WO2016143988A1 - Method for simultaneously producing biodiesel, biodiesel additive, and alkyl formate from microalgae - Google Patents

Method for simultaneously producing biodiesel, biodiesel additive, and alkyl formate from microalgae Download PDF

Info

Publication number
WO2016143988A1
WO2016143988A1 PCT/KR2015/013657 KR2015013657W WO2016143988A1 WO 2016143988 A1 WO2016143988 A1 WO 2016143988A1 KR 2015013657 W KR2015013657 W KR 2015013657W WO 2016143988 A1 WO2016143988 A1 WO 2016143988A1
Authority
WO
WIPO (PCT)
Prior art keywords
levulinate
biodiesel
formate
microalgae
ether
Prior art date
Application number
PCT/KR2015/013657
Other languages
French (fr)
Korean (ko)
Inventor
이재우
임한진
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2016143988A1 publication Critical patent/WO2016143988A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • C12N1/125Unicellular algae isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/649Biodiesel, i.e. fatty acid alkyl esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for simultaneously preparing biodiesel and at least one compound selected from the group consisting of alkyl levulinate, alkyl formate and dialkyl ether in microalgae. .
  • the energy currently being used is mainly produced from fossil fuels, and the world has sought alternative energy for it since it has been found to have a negative impact on global climate.
  • One of its candidates, bioenergy has been spotlighted as an alternative to fossil fuels because of its recyclability and eco-friendliness (J.Y. Lee et al., Bioresource Technol., 101: S75-S77, 2010).
  • biodiesel can be prepared using methanol and fats and fats of plants and animals.
  • Biodiesel production from microalgae requires extraction of lipids from microalgae harvested from microalgae broth (L. Brennan and P. Owende, Renew. Sust.Energy Rev., 14: 557-577, 2010). ).
  • the addition of lipids and methanol results in the transesterification of triglycerides and methanol contained in lipids to form fatty acid methyl esters, which are biodiesel (Y. Chisti, Biotechnol. Adv., 3). : 294-306, 2007).
  • the lipid extraction efficiency is remarkably decreased due to the moisture remaining in the microalgae. There is also.
  • the drying process is energy intensive and has a huge impact on the cost of producing biodiesel (L. Xu et al., Bioresource Technol., 102, 5113-5122, 2011).
  • additional solvent addition heating with microwave (J. Cheng et al., Bioresource Technol., 131: 531-535, 2013), supercritical methanol (S. Lim and K.
  • the cellulose portion of the cell is hydrolyzed to generate levulinic acid and formic acid from Hydroxymethylfurfural (HMF) (Weingarten et al., Energy Environment). Science, 5: 7559-7574, 2012).
  • HMF Hydroxymethylfurfural
  • the esterification reaction of alcohol, which is used in biodiesel production, with levulinic acid and formic acid produces alkyl levulinate and alkyl formate.
  • Alkyl levulinates can be used as flavours (RH Leonard., Eng. Chem., 48: 1330-1341, 1956) and have been reported to improve the low temperature properties of fuels when mixed with biodiesel fuels (H. Joshi et al., Biomass and Bioenergy, 34: 14-20, 2010).
  • Alkyl formate can also be used to make other compounds such as formamide and dimethylformamide.
  • the levulinic acid and formic acid are formed through the glucose produced by the hydrolysis of cellulose in cells, and in the existing biodiesel production process, cellulose is not suitable for hydrolysis.
  • the present inventors have made diligent efforts to develop a method for simultaneously producing biodiesel, alkyl levulinate, alkyl formate and dialkyl ether from microalgae.
  • the present invention has been accomplished by confirming that biodiesel can be produced from the above, and that alkyl levulinate and alkyl formate and dialkyl ether can be produced.
  • An object of the present invention is to provide a method for simultaneously producing biodiesel, alkyl levulinate, alkyl formate and dialkyl ether from microalgae.
  • the present invention (a) by adding an alcohol, an organic solvent and an acid to the cultured microalgae, heated to 95 ⁇ 200 °C, alkyl levulinate, alkyl formate (alkyl simultaneously producing biodiesel with at least one compound selected from the group consisting of formate and dialkyl ethers; And (b) provides a method for the simultaneous production of biodiesel and compounds in the microalgae comprising the step of recovering the produced compound and biodiesel.
  • Figure 2 shows the biodiesel and ethyl levulinate yield change according to chloroform.
  • Figure 3 shows the biodiesel and ethyl levulinate yield change according to the amount of sulfuric acid.
  • Figure 4 shows the biodiesel and ethyl levulinate yield change depending on the amount of ethanol.
  • Figure 5 shows the biodiesel and ethyl levulinate yield change with water content changes.
  • Figure 6 shows the biodiesel and ethyl levulinate yield according to the change in the ratio of microalgae and cellulose.
  • levulinic acid and formic acid are formed through the glucose produced by the hydrolysis of cellulose, in the existing biodiesel production process, cellulose is not suitable for hydrolysis.
  • the inventors of the present invention used levulinic acid and formic acid by using levulinic acid and formic acid when the alcohol and acid catalyst were added to the microalgae during biodiesel production, while cellulose, which is a cell component of the microalgae, was hydrolyzed. It was confirmed that an excess of alkyl levulinate, alkyl formate and dialkyl ether was produced.
  • the present invention (a) by adding alcohol, organic solvent and acid to the cultured microalgae, and heated to 95 ⁇ 200 °C, alkyl levulinate, alkyl formate and dialk Simultaneously generating biodiesel with at least one compound selected from the group consisting of dialkyl ethers; And (b) recovering the resultant compound and biodiesel, in the group consisting of alkyl levulinate, alkyl formate and dialkyl ether in microalgae.
  • the alcohol may be an alcohol selected from the group consisting of alcohols having 1 to 15 carbon atoms, preferably methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, furnace Nanol or decanol may be used, more preferably methanol, ethanol, butanol.
  • biodiesel yield of the present invention and the yield of alkyl levulinate tend to increase as the number of carbon atoms of each alcohol increases, and the alkyl levulinate may be normally produced even by experimenting with other alcohol groups.
  • the water content of the microalgae used for the simultaneous production of biodiesel and the compound may be characterized in that 0 to 95%.
  • the biodiesel content increased with increasing temperature, and FAEE yield reached 97% when tested in dry condition.
  • the biodiesel yield was relatively low at 61.4% at 95 ° C.
  • ethyl levulinate yield it was hardly produced when it was 95 degrees C or less, but it produced more and more from 110 degreeC, and the amount produced as much as 20% or more of the weight of lipid from 125 degreeC.
  • the heating temperature of this invention is 95-200 degreeC, More preferably, it may be 110-150 degreeC. Almost no alkyl formate is produced at 95 ° C. or lower, and when heated to 200 ° C. or higher, the production of alkyl formate no longer increases, which is uneconomical.
  • step (a) of the present invention a source of cellulose with microalgae, in the group consisting of organisms having cellulose (Cellulose) or lignocellulose, sawdust, activated sludge, bacteria, plant cells and animal cells
  • cellulose Cellulose
  • lignocellulose lignocellulose
  • sawdust activated sludge
  • bacteria plant cells
  • animal cells The organics selected can be further added.
  • the organic solvent used in the present invention may be characterized in that the organic solvent selected from the group consisting of chloroform, toluene, xylene, cyclohexane and benzene or a mixed solvent thereof.
  • chloroform is believed to promote the hydrolysis of the cellulose of the microalgal cell wall and promote the reaction of lipids are extracted and converted into biodiesel by cell wall destruction.
  • biodiesel yield and ethyl levulinate yield were found to increase with the addition of chloroform.
  • the amount of chloroform was increased.
  • the acid used as a catalyst in the present invention may be sulfuric acid, hydrochloric acid, nitric acid, acetyl chloride or amberlyst which is a solid catalyst.
  • the biodiesel yield increases as the amount of acid used increases.
  • the microalgae used for the biodiesel and compound co-production are Chlorella, Chlamydomonas, Nanochloropsis, Chrococcus, Chatoceros, Ancanthes, Amphora, etc. may be used, but is not limited thereto.
  • 0 to 2000 parts by weight of an organic solvent, 25 to 1200 parts by weight of alcohol and 0.01 to 1000 parts by weight of an acid may be added to 100 parts by weight of the microalgae of the step (a).
  • the organic solvent may be added 0.1 to 2000 parts by weight of organic solvent, 25 to 1200 parts by weight of alcohol and 1 to 1000 parts by weight of acid, more preferably 100 to 2000 parts by weight of organic solvent, 25 to 1200 parts by weight of alcohol and 50 to 1000 parts of acid. Parts by weight may be added.
  • the alkyl levulinate is methyl levulinate, ethyl levulinate, propyl levulinate, butyl levulinate, pentyl levulinate, hexyl levulinate, heptyl levulinate, octyl levulinate , Nonyl levulinate or tequil levulinate, wherein the alkyl formate is methyl formate, ethyl formate, propyl formate, butyl formate, pentyl formate, hexyl formate, heptyl formate, octyl formate , Diethyl ether, diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, dihexyl ether, diheptyl ether, dioctyl ether, dino It may be a neyl ether or a diedecyl ether.
  • Nannochloropsis as a microalgae gaditana (AlgaSpring, The Netherlands) was used, Nannochloropsis The lipid content convertible to biodiesel in gaditana cells was 12.05% each. Ethyl Revulinate Conversion Complete Nannochloropsis The gaditana cells were made to have a moisture content of 65% by mass and then proceeded. Ethanol, chloroform and sulfuric acid were added to the wet microalgae, heated to a certain temperature, and the sulfuric acid was neutralized to separate the layers. The lower layer was analyzed to calculate the amount of converted biodiesel to 12.05% total lipids. In addition, the amount of EL generated was also calculated and shown in the same way to compare against the total lipids.
  • the ethyl reblate and the biodiesel content were determined after excluding the water content under the above conditions.
  • the biodiesel yield was relatively low as 61.4% at 95 ° C.
  • ethyl levulinate yield it was hardly produced at 95 ° C., but gradually increased from 110 ° C. to 125 ° C., resulting in an amount exceeding 20% or more of the weight of the lipid.
  • Example 3 Confirmation of biodiesel and ethyl levulinate yields according to the amount of sulfuric acid
  • Example 4 Confirmation of biodiesel and ethyl levulinate yield according to the change of ethanol amount
  • Ethyl levulinate is a compound in which levulinic acid, which is the result of hydrolysis sequencing of cells, is produced by esterification under ethanol and an acid catalyst.
  • Biodiesel fatty acid ethyl ester
  • Biodiesel is also the product of lipids produced by transesterification under ethanol and acid catalyst. Therefore, increasing the amount of ethanol will change the yield of ethyl levulinate and biodiesel, so the yield of biodiesel and ethyl levulinate was confirmed while changing the amount of ethanol.
  • Example 1 Experimental conditions except for the amount of ethanol and the amount of sulfuric acid are the same as in Example 1.
  • the sulfuric acid mass was fixed and the ethanol amount was changed.
  • the ethanol amount was changed while maintaining the sulfuric acid concentration constant compared to the ethanol amount.
  • the biodiesel yield was about 90% in the experiment with methanol, and methyl levulinate was produced as mass of 18.4% based on the lipid mass of 100% microalgae.
  • the biodiesel yield was 114% and the butyl levulinate yield was 36%.
  • the biodiesel yield and the yield of alkyl levulinate tend to increase as the number of carbon atoms of each alcohol increases, and it can be seen that alkyl levulinate can be produced normally even by experimenting with other alcohol groups.
  • Ethyl levulinate is a compound produced by esterification of levulinic acid produced by hydrolysis of cells with ethanol, and its yield is determined according to the initial water content of the microalgae.
  • Example 7 Confirmation of biodiesel and ethyl levulinate yield changes according to the use of organic solvents other than chloroform
  • Ethyl levulinate compounds are substances having a nonpolar character in their molecular structure.
  • Sulfuric acid and ethanol are polar substances that are well soluble in water.
  • an organic solvent is added, and ethyl levulinate is dissolved in the organic solvent layer.
  • the reaction is accelerated than when no organic solvent is present. Therefore, even when other organic solvents were used, hexane and benzene were used instead of chloroform to verify whether the yield of ethyl levulinate was improved.
  • the microalgae used in the experiment was N.gaditana and the experimental conditions were the same as in Example 1, and the experimental temperature was 125 ° C.
  • Example 8 Confirmation of biodiesel and ethyl levulinate production yield using catalyst other than sulfuric acid
  • Alkyl levulinates and biodiesel are compounds that can be produced by esterification and transesterification using acid catalysts.
  • sulfuric acid which is a liquid acid
  • hydrochloric acid and a solid catalyst were used to verify the effectiveness of other acid catalysts.
  • amberlyst 36 (Sigma-aldirch, USA) was selected in consideration of the operating temperature range and the strength of the catalyst.
  • hydrochloric acid 35% aqueous hydrochloric acid solution was used in the same mass as sulfuric acid, and the other conditions were performed in the same manner as in Example 1 and heated at 125 ° C for 2 hours.
  • the biodiesel yield was 84.1%, and the yield of ethyl levulinate was 18.9%. Both yields were not significantly different from those of sulfuric acid.
  • the biodiesel yield was 50.0% and the ethyl levulinate yield was 5.4%.
  • the yield of biodiesel and ethyl levulinate tends to be lower when using solid acids than when using liquid acids, but considering the convenience of separating catalysts, the yield of biodiesel and This is a meaningful result in that diesel and ethyl levulinate can be simultaneously produced at a certain level.
  • Example 9 N. gaditana Biodiesel and ethyl levulinate production when using other species of microalgae
  • Chlorella The lipid content of vulgaris was 7.0%, the biodiesel yield was 104%, and the yield of ethyl levulinate was 59% of 100% lipid.
  • the EL yield is higher than that of N. gaditana because C.vulgaris has a high yield of ethyl levulinate because C.vulgaris has a low lipid content but a high amount of cellulose that can be hydrolyzed in cells. It is expected.
  • biodiesel and ethyl levulinate can be simultaneously produced using other microalgal species as well as N. gaditana species.
  • Example 10 Confirmation of biodiesel and ethyl levulinate production yield when microalgae and cellulose were used simultaneously
  • the water content of the microalgae and cellulose mixture was maintained at 65% and the amounts of chloroform, ethanol and sulfuric acid were used in 2 ml, 1 ml and 0.3 ml, respectively, as in Example 1, and were heated at 125 ° C. for 2 hours.
  • Example 1 to 9 only the microalgae is produced in the path of producing ethyl levulinate, and thus the yield was obtained in comparison with the lipid mass of the microalgae.
  • EL may be produced even in the added cellulose.
  • the mass of the EL was calculated and each experiment was compared.
  • the ratio of cellulose to microalgae increases, the biodiesel yield increases. The biodiesel yield increases because the amount of solution is fixed but the amount of microalgae decreases.
  • Treatment of microalgae under an acid catalyst causes the cellulose portion of the cell to hydrolyze, producing levulinic acid and formic acid from Hydroxymethylfurfural (HMF).
  • HMF Hydroxymethylfurfural
  • the resulting formic acid can be converted to alkyl formate through esterification with alcohol.
  • the alcohol since the alcohol is placed in a high temperature environment under an acid catalyst for the transesterification reaction, the alcohol is placed in an environment where the alcohol can be converted into a dialkyl ether through an alcohol dehydration reaction.
  • a high value-added compound of alkyl levulinate, alkyl formate, and dialkel which is discarded in biodiesel production using microalgae, is a high value-added compound. It is possible to produce dialkyl ethers.

Abstract

The present invention relates to a method for simultaneously producing, from microalgae, a biodiesel, and at least one compound selected from the group consisting of an alkyl levulinate, an alkyl formate, and a dialkyl ether. According to the present invention, the alkyl levulinate, the alkyl formate, and the dialkyl ether, which are high value added compounds, can be produced using the cellulose portion of the microalgae which was wasted during the production of biodiesel using microalgae in the past.

Description

미세조류로부터 바이오디젤, 바이오디젤 첨가제 및 알킬포메이트의 동시 제조방법Simultaneous preparation of biodiesel, biodiesel additives and alkylformates from microalgae
본 발명은 미세조류에서 알킬 레불리네이트(alkyl levulinate), 알킬 포메이트(alkyl formate) 및 다이알킬 에테르(dialkyl ether)로 구성된 군에서 선택되는 하나 이상의 화합물과 바이오디젤을 동시에 제조하는 방법에 관한 것이다.The present invention relates to a method for simultaneously preparing biodiesel and at least one compound selected from the group consisting of alkyl levulinate, alkyl formate and dialkyl ether in microalgae. .
현재 쓰이고 있는 에너지는 주로 화석 연료로부터 생산되는 에너지이며 최근 화석연료가 지구기후에 부정적인 영향을 줄 수 있다는 사실이 밝혀지면서 세계적으로 그에 대한 대체 에너지를 갈구하고 있다. 그 후보 중 하나인 바이오에너지는 재 순환성, 친환경성으로 인해 화석 연료를 대체할 에너지로 각광받고 있다(J.Y. Lee et al., Bioresource Technol., 101:S75-S77, 2010).The energy currently being used is mainly produced from fossil fuels, and the world has sought alternative energy for it since it has been found to have a negative impact on global climate. One of its candidates, bioenergy, has been spotlighted as an alternative to fossil fuels because of its recyclability and eco-friendliness (J.Y. Lee et al., Bioresource Technol., 101: S75-S77, 2010).
이들 바이오에너지 중 바이오디젤은 메탄올과 동식물의 지방, 미세조류를 이용하여 제조될 수 있다. 미세조류로부터 바이오디젤을 생산하기 위해서는 미세조류배양액에서 수확한 미세조류에서 지질을 추출하는 작업이 필요하다(L. Brennan and P. Owende, Renew. Sust. Energy Rev., 14:557-577, 2010). 지질을 추출한 뒤에는 지질과 메탄올을 첨가하면 지질에 포함된 트리글리세리드와 메탄올이 촉매 하에 트랜스 에스터화 반응하여 지방산 메틸에스터가 생성되며, 이 물질이 바로 바이오디젤이다(Y. Chisti, Biotechnol. Adv., 3:294-306, 2007). 바이오디젤 생산공정 중 미세조류를 건조시키지 않은 채로 추출공정을 진행할 경우 미세조류에 남아있는 수분으로 인하여, 지질추출 효율이 현저하게 떨어지며, 이를 방지하기 위하여, 지질추출 과정을 전에 건조공정을 수행하는 경우도 있다. 하지만 건조공정은 에너지가 많이 소모되는 공정으로 바이오디젤 생산단가에 막대한 영향을 끼치는 실정이다(L. Xu et al., Bioresource Technol., 102, 5113-5122, 2011). 따라서 그에 대한 대안으로 건조공정을 거치지 않고 추가적인 용매투입, 마이크로웨이브를 이용한 가열(J. Cheng et al., Bioresource Technol., 131:531-535, 2013), 초임계 메탄올(S. Lim and K. Lee, Bioresource Tehchnol., 142:121-130, 2013) 또는 물(Y.A. Tsigie et al., Chem. Eng. Journal, 213:104-108, 2012) 그 외에 고온 고압(Z. Shuping et al., Energy, 35:5406-5411, 2010)을 사용하여 지질추출 및 바이오디젤 전환 공정을 수행하는 연구가 활발히 이루어지고 있다.Among these bioenergy, biodiesel can be prepared using methanol and fats and fats of plants and animals. Biodiesel production from microalgae requires extraction of lipids from microalgae harvested from microalgae broth (L. Brennan and P. Owende, Renew. Sust.Energy Rev., 14: 557-577, 2010). ). After extraction of lipids, the addition of lipids and methanol results in the transesterification of triglycerides and methanol contained in lipids to form fatty acid methyl esters, which are biodiesel (Y. Chisti, Biotechnol. Adv., 3). : 294-306, 2007). If the extraction process is carried out without drying the microalgae in the biodiesel production process, the lipid extraction efficiency is remarkably decreased due to the moisture remaining in the microalgae. There is also. However, the drying process is energy intensive and has a huge impact on the cost of producing biodiesel (L. Xu et al., Bioresource Technol., 102, 5113-5122, 2011). As an alternative, additional solvent addition, heating with microwave (J. Cheng et al., Bioresource Technol., 131: 531-535, 2013), supercritical methanol (S. Lim and K. Lee, Bioresource Tehchnol., 142: 121-130, 2013) or water (YA Tsigie et al., Chem. Eng. Journal, 213: 104-108, 2012) and other high temperature and high pressure (Z. Shuping et al., Energy , 35: 5406-5411, 2010) have been actively conducted to carry out lipid extraction and biodiesel conversion processes.
한편, 미세조류 세포자체를 산 촉매하에서 처리하면 세포의 셀룰로오즈 부분이 가수분해가 되어 Hydroxymethylfurfural(HMF)으로부터 레불린산(levulinic acid)과 포름산(formic acid)이 생성된다(Weingarten et al., Energy Environment Science, 5:7559-7574, 2012). 바이오디젤 생산시 사용되는 반응물인 알코올이 레불린산 및 포름산과 에스터화 반응하면 알킬 레불리네이트 (alkyl levulinate) 및 알킬 포메이트 (alkyl formate) 생성된다. 알킬 레불리네이트는 향미료로 쓰일 수 있고(R.H. Leonard., Eng. Chem., 48:1330-1341, 1956), 바이오디젤 연료와 혼합하면 연료의 저온특성이 향상된다고 보고된 바 있다 (H. Joshi et al., Biomass and Bioenergy, 34:14-20, 2010). 또한 알킬 포메이트는 포름아마이드(formamide)와 다이메틸포름아마이드(dimethylformamide) 등 다른 화합물을 만드는데 이용될 수 있다.On the other hand, when the microalgae itself is treated under an acid catalyst, the cellulose portion of the cell is hydrolyzed to generate levulinic acid and formic acid from Hydroxymethylfurfural (HMF) (Weingarten et al., Energy Environment). Science, 5: 7559-7574, 2012). The esterification reaction of alcohol, which is used in biodiesel production, with levulinic acid and formic acid produces alkyl levulinate and alkyl formate. Alkyl levulinates can be used as flavours (RH Leonard., Eng. Chem., 48: 1330-1341, 1956) and have been reported to improve the low temperature properties of fuels when mixed with biodiesel fuels (H. Joshi et al., Biomass and Bioenergy, 34: 14-20, 2010). Alkyl formate can also be used to make other compounds such as formamide and dimethylformamide.
또한 알코올은 산 촉매하에서 높은 온도에 가해지면 탈수반응이 일어나 연료로서 이용될 수 있는 다이알킬 에터(dialkyl ether)를 생성한다고 알려있다. (Xu et al., Applied Catalysis A, 149:289-301, 1997; Semelsberger et al., Journal of Power Sources, 156:497-511, 2006).It is also known that alcohols, when applied at high temperatures under acid catalysts, dehydrate to produce dialkyl ethers that can be used as fuel. (Xu et al., Applied Catalysis A, 149: 289-301, 1997; Semelsberger et al., Journal of Power Sources, 156: 497-511, 2006).
레불린산과 포름산은 세포의 셀룰로오즈가 가수분해 되면서 생기는 글루코즈를 통해 형성되며 기존의 바이오디젤 생산공정에서는 셀룰로오즈가 가수분해 되기에 적합하지 않은 조건이라 거의 생성되지 않았다. The levulinic acid and formic acid are formed through the glucose produced by the hydrolysis of cellulose in cells, and in the existing biodiesel production process, cellulose is not suitable for hydrolysis.
이에, 본 발명자들은 미세조류로부터 바이오디젤과 알킬 레불리네이트와 알킬 포메이트 및 다이알킬 에테르를 동시에 생산하는 방법을 개발하기위하여, 예의 노력한 결과, 미세조류에 알코올과 황산을 처리하는 경우, 미세조류로부터 바이오디젤을 생산하는 동시에 알킬 레불리네이트와 알킬 포메이트 및 다이알킬 에테르를 생산할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made diligent efforts to develop a method for simultaneously producing biodiesel, alkyl levulinate, alkyl formate and dialkyl ether from microalgae. The present invention has been accomplished by confirming that biodiesel can be produced from the above, and that alkyl levulinate and alkyl formate and dialkyl ether can be produced.
발명의 요약Summary of the Invention
본 발명의 목적은 미세조류로부터 바이오디젤과 알킬 레불리네이트와 알킬 포메이트 및 다이알킬 에테르를 동시에 생산하는 방법을 제공하는데 있다.An object of the present invention is to provide a method for simultaneously producing biodiesel, alkyl levulinate, alkyl formate and dialkyl ether from microalgae.
상기 목적을 달성하기 위하여, 본 발명은 (a) 배양된 미세조류에 알코올, 유기용매 및 산을 첨가하고, 95~200℃로 가열하여, 알킬 레불리네이트(alkyl levulinate), 알킬 포메이트(alkyl formate) 및 다이알켈 에테르(dialkyl ether)로 구성된 군에서 선택되는 하나 이상의 화합물과 바이오디젤을 동시에 생성시키는 단계; 및 (b)상기 생성된 화합물과 바이오디젤을 회수하는 단계를 포함하는 미세조류에서 바이오디젤 및 화합물의 동시 제조방법을 제공한다.In order to achieve the above object, the present invention (a) by adding an alcohol, an organic solvent and an acid to the cultured microalgae, heated to 95 ~ 200 ℃, alkyl levulinate, alkyl formate (alkyl simultaneously producing biodiesel with at least one compound selected from the group consisting of formate and dialkyl ethers; And (b) provides a method for the simultaneous production of biodiesel and compounds in the microalgae comprising the step of recovering the produced compound and biodiesel.
도 1 온도변화에 따른 바이오디젤 및 에틸 레불리네이트 수율 변화를 나타낸 것이다. 1 shows biodiesel and ethyl levulinate yield changes with temperature change.
도 2는 클로로폼에 따른 바이오디젤 및 에틸 레불리네이트 수율 변화를 나타낸 것이다.Figure 2 shows the biodiesel and ethyl levulinate yield change according to chloroform.
도 3은 황산 량에 따른 바이오디젤 및 에틸 레불리네이트 수율 변화를 나타낸 것이다. Figure 3 shows the biodiesel and ethyl levulinate yield change according to the amount of sulfuric acid.
도 4는 에탄올 량에 따른 바이오디젤 및 에틸 레불리네이트 수율 변화를 나타낸 것이다.Figure 4 shows the biodiesel and ethyl levulinate yield change depending on the amount of ethanol.
도 5는 수분함량 변화에 따른 바이오디젤 및 에틸 레불리네이트 수율 변화를 나타낸 것이다.Figure 5 shows the biodiesel and ethyl levulinate yield change with water content changes.
도 6은 미세조류와 셀룰로오즈의 비율 변화에 따른 바이오디젤 및 에틸 레불리네이트 수율을 나타낸 것이다.Figure 6 shows the biodiesel and ethyl levulinate yield according to the change in the ratio of microalgae and cellulose.
발명의 상세한 설명 및 구체적인 Detailed description and specifics of the invention 구현예Embodiment
레불린산과 포름산은 셀룰로오즈가 가수분해 되면서 생성되는 글루코즈를 통해 형성되나, 기존의 바이오디젤 생산공정에서는 셀룰로오즈가 가수분해 되기에 적합하지 않은 조건이라 거의 생성되지 않았다.Although levulinic acid and formic acid are formed through the glucose produced by the hydrolysis of cellulose, in the existing biodiesel production process, cellulose is not suitable for hydrolysis.
본 발명자들은 바이오디젤 생산시에 미세조류에 알코올과 산촉매를 첨가하는 경우, 미세조류의 세포 구성성분인 셀룰로오즈가 가수분해되면서, 레불린산과 포름산이 생성되는 것을 이용하여, 상기 레불린산과 포름산을 이용한 알킬 레불리네이트(alkyl levulinate), 알킬 포메이트(alkyl formate) 및 다이알켈 에테르(dialkyl ether)가 과량으로 생산되는 것을 확인하였다.The inventors of the present invention used levulinic acid and formic acid by using levulinic acid and formic acid when the alcohol and acid catalyst were added to the microalgae during biodiesel production, while cellulose, which is a cell component of the microalgae, was hydrolyzed. It was confirmed that an excess of alkyl levulinate, alkyl formate and dialkyl ether was produced.
따라서, 본 발명은 (a) 배양된 미세조류에 알코올, 유기용매 및 산을 첨가하고, 95~200℃로 가열하여, 알킬 레불리네이트(alkyl levulinate), 알킬 포메이트(alkyl formate) 및 다이알켈 에테르(dialkyl ether)로 구성된 군에서 선택되는 하나 이상의 화합물과 바이오디젤을 동시에 생성시키는 단계; 및 (b)상기 생성된 화합물과 바이오디젤을 회수하는 단계를 포함하는, 미세조류에서 알킬 레불리네이트(alkyl levulinate), 알킬 포메이트(alkyl formate) 및 다이알켈 에테르(dialkyl ether)로 구성된 군에서 선택되는 하나 이상의 화합물과 바이오디젤의 동시 제조방법에 관한 것이다.Therefore, the present invention (a) by adding alcohol, organic solvent and acid to the cultured microalgae, and heated to 95 ~ 200 ℃, alkyl levulinate, alkyl formate and dialk Simultaneously generating biodiesel with at least one compound selected from the group consisting of dialkyl ethers; And (b) recovering the resultant compound and biodiesel, in the group consisting of alkyl levulinate, alkyl formate and dialkyl ether in microalgae. A method for the simultaneous preparation of biodiesel with one or more compounds selected.
본 발명에 있어서, 상기 알코올은 탄소수 1~15인 알코올로 구성된 군에서 선택되는 알코올을 사용할 수 있으며, 바람직하게는 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올, 헥산올, 헵탄올, 옥탄올, 노난올 또는 데칸올을 사용할 수 있으며, 더욱 바람직하게는 메탄올, 에탄올, 부탄올을 사용할 수 있다. In the present invention, the alcohol may be an alcohol selected from the group consisting of alcohols having 1 to 15 carbon atoms, preferably methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, furnace Nanol or decanol may be used, more preferably methanol, ethanol, butanol.
본 발명의 바이오디젤 수율과 알킬 레불리네이트의 수율은 각 알코올이 가진 탄소수가 증가할수록 상승하는 경향을 보이며 다른 알코올 군으로 실험하여도 알킬 레불리네이트가 정상적으로 생성될 수 있다. The biodiesel yield of the present invention and the yield of alkyl levulinate tend to increase as the number of carbon atoms of each alcohol increases, and the alkyl levulinate may be normally produced even by experimenting with other alcohol groups.
본 발명에 있어서, 바이오디젤과 화합물의 동시생산에 사용되는 미세조류의 수분 함량은 0~95%인 것을 특징으로 할 수 있다. In the present invention, the water content of the microalgae used for the simultaneous production of biodiesel and the compound may be characterized in that 0 to 95%.
온도가 증가함에 따라 바이오디젤의 양이 증가하였고, 건조상태에서 실험했을 경우 FAEE 수율이 97%까지 도달하였다. The biodiesel content increased with increasing temperature, and FAEE yield reached 97% when tested in dry condition.
본 발명의 일양태에서, 습식 미세조류를 사용하였을 경우는 95℃ 일 때 바이오디젤 수율이 61.4%로 상대적으로 낮았다. 에틸 레불리네이트 수율의 경우, 95℃ 이하 일 때는 거의 생성되지 않다가 110℃부터 점점 많이 생성되어, 125℃부터는 지질 중량의 20%이상을 넘는 정도로 많은 양이 생성되었다. In one embodiment of the present invention, when the wet microalgae was used, the biodiesel yield was relatively low at 61.4% at 95 ° C. In the case of ethyl levulinate yield, it was hardly produced when it was 95 degrees C or less, but it produced more and more from 110 degreeC, and the amount produced as much as 20% or more of the weight of lipid from 125 degreeC.
따라서, 본 발명의 가열 온도는 95~200℃인 것이 바람직하며, 더욱 바람직하게는 110~150℃일 수 있다. 95℃ 이하에서는 알킬포메이트가 거의 생성되지 않으며, 200℃ 이상으로 가열할 경우에는 알킬포메이트의 생성이 더 이상 증가하지 않아 비경제적이다.Therefore, it is preferable that the heating temperature of this invention is 95-200 degreeC, More preferably, it may be 110-150 degreeC. Almost no alkyl formate is produced at 95 ° C. or lower, and when heated to 200 ° C. or higher, the production of alkyl formate no longer increases, which is uneconomical.
본 발명의 (a) 단계에 있어서, 미세조류와 함께 셀룰로오즈의 공급원으서, 셀룰로오즈 (Cellulose) 또는 리그노 셀룰로오즈 (lignocellulose)를 가지는 생물, 톱밥, 활성오니, 박테리아, 식물세포 및 동물세포로 구성된 군에서 선택되는 유기물을 추가로 첨가할 수 있다. In step (a) of the present invention, a source of cellulose with microalgae, in the group consisting of organisms having cellulose (Cellulose) or lignocellulose, sawdust, activated sludge, bacteria, plant cells and animal cells The organics selected can be further added.
본 발명에서 사용되는 유기용매는 클로로포름, 톨루엔, 자일렌, 사이클로헥세인 및 벤젠으로 이루어진 군에서 선택되는 유기용매 또는 이들의 혼합용매인 것을 특징으로 할 수 있다. The organic solvent used in the present invention may be characterized in that the organic solvent selected from the group consisting of chloroform, toluene, xylene, cyclohexane and benzene or a mixed solvent thereof.
본 발명에서, 클로로포름은 미세조류 세포벽의 셀룰로오스의 가수분해를 촉진시키고 세포벽 파괴로 지질들이 추출되어 바이오디젤로 전환되는 반응을 촉진하는 것으로 판단된다. In the present invention, chloroform is believed to promote the hydrolysis of the cellulose of the microalgal cell wall and promote the reaction of lipids are extracted and converted into biodiesel by cell wall destruction.
본 발명의 일양태에서는 클로로포름 첨가에 따라 바이오디젤 수율과 에틸 레불리네이트 수율이 높아지는 것으로 확인되었다. 에틸 레불리네이트와 바이오디젤의 경우 모두 클로로포름의 양이 늘어날수록 많이 생성되는 경향이 나타났다. In one embodiment of the present invention, biodiesel yield and ethyl levulinate yield were found to increase with the addition of chloroform. In the case of ethyl levulinate and biodiesel, the amount of chloroform was increased.
본 발명에서 촉매로 사용되는 산은 황산, 염산, 질산, 아세틸클로라이드 또는 고체촉매인 엠버리스트(amberlyst)를 사용할 수 있다. The acid used as a catalyst in the present invention may be sulfuric acid, hydrochloric acid, nitric acid, acetyl chloride or amberlyst which is a solid catalyst.
본 발명에서 상기 산은 트랜스에스터화 반응의 촉매로 쓰이므로 사용되는 산량이 증가할수록 바이오디젤 수율은 증가한다. In the present invention, since the acid is used as a catalyst for the transesterification reaction, the biodiesel yield increases as the amount of acid used increases.
본 발명에 있어서, 바이오디젤 및 화합물 동시생산에 사용되는 미세조류는 클로렐라(Chlorella), 클라미도모나스(Chlamydomonas), 나노클로랍시스(Nannochloropsis), 클루코크스(Chroococcus), 채토세로스(Chaetoceros), 안칸테스(Achnanthes), 엠포라(Amphora) 등을 사용할 수 있으나, 이에 국한되는 것은 아니다. In the present invention, the microalgae used for the biodiesel and compound co-production are Chlorella, Chlamydomonas, Nanochloropsis, Chrococcus, Chatoceros, Ancanthes, Amphora, etc. may be used, but is not limited thereto.
본 발명의 일양태에서는 미세조류로서 N.gaditana와 Chlorella vulgaris를 사용하였을 때, 모두 높은 바이오디젤과 에틸 레불리네이트 생산 수율을 나타내는 것을 확인하였다. In one embodiment of the present invention, when using N.gaditana and Chlorella vulgaris as a microalgae, it was confirmed that both show high biodiesel and ethyl levulinate production yield.
본 발명에 있어서, 상기 (a)단계의 미세조류 100 중량부에 대하여 유기용매 0 ~ 2000 중량부, 알코올 25~ 1200 중량부 및 산 0.01 ~ 1000 중량부를 첨가하는 것을 특징으로 할 수 있으며, 바람직하게는 유기용매 0.1~2000 중량부, 알코올 25~ 1200 중량부 및 산 1~ 1000 중량부를 첨가할 수 있으며, 더욱 바람직하게는 유기용매 100~2000 중량부, 알코올 25~ 1200 중량부 및 산 50~ 1000 중량부를 첨가할 수 있다. In the present invention, 0 to 2000 parts by weight of an organic solvent, 25 to 1200 parts by weight of alcohol and 0.01 to 1000 parts by weight of an acid may be added to 100 parts by weight of the microalgae of the step (a). The organic solvent may be added 0.1 to 2000 parts by weight of organic solvent, 25 to 1200 parts by weight of alcohol and 1 to 1000 parts by weight of acid, more preferably 100 to 2000 parts by weight of organic solvent, 25 to 1200 parts by weight of alcohol and 50 to 1000 parts of acid. Parts by weight may be added.
본 발명에 있어서, 상기 알킬 레불리네이트는 메틸 레불리네이트, 에틸 레불리네이트, 프로필 레불리네이트, 부틸 레불리네이트, 펜틸 레불리네이트, 헥실 레불리네이트, 헵틸 레불리네이트, 옥틸 레불리네이트, 노닐 레불리네이트 또는 데킬 레불리네이트일 수 있고, 상기 알킬 포메이트는 메틸 포메이트, 에틸 포메이트, 프로필 포메이트, 부딜 포메이트, 펜틸 포메이트, 헥실 포메이트, 헵틸 포메이트, 옥틸 포메이트, 노닐 포메이트 또는 데킬 포메이트일 수 있으며, 상기 다이알킬 에테르는 다이메틸에테르, 다이에틸에테르, 다이프로필에테르, 다이부틸에테르, 다이펜틸에테르, 다이헥실에테르, 다이헵틸에테르, 다이옥틸에테르, 다이노닐에테르 또는 다이데킬에테르일 수 있다. In the present invention, the alkyl levulinate is methyl levulinate, ethyl levulinate, propyl levulinate, butyl levulinate, pentyl levulinate, hexyl levulinate, heptyl levulinate, octyl levulinate , Nonyl levulinate or tequil levulinate, wherein the alkyl formate is methyl formate, ethyl formate, propyl formate, butyl formate, pentyl formate, hexyl formate, heptyl formate, octyl formate , Diethyl ether, diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, dihexyl ether, diheptyl ether, dioctyl ether, dino It may be a neyl ether or a diedecyl ether.
이하, 첨부된 도면을 참조하여 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예만 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited only to these examples according to the gist of the present invention.
본 발명의 이후 실시예에서는 미세조류로써 Nannochloropsis gaditana (AlgaSpring, 네덜란드)를 사용하였으며, Nannochloropsis gaditana 세포에서 바이오디젤로 전환가능한 지질 함량은 각각 12.05%였다. 에틸 레불리네이트 전환은 전체 Nannochloropsis gaditana 세포를 질량대비 65% 수분함량을 가지도록 만든 후에 진행하였다. 젖은 미세조류에 에탄올과 클로로포름과 황산을 넣고 일정 온도로 가열한 후 황산을 중화 시키면 층 분리가 일어나는데 그 중 아래층을 분석하여 총 12.05% 지질 대비 전환된 바이오디젤의 양을 계산하여 수율로 나타내었다. 또한 생성 된 EL의 양 또한 전체 지질에 대해 비교하기 위해 같은 방법으로 계산하여 나타내었다.In a later embodiment of the invention Nannochloropsis as a microalgae gaditana (AlgaSpring, The Netherlands) was used, Nannochloropsis The lipid content convertible to biodiesel in gaditana cells was 12.05% each. Ethyl Revulinate Conversion Complete Nannochloropsis The gaditana cells were made to have a moisture content of 65% by mass and then proceeded. Ethanol, chloroform and sulfuric acid were added to the wet microalgae, heated to a certain temperature, and the sulfuric acid was neutralized to separate the layers. The lower layer was analyzed to calculate the amount of converted biodiesel to 12.05% total lipids. In addition, the amount of EL generated was also calculated and shown in the same way to compare against the total lipids.
Figure PCTKR2015013657-appb-I000001
Figure PCTKR2015013657-appb-I000001
실시예 1: 온도 변화에 따른 바이오디젤 및 에틸 레불리네이트 수율확인Example 1: Confirmation of biodiesel and ethyl levulinate yield with temperature change
바이오디젤과 에틸 레불리네이트를 생성에 있어서, 온도 변화에 따른 바이오디젤 및 에틸 레불리네이트의 수율변화를 확인하기 위하여, 수분 65%를 함유하는 젖은 미세조류 (N.gaditana) 0.857 g에 에탄올 1 ml, 클로로포름 2 ml과 황산 0.3 ml 를 첨가하고, 95℃, 110℃, 125℃ 및 140℃ 온도 조건에서 가각 2시간 동안 가열한 후, 에텔 레불리네이트와 바이오디젤의 생성량을 확인하였다. In the production of biodiesel and ethyl levulinate, in order to confirm the change in yield of biodiesel and ethyl levulinate with temperature change, ethanol 1 in 0.857 g of wet microalgae (N.gaditana) containing 65% water was used. ml, 2 ml of chloroform and 0.3 ml of sulfuric acid were added, and heated at 95 ° C., 110 ° C., 125 ° C. and 140 ° C. for 2 hours, and then the amount of ether levulinate and biodiesel was confirmed.
또한, 상기 조건에서 수분함량을 제외한 후 에틸 레블리네이트와 바이오디젤 량을 구하였다. In addition, the ethyl reblate and the biodiesel content were determined after excluding the water content under the above conditions.
그 결과, 도 1에 나타난 바와 같이, 온도가 증가함에 따라 바이오디젤의 양이 증가하였고, 건조상태에서 실험했을 경우 FAEE 수율이 97%까지 도달하였다. As a result, as shown in Figure 1, the amount of biodiesel increased with increasing temperature, FAEE yield reached 97% when tested in a dry state.
습식 미세조류를 사용하였을 경우는 95℃ 일 때 바이오디젤 수율이 61.4%로 상대적으로 낮았다. 에틸 레불리네이트 수율의 경우, 95℃ 일 때는 거의 생성되지 않다가 110℃부터 점점 많이 생성되어, 125℃부터는 지질 중량의 20%이상을 넘는 정도로 많은 양이 생성되었다.In the case of using wet microalgae, the biodiesel yield was relatively low as 61.4% at 95 ° C. In the case of ethyl levulinate yield, it was hardly produced at 95 ° C., but gradually increased from 110 ° C. to 125 ° C., resulting in an amount exceeding 20% or more of the weight of the lipid.
실시예 2: 클로로포름 유무에 따른 바이오디젤 및 에틸 레불리네이트 수율확인Example 2: Confirmation of biodiesel and ethyl levulinate yield with or without chloroform
바이오디젤과 에틸 레불리네이트를 생성에 있어서, 클로로포름의 역할을 확인하기 위하여, 실시예 1의 조건에서 클로로포름의 양을 제외한 다른 변수는 동일한 조건으로 바이오디젤과 에틸 레불리네이트를 생성시켰으며, 온도는 125℃로 실험하였다. In order to confirm the role of chloroform in the production of biodiesel and ethyl levulinate, other variables except the amount of chloroform in the conditions of Example 1 produced biodiesel and ethyl levulinate under the same conditions, and the temperature Was tested at 125 ° C.
그 결과, 도 2에 나타난 바와 같이, 클로로포름을 첨가하지 않았을 때 바이오디젤 수율과 에틸 레불리네이트 수율이 각각 66%와 11.3%로 낮게 나타났으며, 0.5 ml의 클로로포름을 추가하는 경우, 바이오디젤 수율과 에틸 레불리네이트 수율은 각각 86.3%와 17.6%로 확인되어, 클로로포름 첨가에 따라 바이오디젤 수율과 에틸 레불리네이트 수율이 높아지는 것으로 확인되었다. 에틸 레불리네이트와 바이오디젤의 경우 모두 클로로포름의 양이 늘어날수록 많이 생성되는 경향을 나타내며 클로로포름이 세포벽의 셀룰로오스의 가수분해를 촉진시키고 세포벽 파괴로 지질들이 추출되어 바이오디젤로 전환되는 반응을 촉진하는 것으로 판단된다.As a result, as shown in Figure 2, when chloroform was not added, the biodiesel yield and ethyl levulinate yield were low as 66% and 11.3%, respectively, and when 0.5 ml of chloroform was added, the biodiesel yield was The yield of and ethyl levulinate was found to be 86.3% and 17.6%, respectively, and the biodiesel yield and ethyl levulinate yield were confirmed to increase with the addition of chloroform. Both ethyl levulinate and biodiesel tend to be produced as the amount of chloroform increases, and chloroform promotes the hydrolysis of cellulose in the cell wall and lipids are extracted and converted into biodiesel by cell wall destruction. Judging.
실시예 3: 황산량에 따른 바이오디젤 및 에틸 레불리네이트 수율확인Example 3: Confirmation of biodiesel and ethyl levulinate yields according to the amount of sulfuric acid
바이오디젤과 에틸 레불리네이트를 생성에 있어서, 황산의 역할을 확인하기 위하여, 첨가하는 황산 량을 제외한 다른 변수는 실시예 1과 동일하게 하여, 125℃에서 바이오디젤과 에틸 레불리네이트를 생성시켰다. 황산은 트랜스에스터화 반응의 촉매로 쓰이므로 황산량이 증가할수록 바이오디젤 수율은 증가한다고 예상할 수 있다. In order to confirm the role of sulfuric acid in producing biodiesel and ethyl levulinate, other variables except the amount of sulfuric acid added were the same as in Example 1 to produce biodiesel and ethyl levulinate at 125 ° C. . Since sulfuric acid is used as a catalyst for transesterification, biodiesel yield can be expected to increase as the amount of sulfuric acid increases.
그 결과, 도 3에 나타난 바와 같이, 첨가되는 황산의 양이 늘어날수록 FAEE수율과 EL수율이 급격하게 늘어나는 것을 알수있다. 황산이 0.03ml/ml 에탄올로 적은 양이 쓰였을 때는 EL수율이 1.63%로 매우 낮게 나왔는데 이는 산의 세기가 약하면 셀룰로오스의 가수분해가 진행이 안 된다는 것으로 볼 수 있다. 이때의 FAEE수율 역시 32.1%로 낮은 편이며 세포벽이 제대로 파괴되지 않아 지질 추출이 제대로 이루어지지 않았다고 볼 수 있다. As a result, as shown in Fig. 3, it can be seen that the FAEE yield and the EL yield increase rapidly as the amount of sulfuric acid added increases. When a small amount of sulfuric acid was used as 0.03ml / ml ethanol, the EL yield was very low as 1.63%, which means that the hydrolysis of cellulose could not proceed if the acid strength was weak. The FAEE yield was also low at 32.1%, and the lipid walls were not properly extracted because the cell walls were not destroyed.
실시예 4: 에탄올양의 변화에 따른 바이오디젤 및 에틸 레불리네이트 수율확인Example 4: Confirmation of biodiesel and ethyl levulinate yield according to the change of ethanol amount
에틸 레불리네이트는 세포의 가수분해 연속반응의 결과물인 레불린산이 에탄올과 산촉매 하에서 에스터화 반응에 의해 생성되는 화합물이다. 또한 바이오디젤 (지방산 에틸 에스터) 역시 세포의 지질이 에탄올과 산촉매하에 트랜스 에스터화 반응에 의해 생성되는 결과물이다. 따라서 에탄올의 양을 증가시키면 에틸 레불리네이트와 바이오디젤의 수율이 변할 것이므로 이를 확인하기 위하여 에탄올양을 변화시키면서 바이오디젤과 에틸 레불리네이트의 수율을 확인하였다. Ethyl levulinate is a compound in which levulinic acid, which is the result of hydrolysis sequencing of cells, is produced by esterification under ethanol and an acid catalyst. Biodiesel (fatty acid ethyl ester) is also the product of lipids produced by transesterification under ethanol and acid catalyst. Therefore, increasing the amount of ethanol will change the yield of ethyl levulinate and biodiesel, so the yield of biodiesel and ethyl levulinate was confirmed while changing the amount of ethanol.
에탄올량과 황산량을 제외한 실험조건은 실시예 1과 동일하다. Fixed catalyst amount 조건에서는 황산질량을 고정시키고 에탄올량을 변화시켰으며 fixed catalyst concentration 조건에서는 에탄올량에 대비하여 황산 농도를 일정하게 유지시키면서 에탄올량을 변화시켰다. Experimental conditions except for the amount of ethanol and the amount of sulfuric acid are the same as in Example 1. In the fixed catalyst amount condition, the sulfuric acid mass was fixed and the ethanol amount was changed. In the fixed catalyst concentration condition, the ethanol amount was changed while maintaining the sulfuric acid concentration constant compared to the ethanol amount.
그 결과, 도 4에 나타난 바와 같이, 황산 농도가 고정되지 않은 조건에서는 에탄올의 양이 증가함에 따라 산의 세기가 약해지기 때문에 에틸 레불리네이트의 수율이 감소하였고 황산농도를 유지시키는 조건에서는 에탄올의 양이 증가함에 에틸 레불리네이트의 수율이 증가하였다. 바이오디젤의 경우는 황산의 농도에 관계없이 에탄올량이 증가함에 따라 수율이 상승하는 경향을 보여주었다.As a result, as shown in Figure 4, in the condition that the sulfuric acid concentration is not fixed, as the amount of ethanol increases the strength of the acid decreases, the yield of ethyl levulinate decreased and the condition of maintaining the sulfuric acid concentration As the amount increased, the yield of ethyl levulinate increased. In the case of biodiesel, the yield tended to increase as the amount of ethanol increased regardless of the concentration of sulfuric acid.
실시예 5: 에탄올 이외 알코올 사용에 따른 바이오디젤 및 알킬 레불리네이트 수율확인Example 5: Confirmation of biodiesel and alkyl levulinate yields using alcohols other than ethanol
에탄올 외에 다른 알코올을 사용하였을 때, 알킬 레불리네이트가 생산되는 지 확인하기 위하여, 에탄올을 대신하여, 메탄올과 부탄올을 이용하여 실시예 1과 동일한 조건에서, 온도는 125℃로 2시간 동안 가열하여 실험하였다.  When using alcohol other than ethanol, in order to confirm that the alkyl levulinate is produced, using methanol and butanol in place of ethanol under the same conditions as in Example 1, the temperature was heated to 125 ℃ for 2 hours Experiment.
그 결과, 메탄올을 이용한 실험에서는 바이오디젤 수율이 약 90%가 나왔으며 메틸 레불리네이트가 100%의 미세조류가 포함한 지질 질량을 기준으로 할 때 18.4%의 질량만큼 생성되었다. 또한 부탄올을 이용한 실험에서는 바이오디젤 수율이 114%가 나왔고 부틸 레불리네이트의 수율이 36%로 나왔다. 바이오디젤 수율과 알킬 레불리네이트의 수율은 각 알코올이 가진 탄소수가 증가할 수록 상승하는 경향을 보이며 다른 알코올 군으로 실험하여도 알킬 레불리네이트가 정상적으로 생성될 수 있다는 사실을 알 수 있다.As a result, the biodiesel yield was about 90% in the experiment with methanol, and methyl levulinate was produced as mass of 18.4% based on the lipid mass of 100% microalgae. In the experiment with butanol, the biodiesel yield was 114% and the butyl levulinate yield was 36%. The biodiesel yield and the yield of alkyl levulinate tend to increase as the number of carbon atoms of each alcohol increases, and it can be seen that alkyl levulinate can be produced normally even by experimenting with other alcohol groups.
실시예 6: 수분함량 변화에 따른 바이오디젤 및 에틸 레불리네이트 수율 변화확인Example 6: Confirmation of biodiesel and ethyl levulinate yield change with moisture content change
에틸 레불리네이트는 세포의 가수분해에 의해 생성되는 레불린 산이 에탄올과의 에스터화 반응하여 생성되는 화합물이기 때문에 미세조류의 초기 수분함량에 따라서 그 수율이 결정되게 된다.  Ethyl levulinate is a compound produced by esterification of levulinic acid produced by hydrolysis of cells with ethanol, and its yield is determined according to the initial water content of the microalgae.
미세조류로는 N. gaditana를 사용하였으며 수분함량을 제외한 실험 조건은 실시예 1과 동일하게 수행하였다. N. gaditana was used as the microalgae and the experimental conditions except for the water content were performed in the same manner as in Example 1.
그 결과, 도 5에 나타난 바와 같이, 수분 함량이 감소함에 따라 에틸 레불리네이트와 바이오디젤 수율이 감소하는 것을 알 수 있다. 수분함량이 감소하면 생산물의 수율이 모두 증가하기 때문에 더욱 많은 생산물을 얻을 수 있지만 그로 인해 추가적으로 소모되는 에너지가 증가하므로 이를 고려한다면 최적화된 조건을 찾을 수 있을 것이다.As a result, as shown in Figure 5, it can be seen that the yield of ethyl levulinate and biodiesel decreases as the moisture content decreases. If the moisture content decreases, the yield of all products increases, so that more products can be obtained, but the additional energy consumed increases, and thus, the optimized conditions may be found.
실시예 7: 클로로포름 이외의 유기용매 사용에 따른 바이오디젤 및 에틸 레불리네이트 수율 변화확인Example 7: Confirmation of biodiesel and ethyl levulinate yield changes according to the use of organic solvents other than chloroform
에틸 레불리네이트 화합물은 분자구조상 비극성 성격을 가진 물질이다. 황산과 에탄올은 극성물질로 물에 잘 녹는 성질을 지니고 있는데 황산과 에탄올을 넣은 뒤 유기용매를 넣어주면 생성물 중 에틸 레불리네이트가 유기용매 층에 용해되고 극성 물질들이 존재하는 층에는 주로 에탄올, 황산, 물, 에틸 레불리네이트가 극소량 존재하게 되므로 유기용매가 존재하지 않을 때 보다 반응이 가속화되는 것이다. 따라서 다른 유기용매를 사용하였을 때도, 에틸 레불리네이트 수율이 향상되는지 검증하기 위하여 클로로포름을 대신하여 헥산(hexane)과 벤젠(benzene)을 사용하였다. 실험에 사용한 미세조류는 N.gaditana이고 실험조건은 실시예 1과 동일하며 실험 온도는 125℃로 하였다. Ethyl levulinate compounds are substances having a nonpolar character in their molecular structure. Sulfuric acid and ethanol are polar substances that are well soluble in water. When sulfuric acid and ethanol are added, an organic solvent is added, and ethyl levulinate is dissolved in the organic solvent layer. Because of the presence of very small amounts of water, ethyl levulinate, the reaction is accelerated than when no organic solvent is present. Therefore, even when other organic solvents were used, hexane and benzene were used instead of chloroform to verify whether the yield of ethyl levulinate was improved. The microalgae used in the experiment was N.gaditana and the experimental conditions were the same as in Example 1, and the experimental temperature was 125 ° C.
그 결과, 헥산을 사용한 경우는 헥산 층을 분석한 결과 에틸 레불리네이트가 발견되지 않았다. 그 이유는 상온에서 헥산의 밀도는 0.655g/ml이고 에틸 레불리네이트의 밀도는 1.02g/ml인데, 다량의 에틸 레불리네이트이 생성되기 위해서는 유기상이 에틸 레불리네이트을 녹여야하는데 에틸 레불리네이트와 헥산의 밀도차가 크기 때문에 서로 섞이지 않았기 때문인 것으로 판단된다.As a result, when hexane was used, ethyl levulinate was not found by analyzing the hexane layer. The reason is that at room temperature, the density of hexane is 0.655g / ml and ethyl levulinate is 1.02g / ml.In order for large amount of ethyl levulinate to be produced, the organic phase must dissolve ethyl levulinate. Ethyl levulinate and hexane The difference in density is due to the fact that they are not mixed with each other.
헥산보다 밀도가 약간 높은 벤젠(0.877g/ml)으로 실험한 경우, 벤젠 층을 분석한 결과 100%의 미세조류가 포함한 지질 질량을 기준으로 17.0%의 질량만큼 에틸 레불리네이트가 생성되었다. 이는 클로로포름으로 실험하였을 때의 수율 22.3%보다는 작은 값이지만 어느 정도 밀도 이상을 지닌 유기용매 군으로 실험한다면 에틸 레불리네이트가 일정량 생성될 수 있다는 것을 보여준다.In experiments with benzene (0.877 g / ml), which was slightly denser than hexane, analysis of the benzene layer produced ethyl levulinate by mass of 17.0% based on the lipid mass of 100% microalgae. This is less than 22.3% yield when tested with chloroform, but shows that a certain amount of ethyl levulinate can be produced by experimenting with a group of organic solvents having a certain density or more.
실시예 8: 황산 외의 촉매사용에 따른 바이오디젤과 에틸 레불리네이트 생산 수율 확인Example 8: Confirmation of biodiesel and ethyl levulinate production yield using catalyst other than sulfuric acid
알킬 레불리네이트와 바이오디젤은 산촉매를 이용하여 에스터화, 트랜스에스터화 반응을 통해 생산할 수 있는 화합물이다. 산 촉매는 앞의 실시예에서는 액체 산인 황산을 이용하였지만 다른 산 촉매에서도 실효성을 검증하기 위하여 염산과 고체촉매를 사용하여, 실험을 수행하였다. Alkyl levulinates and biodiesel are compounds that can be produced by esterification and transesterification using acid catalysts. In the previous example, sulfuric acid, which is a liquid acid, was used in the previous example, but hydrochloric acid and a solid catalyst were used to verify the effectiveness of other acid catalysts.
고체촉매로는 사용온도 범위, 촉매의 세기 등을 고려하여 amberlyst 36(Sigma-aldirch, 미국)를 선택하였다. 염산은 35% 염산 수용액을 황산과 동일한 질량으로 사용하였고 그 외의 조건은 실시예 1과 동일하게 진행하고 125℃에서 2시간동안 가열하였다. As a solid catalyst, amberlyst 36 (Sigma-aldirch, USA) was selected in consideration of the operating temperature range and the strength of the catalyst. For hydrochloric acid, 35% aqueous hydrochloric acid solution was used in the same mass as sulfuric acid, and the other conditions were performed in the same manner as in Example 1 and heated at 125 ° C for 2 hours.
그 결과, 염산 사용에 따른 바이오디젤 수율은 84.1%이었고, 에틸 레불리네이트의 수율은 18.9%로 두 가지 수율 모두 황산을 사용했을 때와 크게 차이 나지 않은 수준으로 관찰되었다.As a result, the biodiesel yield was 84.1%, and the yield of ethyl levulinate was 18.9%. Both yields were not significantly different from those of sulfuric acid.
고체촉매 실험의 경우, 동일한 방법으로 세포량과 황산을 제외한 다른 반응 물질의 양들은 실시예1과 동일하게 하였으며 amberlyst 36의 양은 이전의 실험들의 황산의 질량의 2배인 1.1g으로 넣어주었고 125℃에서 2시간동안 가열하였다. In the case of the solid catalyst experiment, the same amount of reactants except cell mass and sulfuric acid were made in the same manner as in Example 1, and the amount of amberlyst 36 was added at 1.1 g, which is twice the mass of sulfuric acid as in the previous experiments, at 125 ° C. Heated for 2 hours.
그 결과, 고체촉매 사용에 따른 바이오디젤 수율은 50.0%로 나왔고 에틸 레불리네이트 수율은 5.4%로 나왔다. 고체산을 사용할 경우 바이오디젤과 에틸 레불리네이트의 수율이 액체산을 사용하는 경우에 비해 낮게 나오는 편이지만 촉매를 분리해내는 과정에서의 편의성을 생각한다면 비록 수율이 낮더라고 고체 촉매를 사용하여 바이오디젤과 에틸 레불리네이트가 일정수준으로 동시 생성가능하다는 점에서 의미 있는 결과이다. As a result, the biodiesel yield was 50.0% and the ethyl levulinate yield was 5.4%. The yield of biodiesel and ethyl levulinate tends to be lower when using solid acids than when using liquid acids, but considering the convenience of separating catalysts, the yield of biodiesel and This is a meaningful result in that diesel and ethyl levulinate can be simultaneously produced at a certain level.
실시예 9: N. gaditana 외의 다른 종의 미세조류를 사용하였을 때의 바이오디젤과 에틸 레불리네이트 생산Example 9: N. gaditana Biodiesel and ethyl levulinate production when using other species of microalgae
N. gaditana 외의 다른 미세조류를 사용하였을 때의 바이오디젤과 에틸 레불리네이트 생산경향을 살펴보기 위하여 Chlorella vulgaris (대상웰라이프, 한국)를 사용하였으며, 그외 실험조건은 실시예 1과 동일하게 하였으며, 125℃에서 2시간동안 가열하였다. Chlorella for the trend of biodiesel and ethyl levulinate production when microalgae other than N. gaditana were used vulgaris (subject Well Life, Korea) was used, and other experimental conditions were the same as in Example 1, and were heated at 125 ° C. for 2 hours.
Chlorella vulgaris의 지질 함량은 7.0%였고 실험결과 바이오디젤 수율은 104%이었으며, 에틸 레불리네이트의 수율은 지질 100% 중량 대비 59%로 높게 나타났다. Chlorella The lipid content of vulgaris was 7.0%, the biodiesel yield was 104%, and the yield of ethyl levulinate was 59% of 100% lipid.
C. vulgaris를 사용하였을 때가, N. gaditana에 비하여 EL 수율이 높은 이유는 C.vulgaris는 지질 함량은 낮지만 그만큼 세포에서 가수분해 될 수 있는 셀룰로오스 양이 많기 때문에, 에틸 레불리네이트 수율이 높은 것으로 예상된다. When C. vulgaris is used, the EL yield is higher than that of N. gaditana because C.vulgaris has a high yield of ethyl levulinate because C.vulgaris has a low lipid content but a high amount of cellulose that can be hydrolyzed in cells. It is expected.
따라서 N. gaditana종 뿐만 아니라 다른 미세조류 종을 사용하여도 바이오디젤과 에틸 레불리네이트는 동시 생산할 수 있다는 것을 확인하였다.Therefore, it was confirmed that biodiesel and ethyl levulinate can be simultaneously produced using other microalgal species as well as N. gaditana species.
실시예 10: 미세조류와 셀룰로오즈를 동시에 사용하였을 때의 바이오디젤과 에틸 레불리네이트 생산 수율 확인Example 10: Confirmation of biodiesel and ethyl levulinate production yield when microalgae and cellulose were used simultaneously
미세조류와 함께 다른 종류의 셀룰로오즈를 가지는 생물을 추가로 첨가하였을 때 바이오디젤과 에틸레불리네이트 생산이 가속되는지 확인하이 위하여, 다음과 같이 실험을 수행하였다. 실험을 간소화하기 위하여 미세조류와 셀룰로오즈를 혼합하여 실험하였으며 총 질량은 0.3g을 유지하면서 미세조류:셀룰로오즈의 질량비를 각각 0:10, 3:7, 5:5, 7:3, 10:0으로 바꾸면서 실험하였다. In order to confirm that the production of biodiesel and ethyllevulinate is accelerated when additional microalgae and other organisms with cellulose are added, the following experiments were performed. In order to simplify the experiment, microalgae and cellulose were mixed and experimented, and the mass ratio of microalgae to cellulose was 0:10, 3: 7, 5: 5, 7: 3, and 10: 0, respectively, while maintaining the total mass of 0.3g. Experiment with change.
미세조류와 셀룰로오즈 혼합물의 수분함량은 65%로 유지하였으며 클로로폼, 에탄올 및 황산의 양은 실시예 1과 동일한 각각 2ml, 1ml 및 0.3ml으로 사용하였고, 125℃에서 2시간동안 가열하였다. 실시예1~9의 경우, 에틸 레불리네이트가 생산되는 경로가 미세조류뿐이기 때문에 미세조류의 지질 질량에 대비하여 수율을 구하였으나, 본 실시예에서는 추가로 첨가한 셀룰로오즈에서도 EL이 생산될 수 있기 때문에 EL의 질량을 구하여 각각의 실험을 비교하였다. 미세조류 대비 셀룰로오즈의 비가 상승할수록 바이오디젤 수율이 증가하는 것을 알 수 있는데 이는 용액의 양은 고정되어 있지만 미세조류의 양이 줄어들기 때문에 바이오디젤 수율이 증가하는 것이다. The water content of the microalgae and cellulose mixture was maintained at 65% and the amounts of chloroform, ethanol and sulfuric acid were used in 2 ml, 1 ml and 0.3 ml, respectively, as in Example 1, and were heated at 125 ° C. for 2 hours. In the case of Examples 1 to 9, only the microalgae is produced in the path of producing ethyl levulinate, and thus the yield was obtained in comparison with the lipid mass of the microalgae. However, EL may be produced even in the added cellulose. As a result, the mass of the EL was calculated and each experiment was compared. As the ratio of cellulose to microalgae increases, the biodiesel yield increases. The biodiesel yield increases because the amount of solution is fixed but the amount of microalgae decreases.
그 결과, 미세조류 대비 셀룰로오즈의 비가 0:10일 경우 셀룰로오즈만 0.3g 존재 하기 때문에 FAEE수율이 존재하지 않게 된다. 미세조류 대비 셀룰로오즈 비가 10:0일때는 EL질량이 8mg 이지만 그래프가 오른쪽으로 갈수록 (셀룰로오즈의 비율이 상승할수록) EL 질량이 증가하는 것을 알 수 있는데 이는 미세조류와 셀룰로오즈를 동시에 넣어주어도 EL 생산이 정상적으로 될 수 있다는 것을 의미한다. 따라서 셀룰로오즈 대신 리그노 셀룰로오즈, 활성오니, 유기물을 함유된 동물 및 식물세포를 넣어주어도 바이오디젤과 에틸 레불리네이트 동시생산에 문제가 없다고 볼 수 있다.As a result, when the ratio of cellulose to microalgae is 0:10, since only cellulose is present in 0.3g, there is no FAEE yield. When the cellulose ratio to microalgae ratio is 10: 0, the EL mass is 8mg, but the EL mass increases as the graph goes to the right (as the cellulose ratio increases). It can be. Therefore, it can be said that there is no problem in co-production of biodiesel and ethyl levulinate even if animal and plant cells containing lignocellulosic, activated sludge, and organic substances are added instead of cellulose.
실시예 11: 미세조류로부터 바이오디젤 및 알킬 포메이트와 다이알킬 에테르 생산 Example 11: Biodiesel and Alkyl Formate and Dialkyl Ether Production from Microalgae
미세조류를 산촉매하에서 처리하면 세포의 셀룰로오즈 부분이 가수분해가 되어 Hydroxymethylfurfural(HMF)으로부터 레불린산(levulinic acid)과 포름산(formic acid)이 생성된다. 생성된 포름산은 알코올과 에스터화반응을 거쳐 알킬 포메이트로 전환될 수 있다. 또한, 알코올은 트랜스에스터화 반응을 위하여 산촉매 하에 고온 환경에 처하기 때문에 알코올 탈수 반응을 거쳐 알코올이 다이알킬 에테르로 전환될 수 있는 환경에 놓여 있다. Treatment of microalgae under an acid catalyst causes the cellulose portion of the cell to hydrolyze, producing levulinic acid and formic acid from Hydroxymethylfurfural (HMF). The resulting formic acid can be converted to alkyl formate through esterification with alcohol. In addition, since the alcohol is placed in a high temperature environment under an acid catalyst for the transesterification reaction, the alcohol is placed in an environment where the alcohol can be converted into a dialkyl ether through an alcohol dehydration reaction.
따라서, 본 실시예에서는 알킬 포메이트와 다이알킬 에테르의 생성을 확인하였다. Therefore, in this example, the production of alkyl formate and dialkyl ether was confirmed.
먼저, 0.3g의 N. gaditana를 사용하여 실시예 1과 같은 실험 조건에서 125℃로 2시간 동안 가열하였다. First, 0.3 g of N. gaditana was heated to 125 ° C. for 2 hours under the same experimental conditions as in Example 1.
그 결과, 실시예 1과 비슷한 수율인 94%의 바이오디젤 수율과 2.5mg의 에틸 포메이트가 생성 되는 것을 확인하였고, 에틸 레불리네이트는 0.034mmol이 생성되었고 에틸 포메이트는 0.036mmol이 생성되었다. 이는 몰수 비로 1:1에 근접하는데 화학양론적으로도 HMF로부터 1:1의 레불린산과 포름산이 생성되므로 에틸 레불리네이트와 에틸 포메이트도 1:1만큼 생성된다고 예상할 수 있기 때문에 유효한 값으로 볼 수 있다. 다이에틸 에테르의 경우에도 27mg이 생성 되었으며 에틸 포메이트와 다이에틸 에테르 모두 유기상에서 검출하였다. 다이에틸 에테르 (diethyl ether, DEE)는 산 촉매하에서 에탄올분자가 탈수반응을 일으키면서 생성되는 것으로 예상된다.As a result, it was confirmed that the yield similar to that of Example 1, biodiesel yield of 2.5% and 2.5mg of ethyl formate was produced, the ethyl levulinate produced 0.034 mmol, and ethyl formate produced 0.036 mmol. This is close to 1: 1 in molar ratio, but because stoichiometrically, 1: 1 levulinic acid and formic acid are produced from HMF, so it is expected that ethyl levulinate and ethyl formate are produced 1: 1. can see. In the case of diethyl ether, 27 mg was produced, and both ethyl formate and diethyl ether were detected in the organic phase. Diethyl ether (DEE) is expected to be produced by dehydration of ethanol molecules under acid catalyst.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it will be apparent to those skilled in the art that these specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
본 발명에 따르면, 종래 미세조류를 이용한 바이오디젤 생산시에 버려졌던, 미세조류의 셀룰로오스 부분을 이용하여 고부가가치의 화합물인 알킬 레불리네이트(alkyl levulinate), 알킬 포메이트(alkyl formate), 다이알켈 에테르(dialkyl ether)를 생산할 수 있다. According to the present invention, a high value-added compound of alkyl levulinate, alkyl formate, and dialkel, which is discarded in biodiesel production using microalgae, is a high value-added compound. It is possible to produce dialkyl ethers.

Claims (12)

  1. 다음 단계를 포함하는 미세조류에서 알킬 레불리네이트(alkyl levulinate), 알킬 포메이트(alkyl formate) 및 다이알켈 에테르(dialkyl ether)로 구성된 군에서 선택되는 하나 이상의 화합물과 바이오디젤의 동시 제조방법:Simultaneous preparation of biodiesel with at least one compound selected from the group consisting of alkyl levulinate, alkyl formate and dialkyl ether in microalgae comprising the following steps:
    (a) 배양된 미세조류에 알코올, 유기용매 및 산을 첨가하고, 95~200℃로 가열하여, 알킬 레불리네이트(alkyl levulinate), 알킬 포메이트(alkyl formate) 및 다이알켈 에테르(dialkyl ether)로 구성된 군에서 선택되는 하나 이상의 화합물과 바이오디젤을 동시에 생성시키는 단계; 및(a) Alcohol, organic solvent, and acid are added to the cultured microalgae, and heated to 95-200 ° C. to give alkyl levulinate, alkyl formate and dialkyl ether. Simultaneously generating at least one compound selected from the group consisting of biodiesel; And
    (b)상기 생성된 화합물과 바이오디젤을 회수하는 단계.(b) recovering the resultant compound and biodiesel.
  2. 제1항에 있어서, 미세조류의 수분 함량은 0~95%인 것을 특징으로 하는 방법.The method of claim 1 wherein the water content of the microalgae is from 0 to 95%.
  3. 제1항에 있어서, 상기 알코올은 탄소수 1~15인 알코올로 구성된 군에서 선택되는 것을 특징으로 하는 방법.The method of claim 1, wherein the alcohol is selected from the group consisting of alcohols having 1 to 15 carbon atoms.
  4. 제1항에 있어서, (a) 단계에 있어서, 셀룰로오즈 (Cellulose) 또는 리그노 셀룰로오즈 (lignocellulose)를 가지는 생물, 톱밥, 활성오니, 박테리아 및 식물 및 동물세포로 구성된 군에서 선택되는 유기물을 추가로 첨가하는 것을 특징으로 하는 방법.The method according to claim 1, wherein in step (a), an organic substance selected from the group consisting of organisms, sawdust, activated sludge, bacteria and plant and animal cells having cellulose or lignocellulose is added. Characterized in that.
  5. 제1항에 있어서, 상기 알코올은 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올, 헥산올, 헵탄올, 옥탄올, 노난올 및 데칸올로 구성된 군에서 선택되는 것을 특징으로 하는 방법.The method of claim 1, wherein the alcohol is selected from the group consisting of methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol and decanol.
  6. 제1항에 있어서, 상기 유기용매는 클로로포름, 톨루엔, 자일렌, 사이클로헥세인 및 벤젠으로 이루어진 군에서 선택되는 유기용매 또는 이들의 혼합용매인 것을 특징으로 하는 방법.The method of claim 1, wherein the organic solvent is an organic solvent selected from the group consisting of chloroform, toluene, xylene, cyclohexane and benzene, or a mixed solvent thereof.
  7. 제1항에 있어서, 산은 황산, 염산, 질산, 아세틸클로라이드 및 엠버리스트(amberlyst)로 구성된 군에서 선택되는 것을 특징으로 하는 방법.The method of claim 1 wherein the acid is selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid, acetylchloride and amberlyst.
  8. 제1항에 있어서, 상기 미세조류는 클로렐라(Chlorella), 클라미도모나스(Chlamydomonas), 나노클로랍시스(Nannochloropsis), 클루코크스(Chroococcus), 채토세로스(Chaetoceros), 안칸테스(Achnanthes) 및 엠포라(Amphora)로 구성된 군에서 선택되는 것을 특징으로 하는 방법.The method of claim 1, wherein the microalgae are Chlorella, Chlamydomonas , Nannochloropsis , Chroococcus , Chaetoceros , Achnanthes and Empo . And Amphora .
  9. 제1항에 있어서, 상기 (a)단계의 미세조류 100 중량부에 대하여 유기용매 0 ~ 2000 중량부, 알코올 25~ 1200 중량부 및 산 0.01 ~ 1000 중량부를 첨가하는 것을 특징으로 하는 방법.The method according to claim 1, wherein 0 to 2000 parts by weight of organic solvent, 25 to 1200 parts by weight of alcohol and 0.01 to 1000 parts by weight of acid are added to 100 parts by weight of the microalgae of step (a).
  10. 제1항에 있어서, 상기 알킬 레불리네이트는 메틸 레불리네이트, 에틸 레불리네이트, 프로필 레불리네이트, 부틸 레불리네이트, 펜틸 레불리네이트, 헥실 레불리네이트, 헵틸 레불리네이트, 옥틸 레불리네이트, 노닐 레불리네이트 및 데킬 레불리네이트로 구성된 군에서 선택되는 것을 특징으로 하는 방법.The method of claim 1, wherein the alkyl levulinate is methyl levulinate, ethyl levulinate, propyl levulinate, butyl levulinate, pentyl levulinate, hexyl levulinate, heptyl levulinate, octyl levulin Nate, nonyl levulinate and tequil levulinate.
  11. 제1항에 있어서 상기 알킬 포메이트는 메틸 포메이트, 에틸 포메이트, 프로필 포메이트, 부딜 포메이트, 펜틸 포메이트, 헥실 포메이트, 헵틸 포메이트, 옥틸 포메이트, 노닐 포메이트 및 데킬 포메이트로 구성된 군에서 선택되는 것을 특징으로 하는 방법.The method of claim 1, wherein the alkyl formate is methyl formate, ethyl formate, propyl formate, butyl formate, pentyl formate, hexyl formate, heptyl formate, octyl formate, nonyl formate, and dekill formate. And selected from the group consisting of:
  12. 제1항에 있어서, 상기 다이알킬 에테르는 다이메틸에테르, 다이에틸에테르, 다이프로필에테르, 다이부틸에테르, 다이펜틸에테르, 다이헥실에테르, 다이헵틸에테르, 다이옥틸에테르, 다이노닐에테르, 다이데킬에테르로 구성된 군에서 선택되는 것을 특징으로 하는 방법.According to claim 1, wherein the dialkyl ether is dimethyl ether, diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, dihexyl ether, diheptyl ether, dioctyl ether, dinonyl ether, diedecyl ether Method selected from the group consisting of.
PCT/KR2015/013657 2015-03-11 2015-12-14 Method for simultaneously producing biodiesel, biodiesel additive, and alkyl formate from microalgae WO2016143988A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150033853A KR101778257B1 (en) 2015-03-11 2015-03-11 Method for concurrent production of biodiesel, its additives, and alkyl formate using Microalgae
KR10-2015-0033853 2015-03-11

Publications (1)

Publication Number Publication Date
WO2016143988A1 true WO2016143988A1 (en) 2016-09-15

Family

ID=56880363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013657 WO2016143988A1 (en) 2015-03-11 2015-12-14 Method for simultaneously producing biodiesel, biodiesel additive, and alkyl formate from microalgae

Country Status (2)

Country Link
KR (1) KR101778257B1 (en)
WO (1) WO2016143988A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102499622B1 (en) * 2020-12-01 2023-02-14 한국에너지기술연구원 Solid acid catalyst for biodiesel production, solid base catalyst for biodiesel production, methods for preparing the same, and methods for producing biodiesel using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110096377A (en) * 2010-02-22 2011-08-30 한국에너지기술연구원 Oil extraction and biodiesel production from microalgae
KR20120064014A (en) * 2010-12-08 2012-06-18 군자화학기계 주식회사 Manufacturing apparatus for bio diesel
KR20130014091A (en) * 2011-07-29 2013-02-07 한국에너지기술연구원 Extraction method of raw oil for biodiesel from microalgae and manufacturing method of biodiesel using extract oil of microalgae
KR101458573B1 (en) * 2013-04-05 2014-11-07 한국과학기술원 Method for Preparing Biodiesel Using Simultaneous Lipid Extraction and Transesterification of Microalgae

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110096377A (en) * 2010-02-22 2011-08-30 한국에너지기술연구원 Oil extraction and biodiesel production from microalgae
KR20120064014A (en) * 2010-12-08 2012-06-18 군자화학기계 주식회사 Manufacturing apparatus for bio diesel
KR20130014091A (en) * 2011-07-29 2013-02-07 한국에너지기술연구원 Extraction method of raw oil for biodiesel from microalgae and manufacturing method of biodiesel using extract oil of microalgae
KR101458573B1 (en) * 2013-04-05 2014-11-07 한국과학기술원 Method for Preparing Biodiesel Using Simultaneous Lipid Extraction and Transesterification of Microalgae

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEINGARTEN, RONEN ET AL.: "Production of Levulinic Acid from Cellulose by Hydro- thermal Decomposition Combined with Aqueous Phase Dehydration with a Solid Acid Catalyst", ENERGY & ENVIRONMENTAL SCIENCE, 19 April 2012 (2012-04-19), pages 7559 - 757 4, XP055310231 *

Also Published As

Publication number Publication date
KR20160109453A (en) 2016-09-21
KR101778257B1 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
Pan et al. One-step production of biodiesel from wet and unbroken microalgae biomass using deep eutectic solvent
Xiao et al. Speciation and transformation of nitrogen for spirulina hydrothermal carbonization
WO2012005425A1 (en) Method of extracting triglycerides or fatty acid methyl esters from lipids of microalgae belonging to heterokontophyta or haptophyta and method of producing biodiesel using the extracts
CN108950091A (en) A kind of eutectic solvent, preparation method and the application in glucose is prepared in hydrocellulose
NL2004761C2 (en) Process for the treatment of lignocellulosic biomass.
WO2011040700A2 (en) Method for producing alkyl lactate directly from ammonium lactate
WO2015012538A1 (en) Method for preparing fatty acid alkyl ester using fat
WO2016143988A1 (en) Method for simultaneously producing biodiesel, biodiesel additive, and alkyl formate from microalgae
WO2022119062A1 (en) Solid acid catalyst for producing biodiesel, solid base catalyst for producing biodiesel, methods for preparing same, and method for producing biodiesel using these catalysts
CN114195637B (en) Method for preparing ethyl levulinate by catalyzing furfuryl alcohol with fungus dreg carbon
EP1897865B1 (en) Processes for producing higher fatty acid esters
KR101411952B1 (en) Solid acid catalyst and method for preparing biodiesel using the catalyst
KR20120054973A (en) Method of extracting lipids from microalgae by two step pyrolysis
CN103819447A (en) Method for preparing glycerinum ketal ester by using glycerinum
CN102492558A (en) Method of preparing biodiesel in ionic liquid
CN113636536A (en) Method for co-producing biomethane by hydrothermal carbonization of wood fiber wastes
US10723965B1 (en) Process for making biofuel from spent coffee grounds
WO2013165217A1 (en) Method for producing biodiesel using microorganisms without drying process
KR20150136559A (en) Method for Co-producing Biodiesel and Alkyl Sulfate Using Microalgae
Vlaskin et al. Chemical composition of bio-oil produced by hydrothermal liquefaction of microalgae with different lipid content
CN112251471A (en) Enzymatic process for preparing biodiesel from acidified oil
WO2011040798A2 (en) Enzymatic biodiesel production method employing carbon dioxide in the liquid state
CN109651455B (en) Novel sucrose oleate synthesis method
CN108441248A (en) A method of being prepared as raw material using discarded Poplar Powder has antioxidative bio oil
CN117510380B (en) Preparation method of benzenesulfonate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884787

Country of ref document: EP

Kind code of ref document: A1