KR20120054973A - Method of extracting lipids from microalgae by two step pyrolysis - Google Patents

Method of extracting lipids from microalgae by two step pyrolysis Download PDF

Info

Publication number
KR20120054973A
KR20120054973A KR1020100116397A KR20100116397A KR20120054973A KR 20120054973 A KR20120054973 A KR 20120054973A KR 1020100116397 A KR1020100116397 A KR 1020100116397A KR 20100116397 A KR20100116397 A KR 20100116397A KR 20120054973 A KR20120054973 A KR 20120054973A
Authority
KR
South Korea
Prior art keywords
pyrolysis
lipids
microalgae
biomass
primary
Prior art date
Application number
KR1020100116397A
Other languages
Korean (ko)
Other versions
KR101205780B1 (en
Inventor
나정걸
이시훈
고창현
전상구
오유관
정수현
김종남
한성옥
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020100116397A priority Critical patent/KR101205780B1/en
Priority to PCT/KR2011/008899 priority patent/WO2012070828A2/en
Publication of KR20120054973A publication Critical patent/KR20120054973A/en
Application granted granted Critical
Publication of KR101205780B1 publication Critical patent/KR101205780B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/02Multi-step carbonising or coking processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • C10L9/083Torrefaction
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/02Pretreatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE: A collecting method of lipids from microalgae is provided to effectively collect lipids among various components in microalgae by simple processes, and to manufacture a part of pure hydrocarbon consisting of only carbon and hydrogen by decomposing lipids during thermal decomposition. CONSTITUTION: A collecting method of lipids from microalgae comprises a step of primary thermal-decomposing microalgae biomass at 250-400 °C; a step of removing saccharides and proteins from the microalgae biomass; and a step of obtaining primary decomposed product; a step of secondary decomposing the primary decomposed product and collecting only lipids, which are able to be converted to fuel easily.

Description

2 단계 열분해에 의한 미세조류로부터의 지질 회수 방법{Method of extracting lipids from microalgae by two step pyrolysis}Method of extracting lipids from microalgae by two step pyrolysis}

본 발명은 미세조류 바이오매스로부터 수송용 연료를 생산하기 위하여 원료물질인 지질을 회수하는 방법에 관한 것으로, 더욱 상세하게는 미세조류 바이오매스에서 연료로의 전환이 어려운 당류와 단백질을 제거하기 위하여 200 내지 400℃의 온도에서 1 차 열분해하고, 당류나 단백질을 제거하여 수득된 1차 열분해 산물을 다시 450 내지 700℃의 온도에서 2 차 열분해함으로써 지질만을 회수하는 2 단계 열분해 방법에 관한 것이다. The present invention relates to a method for recovering lipids as a raw material for producing transport fuel from microalgal biomass, and more particularly, to remove sugars and proteins that are difficult to convert from microalgal biomass to fuel. It relates to a two-stage pyrolysis method for recovering only lipids by first pyrolyzing at a temperature of from 400 ° C., and removing the sugars or proteins, and further thermally decomposing the first pyrolysis product at a temperature of 450 to 700 ° C.

지구 온난화와 화석연료에 대한 우려로 바이오매스를 이용한 연료 생산이 각광받고 있다. 그러나 한편으로 곡물계 자원을 이용하는 바이오연료 생산은 환경적인 부담과 식량 자원과의 경쟁으로 우려가 높아지고 있는 실정이다. 따라서, 식량과의 경쟁이 없는 미세조류나 산림자원을 이용하는 바이오에너지 생산 방법이 주목받고 있다. 이 중 미세조류는 육상 식물보다 광합성 효율이 우수하고, 화력발전소에서 배출되는 이산화탄소를 직접 이용할 수 있으며, 몸체 내의 상당 부분이 연료로의 전환이 가능한 지질로 구성되어 있다는 장점을 가지고 있다. Concerns about global warming and fossil fuels are driving the production of fuels using biomass. On the other hand, biofuel production using grain-based resources is a growing concern due to environmental burdens and competition with food resources. Therefore, a bioenergy production method using microalgae or forest resources without competition with food is attracting attention. Among them, microalgae have better photosynthesis efficiency than land plants, can directly use carbon dioxide emitted from thermal power plants, and a large part of the body is composed of lipids that can be converted into fuel.

미세조류 바이오매스의 구성 성분 중 연료로의 전환이 용이한 부분은 지질로서 전이에스터화 방법이나 탈산소 방법에 의하여 수송용 연료로 전환할 수 있다. 지질을 제외한 대표적인 구성 성분인 당류나 단백질 역시 에너지로 전환할 수는 있으나 복잡한 처리 과정이 필요한 문제점이 있다. Part of the components of the microalgal biomass that can be easily converted into fuel can be converted into fuel for transportation by a transesterification method or a deoxygenation method as lipids. Representative components other than lipids, sugars or proteins can also be converted to energy, but there is a problem that requires a complicated process.

따라서 미세조류를 이용한 바이오에너지 생산에 있어 미세조류 내 지질만을 효과적으로 추출하기 위한 방법이 다수 제안된 바 있다. 종래 보편적으로 사용되는 방법은 헥산 등의 비극성 유기 용매를 사용하여 미세조류 내 지질을 추출하는 것이다. 그러나, 이 기술은 유기 용매 사용량이 과다하고 단단한 세포벽에 둘러 쌓여 있는 미세조류의 경우 추출 효율이 극도로 낮아지는 문제점이 존재한다. 이를 해결하기 위하여 미세조류 세포벽을 파쇄하는 다양한 기술이 제안되었다. Therefore, a number of methods for effectively extracting only lipids from microalgae have been proposed in bioenergy production using microalgae. A conventionally used method is to extract lipids in microalgae using a nonpolar organic solvent such as hexane. However, this technique has a problem in that the extraction efficiency is extremely low in the case of microalgae used in an excessive amount of organic solvent and surrounded by a rigid cell wall. In order to solve this problem, various techniques for breaking down microalgal cell walls have been proposed.

또한, 초임계수나 초임계 이산화탄소를 이용한 지질 추출 방법도 제안되었으나 공정 조건이 가혹하다는 문제점이 지적되고 있다. 이 외에도 미세조류 내 지질을 추출하기 위한 다양한 방법이 제시되고 있다.In addition, a lipid extraction method using supercritical water or supercritical carbon dioxide has also been proposed, but has been pointed out that the process conditions are severe. In addition, various methods for extracting lipids from microalgae have been proposed.

한편, 열분해 기술은 저급 자원 고품위화에 널리 사용되던 기술로 최근 목질계 바이오매스 자원에 열분해 기술을 적용하여 액체 연료를 생산하는 방법이 발표되고 있다. 그러나 열분해 기술을 통하여 생산된 산물은 극성 유기화합물이 다수를 차지하여 연료로서 활용을 위해서는 별도의 고품위화나 개질 과정이 필요한 단점이 있다. 또한, 산물 내 유기산 함량이 높아 사용되는 장치에 부식을 유발할 위험성이 존재한다. On the other hand, pyrolysis technology has been widely used for high quality of lower resources, and a method of producing liquid fuel by applying pyrolysis technology to woody biomass resources has recently been announced. However, the products produced through the pyrolysis technology occupy a large number of polar organic compounds, which requires a separate high quality or reforming process to be used as a fuel. In addition, there is a high risk of causing corrosion in the apparatus used because of the high organic acid content in the product.

본 발명에서는 상기와 같은 종래 기술의 제반 문제점을 해결하기 위하여 유기 용매를 사용하지 않는 동시에 미세조류 세포 파쇄 없이도 지질을 효과적으로 회수하는 방법을 고안하였다. In order to solve the above problems of the prior art, the present invention devised a method of effectively recovering lipids without using an organic solvent and without breaking down algal cells.

상기와 같은 목적을 달성하기 위하여 본 발명은 열분해를 이용하여 미세조류 지질을 회수하는 것을 특징으로 한다.In order to achieve the above object, the present invention is characterized by recovering microalgal lipids using pyrolysis.

또한, 본 발명은 미세조류 구성 성분 중 당류와 단백질의 분해온도가 지질의 휘발온도보다 낮다는 점에 착안하여 2 단계 열분해 방법을 사용함으로써 미세조류로부터 지질을 효과적으로 회수하는 것을 특징으로 한다. In addition, the present invention is focused on the fact that the decomposition temperature of sugars and proteins in the microalgal constituents is lower than the volatilization temperature of lipids, it is characterized by the efficient recovery of lipids from microalgae by using a two-stage pyrolysis method.

본 발명에 따르면, 간단한 공정 구성만으로 미세조류 내 다양한 구성 성분 중 지질을 효과적으로 회수할 수 있는 장점이 있다. 또한, 열분해 과정에서 지질이 분해되어 탄소와 수소로만 구성된 순수 탄화수소도 일부 생산되므로 후단의 지질 전환 공정의 부하가 줄어드는 추가적인 효과를 제공한다. According to the present invention, there is an advantage of effectively recovering lipids among various components in the microalgae with a simple process configuration. In addition, during the pyrolysis process, the lipids are decomposed to produce some pure hydrocarbons composed exclusively of carbon and hydrogen, thereby providing an additional effect of reducing the load of the subsequent lipid conversion process.

도 1은 본 발명에 의한 미세조류 바이오매스로부터 지질을 추출하기 위한 2 단계 열분해 방법을 나타낸 개략도이고,
도 2는 지질 함량 36.5%의 Chlorella sp. KR-1 미세조류의 열분해 특성을 나타낸 그래프이며,
도 3은 2 단계 열분해 과정에서 생성된 Chlorella sp. KR-1 미세조류 열분해 오일의 비점 분포를 콩기름의 비점 분포와 비교한 그래프이다.
1 is a schematic diagram showing a two-stage pyrolysis method for extracting lipids from microalgal biomass according to the present invention,
2 is Chlorella sp. A graph showing the pyrolysis characteristics of KR-1 microalgae,
3 is Chlorella sp. Produced in a two-step pyrolysis process. This is a graph comparing the boiling point distribution of KR-1 microalgae pyrolysis oil with that of soybean oil.

이하 본 발명을 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

먼저 1 차 열분해 반응기에서 미세조류 바이오매스를 열분해한다. 이 때 온도는 250℃ 내지 400℃가 적당한데, 이는 250℃ 이하의 온도에서는 당류나 단백질의 분해 효과가 미미하고, 400℃ 이상의 온도에서는 지질 성분의 분해가 발생하므로 회수율이 낮아지는 단점이 있기 때문이다. First, microalgae biomass is pyrolyzed in a first pyrolysis reactor. At this time, the temperature is suitable for 250 ℃ to 400 ℃, since the decomposition effect of sugar or protein is insignificant at a temperature below 250 ℃, since the decomposition of the lipid component occurs at a temperature above 400 ℃ because the disadvantage that the recovery rate is lowered to be.

1 차 열분해 과정에서 당류와 단백질이 분해되어 유기산이나 알데히드, 퓨란계열 화합물로 배출되는데 이들을 따로 회수하여 제품화할 수 있다.In the first pyrolysis process, sugars and proteins are decomposed and released as organic acids, aldehydes, and furan compounds, which can be recovered and commercialized separately.

1 차 열분해에서 당류와 단백질이 제거된 1차 열분해 산물을 2 차 열분해 반응기에 공급하여 지질을 회수한다. 이 때 온도는 450℃ 내지 700℃가 적당한데 이는 450℃ 이하의 온도에서는 지질이 휘발되지 않고, 700℃ 이상의 온도에서는 지질의 열분해가 과다하게 진행되어 촤(char)와 가스로 전환되는 문제점이 있기 때문이다. In the first pyrolysis, the first pyrolysis product from which sugars and proteins have been removed is fed to a second pyrolysis reactor to recover lipids. At this time, the temperature is suitable from 450 ℃ to 700 ℃, which does not volatilize the lipid at a temperature below 450 ℃, thermal decomposition of the lipid is excessively proceeded at temperatures above 700 ℃ is converted to char (char) and gas has a problem Because.

열분해 체류 시간은 원하는 산물의 조성에 따라 달라질 수 있는데 체류시간이 짧아질 경우 지질 회수율은 높아지나 주로 지방산이나 지방산 에스터 형태로 배출되고, 체류시간이 길어질 경우 지질 회수율이 낮은 대신 순수 탄화수소 함량이 늘어나 후단의 연료 전환 공정의 부하가 줄어드는 장점이 존재한다. The pyrolysis residence time may vary depending on the composition of the desired product.If the residence time is shorter, the recovery of lipids is higher but is mainly released in the form of fatty acids or fatty acid esters. There is an advantage of reducing the load on the fuel conversion process.

체류 시간은 30초 내지 2시간이 적합하며, 바람직하게는 2분 내지 30분의 처리시간이 적합하다. The residence time is suitable for 30 seconds to 2 hours, preferably a treatment time of 2 minutes to 30 minutes.

2 차 열분해 반응기에서 잔류하는 최종 잔류물은 고체 연료나 토지 개량제 등으로 활용 가능하다. 또한 2 차 열분해 과정 중에 생성되는 비응축성 가스는 연소하여 열분해나 조류 바이오매스 건조에 필요한 에너지를 공급하는데 사용함으로써 공정에 소요되는 추가적인 에너지 비용을 최소화할 수 있다. The final residues remaining in the secondary pyrolysis reactor can be used as solid fuels or land modifiers. In addition, non-condensable gases produced during the second pyrolysis process can be burned and used to provide the energy needed for pyrolysis or algae biomass drying, minimizing additional energy costs for the process.

이하 본 발명의 내용을 실시예 및 시험예를 통하여 구체적으로 설명한다. 그러나 이들은 본 발명을 보다 상세하게 설명하기 위한 것으로, 본 발명의 권리범위가 하기의 실시예 및 시험예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples and Test Examples. However, these are intended to explain the present invention in more detail, and the scope of the present invention is not limited by the following examples and test examples.

[[ 실시예Example 1] 미세조류  1] Microalgae 바이오매스의Biomass 열분해 특성 분석 Pyrolysis Characterization

지질 함량 36.5%의 Chlorella sp. KR-1(KCTC 0426BP) 바이오매스를 열중량 분석기를 사용하여 질소 분위기에서 5 ℃/분의 속도로 승온하며 열분해를 수행하였다. 도 2에 도시한 바와 같이 미세조류 바이오매스는 크게 2 단계의 열분해 과정을 거치는데 280℃에서 당류나 단백질이 분해되고, 이후 400℃에서 지질이 분해되었다. 따라서, 2 단계의 열분해 과정을 통하여 당류 및 단백질과 지질을 분리할 수 있음을 알 수 있다. Chlorella sp. With a lipid content of 36.5%. The pyrolysis of KR-1 (KCTC 0426BP) biomass was carried out using a thermogravimetric analyzer at a rate of 5 ° C./minute in a nitrogen atmosphere. As shown in FIG. 2, the microalgal biomass undergoes two stages of pyrolysis, wherein sugars or proteins are decomposed at 280 ° C., and lipids are decomposed at 400 ° C. Therefore, it can be seen that saccharides, proteins and lipids can be separated through a two-step pyrolysis process.

[[ 실시예Example 2] 미세조류  2] Microalgae 바이오매스의Biomass 급속 열분해 Rapid pyrolysis

상기 실시예 1의 바이오매스를 400, 500, 600℃에서 급속 열분해하고 생성 오일을 분석하였다. Chlorella sp. KR-1의 경우 지질을 구성하는 지방산은 탄소수 16개와 18개가 대부분을 차지하는데 열분해 회수 오일 역시 주로 탄소수 16개와 18개의 지방산으로 구성되어 있다. 또한, 열분해를 통하여 지방산이나 지방산 에스터의 카르보닐기가 탈거되어 탄소수 15개와 17개의 탄화수소 역시 다량 생성됨을 알 수 있다. The biomass of Example 1 was rapidly pyrolyzed at 400, 500 and 600 ° C. and the resulting oil was analyzed. Chlorella sp. In the case of KR-1, fatty acids that make up lipids are mostly 16 and 18 carbon atoms, and pyrolysis recovery oil is mainly composed of 16 and 18 fatty acids. In addition, it can be seen that the carbonyl group of the fatty acid or fatty acid ester is removed through pyrolysis to generate a large amount of hydrocarbon having 15 and 17 carbon atoms.

단일 단계의 미세조류 바이오매스 열분해만으로 지질을 회수할 수 있긴 하나 회수된 지질에 대한 분석 결과, 아세트산, 2-메틸 퓨란 등의 부산물이 다수 배출되었고, 극성 화합물의 존재로 상분리가 관찰되었다. 이는 열분해 과정에서 당류의 분해산물이 지질과 혼재되어 있기 때문이다.Although lipids can be recovered only by single-stage microalgal biomass pyrolysis, analysis of the recovered lipids yielded a large number of by-products such as acetic acid and 2-methylfuran, and phase separation was observed due to the presence of polar compounds. This is because decomposition products of saccharides are mixed with lipids during pyrolysis.

[[ 실시예Example 3] 미세조류  3] Microalgae 바이오매스Biomass 1 차 열분해 1st pyrolysis

Chlorella sp. KR-1 바이오매스 20 g을 무산소 분위기에서 350℃, 30분간 열분해하였다. Chlorella sp. 20 g of KR-1 biomass was pyrolyzed at 350 ° C. for 30 minutes in an oxygen-free atmosphere.

열분해 전환율은 28.7%이었으며, 액체 회수율은 20.8%였다. 생성된 액체는 갈색을 띄고 있으며 극성 유기물질이 다수를 차지하였다. 1차 열분해를 통해 얻어진 액체에 대한 가스크로마토그래피/질량분석기(GC/MS) 분석을 실시한 결과 아세트산과 프로파노익산(propanoic acid) 등의 저분자량 유기산과 아세트알데히드 등의 알데히드, 푸르프랄(furfural) 등의 퓨란 화합물이 생성되었으며 지방산이나 탄화수소는 검출되지 않았다. The pyrolysis conversion was 28.7% and the liquid recovery was 20.8%. The resulting liquid was brown in color and occupied a large number of polar organics. Gas chromatography / mass spectrometry (GC / MS) analysis of liquids obtained through primary pyrolysis showed that low-molecular-weight organic acids such as acetic acid and propanoic acid, and aldehydes and furfural such as acetaldehyde Furan compounds were produced, and no fatty acids or hydrocarbons were detected.

열 처리 시간을 5분 내지 15분 정도로 단축하여 처리한 경우에도 30분 동안 처리한 경우와 거의 동일한 결과를 나타내었다. The heat treatment time was shortened to about 5 to 15 minutes, and the same results as in the case of 30 minutes were obtained.

Figure pat00001
Figure pat00001

[실시예 4] 미세조류 바이오매스 1차 열분해 산물의 2 차 열분해Example 4 Secondary Pyrolysis of Microalgal Biomass Primary Pyrolysis Product

상기 실시예 3에 따른 1차 열분해 과정을 통해 수득한 오일로부터 당류나 단백질을 제거하여 1차 열분해 산물을 수득하였다. 상기 1차 열분해 산물 10 g을 무산소 분위기에서 600℃, 30 분간 열분해하였다. The primary pyrolysis product was obtained by removing sugars or proteins from the oil obtained through the first pyrolysis process according to Example 3. 10 g of the first pyrolysis product was pyrolyzed at 600 ° C. for 30 minutes in an oxygen-free atmosphere.

열분해 전환율은 71.6%이었으며, 오일 회수율은 50.9%였다. 생성된 오일은 흑색 액체였으며, 생성 오일에 대한 가스크로마토그래피/질량분석기 분석을 실시한 결과 탄소수 16개와 18개의 유리 지방산 및 탄소수 15개와 17개의 탄화수소가 상당 부분을 차지하였다. 이 외에 탄소수 7개 이상의 탄화수소와 지방산이 생산되었고, 1 차 열분해 과정에서 회수한 저분자량 유기산이나 퓨란계열 화합물은 검출되지 않았다. The pyrolysis conversion was 71.6% and the oil recovery was 50.9%. The resulting oil was a black liquid, and gas chromatographic / mass spectrometric analysis of the resulting oil resulted in a significant portion of 16 and 18 free fatty acids and 15 and 17 hydrocarbons. In addition, hydrocarbons and fatty acids having 7 or more carbon atoms were produced, and low molecular weight organic acids or furan compounds recovered during the first pyrolysis process were not detected.

Figure pat00002
Figure pat00002

열 처리 시간을 5분 내지 15분 정도로 단축하여 처리한 경우에도 30분 동안 처리한 경우와 거의 동일한 결과를 나타내었다. The heat treatment time was shortened to about 5 to 15 minutes, and the same results as in the case of 30 minutes were obtained.

2 단계 열분해를 통해 수득한 지질의 증류 특성을 분석한 도 3을 보면 대표적인 식물성 지질인 콩기름에 비하여 낮은 비점 범위를 나타내 2 단계 열분해 과정을 통하여 추가적인 경질화 효과를 얻을 수 있음을 알 수 있다. Referring to FIG. 3, which analyzes the distillation characteristics of lipids obtained through two-stage pyrolysis, it can be seen that the hardening effect can be obtained through the two-stage pyrolysis process, which shows a lower boiling range compared to soybean oil, which is a representative vegetable lipid.

2 단계 열분해를 통하여 미세조류 바이오매스로부터 유리 지방산, 순수 탄화수소 등으로 구성된 36.3%의 지질을 최종적으로 회수할 수 있었다. Two-stage pyrolysis was able to finally recover 36.3% of lipids consisting of free fatty acids, pure hydrocarbons, etc. from the microalgal biomass.

[[ 실시예Example 5] 미세조류  5] Microalgae 바이오매스Biomass 2차 열분해 잔류물 분석 Secondary pyrolysis residue analysis

상기 실시예 4에 따른 2차 열분해 과정을 통해 지질을 수득하고 남은 최종 잔류물에 대한 원소분석을 실시하였다. 최종 잔류물의 조성을 보면, 탄소가 57.05%, 수소가 1.68%로서 고체 연료로 사용할 수 있으며, 상기 실시예 3과 4, 미세조류를 건조하는데 필요한 열량을 제공할 수 있음을 알 수 있다. The second pyrolysis process according to Example 4 yielded lipids, and elemental analysis of the final residues was carried out. From the composition of the final residue, it can be seen that 57.05% of carbon and 1.68% of hydrogen can be used as a solid fuel and provide the heat required to dry the microalgae in Examples 3 and 4 above.

상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. As described above, although described with reference to a preferred embodiment of the present invention, those skilled in the art will be variously modified and modified within the scope of the present invention without departing from the spirit and scope of the invention described in the claims below. It will be appreciated that it can be changed.

Claims (5)

하기 단계로 이루어진 미세조류로부터의 지질 회수 방법:
(1) 미세조류 바이오매스를 250 내지 400 ℃에서 1차 열분해하는 단계;
(2) 1차 열분해 처리된 미세조류 바이오매스로부터 당류나 단백질을 제거하여 1차 열분해 산물을 수득하는 단계; 및
(3) 1차 열분해 산물을 450 내지 700 ℃에서 2차 열분해하여 지질만을 회수하는 단계;
Lipid recovery from microalgae consisting of the following steps:
(1) first pyrolysing the microalgal biomass at 250 to 400 ° C .;
(2) removing the saccharides or proteins from the primary pyrolysis-treated microalgal biomass to obtain a primary pyrolysis product; And
(3) recovering only lipids by secondary pyrolysis of the primary pyrolysis product at 450 to 700 ° C .;
제1항에 있어서,
상기 1차 열분해는 350℃에서 진행됨을 특징으로 하는 방법.
The method of claim 1,
Wherein said first pyrolysis proceeds at 350 ° C.
제1항 또는 제2항에 있어서,
상기 2차 열분해는 650℃에서 진행됨을 특징으로 하는 방법.
The method according to claim 1 or 2,
Wherein said secondary pyrolysis proceeds at 650 ° C.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 회수방법으로부터 최종적으로 수득된 지질에는 저분자량 유기산이나 퓨란 계열 화합물이 포함되지 않음을 특징으로 하는 방법.
4. The method according to any one of claims 1 to 3,
The lipid finally obtained from the recovery method is characterized in that it does not contain a low molecular weight organic acid or furan compound.
제1항 내지 제3항 중 어느 한 항에 따른 방법에 의해 열분해 방법에 의해 지질을 수득하고 남은 최종 잔류물을 고체 연료로 활용하는 방법.A process for obtaining lipids by pyrolysis by the process according to any one of claims 1 to 3 and using the final residue remaining as a solid fuel.
KR1020100116397A 2010-11-22 2010-11-22 Method of extracting lipids from microalgae by two step pyrolysis KR101205780B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020100116397A KR101205780B1 (en) 2010-11-22 2010-11-22 Method of extracting lipids from microalgae by two step pyrolysis
PCT/KR2011/008899 WO2012070828A2 (en) 2010-11-22 2011-11-22 Method for recovering soil from microalgae through two-phase pyrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100116397A KR101205780B1 (en) 2010-11-22 2010-11-22 Method of extracting lipids from microalgae by two step pyrolysis

Publications (2)

Publication Number Publication Date
KR20120054973A true KR20120054973A (en) 2012-05-31
KR101205780B1 KR101205780B1 (en) 2012-11-28

Family

ID=46146271

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100116397A KR101205780B1 (en) 2010-11-22 2010-11-22 Method of extracting lipids from microalgae by two step pyrolysis

Country Status (2)

Country Link
KR (1) KR101205780B1 (en)
WO (1) WO2012070828A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013188288A1 (en) * 2012-06-11 2013-12-19 Bepex International, Llc System for treating biomass
KR101445254B1 (en) * 2014-05-10 2014-10-02 알펫 주식회사 Solid fuel comprising algae mass with oil and fuel additive and preparation method thereof
KR101447976B1 (en) * 2014-05-10 2014-10-14 박승민 Solid fuel comprising algae mass and natural oils and its sludge and preparation method thereof
WO2015174693A1 (en) * 2014-05-10 2015-11-19 알펫 주식회사 Solid fuel comprising micronized algae mass containing oil, and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102101022B1 (en) 2018-09-17 2020-04-14 조선대학교산학협력단 apparatus for disrupting and separating cell wall of microalgae using ultrasound

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2097496B1 (en) 2006-12-01 2010-12-29 The North Carolina State University Process for conversion of biomass to fuel
US20100081835A1 (en) 2008-09-23 2010-04-01 LiveFuels, Inc. Systems and methods for producing biofuels from algae
US20100282588A1 (en) 2009-05-07 2010-11-11 Whitton Norman M Thermochemical Processing of Algal Biomass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013188288A1 (en) * 2012-06-11 2013-12-19 Bepex International, Llc System for treating biomass
KR101445254B1 (en) * 2014-05-10 2014-10-02 알펫 주식회사 Solid fuel comprising algae mass with oil and fuel additive and preparation method thereof
KR101447976B1 (en) * 2014-05-10 2014-10-14 박승민 Solid fuel comprising algae mass and natural oils and its sludge and preparation method thereof
WO2015174691A1 (en) * 2014-05-10 2015-11-19 박승민 Solid fuel comprising algae mass containing oil, natural oil, and oil sludge thereof, and method for manufacturing same
WO2015174692A1 (en) * 2014-05-10 2015-11-19 알펫 주식회사 Solid fuel comprising algae mass containing oil and fuel additive, and method for manufacturing same
WO2015174693A1 (en) * 2014-05-10 2015-11-19 알펫 주식회사 Solid fuel comprising micronized algae mass containing oil, and method for manufacturing same

Also Published As

Publication number Publication date
WO2012070828A2 (en) 2012-05-31
WO2012070828A3 (en) 2012-08-23
KR101205780B1 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
Mathanker et al. Hydrothermal liquefaction of lignocellulosic biomass feedstock to produce biofuels: Parametric study and products characterization
Ji et al. Effect of operating conditions on direct liquefaction of low-lipid microalgae in ethanol-water co-solvent for bio-oil production
Vo et al. Kinetics study of the hydrothermal liquefaction of the microalga Aurantiochytrium sp. KRS101
Shuping et al. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake
Caporgno et al. Hydrothermal liquefaction of Nannochloropsis oceanica in different solvents
Reddy et al. Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp.
Dong et al. Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char
Lu et al. Improved production and quality of biocrude oil from low-lipid high-ash macroalgae Enteromorpha prolifera via addition of crude glycerol
CA2647093C (en) Miscible, multi-component, diesel fuels and methods of bio-oil transformation
Yang et al. Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts
Doumer et al. Slow pyrolysis of different Brazilian waste biomasses as sources of soil conditioners and energy, and for environmental protection
Du et al. Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content
Li et al. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction
Hu et al. Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization
Patil et al. Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions
Santos et al. Pyrolysis of mangaba seed: Production and characterization of bio-oil
Cao et al. Effect of washing with diluted acids on Enteromorpha clathrata pyrolysis products: Towards enhanced bio-oil from seaweeds
Casoni et al. Pyrolysis of sunflower seed hulls for obtaining bio-oils
KR101205780B1 (en) Method of extracting lipids from microalgae by two step pyrolysis
Wataniyakul et al. Preparation of hydrothermal carbon acid catalyst from defatted rice bran
Yan et al. Characterization of bio-oils from the alkanolyses of sweet sorghum stalk by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry
Aysu et al. Evaluation of Eremurus spectabilis for production of bio-oils with supercritical solvents
de Castro et al. Fractional Distillation of bio-oil produced by Pyrolysis of açaí (Euterpe oleracea) seeds
Xia et al. Hydrothermal co-liquefaction of rice straw and Nannochloropsis: The interaction effect on mechanism, product distribution and composition
JP5668469B2 (en) Method for thermal decomposition of plant biomass

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151119

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161107

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171107

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180918

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190909

Year of fee payment: 8