a super elasticity that extends to a length of 10 times or more of the original coil length.
- FIG. 3A illustrates a coil formed in the reaction layer 23, and FIG. 3B is a detailed view of the coil.
- Morphology of the reaction layer 23 has a 3D-helical / spiral structure, and the crystal structure is amorphous.
- the reaction layer 23 as described above is formed by growing carbon fibers in a coil shape, and thus the reaction layer 23 has a cross-sectional structure in which carbon fibers are grown in a coil shape.
- reaction layer 23 may be formed by the force applied as a specific material contacts the surface of the windshield 10 to which the rain sensor 20 is attached, or by the dielectric constant of the specific material. Impedance changes occur.
- the sensing electrode 22 senses an impedance change of the reaction layer 23, and accordingly transmits a sensing signal according to the impedance change to the driver 24.
- the driving unit 24 is formed on the lower surface of the substrate 21, and thus detects whether the rainfall and rainfall according to the detection signal transmitted through the sensing electrode 22, and the wiper according to the detected rainfall and rainfall Generates a control signal for controlling the operation of.
- REAL TERM of impedance is made of resistance
- POSITIVE IMAGINARY TERM is made of inductance
- NEGATIVE IMAGINARY TERM is made of capacitance, and the resistance, inductance, and capacitance are summed up.
- the rain sensor 20 also needs a pair of sensing electrodes 22 to sense the impedance change occurring in the reaction layer 23.
- the sensing electrode 22 serves to connect the reaction layer 23 and the driver 24 while optimizing the sensing characteristics of the reaction layer 23.
- the sensed impedance value is the sum of the resistance value, the inductance value, and the capacitance. Accordingly, the impedance value decreases linearly according to the degree of force or permittivity applied to the surface.
- the sensing electrode 22 has a structure as shown in FIG. 4 and is formed on the substrate 21.
- the sensing electrode 22 extends from a first electrode portion formed at an edge region of the substrate 21 to a central region of the substrate from one end of the first electrode portion and has a predetermined inclination angle with respect to one end of the first electrode portion. It includes a second electrode portion.
- the impedance change state generated in the reaction layer 23 is changed according to the shape of the sensing electrode 22.
- the sensing electrode 22 including the first electrode part and the second electrode part is formed on the substrate 21 as described above.
- a via 26 is formed below one end of the second electrode portion.
- the vias 26 are formed by filling through holes penetrating the upper and lower surfaces of the substrate 21 with a metal material.
- One end of the via 26 is connected to the sensing electrode 22 through the substrate 21, and the other end of the via 26 is connected to the driver 24 attached to the bottom surface of the substrate 21. do.
- the driver 24 includes an analog front end (AFE), and the sensing electrode 22 is connected to the via 26 through the via 26.
- AFE analog front end
- the AFE performs a differential amplification function, and there is a difference in the state of impedance change according to the occurrence of the rainfall depending on whether the differential amplification is positive or negative.
- the driver 24 detects a change state of the impedance value based on a reference value according to the differential amplification state, and drives the wiper to remove raindrops when the change state is out of a threshold value. do.
- the raindrops when the raindrops fall, the raindrops have a constant force or change in permittivity of the windshield 10.
- an impedance change occurs in the reaction layer 23 according to the applied force or the change in permittivity.
- the change amount of the impedance may correspond to the rainfall and rainfall. That is, the force or dielectric constant applied to the reaction layer 23 also increases in proportion to the rainfall, and the impedance change amount decreases in inverse proportion to the increase in the dielectric constant or the force.
- the differential signal according to the differential amplification of the AFE of the driver 24 is output according to the amplitude change of the internal clock.
- the output differential signal is converted into a digital signal and transmitted to the main control unit (described later) of the vehicle.
- the main controller may determine whether the rainfall and rainfall based on the impedance change amount according to the transmitted digital signal, and if the rainfall occurs and the rainfall exceeds the threshold, the wiper for removing raindrops Start the operation.
- FIG. 5 is a view for explaining the manufacturing method of the rain sensor 20 shown in FIG.
- a liquid 81 for forming the reaction layer 23 in the plating bath 80 is prepared.
- the liquid 81 may be made of a carbon fine coil material (CMC material).
- the liquid 81 may include only a carbon fine coil material.
- a resin and a dispersant may be further added.
- the carbon fine coil material and the resin are added and mixed in the plating bath 80, and the dispersant is further added and dispersed accordingly.
- the dispersant is for evenly dispersing the liquid on the substrate 21 later.
- the substrate 21 is prepared, and the sensing electrode 22 is formed on the prepared substrate 21.
- the sensing electrode 22 is formed in plural and has a planar structure as shown in FIG. 4.
- a frame 82 is formed in the edge region of the substrate 21.
- the frame 82 is formed on the substrate 21 while covering the edge region of the substrate 21, exposing the central region of the substrate 21.
- the prepared liquid 81 is introduced into the mold 82 of the substrate 21.
- reaction layer 23 is formed on the basis of the injected liquid 81 through the elapsed process.
- the curing process may be performed for 30 minutes at a temperature of 120 °C.
- the sensing electrode 22 is embedded in the reaction layer 23 made of the carbon fine coil CMC.
- the sensing electrode 22 is connected to the driver 24 mounted under the substrate 21 through the via 26.
- the reaction layer 23 may determine whether or not rainfall and rainfall according to the impedance change amount by itself, the measurement sensitivity is also changed depending on the shape of the sensing electrode (22). Accordingly, in the embodiment, the sensing electrode 22 having the planar shape as described above is formed.
- the impedance includes a real part and an imaginary part
- the imaginary part comprises a positive imaginary part and a negative imaginary part
- the carbon micro coil is included.
- the rain sensor 20 measures by using two characteristic changes of the positive imaginary part (inductive) and the negative imaginary part (capacitive).
- the force applied to the windshield 10 of the vehicle varies according to the amount of rain, and the amount of water (raindrops) present in the windshield 10 also varies.
- the carbon micro coil (CMC: Carbon Micro Coil) is composed of a very small coil group as its name, it is also a dielectric having a dielectric constant.
- the force is measured through the change of the inductive component, that is, the characteristic change of the carbon fine coil, and the amount of water present on the windshield 10 is measured by the capacitive change caused by the change in dielectric constant.
- each layer constituting the rain sensor 20 serves as a dielectric having a specific dielectric constant. If it rains as described above, a new dielectric, water, is present at the electrode, resulting in a capacitive change. ..
- the real part can be adjusted according to the area of the reaction layer 23, and when it rains, the impedance value changes due to the inductive and capacitive value changes as described above.
- the rain value and the rainfall are determined by detecting the change in the impedance value according to the inductive and capacitive value changes of the rain sensor 20 as described above.
- the rain sensor 20 as described above forms an adhesive member (not shown) such as silicon inside the windshield 10 and is mounted on a specific inner region of the windshield 10 by the adhesive member. do.
- the rain sensor 20 detects a change in impedance in consideration of the dielectric constant of the adhesive member.
- FIG. 6 is a view illustrating a wiper driving apparatus according to an embodiment.
- the sensor unit 20 includes a sensor unit 20, a memory 30, a wiper 40, a motor 50, a wiper driver 60, and a controller 70.
- the sensor unit 20 refers to the rain sensor, and detects a change in impedance generated according to the rainfall, and transmits sensing information on the amount of change in impedance to the controller 70.
- the memory 30 stores information for controlling various components of the vehicle.
- the memory 30 includes driving condition information of the wiper according to the amount of impedance change detected by the sensor unit 20.
- the driving condition information may include whether the wiper is driven and driving speed information of the wiper.
- the wiper 40 is mounted on the outside of the windshield 10 of the vehicle and removes water such as raindrops present on the windshield 10.
- the motor 50 drives the wiper 40 according to a preset condition.
- the wiper driver 60 provides the motor 50 with condition information for driving the wiper 40.
- the condition information may be information of driving power to be supplied to the wiper 40 through the motor 50.
- the controller 70 receives the sensing information about the impedance change amount obtained through the sensor unit 20.
- the controller 70 sets driving conditions for driving the wiper 40 based on the received sensing information.
- FIG. 7 and 8 are diagrams for describing driving conditions of a wiper according to an exemplary embodiment of the present invention.
- the controller 70 checks whether sensing information corresponding to the threshold point A is received.
- the controller 70 causes the operation of the wiper 40 to be started when the impedance change amount exceeds the threshold.
- the controller 70 determines the driving speed of the wiper 40 according to the magnitude of the impedance change amount.
- the controller 70 increases the driving speed of the wiper 40 in proportion to the impedance change amount.
- the embodiment by determining whether the rainfall and rainfall by using a carbon micro coil device, it provides a rain sensor of the characteristics (response characteristics, precision, accuracy, power consumption, miniaturization, etc.) differentiated from the conventional optical method can do.
- FIG. 9 is a flowchart for explaining a method of operating a rain sensor according to an exemplary embodiment of the present disclosure.
- the rain sensor 20 detects a change in impedance depending on whether or not rainfall occurs in the windshield 10 of the vehicle (10).
- the rain sensor 20 transmits the sensing information on the sensed impedance change to the controller 70.
- the control unit 70 receives the sensing information indicating the impedance change, and determines whether the rainfall and rainfall according to the impedance change amount (step 20).
- the controller 70 determines whether the rainfall exceeds a threshold (step 30). Whether the threshold is exceeded may be determined by whether the impedance change amount exceeds the threshold.
- the controller 70 determines the driving speed of the wiper 40 to be driven according to the rainfall (step 40).
- controller 70 causes the wiper 40 to be driven at the determined driving speed (step 50).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Atmospheric Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Environmental Sciences (AREA)
- Ecology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
실시 예에 따른 레인 센서는, 기판; 상기 기판의 제 1 면에 형성되는 감지 전극; 상기 기판의 제 1 면위에 형성되어 상기 기판의 상면 및 상기 감지 전극을 매립하는 반응층; 상기 기판의 제 1 면에 형성된 감지 전극과 전기적으로 연결되며, 상기 감지 전극을 통해 전달되는 감지 신호를 처리하는 구동부; 및 상기 구동부를 둘러싸며 형성되는 보호층을 포함하며, 상기 반응층은, 강우 여부에 의해 발생하는 힘 및 유전 상수 중 적어도 어느 하나의 변화에 따른 임피던스 값이 변화하며, 상기 감지 전극은, 상기 반응층의 임피던스 값의 변화량에 대한 상기 감지 신호를 상기 구동부로 전달한다.
Description
실시 예는, 레인 센서에 관한 것으로, 특히 임피던스 변화량에 따라 강우 여부 및 강우량을 판단하고, 이를 토대로 와이퍼를 구동시킬 수 있는 레인 센서 및 이를 포함하는 와이퍼 구동 장치에 관한 것이다.
일반적으로, 차량의 전면 윈드 실드에는 우천시 빗물 때문에 발생하는 시계장애를 극복하고자 와이퍼가 설치되고, 이러한 와이퍼는 빗물이 떨어지는 정도에 따라 와이퍼의 간헐속도 제어가 단계별로 이루어진다. 그러나, 이러한 와이퍼의 속도 제어 시스템은 몇 개의 단계만으로 조절되기 때문에 빗물의 양에 따라 운전자가 원하는 속도로 와이퍼를 움직이게 할 수 없는 단점이 있다.
이러한 점을 극복하기 위해 광원과 수광소자인 센서를 탑재한 회로기판을 윈드 실드 표면에 대해 경사지게 배치함으로 인하여, 윈드 실드 표면에서 반사되는 광의 영향을 최소하는 반면, 빗방울 자체에서 반사되는 광신호만을 수신하여 레인 센싱 효율을 높일 수 있도록 구성한 것이 있다. 즉, 윈드 실드에서 직접 반사되는 광은 수광소자의 수광 범위 바깥으로 빠져서 윈드 실드에 반사되어 수광소자에 의해 수신되는 광량을 최소화시키는 반면, 빗방울에서 반사되는 광량만을 수광소자에 수신하므로, 빗방울로부터의 난반사 신호만을 감지할 수 있도록 광원과 수광소자가 구비된 회로기판이 윈드 실드 표면에 대하여 일정 각도 경사지게 배치한 것이다.
그런데, 상기와 같이 광원과 수광소자를 회로기판에 의해 차량의 윈드 실드 표면에 대해 경사지게 배치한 제품의 경우에도 광원에서 방사되는 빛이 수광소자로 직접 흡수되는 경우가 있기 때문에, 레인 센싱 효율면에서 다소 불완전하고 미흡한 점이 없지 않다. 즉, 광원에서 방사되는 빛은 일정 각도 범위로 퍼지게 되는데, 광원과 수광소자를 윈드 실드 표면에 대해 경사지게 배치하였다 하더라도 윈드 실드 밖으로 빠지는 빛 이외에 일부의 빛이 수광소자 쪽으로 직접 비춰지기 때문에, 이러한 광원에서 수광소자로 흡수되는 간섭적인 빛으로 인하여 빗방울 감지 효율을 다소 저하시키는 문제가 없지 않으며, 이로 인하여 레인 센싱 효율면에서 완전성을 기하기에는 다소 미흡한 면이 있는 것이다.
상기와 같은 주위 통행 차량의 헤드라이트 광 등에 의한 주변 간섭광을 극소화시키고자 설계하는 경우에도 불가피하게 차단되지 못하는 간섭광은 생기게 마련이고, 광 감지 레인 센서 자체는 매우 민감한 센서 제품이라서 이처럼 미처 차단하지 못하는 미량의 주변광의 영향을 받을 수밖에 없는 것이라서 고도의 정밀한 레인 센싱 효과를 내기에는 한계를 가질 수밖에 없으며, 아울러, 상기와 같은 주변광의 영향을 극소화시키기 위한 구조를 구현하기 위해서는 다소 복잡한 구조를 가질 수밖에 없어서 생산성에서 다소 효율적이지 못하고 제품 코스트도 다소 높아지는 등의 한계를 가지는 것이 불가피한 실정이다.
본 발명에 따른 실시 예에서는, 차량의 전면 유리에 떨어지는 빗방울에 의한 임피던스 변화를 감지하여 강우 여부 및 강우량을 판단할 수 있는 레인 센서 및 이를 포함하는 와이퍼 구동 장치를 제공한다.
또한, 실시 예에서는 탄소 미세 코일 소자를 이용하여 강우 여부 및 강우량을 판단하고, 이에 따라 와이퍼의 구동 여부 및 와이퍼의 구동 속도를 제어할 수 있는 레인 센서 및 이를 포함하는 와이퍼 구동 장치를 제공한다.
제안되는 실시 예에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 제안되는 실시 예가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
실시 예에 따른 레인 센서는, 기판; 상기 기판의 제 1 면에 형성되는 감지 전극; 상기 기판의 제 1 면위에 형성되어 상기 기판의 상면 및 상기 감지 전극을 매립하는 반응층; 상기 기판의 제 1 면에 형성된 감지 전극과 전기적으로 연결되며, 상기 감지 전극을 통해 전달되는 감지 신호를 처리하는 구동부; 및 상기 구동부를 둘러싸며 형성되는 보호층을 포함하며, 상기 반응층은, 강우 여부에 의해 발생하는 힘 및 유전 상수 중 적어도 어느 하나의 변화에 따른 임피던스 값이 변화하며, 상기 감지 전극은, 상기 반응층의 임피던스 값의 변화량에 대한 상기 감지 신호를 상기 구동부로 전달한다.
또한, 상기 반응층은, 탄소 미세 코일(Carbon Micro Coil) 물질을 포함한다.
또한, 상기 반응층은, 탄소 미세 코일(Carbon Micro Coil) 물질, 수지 및 분산제를 포함한다.
또한, 상기 반응층은. 기설정된 두께를 가지는 상기 감지 전극이 형성된 상기 기판 위에 배치된다.
또한, 상기 감지 전극은 복수 개로 형성되며, 상기 복수 개의 감지 전극 각각은, 상기 기판의 가장자리 영역에 배치되는 제 1 전극부와, 상기 제 1 전극부의 일단에서 상기 기판의 길이 방향으로 연장되는 제 2 전극부를 포함하며, 상기 제 1 전극부와 제 2 전극부 사이의 내각은, 둔각을 가진다.
또한, 상기 기판을 관통하며 형성되고, 일단이 상기 감지 전극과 연결되고, 타단이 상기 구동부와 연결되는 비아를 더 포함한다.
또한, 상기 반응층은, 상기 강우 발생에 의해 가해지는 힘에 의한 임피던스의 양의 허수부의 변화와, 상기 제 2 면에 존재하는 물체에 의한 유전 상수 변화에 의한 상기 임피던스의 음의 허수부의 변화가 발생한다.
또한, 실시 예에 따른 와이퍼 구동 장치는 전면 유리; 상기 전면 유리의 제 1 면에 부착되며, 상기 전면 유리의 제 2면에 접촉하는 물체에 의해 임피던스 값이 변화하는 센서부; 및 상기 센서부를 통해 상기 임피던스 값의 변화량을 따른 감지 신호를 수신하고, 상기 수신한 감지 신호를 토대로 강우 여부를 판단하며, 상기 판단한 강우 여부에 따라 와이퍼를 구동시키는 제어부를 포함한다.
또한, 상기 센서부는, 기판과, 상기 기판의 제 1 면에 형성되는 감지 전극과, 상기 기판의 제 1 면위에 형성되어 상기 기판의 상면 및 상기 감지 전극을 매립하는 반응층과, 상기 기판의 제 1 면에 형성된 감지 전극과 전기적으로 연결되며, 상기 감지 전극을 통해 전달되는 감지 신호를 처리하는 구동부와, 상기 구동부를 둘러싸며 형성되는 보호층을 포함하며, 상기 반응층은, 상기 접촉 물체에 의해 임피던스 값이 변화하며, 상기 감지 전극은, 상기 반응층의 임피던스 값에 대한 상기 감지 신호를 상기 구동부로 전달한다.
또한, 상기 반응층은, 탄소 미세 코일(Carbon Micro Coil) 물질을 포함한다.
또한, 상기 반응층은, 탄소 미세 코일(Carbon Micro Coil) 물질, 수지 및 분산제를 포함한다.
또한, 상기 반응층은. 기설정된 두께를 가지는 상기 감지 전극이 형성된 상기 기판 위에 배치된다.
또한, 상기 감지 전극은 복수 개로 형성되며, 상기 복수 개의 감지 전극 각각은, 상기 기판의 가장자리 영역에 배치되는 제 1 전극부와, 상기 제 1 전극부의 일단에서 상기 기판의 길이 방향으로 연장되는 제 2 전극부를 포함하며, 상기 제 1 전극부와 제 2 전극부 사이의 내각은, 둔각을 가진다.
또한, 상기 기판을 관통하며 형성되고, 일단이 상기 감지 전극과 연결되고, 타단이 상기 구동부와 연결되는 비아를 더 포함한다.
또한, 상기 센서부는, 상기 접촉 물체의 의해 상기 전면 유리의 제 2면에 가해지는 힘에 의한 임피던스의 양의 허수부의 변화와, 상기 제 2 면에 존재하는 물체에 의한 유전 상수 변화에 의한 상기 임피던스의 음의 허수부의 변화를 토대로 강우 여부 및 강우량을 감지한다.
또한, 상기 전면 유리의 제 1 면과 상기 레인 센서부 사이에 배치되는 접착 부재를 더 포함한다.
또한, 상기 제어부는, 상기 임피던스 값의 변화량을 토대로 상기 와이퍼의 구동 여부 및 구동 속도를 설정한다.
실시 예에 따르면, 강우가 발생하는 경우, 이에 즉각적으로 반응하여 강우량에 따른 구동 조건으로 와이퍼를 구동시킴으로써, 우천시에 운전자의 편의성을 향상시킬 수 있다.
또한, 실시 예에 의하면 탄소미세코일 소자를 이용하여 강우여부 및 강우량을 판단함으로써, 기존의 광학 방식에 대비하여 차별화된 특성(응답특성, 정밀, 정확도, 소비전력, 소형화 등)의 레인 센서를 제공할 수 있다.
도 1은 본 발명의 실시 예에 따른 차량의 전면 유리에 레인 센서가 장착된 상태를 보여주는 측면도이다.
도 2는 도 1에 도시된 레인 센서의 상세 구조를 보여주는 단면도이다.
도 3은 도 2에 도시된 반응층을 보여주는 도면이다.
도 4는 도 2에 도시된 감지 전극의 평면도이다.
도 5는 도 2에 도시된 레인 센서(20)의 제조 방법을 설명하기 위한 도면이다.
도 6은 실시 예에 따른 와이퍼 구동 장치를 보여주는 도면이다.
도 7 및 8은 본 발명의 실시 예에 따른 와이퍼의 구동 조건을 설명하기 위한 도면이다.
도 9는 본 발명의 실시 예에 따른 레인센서의 동작 방법을 단계별로 설명하기 위한 흐름도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
본 발명의 실시 예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시 예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
첨부된 도면의 각 블록과 흐름도의 각 단계의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수도 있다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 도면의 각 블록 또는 흐름도의 각 단계에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 도면의 각 블록 또는 흐름도 각 단계에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 도면의 각 블록 및 흐름도의 각 단계에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록 또는 각 단계는 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실시 예들에서는 블록들 또는 단계들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들 또는 단계들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들 또는 단계들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
도 1은 본 발명의 실시 예에 따른 차량의 전면 유리에 레인 센서가 장착된 상태를 보여주는 측면도이고, 도 2는 도 1에 도시된 레인 센서의 상세 구조를 보여주는 단면도이고, 도 3은 도 2에 도시된 반응층을 보여주는 도면이고, 도 4는 도 2에 도시된 감지 전극의 평면도이다.
도 1 내지 4를 참조하면. 차량의 전면 유리(10)에는 레인 센서(20)가 장착된다.
레인 센서(20)의 차량의 전면 유리(10)의 마주하도록 설치되며, 상기 전면 유리(10)에 떨어지는 빗방울의 존재 여부나 상기 빗방울의 양에 따른 임피던스의 변화를 감지한다.
상기 레인 센서(20)는 차량의 전면 유리(10)의 일정 위치에 감지 영역을 형성하고, 그에 따라 상기 감지 영역 내에서 발생하는 빗방울의 상태에 따른 정보를 감지한다.
도 2를 참조하면, 레인 센서(20)는 기판(21), 감지 전극(22), 반응층(23), 구동부(24) 및 보호층(25)을 포함한다.
상기와 같은 레인 센서(20)는 차량의 전면 유리(10) 안쪽의 일정 영역에서 상기 전면 유리(10)에 내리는 빗방울의 존재 여부에 따른 임피던스 변화를 감지하여 와이퍼의 구동을 위한 정보를 제공한다.
기판(21)은 감지 전극(22) 및 반응층(23), 그리고 구동부(24)가 장착되는 베이스 기판이다.
감지 전극(22)은 상기 기판(21) 위에 형성된다. 상기 감지 전극(22)은 상기 반응층(23)에 의해 매립되면서 상기 기판(21)의 상면 위에 형성된다.
상기 감지 전극(22)는 복수 개로 형성되며, 상기 반응층(23)의 표면에 형성되는 물질에 의해 상기 반응층(23)의 반응이 일어남에 따라 변화하는 임피던스를 감지한다.
바람직하게, 상기 감지 전극(22)은 포지티브 극성의 제 1 감지 전극과, 네거티브 극성의 제 2 감지 전극을 포함할 수 있다.
반응층(23)은 기판(21) 위에 형성되며, 상기 기판(21)의 상면 및 상기 감지 전극(22)을 매립하며 형성된다.
바람직하게, 상기 반응층(23)은 소정의 두께를 가지며 상기 감지 전극(22)이 형성되어 있는 기판(21) 위에 형성된다.
상기 반응층(23)은 전도성 물질로 형성되며, 외부의 물질에 의해 발생하는 힘이나 유전율의 변화에 따라 임피던스가 변화하는 성질을 가진다.
바람직하게, 상기 반응층(23)은 스프링 형상을 갖는 탄소 미세 코일(CMC: Carbon Micro Coil)이다. 즉, 상기 반응층(23)은 탄화수소계, 즉 아세틸렌, 메탄, 프로판 및 벤젠 중 적어도 하나를 상기 기판(21) 위에 화학기상증착법(CVD) 공정으로 증착하여 형성된다.
또한, 이와 다르게 상기 반응층(23)은 니켈이나 니켈-철 등을 토대로 금속 촉매를 이용하여 제조될 수 있다.
상기와 같은, CMC는 도 3에 도시된 바와 같이, 직선 모양이 아닌 돼지 꼬리처럼 말려져 있는 형상을 가질 수 있으며, 섬유 소재가 가질 수 없는 독특한 구조를 지닌 비정질 탄소 섬유이다. 그리고, CMC는 원래 코일 길이의 10배 이상의 길이로 늘어나는 초탄력성을 가진다.
도 3의 (a)는 반응층(23) 내에 형성되는 코일을 보여주며, (b)는 상기 코일의 상세 도면이다.
상기 반응층(23)의 모폴로지(Morphology)는 3D- 헬리컬(helical)/스파이럴(spiral) 구조를 가지며, 크리스털 구조는 비결정질(amorphous)이다.
다시 말해서, 상기와 같은 반응층(23)은 탄소 섬유를 코일 모양으로 성장시키는 것에 의해 형성되며, 이에 따라 상기 반응층(23)은 탄소 섬유를 코일 모양으로 성장시킨 형태의 단면 구조를 가진다.
즉, 상기 반응층(23)은 레인 센서(20)가 부착되는 전면 유리(10)의 표면에 특정 물질이 접촉함에 따라 가해지는 힘이나, 상기 특정 물질의 유전율에 의해 상기 반응층(23)의 임피던스 변화가 발생한다.
그리고, 감지 전극(22)은 상기 반응층(23)의 임피던스 변화를 감지하고, 그에 따라 상기 임피던스 변화에 따른 감지 신호를 구동부(24)로 전달한다.
구동부(24)는 상기 기판(21)의 하면에 형성되며, 그에 따라 상기 감지 전극(22)을 통해 전달되는 감지 신호에 따라 강우 여부 및 강우량을 감지하고, 상기 감지한 강우 여부 및 강우량에 따라 와이퍼의 동작을 제어하기 위한 제어신호를 발생한다.
즉, 일반적으로 임피던스의 REAL TERM은 저항, POSITIVE IMAGINARY TERM은 인덕턴스, 그리고 NEGATIVE IMAGINARY TERM은 커패시턴스로 이루어지며, 상기 저항, 인덕턴스 및 커패시턴스의 합산으로 이루어진다.
따라서, 일반적인 저항, 인덕터 및 커패시터와 같이 상기 레인 센서(20)도 상기 반응층(23)에서 발생하는 임피던스 변화를 감지하기 위해 한쌍의 감지 전극(22)이 필요하다. 상기 감지 전극(22)은 상기 반응층(23)의 감지 특성을 최적화시키면서, 상기 반응층(23)과 상기 구동부(24) 사이를 연결하는 역할을 한다.
여기에서, 상기 전면 유리(10)의 표면에 특정 힘이 가해지거나, 특정 유전율을 가지는 물질이 접촉하는 경우, 상기 반응층(23)의 커패시턴스는 증가하게 되며, 이에 따라 저항값과 인덕턴스 값은 상기 커패시턴스와 반대로 감소하게 된다.
이때, 상기 감지되는 임피던스 값은 상기 저항 값, 인덕턴스 값 및 커패시턴스를 모두 합한 값이 되며, 이에 따라 표면에 가해지는 힘이나 유전율의 정도에 따라 상기 임피던스 값은 선형적으로 감소하게 된다.
이때, 상기 감지 전극(22)은 도 4에 도시된 바와 같은 구조를 가지며 상기 기판(21) 위에 형성된다.
상기 감지 전극(22)은 상기 기판(21)의 가장자리 영역에 형성된 제 1 전극부와, 상기 제 1 전극부의 일단에서 상기 기판의 중앙 영역으로 연장되며 상기 제 1 전극부의 일단에 대하여 일정 경사각을 가지는 제 2 전극부를 포함한다.
즉, 상기 감지 전극(22)의 형상에 따라 상기 반응층(23)에서 발생하는 임피던스 변화 상태가 달라지게 된다.
따라서, 본 발명에서는 상기 반응층(23)의 임피던스 변화 상태를 최적으로 조정하기 위하여, 상기와 같이 제 1 전극부와 제 2 전극부를 포함하는 감지 전극(22)을 상기 기판(21) 위에 형성한다.
한편, 상기 제 2 전극부의 일단의 하부에는 비아(26)가 형성된다.
상기 비아(26)는 상기 기판(21)의 상면 및 하면을 관통하는 관통 홀을 금속 물질로 매립함에 따라 형성된다.
상기 비아(26)의 일단은 상기 기판(21)을 관통하여 상기 감지 전극(22)과 연결되고, 상기 비아(26)의 타단은 상기 기판(21)의 하면에 부착되는 구동부(24)와 연결된다.
한편, 상기 구동부(24)는 AFE(Analog Front End)가 구비되며, 여기에 상기상기 비아(26)를 통해 상기 감지 전극(22)이 연결된다.
이때, 상기 AFE는 차동 증폭 기능을 수행하는데, 상기 차동 증폭을 Positive 증폭으로 할 것인지, 아니면 Negative 증폭으로 할 것인지에 따라 상기 강우 발생에 따른 임피던스의 변화 상태에 차이가 있다.
따라서, 상기 구동부(24)는 상기 차동 증폭 상태에 따라 기준 값을 기준으로 상기 임피던스 값의 변화 상태를 감지하며, 상기 변화 상태의 정도가 임계값을 벗어나는 경우에는 상기 와이퍼를 구동시켜 빗방울을 제거하도록 한다.
이하에서는 상기 와이퍼의 구동 단계를 보다 구체적으로 설명하기로 한다.
즉, 빗방울이 내리게 되면, 상기 빗방울이 전면 유리(10)에 일정 힘을 가지거나 유전율 변화를 발생시킨다.
그리고, 상기 가해지는 힘이나 유전율 변화에 따라 상기 반응층(23)에는 임피던스 변화가 발생한다.
이때, 상기 임피던스의 변화량은 상기 강우 여부 및 강우량에 대응될 수 있다. 즉, 상기 강우량에 비례하여 상기 반응층(23)에 가해지는 힘이나 유전율도 증가하게 되며, 상기 유전율이나 힘의 증가 정도에 반비례하여 상기 임피던스 변화량을 감소하게 된다.
상기와 같이, 상기 강우가 발생하면, 상기 반응층(23)의 임피던스 변화가 발생하며, 상기 임피던스 변화에 따라 상기 구동부(24)의 내부 클록에 대한 진폭 변화가 발생한다.
그리고, 상기 내부 클록의 진폭 변화에 따라 상기 구동부(24)의 AFE의 차동 증폭에 따른 차동 신호가 출력된다.
이후, 상기 차동 신호가 출력되면, 상기 출력되는 차동 신호는 디지털 신호로 변환되어 차량의 메인 제어부(추후 설명)에 전달된다.
상기 메인 제어부(도시하지 않음)는 상기 전달되는 디지털 신호에 따른 임피던스 변화량을 토대로 상기 강우 여부 및 강우량을 파악하며, 상기 강우가 발생하고, 그에 따른 강우량이 임계점을 초과하게 되면, 빗방울 제거를 위한 와이퍼를 가동시킨다.
도 5는 도 2에 도시된 레인 센서(20)의 제조 방법을 설명하기 위한 도면이다.
도 5를 참조하면, 먼저 도금조(80) 내에 상기 반응층(23)을 형성하기 위한 액(81)을 제조한다.
상기 액(81)은 탄소 미세 코일 물질(CMC 물질)로 이루어질 수 있다. 이때, 상기 액(81)은 탄소 미세 코일 물질만을 포함할 수 있으며, 이와 다르게 수지 및 분산제가 더 첨가될 수 있다.
상기와 같이, 제 1 단계는, 도금조(80) 내에 탄소 미세 코일 물질과 수지를 첨가하여 혼합시키고, 그에 따라 상기 분산제를 추가 첨가 하여 분산시킨다. 상기 분산제는 추후 기판(21) 위에 상기 액을 골고루 분산시키기 위한 것이다.
다음으로, 기판(21)을 준비하고, 상기 준비된 기판(21) 위에 감지 전극(22)을 형성한다.
상기 감지 전극(22)은 복수 개로 형성되며, 상기 도 4에 도시된 바와 같은 평면 구조를 가진다.
다음으로, 상기 기판(21)의 가장자리 영역에 틀(82)을 형성한다. 상기 틀(82)은 상기 기판(21)의 가장자리 영역을 덮으면서, 상기 기판(21)의 중앙 영역을 노출하며 상기 기판(21) 위에 형성된다.
다음으로, 상기 기판(21)의 틀(82) 내에 상기 제조한 액(81)을 투입한다.
그리고, 경과 과정을 거쳐 상기 투입한 액(81)을 토대로 반응층(23)을 형성한다.
이때, 상기 경화 과정은 120℃의 온도에서 30분 동안 수행될 수 있다.
이하에서는, 상기 레인 센서(20)의 구동 원리에 대해 보다 구체적으로 설명하기로 한다.
상기와 같이, 탄소 미세 코일(CMC)로 이루어진 반응층(23) 내에는 감지 전극(22)이 매립된다. 그리고, 상기 감지 전극(22)은 비아(26)를 통해 기판(21)의 하부에 장착된 구동부(24)와 연결된다.
이때, 상기 반응층(23)은 그 자체로도 임피던스 변화량에 따른 강우 여부 및 강우량을 판단할 수 있으며, 상기 감지 전극(22)의 형상에 따라서도 그 측정 감도가 달라진다. 이에 따라, 실시 예에서는 상기와 같은 평면 형상을 가진 감지 전극(22)을 형성한다.
따라서, 실시 예에서는 탄소 미세 코일의 함량비 조절에 의한 조성, 최적화된 전극 형상 및 구동부(24) 장착 위치 등과 같은 다양한 요소의 최적화가 중요하다.
또한, 상기 설명한 바와 같이 임피던스는 실수(real)부와 허수(reactace)부로 구성되며, 허수부는 양의 허수부(inductive)와 음의 허수부 (capacitive)로 구성되는데, 이때 상기 탄소 미세 코일을 포함하는 레인 센서(20)는 상기 양의 허수부(inductive)와 음의 허수부(capacitive)의 두가지 특성 변화를 이용하여 측정한다.
즉, 비가 올 때, 비의 양에 따라 차량의 전면 유리(10)에 가해지는 힘(force)가 달라지고, 또한 상기 전면 유리(10)에 존재하는 물(빗방울)의 양도 달라진다.
이때, 탄소 미세 코일(CMC:Carbon Micro Coil)는 그 이름과 같이 아주 미세한 코일 집단으로 이루어져 있으며, 유전상수를 가지고 있는 유전체이기도 하다.
이때, 상기 힘(force)은 이 inductive 성분의 변화, 즉 탄소 미세 코일의 특성 변화를 통해 측정하고, 상기 전면 유리(10) 위에 존재하는 물의 양은 유전상수 변화에 의한 capacitive 변화에 의해 측정된다..
즉, 상기 레인 센서(20)를 구성하는 각각의 층은 특정 유전상수를 가진 유전체 역할을 하는데, 상기와 같이 비가 온다면 전극 입장에서는 물이라는 유전체가 새로 존재하게 되며, 이에 따른 capacitive 변화가 생기게 된다..
이때, 상기 반응층(23)의 면적에 따라 실수(real)부는 조절이 가능하고, 비가 올때 위의 설명과 같이 inductive와 capacitive값 변화에 의해 임피던스 값 변화가 생긴다.
따라서, 실시 예에서는 상기와 같은 레인 센서(20)의 inductive와 capacitive 값 변화에 따른 임피던스 값 변화를 감지하여 강우 여부 및 강우량을 판단한다.
한편, 상기와 같은 레인 센서(20)은 전면유리(10)의 안쪽에 실리콘과 같은 접착 부재(도시하지 않음)을 형성하고, 상기 접착 부재에 의해 상기 전면 유리(10)의 특정 내부 영역에 장착된다.
이때, 상기 레인 센서(20)는 상기 접착 부재가 가지는 유전 상수까지 고려하여 임피던스 변화를 감지한다.
도 6은 실시 예에 따른 와이퍼 구동 장치를 보여주는 도면이다.
도 6을 참조하면, 센서부(20), 메모리(30), 와이퍼(40), 모터(50), 와이퍼 구동부(60) 및 제어부(70)를 포함한다.
센서부(20)는 상기 레인 센서를 의미하며, 상기 강우 여부에 따라 발생하는 임피던스 변화를 감지하고, 그에 따른 임피던스 변화량에 대한 감지 정보를 제어부(70)로 전달한다.
메모리(30)에는 차량의 각종 구성요소를 제어하기 위한 정보가 저장된다.
특히, 메모리(30)에는 상기 센서부(20)를 통해 감지된 임피던스 변화량에 따른 와이퍼의 구동 조건 정보를 포함한다.
상기 구동 조건 정보는, 와이퍼의 구동 여부 및 이에 따른 와이퍼의 구동 속도 정보를 포함할 수 있다.
와이퍼(40)는 차량의 전면 유리(10)의 외부에 장착되며, 상기 전면 유리(10)에 존재하는 빗방울과 같은 물기를 제거한다.
모터(50)는 기설정된 조건에 따라 상기 와이퍼(40)를 구동시킨다.
와이퍼 구동부(60)는 상기 와이퍼(40)를 구동시키기 위한 조건 정보를 모터(50)에 제공한다.
상기 조건 정보는, 상기 모터(50)를 통해 상기 와이퍼(40)로 공급될 구동 전원의 정보일 수 있다.
제어부(70)는 상기 센서부(20)를 통해 획득된 임피던스 변화량에 대한 감지 정보를 수신한다.
그리고, 제어부(70)는 상기 수신한 감지 정보를 토대로 상기 와이퍼(40)를 구동시키기 위한 구동 조건을 설정한다.
도 7 및 8은 본 발명의 실시 예에 따른 와이퍼의 구동 조건을 설명하기 위한 도면이다.
도 7을 참조하면, 제어부(70)는 상기 설명한 바와 같이, 임계점(A)에 해당하는 감지 정보가 수신되었는지를 확인한다.
다시 말해서, 상기 강우 발생에 따른 임피던스 변화량이 임계점을 초과하였는지를 판단한다. 그리고, 제어부(70)는 상기 임피던스 변화량이 상기 임계점을 초과하는 경우에 상기 와이퍼(40)의 동작이 개시되도록 한다.
이때, 도 8을 참조하면, 제어부(70)는 상기 임피던스 변화량의 크기에 따라 상기 와이퍼(40)의 구동 속도를 결정한다.
즉, 제어부(70)는 임피던스 변화량에 비례하게 상기 와이퍼(40)의 구동 속도를 증가시킨다.
실시 예에 따르면, 강우가 발생하는 경우, 이에 즉각적으로 반응하여 강우량에 따른 구동 조건으로 와이퍼를 구동시킴으로써, 우천시에 운전자의 편의성을 향상시킬 수 있다.
또한, 실시 예에 의하면 탄소미세코일 소자를 이용하여 강우여부 및 강우량을 판단함으로써, 기존의 광학 방식에 대비하여 차별화된 특성(응답특성, 정밀, 정확도, 소비전력, 소형화 등)의 레인 센서를 제공할 수 있다.
도 9는 본 발명의 실시 예에 따른 레인센서의 동작 방법을 단계별로 설명하기 위한 흐름도이다.
도 9를 참조하면, 레인 센서(20)는 차량의 전면 유리(10)에서 발생하는 강우 여부에 따른 임피던스 변화를 감지한다(10단계).
그리고, 레인 센서(20)는 상기 감지한 임피던스 변화에 대한 감지 정보를 제어부(70)에 전달한다.
제어부(70)는 상기 임피던스 변화를 나타내는 감지 정보를 수신하고, 이를 토대로 임피던스 변화량에 따른 강우 여부 및 강우량을 판단한다(20단계).
이어서, 제어부(70)는 상기 강우가 발생하였다면, 강우량이 임계점을 초과하였는지 여부를 판단한다(30단계). 상기 임계점의 초과 여부는 상기 임피던스 변화량이 임계점을 초과하였는지 여부에 의해 결정될 수 있다.
그리고, 제어부(70)는 상기 강우량이 임계점을 초과하였다면, 상기 강우량에 따라 구동될 와이퍼(40)의 구동 속도를 결정한다(40단계).
이어서, 제어부(70)는 상기 결정된 구동 속도로 상기 와이퍼(40)의 구동이 이루어지도록 한다(50단계).
또한, 이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안 될 것이다.
Claims (17)
- 기판;상기 기판의 제 1 면에 형성되는 감지 전극;상기 기판의 제 1 면위에 형성되어 상기 기판의 상면 및 상기 감지 전극을 매립하는 반응층;상기 기판의 제 1 면에 형성된 감지 전극과 전기적으로 연결되며, 상기 감지 전극을 통해 전달되는 감지 신호를 처리하는 구동부; 및상기 구동부를 둘러싸며 형성되는 보호층을 포함하며,상기 반응층은,강우 여부에 의해 발생하는 힘 및 유전 상수 중 적어도 어느 하나의 변화에 따른 임피던스 값이 변화하며,상기 감지 전극은,상기 반응층의 임피던스 값의 변화량에 대한 상기 감지 신호를 상기 구동부로 전달하는레인 센서.
- 제 1항에 있어서,상기 반응층은,탄소 미세 코일(Carbon Micro Coil) 물질을 포함하는레인 센서.
- 제 1항에 있어서,상기 반응층은,탄소 미세 코일(Carbon Micro Coil) 물질, 수지 및 분산제를 포함하는레인 센서.
- 제 1항에 있어서,상기 반응층은.기설정된 두께를 가지는 상기 감지 전극이 형성된 상기 기판 위에 배치되는레인 센서.
- 제 1항에 있어서,상기 감지 전극은 복수 개로 형성되며,상기 복수 개의 감지 전극 각각은,상기 기판의 가장자리 영역에 배치되는 제 1 전극부와,상기 제 1 전극부의 일단에서 상기 기판의 길이 방향으로 연장되는 제 2 전극부를 포함하며,상기 제 1 전극부와 제 2 전극부 사이의 내각은,둔각을 가지는레인 센서.
- 제 1항에 있어서,상기 기판을 관통하며 형성되고, 일단이 상기 감지 전극과 연결되고, 타단이 상기 구동부와 연결되는 비아를 더 포함하는레인 센서.
- 제 1항에 있어서,상기 반응층은,상기 강우 발생에 의해 가해지는 힘에 의한 임피던스의 양의 허수부의 변화와, 상기 제 2 면에 존재하는 물체에 의한 유전 상수 변화에 의한 상기 임피던스의 음의 허수부의 변화가 발생하는레인 센서.
- 전면 유리;상기 전면 유리의 제 1 면에 부착되며, 상기 전면 유리의 제 2면에 접촉하는 물체에 의해 임피던스 값이 변화하는 센서부; 및상기 센서부를 통해 상기 임피던스 값의 변화량을 따른 감지 신호를 수신하고, 상기 수신한 감지 신호를 토대로 강우 여부를 판단하며, 상기 판단한 강우 여부에 따라 와이퍼를 구동시키는 제어부를 포함하는와이퍼 구동 장치.
- 제 8항에 있어서,상기 센서부는,기판과,상기 기판의 제 1 면에 형성되는 감지 전극과,상기 기판의 제 1 면위에 형성되어 상기 기판의 상면 및 상기 감지 전극을 매립하는 반응층과,상기 기판의 제 1 면에 형성된 감지 전극과 전기적으로 연결되며, 상기 감지 전극을 통해 전달되는 감지 신호를 처리하는 구동부와,상기 구동부를 둘러싸며 형성되는 보호층을 포함하며,상기 반응층은,상기 접촉 물체에 의해 임피던스 값이 변화하며,상기 감지 전극은,상기 반응층의 임피던스 값에 대한 상기 감지 신호를 상기 구동부로 전달하는와이퍼 구동 장치.
- 제 9항에 있어서,상기 반응층은,탄소 미세 코일(Carbon Micro Coil) 물질을 포함하는와이퍼 구동 장치.
- 제 9항에 있어서,상기 반응층은,탄소 미세 코일(Carbon Micro Coil) 물질, 수지 및 분산제를 포함하는와이퍼 구동 장치.
- 제 9항에 있어서,상기 반응층은.기설정된 두께를 가지는 상기 감지 전극이 형성된 상기 기판 위에 배치되는와이퍼 구동 장치.
- 제 9항에 있어서,상기 감지 전극은 복수 개로 형성되며,상기 복수 개의 감지 전극 각각은,상기 기판의 가장자리 영역에 배치되는 제 1 전극부와,상기 제 1 전극부의 일단에서 상기 기판의 길이 방향으로 연장되는 제 2 전극부를 포함하며,상기 제 1 전극부와 제 2 전극부 사이의 내각은,둔각을 가지는와이퍼 구동 장치.
- 제 9항에 있어서,상기 기판을 관통하며 형성되고, 일단이 상기 감지 전극과 연결되고, 타단이 상기 구동부와 연결되는 비아를 더 포함하는와이퍼 구동 장치.
- 제 9항에 있어서,상기 센서부는,상기 접촉 물체의 의해 상기 전면 유리의 제 2면에 가해지는 힘에 의한 임피던스의 양의 허수부의 변화와, 상기 제 2 면에 존재하는 물체에 의한 유전 상수 변화에 의한 상기 임피던스의 음의 허수부의 변화를 토대로 강우 여부 및 강우량을 감지하는와이퍼 구동 장치.
- 제 8항에 있어서,상기 전면 유리의 제 1 면과 상기 레인 센서부 사이에 배치되는 접착 부재를 더 포함하는와이퍼 구동 장치.
- 제 8항에 있어서,상기 제어부는,상기 임피던스 값의 변화량을 토대로 상기 와이퍼의 구동 여부 및 구동 속도를 설정하는와이퍼 구동 장치.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680015286.8A CN107428315B (zh) | 2015-03-12 | 2016-03-04 | 雨传感器和包括该雨传感器的雨刷驱动装置 |
EP16761941.0A EP3269603B1 (en) | 2015-03-12 | 2016-03-04 | Wiper driving apparatus comprising same |
US15/556,924 US10407028B2 (en) | 2015-03-12 | 2016-03-04 | Rain sensor and wiper driving apparatus comprising same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0034390 | 2015-03-12 | ||
KR1020150034390A KR102327610B1 (ko) | 2015-03-12 | 2015-03-12 | 레인 센서 및 이를 포함하는 와이퍼 구동 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016144054A1 true WO2016144054A1 (ko) | 2016-09-15 |
Family
ID=56880279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/002197 WO2016144054A1 (ko) | 2015-03-12 | 2016-03-04 | 레인 센서 및 이를 포함하는 와이퍼 구동 장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10407028B2 (ko) |
EP (1) | EP3269603B1 (ko) |
KR (1) | KR102327610B1 (ko) |
CN (1) | CN107428315B (ko) |
WO (1) | WO2016144054A1 (ko) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102354521B1 (ko) * | 2015-03-05 | 2022-01-24 | 엘지이노텍 주식회사 | 감지 모듈 및 이를 포함하는 냉장고 |
KR102327610B1 (ko) * | 2015-03-12 | 2021-11-17 | 엘지이노텍 주식회사 | 레인 센서 및 이를 포함하는 와이퍼 구동 장치 |
KR102503129B1 (ko) * | 2016-07-22 | 2023-02-23 | 엘지이노텍 주식회사 | 레인 센서 및 이를 포함하는 와이퍼 구동 장치 |
KR102651624B1 (ko) * | 2016-12-12 | 2024-03-26 | 엘지이노텍 주식회사 | 유리 조성물, 이를 포함하는 감지 장치 및 용기 |
KR20180069513A (ko) * | 2016-12-15 | 2018-06-25 | 엘지이노텍 주식회사 | 물체 감지 센서 및 이를 포함하는 차량 안전 장치 |
KR102444407B1 (ko) * | 2017-04-19 | 2022-09-20 | 엘지이노텍 주식회사 | 감지 장치 |
KR102318450B1 (ko) * | 2017-04-19 | 2021-10-28 | 엘지이노텍 주식회사 | 감지 장치 및 이를 포함하는 와이퍼 구동 장치 |
KR102383683B1 (ko) * | 2017-09-28 | 2022-04-07 | 엘지이노텍 주식회사 | 감지 장치 |
KR102361449B1 (ko) * | 2017-10-19 | 2022-02-10 | 엘지이노텍 주식회사 | 감지장치 |
CN114035245A (zh) * | 2021-10-20 | 2022-02-11 | 深圳市欧赛特电子有限公司 | 雨量检测装置及方法 |
KR102454594B1 (ko) | 2022-02-25 | 2022-10-14 | 주식회사 다모아텍 | 진동을 감지하는 우적 센서 및 그 동작 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100884123B1 (ko) * | 2004-10-11 | 2009-02-17 | 피피지 인더스트리즈 오하이오 인코포레이티드 | 수분 검출기 |
JP2010249531A (ja) * | 2009-04-10 | 2010-11-04 | Fujikura Ltd | 雨滴検知装置およびワイパー動作制御装置 |
US20110138567A1 (en) * | 2009-12-10 | 2011-06-16 | David Pearson | Rain detector |
JP2011232050A (ja) * | 2010-04-23 | 2011-11-17 | Asmo Co Ltd | 水滴検出装置 |
EP2522554A1 (en) * | 2011-05-12 | 2012-11-14 | Delphi Technologies, Inc. | Windshield moisture detector |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5431715B2 (ko) | 1972-09-20 | 1979-10-09 | ||
US4783876A (en) * | 1985-09-03 | 1988-11-15 | Toyota Jidosha Kabushiki Kaisha | Concealable wiper apparatus for vehicle |
US6806722B2 (en) * | 2001-12-07 | 2004-10-19 | Samsung Electronics Co., Ltd. | Polymer-type humidity sensor |
US6802205B2 (en) | 2002-02-28 | 2004-10-12 | Ppg Industries Ohio, Inc. | Moisture detection system and method of use thereof |
US7948041B2 (en) * | 2005-05-19 | 2011-05-24 | Nanomix, Inc. | Sensor having a thin-film inhibition layer |
CN1217204C (zh) * | 2003-09-19 | 2005-08-31 | 孙滕谌 | 平面电容式汽车玻璃自动雨刷系统智能传感器 |
BE1016680A3 (fr) * | 2005-07-13 | 2007-04-03 | Glaverbel | Vitrage comportant un detecteur de pluie capacitif. |
US9371032B2 (en) * | 2006-01-10 | 2016-06-21 | Guardian Industries Corp. | Moisture sensor and/or defogger with Bayesian improvements, and related methods |
US7492270B2 (en) * | 2006-01-10 | 2009-02-17 | Guardian Industries Corp. | Rain sensor with sigma-delta modulation and/or footprinting comparison(s) |
JP4587317B2 (ja) * | 2006-01-24 | 2010-11-24 | 国立大学法人岐阜大学 | 接近センサ及び接近・接触センサ |
CN200938949Y (zh) | 2006-06-19 | 2007-08-29 | 厦门进雄企业有限公司 | 一种能改变成椅子的桌椅结合体 |
JP2008082712A (ja) * | 2006-09-25 | 2008-04-10 | Gifu Univ | 圧力センサ素子 |
GB0721682D0 (en) * | 2007-11-05 | 2007-12-19 | Pilkington Automotive D Gmbh | Wired glazing |
DE102008003219A1 (de) * | 2008-01-04 | 2009-07-09 | Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg | Glasscheibe sowie Glasscheibenanordnung |
KR100943401B1 (ko) | 2008-06-05 | 2010-02-19 | 우리산업 주식회사 | 차량용 레인센서 및 그 센싱방법 |
JP2010096609A (ja) * | 2008-10-16 | 2010-04-30 | Gifu Univ | 圧力センサ素子 |
JP5267932B2 (ja) * | 2008-11-11 | 2013-08-21 | 株式会社フジクラ | 位置検出装置 |
JP2010133775A (ja) * | 2008-12-03 | 2010-06-17 | Gifu Univ | 微小差圧測定用の差圧センサ |
JP5353612B2 (ja) * | 2009-10-01 | 2013-11-27 | 東レ株式会社 | 電極用金属化フィルム |
KR20140048501A (ko) | 2012-10-16 | 2014-04-24 | (주)에프에스씨 | 전계 변화 효과 응용 레인 센서 |
KR102262519B1 (ko) * | 2015-02-06 | 2021-06-09 | 엘지이노텍 주식회사 | 운송 수단용 센서, 그 센싱 방법 및 운송 수단 시스템 |
KR102354521B1 (ko) | 2015-03-05 | 2022-01-24 | 엘지이노텍 주식회사 | 감지 모듈 및 이를 포함하는 냉장고 |
KR102327610B1 (ko) * | 2015-03-12 | 2021-11-17 | 엘지이노텍 주식회사 | 레인 센서 및 이를 포함하는 와이퍼 구동 장치 |
-
2015
- 2015-03-12 KR KR1020150034390A patent/KR102327610B1/ko active IP Right Grant
-
2016
- 2016-03-04 WO PCT/KR2016/002197 patent/WO2016144054A1/ko active Application Filing
- 2016-03-04 US US15/556,924 patent/US10407028B2/en active Active
- 2016-03-04 CN CN201680015286.8A patent/CN107428315B/zh active Active
- 2016-03-04 EP EP16761941.0A patent/EP3269603B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100884123B1 (ko) * | 2004-10-11 | 2009-02-17 | 피피지 인더스트리즈 오하이오 인코포레이티드 | 수분 검출기 |
JP2010249531A (ja) * | 2009-04-10 | 2010-11-04 | Fujikura Ltd | 雨滴検知装置およびワイパー動作制御装置 |
US20110138567A1 (en) * | 2009-12-10 | 2011-06-16 | David Pearson | Rain detector |
JP2011232050A (ja) * | 2010-04-23 | 2011-11-17 | Asmo Co Ltd | 水滴検出装置 |
EP2522554A1 (en) * | 2011-05-12 | 2012-11-14 | Delphi Technologies, Inc. | Windshield moisture detector |
Non-Patent Citations (1)
Title |
---|
See also references of EP3269603A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3269603A4 (en) | 2018-02-21 |
US20180244244A1 (en) | 2018-08-30 |
KR102327610B1 (ko) | 2021-11-17 |
US10407028B2 (en) | 2019-09-10 |
CN107428315A (zh) | 2017-12-01 |
EP3269603B1 (en) | 2021-06-23 |
KR20160109621A (ko) | 2016-09-21 |
EP3269603A1 (en) | 2018-01-17 |
CN107428315B (zh) | 2021-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016144054A1 (ko) | 레인 센서 및 이를 포함하는 와이퍼 구동 장치 | |
WO2016163775A1 (ko) | 정전용량 지문센서 | |
WO2015041459A1 (ko) | 광학식 지문센서 | |
WO2011021877A2 (ko) | 터치입력 인식방법 및 장치 | |
EP3956744A1 (en) | Electronic device including display | |
EP2719056A2 (en) | Electronic device, wireless power receiving apparatus, and display apparatus | |
WO2020004796A1 (ko) | 발광형 표지 장치 및 이를 포함하는 저전력 예측진단 양방향 적응제어시스템 | |
WO2014081203A1 (ko) | 지문센서 모듈, 이를 구비한 휴대용 전자기기 및 그 제조방법 | |
WO2015182803A1 (ko) | 거울을 이용한 전반사형태 레인센서 | |
WO2020251242A1 (en) | Electronic device including force sensor | |
WO2016167499A1 (ko) | 촬영 장치 및 촬영 장치의 제어 방법 | |
WO2020197289A1 (ko) | 히팅 장치 및 카메라 모듈 | |
EP0104889A3 (en) | System for measuring carrier lifetime in a semiconductor wafer | |
WO2018151414A1 (ko) | 정전용량식 지문인식유닛, 지문센서의 정전용량 측정회로 및 이를 갖는 지문인식장치 | |
WO2017116102A1 (ko) | 센서 및 이를 포함하는 레인 감지 장치 | |
WO2024195942A1 (ko) | 투명전자현수막 및 이를 활용한 시각적 정보 제공 방법, 서버 및 컴퓨터 프로그램 | |
WO2018016916A1 (ko) | 레인 센서 | |
WO2018111046A1 (ko) | 물체 감지 센서 및 이를 포함하는 차량 안전 장치 | |
WO2020101273A1 (en) | Led transfer device comprising mask and micro led transferring method using the same | |
WO2019231026A1 (ko) | 디스플레이 장치 | |
WO2017142189A1 (ko) | 터치 센서 및 그 제조방법 | |
WO2017116100A1 (ko) | 인체 착용장치 및 이의 동작 방법 | |
CN101572245A (zh) | 主动元件阵列基板的制造方法 | |
WO2018120312A1 (zh) | 一种柔性衬底的检测方法、检测系统及检测装置 | |
WO2021118102A1 (ko) | 전자 장치 및 전자 장치에서 센서 데이터를 보정하는 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16761941 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15556924 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2016761941 Country of ref document: EP |