WO2016143854A1 - Tire pattern assessment device, vehicle model determining device, tire pattern assessment method, and program - Google Patents

Tire pattern assessment device, vehicle model determining device, tire pattern assessment method, and program Download PDF

Info

Publication number
WO2016143854A1
WO2016143854A1 PCT/JP2016/057589 JP2016057589W WO2016143854A1 WO 2016143854 A1 WO2016143854 A1 WO 2016143854A1 JP 2016057589 W JP2016057589 W JP 2016057589W WO 2016143854 A1 WO2016143854 A1 WO 2016143854A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
tire
unit
image
exposure condition
Prior art date
Application number
PCT/JP2016/057589
Other languages
French (fr)
Japanese (ja)
Inventor
伸行 尾張
中山 博之
重隆 福▲崎▼
健太 中尾
泰弘 山口
洋平 小島
Original Assignee
三菱重工メカトロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工メカトロシステムズ株式会社 filed Critical 三菱重工メカトロシステムズ株式会社
Priority to MYPI2017703255A priority Critical patent/MY185928A/en
Priority to KR1020177025020A priority patent/KR102022786B1/en
Publication of WO2016143854A1 publication Critical patent/WO2016143854A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/015Detecting movement of traffic to be counted or controlled with provision for distinguishing between two or more types of vehicles, e.g. between motor-cars and cycles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors

Definitions

  • the present invention relates to a tire pattern determination device, a vehicle type determination device, a tire pattern determination method, and a program.
  • Toll booths such as toll roads are equipped with toll collection facilities for collecting tolls.
  • a fee collection facility includes an automatic fee collection device that performs fee collection processing with a user, and a vehicle type determination device that determines a vehicle type of a traveling vehicle.
  • the automatic toll collector collects a fee according to the vehicle type determined by the vehicle type determination device.
  • the vehicle type identification device disclosed in Patent Document 1 is a vehicle detector that obtains the height, length, etc. (shape pattern) of a traveling vehicle, and is stepped on by a tire of the vehicle. The vehicle type of the vehicle is determined based on various information obtained through the vehicle detector and the tread. Further, the vehicle type identification device disclosed in Patent Document 2 generates a silhouette image of the entire vehicle from captured image data of the vehicle captured obliquely from the front, and the shape of the entire vehicle and the vehicle from the silhouette image. Tire pattern (whether double with two tires attached to one side of one axle or single with one tire attached to one side of one axle) Discriminating.
  • the toll collector must determine the usage fee at the time of the toll collection process with the user, so the driver's seat of the vehicle reaches the toll collector.
  • the vehicle type discrimination result by the vehicle type discrimination device must be acquired.
  • the number of axles of the vehicle can be acquired by detecting the number of times the tire of the vehicle has stepped on the treadle while the vehicle is passing.
  • the number of axles is used as one piece of information for identifying the vehicle type, all the tires of the target vehicle pass through the treadle before the driver's seat reaches the toll collector. Need to be.
  • the maximum vehicle length for example, 18 m
  • the vehicle type discriminating device in a toll gate provided on a viaduct or the like, it may be difficult to embed treads on the road surface. In this case, it is not possible to install a vehicle type discriminating device using the tread as described above. For this reason, the vehicle type must be determined only by information such as the vehicle height and the length of the vehicle, but for vehicles with similar vehicle height and length, there is not enough information to determine the vehicle type, The vehicle type may not be correctly identified. Even if the toll booth can embed treads, it may be difficult to secure the distance between the vehicle type discriminating device and the automatic toll collector beyond the maximum vehicle length due to the installation space of the toll booth. is there.
  • the vehicle type determination device must determine the vehicle type before the acquisition of information such as the tire width, the number of axles, and the tread width is completed. Therefore, the vehicle type is determined for a vehicle with a long vehicle length. There is a possibility that the vehicle type is not correctly identified due to lack of information. Thus, there is a possibility that the vehicle type cannot be correctly determined at a toll gate having a location condition where it is difficult to obtain information for determining the vehicle type from the tread.
  • the tire of the vehicle when generating the silhouette image of the entire vehicle from the captured image data of the vehicle as described above, the tire of the vehicle is disposed below the vehicle body of the vehicle and is therefore covered by the shadow of the vehicle body of the vehicle. End up.
  • the entire captured image data becomes dark, and it may be difficult to distinguish the tire from the vehicle body and the shadow of the vehicle body. For this reason, it is difficult to acquire a tire pattern, which is information necessary for determining the vehicle type, and there is a possibility that the vehicle type cannot be correctly determined.
  • the present invention has been made in view of such problems, and can be installed regardless of the location conditions of the toll booth.
  • the number of consecutive tires which is one of the information necessary for discriminating the vehicle type, is determined.
  • Provided are a tire pattern discriminating device, a vehicle type discriminating device, a tire pattern discriminating method, and a program that can be acquired without being affected by the shooting environment.
  • the tire pattern determination device includes a photographing unit (20A) that continuously photographs a predetermined photographing range including at least the lower part of the vehicle body of the traveling vehicle (A), and the predetermined photographing range. Based on vehicle detection information (D5, D10) indicating that the vehicle has entered the vehicle, an image (D7) photographed at a predetermined photographing timing by the photographing unit is extracted as a reference image (D7a), and the reference image An exposure condition setting unit (205) for setting an exposure condition with reference to the reference region (R) set in the vehicle, and a tire (T) of the vehicle based on the vehicle image captured by the imaging unit. A tire determination unit (204) for determining the number of continuous connections (D3). The photographing unit photographs the vehicle based on the exposure condition set in the exposure condition setting unit.
  • the tire pattern determination device extracts, in the exposure condition setting unit, a vehicle image captured by the imaging unit at a predetermined imaging timing as a reference image, and the reference set in the reference image
  • the exposure condition is set with reference to the area.
  • the photographing unit photographs the vehicle based on the exposure condition.
  • the tire determination unit determines the number of consecutive tires of the vehicle based on the image.
  • the vehicle body refers to a part of the vehicle other than the tire. Further, the number of consecutive tires indicates the number of tires that are continuously provided at one attachment position of the vehicle (one attachment position on one axle). Normally, when a vehicle is photographed, the tires of the vehicle enter the shadow of the vehicle body of the vehicle and are photographed in a low (dark) density value state.
  • the “density value” of the photographed image is defined as being higher as it is brighter and lower as it is darker. For this reason, it is difficult to discriminate the tire of the vehicle from the vehicle body and the shadow of the vehicle body in the image of the vehicle photographed in such a dark state.
  • the exposure condition setting unit sets the exposure condition based on the reference region, so that the imaging unit captures the vehicle tire that is normally captured in a dark state in a bright state. It becomes possible to do. Accordingly, the tire determination unit can detect the tire of the vehicle A based on the image captured by the imaging unit and determine the number of consecutive tires. Further, the tire pattern determination device described above can determine the number of consecutive tires that is one piece of information necessary for determining the vehicle type.
  • the exposure condition setting unit sets a range including a lower part of a vehicle body of the vehicle as the reference region when the vehicle is photographed at the predetermined timing.
  • the exposure conditions are set with reference to FIG.
  • the exposure condition setting unit sets a range including the lower part of the vehicle body of the vehicle as a reference region, and refers to the reference region.
  • the range including the lower part of the vehicle body is a range where the density value is lowest (darkens) when the vehicle is photographed.
  • the exposure condition setting unit can set the exposure condition according to the range where the density value is lowest by referring to the reference area including the range.
  • the photographing unit can photograph the vehicle tire with a detectable density value.
  • the tire determination unit can detect the tire of the vehicle based on the image captured by the imaging unit and determine the number of consecutive tires.
  • the tire determination unit measures the tire diameter and the tire width of the vehicle based on the image, and determines the number of consecutive tires based on the tire diameter and the tire width. To do.
  • a tire determination part measures the tire diameter and tire width of a vehicle based on the image which the imaging
  • the tire determination unit determines the number of consecutive tires based on the tire diameter and the tire width.
  • the tire width varies depending on the number of consecutive tires. For example, a tire width of “2” is about twice as large as that of a “1” tire. is doing.
  • the tire determination unit can determine the number of consecutive tires based on the detected tire width by paying attention to the characteristics of the tire width.
  • the tire pattern determination device detects that the vehicle has entered the predetermined shooting range based on the image, and outputs the vehicle detection information (D10). 201).
  • the vehicle detection unit detects that the vehicle has entered the predetermined shooting range based on the image shot by the shooting unit, and outputs vehicle detection information. For this reason, even before the vehicle enters the toll gate, the vehicle detection unit can detect that the vehicle has entered the predetermined shooting range. Thereby, before the vehicle enters the toll gate, it is possible to set an exposure condition capable of detecting the tire of the vehicle and acquire an image photographed by the photographing unit based on the exposure condition.
  • the tire pattern determination device can determine the number of consecutive tires based on the image thus captured. For this reason, even at a toll gate where there is not enough space to install a detection device for detecting information necessary for discriminating the vehicle type, the tire pattern determining device determines the tire determined before determining the vehicle usage fee. It becomes possible to perform vehicle type discrimination based on the number of continuous installations.
  • the tire pattern determination device further includes a vehicle detector (10A) that detects that the vehicle has entered the predetermined imaging range and outputs the vehicle detection information (D5). .
  • the vehicle detector detects that the vehicle has entered the predetermined shooting range and outputs vehicle detection information.
  • the imaging unit may perform imaging within a predetermined range after receiving the vehicle detection information, and it is not necessary to set the exposure condition by the exposure condition setting unit until the vehicle detection information is acquired. For this reason, the processing of the exposure condition setting unit and the control of the photographing unit can be simplified.
  • a vehicle type determination device is based on the tire pattern determination device according to any one of the above-described aspects and the number of consecutive tires of the vehicle determined by the tire pattern determination device.
  • a vehicle type discriminating unit (10C) for discriminating the vehicle type is based on the tire pattern determination device according to any one of the above-described aspects and the number of consecutive tires of the vehicle determined by the tire pattern determination device.
  • a tire pattern determination method for determining the number of consecutive tires of a vehicle by using a photographing unit that continuously photographs a predetermined photographing range including at least a lower part of the vehicle body of the traveling vehicle. Based on vehicle detection information indicating that the vehicle has entered the predetermined shooting range, an image shot at a predetermined shooting timing by the shooting unit is extracted as a reference image and set in the reference image An exposure condition setting step for setting an exposure condition with reference to a reference area, a shooting step for shooting the vehicle based on the exposure condition set in the exposure condition setting step by the shooting unit, and the shooting unit And a tire determination step of determining the number of consecutive tires of the vehicle based on the image of the vehicle taken by the vehicle.
  • the program sets a computer of a tire pattern determination device including a photographing unit that continuously photographs a predetermined photographing range including at least a lower part of a vehicle of a traveling vehicle as the predetermined photographing range. Based on vehicle detection information indicating that the vehicle has entered, an image captured by the imaging unit at a predetermined imaging timing is extracted as a reference image, and a reference region set in the reference image is referred to. An exposure condition setting unit that sets an exposure condition, and a tire determination unit that determines the number of consecutive tires of the vehicle based on an image of the vehicle captured by the imaging unit. The vehicle is photographed based on the exposure condition set in the condition setting unit.
  • the tire pattern discriminating device the vehicle type discriminating device, the tire pattern discriminating method and the program described above, the tire pattern discriminating apparatus, the tire pattern discriminating method, and the program can be installed regardless of the location conditions of the toll booth. The number of installations can be acquired without being affected by the shooting environment.
  • 1 is a schematic diagram of a vehicle type identification device according to a first embodiment of the present invention.
  • 1 is a block diagram of a vehicle type identification device according to a first embodiment of the present invention. It is an example of the image image
  • FIG. 1 is a schematic diagram of a toll collection facility 1 according to the first embodiment.
  • the toll collection facility 1 is installed at a toll road exit toll gate as shown in FIG. 1, and collects a toll from the driver of the vehicle A who is a toll road user.
  • the toll collection facility 1 in the present embodiment includes a vehicle type discriminating device 10, an automatic toll collection device 11, a start controller 13, and a start detector 14.
  • the toll collection facility 1 is a facility that is provided on the islands I arranged on both sides of the lane L and performs toll collection processing with the vehicle A stopped on the lane L.
  • the direction along the lane L is referred to as the lane direction (X direction in FIG. 1).
  • the direction in which the vehicle A travels on the lane L (the + X side in FIG. 1) is referred to as the rear side in the lane direction
  • the side opposite to the direction in which the vehicle A travels is the front side in the lane direction.
  • a direction perpendicular to the lane direction of the lane L on the horizontal plane is referred to as a width direction (Y direction in FIG. 1)
  • a vehicle height direction (a direction perpendicular to the road surface) of the vehicle A is a height direction (FIG. 1).
  • Z direction a direction perpendicular to the road surface
  • the vehicle type discriminating apparatus 10 is provided on the front side in the lane direction ( ⁇ X side in FIG. 1), detects the vehicle characteristics of the vehicle A entering the lane L of the toll gate, and detects the vehicle A This is a device group for discriminating the vehicle type division D1 (FIG. 3).
  • the vehicle type identification device 10 includes a vehicle detector 10A, a license plate recognition unit 10B, and a tire pattern determination device 20.
  • the vehicle type classification D1 of the vehicle A indicates a vehicle type for determining the toll for the toll road
  • the vehicle type identification device 10 is, for example, “light vehicle etc.”, “ordinary vehicle” ”,“ Medium-sized vehicle ”,“ Large-sized vehicle ”, and“ Extra-large vehicle ”.
  • the vehicle feature of the vehicle A is information unique to the vehicle A entering the lane L.
  • the vehicle feature indicates information such as the license plate information of the vehicle A (vehicle registration information and the size of the license plate), the number of consecutive tires, and the like. Note that the number of consecutive tires indicates the number of tires provided continuously to one attachment position of the vehicle A (one-side attachment position on one axle).
  • the vehicle type discrimination device 10 is a device that discriminates the vehicle type division D1 based on these vehicle characteristics. Note that specific configurations of the vehicle detector 10A, the license plate recognition unit 10B, and the tire pattern determination device 20 included in the vehicle type determination device 10 will be described later with reference to FIGS.
  • the automatic toll collector 11 is provided on the far side in the lane direction (+ X side in FIG. 1) from the vehicle type discriminating device 10.
  • the automatic toll collector 11 is provided on one side in the width direction of the lane L ( ⁇ Y side in FIG. 1) in the present embodiment, but in the other embodiments, the other in the width direction of the lane L is provided. It may be provided on the side (+ Y side in FIG. 1).
  • the automatic toll collector 11 charges the driver of the vehicle A with a usage fee according to the vehicle type classification D1 of the vehicle A and the travel distance of the toll road.
  • the start controller 13 opens and closes the gate for the purpose of preventing the vehicle A from starting until the usage fee of the vehicle A entering the lane L is collected.
  • the start controller 13 is provided on the far side in the lane direction (+ X side in FIG. 1) with respect to the automatic toll collector 11 in the lane L.
  • the start controller 13 opens the gate when the opening operation instruction signal is input from the automatic toll collector 11 and permits the vehicle A to start.
  • the start controller 13 closes the gate when a closing operation instruction signal is input from the automatic toll collector 11.
  • the start detector 14 is provided on the rear side in the lane direction (+ X side in FIG. 1) with respect to the start controller 13 in the lane L, and detects whether the vehicle A has left the lane L.
  • the detection signal from the start detector 14 is output to the automatic toll collector 11.
  • the automatic toll collector 11 determines whether there is a subsequent toll collection vehicle and sends a closing operation instruction signal to the start controller 13 to close the gate. Controls whether to output or keep the gate open.
  • FIG. 2 is a schematic diagram of the vehicle type identification device 10 according to the first exemplary embodiment of the present invention.
  • FIG. 3 is a block diagram of the vehicle type identification device 10 according to the first exemplary embodiment of the present invention.
  • the vehicle type identification device 10 includes a vehicle detector 10 ⁇ / b> A, a license plate recognition unit 10 ⁇ / b> B, and a tire pattern determination device 20.
  • the vehicle type determination device 10 further includes a vehicle type determination unit 10C for determining the vehicle type classification D1 of the vehicle A based on signals detected by these devices.
  • the vehicle type discriminating unit 10C is described as being built in the vehicle type discriminating apparatus 10 (for example, the vehicle detector 10A as shown in FIG. 2), but is not limited to this mode.
  • the vehicle type determination unit 10C may be incorporated in a device other than the vehicle type determination device 10 connected on the network.
  • the vehicle detector 10A is provided with a pair of light emitting and receiving light on both sides of the lane L on the lane direction front side ( ⁇ X side in FIG. 2) of the automatic toll collector 11.
  • 10 A of vehicle detectors output the detection signal according to the approach to the lane L of the vehicle A to the vehicle type discrimination
  • 10 A of vehicle detectors output the detection signal which can detect the approach and passage for every vehicle A to the vehicle type discrimination
  • the vehicle detector 10A outputs a detection signal that can detect that the vehicle A has entered the lane L as vehicle entry information D5 (vehicle detection information) to the vehicle type determination unit 10C. Then, a detection signal that can detect that the vehicle A has passed the vehicle detector 10A is output to the vehicle type determination unit 10C as vehicle passage information D6.
  • the license plate recognition unit 10B is provided on the far side in the lane direction (+ X direction in FIG. 2) from the vehicle detector 10A.
  • the license plate recognition unit 10B captures a front image of the vehicle A including the license plate of the vehicle A in response to the detection of the vehicle A by the vehicle detector 10A, and the license plate information of the vehicle A (vehicle registration information and license plate) The size).
  • the license plate recognition unit 10B outputs the acquired license plate information to the vehicle type determination unit 10C as license plate information D2.
  • the tire pattern determination device 20 is a device that determines the continuous number D3 of the tires T of the vehicle A entering the lane L of the toll gate and outputs the continuous number D3 of the tires T to the vehicle type determination unit 10C. As illustrated in FIGS. 2 and 3, the tire pattern determination device 20 includes a photographing unit 20A, a main control unit 20B, and a storage unit 20C.
  • the photographing unit 20A is provided on the island I on the opposite side of the lane L from the automatic toll collector 11.
  • the photographing unit 20A is provided on the island I on the other side in the width direction of the lane L (the + Y side in FIG. 2), but depending on the arrangement of other devices in the toll collection facility 1, It may be provided on the island I on one side in the width direction (the ⁇ Y side in FIG. 2).
  • the photographing unit 20A includes a lower part of the vehicle body of the vehicle A that is located on the near side in the lane direction ( ⁇ X side in FIG. 2) than the vehicle detector 10A when the vehicle A is traveling on the road surface.
  • the range is set as a predetermined shooting range.
  • the photographing unit 20A is installed so that the predetermined photographing range can be photographed.
  • the position in the height direction (Z direction in FIG. 2) is about 50% of the lowest ground height (the distance between the installation surface of the vehicle A and the lowermost portion of the central portion of the vehicle A). It is installed so that it becomes high.
  • the photographing unit 20A is installed so as to be inclined at about 45 degrees with respect to the lane direction and to face the front side in the lane direction (the ⁇ X side in FIG. 2). As shown in FIG. 3, the photographing unit 20A outputs an image D7 obtained by continuously photographing a predetermined photographing range at a constant interval to the main control unit 20B.
  • the main control unit 20B determines the number D3 of consecutive tires T of the vehicle A based on the image D7 captured by the imaging unit 20A.
  • the main control unit 20B is described as being built in the tire pattern determination device 20 (for example, the photographing unit 20A as shown in FIG. 2), but is not limited to this mode.
  • the main control unit 20B may be built in another device (for example, the vehicle detector 10A) of the vehicle type determination device 10 or other than the vehicle type determination device 10 connected on the network. It may be built in the device.
  • the storage unit 20C is a storage device for accumulating information for determining a tire pattern.
  • the storage unit 20C is provided in the tire pattern determination device 20, but in other embodiments, the storage unit 20C may be provided in an external server or the like connected via a network.
  • the vehicle type determination unit 10C includes vehicle entry information D5 and vehicle passage information D6 acquired from the vehicle detector 10A, license plate information D2 acquired from the license plate recognition unit 10B, and a series of tires T determined by the tire pattern determination device 20. Based on the installation number D3, the vehicle type division D1 of the vehicle A is determined.
  • FIG. 4 is an example of an image D7 photographed by the photographing unit 20A according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an example of the reference region R of the image D7 photographed by the photographing unit 20A according to the first embodiment of the present invention, an example showing the reference region R before exposure adjustment, and after exposure adjustment. It is an example which shows the reference area
  • the vehicle type determination device 10 includes a vehicle detector 10 ⁇ / b> A, a license plate recognition unit 10 ⁇ / b> B, a vehicle type determination unit 10 ⁇ / b> C, and a tire pattern determination device 20.
  • 10 A of vehicle detectors are vehicle type discrimination
  • the license plate recognition unit 10B outputs the acquired license plate information D2 to the vehicle type determination unit 10C.
  • the tire pattern determination device 20 includes an imaging unit 20A, a main control unit 20B, and a storage unit 20C.
  • the main control unit 20 ⁇ / b> B includes a vehicle detection unit 201, a shooting control unit 202, a tire detection unit 203, and a tire determination unit 204.
  • the photographing unit 20A outputs an image D7 obtained by continuously photographing a predetermined photographing range at a constant interval.
  • the vehicle detection unit 201 determines whether or not the vehicle A is included for each of the plurality of images D7 received from the imaging unit 20A and captured at different times. For example, the vehicle detection unit 201 uses the known background subtraction method, interframe subtraction method, or the like to capture an image D7 taken at a certain time t and a time t-1 that is the past closest to the image D7. The difference from the image D7 is taken to detect the changed area. The vehicle detection unit 201 determines that the changed area is a moving object.
  • the vehicle detection unit 201 detects the moving amount (moving direction and speed) of the moving object by detecting in which area of the image D7 the moving object exists in the image D7 taken at each time. To detect.
  • a moving object having a predetermined movement amount for example, a moving object moving from the front side in the lane direction toward the back side in the lane direction
  • the vehicle detection unit 201 detects that the moving object is the vehicle A It is judged that.
  • a moving object having a movement amount different from the predetermined movement amount for example, a moving object moving in the lane width direction
  • the moving object detected by the vehicle detection unit 201 may be the vehicle body of the vehicle A, the tire T, the shadow of the vehicle body, or the like.
  • the vehicle detection unit 201 determines whether or not the moving object determined to be the vehicle A is included in the reference region R of the image D7.
  • the reference region R is a certain region of the image D7, and is a range including the lower part of the vehicle body of the vehicle A when the vehicle A enters a predetermined imaging range, for example.
  • the vehicle detection unit 201 detects that the moving object determined to be the vehicle A is included in a certain region of the reference region R, as illustrated in FIG. 3, the imaging control unit 202 and the tire detection unit 203 are included.
  • the vehicle detection information D10 is output.
  • the vehicle detecting unit 201 determines that the vehicle A has passed, and, as illustrated in FIG. 3, the vehicle detecting unit 201 proceeds to the photographing control unit 202 and the tire detecting unit 203. Vehicle exit information D11 is output.
  • the vehicle detection unit 201 may determine that the moving object is the vehicle A when detecting that the same moving object is moving at a speed within a predetermined range. At this time, when the vehicle A is detected in the reference region R of the image D7, the vehicle detection unit 201 may output the vehicle detection information D10 to the shooting control unit 202 and the tire detection unit 203. Moreover, in this embodiment, although the vehicle detection part 201 demonstrated the example using a background difference method and the interframe difference method, if the detection of the vehicle A is possible, you may use another method.
  • a fixed range of a predetermined shooting range is set as the reference region R, but the present invention is not limited to this.
  • the reference area R may be set by an operation of an administrator or the like.
  • the vehicle detection unit 201 determines that the image D7 includes the vehicle A, a region below the vehicle A in the image D7 (the region having the lowest density value (darkest) among the regions determined to be the vehicle A) ) May be automatically determined, and a range including the lower side of the vehicle A may be set as the reference region R.
  • the vehicle detection unit 201 outputs the vehicle detection information D10 and the vehicle exit information D11 depending on whether or not the vehicle A is included in the predetermined imaging range.
  • the imaging control unit 202 controls the imaging unit 20A. As shown in FIG. 3, the imaging control unit 202 has an exposure condition setting unit 205. In the present embodiment, the imaging control unit 202 outputs a command to the imaging unit 20A so as to perform imaging based on the exposure condition D4 set by the exposure condition setting unit 205.
  • the exposure condition D4 indicates the aperture value and exposure time (shutter speed) of the photographing unit 20A.
  • the exposure condition setting unit 205 sets two exposure conditions D4, ie, an exposure condition D4a for vehicle detection and an exposure condition D4b for tire detection, as the exposure condition D4.
  • the photographing unit 20A performs first photographing that is photographed based on the exposure condition D4a for vehicle detection and second photographing that is photographed based on the exposure condition D4b for tire detection.
  • the exposure condition setting unit 205 sets the exposure condition D4a for vehicle detection.
  • the exposure condition setting unit 205 is configured to reduce the aperture according to the density value of the entire predetermined shooting range so that when the vehicle A enters the predetermined shooting range, an image that can clearly distinguish the vehicle A and the background can be shot.
  • the value and the exposure time are set as the vehicle detection exposure condition D4a.
  • the exposure condition setting unit 205 sets the vehicle detection exposure condition D4a as follows.
  • the exposure condition setting unit 205 generates a density histogram (a graph indicating the number of pixels having the same density value (appearance frequency) for each density value) at each time received from the imaging unit 20A, and the image D7. Measure the concentration value.
  • the exposure condition setting unit 205 refers to the density histogram of the image D7 acquired at a time when the vehicle A does not exist in the predetermined shooting range, and determines whether or not the pixel number distribution is biased.
  • the exposure condition setting unit 205 determines that the density value of the image D7 is low and the exposure amount is insufficient. At this time, the exposure condition setting unit 205 calculates the exposure amount of the image D7 based on the exposure condition D4 when the image D7 is taken.
  • the exposure condition setting unit 205 detects a vehicle with a smaller aperture value or a longer exposure time so that an image having a higher density value (brighter) than the image D7, that is, a larger exposure amount can be taken. Is set as the exposure condition D4a.
  • the exposure condition setting unit 205 calculates the exposure amount of the image D7 based on the exposure condition D4 when the image D7 is taken.
  • the exposure condition setting unit 205 uses a value obtained by increasing the aperture value or shortening the exposure time so that an image having a lower density value (darker) than the image D7, that is, an image with a small exposure amount can be captured.
  • the exposure condition D4a for detection is set.
  • the exposure condition setting unit 205 detects the vehicle detection exposure condition D4a so that an image having the same density value as that of the image D7, that is, an image having the same exposure amount can be taken when the deviation in the number of pixels is not detected. Set the same value as when D7 was shot.
  • the exposure condition setting unit 205 refers to the density value and the exposure amount of each image D7 acquired at a time when the vehicle A does not exist in the predetermined shooting range, so that the scene in the predetermined shooting range.
  • An exposure condition D4a suitable for the above is set.
  • the imaging control unit 202 outputs the vehicle detection exposure condition D4a set by the exposure condition setting unit 205 to the imaging unit 20A.
  • the imaging unit 20A captures a predetermined imaging range based on the exposure condition D4a from the next time.
  • the exposure condition setting unit 205 sets the exposure condition D4b for tire detection.
  • the exposure condition setting unit 205 extracts an image D7 taken at the time when the vehicle detection unit 201 outputs the vehicle detection information D10 as a reference image D7a.
  • the exposure condition setting unit 205 sets, as the tire detection exposure condition D4b, the aperture value and the exposure time according to the density value and the exposure amount of the reference region R of the image D7 taken after the reference image D7a. If the tire T of the vehicle A is included in the reference region R of the image D7, the tire detection exposure condition D4b may be set so that the tread pattern of the tire T can be detected. .
  • the exposure condition setting unit 205 sets the exposure condition D4b for tire detection as follows.
  • the exposure condition setting unit 205 generates a density histogram of the reference area R of the reference image D7a and measures the density value of the reference area R, as shown in FIG.
  • the horizontal axis of the density histogram indicates the density value, and the vertical axis indicates the number of pixels.
  • the exposure condition D4a for vehicle detection is set as the exposure condition D4 at the timing when the reference image D7a is photographed, the vehicle body of the vehicle A included in the reference region R is set.
  • the density value is low (dark) due to the shadow of the vehicle body of the vehicle A, and the exposure amount is insufficient. For this reason, it is difficult to detect the boundary between the tire T of the vehicle A, the vehicle body of the vehicle A, and the shadow of the vehicle body.
  • the density histogram of the reference region R the number of pixels having a low density value is large.
  • the exposure condition setting unit 205 detects a range of density values having a large number of pixels in the density histogram of the reference region R of the reference image D7a.
  • the exposure condition setting unit 205 sets a range including the number of pixels corresponding to a predetermined ratio (for example, 20%) in the area of the vehicle A included in the reference region R to a density with a large number of pixels. Detect as a range of values. As shown in FIG. 5A, in the reference region R of the reference image D7a, a range of density values with a large number of pixels is biased in a region having a low density value.
  • the exposure condition setting unit 205 calculates the exposure amount of the reference region R of the reference image D7a based on the exposure condition D4 when the reference image D7a is captured.
  • the exposure condition setting unit 205 has a new density value higher (brighter) than the reference region R, that is, a larger exposure amount so that the imaging unit 20A can capture an image D7 that can detect the tire T of the vehicle A.
  • a proper exposure amount is calculated.
  • the exposure condition setting unit 205 sets a value obtained by reducing the aperture value or a value obtained by extending the exposure time as the tire detection exposure condition D4b so as to satisfy the new exposure amount.
  • the exposure condition setting unit 205 pixels included in an area having a low density value (for example, 0 to 20% of the entire density value range) in the density value range having a large number of pixels are shown in FIG. As shown in (b), a new exposure amount is calculated so as to be uniformly distributed in a range including a region having a density value higher than that region (for example, 0 to 50% of the entire density value range). Note that the exposure condition setting unit 205 may adjust the aperture value and the exposure time in accordance with the position of the vehicle A, the amount of movement, and the like in the reference image D7a.
  • the imaging control unit 202 outputs the tire detection exposure condition D4b set by the exposure condition setting unit 205 in this way to the imaging unit 20A.
  • the imaging unit 20A captures a predetermined imaging range based on the exposure condition D4b from the next time.
  • the reference region R of the image D7 photographed based on the tire detection exposure condition D4b is compared with the reference region R of the reference image D7a shown in FIG.
  • the density value is high.
  • the density histogram of the reference region R of the image D7 shown in FIG. 5B appears at each density value as compared with the density histogram of the reference region R of the reference image D7a shown in FIG.
  • the frequency is in a distributed state. For this reason, in the said image D7 image
  • the exposure condition setting unit 205 sets the tire detection exposure condition D4b suitable for the vehicle A every time the vehicle A is detected as described above. For this reason, even if the shooting environment such as the weather, time, and surrounding conditions (such as the shadow of the building and the presence of lighting) is different, the exposure condition D4b that can detect the tire T of the vehicle A is set according to the shooting environment. can do.
  • the exposure condition setting unit 205 After setting the exposure condition D4b for tire detection, the exposure condition setting unit 205 generates a density histogram for the image D7 photographed based on the exposure condition D4b and measures the density value in the same manner as the reference image D7a. Then, the exposure amount of the image D7 may be calculated. The exposure condition setting unit 205 may set different tire detection exposure conditions D4b based on the density value and exposure amount of the image D7.
  • the exposure condition setting unit 205 When the exposure condition setting unit 205 receives the vehicle exit information D11 from the vehicle detection unit 201 after setting the tire detection exposure condition D4b, the exposure condition setting unit 205 sets the vehicle detection exposure condition D4a as described above.
  • the tire detection unit 203 receives the vehicle detection information D10 from the vehicle detection unit 201 and receives the vehicle exit information D11 until the images D7 received from the imaging unit 20A. It is determined whether or not the tire A of the vehicle A is included.
  • the tire detection unit 203 extracts edge portions by performing edge detection filter processing on each image D7.
  • the texture is analyzed by calculating the periodicity and density of the boundary between the shades, and the longitudinal groove extending in the height direction of the vehicle A showing the tread pattern of the tire as shown in FIG.
  • the texture of the tread pattern detects a plurality of continuous areas (tread pattern areas) in the width direction of the vehicle and appears vertically on the side of the tire in a form adjacent to the tread pattern area. When an elliptical area (long in the vertical direction) is detected, it is determined that the part is the tire T of the vehicle A.
  • the tire detection unit 203 determines whether or not the tire T is included in each image D7 based on the presence or absence of the texture of the tread pattern of the tire.
  • the tread pattern sample images D8 of a plurality of tires T acquired in advance as data for detecting the tire T in the storage unit 20C are accumulated, and the tire detection unit 203 uses the sample image D8. Then, it may be determined whether or not the tire T is included in the image D7 by comparing the reference region R of each image D7 received from the imaging unit 20A.
  • the tire detection unit 203 extracts the image D7 that is determined to include the tire T, and outputs the image D7 to the tire determination unit 204.
  • the tire determination unit 204 determines the number of consecutive tires D3 included in the image D7 received from the tire detection unit 203. Double tires have two tires attached at one mounting position, so when comparing the tire widths of single tires and double tires with the same tire diameter, double tires are approximately twice the tire width of single tires. Tire width. The tire determination unit 204 pays attention to the difference in tire width between the single tire and the double tire, and based on the tire diameter and the tire width of the tire T included in the image D7, the tire T is a single tire or a double tire. Determine if there is. Specifically, the tire determination unit 204 determines the number of consecutive tires D3 as follows.
  • the tire determination unit 204 is based on the angle in the height direction of the photographing unit 20A and the length in the vertical direction of the vertically long elliptical area determined as the tire T included in the image D7 received from the tire detection unit 203. Calculate the tire diameter. Further, the tire width is detected from the length in the lateral direction (width direction) of the tread pattern region.
  • the storage unit 20C stores in advance tire information D9 in which a plurality of combinations of tire diameters and tire widths of commonly used tires are recorded.
  • the tire determination unit 204 extracts tire information D9 having the same tire diameter as the tire T included in the image D7 from the tire information D9 stored in the storage unit 20C.
  • the tire determination unit 204 compares the tire width of the tire T included in the image D7 with the tire width of each tire recorded in the extracted tire information D9.
  • the tire determination unit 204 is included in the image D7. It is determined that the tire T is a single tire. On the other hand, when the tire width of the tire T included in the image D7 is a value that is significantly different from the tire width of each tire recorded in the extracted tire information (for example, the tire T included in the image D7) Tire width is a value about twice the tire width of each tire recorded in the extracted tire information), it is determined that the tire T included in the image D7 is a double tire.
  • the tire on the first axis of the vehicle is a single tire regardless of the type of vehicle, the tire on the first axis is unconditionally determined as a single tire, and the tire width on the first axis is used as a reference.
  • the example of determining whether the tire T is a single tire or a double tire from the tire width value of the tire T has been described, but the present invention is not limited to this.
  • the texture of the tread pattern is detected in two parts in the lateral direction (width direction) depending on the interval between the two tires.
  • the tire determination unit 204 determines that the tire is a double tire when two tread pattern textures are detected in the horizontal direction, and determines that a single tread pattern texture is detected when only one tread pattern texture is detected in the horizontal direction. You may make it determine with a tire.
  • the tire determination unit 204 determines that the tire T included in the image D7 is a single tire, the tire determination unit 204 sets the consecutive number D3 of tires T to “1”. In addition, when the tire determination unit 204 determines that the tire T included in the image D7 is a double tire, the tire determination unit 204 sets the consecutive number D3 of tires T to “2”. The tire determination unit 204 outputs the consecutive number D3 of tires T thus determined to the vehicle type determination unit 10C.
  • FIG. 6 is a flowchart showing a tire pattern determination procedure according to the first embodiment of the present invention.
  • Step ST101 Setting of exposure conditions for vehicle detection
  • the photographing unit 20A photographs a predetermined photographing range at regular intervals.
  • the tire pattern determination device 20 sets the exposure condition D4a for vehicle detection in the exposure condition setting unit 205 of the imaging control unit 202 (step ST101).
  • the exposure condition setting unit 205 is configured to reduce the aperture according to the density value of the entire predetermined shooting range so that when the vehicle A enters the predetermined shooting range, an image that can clearly distinguish the vehicle A and the background can be shot.
  • the value and the exposure time are set as the vehicle detection exposure condition D4a.
  • the imaging control unit 202 outputs the vehicle detection exposure condition D4a to the imaging unit 20A. Thereafter, the imaging unit 20A captures a predetermined imaging range based on the vehicle detection exposure condition D4a.
  • Step ST102 vehicle approach detection
  • the vehicle detection unit 201 determines whether or not the vehicle A has entered a predetermined shooting range (step ST102). For each of the plurality of images D7 received from the image capturing unit 20A, the vehicle detection unit 201 captures an image D7 captured at a certain time t and an image D7 captured at a time t-1 that is the closest to the image D7. Is taken to determine whether or not the vehicle A is included in the image D7. When the vehicle detection unit 201 determines that the vehicle A is not included in the reference region R of the image D7 (step ST102: No), the vehicle detection unit 201 returns to the process of step ST101.
  • step ST102 determines that the vehicle A is included in the reference region R of the image D7 (step ST102: Yes)
  • the vehicle detection information D10 is output to the imaging control unit 202 and the tire detection unit 203. The process proceeds to the next step ST103.
  • Step ST103 Measurement of density value of reference region
  • the exposure condition setting unit 205 displays an image D7 taken at the time when the vehicle detection unit 201 outputs the vehicle detection information D10. Extracted as a reference image D7a.
  • the exposure condition setting unit 205 generates a density histogram of the reference area R of the reference image D7a, and measures the density value of the reference area R (step ST103).
  • the exposure condition setting unit 205 detects a density value range having a large number of pixels in the density histogram of the reference region R of the reference image D7a. When there is a density value range with a large number of pixels in an area with a low density value, the exposure condition setting unit 205 determines that the reference area R has a low density value (dark), that is, an exposure amount is small.
  • Step ST104 Calculation of exposure amount of reference area
  • the exposure condition setting unit 205 calculates the exposure amount of the reference region R of the reference image D7a based on the exposure condition D4 when the reference image D7a is captured. Since the exposure condition setting unit 205 determines that the reference region R has a low density value (dark), that is, an exposure amount is small, an image having a density value higher (bright) than the reference region R, that is, an exposure amount is large. A new exposure amount is calculated so that the image can be taken (step ST104).
  • Step ST105 Setting of exposure conditions for tire detection
  • the exposure condition setting unit 205 sets, as the tire detection exposure condition D4b, a value obtained by reducing the aperture value or extending the exposure time so as to satisfy the new exposure amount calculated as described above.
  • the imaging control unit 202 outputs the tire detection exposure condition D4b set by the exposure condition setting unit 205 in this way to the imaging unit 20A.
  • the imaging unit 20A captures a predetermined imaging range based on the exposure condition D4b from the next time.
  • Step ST106 tread pattern detection
  • the tire detection unit 203 analyzes each image D7 received from the imaging unit 20A during the period from the reception of the vehicle detection information D10 from the vehicle detection unit 201 to the reception of the vehicle exit information D11. Whether or not the texture (tread pattern texture) of the vertical groove extending in the height direction of the vehicle A indicating the tread pattern of the tire T includes a continuous region (tread pattern region) in the vehicle width direction. Is determined (step ST106). If the tread pattern area is not detected, the tire detection unit 203 determines that the tire D of the vehicle A is not included in the image D7 (step ST106: No), and returns to step ST106 again to return to the next image. D7 is analyzed.
  • step ST106 determines that the tire D of the vehicle A is included in the image D7 (step ST106: Yes). At this time, the image D7 is output to the tire determination unit 204, and the process proceeds to the next step ST107.
  • Step ST107 detection of tire diameter and tire width
  • the tire determination unit 204 detects the tire diameter and the tire width of the tire T included in the image D7 received from the tire detection unit 203 (step ST107).
  • Step ST108 Determination of the number of consecutive tires
  • the tire determination unit 204 compares the tire width of the tire T included in the image D7 with the tire width of each tire recorded in the extracted tire information D9, and the consecutive number D3 of the tire T is compared. Is determined (step ST108).
  • the tire determination unit 204 is included in the image D7. It is determined that the tire T is a single tire.
  • the tire width of the tire T included in the image D7 is significantly different from the tire width of each tire recorded in the extracted tire information (for example, included in the image D7).
  • the tire determination unit 204 outputs the determined continuous number D3 of tires T to the vehicle type determination unit 10C.
  • Step ST109 Vehicle passage detection
  • the vehicle detection unit 201 determines whether or not the vehicle A has passed a predetermined imaging range (step ST109).
  • the vehicle detection unit 201 detects the vehicle A in the reference region R of the image D7
  • the vehicle detection unit 201 determines that the vehicle A is in the predetermined shooting range (step ST109: No), and returns to the process of step ST106.
  • the vehicle detection unit 201 does not detect a low density region (dark portion) such as a shadow or a tire T caused by the vehicle A in the reference region R of the image D7
  • the vehicle A determines that the vehicle A has passed a predetermined shooting range ( Step ST109: Yes).
  • the vehicle detection part 201 may judge that the vehicle A passed the predetermined imaging
  • the vehicle detection unit 201 outputs vehicle exit information D11 to the imaging control unit 202 and the tire detection unit 203.
  • FIG. 7 is a diagram illustrating an example of a hardware configuration of the tire pattern determination device 20.
  • the tire pattern determination device 20 includes a memory 810, a storage / reproduction device 820, an IO I / F (Input Output Interface) 830, an external device I / F (Interface) 840, and a communication I. / F (Interface) 850, CPU (Central Processing Unit) 860, and auxiliary storage device 870 are provided.
  • the memory 810 is a medium such as a RAM (Random Access Memory) that temporarily stores data used in the program of the tire pattern determination device 20.
  • the storage / reproduction device 820 is a device for storing data in an external medium such as a CD-ROM, a DVD, a flash memory, etc., and reproducing data in the external medium.
  • the IO I / F 830 is an interface for inputting and outputting information and the like with each device of the vehicle type identification device 10.
  • the external device I / F 840 is an interface for performing control of devices provided in the tire pattern determination device 20 and transmission / reception of information and the like.
  • the external device I / F 840 performs control of the imaging unit 20A and transmission / reception of information and signals.
  • the communication I / F 850 is an interface for the tire pattern determination device 20 to communicate with an external server via a communication line such as the Internet.
  • CPU 860 executes a program and controls to execute each function of tire pattern determination device 20.
  • the tire pattern determination device 20 performs control so as to determine the consecutive number D3 of tires T.
  • the auxiliary storage device 870 is for recording a program executed by the CPU 860, data used when the program is executed, and generated data.
  • the auxiliary storage device 870 is an HDD (Hard Disk Drive), a flash memory, or the like.
  • the program of the tire pattern determination device 20 may be recorded on an external medium such as a CD-ROM, a DVD, or a flash memory.
  • the storage / playback device 820 writes (stores) and reads (stores) Play). You may read the program memorize
  • a program stored in an external medium or an external server may be stored in the auxiliary storage device 870.
  • the CPU 860 functions as the vehicle detection unit 201, the imaging control unit 202, the tire detection unit 203, the tire determination unit 204, and the exposure condition setting unit 205 of the tire pattern determination device 20 by executing the above program.
  • the CPU 860 performs various processes, the data generated by each process is stored in the auxiliary storage device 870.
  • the exposure condition setting unit 205 measures the density value of the reference region R of the reference image D7a and calculates the exposure amount.
  • the exposure condition setting unit 205 also exposes tire detection exposure conditions so that the photographing unit 20A can photograph an image D7 that can detect the tire T of the vehicle A based on the density value and the exposure amount of the reference region R. D4b is set.
  • the imaging unit 20A captures a predetermined imaging range based on the tire detection exposure condition D4b from the next time. Normally, when the vehicle A is photographed, the tire T of the vehicle A is photographed in a dark state due to the vehicle body of the vehicle A and the shadow of the vehicle body.
  • the exposure condition setting unit 205 sets the exposure condition D4b for tire detection
  • the photographing unit 20A photographs the tire T of the vehicle A that is usually photographed in a dark state in a bright state. It becomes possible.
  • the tire determination unit 204 can detect the tire of the vehicle A based on the image D7 photographed by the photographing unit 20A based on the exposure condition D4b for tire detection.
  • the imaging unit 201 measures the density value and calculates the exposure amount based on the reference image D7a obtained by imaging the vehicle A. Therefore, the exposure condition D4b that can detect the tire T of the vehicle A can be set even if the shooting environment such as the weather, time, and the surrounding situation (such as the shadow of the building and the presence or absence of lighting) is different.
  • the vehicle tires before the driver's seat reaches the automatic toll collector. May not be able to pass through the tread, and the number of axes of the vehicle may not be determined.
  • the continuous number D3 of tires T which is one piece of information necessary for determining the vehicle type division D1, is determined. Can do.
  • the vehicle type is determined based on the continuous number D3 of the tire T or based on the continuous number D3 of the tire T and the license plate information D2.
  • the classification D1 can be determined. For this reason, there are restrictions on location conditions such as toll booths that cannot embed a detection device for detecting information necessary for discrimination of the vehicle type division D1 on the road surface or a sufficient space for installation, and there is sufficient information from the detection device Even at a toll booth that cannot be obtained, the tire pattern determination device 20 can be installed, and the vehicle type can be determined based on the consecutive number D3 of tires T determined by the tire pattern determination device 20. It becomes.
  • the reference region R of the image D7 is a range including the lower side of the vehicle body of the vehicle A.
  • the range including the lower part of the vehicle body of the vehicle A is a range where the density value is lowest (darker) when the vehicle A is photographed.
  • the exposure condition setting unit 205 can detect the tire tread pattern even in a range including the lower part of the vehicle body of the vehicle A having the lowest density value by referring to the reference region R set in this way. It is possible to calculate an exposure amount such that an image is captured with a proper density value, and to set an exposure condition D4 that satisfies the exposure amount. Accordingly, the tire detection unit 203 can detect the presence or absence of a tread pattern based on the image D7 and determine whether or not the tire T is included in the image D7.
  • the tire determination unit 204 measures the tire diameter and the tire width of the vehicle based on the image D7 captured by the imaging unit.
  • the tire determination unit 204 pays attention to the feature that the tire width of the double tire has a tire width that is approximately twice the tire width of the single tire, and determines the tire diameter and the tire width of the tire T included in the image D7. Based on this, it can be determined whether the tire T is a single tire or a double tire.
  • the vehicle detection unit 201 detects that the vehicle A has entered a predetermined imaging range based on the image D7 captured by the imaging unit 20A, and uses the vehicle detection information D10. Output.
  • An image D7 photographed at the time when the vehicle A enters a predetermined photographing range is photographed with the exposure condition D4a for vehicle detection set by the exposure condition setting unit 205.
  • the vehicle detection part 201 can detect easily that the vehicle A entered into the predetermined imaging
  • the exposure condition D4b capable of detecting the tire T of the vehicle A is set, and the image D7 captured by the imaging unit 20A is acquired based on the exposure condition D4b. Can do.
  • the tire determination unit 204 can determine the number of consecutive tires based on the image D7 taken in this way. For this reason, the vehicle type discriminating unit 10C can determine the usage fee of the vehicle A even if it is a toll booth where a space for installing a detection device for detecting information necessary for discriminating the vehicle type division D1 cannot be secured. Based on the number of consecutive tires D3 determined by the tire determination unit 204, the vehicle type division D1 can be determined.
  • the vehicle type identification device 10 includes the vehicle detector 10A
  • the vehicle detector 10A may be omitted, and the installation space and the installation cost of the vehicle type identification device 10 are reduced accordingly. Can be reduced. Even in this case, the vehicle detection unit 201 of the tire pattern determination device 20 can detect entry and passage of the vehicle.
  • the tire pattern determination device 20 receives the vehicle entry information D5 and the vehicle passage information D6 from the vehicle detector 10A, and sets the exposure condition D4 based on the vehicle entry information D5 and the vehicle passage information D6. Also good.
  • the photographing unit 20A may photograph a predetermined photographing range only during a period from when the vehicle entry information D5 is received until the vehicle passage information D6 is received, and until the vehicle entry information D5 is acquired. The setting of the exposure condition D4 by the exposure condition setting unit 205 becomes unnecessary.
  • the processing of the exposure condition setting unit 205 and the control of the photographing unit 20A by the photographing control unit 202 can be simplified. Further, the vehicle detection unit 201 may be omitted. Even with such a configuration, it is possible to obtain the same effects as those of the above-described embodiment.
  • the tire pattern determination device 20 may include two imaging units, an imaging unit for imaging the reference image D7a used for setting the exposure conditions, and an imaging unit for imaging the image D7 used for tire determination. Good. Even with such a configuration, it is possible to obtain the same effects as those of the above-described embodiment.
  • the vehicle type identification device 10 does not include the tread
  • the present invention is not limited to this.
  • the vehicle type identification device 10 may further include a tread. By acquiring information such as the number of axles from the tread board, it is possible to determine the vehicle type in consideration of the information.
  • the tire pattern discriminating device the vehicle type discriminating device, the tire pattern discriminating method and the program described above, the tire pattern discriminating apparatus, the tire pattern discriminating method, and the program can be installed regardless of the location conditions of the toll booth. The number of installations can be acquired without being affected by the shooting environment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Finance (AREA)
  • Traffic Control Systems (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

A tire pattern assessment device is provided with: an image-capturing unit for connecting prescribed photographing areas, including at least the lower part of the body of a traveling vehicle, and capturing an image; an image-capturing control unit for controlling the image-capturing unit; and a tire assessment unit for assessing the number of consecutively connected tires of the vehicle on the basis of an image of the vehicle image-capture by the image-capture unit.

Description

タイヤパターン判定装置、車種判別装置、タイヤパターン判定方法及びプログラムTire pattern determination device, vehicle type determination device, tire pattern determination method, and program
 本発明は、タイヤパターン判定装置、車種判別装置、タイヤパターン判定方法及びプログラムに関する。
 本願は、2015年3月11日に、日本に出願された特願2015-048427号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a tire pattern determination device, a vehicle type determination device, a tire pattern determination method, and a program.
This application claims priority on March 11, 2015 based on Japanese Patent Application No. 2015-048427 filed in Japan, the contents of which are incorporated herein by reference.
 有料道路等の料金所には、料金を収受するための料金収受設備が設けられている。このような料金収受設備は、利用者との間で料金の収受処理を行う料金自動収受機と、走行する車両の車種を判別する車種判別装置とを備えている。料金自動収受機は、車種判別装置によって判別された車種に応じた料金の収受を行う。 Toll booths such as toll roads are equipped with toll collection facilities for collecting tolls. Such a fee collection facility includes an automatic fee collection device that performs fee collection processing with a user, and a vehicle type determination device that determines a vehicle type of a traveling vehicle. The automatic toll collector collects a fee according to the vehicle type determined by the vehicle type determination device.
 このような料金収受設備において、例えば、特許文献1に開示される車種判別装置は、走行する車両の車高や車長等(形状パターン)を取得する車両検知器と、車両のタイヤによる踏付けを検出する踏板と、を有し、上記車両検知器及び踏板を通じて得られる各種情報に基づいて、当該車両の車種の判別を行っている。
 また、特許文献2に開示される車種判別装置は、斜め前方から撮影された車両の撮影画像データから車両全体のシルエット画像を生成して、当該シルエット画像より、当該車両全体の形状と、当該車両のタイヤパターン(1つの車軸の片側に取り付けられたタイヤが2つであるダブルか、1つの車軸の片側に取り付けられたタイヤが1つであるシングルか)とを検出し、当該車両の車種の判別を行っている。
In such a toll collection facility, for example, the vehicle type identification device disclosed in Patent Document 1 is a vehicle detector that obtains the height, length, etc. (shape pattern) of a traveling vehicle, and is stepped on by a tire of the vehicle. The vehicle type of the vehicle is determined based on various information obtained through the vehicle detector and the tread.
Further, the vehicle type identification device disclosed in Patent Document 2 generates a silhouette image of the entire vehicle from captured image data of the vehicle captured obliquely from the front, and the shape of the entire vehicle and the vehicle from the silhouette image. Tire pattern (whether double with two tires attached to one side of one axle or single with one tire attached to one side of one axle) Discriminating.
 ところで、通常の料金所において、料金自動収受機は、利用者との料金収受処理を行う時点で、利用料金を確定しておく必要があるため、車両の運転席が料金自動収受機に到達する前の段階で、車種判別装置による車種の判別結果を取得していなければならない。
 ここで、車両の通行中において当該車両のタイヤが踏板を踏み付けた回数を検出することにより、当該車両の車軸数を取得することができる。しかしながら、車種判別のための情報の一つとして車軸数を用いる場合には、車両の運転席が料金自動収受機に到達する前の段階で、対象となる車両の全てのタイヤが踏板を通過している必要がある。そのため、通常の料金所においては、通行する車両の最大車長(例えば18m)を考慮して、車種判別装置と料金自動収受機との間が少なくとも最大車長以上となるように配置されている。
By the way, at a normal toll booth, the toll collector must determine the usage fee at the time of the toll collection process with the user, so the driver's seat of the vehicle reaches the toll collector. In the previous stage, the vehicle type discrimination result by the vehicle type discrimination device must be acquired.
Here, the number of axles of the vehicle can be acquired by detecting the number of times the tire of the vehicle has stepped on the treadle while the vehicle is passing. However, when the number of axles is used as one piece of information for identifying the vehicle type, all the tires of the target vehicle pass through the treadle before the driver's seat reaches the toll collector. Need to be. For this reason, in a normal toll booth, the maximum vehicle length (for example, 18 m) of a passing vehicle is taken into consideration so that the distance between the vehicle type identification device and the automatic toll collector is at least the maximum vehicle length or more. .
特開平8-235487号公報JP-A-8-235487 特開2014-002534号公報JP 2014-002534 A
 しかしながら、例えば、高架橋上等に設けられている料金所では、路面に踏板を埋設することが困難な場合がある。この場合、上述のような踏板を利用した車種判別装置を設置することができない。このため、車両の車高や車長等の情報のみで車種の判別を行わなければならないが、車高や車長等が類似した車両については、車種の判別を行うための情報が不足し、車種の判別が正しく行えない可能性がある。
 また、踏板を埋設することが可能な料金所であっても、料金所の設置スペースの都合上、車種判別装置と料金自動収受機との距離を最大車長以上確保することが困難な場合がある。この場合、車種判別装置と料金自動収受機との距離よりも車長が長い車両は、すべてのタイヤが踏板を通過する前に、車両の運転席が料金自動収受機に到達してしまう。このため、車種判別装置は、タイヤ幅、車軸数、トレッド幅等の情報の取得が完了する前に車種の判別を行わなければならないため、車長の長い車両については、車種の判別を行うための情報が不足し、車種の判別が正しく行えない可能性がある。
 このように、車種の判別を行うための情報を、踏板より取得することが困難な立地条件を有する料金所においては、車種の判別が正しく行えない可能性がある。
 更に、上述のように車両の撮影画像データから車両全体のシルエット画像を生成する場合、当該車両のタイヤは、当該車両の車体の下方に配置されているため当該車両の車体の影に覆われてしまう。また、夜間等の撮影環境下では撮影画像データ全体が暗くなり、タイヤと車体及び車体の影との識別が困難な場合がある。このため、車種の判別を行うために必要な情報である、タイヤパターンを取得することが困難となり、車種の判別が正しく行えない可能性がある。
However, for example, in a toll gate provided on a viaduct or the like, it may be difficult to embed treads on the road surface. In this case, it is not possible to install a vehicle type discriminating device using the tread as described above. For this reason, the vehicle type must be determined only by information such as the vehicle height and the length of the vehicle, but for vehicles with similar vehicle height and length, there is not enough information to determine the vehicle type, The vehicle type may not be correctly identified.
Even if the toll booth can embed treads, it may be difficult to secure the distance between the vehicle type discriminating device and the automatic toll collector beyond the maximum vehicle length due to the installation space of the toll booth. is there. In this case, for a vehicle having a vehicle length longer than the distance between the vehicle type identification device and the automatic toll collector, the driver's seat of the vehicle reaches the toll collector before all the tires pass through the tread. For this reason, the vehicle type determination device must determine the vehicle type before the acquisition of information such as the tire width, the number of axles, and the tread width is completed. Therefore, the vehicle type is determined for a vehicle with a long vehicle length. There is a possibility that the vehicle type is not correctly identified due to lack of information.
Thus, there is a possibility that the vehicle type cannot be correctly determined at a toll gate having a location condition where it is difficult to obtain information for determining the vehicle type from the tread.
Further, when generating the silhouette image of the entire vehicle from the captured image data of the vehicle as described above, the tire of the vehicle is disposed below the vehicle body of the vehicle and is therefore covered by the shadow of the vehicle body of the vehicle. End up. In addition, under the shooting environment such as at night, the entire captured image data becomes dark, and it may be difficult to distinguish the tire from the vehicle body and the shadow of the vehicle body. For this reason, it is difficult to acquire a tire pattern, which is information necessary for determining the vehicle type, and there is a possibility that the vehicle type cannot be correctly determined.
 本発明は、このような課題に鑑みてなされたものであって、料金所の立地条件に関わらず設置が可能であり、車種の判別に必要な情報の一つであるタイヤの連設数を撮影環境に影響されずに取得することができるタイヤパターン判別装置、車種判別装置、タイヤパターン判別方法及びプログラムを提供する。 The present invention has been made in view of such problems, and can be installed regardless of the location conditions of the toll booth. The number of consecutive tires, which is one of the information necessary for discriminating the vehicle type, is determined. Provided are a tire pattern discriminating device, a vehicle type discriminating device, a tire pattern discriminating method, and a program that can be acquired without being affected by the shooting environment.
 本発明の一態様によれば、タイヤパターン判定装置は、走行する車両(A)の少なくとも車体の下方を含む所定の撮影範囲を連続して撮影する撮影部(20A)と、前記所定の撮影範囲に前記車両が進入したことを示す車両検知情報(D5、D10)に基づいて、前記撮影部により所定の撮影タイミングで撮影された画像(D7)を参照画像(D7a)として抽出し、当該参照画像内に設定された参照領域(R)を参照して、露光条件を設定する露光条件設定部(205)と、前記撮影部が撮影した前記車両の画像に基づいて、当該車両のタイヤ(T)の連設数(D3)を判定するタイヤ判定部(204)と、を備える。前記撮影部は、前記露光条件設定部において設定された前記露光条件に基づいて前記車両を撮影する。 According to one aspect of the present invention, the tire pattern determination device includes a photographing unit (20A) that continuously photographs a predetermined photographing range including at least the lower part of the vehicle body of the traveling vehicle (A), and the predetermined photographing range. Based on vehicle detection information (D5, D10) indicating that the vehicle has entered the vehicle, an image (D7) photographed at a predetermined photographing timing by the photographing unit is extracted as a reference image (D7a), and the reference image An exposure condition setting unit (205) for setting an exposure condition with reference to the reference region (R) set in the vehicle, and a tire (T) of the vehicle based on the vehicle image captured by the imaging unit. A tire determination unit (204) for determining the number of continuous connections (D3). The photographing unit photographs the vehicle based on the exposure condition set in the exposure condition setting unit.
 このような構成とすることで、タイヤパターン判定装置は、露光条件設定部において、撮影部が所定の撮影タイミングで撮影した車両の画像を参照画像として抽出し、当該参照画像内に設定された参照領域を参照して、露光条件を設定する。撮影部は、当該露光条件に基づいて当該車両を撮影する。タイヤ判定部は、当該画像に基づいて、当該車両のタイヤの連設数を判定する。なお、車両の車体とは、タイヤ以外の車両の部位を示す。また、タイヤの連設数とは、車両の一箇所の取り付け位置(一つの車軸における片側の取り付け位置)において連なって設けられているタイヤの本数を示している。
 通常、車両を撮影した場合、当該車両のタイヤは、当該車両の車体の影等に入り、濃度値が低い(暗い)状態で撮影される。なお、撮影された画像の「濃度値」とは、明るいほど高く、暗いほど低いものとして定義する。このため、このように暗い状態で撮影された車両の画像では、当該車両のタイヤと、当該車両の車体及び車体の影とを識別することが困難である。しかしながら、上述のタイヤパターン判定装置によれば、露光条件設定部が参照領域に基づいて露光条件を設定することにより、撮影部は、通常暗い状態で撮影される車両のタイヤを、明るい状態で撮影することが可能となる。これにより、タイヤ判定部は、撮影部により撮影された画像に基づいて、当該車両Aのタイヤを検出し、当該タイヤの連設数を判定することが可能となる。
 また、上述のタイヤパターン判定装置は、車種の判別に必要な情報の一つであるタイヤの連設数を判定することができる。このため、車種の判別に必要な情報を検出する検出用装置を路面に埋設できない又は設置するスペースが十分確保できない料金所等、立地条件に制限があり、検出用装置からの情報が十分得られない料金所であっても、タイヤパターン判定装置を設置することが可能であり、当該タイヤパターン判定装置が判定したタイヤの連設数に基づいて車種判別を行うことが可能となる。
With such a configuration, the tire pattern determination device extracts, in the exposure condition setting unit, a vehicle image captured by the imaging unit at a predetermined imaging timing as a reference image, and the reference set in the reference image The exposure condition is set with reference to the area. The photographing unit photographs the vehicle based on the exposure condition. The tire determination unit determines the number of consecutive tires of the vehicle based on the image. The vehicle body refers to a part of the vehicle other than the tire. Further, the number of consecutive tires indicates the number of tires that are continuously provided at one attachment position of the vehicle (one attachment position on one axle).
Normally, when a vehicle is photographed, the tires of the vehicle enter the shadow of the vehicle body of the vehicle and are photographed in a low (dark) density value state. The “density value” of the photographed image is defined as being higher as it is brighter and lower as it is darker. For this reason, it is difficult to discriminate the tire of the vehicle from the vehicle body and the shadow of the vehicle body in the image of the vehicle photographed in such a dark state. However, according to the tire pattern determination device described above, the exposure condition setting unit sets the exposure condition based on the reference region, so that the imaging unit captures the vehicle tire that is normally captured in a dark state in a bright state. It becomes possible to do. Accordingly, the tire determination unit can detect the tire of the vehicle A based on the image captured by the imaging unit and determine the number of consecutive tires.
Further, the tire pattern determination device described above can determine the number of consecutive tires that is one piece of information necessary for determining the vehicle type. For this reason, there are restrictions on location conditions such as toll booths that cannot embed detection devices that detect information necessary for vehicle type identification on the road surface, or where sufficient space for installation cannot be secured, and sufficient information can be obtained from the detection devices. Even if there is no toll gate, it is possible to install a tire pattern determination device, and it is possible to perform vehicle type determination based on the number of consecutive tires determined by the tire pattern determination device.
 本発明の一態様によれば、前記露光条件設定部は、前記所定のタイミングで前記車両が撮影されたときに、当該車両の車体の下方を含む範囲を前記参照領域に設定し、当該参照領域を参照して前記露光条件を設定する。 According to an aspect of the present invention, the exposure condition setting unit sets a range including a lower part of a vehicle body of the vehicle as the reference region when the vehicle is photographed at the predetermined timing. The exposure conditions are set with reference to FIG.
 このような構成とすることで、露光条件設定部は、前記所定のタイミングで車両が撮影されたときに、当該車両の車体の下方を含む範囲を参照領域に設定し、当該参照領域を参照して露光条件を設定する。
 車両の車体の下方を含む範囲は、車両を撮影した際に最も濃度値が低くなる(暗くなる)範囲である。露光条件設定部は、当該範囲を含む参照領域を参照することにより、最も濃度値が低くなる範囲に合わせた露光条件を設定することができる。これにより、撮影部は、車両のタイヤを検出可能な濃度値で撮影することが可能となる。これにより、タイヤ判定部は、撮影部により撮影された画像に基づいて、当該車両のタイヤを検出し、当該タイヤの連設数を判定することが可能となる。
With such a configuration, when the vehicle is photographed at the predetermined timing, the exposure condition setting unit sets a range including the lower part of the vehicle body of the vehicle as a reference region, and refers to the reference region. To set the exposure conditions.
The range including the lower part of the vehicle body is a range where the density value is lowest (darkens) when the vehicle is photographed. The exposure condition setting unit can set the exposure condition according to the range where the density value is lowest by referring to the reference area including the range. As a result, the photographing unit can photograph the vehicle tire with a detectable density value. Accordingly, the tire determination unit can detect the tire of the vehicle based on the image captured by the imaging unit and determine the number of consecutive tires.
 本発明の一態様によれば、前記タイヤ判定部は、前記画像に基づいて前記車両のタイヤ径及びタイヤ幅を計測し、当該タイヤ径及びタイヤ幅に基づいて、当該タイヤの連設数を判定する。 According to an aspect of the present invention, the tire determination unit measures the tire diameter and the tire width of the vehicle based on the image, and determines the number of consecutive tires based on the tire diameter and the tire width. To do.
 このような構成とすることで、タイヤ判定部は、撮影部が撮影した画像に基づいて車両のタイヤ径及びタイヤ幅を計測する。また、タイヤ判定部は、当該タイヤ径及びタイヤ幅に基づいて、当該タイヤの連設数を判定する。
 タイヤ幅はタイヤの連設数に応じて異なっており、例えばタイヤの連設数が「2」のタイヤ幅は、タイヤの連設数が「1」のタイヤの約2倍のタイヤ幅を有している。タイヤ判定部は、当該タイヤ幅の特徴に着目することにより、検出したタイヤ幅に基づいて、当該タイヤの連設数を判定することができる。
By setting it as such a structure, a tire determination part measures the tire diameter and tire width of a vehicle based on the image which the imaging | photography part image | photographed. The tire determination unit determines the number of consecutive tires based on the tire diameter and the tire width.
The tire width varies depending on the number of consecutive tires. For example, a tire width of “2” is about twice as large as that of a “1” tire. is doing. The tire determination unit can determine the number of consecutive tires based on the detected tire width by paying attention to the characteristics of the tire width.
 本発明の一態様によれば、タイヤパターン判定装置は、前記画像に基づいて前記所定の撮影範囲に前記車両が進入したことを検知し、前記車両検知情報(D10)を出力する車両検出部(201)を更に備える。 According to one aspect of the present invention, the tire pattern determination device detects that the vehicle has entered the predetermined shooting range based on the image, and outputs the vehicle detection information (D10). 201).
 このような構成とすることで、車両検出部は、撮影部が撮影した画像に基づいて所定の撮影範囲に車両が進入したことを検知し、車両検知情報を出力する。このため、車両が料金所に進入する前であっても、車両検出部により車両が所定の撮影範囲に進入したことを検知することができる。これにより、車両が料金所に進入する前に、当該車両のタイヤを検出可能な露光条件を設定し、当該露光条件に基づいて撮影部が撮影した画像を取得することができる。タイヤパターン判定装置は、このように撮影された画像に基づいて、タイヤの連設数を判定することができる。このため、車種の判別に必要な情報を検出する検出用装置を設置するスペースが十分確保できない料金所であっても、車両の利用料金を確定する前に、タイヤパターン判定装置が判定したタイヤの連設数に基づいて車種判別を行うことが可能となる。 With this configuration, the vehicle detection unit detects that the vehicle has entered the predetermined shooting range based on the image shot by the shooting unit, and outputs vehicle detection information. For this reason, even before the vehicle enters the toll gate, the vehicle detection unit can detect that the vehicle has entered the predetermined shooting range. Thereby, before the vehicle enters the toll gate, it is possible to set an exposure condition capable of detecting the tire of the vehicle and acquire an image photographed by the photographing unit based on the exposure condition. The tire pattern determination device can determine the number of consecutive tires based on the image thus captured. For this reason, even at a toll gate where there is not enough space to install a detection device for detecting information necessary for discriminating the vehicle type, the tire pattern determining device determines the tire determined before determining the vehicle usage fee. It becomes possible to perform vehicle type discrimination based on the number of continuous installations.
 本発明の一態様によれば、タイヤパターン判定装置は、前記所定の撮影範囲に前記車両が進入したことを検知して前記車両検知情報(D5)を出力する車両検知器(10A)を更に備える。 According to one aspect of the present invention, the tire pattern determination device further includes a vehicle detector (10A) that detects that the vehicle has entered the predetermined imaging range and outputs the vehicle detection information (D5). .
 このような構成とすることで、車両検知器は、所定の撮影範囲に車両が進入したことを検知して、車両検知情報を出力する。これにより、撮影部は、車両検知情報を受信してから所定の範囲の撮影を行えばよく、車両検知情報を取得するまでは、露光条件設定部による露光条件の設定が不要となる。このため、露光条件設定部の処理及び撮影部の制御を簡易化することができる。 With this configuration, the vehicle detector detects that the vehicle has entered the predetermined shooting range and outputs vehicle detection information. Thereby, the imaging unit may perform imaging within a predetermined range after receiving the vehicle detection information, and it is not necessary to set the exposure condition by the exposure condition setting unit until the vehicle detection information is acquired. For this reason, the processing of the exposure condition setting unit and the control of the photographing unit can be simplified.
 本発明の一態様によれば、車種判別装置は、上述の何れか一の態様に記載のタイヤパターン判定装置と、前記タイヤパターン判定装置により判定された前記車両の前記タイヤの連設数に基づいて車種を判別する車種判別部(10C)とを備える。 According to one aspect of the present invention, a vehicle type determination device is based on the tire pattern determination device according to any one of the above-described aspects and the number of consecutive tires of the vehicle determined by the tire pattern determination device. A vehicle type discriminating unit (10C) for discriminating the vehicle type.
 本発明の一態様によれば、走行する車両の少なくとも車体の下方を含む所定の撮影範囲を連続して撮影する撮影部を用いて前記車両のタイヤの連設数を判定するタイヤパターン判定方法は、前記所定の撮影範囲に前記車両が進入したことを示す車両検知情報に基づいて、前記撮影部により所定の撮影タイミングで撮影された画像を参照画像として抽出し、当該参照画像内に設定された参照領域を参照して、露光条件を設定する露光条件設定ステップと、前記撮影部により、前記露光条件設定ステップにおいて設定された前記露光条件に基づいて前記車両を撮影する撮影ステップと、前記撮影部が撮影した前記車両の画像に基づいて、当該車両のタイヤの連設数を判定するタイヤ判定ステップと、を有する。 According to one aspect of the present invention, there is provided a tire pattern determination method for determining the number of consecutive tires of a vehicle by using a photographing unit that continuously photographs a predetermined photographing range including at least a lower part of the vehicle body of the traveling vehicle. Based on vehicle detection information indicating that the vehicle has entered the predetermined shooting range, an image shot at a predetermined shooting timing by the shooting unit is extracted as a reference image and set in the reference image An exposure condition setting step for setting an exposure condition with reference to a reference area, a shooting step for shooting the vehicle based on the exposure condition set in the exposure condition setting step by the shooting unit, and the shooting unit And a tire determination step of determining the number of consecutive tires of the vehicle based on the image of the vehicle taken by the vehicle.
 本発明の一態様によれば、プログラムは、走行する車両の少なくとも車体の下方を含む所定の撮影範囲を連続して撮影する撮影部を備えるタイヤパターン判定装置のコンピュータを、前記所定の撮影範囲に前記車両が進入したことを示す車両検知情報に基づいて、前記撮影部により所定の撮影タイミングで撮影された画像を参照画像として抽出し、当該参照画像内に設定された参照領域を参照して、露光条件を設定する露光条件設定部、前記撮影部が撮影した前記車両の画像に基づいて、当該車両のタイヤの連設数を判定するタイヤ判定部、として機能させ、前記撮影部は、前記露光条件設定部において設定された前記露光条件に基づいて前記車両を撮影する。 According to an aspect of the present invention, the program sets a computer of a tire pattern determination device including a photographing unit that continuously photographs a predetermined photographing range including at least a lower part of a vehicle of a traveling vehicle as the predetermined photographing range. Based on vehicle detection information indicating that the vehicle has entered, an image captured by the imaging unit at a predetermined imaging timing is extracted as a reference image, and a reference region set in the reference image is referred to. An exposure condition setting unit that sets an exposure condition, and a tire determination unit that determines the number of consecutive tires of the vehicle based on an image of the vehicle captured by the imaging unit. The vehicle is photographed based on the exposure condition set in the condition setting unit.
 上述のタイヤパターン判別装置、車種判別装置、タイヤパターン判別方法及びプログラムによれば、料金所の立地条件に関わらず設置が可能であり、車種の判別に必要な情報の一つであるタイヤの連設数を撮影環境に影響されずに取得することができる。 According to the tire pattern discriminating device, the vehicle type discriminating device, the tire pattern discriminating method and the program described above, the tire pattern discriminating apparatus, the tire pattern discriminating method, and the program can be installed regardless of the location conditions of the toll booth. The number of installations can be acquired without being affected by the shooting environment.
本発明の第1の実施形態に係る料金収受設備の概略図である。It is the schematic of the fee collection equipment which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る車種判別装置の概略図である。1 is a schematic diagram of a vehicle type identification device according to a first embodiment of the present invention. 本発明の第1の実施形態に係る車種判別装置のブロック図である。1 is a block diagram of a vehicle type identification device according to a first embodiment of the present invention. 本発明の第1の実施形態に係る撮影部が撮影した画像の例である。It is an example of the image image | photographed by the imaging | photography part which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る撮影部が撮影した画像の参照領域の例を示す図であり、露光調整前の参照領域を示す例、及び、露光調整後の参照領域を示す例である。It is a figure which shows the example of the reference area of the image image | photographed by the imaging | photography part which concerns on the 1st Embodiment of this invention, and is the example which shows the reference area before exposure adjustment, and the example which shows the reference area after exposure adjustment. . 本発明の第1の実施形態に係るタイヤパターンの判定手順を示すフローチャートである。It is a flowchart which shows the determination procedure of the tire pattern which concerns on the 1st Embodiment of this invention. タイヤパターン判定装置のハードウェア構成の例を示す図である。It is a figure which shows the example of the hardware constitutions of a tire pattern determination apparatus.
<第1の実施形態>
(全体構成)
 以下、本発明の第1の実施形態に係る料金収受設備1について図面を参照して説明する。
 図1は第1の実施形態に係る料金収受設備1の概略図である。
 本実施形態において、料金収受設備1は、図1に示すように有料道路の出口料金所に設置され、有料道路の利用者である車両Aの運転者から利用料金を収受する。
<First Embodiment>
(overall structure)
Hereinafter, a fee collection facility 1 according to a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram of a toll collection facility 1 according to the first embodiment.
In this embodiment, the toll collection facility 1 is installed at a toll road exit toll gate as shown in FIG. 1, and collects a toll from the driver of the vehicle A who is a toll road user.
 本実施形態における料金収受設備1は、図1に示すように、車種判別装置10と、料金自動収受機11と、発進制御機13と、発進検知器14とを備えている。
 料金収受設備1は、車線Lの両側部に配置されたアイランドI上に設けられ、車線L上に停止した車両Aとの間で料金収受処理を行うための設備である。
 以降の説明において、車線Lに沿う方向を車線方向(図1におけるX方向)と称する。また、車線L上で車両Aが進む方向側(図1における+X側)を車線方向奥側と称し、車両Aが進む方向側とは反対側(図1における-X側)を車線方向手前側と称する。更に、車線Lの車線方向と水平面上において直角を成す方向を幅方向(図1におけるY方向)と称し、車両Aの車高方向(路面に対して鉛直な方向)を高さ方向(図1におけるZ方向)と称する。
As shown in FIG. 1, the toll collection facility 1 in the present embodiment includes a vehicle type discriminating device 10, an automatic toll collection device 11, a start controller 13, and a start detector 14.
The toll collection facility 1 is a facility that is provided on the islands I arranged on both sides of the lane L and performs toll collection processing with the vehicle A stopped on the lane L.
In the following description, the direction along the lane L is referred to as the lane direction (X direction in FIG. 1). In addition, the direction in which the vehicle A travels on the lane L (the + X side in FIG. 1) is referred to as the rear side in the lane direction, and the side opposite to the direction in which the vehicle A travels (the −X side in FIG. 1) is the front side in the lane direction. Called. Further, a direction perpendicular to the lane direction of the lane L on the horizontal plane is referred to as a width direction (Y direction in FIG. 1), and a vehicle height direction (a direction perpendicular to the road surface) of the vehicle A is a height direction (FIG. 1). Z direction).
 車種判別装置10は、図1に示すように、車線方向手前側(図1における-X側)に設けられ、料金所の車線Lに進入する車両Aの車両特徴を検出して、当該車両Aの車種区分D1(図3)を判別するための装置群である。本実施形態において、車種判別装置10は、車両検知器10Aと、ナンバープレート認識部10Bと、タイヤパターン判定装置20と、を備えている。
 ここで、車両Aの車種区分D1とは、有料道路の料金を決定するための車種を示すものであり、本実施形態に係る車種判別装置10は、例えば、「軽自動車等」、「普通車」、「中型車」、「大型車」、「特大車」の五つの区分を判別する。また、車両Aの車両特徴とは、車線Lに進入する車両A固有の情報である。本実施形態において、車両特徴は、車両Aのナンバープレート情報(車両登録情報及びナンバープレートの大きさ)や、タイヤの連設数等の情報を示す。なお、タイヤの連設数とは、車両Aの一箇所の取り付け位置(一つの車軸における片側の取り付け位置)に連なって設けられているタイヤの本数を示している。本実施形態においては、一つの取り付け位置に一本のタイヤTが取り付けられている(連設数が「1」である)シングルタイヤと、一つの取り付け位置に二本のタイヤが取り付けられている(連設数が「2」である)ダブルタイヤとが存在する。
 車種判別装置10は、これら車両特徴に基づいて、車種区分D1の判別を行う装置である。なお、車種判別装置10の備える車両検知器10A、ナンバープレート認識部10B及びタイヤパターン判定装置20の具体的な構成については、図2及び図3を参照して後述する。
As shown in FIG. 1, the vehicle type discriminating apparatus 10 is provided on the front side in the lane direction (−X side in FIG. 1), detects the vehicle characteristics of the vehicle A entering the lane L of the toll gate, and detects the vehicle A This is a device group for discriminating the vehicle type division D1 (FIG. 3). In the present embodiment, the vehicle type identification device 10 includes a vehicle detector 10A, a license plate recognition unit 10B, and a tire pattern determination device 20.
Here, the vehicle type classification D1 of the vehicle A indicates a vehicle type for determining the toll for the toll road, and the vehicle type identification device 10 according to the present embodiment is, for example, “light vehicle etc.”, “ordinary vehicle” ”,“ Medium-sized vehicle ”,“ Large-sized vehicle ”, and“ Extra-large vehicle ”. The vehicle feature of the vehicle A is information unique to the vehicle A entering the lane L. In the present embodiment, the vehicle feature indicates information such as the license plate information of the vehicle A (vehicle registration information and the size of the license plate), the number of consecutive tires, and the like. Note that the number of consecutive tires indicates the number of tires provided continuously to one attachment position of the vehicle A (one-side attachment position on one axle). In the present embodiment, one tire T is attached at one attachment position (the number of consecutively connected is “1”), and two tires are attached at one attachment position. There is a double tire (the number of consecutive installations is “2”).
The vehicle type discrimination device 10 is a device that discriminates the vehicle type division D1 based on these vehicle characteristics. Note that specific configurations of the vehicle detector 10A, the license plate recognition unit 10B, and the tire pattern determination device 20 included in the vehicle type determination device 10 will be described later with reference to FIGS.
 料金自動収受機11は、図1に示すように、車種判別装置10よりも車線方向奥側(図1における+X側)に設けられている。また、料金自動収受機11は、本実施形態においては、車線Lの幅方向一方側(図1における-Y側)に設けられているが、他の実施形態においては、車線Lの幅方向他方側(図1における+Y側)に設けられていてもよい。
 料金自動収受機11は、車両Aの車種区分D1と、有料道路の走行距離とに応じた利用料金を、車両Aの運転者に課金する。
As shown in FIG. 1, the automatic toll collector 11 is provided on the far side in the lane direction (+ X side in FIG. 1) from the vehicle type discriminating device 10. The automatic toll collector 11 is provided on one side in the width direction of the lane L (−Y side in FIG. 1) in the present embodiment, but in the other embodiments, the other in the width direction of the lane L is provided. It may be provided on the side (+ Y side in FIG. 1).
The automatic toll collector 11 charges the driver of the vehicle A with a usage fee according to the vehicle type classification D1 of the vehicle A and the travel distance of the toll road.
 発進制御機13は、車線Lに進入した車両Aの利用料金の収受が完了するまで、車両Aを発進させないようにする等の目的で、ゲートの開放及び閉塞を行う。図1に示すように、発進制御機13は、車線Lにおける料金自動収受機11よりも車線方向奥側(図1における+X側)に設けられている。発進制御機13は、料金自動収受機11から開動作指示信号が入力された際にゲートを開き、車両Aに対して発進を許可する。同様に、発進制御機13は、料金自動収受機11から閉動作指示信号が入力された際にゲートを閉じる。 The start controller 13 opens and closes the gate for the purpose of preventing the vehicle A from starting until the usage fee of the vehicle A entering the lane L is collected. As shown in FIG. 1, the start controller 13 is provided on the far side in the lane direction (+ X side in FIG. 1) with respect to the automatic toll collector 11 in the lane L. The start controller 13 opens the gate when the opening operation instruction signal is input from the automatic toll collector 11 and permits the vehicle A to start. Similarly, the start controller 13 closes the gate when a closing operation instruction signal is input from the automatic toll collector 11.
 発進検知器14は、車線Lにおける発進制御機13よりも車線方向奥側(図1における+X側)に設けられ、車両Aが車線Lから退出したかどうかを検出する。発進検知器14の検出信号は、料金自動収受機11へ出力される。料金自動収受機11は、発進検知器14からの検出信号の入力を受け付けると、後続の収受処理済み車両の有無等を判断して、ゲートを閉じるために発進制御機13に閉動作指示信号を出力するか、ゲートを開いたままとするか等の制御を行う。 The start detector 14 is provided on the rear side in the lane direction (+ X side in FIG. 1) with respect to the start controller 13 in the lane L, and detects whether the vehicle A has left the lane L. The detection signal from the start detector 14 is output to the automatic toll collector 11. Upon receipt of the detection signal from the start detector 14, the automatic toll collector 11 determines whether there is a subsequent toll collection vehicle and sends a closing operation instruction signal to the start controller 13 to close the gate. Controls whether to output or keep the gate open.
(車種判別装置の構成)
 次に、車種判別装置の構成について、図2及び図3を参照して説明する。
 図2は本発明の第1の実施形態に係る車種判別装置10の概略図である。
 図3は本発明の第1の実施形態に係る車種判別装置10のブロック図である。
(Configuration of vehicle type identification device)
Next, the configuration of the vehicle type identification device will be described with reference to FIGS.
FIG. 2 is a schematic diagram of the vehicle type identification device 10 according to the first exemplary embodiment of the present invention.
FIG. 3 is a block diagram of the vehicle type identification device 10 according to the first exemplary embodiment of the present invention.
 図2に示すように、車種判別装置10は、車両検知器10Aと、ナンバープレート認識部10Bと、タイヤパターン判定装置20と、を備えている。また、車種判別装置10は、これらの装置が検出する信号に基づいて、車両Aの車種区分D1を判別するための車種判別部10Cを更に備えている。
 なお、本実施形態において、車種判別部10Cが車種判別装置10(例えば図2に示すように車両検知器10A)に内蔵されている態様で説明するが、この態様に限定されない。例えば、他の実施形態においては、車種判別部10Cがネットワーク上に接続された車種判別装置10以外の装置に内蔵されていてもよい。
As shown in FIG. 2, the vehicle type identification device 10 includes a vehicle detector 10 </ b> A, a license plate recognition unit 10 </ b> B, and a tire pattern determination device 20. The vehicle type determination device 10 further includes a vehicle type determination unit 10C for determining the vehicle type classification D1 of the vehicle A based on signals detected by these devices.
In the present embodiment, the vehicle type discriminating unit 10C is described as being built in the vehicle type discriminating apparatus 10 (for example, the vehicle detector 10A as shown in FIG. 2), but is not limited to this mode. For example, in another embodiment, the vehicle type determination unit 10C may be incorporated in a device other than the vehicle type determination device 10 connected on the network.
 図2に示すように、車両検知器10Aは、料金自動収受機11よりも車線方向手前側(図2における-X側)において、車線Lの両側に投受光一対設けられている。車両検知器10Aは、高さ方向(図2におけるZ方向)に配列された不図示の受光センサにより、車両Aの車線Lへの進入に応じた検出信号を車種判別部10Cへ出力する。車両検知器10Aは、車線Lに進入した車両Aが受光センサに投光される光を遮ることで、車両A一台ごとの進入及び通過を検出可能な検出信号を車種判別部10Cへ出力する。具体的には、車両検知器10Aは、図3に示すように、車両Aが車線Lに進入したことを検出可能な検出信号を車両進入情報D5(車両検知情報)として車種判別部10Cへ出力し、車両Aが車両検知器10Aを通過したことを検出可能な検出信号を車両通過情報D6として車種判別部10Cへ出力する。 As shown in FIG. 2, the vehicle detector 10A is provided with a pair of light emitting and receiving light on both sides of the lane L on the lane direction front side (−X side in FIG. 2) of the automatic toll collector 11. 10 A of vehicle detectors output the detection signal according to the approach to the lane L of the vehicle A to the vehicle type discrimination | determination part 10C by the light receiving sensor not shown arranged in the height direction (Z direction in FIG. 2). 10 A of vehicle detectors output the detection signal which can detect the approach and passage for every vehicle A to the vehicle type discrimination | determination part 10C by intercepting the light with which the vehicle A which approached the lane L light-projected by a light reception sensor. . Specifically, as shown in FIG. 3, the vehicle detector 10A outputs a detection signal that can detect that the vehicle A has entered the lane L as vehicle entry information D5 (vehicle detection information) to the vehicle type determination unit 10C. Then, a detection signal that can detect that the vehicle A has passed the vehicle detector 10A is output to the vehicle type determination unit 10C as vehicle passage information D6.
 図2に示すように、ナンバープレート認識部10Bは、車両検知器10Aよりも車線方向奥側(図2における+X方向)に設けられている。ナンバープレート認識部10Bは、車両検知器10Aによる車両Aの進入検知に応じて、車両Aのナンバープレートを含む車両Aの前面画像を撮影し、車両Aのナンバープレート情報(車両登録情報及びナンバープレートの大きさ)を取得する。ナンバープレート認識部10Bは、図3に示すように、取得したナンバープレート情報を、ナンバープレート情報D2として車種判別部10Cへ出力する。 As shown in FIG. 2, the license plate recognition unit 10B is provided on the far side in the lane direction (+ X direction in FIG. 2) from the vehicle detector 10A. The license plate recognition unit 10B captures a front image of the vehicle A including the license plate of the vehicle A in response to the detection of the vehicle A by the vehicle detector 10A, and the license plate information of the vehicle A (vehicle registration information and license plate) The size). As shown in FIG. 3, the license plate recognition unit 10B outputs the acquired license plate information to the vehicle type determination unit 10C as license plate information D2.
 タイヤパターン判定装置20は、料金所の車線Lに進入する車両AのタイヤTの連設数D3を判定し、当該タイヤTの連設数D3を車種判別部10Cに出力する装置である。図2及び図3に示すように、タイヤパターン判定装置20は、撮影部20Aと、主制御部20Bと、記憶部20Cとを備えている。 The tire pattern determination device 20 is a device that determines the continuous number D3 of the tires T of the vehicle A entering the lane L of the toll gate and outputs the continuous number D3 of the tires T to the vehicle type determination unit 10C. As illustrated in FIGS. 2 and 3, the tire pattern determination device 20 includes a photographing unit 20A, a main control unit 20B, and a storage unit 20C.
 図2に示すように、撮影部20Aは、料金自動収受機11とは、車線Lを挟んで反対側のアイランドI上に設けられている。本実施形態においては、撮影部20Aは、車線Lの幅方向他方側(図2における+Y側)のアイランドI上に設けられているが、料金収受設備1の他の装置の配置に応じて、幅方向一方側(図2における-Y側)のアイランドI上に設けるようにしてもよい。 As shown in FIG. 2, the photographing unit 20A is provided on the island I on the opposite side of the lane L from the automatic toll collector 11. In the present embodiment, the photographing unit 20A is provided on the island I on the other side in the width direction of the lane L (the + Y side in FIG. 2), but depending on the arrangement of other devices in the toll collection facility 1, It may be provided on the island I on one side in the width direction (the −Y side in FIG. 2).
 また、撮影部20Aは、車両Aが路面上を走行している際に、車両検知器10Aよりも車線方向手前側(図2における-X側)に位置する当該車両Aの車体の下方を含む範囲を所定の撮影範囲として設定する。撮影部20Aは、当該所定の撮影範囲を撮影できるように設置されている。具体的には、撮影部20Aは、高さ方向(図2におけるZ方向)における位置が最低地上高(車両Aの設置面と車両Aの中央部分の最下部との距離)の約50%の高さとなるように設置されている。また、撮影部20Aは、車線方向に対して約45度傾斜して、車線方向手前側(図2における-X側)を向くように設置されている。
 撮影部20Aは、図3に示すように、所定の撮影範囲を一定の間隔で連続して撮影した画像D7を、主制御部20Bに出力する。
Further, the photographing unit 20A includes a lower part of the vehicle body of the vehicle A that is located on the near side in the lane direction (−X side in FIG. 2) than the vehicle detector 10A when the vehicle A is traveling on the road surface. The range is set as a predetermined shooting range. The photographing unit 20A is installed so that the predetermined photographing range can be photographed. Specifically, in the photographing unit 20A, the position in the height direction (Z direction in FIG. 2) is about 50% of the lowest ground height (the distance between the installation surface of the vehicle A and the lowermost portion of the central portion of the vehicle A). It is installed so that it becomes high. Further, the photographing unit 20A is installed so as to be inclined at about 45 degrees with respect to the lane direction and to face the front side in the lane direction (the −X side in FIG. 2).
As shown in FIG. 3, the photographing unit 20A outputs an image D7 obtained by continuously photographing a predetermined photographing range at a constant interval to the main control unit 20B.
 主制御部20Bは、撮影部20Aが撮影した画像D7に基づいて、車両AのタイヤTの連設数D3を判定する。
 なお、本実施形態において、主制御部20Bがタイヤパターン判定装置20(例えば図2に示すように撮影部20A)に内蔵されている態様で説明するが、この態様に限定されない。例えば、他の実施形態においては、主制御部20Bが車種判別装置10の他の装置(例えば車両検知器10A)に内蔵されていてもよいし、ネットワーク上に接続された車種判別装置10以外の装置に内蔵されていてもよい。
The main control unit 20B determines the number D3 of consecutive tires T of the vehicle A based on the image D7 captured by the imaging unit 20A.
In the present embodiment, the main control unit 20B is described as being built in the tire pattern determination device 20 (for example, the photographing unit 20A as shown in FIG. 2), but is not limited to this mode. For example, in other embodiments, the main control unit 20B may be built in another device (for example, the vehicle detector 10A) of the vehicle type determination device 10 or other than the vehicle type determination device 10 connected on the network. It may be built in the device.
 記憶部20Cは、タイヤパターンの判定を行うための情報を蓄積するための記憶デバイスである。本実施形態においては、記憶部20Cはタイヤパターン判定装置20に設けられているが、他の実施形態においては、記憶部20Cをネットワークで接続された外部サーバ等に設けてもよい。 The storage unit 20C is a storage device for accumulating information for determining a tire pattern. In the present embodiment, the storage unit 20C is provided in the tire pattern determination device 20, but in other embodiments, the storage unit 20C may be provided in an external server or the like connected via a network.
 車種判別部10Cは、車両検知器10Aから取得した車両進入情報D5及び車両通過情報D6と、ナンバープレート認識部10Bから取得したナンバープレート情報D2と、タイヤパターン判定装置20が判定したタイヤTの連設数D3と基づいて、車両Aの車種区分D1を判別する。 The vehicle type determination unit 10C includes vehicle entry information D5 and vehicle passage information D6 acquired from the vehicle detector 10A, license plate information D2 acquired from the license plate recognition unit 10B, and a series of tires T determined by the tire pattern determination device 20. Based on the installation number D3, the vehicle type division D1 of the vehicle A is determined.
(車種判別装置の機能)
 次に、車種判別装置10の機能について、図3から図5を参照して説明する。
 図4は本発明の第1の実施形態に係る撮影部20Aが撮影した画像D7の例である。
 図5は本発明の第1の実施形態に係る撮影部20Aが撮影した画像D7の参照領域Rの例を示す図であり、露光調整前の参照領域Rを示す例、及び、露光調整後の参照領域Rを示す例である。
(Function of vehicle type identification device)
Next, functions of the vehicle type identification device 10 will be described with reference to FIGS.
FIG. 4 is an example of an image D7 photographed by the photographing unit 20A according to the first embodiment of the present invention.
FIG. 5 is a diagram illustrating an example of the reference region R of the image D7 photographed by the photographing unit 20A according to the first embodiment of the present invention, an example showing the reference region R before exposure adjustment, and after exposure adjustment. It is an example which shows the reference area | region R.
 図3に示すように、車種判別装置10は、車両検知器10Aと、ナンバープレート認識部10Bと、車種判別部10Cと、タイヤパターン判定装置20とを備えている。
 車両検知器10Aは、車両Aが車線Lに進入したことを検出可能な車両進入情報D5と、車両Aが車両検知器10Aを通過したことを検出可能な車両通過情報D6とを車種判別部10Cへ出力する。
 また、ナンバープレート認識部10Bは、取得したナンバープレート情報D2を車種判別部10Cへ出力する。
As shown in FIG. 3, the vehicle type determination device 10 includes a vehicle detector 10 </ b> A, a license plate recognition unit 10 </ b> B, a vehicle type determination unit 10 </ b> C, and a tire pattern determination device 20.
10 A of vehicle detectors are vehicle type discrimination | determination part 10C using the vehicle approach information D5 which can detect that the vehicle A approached the lane L, and the vehicle passage information D6 which can detect that the vehicle A passed 10 A of vehicle detectors. Output to.
Further, the license plate recognition unit 10B outputs the acquired license plate information D2 to the vehicle type determination unit 10C.
 図3に示すように、タイヤパターン判定装置20は、撮影部20Aと、主制御部20Bと、記憶部20Cとを備えている。
 また、主制御部20Bは、車両検出部201と、撮影制御部202と、タイヤ検出部203と、タイヤ判定部204と、を有している。
As shown in FIG. 3, the tire pattern determination device 20 includes an imaging unit 20A, a main control unit 20B, and a storage unit 20C.
The main control unit 20 </ b> B includes a vehicle detection unit 201, a shooting control unit 202, a tire detection unit 203, and a tire determination unit 204.
 本実施形態において、撮影部20Aは、所定の撮影範囲を一定の間隔で連続して撮影した画像D7を出力する。車両検出部201は、撮影部20Aから受信した、異なる時刻に撮影された複数の画像D7のそれぞれについて、車両Aが含まれるか否かを判断する。例えば、車両検出部201は、既知の背景差分法やフレーム間差分法等を用いて、ある時刻tに撮影された画像D7と、当該画像D7に最も近い過去である時刻t-1に撮影された画像D7との差分をとり、変化のあった領域を検出する。車両検出部201は、変化のあった領域を移動物体であると判断する。また、車両検出部201は、各時刻に撮影された画像D7において、当該移動物体が画像D7のどの領域に存在するかを検出することにより、当該移動物体の移動量(移動方向及び速度)を検出する。車両検出部201は、連続する画像D7において所定の移動量を有する移動物体(例えば車線方向手前側から車線方向奥側に向かって移動する移動物体)が検出された場合、当該移動物体は車両Aであると判断する。また、連続する画像D7において、所定の移動量とは異なる移動量を有する移動物体(例えば車線幅方向に移動する移動物体)が検出された場合、当該移動物体は車両Aではないと判断する。
 なお、車両検出部201が検出する移動物体は、車両Aの車体やタイヤT、車体の影等であってもよい。
In the present embodiment, the photographing unit 20A outputs an image D7 obtained by continuously photographing a predetermined photographing range at a constant interval. The vehicle detection unit 201 determines whether or not the vehicle A is included for each of the plurality of images D7 received from the imaging unit 20A and captured at different times. For example, the vehicle detection unit 201 uses the known background subtraction method, interframe subtraction method, or the like to capture an image D7 taken at a certain time t and a time t-1 that is the past closest to the image D7. The difference from the image D7 is taken to detect the changed area. The vehicle detection unit 201 determines that the changed area is a moving object. Further, the vehicle detection unit 201 detects the moving amount (moving direction and speed) of the moving object by detecting in which area of the image D7 the moving object exists in the image D7 taken at each time. To detect. When a moving object having a predetermined movement amount (for example, a moving object moving from the front side in the lane direction toward the back side in the lane direction) is detected in the continuous image D7, the vehicle detection unit 201 detects that the moving object is the vehicle A It is judged that. Further, when a moving object having a movement amount different from the predetermined movement amount (for example, a moving object moving in the lane width direction) is detected in the continuous image D7, it is determined that the moving object is not the vehicle A.
The moving object detected by the vehicle detection unit 201 may be the vehicle body of the vehicle A, the tire T, the shadow of the vehicle body, or the like.
 車両検出部201は、図4に示すように、車両Aであると判断した移動物体が画像D7の参照領域Rに含まれるか否かを判断する。参照領域Rは、画像D7の一定の領域であって、例えば車両Aが所定の撮影範囲に進入した際に、当該車両Aの車体の下方が含まれる範囲である。
 車両検出部201は、車両Aであると判断した移動物体が当該参照領域Rの一定の領域に含まれたことを検出した場合、図3に示すように、撮影制御部202及びタイヤ検出部203へ車両検知情報D10を出力する。
As shown in FIG. 4, the vehicle detection unit 201 determines whether or not the moving object determined to be the vehicle A is included in the reference region R of the image D7. The reference region R is a certain region of the image D7, and is a range including the lower part of the vehicle body of the vehicle A when the vehicle A enters a predetermined imaging range, for example.
When the vehicle detection unit 201 detects that the moving object determined to be the vehicle A is included in a certain region of the reference region R, as illustrated in FIG. 3, the imaging control unit 202 and the tire detection unit 203 are included. The vehicle detection information D10 is output.
 また、車両検出部201は、画像D7の参照領域Rにおいて移動物体を検出しなくなった場合、車両Aが通過したと判断し、図3に示すように、撮影制御部202及びタイヤ検出部203へ車両退出情報D11を出力する。 Further, when the moving object is no longer detected in the reference region R of the image D7, the vehicle detecting unit 201 determines that the vehicle A has passed, and, as illustrated in FIG. 3, the vehicle detecting unit 201 proceeds to the photographing control unit 202 and the tire detecting unit 203. Vehicle exit information D11 is output.
 なお、車両検出部201は、同一の移動物体が所定の範囲の速度で移動していることを検出した場合、当該移動物体は車両Aであると判断してもよい。このとき、車両検出部201は、当該車両Aを画像D7の参照領域Rにおいて検出した場合、撮影制御部202及びタイヤ検出部203へ車両検知情報D10を出力するようにしてもよい。
 また、本実施形態において、車両検出部201は背景差分法やフレーム間差分法を用いる例について説明したが、車両Aの検出が可能であれば、他の方法を使用してもよい。
Note that the vehicle detection unit 201 may determine that the moving object is the vehicle A when detecting that the same moving object is moving at a speed within a predetermined range. At this time, when the vehicle A is detected in the reference region R of the image D7, the vehicle detection unit 201 may output the vehicle detection information D10 to the shooting control unit 202 and the tire detection unit 203.
Moreover, in this embodiment, although the vehicle detection part 201 demonstrated the example using a background difference method and the interframe difference method, if the detection of the vehicle A is possible, you may use another method.
 また、本実施形態において、図4に示すように所定の撮影範囲のうちの固定範囲を参照領域Rとして設定するが、これに限られることはない。例えば、管理者等の操作により参照領域Rを設定してもよい。また、車両検出部201が画像D7に車両Aが含まれると判断したときに、当該画像D7の車両Aの下方(当該車両Aと判断された領域のうちで最も濃度値が低い(暗い)領域)を自動的に判断し、当該車両Aの下方を含む範囲を参照領域Rとして設定するようにしてもよい。この場合、車両検出部201は、車両Aが所定の撮影範囲に含まれるか否かに応じて、車両検知情報D10及び車両退出情報D11を出力する。 In the present embodiment, as shown in FIG. 4, a fixed range of a predetermined shooting range is set as the reference region R, but the present invention is not limited to this. For example, the reference area R may be set by an operation of an administrator or the like. In addition, when the vehicle detection unit 201 determines that the image D7 includes the vehicle A, a region below the vehicle A in the image D7 (the region having the lowest density value (darkest) among the regions determined to be the vehicle A) ) May be automatically determined, and a range including the lower side of the vehicle A may be set as the reference region R. In this case, the vehicle detection unit 201 outputs the vehicle detection information D10 and the vehicle exit information D11 depending on whether or not the vehicle A is included in the predetermined imaging range.
 撮影制御部202は、撮影部20Aの制御を行う。図3に示すように、撮影制御部202は、露光条件設定部205を有している。本実施形態においては、撮影制御部202は、露光条件設定部205により設定された露光条件D4に基づいて撮影を行うように、撮影部20Aに指令を出力する。なお、露光条件D4とは、撮影部20Aの絞り値及び露光時間(シャッタースピード)を示す。本実施形態において、露光条件設定部205は、露光条件D4として、車両検出用の露光条件D4a及びタイヤ検出用の露光条件D4bの二つの露光条件D4を設定する。また、撮影部20Aは、車両検出用の露光条件D4aに基づいて撮影する第一撮影と、タイヤ検出用の露光条件D4bに基づいて撮影する第二撮影と、を行う。 The imaging control unit 202 controls the imaging unit 20A. As shown in FIG. 3, the imaging control unit 202 has an exposure condition setting unit 205. In the present embodiment, the imaging control unit 202 outputs a command to the imaging unit 20A so as to perform imaging based on the exposure condition D4 set by the exposure condition setting unit 205. The exposure condition D4 indicates the aperture value and exposure time (shutter speed) of the photographing unit 20A. In the present embodiment, the exposure condition setting unit 205 sets two exposure conditions D4, ie, an exposure condition D4a for vehicle detection and an exposure condition D4b for tire detection, as the exposure condition D4. In addition, the photographing unit 20A performs first photographing that is photographed based on the exposure condition D4a for vehicle detection and second photographing that is photographed based on the exposure condition D4b for tire detection.
 露光条件設定部205は、車両検出部201から車両検知情報D10を受信していない場合、又は、車両検出部201から車両退出情報D11を受信した場合、車両検出用の露光条件D4aを設定する。
 露光条件設定部205は、所定の撮影範囲に車両Aが進入した際に、車両Aと背景とが明瞭に区別できる画像が撮影可能なように、所定の撮影範囲全体の濃度値に応じた絞り値及び露光時間を、車両検出用の露光条件D4aとして設定する。
 具体的には、露光条件設定部205は、以下のように車両検出用の露光条件D4aを設定する。
When the vehicle detection information D10 is not received from the vehicle detection unit 201 or when the vehicle exit information D11 is received from the vehicle detection unit 201, the exposure condition setting unit 205 sets the exposure condition D4a for vehicle detection.
The exposure condition setting unit 205 is configured to reduce the aperture according to the density value of the entire predetermined shooting range so that when the vehicle A enters the predetermined shooting range, an image that can clearly distinguish the vehicle A and the background can be shot. The value and the exposure time are set as the vehicle detection exposure condition D4a.
Specifically, the exposure condition setting unit 205 sets the vehicle detection exposure condition D4a as follows.
 露光条件設定部205は、撮影部20Aから受信した各時刻における画像D7の濃度ヒストグラム(各濃度値について、同一の濃度値を有する画素数(出現頻度)を示すグラフ)を生成して、画像D7の濃度値を計測する。露光条件設定部205は、車両Aが所定の撮影範囲に存在していない時刻に取得した画像D7の濃度ヒストグラムを参照し、画素数の分布に偏りがあるか否かを判断する。 The exposure condition setting unit 205 generates a density histogram (a graph indicating the number of pixels having the same density value (appearance frequency) for each density value) at each time received from the imaging unit 20A, and the image D7. Measure the concentration value. The exposure condition setting unit 205 refers to the density histogram of the image D7 acquired at a time when the vehicle A does not exist in the predetermined shooting range, and determines whether or not the pixel number distribution is biased.
 例えば、露光条件設定部205は、低い(暗い)濃度値を有する画素数が所定値よりも多い場合は、画像D7の濃度値が低く、露光量が不足していると判断する。このとき、露光条件設定部205は、当該画像D7が撮影されたときの露光条件D4に基づいて、当該画像D7の露光量を算出する。露光条件設定部205は、当該画像D7よりも濃度値が高い(明るい)、つまり露光量が大きい画像が撮影できるように、絞り値を小さくした値、又は、露光時間を長くした値を車両検出用の露光条件D4aとして設定する。
 一方、高い(明るい)濃度値を有する画素数が所定値よりも多い場合は、画像D7の濃度値が高く、露光量が過度であると判断する。このとき、露光条件設定部205は、当該画像D7が撮影されたときの露光条件D4に基づいて、当該画像D7の露光量を算出する。露光条件設定部205は、当該画像D7よりも濃度値が低い(暗い)、つまり、露光量が小さい画像が撮影できるように、絞り値を大きくした値、又は、露光時間を短くした値を車両検出用の露光条件D4aとして設定する。
 なお、露光条件設定部205は、画素数の偏りが検出されない場合は、当該画像D7と同じ濃度値、つまり、同じ露光量の画像が撮影できるように、車両検出用の露光条件D4aは当該画像D7を撮影したときと同じ値を設定する。
For example, when the number of pixels having a low (dark) density value is greater than a predetermined value, the exposure condition setting unit 205 determines that the density value of the image D7 is low and the exposure amount is insufficient. At this time, the exposure condition setting unit 205 calculates the exposure amount of the image D7 based on the exposure condition D4 when the image D7 is taken. The exposure condition setting unit 205 detects a vehicle with a smaller aperture value or a longer exposure time so that an image having a higher density value (brighter) than the image D7, that is, a larger exposure amount can be taken. Is set as the exposure condition D4a.
On the other hand, when the number of pixels having a high (bright) density value is larger than the predetermined value, it is determined that the density value of the image D7 is high and the exposure amount is excessive. At this time, the exposure condition setting unit 205 calculates the exposure amount of the image D7 based on the exposure condition D4 when the image D7 is taken. The exposure condition setting unit 205 uses a value obtained by increasing the aperture value or shortening the exposure time so that an image having a lower density value (darker) than the image D7, that is, an image with a small exposure amount can be captured. The exposure condition D4a for detection is set.
Note that the exposure condition setting unit 205 detects the vehicle detection exposure condition D4a so that an image having the same density value as that of the image D7, that is, an image having the same exposure amount can be taken when the deviation in the number of pixels is not detected. Set the same value as when D7 was shot.
 このように、露光条件設定部205は、車両Aが所定の撮影範囲に存在していない時刻に取得された各画像D7の濃度値及び露光量を参照することにより、当該所定の撮影範囲の情景に適した露光条件D4aを設定する。これにより、天候や時刻、周辺状況(建築物の影や照明の有無等)等の撮影環境が異なっても、当該所定の撮影範囲に車両Aが進入した場合、当該車両Aを撮影した画像D7に基づいて、車両Aを検出することが容易となる。
 撮影制御部202は、露光条件設定部205が設定した車両検出用の露光条件D4aを撮影部20Aへ出力する。撮影部20Aは、当該露光条件D4aを受信すると、次回より当該露光条件D4aに基づいて所定の撮影範囲を撮影する。
As described above, the exposure condition setting unit 205 refers to the density value and the exposure amount of each image D7 acquired at a time when the vehicle A does not exist in the predetermined shooting range, so that the scene in the predetermined shooting range. An exposure condition D4a suitable for the above is set. As a result, even if the shooting environment such as weather, time, surrounding situation (such as shadows of buildings or lighting) is different, when the vehicle A enters the predetermined shooting range, an image D7 of the vehicle A is shot. This makes it easy to detect the vehicle A.
The imaging control unit 202 outputs the vehicle detection exposure condition D4a set by the exposure condition setting unit 205 to the imaging unit 20A. When receiving the exposure condition D4a, the imaging unit 20A captures a predetermined imaging range based on the exposure condition D4a from the next time.
 また、露光条件設定部205は、車両検出部201から車両検知情報D10を受信した場合、タイヤ検出用の露光条件D4bを設定する。
 露光条件設定部205は、車両検出部201が車両検知情報D10を出力した時刻に撮影された画像D7を参照画像D7aとして抽出する。露光条件設定部205は、当該参照画像D7a以降に撮影される画像D7の参照領域Rの濃度値及び露光量に応じた絞り値及び露光時間を、タイヤ検出用の露光条件D4bとして設定する。なお、画像D7の参照領域Rに車両AのタイヤTが含まれた場合は、当該タイヤTのトレッドパターンが検出可能となるように、タイヤ検出用の露光条件D4bを設定するようにしてもよい。
 具体的には、露光条件設定部205は、以下のようにタイヤ検出用の露光条件D4bを設定する。
Further, when the exposure condition setting unit 205 receives the vehicle detection information D10 from the vehicle detection unit 201, the exposure condition setting unit 205 sets the exposure condition D4b for tire detection.
The exposure condition setting unit 205 extracts an image D7 taken at the time when the vehicle detection unit 201 outputs the vehicle detection information D10 as a reference image D7a. The exposure condition setting unit 205 sets, as the tire detection exposure condition D4b, the aperture value and the exposure time according to the density value and the exposure amount of the reference region R of the image D7 taken after the reference image D7a. If the tire T of the vehicle A is included in the reference region R of the image D7, the tire detection exposure condition D4b may be set so that the tread pattern of the tire T can be detected. .
Specifically, the exposure condition setting unit 205 sets the exposure condition D4b for tire detection as follows.
 露光条件設定部205は、図5の(a)に示すように、参照画像D7aの参照領域Rの濃度ヒストグラムを生成して、当該参照領域Rの濃度値を計測する。なお、濃度ヒストグラムの横軸は濃度値を示し、縦軸は画素数を示している。 The exposure condition setting unit 205 generates a density histogram of the reference area R of the reference image D7a and measures the density value of the reference area R, as shown in FIG. The horizontal axis of the density histogram indicates the density value, and the vertical axis indicates the number of pixels.
 図5の(a)に示すように、参照画像D7aが撮影されたタイミングでは、露光条件D4として車両検出用の露光条件D4aが設定されているため、参照領域Rに含まれる車両Aの車体の下方は、車両Aの車体の影等により濃度値が低く(暗く)、露光量が不足している。このため、車両AのタイヤTと、車両Aの車体と、当該車体の影との境界の検出が困難である。このとき、当該参照領域Rの濃度ヒストグラムを参照すると、低い濃度値を有する画素数が多い状態となっている。 As shown in FIG. 5A, since the exposure condition D4a for vehicle detection is set as the exposure condition D4 at the timing when the reference image D7a is photographed, the vehicle body of the vehicle A included in the reference region R is set. Below, the density value is low (dark) due to the shadow of the vehicle body of the vehicle A, and the exposure amount is insufficient. For this reason, it is difficult to detect the boundary between the tire T of the vehicle A, the vehicle body of the vehicle A, and the shadow of the vehicle body. At this time, referring to the density histogram of the reference region R, the number of pixels having a low density value is large.
 露光条件設定部205は、参照画像D7aの参照領域Rの濃度ヒストグラムのうち、画素数の多い濃度値の範囲を検出する。本実施形態においては、露光条件設定部205は、当該参照領域Rに含まれる車両Aの面積のうち、所定の割合(例えば20%)に相当する画素数を含む範囲を、画素数の多い濃度値の範囲として検出する。なお、図5の(a)に示すように、参照画像D7aの参照領域Rは、濃度値が低い領域に、画素数の多い濃度値の範囲が偏って存在している。 The exposure condition setting unit 205 detects a range of density values having a large number of pixels in the density histogram of the reference region R of the reference image D7a. In the present embodiment, the exposure condition setting unit 205 sets a range including the number of pixels corresponding to a predetermined ratio (for example, 20%) in the area of the vehicle A included in the reference region R to a density with a large number of pixels. Detect as a range of values. As shown in FIG. 5A, in the reference region R of the reference image D7a, a range of density values with a large number of pixels is biased in a region having a low density value.
 次に、露光条件設定部205は、参照画像D7aが撮影された時の露光条件D4に基づいて、当該参照画像D7aの参照領域Rの露光量を算出する。露光条件設定部205は、撮影部20Aが車両AのタイヤTを検出可能な画像D7を撮影できるように、当該参照領域Rよりも濃度値を高く(明るく)、つまり露光量を大きくした、新たな露光量を算出する。露光条件設定部205は、当該新たな露光量を満たすように、絞り値を小さくした値、又は、露光時間を長くした値をタイヤ検出用の露光条件D4bとして設定する。
 具体的には、露光条件設定部205は、画素数の多い濃度値の範囲のうち、濃度値が低い領域(例えば全体の濃度値の範囲の0~20%)に含まれる画素が、図5の(b)に示すように当該領域よりも濃度値が高い領域(例えば全体の濃度値の範囲の0~50%)を含む範囲に均一に分散するように、新たな露光量を算出する。
 なお、露光条件設定部205は、参照画像D7aにおける車両Aの位置や移動量等に応じて、絞り値及び露光時間を調整するようにしてもよい。
Next, the exposure condition setting unit 205 calculates the exposure amount of the reference region R of the reference image D7a based on the exposure condition D4 when the reference image D7a is captured. The exposure condition setting unit 205 has a new density value higher (brighter) than the reference region R, that is, a larger exposure amount so that the imaging unit 20A can capture an image D7 that can detect the tire T of the vehicle A. A proper exposure amount is calculated. The exposure condition setting unit 205 sets a value obtained by reducing the aperture value or a value obtained by extending the exposure time as the tire detection exposure condition D4b so as to satisfy the new exposure amount.
Specifically, in the exposure condition setting unit 205, pixels included in an area having a low density value (for example, 0 to 20% of the entire density value range) in the density value range having a large number of pixels are shown in FIG. As shown in (b), a new exposure amount is calculated so as to be uniformly distributed in a range including a region having a density value higher than that region (for example, 0 to 50% of the entire density value range).
Note that the exposure condition setting unit 205 may adjust the aperture value and the exposure time in accordance with the position of the vehicle A, the amount of movement, and the like in the reference image D7a.
 撮影制御部202は、このように露光条件設定部205が設定したタイヤ検出用の露光条件D4bを撮影部20Aへ出力する。撮影部20Aは、当該露光条件D4bを受信すると、次回より当該露光条件D4bに基づいて所定の撮影範囲を撮影する。
 図5の(b)に示すように、タイヤ検出用の露光条件D4bに基づいて撮影された画像D7の参照領域Rは、図5の(a)に示す参照画像D7aの参照領域Rと比較して、濃度値が高くなっている。また、図5の(b)に示す当該画像D7の参照領域Rの濃度ヒストグラムは、図5の(a)に示す参照画像D7aの参照領域Rの濃度ヒストグラムと比較して、各濃度値に出現頻度が分散した状態となっている。このため、当該露光条件D4bに基づいて撮影された当該画像D7においては、車両Aの車体と車両AのタイヤTとを識別し、また、当該タイヤTのトレッドパターンを検出することが可能となる。
The imaging control unit 202 outputs the tire detection exposure condition D4b set by the exposure condition setting unit 205 in this way to the imaging unit 20A. When receiving the exposure condition D4b, the imaging unit 20A captures a predetermined imaging range based on the exposure condition D4b from the next time.
As shown in FIG. 5B, the reference region R of the image D7 photographed based on the tire detection exposure condition D4b is compared with the reference region R of the reference image D7a shown in FIG. The density value is high. Further, the density histogram of the reference region R of the image D7 shown in FIG. 5B appears at each density value as compared with the density histogram of the reference region R of the reference image D7a shown in FIG. The frequency is in a distributed state. For this reason, in the said image D7 image | photographed based on the said exposure condition D4b, it becomes possible to identify the vehicle body of the vehicle A and the tire T of the vehicle A, and to detect the tread pattern of the said tire T. .
 露光条件設定部205は、このように、車両Aが検出される毎に、当該車両Aに適したタイヤ検出用の露光条件D4bを設定する。このため、天候や時刻、周辺状況(建築物の影や照明の有無等)等の撮影環境が異なっても、当該撮影環境に応じて、車両AのタイヤTを検出可能な露光条件D4bを設定することができる。 The exposure condition setting unit 205 sets the tire detection exposure condition D4b suitable for the vehicle A every time the vehicle A is detected as described above. For this reason, even if the shooting environment such as the weather, time, and surrounding conditions (such as the shadow of the building and the presence of lighting) is different, the exposure condition D4b that can detect the tire T of the vehicle A is set according to the shooting environment. can do.
 なお、本実施形態においては、参照画像D7aに基づいてタイヤ検出用の露光条件D4bを設定する例について説明したが、これに限られることはない。露光条件設定部205は、タイヤ検出用の露光条件D4bを設定した後、当該露光条件D4bに基づいて撮影された画像D7について、参照画像D7aと同様に、濃度ヒストグラムを生成して濃度値を計測し、当該画像D7の露光量を算出するようにしてもよい。露光条件設定部205は、当該画像D7の濃度値及び露光量に基づいて、異なるタイヤ検出用の露光条件D4bを設定するようにしてもよい。 In the present embodiment, the example in which the exposure condition D4b for tire detection is set based on the reference image D7a has been described. However, the present invention is not limited to this. After setting the exposure condition D4b for tire detection, the exposure condition setting unit 205 generates a density histogram for the image D7 photographed based on the exposure condition D4b and measures the density value in the same manner as the reference image D7a. Then, the exposure amount of the image D7 may be calculated. The exposure condition setting unit 205 may set different tire detection exposure conditions D4b based on the density value and exposure amount of the image D7.
 露光条件設定部205は、タイヤ検出用の露光条件D4bを設定した後、車両検出部201から車両退出情報D11を受信すると、上述のように、車両検出用の露光条件D4aを設定する。 When the exposure condition setting unit 205 receives the vehicle exit information D11 from the vehicle detection unit 201 after setting the tire detection exposure condition D4b, the exposure condition setting unit 205 sets the vehicle detection exposure condition D4a as described above.
 タイヤ検出部203は、図3に示すように、車両検出部201から車両検知情報D10を受信してから車両退出情報D11を受信するまでの間に、撮影部20Aから受信した各画像D7について、車両AのタイヤTが含まれているか否かを判断する。 As shown in FIG. 3, the tire detection unit 203 receives the vehicle detection information D10 from the vehicle detection unit 201 and receives the vehicle exit information D11 until the images D7 received from the imaging unit 20A. It is determined whether or not the tire A of the vehicle A is included.
 タイヤ検出部203は、各画像D7についてエッジ検出フィルタ処理を施すことで濃淡の境界部を抽出する。そして、当該濃淡の境界部の周期性や、密集度を計算することによりテクスチャを解析し、図5の(b)に示すようにタイヤのトレッドパターンを示す車両Aの高さ方向に延びる縦溝のテクスチャ(トレッドパターンのテクスチャ)が、車両の幅方向に複数連続している領域(トレッドパターン領域)を検出し、かつ当該トレッドパターン領域に隣接する形でタイヤ側面に現れる縦長の(車両の高さ方向に長い)楕円領域を検出した場合、当該部位は車両AのタイヤTであると判断する。
 なお、本実施形態においては、タイヤ検出部203はタイヤのトレッドパターンのテクスチャの有無に基づいて、各画像D7にタイヤTが含まれるか否かを判断するが、これに限られることはない。他の実施形態においては、記憶部20CにタイヤTを検出するためのデータとして、予め取得した複数のタイヤTのトレッドパターンのサンプル画像D8を蓄積しておき、タイヤ検出部203は、サンプル画像D8と、撮影部20Aから受信した各画像D7の参照領域Rとを比較することにより、当該画像D7にタイヤTが含まれるか否かを判断するようにしてもよい。
 タイヤ検出部203は、タイヤTが含まれていると判断した画像D7を抽出し、タイヤ判定部204に出力する。
The tire detection unit 203 extracts edge portions by performing edge detection filter processing on each image D7. The texture is analyzed by calculating the periodicity and density of the boundary between the shades, and the longitudinal groove extending in the height direction of the vehicle A showing the tread pattern of the tire as shown in FIG. The texture of the tread pattern (tread pattern texture) detects a plurality of continuous areas (tread pattern areas) in the width direction of the vehicle and appears vertically on the side of the tire in a form adjacent to the tread pattern area. When an elliptical area (long in the vertical direction) is detected, it is determined that the part is the tire T of the vehicle A.
In the present embodiment, the tire detection unit 203 determines whether or not the tire T is included in each image D7 based on the presence or absence of the texture of the tread pattern of the tire. However, the present invention is not limited to this. In another embodiment, the tread pattern sample images D8 of a plurality of tires T acquired in advance as data for detecting the tire T in the storage unit 20C are accumulated, and the tire detection unit 203 uses the sample image D8. Then, it may be determined whether or not the tire T is included in the image D7 by comparing the reference region R of each image D7 received from the imaging unit 20A.
The tire detection unit 203 extracts the image D7 that is determined to include the tire T, and outputs the image D7 to the tire determination unit 204.
 タイヤ判定部204は、タイヤ検出部203から受信した画像D7に含まれるタイヤTの連設数D3を判定する。
 ダブルタイヤは、一つの取付位置に二本のタイヤが取り付けられているため、同じタイヤ径を有するシングルタイヤとダブルタイヤとのタイヤ幅を比較すると、ダブルタイヤはシングルタイヤのタイヤ幅の約2倍のタイヤ幅を有している。タイヤ判定部204は、シングルタイヤ及びダブルタイヤのタイヤ幅の相違に着目し、画像D7に含まれるタイヤTのタイヤ径及びタイヤ幅とに基づいて、当該タイヤTがシングルタイヤであるかダブルタイヤであるかを判定する。具体的には、タイヤ判定部204は、以下のようにタイヤTの連設数D3を判定する。
The tire determination unit 204 determines the number of consecutive tires D3 included in the image D7 received from the tire detection unit 203.
Double tires have two tires attached at one mounting position, so when comparing the tire widths of single tires and double tires with the same tire diameter, double tires are approximately twice the tire width of single tires. Tire width. The tire determination unit 204 pays attention to the difference in tire width between the single tire and the double tire, and based on the tire diameter and the tire width of the tire T included in the image D7, the tire T is a single tire or a double tire. Determine if there is. Specifically, the tire determination unit 204 determines the number of consecutive tires D3 as follows.
 まず、タイヤ判定部204は、撮影部20Aの高さ方向における角度と、タイヤ検出部203から受信した画像D7に含まれるタイヤTと判定された縦長の楕円領域の縦方向の長さとに基づいてタイヤ径を算出する。また、トレッドパターン領域の横方向(幅方向)の長さからタイヤ幅を検出する。
 記憶部20Cには、通常用いられるタイヤのタイヤ径とタイヤ幅との組み合わせを複数記録したタイヤ情報D9が予め格納されている。タイヤ判定部204は、記憶部20Cに格納されているタイヤ情報D9のうち、画像D7に含まれるタイヤTと同程度のタイヤ径を有するタイヤ情報D9を抽出する。
 次に、タイヤ判定部204は、画像D7に含まれるタイヤTのタイヤ幅と、抽出されたタイヤ情報D9に記録された各タイヤのタイヤ幅とを比較する。
First, the tire determination unit 204 is based on the angle in the height direction of the photographing unit 20A and the length in the vertical direction of the vertically long elliptical area determined as the tire T included in the image D7 received from the tire detection unit 203. Calculate the tire diameter. Further, the tire width is detected from the length in the lateral direction (width direction) of the tread pattern region.
The storage unit 20C stores in advance tire information D9 in which a plurality of combinations of tire diameters and tire widths of commonly used tires are recorded. The tire determination unit 204 extracts tire information D9 having the same tire diameter as the tire T included in the image D7 from the tire information D9 stored in the storage unit 20C.
Next, the tire determination unit 204 compares the tire width of the tire T included in the image D7 with the tire width of each tire recorded in the extracted tire information D9.
 タイヤ判定部204は、画像D7に含まれるタイヤTのタイヤ幅と、抽出されたタイヤ情報に記録された各タイヤのタイヤ幅とが、同程度の値である場合は、当該画像D7に含まれるタイヤTはシングルタイヤであると判定する。
 一方、タイヤ判定部204は、画像D7に含まれるタイヤTのタイヤ幅が、抽出されたタイヤ情報に記録された各タイヤのタイヤ幅と大きく異なる値である場合(例えば画像D7に含まれるタイヤTのタイヤ幅が、抽出されたタイヤ情報に記録された各タイヤのタイヤ幅の約2倍の値である場合)は、当該画像D7に含まれるタイヤTはダブルタイヤであると判定する。
 あるいは、車種の違いに関わらず車両の第1軸目のタイヤはシングルタイヤであるため、第1軸目のタイヤを無条件にシングルタイヤと判定し、第1軸目のタイヤ幅を基準として、第2軸目以降のタイヤが第1軸目のタイヤ幅の2倍の値になっていることを以ってダブルタイヤと判定しても良い。
 なお、本実施形態においては、タイヤTのタイヤ幅の値から、当該タイヤTがシングルタイヤであるかダブルタイヤであるかを判定する例について説明したが、これに限られることはない。ダブルタイヤの場合、二つのタイヤの間隔により、トレッドパターンのテクスチャが横方向(幅方向)に二つに分かれて検出される。このため、タイヤ判定部204は、トレッドパターンのテクスチャが横方向に二つ連続して検出された場合はダブルタイヤと判定し、トレッドパターンのテクスチャが横方向に一つのみ検出された場合はシングルタイヤと判定するようにしてもよい。
When the tire width of the tire T included in the image D7 and the tire width of each tire recorded in the extracted tire information have the same value, the tire determination unit 204 is included in the image D7. It is determined that the tire T is a single tire.
On the other hand, when the tire width of the tire T included in the image D7 is a value that is significantly different from the tire width of each tire recorded in the extracted tire information (for example, the tire T included in the image D7) Tire width is a value about twice the tire width of each tire recorded in the extracted tire information), it is determined that the tire T included in the image D7 is a double tire.
Alternatively, since the tire on the first axis of the vehicle is a single tire regardless of the type of vehicle, the tire on the first axis is unconditionally determined as a single tire, and the tire width on the first axis is used as a reference. You may determine with the tire after the 2nd axis being a double tire by having the value of the tire width of the 1st axis being twice.
In the present embodiment, the example of determining whether the tire T is a single tire or a double tire from the tire width value of the tire T has been described, but the present invention is not limited to this. In the case of a double tire, the texture of the tread pattern is detected in two parts in the lateral direction (width direction) depending on the interval between the two tires. For this reason, the tire determination unit 204 determines that the tire is a double tire when two tread pattern textures are detected in the horizontal direction, and determines that a single tread pattern texture is detected when only one tread pattern texture is detected in the horizontal direction. You may make it determine with a tire.
 タイヤ判定部204は、画像D7に含まれるタイヤTがシングルタイヤであると判断した場合、タイヤTの連設数D3を「1」に設定する。また、タイヤ判定部204は、画像D7に含まれるタイヤTがダブルタイヤであると判断した場合、タイヤTの連設数D3を「2」に設定する。
 タイヤ判定部204は、このように判定したタイヤTの連設数D3を、車種判別部10Cへ出力する。
When the tire determination unit 204 determines that the tire T included in the image D7 is a single tire, the tire determination unit 204 sets the consecutive number D3 of tires T to “1”. In addition, when the tire determination unit 204 determines that the tire T included in the image D7 is a double tire, the tire determination unit 204 sets the consecutive number D3 of tires T to “2”.
The tire determination unit 204 outputs the consecutive number D3 of tires T thus determined to the vehicle type determination unit 10C.
 次に、タイヤパターン判定装置20によるタイヤ判定の手順を、図6を参照して説明する。
 図6は本発明の第1の実施形態に係るタイヤパターンの判定手順を示すフローチャートである。
Next, the procedure of tire determination by the tire pattern determination device 20 will be described with reference to FIG.
FIG. 6 is a flowchart showing a tire pattern determination procedure according to the first embodiment of the present invention.
(ステップST101:車両検出用の露光条件の設定)
 本実施形態において、撮影部20Aは、所定の撮影範囲を一定の間隔毎に撮影する。
 タイヤパターン判定装置20は、撮影制御部202の露光条件設定部205において、車両検出用の露光条件D4aの設定を行う(ステップST101)。露光条件設定部205は、所定の撮影範囲に車両Aが進入した際に、車両Aと背景とが明瞭に区別できる画像が撮影可能なように、所定の撮影範囲全体の濃度値に応じた絞り値及び露光時間を、車両検出用の露光条件D4aとして設定する。
 撮影制御部202は、当該車両検出用の露光条件D4aを撮影部20Aへ出力する。撮影部20Aは、この後、当該車両検出用の露光条件D4aに基づいて、所定の撮影範囲を撮影する。
(Step ST101: Setting of exposure conditions for vehicle detection)
In the present embodiment, the photographing unit 20A photographs a predetermined photographing range at regular intervals.
The tire pattern determination device 20 sets the exposure condition D4a for vehicle detection in the exposure condition setting unit 205 of the imaging control unit 202 (step ST101). The exposure condition setting unit 205 is configured to reduce the aperture according to the density value of the entire predetermined shooting range so that when the vehicle A enters the predetermined shooting range, an image that can clearly distinguish the vehicle A and the background can be shot. The value and the exposure time are set as the vehicle detection exposure condition D4a.
The imaging control unit 202 outputs the vehicle detection exposure condition D4a to the imaging unit 20A. Thereafter, the imaging unit 20A captures a predetermined imaging range based on the vehicle detection exposure condition D4a.
(ステップST102:車両進入検知)
 次に、車両検出部201は、所定の撮影範囲に車両Aが進入したかどうかを判断する(ステップST102)。車両検出部201は、撮影部20Aから受信した複数の画像D7のそれぞれについて、ある時刻tに撮影された画像D7と、当該画像D7に最も近い過去である時刻t-1に撮影された画像D7との差分をとることにより、当該画像D7に車両Aが含まれるか否かを判断する。
 車両検出部201は、画像D7の参照領域Rに車両Aが含まれていないと判断した場合(ステップST102:No)、ステップST101の処理に戻る。
 また、車両検出部201は、画像D7の参照領域Rに車両Aが含まれていると判断した場合(ステップST102:Yes)、撮影制御部202及びタイヤ検出部203へ車両検知情報D10を出力して、次のステップST103に進む。
(Step ST102: vehicle approach detection)
Next, the vehicle detection unit 201 determines whether or not the vehicle A has entered a predetermined shooting range (step ST102). For each of the plurality of images D7 received from the image capturing unit 20A, the vehicle detection unit 201 captures an image D7 captured at a certain time t and an image D7 captured at a time t-1 that is the closest to the image D7. Is taken to determine whether or not the vehicle A is included in the image D7.
When the vehicle detection unit 201 determines that the vehicle A is not included in the reference region R of the image D7 (step ST102: No), the vehicle detection unit 201 returns to the process of step ST101.
Further, when the vehicle detection unit 201 determines that the vehicle A is included in the reference region R of the image D7 (step ST102: Yes), the vehicle detection information D10 is output to the imaging control unit 202 and the tire detection unit 203. The process proceeds to the next step ST103.
(ステップST103:参照領域の濃度値の計測)
 次に、車両検出部201から車両検知情報D10を受信した場合(ステップST102:Yes)、露光条件設定部205は、車両検出部201が車両検知情報D10を出力した時刻に撮影された画像D7を参照画像D7aとして抽出する。露光条件設定部205は、当該参照画像D7aの参照領域Rの濃度ヒストグラムを生成して、当該参照領域Rの濃度値を計測する(ステップST103)。
 露光条件設定部205は、参照画像D7aの参照領域Rの濃度ヒストグラムのうち、画素数の多い濃度値範囲を検出する。露光条件設定部205は、濃度値が低い領域に画素数の多い濃度値範囲が存在する場合、当該参照領域Rは濃度値が低い(暗い)、つまり露光量が小さいと判断する。
(Step ST103: Measurement of density value of reference region)
Next, when the vehicle detection information D10 is received from the vehicle detection unit 201 (step ST102: Yes), the exposure condition setting unit 205 displays an image D7 taken at the time when the vehicle detection unit 201 outputs the vehicle detection information D10. Extracted as a reference image D7a. The exposure condition setting unit 205 generates a density histogram of the reference area R of the reference image D7a, and measures the density value of the reference area R (step ST103).
The exposure condition setting unit 205 detects a density value range having a large number of pixels in the density histogram of the reference region R of the reference image D7a. When there is a density value range with a large number of pixels in an area with a low density value, the exposure condition setting unit 205 determines that the reference area R has a low density value (dark), that is, an exposure amount is small.
(ステップST104:参照領域の露光量の算出)
 次に、露光条件設定部205は、参照画像D7aが撮影された時の露光条件D4に基づいて、当該参照画像D7aの参照領域Rの露光量を算出する。露光条件設定部205は、当該参照領域Rは濃度値が低い(暗い)、つまり露光量が小さいと判断したため、当該参照領域Rよりも濃度値が高い(明るい)、つまり露光量が大きい画像が撮影できるように、新たな露光量を算出する(ステップST104)。
(Step ST104: Calculation of exposure amount of reference area)
Next, the exposure condition setting unit 205 calculates the exposure amount of the reference region R of the reference image D7a based on the exposure condition D4 when the reference image D7a is captured. Since the exposure condition setting unit 205 determines that the reference region R has a low density value (dark), that is, an exposure amount is small, an image having a density value higher (bright) than the reference region R, that is, an exposure amount is large. A new exposure amount is calculated so that the image can be taken (step ST104).
(ステップST105:タイヤ検出用露光条件の設定)
 次に、露光条件設定部205は、上記のように算出した新たな露光量を満たすように、絞り値を小さくした値、又は、露光時間を長くした値をタイヤ検出用の露光条件D4bとして設定する(ステップST105)。
 撮影制御部202は、このように露光条件設定部205が設定したタイヤ検出用の露光条件D4bを撮影部20Aへ出力する。撮影部20Aは、当該露光条件D4bを受信すると、次回より当該露光条件D4bに基づいて所定の撮影範囲を撮影する。
(Step ST105: Setting of exposure conditions for tire detection)
Next, the exposure condition setting unit 205 sets, as the tire detection exposure condition D4b, a value obtained by reducing the aperture value or extending the exposure time so as to satisfy the new exposure amount calculated as described above. (Step ST105).
The imaging control unit 202 outputs the tire detection exposure condition D4b set by the exposure condition setting unit 205 in this way to the imaging unit 20A. When receiving the exposure condition D4b, the imaging unit 20A captures a predetermined imaging range based on the exposure condition D4b from the next time.
(ステップST106:トレッドパターンの検出)
 次に、タイヤ検出部203は、車両検出部201から車両検知情報D10を受信してから車両退出情報D11を受信するまでの間に、撮影部20Aから受信した各画像D7を解析し、車両AのタイヤTのトレッドパターンを示す車両Aの高さ方向に延びる縦溝のテクスチャ(トレッドパターンのテクスチャ)が、車両の幅方向に複数連続している領域(トレッドパターン領域)が含まれているか否かを判断する(ステップST106)。タイヤ検出部203は、当該トレッドパターン領域が検出されない場合、当該画像D7には当該車両AのタイヤTは含まれていないと判断し(ステップST106:No)、再びステップST106に戻って次の画像D7の解析を行う。一方、タイヤ検出部203は、当該トレッドパターン領域を検出した場合、当該画像D7には当該車両AのタイヤTが含まれていると判断する(ステップST106:Yes)。このとき、当該画像D7をタイヤ判定部204に出力して、次のステップST107に進む。
(Step ST106: tread pattern detection)
Next, the tire detection unit 203 analyzes each image D7 received from the imaging unit 20A during the period from the reception of the vehicle detection information D10 from the vehicle detection unit 201 to the reception of the vehicle exit information D11. Whether or not the texture (tread pattern texture) of the vertical groove extending in the height direction of the vehicle A indicating the tread pattern of the tire T includes a continuous region (tread pattern region) in the vehicle width direction. Is determined (step ST106). If the tread pattern area is not detected, the tire detection unit 203 determines that the tire D of the vehicle A is not included in the image D7 (step ST106: No), and returns to step ST106 again to return to the next image. D7 is analyzed. On the other hand, when the tire detection unit 203 detects the tread pattern region, the tire detection unit 203 determines that the tire D of the vehicle A is included in the image D7 (step ST106: Yes). At this time, the image D7 is output to the tire determination unit 204, and the process proceeds to the next step ST107.
(ステップST107:タイヤ径及びタイヤ幅の検出)
 次に、タイヤ判定部204は、タイヤ検出部203から受信した画像D7に含まれるタイヤTのタイヤ径とタイヤ幅とを検出する(ステップST107)。
(Step ST107: detection of tire diameter and tire width)
Next, the tire determination unit 204 detects the tire diameter and the tire width of the tire T included in the image D7 received from the tire detection unit 203 (step ST107).
(ステップST108:タイヤの連設数の判定)
 次に、タイヤ判定部204は、画像D7に含まれるタイヤTのタイヤ幅と、抽出されたタイヤ情報D9に記録された各タイヤのタイヤ幅とを比較して、当該タイヤTの連設数D3を判定する(ステップST108)。
 タイヤ判定部204は、画像D7に含まれるタイヤTのタイヤ幅と、抽出されたタイヤ情報に記録された各タイヤのタイヤ幅とが、同程度の値である場合は、当該画像D7に含まれるタイヤTはシングルタイヤであると判定する。
 一方、タイヤ判定部204は、画像D7に含まれるタイヤTのタイヤ幅と、抽出されたタイヤ情報に記録された各タイヤのタイヤ幅とが、大きく異なる値である場合(例えば画像D7に含まれるタイヤTのタイヤ幅が、タイヤ情報に記録された各タイヤのタイヤ幅の約2倍の値である場合)は、当該画像D7に含まれるタイヤTはダブルタイヤであると判定する。
 タイヤ判定部204は、判定したタイヤTの連設数D3を車種判別部10Cに出力する。
(Step ST108: Determination of the number of consecutive tires)
Next, the tire determination unit 204 compares the tire width of the tire T included in the image D7 with the tire width of each tire recorded in the extracted tire information D9, and the consecutive number D3 of the tire T is compared. Is determined (step ST108).
When the tire width of the tire T included in the image D7 and the tire width of each tire recorded in the extracted tire information have the same value, the tire determination unit 204 is included in the image D7. It is determined that the tire T is a single tire.
On the other hand, when the tire width of the tire T included in the image D7 is significantly different from the tire width of each tire recorded in the extracted tire information (for example, included in the image D7). When the tire width of the tire T is a value about twice the tire width of each tire recorded in the tire information), it is determined that the tire T included in the image D7 is a double tire.
The tire determination unit 204 outputs the determined continuous number D3 of tires T to the vehicle type determination unit 10C.
(ステップST109:車両通過検知)
 次に、車両検出部201は、車両Aが所定の撮影範囲を車両が通過したか否かを判断する(ステップST109)。
 車両検出部201は、画像D7の参照領域Rにおいて車両Aを検出している場合、車両Aは所定の撮影範囲に存在していると判断し(ステップST109:No)、ステップST106の処理に戻る。一方、車両検出部201は、画像D7の参照領域Rにおいて車両Aによって生じる影やタイヤT等の低濃度領域(暗部)を検出しない場合、車両Aは所定の撮影範囲を通過したと判断する(ステップST109:Yes)。なお、タイヤ検出用の露光条件D4bが設定されている場合、車両Aが通過すると露出オーバーとなりハレーションが発生することがある。このため、車両検出部201は、取得した画像D7の全体においてハレーションを検出した場合、車両Aが所定の撮影範囲を通過したと判断してもよい。車両検出部201は撮影制御部202及びタイヤ検出部203へ車両退出情報D11を出力する。
(Step ST109: Vehicle passage detection)
Next, the vehicle detection unit 201 determines whether or not the vehicle A has passed a predetermined imaging range (step ST109).
When the vehicle detection unit 201 detects the vehicle A in the reference region R of the image D7, the vehicle detection unit 201 determines that the vehicle A is in the predetermined shooting range (step ST109: No), and returns to the process of step ST106. . On the other hand, when the vehicle detection unit 201 does not detect a low density region (dark portion) such as a shadow or a tire T caused by the vehicle A in the reference region R of the image D7, the vehicle A determines that the vehicle A has passed a predetermined shooting range ( Step ST109: Yes). In addition, when the exposure condition D4b for tire detection is set, when the vehicle A passes, overexposure may occur and halation may occur. For this reason, the vehicle detection part 201 may judge that the vehicle A passed the predetermined imaging | photography range, when a halation is detected in the whole acquired image D7. The vehicle detection unit 201 outputs vehicle exit information D11 to the imaging control unit 202 and the tire detection unit 203.
(ハードウェア構成)
 また、上述の各実施形態におけるタイヤパターン判定装置20のハードウェア構成の例について説明する。
 図7はタイヤパターン判定装置20のハードウェア構成の一例を示す図である。
 図7に示すように、タイヤパターン判定装置20は、メモリ810と、記憶/再生装置820と、IO I/F(Input Output Interface)830と、外部機器I/F(Interface)840と、通信I/F(Interface)850と、CPU(Central Processing Unit)860と、補助記憶装置870とを備えている。
(Hardware configuration)
Moreover, the example of the hardware constitutions of the tire pattern determination apparatus 20 in each above-mentioned embodiment is demonstrated.
FIG. 7 is a diagram illustrating an example of a hardware configuration of the tire pattern determination device 20.
As shown in FIG. 7, the tire pattern determination device 20 includes a memory 810, a storage / reproduction device 820, an IO I / F (Input Output Interface) 830, an external device I / F (Interface) 840, and a communication I. / F (Interface) 850, CPU (Central Processing Unit) 860, and auxiliary storage device 870 are provided.
 メモリ810は、タイヤパターン判定装置20のプログラムで使用されるデータ等を一時的に記憶するRAM(Random Access Memory)等の媒体である。
 記憶/再生装置820は、CD-ROM、DVD、フラッシュメモリ等の外部メディアへデータ等を記憶したり、外部メディアのデータ等を再生するための装置である。
 IO I/F830は、車種判別装置10の各装置との間で情報等の入出力を行うためのインターフェースである。
 外部機器I/F840は、タイヤパターン判定装置20が備える機器の制御と、情報等の送受信とを行うためのインターフェースである。上述の実施形態のタイヤパターン判定装置20では、外部機器I/F840は、撮影部20Aの制御と、情報及び信号の送受信とを行う。
 通信I/F850は、タイヤパターン判定装置20がインターネット等の通信回線を介して外部サーバと通信を行うためのインターフェースである。
 CPU860は、プログラムを実行し、タイヤパターン判定装置20のそれぞれ機能を実行するように制御する。上述の実施形態においては、タイヤパターン判定装置20がタイヤTの連設数D3を判定するように制御する。
 補助記憶装置870は、CPU860で実行するプログラムや、プログラムを実行する際に使用するデータや、生成されたデータを記録するためのものである。補助記憶装置870は、HDD(Hard Disk Drive)やフラッシュメモリ等である。
The memory 810 is a medium such as a RAM (Random Access Memory) that temporarily stores data used in the program of the tire pattern determination device 20.
The storage / reproduction device 820 is a device for storing data in an external medium such as a CD-ROM, a DVD, a flash memory, etc., and reproducing data in the external medium.
The IO I / F 830 is an interface for inputting and outputting information and the like with each device of the vehicle type identification device 10.
The external device I / F 840 is an interface for performing control of devices provided in the tire pattern determination device 20 and transmission / reception of information and the like. In the tire pattern determination device 20 of the above-described embodiment, the external device I / F 840 performs control of the imaging unit 20A and transmission / reception of information and signals.
The communication I / F 850 is an interface for the tire pattern determination device 20 to communicate with an external server via a communication line such as the Internet.
CPU 860 executes a program and controls to execute each function of tire pattern determination device 20. In the above-described embodiment, the tire pattern determination device 20 performs control so as to determine the consecutive number D3 of tires T.
The auxiliary storage device 870 is for recording a program executed by the CPU 860, data used when the program is executed, and generated data. The auxiliary storage device 870 is an HDD (Hard Disk Drive), a flash memory, or the like.
 タイヤパターン判定装置20のプログラムは、CD-ROM、DVD、フラッシュメモリ等の外部メディアに記録されていてもよく、この場合は、記憶/再生装置820から外部メディアへの書き込み(記憶)及び読み出し(再生)を行う。通信I/F850から外部サーバに記憶されているプログラムを読み出してもよい。
 外部メディアや外部サーバに記憶されているプログラムを、補助記憶装置870に記憶してもよい。
The program of the tire pattern determination device 20 may be recorded on an external medium such as a CD-ROM, a DVD, or a flash memory. In this case, the storage / playback device 820 writes (stores) and reads (stores) Play). You may read the program memorize | stored in the external server from communication I / F850.
A program stored in an external medium or an external server may be stored in the auxiliary storage device 870.
 CPU860は、上記プログラムを実行することにより、タイヤパターン判定装置20の車両検出部201、撮影制御部202、タイヤ検出部203、タイヤ判定部204、露光条件設定部205として機能する。CPU860が各種処理を行うと、それぞれの処理で生成されたデータは補助記憶装置870に記憶される。 The CPU 860 functions as the vehicle detection unit 201, the imaging control unit 202, the tire detection unit 203, the tire determination unit 204, and the exposure condition setting unit 205 of the tire pattern determination device 20 by executing the above program. When the CPU 860 performs various processes, the data generated by each process is stored in the auxiliary storage device 870.
(作用効果)
 上述したタイヤパターン判定装置20によれば、露光条件設定部205は、参照画像D7aの参照領域Rの濃度値の計測及び露光量の算出を行う。また、露光条件設定部205は、当該参照領域Rの濃度値及び露光量に基づいて、撮影部20Aが車両AのタイヤTを検出可能な画像D7を撮影できるように、タイヤ検出用の露光条件D4bを設定する。撮影部20Aは、当該タイヤ検出用の露光条件D4bを受信すると、次回より当該タイヤ検出用の露光条件D4bに基づいて所定の撮影範囲を撮影する。
 通常、車両Aを撮影した場合、当該車両AのタイヤTは、当該車両Aの車体や車体の影により暗い状態で撮影される。このため、このように暗い状態で撮影された車両Aの画像では、当該車両AのタイヤTと、当該車両Aの車体又は車体の影とを識別することが困難である。しかしながら、上述のように、露光条件設定部205がタイヤ検出用の露光条件D4bを設定することにより、撮影部20Aは、通常暗い状態で撮影される車両AのタイヤTを、明るい状態で撮影することが可能となる。このため、タイヤ判定部204は、撮影部20Aがタイヤ検出用の露光条件D4bに基づいて撮影した画像D7に基づいて、当該車両Aのタイヤを検出することが可能となる。
 また、車両検出部201が車両Aが所定の撮影範囲に進入したことを検出する毎に、撮影部が当該車両Aを撮影した参照画像D7aに基づいて濃度値の計測及び露光量の算出を行うため、天候や時刻、周辺状況(建築物の影や照明の有無等)等の撮影環境が異なっても、車両AのタイヤTを検出可能な露光条件D4bを設定することができる。
(Function and effect)
According to the tire pattern determination device 20 described above, the exposure condition setting unit 205 measures the density value of the reference region R of the reference image D7a and calculates the exposure amount. The exposure condition setting unit 205 also exposes tire detection exposure conditions so that the photographing unit 20A can photograph an image D7 that can detect the tire T of the vehicle A based on the density value and the exposure amount of the reference region R. D4b is set. When receiving the tire detection exposure condition D4b, the imaging unit 20A captures a predetermined imaging range based on the tire detection exposure condition D4b from the next time.
Normally, when the vehicle A is photographed, the tire T of the vehicle A is photographed in a dark state due to the vehicle body of the vehicle A and the shadow of the vehicle body. For this reason, it is difficult to identify the tire T of the vehicle A and the vehicle body of the vehicle A or the shadow of the vehicle body in the image of the vehicle A photographed in such a dark state. However, as described above, when the exposure condition setting unit 205 sets the exposure condition D4b for tire detection, the photographing unit 20A photographs the tire T of the vehicle A that is usually photographed in a dark state in a bright state. It becomes possible. For this reason, the tire determination unit 204 can detect the tire of the vehicle A based on the image D7 photographed by the photographing unit 20A based on the exposure condition D4b for tire detection.
Further, every time the vehicle detection unit 201 detects that the vehicle A has entered the predetermined imaging range, the imaging unit measures the density value and calculates the exposure amount based on the reference image D7a obtained by imaging the vehicle A. Therefore, the exposure condition D4b that can detect the tire T of the vehicle A can be set even if the shooting environment such as the weather, time, and the surrounding situation (such as the shadow of the building and the presence or absence of lighting) is different.
 また、例えば、踏板を用いた車種判別装置では、車種判別装置と料金自動収受機との距離を最大車長以上確保できない場合、車両の運転席が料金自動収受機に到達するまでに車両のタイヤが踏板を通過することができず、車両の軸数を確定できない場合がある。しかしながら、上述のタイヤパターン判定装置20によれば、タイヤ判定部204により検出された車軸毎に、車種区分D1の判別に必要な情報の一つであるタイヤTの連設数D3を判定することができる。このため、車両Aの車軸数が取得できていない状態であっても、当該タイヤTの連設数D3に基づいて、又は、タイヤTの連設数D3及びナンバープレート情報D2に基づいて、車種区分D1の判別が可能となる。このため、車種区分D1の判別に必要な情報を検出する検出用装置を路面に埋設できない又は設置するスペースが十分確保できない料金所等、立地条件に制限があり、検出用装置からの情報が十分得られない料金所であっても、タイヤパターン判定装置20を設置することが可能であり、当該タイヤパターン判定装置20が判定したタイヤTの連設数D3に基づいて車種判別を行うことが可能となる。 Also, for example, in a vehicle type identification device using a tread board, if the distance between the vehicle type identification device and the automatic toll collector cannot be secured more than the maximum vehicle length, the vehicle tires before the driver's seat reaches the automatic toll collector. May not be able to pass through the tread, and the number of axes of the vehicle may not be determined. However, according to the tire pattern determination device 20 described above, for each axle detected by the tire determination unit 204, the continuous number D3 of tires T, which is one piece of information necessary for determining the vehicle type division D1, is determined. Can do. For this reason, even in a state where the number of axles of the vehicle A cannot be acquired, the vehicle type is determined based on the continuous number D3 of the tire T or based on the continuous number D3 of the tire T and the license plate information D2. The classification D1 can be determined. For this reason, there are restrictions on location conditions such as toll booths that cannot embed a detection device for detecting information necessary for discrimination of the vehicle type division D1 on the road surface or a sufficient space for installation, and there is sufficient information from the detection device Even at a toll booth that cannot be obtained, the tire pattern determination device 20 can be installed, and the vehicle type can be determined based on the consecutive number D3 of tires T determined by the tire pattern determination device 20. It becomes.
 また、上述したタイヤパターン判定装置20によれば、画像D7の参照領域Rは、車両Aの車体の下方を含む範囲である。
 車両Aの車体の下方を含む範囲は、車両Aを撮影した際に、最も濃度値が低く(暗く)なる範囲である。露光条件設定部205は、このように設定された当該参照領域Rを参照することにより、最も濃度値が低くなる車両Aの車体の下方を含む範囲であっても、タイヤのトレッドパターンが検出可能な濃度値で撮影されるような露光量を算出し、当該露出量を満たす露光条件D4を設定することができる。これにより、タイヤ検出部203は、当該画像D7に基づいて、トレッドパターンの有無を検出し、当該画像D7にタイヤTが含まれるか否かを判断することができる。
Further, according to the tire pattern determination device 20 described above, the reference region R of the image D7 is a range including the lower side of the vehicle body of the vehicle A.
The range including the lower part of the vehicle body of the vehicle A is a range where the density value is lowest (darker) when the vehicle A is photographed. The exposure condition setting unit 205 can detect the tire tread pattern even in a range including the lower part of the vehicle body of the vehicle A having the lowest density value by referring to the reference region R set in this way. It is possible to calculate an exposure amount such that an image is captured with a proper density value, and to set an exposure condition D4 that satisfies the exposure amount. Accordingly, the tire detection unit 203 can detect the presence or absence of a tread pattern based on the image D7 and determine whether or not the tire T is included in the image D7.
 また、上述したタイヤパターン判定装置20によれば、タイヤ判定部204は、撮影部が撮影した画像D7に基づいて車両のタイヤ径及びタイヤ幅を計測する。
 タイヤ判定部204は、ダブルタイヤのタイヤ幅はシングルタイヤのタイヤ幅の約2倍のタイヤ幅を有しているという特徴に着目し、画像D7に含まれるタイヤTのタイヤ径及びタイヤ幅とに基づいて、当該タイヤTがシングルタイヤであるかダブルタイヤであるかを判定することができる。
Moreover, according to the tire pattern determination device 20 described above, the tire determination unit 204 measures the tire diameter and the tire width of the vehicle based on the image D7 captured by the imaging unit.
The tire determination unit 204 pays attention to the feature that the tire width of the double tire has a tire width that is approximately twice the tire width of the single tire, and determines the tire diameter and the tire width of the tire T included in the image D7. Based on this, it can be determined whether the tire T is a single tire or a double tire.
 また、上述したタイヤパターン判定装置20によれば、車両検出部201は、撮影部20Aが撮影した画像D7に基づいて所定の撮影範囲に車両Aが進入したことを検知し、車両検知情報D10を出力する。
 車両Aが所定の撮影範囲に進入した時刻に撮影された画像D7は、露光条件設定部205により、車両検出用の露光条件D4aが設定された状態で撮影されたものである。このため、車両検出部201は、当該画像D7に基づいて、車両Aが所定の撮影範囲に進入したことを容易に検知することが可能である。
 このため、車両Aが料金所に進入する前であっても、車両検出部201により車両Aが所定の撮影範囲に進入したことを検知することができる。これにより、車両Aが料金所に進入する前に、当該車両AのタイヤTを検出可能な露光条件D4bを設定し、当該露光条件D4bに基づいて撮影部20Aが撮影した画像D7を取得することができる。
 タイヤ判定部204は、このように撮影された画像D7に基づいて、タイヤの連設数を判定することができる。このため、車種判別部10Cは、車種区分D1の判別に必要な情報を検出する検出用装置を設置するスペースが十分確保できない料金所であっても、車両Aの利用料金を確定する前に、タイヤ判定部204が判定したタイヤTの連設数D3に基づいて車種区分D1の判別を行うことが可能となる。
Further, according to the tire pattern determination device 20 described above, the vehicle detection unit 201 detects that the vehicle A has entered a predetermined imaging range based on the image D7 captured by the imaging unit 20A, and uses the vehicle detection information D10. Output.
An image D7 photographed at the time when the vehicle A enters a predetermined photographing range is photographed with the exposure condition D4a for vehicle detection set by the exposure condition setting unit 205. For this reason, the vehicle detection part 201 can detect easily that the vehicle A entered into the predetermined imaging | photography range based on the said image D7.
For this reason, even before the vehicle A enters the toll gate, the vehicle detection unit 201 can detect that the vehicle A has entered the predetermined shooting range. Thereby, before the vehicle A enters the toll gate, the exposure condition D4b capable of detecting the tire T of the vehicle A is set, and the image D7 captured by the imaging unit 20A is acquired based on the exposure condition D4b. Can do.
The tire determination unit 204 can determine the number of consecutive tires based on the image D7 taken in this way. For this reason, the vehicle type discriminating unit 10C can determine the usage fee of the vehicle A even if it is a toll booth where a space for installing a detection device for detecting information necessary for discriminating the vehicle type division D1 cannot be secured. Based on the number of consecutive tires D3 determined by the tire determination unit 204, the vehicle type division D1 can be determined.
 以上、本発明の実施形態について詳細に説明したが、本発明の技術的思想を逸脱しない限り、これらに限定されることはなく、多少の設計変更等も可能である。
 例えば、上述の実施形態において、車種判別装置10が車両検知器10Aを備える例について説明したが、車両検知器10Aを省略してもよく、この分、車種判別装置10の設置スペースや設置コストを削減することができる。この場合であっても、タイヤパターン判定装置20の車両検出部201で車両の進入及び通過の検出が可能である。
As mentioned above, although embodiment of this invention was described in detail, unless it deviates from the technical idea of this invention, it is not limited to these, A some design change etc. are possible.
For example, in the above-described embodiment, the example in which the vehicle type identification device 10 includes the vehicle detector 10A has been described. However, the vehicle detector 10A may be omitted, and the installation space and the installation cost of the vehicle type identification device 10 are reduced accordingly. Can be reduced. Even in this case, the vehicle detection unit 201 of the tire pattern determination device 20 can detect entry and passage of the vehicle.
 また、上述の実施形態において、車両検出部201が車両Aの進入及び通過を検出する例について説明したが、これに限られることはない。タイヤパターン判定装置20は、車両検知器10Aから車両進入情報D5及び車両通過情報D6を受信して、当該車両進入情報D5及び車両通過情報D6に基づいて、露光条件D4の設定を行うようにしてもよい。この場合、撮影部20Aは、車両進入情報D5を受信してから車両通過情報D6を受信するまでの期間のみ所定の撮影範囲を撮影するようにしてもよく、車両進入情報D5を取得するまでは、露光条件設定部205による露光条件D4の設定が不要となる。このため、露光条件設定部205の処理及び撮影制御部202による撮影部20Aの制御を簡易化することができる。また、車両検出部201を省略してもよい。
 このような構成によっても、上述の実施形態と同様の効果を得ることが可能である。
Moreover, although the vehicle detection part 201 demonstrated the example which detects the approach and passage of the vehicle A in the above-mentioned embodiment, it is not restricted to this. The tire pattern determination device 20 receives the vehicle entry information D5 and the vehicle passage information D6 from the vehicle detector 10A, and sets the exposure condition D4 based on the vehicle entry information D5 and the vehicle passage information D6. Also good. In this case, the photographing unit 20A may photograph a predetermined photographing range only during a period from when the vehicle entry information D5 is received until the vehicle passage information D6 is received, and until the vehicle entry information D5 is acquired. The setting of the exposure condition D4 by the exposure condition setting unit 205 becomes unnecessary. For this reason, the processing of the exposure condition setting unit 205 and the control of the photographing unit 20A by the photographing control unit 202 can be simplified. Further, the vehicle detection unit 201 may be omitted.
Even with such a configuration, it is possible to obtain the same effects as those of the above-described embodiment.
 また、上述の実施形態においては、タイヤパターン判定装置20が一つの撮影部20Aを備えている例について説明したが、これに限られることはない。タイヤパターン判定装置20は、露光条件の設定に用いる参照画像D7aを撮影するための撮影部と、タイヤ判定に用いる画像D7を撮影するための撮影部と、の二つの撮影部を備えていてもよい。
 このような構成によっても、上述の実施形態と同様の効果を得ることが可能である。
Further, in the above-described embodiment, an example in which the tire pattern determination device 20 includes one photographing unit 20A has been described, but the present invention is not limited to this. The tire pattern determination device 20 may include two imaging units, an imaging unit for imaging the reference image D7a used for setting the exposure conditions, and an imaging unit for imaging the image D7 used for tire determination. Good.
Even with such a configuration, it is possible to obtain the same effects as those of the above-described embodiment.
 また、上述の実施形態において、車種判別装置10が踏板を備えていない例について説明したが、これに限られることはない。路面に踏板の埋設が可能な料金所においては、車種判別装置10は、更に踏板を備えていてもよい。踏板からの車軸数等の情報を取得することにより、当該情報を考慮した車種の判別を行うことができる。 In the above-described embodiment, the example in which the vehicle type identification device 10 does not include the tread has been described, but the present invention is not limited to this. In a toll booth where a tread can be embedded on the road surface, the vehicle type identification device 10 may further include a tread. By acquiring information such as the number of axles from the tread board, it is possible to determine the vehicle type in consideration of the information.
 上述のタイヤパターン判別装置、車種判別装置、タイヤパターン判別方法及びプログラムによれば、料金所の立地条件に関わらず設置が可能であり、車種の判別に必要な情報の一つであるタイヤの連設数を撮影環境に影響されずに取得することができる。 According to the tire pattern discriminating device, the vehicle type discriminating device, the tire pattern discriminating method and the program described above, the tire pattern discriminating apparatus, the tire pattern discriminating method, and the program can be installed regardless of the location conditions of the toll booth. The number of installations can be acquired without being affected by the shooting environment.
 1  料金収受設備
 10  車種判別装置
 10A  車両検知器
 10B  ナンバープレート認識部
 10C  車種判別部
 11  料金自動収受機
 13  発進制御機
 14  発進検知器
 20  タイヤパターン判定装置
 20A  撮影部
 20B  主制御部
 20C  記憶部
 201  車両検出部
 202  撮影制御部
 203  タイヤ検出部
 204  タイヤ判定部
 205  露光条件設定部
 A  車両
 I  アイランド
 L  車線
 R  参照領域
 T  タイヤ
DESCRIPTION OF SYMBOLS 1 Toll collection equipment 10 Vehicle type discrimination device 10A Vehicle detector 10B License plate recognition unit 10C Vehicle type discrimination unit 11 Automatic toll collection device 13 Start control device 14 Start detector 20 Tire pattern determination device 20A Imaging unit 20B Main control unit 20C Storage unit 201 Vehicle detection unit 202 Imaging control unit 203 Tire detection unit 204 Tire determination unit 205 Exposure condition setting unit A Vehicle I Island L Lane R Reference area T Tire

Claims (8)

  1.  走行する車両の少なくとも車体の下方を含む所定の撮影範囲を連続して撮影する撮影部と、
     前記所定の撮影範囲に前記車両が進入したことを示す車両検知情報に基づいて、前記撮影部により所定の撮影タイミングで撮影された画像を参照画像として抽出し、当該参照画像内に設定された参照領域を参照して、露光条件を設定する露光条件設定部と、
     前記撮影部が撮影した前記車両の画像に基づいて、当該車両のタイヤの連設数を判定するタイヤ判定部と、を備え、
     前記撮影部は、前記露光条件設定部において設定された前記露光条件に基づいて前記車両を撮影する、
     タイヤパターン判定装置。
    An imaging unit for continuously imaging a predetermined imaging range including at least the lower part of the vehicle body of the traveling vehicle;
    Based on vehicle detection information indicating that the vehicle has entered the predetermined shooting range, an image shot at a predetermined shooting timing by the shooting unit is extracted as a reference image, and the reference set in the reference image An exposure condition setting unit for setting an exposure condition with reference to the area;
    A tire determination unit that determines the number of consecutive tires of the vehicle based on the vehicle image captured by the imaging unit;
    The photographing unit photographs the vehicle based on the exposure condition set in the exposure condition setting unit.
    Tire pattern determination device.
  2.  前記露光条件設定部は、前記所定のタイミングで前記車両が撮影されたときに、当該車両の車体の下方を含む範囲を前記参照領域に設定し、当該参照領域を参照して前記露光条件を設定する、
     請求項1に記載のタイヤパターン判定装置。
    The exposure condition setting unit sets a range including a lower part of a vehicle body of the vehicle as the reference area when the vehicle is photographed at the predetermined timing, and sets the exposure condition with reference to the reference area. To
    The tire pattern determination apparatus according to claim 1.
  3.  前記タイヤ判定部は、前記画像に基づいて前記車両のタイヤ径及びタイヤ幅を計測し、当該タイヤ径及びタイヤ幅とに基づいて、当該タイヤの連設数を判定する、
     請求項1又は2に記載のタイヤパターン判定装置。
    The tire determination unit measures the tire diameter and tire width of the vehicle based on the image, and determines the number of consecutive tires based on the tire diameter and tire width.
    The tire pattern determination apparatus according to claim 1 or 2.
  4.  前記画像に基づいて前記所定の撮影範囲に前記車両が進入したことを検知し、前記車両検知情報を出力する車両検出部を更に備える、
     請求項1から3の何れか一項に記載のタイヤパターン判定装置。
    A vehicle detection unit that detects that the vehicle has entered the predetermined imaging range based on the image and outputs the vehicle detection information;
    The tire pattern determination apparatus according to any one of claims 1 to 3.
  5.  前記所定の撮影範囲に前記車両が進入したことを検知して前記車両検知情報を出力する車両検知器を更に備える、
     請求項1から3の何れか一項に記載のタイヤパターン判定装置。
    A vehicle detector for detecting that the vehicle has entered the predetermined shooting range and outputting the vehicle detection information;
    The tire pattern determination apparatus according to any one of claims 1 to 3.
  6.  請求項1から5の何れか一項に記載のタイヤパターン判定装置と、
     前記タイヤパターン判定装置により判定された前記車両の前記タイヤの連設数に基づいて車種を判別する車種判別部と、
     を備える車種判別装置 。
    The tire pattern determination device according to any one of claims 1 to 5,
    A vehicle type discriminating unit for discriminating a vehicle type based on the number of consecutive tires of the vehicle determined by the tire pattern determining device;
    A vehicle type discrimination device comprising:
  7.  走行する車両の少なくとも車体の下方を含む所定の撮影範囲を連続して撮影する撮影部を用いて前記車両のタイヤの連設数を判定するタイヤパターン判定方法であって、
     前記所定の撮影範囲に前記車両が進入したことを示す車両検知情報に基づいて、前記撮影部により所定の撮影タイミングで撮影された画像を参照画像として抽出し、当該参照画像内に設定された参照領域を参照して、露光条件を設定する露光条件設定ステップと、
     前記撮影部により、前記露光条件設定ステップにおいて設定された前記露光条件に基づいて前記車両を撮影する撮影ステップと、
     前記撮影部が撮影した前記車両の画像に基づいて、当該車両のタイヤの連設数を判定するタイヤ判定ステップと、を有する、
     タイヤパターン判定方法。
    A tire pattern determination method for determining the number of consecutive tires of a vehicle using an imaging unit that continuously captures a predetermined imaging range including at least a lower part of a vehicle body of a traveling vehicle,
    Based on vehicle detection information indicating that the vehicle has entered the predetermined shooting range, an image shot at a predetermined shooting timing by the shooting unit is extracted as a reference image, and the reference set in the reference image An exposure condition setting step for setting an exposure condition with reference to an area; and
    A photographing step of photographing the vehicle based on the exposure condition set in the exposure condition setting step by the photographing unit;
    A tire determination step of determining the number of consecutive tires of the vehicle based on the image of the vehicle captured by the imaging unit.
    Tire pattern determination method.
  8.  走行する車両の少なくとも車体の下方を含む所定の撮影範囲を連続して撮影する撮影部を備えるタイヤパターン判定装置のコンピュータを、
     前記所定の撮影範囲に前記車両が進入したことを示す車両検知情報に基づいて、前記撮影部により所定の撮影タイミングで撮影された画像を参照画像として抽出し、当該参照画像内に設定された参照領域を参照して、露光条件を設定する露光条件設定部、
     前記撮影部が撮影した前記車両の画像に基づいて、当該車両のタイヤの連設数を判定するタイヤ判定部、
     として機能させるプログラムであって、
     前記撮影部は、前記露光条件設定部において設定された前記露光条件に基づいて前記車両を撮影する、
     プログラム。
    A computer of a tire pattern determination device including a photographing unit that continuously photographs a predetermined photographing range including at least a lower part of a vehicle body of a traveling vehicle,
    Based on vehicle detection information indicating that the vehicle has entered the predetermined shooting range, an image shot at a predetermined shooting timing by the shooting unit is extracted as a reference image, and the reference set in the reference image An exposure condition setting unit that sets an exposure condition with reference to an area,
    A tire determination unit that determines the number of consecutive tires of the vehicle based on the image of the vehicle captured by the imaging unit;
    A program that functions as
    The photographing unit photographs the vehicle based on the exposure condition set in the exposure condition setting unit.
    program.
PCT/JP2016/057589 2015-03-11 2016-03-10 Tire pattern assessment device, vehicle model determining device, tire pattern assessment method, and program WO2016143854A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MYPI2017703255A MY185928A (en) 2015-03-11 2016-03-10 Tire pattern determination device, vehicle type determination apparatus, tire pattern determination method, and program
KR1020177025020A KR102022786B1 (en) 2015-03-11 2016-03-10 Recording medium recording tire pattern determination device, vehicle type determination device, tire pattern determination method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015048427A JP6446742B2 (en) 2015-03-11 2015-03-11 Tire pattern determination device, vehicle type determination device, tire pattern determination method, and program
JP2015-048427 2015-03-11

Publications (1)

Publication Number Publication Date
WO2016143854A1 true WO2016143854A1 (en) 2016-09-15

Family

ID=56879576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057589 WO2016143854A1 (en) 2015-03-11 2016-03-10 Tire pattern assessment device, vehicle model determining device, tire pattern assessment method, and program

Country Status (4)

Country Link
JP (1) JP6446742B2 (en)
KR (1) KR102022786B1 (en)
MY (1) MY185928A (en)
WO (1) WO2016143854A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111213192B (en) * 2017-10-31 2022-05-10 松下知识产权经营株式会社 Double tire determination device and double tire determination method
JP2019197314A (en) * 2018-05-08 2019-11-14 株式会社東芝 Vehicle type determination device and vehicle type determination method
JP7473779B2 (en) * 2019-12-26 2024-04-24 横浜ゴム株式会社 Apparatus and method for determining degree of decrease in tire air pressure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293090A (en) * 1995-02-23 1996-11-05 Omron Corp Axle detector, body kind discriminating device, vehicle gate system, and vehicle detector
JPH11167694A (en) * 1997-12-04 1999-06-22 Omron Corp Vehicle detection device
JP2004212365A (en) * 2003-01-09 2004-07-29 Daihatsu Motor Co Ltd System for measuring tow value of tire
JP2010066986A (en) * 2008-09-10 2010-03-25 Toshiba Corp Camera system
JP2014002534A (en) * 2012-06-18 2014-01-09 Toshiba Corp Vehicle type determination device and vehicle type determination method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3140650B2 (en) 1995-02-22 2001-03-05 三菱重工業株式会社 Vehicle type identification device
JP6039471B2 (en) 2013-03-15 2016-12-07 キヤノン株式会社 Imaging apparatus and control method thereof
JP6443754B2 (en) * 2015-03-11 2018-12-26 三菱重工機械システム株式会社 Vehicle specification measuring device, vehicle type discriminating device, vehicle specification measuring method and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293090A (en) * 1995-02-23 1996-11-05 Omron Corp Axle detector, body kind discriminating device, vehicle gate system, and vehicle detector
JPH11167694A (en) * 1997-12-04 1999-06-22 Omron Corp Vehicle detection device
JP2004212365A (en) * 2003-01-09 2004-07-29 Daihatsu Motor Co Ltd System for measuring tow value of tire
JP2010066986A (en) * 2008-09-10 2010-03-25 Toshiba Corp Camera system
JP2014002534A (en) * 2012-06-18 2014-01-09 Toshiba Corp Vehicle type determination device and vehicle type determination method

Also Published As

Publication number Publication date
JP6446742B2 (en) 2019-01-09
MY185928A (en) 2021-06-14
KR20170115087A (en) 2017-10-16
JP2016170508A (en) 2016-09-23
KR102022786B1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
JP6569138B2 (en) Axle number detection device, vehicle type discrimination system, axle number detection method and program
KR101127876B1 (en) Parking lot management system and method thereof
CN111583703B (en) Parking lot access control system and method
KR20140034825A (en) Vehicle and method for operating a camera arrangement for a vehicle
WO2016143854A1 (en) Tire pattern assessment device, vehicle model determining device, tire pattern assessment method, and program
CN112767681B (en) Traffic state detection method, device and related equipment
KR20200141834A (en) Apparatus and method for image based traffic signal control
CN112861797A (en) Method and device for identifying authenticity of license plate and related equipment
JPH08233525A (en) Vehicle-type discriminating apparatus
WO2016143849A1 (en) Tire pattern assessment device, vehicle model determining device, tire pattern assessment method and program
KR101089029B1 (en) Crime Preventing Car Detection System using Optical Flow
JP2014048964A (en) Parking lot system
KR20190136515A (en) Vehicle recognition device
CN117173904A (en) Method, device, medium and equipment for identifying reverse traffic of vehicles in parking lot
JP2010282390A (en) Passing vehicle imaging method and imaging device
JP2732860B2 (en) Vehicle detection method and vehicle detection device
JP2940296B2 (en) Parked vehicle detection method
JP2009230599A (en) Automatic discriminating device for vehicle loaded with winter tire
JP4788926B2 (en) Vehicle number reading device
JP4071610B2 (en) Traveling vehicle detection system
JP3875889B2 (en) Image speed detection system and image speed detection method
JP3771729B2 (en) Traffic flow measurement system
JPH05282592A (en) Image processing-type vehicle sensor and method for processing traffic information
JPH0729009A (en) Vehicle detection method
JP4296100B2 (en) Imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177025020

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761820

Country of ref document: EP

Kind code of ref document: A1