WO2016143823A1 - Compound, and organic semiconductor material containing same - Google Patents

Compound, and organic semiconductor material containing same Download PDF

Info

Publication number
WO2016143823A1
WO2016143823A1 PCT/JP2016/057383 JP2016057383W WO2016143823A1 WO 2016143823 A1 WO2016143823 A1 WO 2016143823A1 JP 2016057383 W JP2016057383 W JP 2016057383W WO 2016143823 A1 WO2016143823 A1 WO 2016143823A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
formula
aromatic ring
integer
Prior art date
Application number
PCT/JP2016/057383
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 丹波
家 裕隆
安蘇 芳雄
一剛 萩谷
Original Assignee
国立大学法人大阪大学
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 東洋紡株式会社 filed Critical 国立大学法人大阪大学
Priority to JP2017505379A priority Critical patent/JP6706822B2/en
Publication of WO2016143823A1 publication Critical patent/WO2016143823A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets

Definitions

  • the present invention relates to a tetrazolopyridine compound.
  • a tetrazolopyridine compound which can be used for an organic semiconductor, a pharmaceutical composition, and a gas generating agent.
  • Tetrazolopyridine compounds are known as pharmaceutical intermediates.
  • a tetrazolopyridine compound having a glycidyl group is synthesized using 6-chloronicotinic acid chloride as a raw material.
  • Non-Patent Document 1 proposes tetrazolopyridine compounds having various substituents.
  • the effect of using the above compound as an organic semiconductor material has not been known.
  • the above compounds may not have sufficient thermal stability.
  • the present inventors have found that among tetrazolopyridine compounds, those having two or more specific functional groups have a HOMO level while keeping the LUMO level low. It has been found that it is useful as an organic semiconductor material. And, the tetrazolopyridine compound having two or more specific functional groups is found to be excellent in thermal stability and useful as a gas generating agent, and also useful as a raw material for various compounds, The present invention has been completed.
  • the compound of the present invention is represented by the formula (1).
  • R 1 represents a hydrogen atom, an aliphatic hydrocarbon group, or an alicyclic hydrocarbon group.
  • a 1 represents an optionally substituted aromatic ring or a halogen atom.
  • m represents an integer of 0 to 2
  • n represents an integer of 2 to 4. However, m + n is 4. ]
  • the compound of the present invention is also represented by the formula (1-I).
  • a 1 represents an optionally substituted aromatic ring or a halogen atom.
  • two or more A 1 are an aromatic ring substituted with a halogen atom or a halogen atom.
  • two or more A 1 are preferably halogen atoms, and two or more A 1 are also preferably aromatic rings substituted with a halogen atom.
  • a 1 is more preferably any aromatic ring selected from the following formulas (Ar1) to (Ar8).
  • R 2 represents a halogen atom, an alkyl group, an alkoxy group, or a halogenated alkyl group.
  • R 3 represents a hydrogen atom or an alkyl group.
  • p1 represents an integer of 0 to 3
  • p2 represents an integer of 0 to 2
  • p3 represents an integer of 0 to 5
  • p4 represents an integer of 0 to 4.
  • the present invention also includes a method for producing a compound represented by the formula (1), in which a compound represented by the following formula (2) is reacted with an azide compound in the presence of a base.
  • R 1 represents a hydrogen atom, an aliphatic hydrocarbon group, or an alicyclic hydrocarbon group.
  • a 1 represents an optionally substituted aromatic ring or a halogen atom.
  • m represents an integer of 0 to 2
  • n represents an integer of 2 to 4. However, m + n is 4. ]
  • the present invention also includes a process for producing a compound represented by the formula (1-I), in which a compound represented by the following formula (2-I) is reacted with an azide compound in the presence of a base.
  • a 1 represents an optionally substituted aromatic ring or a halogen atom.
  • the present invention includes a compound represented by the following formula.
  • R 1 represents a hydrogen atom, an aliphatic hydrocarbon group, or an alicyclic hydrocarbon group.
  • a 20 represents an optionally substituted aromatic ring.
  • m represents an integer of 0 to 2
  • n7 represents an integer of 1 or more
  • r represents an integer of 1 or more. However, either n7 or r is 2 or more.
  • an organic semiconductor material containing the above compound and an organic electronic device containing this organic semiconductor material are also included in the scope of the present invention.
  • the compound of the present invention is a tetrazolopyridine compound having two or more specific functional groups
  • the HOMO level can be raised while keeping the LUMO level low, and it is useful as an organic semiconductor material, and has thermal stability. And is also useful as a raw material for various compounds.
  • FIG. 1 shows the results of differential scanning calorimetry of the compounds (Tz-6), (Tz-8) and (Tz-9).
  • FIG. 2 shows the results of differential scanning calorimetry of compound (Tz-11).
  • FIG. 3 shows the results of differential scanning calorimetry of the compounds (Tz-1) and (Tz-7).
  • FIG. 4 shows the results of differential scanning calorimetry of the compounds (Tz-14) and (Tz-15).
  • FIG. 5 shows the results of differential scanning calorimetry of the compounds (Tz-3) and (Tz-4).
  • FIG. 6 shows the results of differential scanning calorimetry of the compounds (Tz-2) and (Tz-16).
  • FIG. 7 represents an ultraviolet-visible absorption spectrum of the compound (Tz-3).
  • FIG. 8 shows an ultraviolet-visible absorption spectrum of the compound (Tz-6).
  • FIG. 9 represents an ultraviolet-visible absorption spectrum of the compound (Tz-9).
  • FIG. 10 represents an ultraviolet-visible absorption spectrum of the compound (Tz-8).
  • FIG. 11 represents an ultraviolet-visible absorption spectrum of the compound (Tz-1).
  • FIG. 12 represents an ultraviolet-visible absorption spectrum of the compound (Tz-14).
  • FIG. 13 shows an ultraviolet-visible absorption spectrum of the compound (Tz-15).
  • FIG. 14 shows the results of cyclic voltammetry measurement of the compound (Tz-3).
  • FIG. 15 shows the results of cyclic voltammetry measurement of the compounds (Tz-6), (Tz-8) and (Tz-9).
  • FIG. 16 shows the results of cyclic voltammetry measurement of the compounds (Tz-1), (Tz-14) and (Tz-15).
  • the solid line represents the compound (Tz-1), the broken line represents the compound (Tz-14), and the dotted line represents the compound (Tz-15).
  • R 1 represents a hydrogen atom, an aliphatic hydrocarbon group, or an alicyclic hydrocarbon group.
  • a 1 represents an optionally substituted aromatic ring or a halogen atom.
  • m represents an integer of 0 to 2
  • n represents an integer of 2 to 4. However, m + n is 4. ]
  • m is more preferably 1 to 2, particularly preferably 2, and n is more preferably 2.
  • R 1 and A 1 may be bonded to any of the 2 to 5 positions, for example, the following arrangements.
  • R 1 and A 1 are as defined above.
  • the formulas (1-1) to (1-6) are preferable, the formulas (1-1), (1-2), and (1-4) are more preferable, and the formula (1-1) is particularly preferable. It is.
  • all of A 1 may be a halogen atom (the following formula (1A)), or all of A 1 may be an optionally substituted aromatic ring (the following formula (1B)), any one of A 1 may be a halogen atom, and any of them may be an optionally substituted aromatic ring (the following formula (1C)).
  • R 1 and m are as defined above.
  • a 2 represents an optionally substituted aromatic ring.
  • X 1 represents a halogen atom.
  • n1 represents an integer of 2 to 4
  • n2 represents an integer of 1 to 3
  • n3 represents an integer of 1 to 3.
  • m + n1 and m + n2 + n3 are 4 or less.
  • the halogen atom of X 1 is the same as the halogen atom of A 1
  • the optionally substituted aromatic ring of A 2 is the same as the optionally substituted aromatic ring of A 1.
  • n1 is preferably 2 to 3, and particularly preferably 2.
  • n2 and n3 are each preferably 1 to 2, and particularly preferably 1.
  • two or more A 1 are preferably an aromatic ring substituted with a halogen atom or a halogen atom.
  • a 1 is an aromatic ring substituted with a halogen atom or a halogen atom, it can be bonded to various substituents starting from the halogen atom, and it is easy to synthesize various compounds. Become. It is also preferable that two or more A 1 are all halogen atoms, or that two or more A 1 are both aromatic rings substituted with a halogen atom.
  • two or more A 1 is an aromatic ring substituted with a halogen atom, it is particularly useful as an organic semiconductor material described later.
  • the aliphatic hydrocarbon group or alicyclic hydrocarbon group represented by R 1 preferably has 1 to 30 carbon atoms. Further, the aliphatic hydrocarbon group for R 1 may be either linear or branched. The aliphatic hydrocarbon group for R 1 may be an alkyl group, or an unsaturated aliphatic hydrocarbon group such as an alkenyl group or an alkynyl group, and is preferably an alkyl group. The carbon number of the aliphatic hydrocarbon group for R 1 is preferably 1 to 24, and more preferably 1 to 20 carbon atoms.
  • aliphatic hydrocarbon group for R 1 examples include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, and n-octyl group.
  • the alicyclic hydrocarbon group for R 1 may be monocyclic or polycyclic.
  • the alicyclic hydrocarbon group for R 1 may be any of a cycloalkyl group, or an unsaturated alicyclic hydrocarbon group such as a cycloalkenyl group or a cycloalkynyl group, and is a cycloalkyl group. preferable.
  • the carbon number of the alicyclic hydrocarbon group of R 1 is preferably 3 to 20, more preferably 3 to 14.
  • alicyclic hydrocarbon group for R 1 examples include monocyclic cycloalkyl groups such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclononyl group; And polycyclic cycloalkyl groups such as a bicyclohexyl group, a bicycloheptyl group, and a bicyclooctyl group.
  • R 1 is preferably a hydrogen atom or an aliphatic hydrocarbon group, and more preferably a hydrogen atom.
  • halogen atom for A 1 examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a bromine atom and an iodine atom, and more preferably a bromine atom.
  • Examples of the aromatic ring for A 1 include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • Examples of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, and the like, and a benzene ring is preferable.
  • Examples of the aromatic heterocycle include an aromatic heterocycle represented by the following formula, and among them, a thiophene ring, a thiazole ring, a pyridine ring, a pyrrole ring, an imidazole ring, a furan ring, and an oxazole ring are preferable.
  • the aromatic ring of A 1 is preferably substituted with a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • a bromine atom and an iodine atom are preferable, and a bromine atom is particularly preferable.
  • the number of halogen atom substitutions is preferably 1 to 2, particularly preferably 1.
  • the aromatic ring of A 1 may have a substituent other than a halogen atom. Examples of substituents other than halogen atoms include alkyl groups, alkoxy groups, and halogenated alkyl groups.
  • alkyl group examples include the same groups as the alkyl groups exemplified as the aliphatic hydrocarbon group for R 1 , and preferably have 1 to 30 carbon atoms, more preferably 1 to 24 carbon atoms.
  • alkoxy group examples include groups in which —O— is bonded to the alkyl group, and preferably has 1 to 30 carbon atoms, more preferably 1 to 24 carbon atoms.
  • examples of the halogenated alkyl group include groups in which a hydrogen atom of the alkyl group is substituted with a halogen atom (particularly preferably a fluorine atom) such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, It has 1 to 30 carbon atoms, more preferably 1 to 10 carbon atoms, still more preferably 1 to 4 carbon atoms, and specifically includes a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, and a nonafluorobutyl group. And a trifluoromethyl group is particularly preferable.
  • the aromatic hydrocarbon ring is preferably bonded to the pyridine ring of tetrazolopyridine at the 2-position or 5-position, and the aromatic heterocyclic ring is tetrazolo at the 2-position. It is preferably bonded to the pyridine ring of pyridine.
  • the aromatic ring represented by A 1 is preferably an aromatic ring represented by the following formula.
  • R 2 represents a halogen atom, an alkyl group, an alkoxy group, or a halogenated alkyl group.
  • R 3 represents a hydrogen atom or an alkyl group.
  • p1 represents an integer of 0 to 3
  • p2 represents an integer of 0 to 2
  • p3 represents an integer of 0 to 5
  • p4 represents an integer of 0 to 4.
  • halogen atom for R 2 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a bromine atom and an iodine atom are preferable.
  • Alkyl group R 2, an alkoxy group, halogenated alkyl group, the alkyl group of R 3, is the same as the substituent which may be an aromatic ring of the A 1 optionally has, alkoxy group, halogenated alkyl group Is preferred.
  • At least one R 2 is preferably a halogen atom.
  • the substitution position of the halogen atom is preferably the 5-position in the formulas (Ar1) to (Ar2) and (Ar5) to (Ar8), the 4-position in the formula (Ar3), and the 6-position in the formula (Ar4). It is preferable.
  • p1, p2, p3, and p4 are each preferably 0 to 2.
  • the formulas (Ar1) to (Ar8) are preferable, and the formulas (Ar1) to (Ar4) are respectively the following formulas (Ar1-1) to (Ar4-1) Is more preferable.
  • X 2 is preferably bonded to the 2-position, and in (Ar3-1), X 2 is bonded to the 4-position. It is preferable.
  • R 4 represents an alkyl group, an alkoxy group, or a halogenated alkyl group.
  • X 2 represents a halogen atom.
  • p5 represents an integer of 0 to 2
  • p6 represents an integer of 0 to 1
  • p7 represents an integer of 0 to 4
  • p8 represents an integer of 0 to 3.
  • p9 represents an integer of 0 to 3
  • p10 represents an integer of 0 to 2
  • p11 represents an integer of 0 to 5
  • p12 represents an integer of 0 to 4. * Represents a bond.
  • the halogen atom for X 2 is the same as the halogen atom for R 2 described above, preferably a bromine atom or an iodine atom, and more preferably a bromine atom.
  • R 4 is the same as the alkyl group, alkoxy group, and halogenated alkyl group of R 2 above, and is preferably an alkoxy group or a halogenated alkyl group.
  • p5, p6, p7, p8, p9, p10, p11, and p12 are preferably 0 to 1.
  • Examples of the compound represented by the formula (1) include a compound represented by the following formula (1-I).
  • each formula number means a group represented by the following formula.
  • R 4 has the same meaning as above, and * represents a bond.
  • compounds (1-I-1) to (1-I-107) are more preferable, compounds (1-I-1) to (1-I-16) are more preferable, and compound (1-I-1) More preferable is (1-I-10).
  • R 1 , A 1 , A 2 , X 1 , m, n, n1, n2, and n3 are as defined above.
  • a 3 represents an aromatic ring not substituted with a halogen atom.
  • a x1 represents an aromatic ring substituted with a halogen atom.
  • M 1 represents a boron atom or a tin atom.
  • L 1 represents an aliphatic hydrocarbon group, a hydroxyl group, an alkoxy group, or an aryloxy group, and a plurality of L 1 may form a ring together with M 1 .
  • n4 represents an integer of 1 to 3
  • n5 represents an integer of 1 to 3.
  • k1 represents an integer of 2 or 3.
  • the compound (1) of the present invention oxidizes the compound (3) (oxidation step: step 1) and adds an aromatic ring as necessary (aromatic ring addition step 1: steps 3, 5). 7), compound (2) is obtained, and this compound (2) can be produced by reacting an azide compound in the presence of a base (cyclization step 1: steps 2, 4, 6, 8). 11).
  • the compound (1) is a compound represented by the formula (1E) containing an aromatic ring in which A 1 is substituted with a halogen atom
  • the compound (1E) is represented by the following formula (2E). May be prepared by reacting the compound to be reacted with an azide compound in the presence of a base (cyclization step 1: step 11),
  • R 1 , A x1 , X 1 , m, n4, and n5 have the same meanings as described above. ]
  • the compound (2D) having an aromatic ring not substituted with a halogen atom is reacted with an azide compound in the presence of a base (cyclization step 1: step 8), and the aromatic not substituted with a halogen atom
  • the aromatic ring may be substituted with a halogen atom (halogenation step: step 9).
  • R 1 , A 3 , X 1 , m, n4 and n5 have the same meanings as described above. ]
  • the compound (2) can be obtained by reacting the compound (3) with an oxidizing agent.
  • an oxidizing agent for example, a compound represented by the following formula (3-I) is preferable.
  • a percarboxylic acid such as metachloroperbenzoic acid
  • the amount of the oxidizing agent is preferably 0.1 mol or more and 10 mol or less, more preferably 0.5 mol or more and 5 mol or less with respect to 1 mol of the compound (3A).
  • halogen solvents such as dichloromethane, chloroform, dichloroethane, dichloropropane and the like are preferable.
  • Aromatic ring addition step 1 (steps 3, 5, and 7) In the aromatic ring addition step 1, the compound (2) and the following formula (4)
  • the compound (2) which has an aromatic ring can be manufactured by making it react with the compound (henceforth "compound (4)") represented by these.
  • compound (4) represented by these.
  • a compound represented by the following formula (2-I) is preferable, and a compound (2A) is preferable.
  • each formula number has the same meaning as described above.
  • the number of carbon atoms of L 1 is an aliphatic hydrocarbon group, the alkoxy group, respectively, an aliphatic hydrocarbon group R 1, the same groups exemplified as the alkoxy group R 2 Can be mentioned.
  • the number of carbon atoms of the aliphatic hydrocarbon group represented by L 1 is preferably 1 to 6, and more preferably 1 to 4. Further, the number of carbon atoms of the alkoxy group of L 1 is preferably 1 to 6, and more preferably 1 to 2.
  • the number of carbon atoms of the aryloxy group of L 1 is preferably 6 to 10, more preferably 6 to 10, and specific examples include a phenyloxy group, a benzyloxy group, and a phenylenebis (methyleneoxy) group.
  • . k1 is 2 or 3, depending on the type of M 1, a 2 when M 1 is a boron atom, a 3 when M 1 is a tin atom.
  • examples of * -M 1 (L 1 ) k1 include groups represented by the following formulae.
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms (preferably a hydrogen atom). * Represents a bond.
  • examples of * -M 1 (L 1 ) k1 include groups represented by the following formulae. In the formula, * represents a bond.
  • the amount of the compound (4) is preferably 1.2 to 10 mol, more preferably 2 to 7 mol, relative to 1 mol of the compound (2).
  • a catalyst When reacting compound (2) and compound (4), a catalyst may coexist.
  • the catalyst include metal catalysts, and transition metal catalysts such as palladium catalysts, nickel catalysts, iron catalysts, copper catalysts, rhodium catalysts, and ruthenium catalysts. Among these, a palladium-based catalyst is preferable.
  • the palladium-based catalyst examples include palladium (II) chloride, palladium (II) bromide, palladium (II) iodide, palladium (II) oxide, palladium (II) sulfide, palladium (II) telluride, palladium hydroxide ( II), palladium selenide (II), palladium cyanide (II), palladium acetate (II), palladium trifluoroacetate (II), palladium acetylacetonate (II), diacetate bis (triphenylphosphine) palladium (II) ), Tetrakis (triphenylphosphine) palladium (0), dichlorobis (triphenylphosphine) palladium (II), dichlorobis (acetonitrile) palladium (II), dichlorobis (benzonitrile) palladium (II), dichloro [1,2 Bis (diphenyl
  • These catalysts may be used individually by 1 type, and may mix and use 2 or more types. Of these, tetrakis (triphenylphosphine) palladium (0) or dichlorobis (triphenylphosphine) palladium (II) is preferable.
  • the molar ratio of the compound (2) to the catalyst is generally about 1: 0.0001 to 1: 0.5, and is 1: 0.001 from the viewpoint of yield and reaction efficiency. ⁇ 1: 0.4 is preferable, 1: 0.005 to 1: 0.3 is more preferable, and 1: 0.01 to 1: 0.2 is more preferable.
  • a specific ligand may be coordinated with the catalyst.
  • the ligands include trimethylphosphine, triethylphosphine, tri (n-butyl) phosphine, tri (isopropyl) phosphine, tri (tert-butyl) phosphine, tri-tert-butylphosphonium tetrafluoroborate, bis (tert-butyl) ) Methylphosphine, tricyclohexylphosphine, diphenyl (methyl) phosphine, triphenisphosphine, tris (o-tolyl) phosphine, tris (m-tolyl) phosphine, tris (p-tolyl) phosphine, tris (2-furyl) phosphine, Tris (2-methoxyphenyl) phosphine, Tris (3-methoxyphenyl) phosphine, Tris (4-methoxyphen
  • the molar ratio of the catalyst to the ligand is generally about 1: 0.5 to 1:10, and 1 from the viewpoint of yield and reaction efficiency. Is preferably 1: 1 to 1: 8, more preferably 1: 1 to 1: 7, and still more preferably 1: 1 to 1: 5.
  • a base When reacting compound (2) and compound (4), a base may be allowed to coexist.
  • a base when M 1 is a boron atom, a base is preferably allowed to coexist, and when M 1 is a tin atom, the base may not be allowed to coexist.
  • Examples of the base include lithium metal hydride, sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate and other alkali metal salt compounds; magnesium hydroxide, calcium hydroxide, barium hydroxide, Alkaline earth metal salt compounds such as magnesium carbonate, calcium carbonate, barium carbonate; lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide, sodium ethoxide, potassium ethoxide, lithium isopropoxide, sodium isopropoxide Potassium isopropoxide, lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, lithium tert-amyl alkoxide, sodium tert-amyl alkoxide Alkoxymethyl alkali metal compounds such as potassium tert- amyl alkoxide; lithium hydride, sodium hydride, metal hydride compounds such as potassium hydride.
  • an alkoxyalkali metal compound is preferable, and lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, sodium carbonate, potassium carbonate, and cesium carbonate are more preferable.
  • the molar ratio of compound (2) to base is generally about 1: 1 to 1:10, and from the viewpoint of yield and reaction efficiency, 1: 1.5 to 1: 8
  • 1: 1.8 to 1: 6 is more preferable, and 1: 2 to 1: 5 is more preferable.
  • reaction solvent a solvent that does not affect the reaction
  • ether solvents aromatic solvents, ester solvents, hydrocarbon solvents, halogen solvents, ketone solvents, amide solvents, and the like are used.
  • ether solvent include diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, methyltetrahydrofuran, dimethoxyethane, cyclopentyl methyl ether, t-butyl methyl ether, and dioxane.
  • Examples of the aromatic solvent include benzene, toluene, xylene, mesitylene, chlorobenzene, and dichlorobenzene.
  • Examples of the ester solvent include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, and butyl acetate.
  • Examples of the hydrocarbon solvent include pentane, hexane, and heptane.
  • Examples of the halogen solvent include dichloromethane, chloroform, dichloroethane, and dichloropropane.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • amide solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyl3,4,5,6-tetrahydro- (1H ) -Pyrimidine.
  • a nitrile solvent such as acetonitrile, a sulfoxide solvent such as dimethyl sulfoxide, and a sulfone solvent such as sulfolane can be used.
  • toluene, xylene, tetrahydrofuran, dioxane, and N, N-dimethylformamide are particularly preferable.
  • the amount of the reaction solvent is generally about 1 mL or more and 100 mL or less with respect to 1 g of the compound (2), preferably 5 mL or more and 80 mL or less, more preferably 8 mL or more and 70 mL or less from the viewpoint of yield or reaction efficiency. 10 mL or more and 60 mL or less are more preferable.
  • the reaction temperature is preferably 0 ° C. or higher and 200 ° C. or lower from the viewpoint of increasing the reaction yield.
  • they are 30 degreeC or more and 180 degrees C or less, and it is further more preferable that they are 40 degreeC or more and 150 degrees C or less.
  • it is preferable that it is 0 to 200 degreeC, and it is more preferable that it is 30 to 180 degreeC.
  • Microwave may be used for the reaction.
  • Cyclization step 1 (steps 2, 4, 6, 8, 11)
  • Compound (1) can be obtained by reacting compound (2) with an azide compound in the presence of a base.
  • R 1 and R 2 are each preferably bonded to any of the 2 to 5 positions, and examples thereof include the following arrangements.
  • R 1 and A 1 are as defined above.
  • the formulas (2-1) to (2-6) are preferable, the formulas (2-1), (2-2), and (2-4) are more preferable, and the formula (2-1) is particularly preferable. It is.
  • all of A 1 may be a halogen atom (the following formula (2A)), or all of A 1 may be an optionally substituted aromatic ring (the following formula (2B)), any one of A 1 may be a halogen atom, and any of them may be an optionally substituted aromatic ring (the following formula (2C)).
  • R 1 , A 2 , X 1 , m, n1, n2, and n3 are as defined above.
  • Examples of the compound represented by the formula (2) include a compound represented by the following formula (2-I).
  • R 3 has the same meaning as above, and * represents a bond.
  • each formula number has the same meaning as described above.
  • a 10 and A 11 has the formula (Ar1-1-1), (Ar1-1-2), (Ar2-1-1), (Ar2-1-2), (Ar3-1) -1), (Ar3-1-2), (Ar4-1-1), (Ar4-1-2) and the like, which is an aromatic ring substituted with a halogen atom, corresponds to compound (2D), All of A 10 and A 11 are represented by the formulas (Ar1-2-1), (Ar2-2-1), (Ar3-2-1), (Ar3-2-2), (Ar3-2-3), A compound that is an aromatic ring not substituted with a halogen atom, such as (Ar4-2-1), corresponds to compound (2E). Of these, compounds (2-I-1) to (2-I-107)
  • azide compounds examples include diarylphosphoryl azides such as diphenylphosphoryl azide (DPPA) and bis (4-nitrophenyl) phosphoryl azide; trialkylsilyl azides such as trimethylsilyl azide (TMSA); organic azide compounds such as sodium azide and the like Inorganic azide compounds are preferred.
  • the organic azide compound may be polymer-supported. Among these, trialkylsilyl azide compounds such as trimethylsilyl azide are preferable.
  • the amount of the azide compound is preferably 0.5 mol or more and 10 mol or less, more preferably 1 mol or more and 8 mol or less, and further preferably 1 mol with respect to 1 mol of the compound (2).
  • the amount is 5 mol or less.
  • a sulfonyl halide compound or a phosphoric acid halide compound coexist.
  • the sulfonyl halide compound include methanesulfonyl chloride, ethanesulfonyl chloride, propanesulfonyl chloride, isopropanesulfonyl chloride, butanesulfonyl chloride, pentanesulfonyl chloride, hexanesulfonyl chloride; alkylsulfonyl chloride compounds such as benzenesulfonyl chloride, 2-methyl Benzenesulfonyl chloride, 3-methylbenzenesulfonyl chloride, 4-methylbenzenesulfonyl chloride, 2-chlorobenzenesulfonyl chloride, 3-chlorobenzenesulfonyl chloride, 4-ch
  • the amount of the sulfonyl halide compound is preferably 0.5 mol or more and 20 mol or less, more preferably 1 mol or more and 15 mol or less, further preferably 1 mol, per 1 mol of the compound (2).
  • the amount is 13 mol or less, particularly preferably 1 mol or more and 10 mol or less. When the amount of the sulfonyl halide compound is within this range, the yield and reaction efficiency are good.
  • Examples of the phosphoric acid halide compound include dialkyl phosphoryl chloride compounds such as dimethyl phosphoryl chloride, diethyl phosphoryl chloride, dipropyl phosphoryl chloride, diisopropyl phosphoryl chloride, dibutyl phosphoryl chloride; bis (2,2,2-trichloroethyl) phosphoryl chloride and the like.
  • Dihalogenated alkylphosphoryl chloride compounds 2-chloro-2-oxo-1,3,2-dioxaphosphorane; diphenylphosphoryl chloride, bis (2-methylphenyl) phosphoryl chloride, bis (3-methylphenyl) phosphoryl chloride, Bis (4-methylphenyl) phosphoryl chloride, bis (3,5-dimethylphenyl) phosphoryl chloride, bis (2-chlorophenyl) phosphoryl chloride, bis (3-chlorophenyl) Yl) phosphoryl chloride, bis (4-chlorophenyl) phosphoryl chloride, bis (3,5-dichlorophenyl) diaryl phosphoryl chloride compound such as phosphoryl chloride; 1,2-phenylene phosphorochloridate; and the like.
  • dihalogenated alkyl phosphoryl chloride compounds and diaryl phosphoryl chloride compounds are preferable, and bis (2,2,2-trichloroethyl) phosphoryl chloride and diphenyl phosphoryl chloride are more preferable.
  • the amount of the phosphate halide compound is preferably 0.5 mol or more and 20 mol or less, more preferably 1 mol or more and 15 mol or less, and further preferably 1 with respect to 1 mol of the compound (2). It is at least 1 mol and at most 13 mol, particularly preferably at least 1 mol and not more than 10 mol. When the amount of the phosphate halide compound is in this range, the yield and reaction efficiency are good.
  • Bases that coexist when the azide compound is reacted include pyridine; imidazole compounds such as N-methylimidazole and imidazole; lithium hydroxide, sodium hydroxide, cesium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc.
  • Alkali metal salt compounds such as magnesium hydroxide, calcium hydroxide, barium hydroxide, magnesium carbonate, calcium carbonate, barium carbonate; lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide Sodium ethoxide, potassium ethoxide, lithium isopropoxide, sodium isopropoxide, potassium isopropoxide, lithium tert-butoxide, sodium tert-butoxide, potassium ter Alkoxy alkali metal compounds such as butoxide, lithium tert-amyl alkoxide, sodium tert-amyl alkoxide, potassium tert-amyl alkoxide; metal hydride compounds such as lithium hydride, sodium hydride, potassium hydride; trimethylamine, triethylamine, tri Propylamine, diisopropylethylamine, tributylamine, tripentylamine, trihexylamine, trioctylamine
  • pyridine, imidazole compounds, alkali metal salt compounds and amines are preferable, pyridine, N-methylimidazole, potassium carbonate and triethylamine are more preferable, and pyridine, potassium carbonate and triethylamine are more preferable.
  • the amount of the base is preferably 0.5 mol or more and 10 mol or less, more preferably 1 mol or more and 8 mol or less, further preferably 1 mol or more, 7 mol per 1 mol of the compound (2).
  • the amount is not more than mol, particularly preferably not less than 1 mol and not more than 5 mol.
  • reaction solvent it is preferable not to use a reaction solvent.
  • a reaction solvent it can be used as long as it does not affect the reaction.
  • an ether solvent examples include diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, tetrahydrophthalane, methyltetrahydrofuran, dimethoxyethane, cyclopentyl methyl ether, t-butyl methyl ether, and dioxane.
  • Examples of the aromatic solvent include benzene, toluene, xylene, mesitylene, chlorobenzene, and dichlorobenzene.
  • Examples of the ester solvent include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, and butyl acetate.
  • Examples of the hydrocarbon solvent include pentane, hexane, cyclohexane, and heptane.
  • Examples of the halogen solvent include dichloromethane, chloroform, dichloroethane, and dichloropropane.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • amide solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyl3,4,5,6-tetrahydro- (1H ) -Pyrimidine.
  • a nitrile solvent such as acetonitrile, a sulfoxide solvent such as dimethyl sulfoxide, and a sulfone solvent such as sulfolane can be used.
  • the reaction temperature is preferably 0 ° C. or higher and 200 ° C. or lower, more preferably 30 ° C. or higher and 180 ° C. or lower, and further preferably 40 ° C. or higher and 150 ° C. or lower. preferable.
  • the reaction temperature may be adjusted using a microwave.
  • Halogenation can be carried out by various methods, for example, by bringing compound (1D) into contact with a halogenating reagent in the presence of an acid.
  • the acid is preferably an organic acid such as acetic acid
  • the halogenating reagent is preferably N-bromosuccinimide, N-chlorosuccinimide, pyridine bromine complex salt, bromine, chlorine or the like.
  • Reaction solvents include dichloromethane, chloroform, dichloroethane, dichloropropane and other halogen solvents, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate and other ester solvents, pentane, hexane, cyclohexane, heptane and other hydrocarbons.
  • aromatic solvents such as benzene solvents, toluene, xylene, mesitylene, chlorobenzene and dichlorobenzene.
  • Tetrazolopyridine multimer A tetrazolopyridine multimer containing a structural unit derived from the compound (1) of the present invention (hereinafter sometimes simply referred to as “structural unit (I)”) is also encompassed in the scope of the present invention. .
  • R 1 and m are as defined above.
  • a 20 represents a group having one hydrogen atom of the optionally substituted aromatic ring of A 2 as a bond.
  • n7 represents an integer of 1 or more.
  • R 1 , A 20 and m are as defined above.
  • n7 represents an integer of 1 or more.
  • r represents an integer of 1 or more. However, either n7 or r is 2 or more.
  • n7 is preferably 1 or 2.
  • r is preferably 1 or 2.
  • R 1 , A 20 , m and n8 have the same meanings as described above.
  • n9 represents an integer of 2 or more, and r1 represents an integer of 2 or more.
  • Compounds (IIA) and (IIB) are preferably compounds represented by the following formulas (IIA-I) and (IIB-I).
  • (ArI-1) means a group represented by the following formula. * Represents a bond.
  • the outline of the production method of the compound (IIA) is represented by the following scheme.
  • R 1 , A 20 , m, n9, and r1 are as defined above.
  • X 10 represents a halogen atom.
  • M 10 represents a boron atom or a tin atom.
  • L 10 represents an aliphatic hydrocarbon group, a hydroxyl group, an alkoxy group, or an aryloxy group, and a plurality of L 1 may form a ring together with M 1 .
  • n10 represents an integer of 1 or more.
  • k10 represents an integer of 2 or 3.
  • compound (IIA) adds an aromatic ring to compound (IIA3) (aromatic ring addition step 2: step 12) to obtain compound (IIA2), and this compound (IIA2) is added to compound (IIA2) in the presence of a base. It can be produced by reacting an azide compound (cyclization step 2: step 13). Compound (IIA) can be produced by adding an aromatic ring to compound (IIA5) (aromatic ring addition step 2: step 14).
  • R 1 , A 20 , m, n8, and n9 are as defined above.
  • X 11 and X 12 represent a halogen atom.
  • M 11 and M 12 represent a boron atom or a tin atom.
  • L 11 and L 12 represent an aliphatic hydrocarbon group, a hydroxyl group, an alkoxy group, or an aryloxy group, and a plurality of L 11 or L 12 may form a ring together with M 11 or M 12 .
  • k11 and k12 represent an integer of 2 or 3.
  • compound (IIB) can be produced by the following three routes.
  • route 1 compound (IIB3), compound (IIB4), and compound (IIB5) are reacted (aromatic ring addition step 3: step 15) to obtain compound (IIB2).
  • It can be produced by reacting an azide compound in the presence (cyclization step 2: step 16).
  • route 2 compound (IIC) is reacted with a base and a halogenated organometallic compound to give compound (IID) (organometallic compound addition step: step 17), and then this compound (IID) and compound (IIE) ) In the presence of a metal catalyst (multimerization step 1: step 18).
  • Route 3 can be produced by reacting compound (IIC) and compound (IIF) in the presence of a base and a metal catalyst (multimerization step 2: step 19).
  • each step will be described.
  • Aromatic ring addition step 2 (steps 12 and 14) In the aromatic ring addition step 2, compound (IIA3) and compound (IIA4)
  • compound (IIA2) can be reacted to produce compound (IIA2).
  • compound (IIA3) used in this step include compound (2E) having an aromatic ring substituted with a halogen atom among compounds (2) exemplified above.
  • compound (IIA) can be produced by reacting compound (IIA5) with compound (IIA4).
  • compound (IIA5) used at this process the compound which has the aromatic ring substituted by the halogen atom among the compound (1) illustrated above is mentioned.
  • M 10 , L 10 , and k10 in the formula (IIA4) are the same as M 1 , L 1 , and k1 in the formula (4). Examples thereof include those in which the group ring is not substituted with a halogen atom.
  • the same catalyst as that exemplified in the aromatic ring addition step 1 can be used under the same conditions.
  • a specific ligand similar to the ligand exemplified in the aromatic ring addition step 1 may be coordinated with the catalyst under the same conditions.
  • a base similar to the base exemplified in the aromatic ring addition step 1 may coexist under the same conditions.
  • the reaction solvent used in the aromatic ring addition step 2 is the same as the reaction solvent used in the aromatic ring addition step 1 and can be used under the same conditions.
  • the reaction temperature in the aromatic ring addition step 2 is the same as that in the aromatic ring addition step 1.
  • Aromatic ring addition step 3 (step 15) In the aromatic ring addition step 3, the compound (IIB3) and the compound (IIB4) are converted into the following formula (IIB5)
  • Compound (IIB2) can be produced by reacting with the compound represented by the formula: Compound (IIB3) or compound (IIB4) used in this step can be produced by this step using compound (2A) or (2C) as a starting material.
  • Compounds (IIB3) and (IIB4) are preferably compounds represented by the following formula.
  • (ArI-1) has the same meaning as above.
  • M 11 , L 11 and k11 are the same as M 1 , L 1 and k1 in formula (4), respectively.
  • Examples of compound (IIB5) include compounds represented by the following formulas, etc. Is mentioned. In the table, (Om-1) to (Om-6) and (ArI-1) are as defined above.
  • the amount of compound (IIB5) is preferably 0.6 to 5 mol, more preferably 0.8 to 3 mol, relative to 1 mol of compound (IIB3).
  • the amount of compound (IIB4) is preferably 0.1 to 10 mol, more preferably 0.5 to 2 mol, relative to 1 mol of compound (IIB3).
  • the catalyst that coexists when the compounds (IIB3), (IIB4), and (IIB5) are reacted is the same as the catalyst exemplified in the aromatic ring addition step 1, and the molar ratio of the compound (IIB5) to the catalyst (compound ( IIB5): catalyst) is generally about 1: 0.0001 to 1: 1.0, preferably 1: 0.001 to 1: 0.8, and preferably 1: 0.005 from the viewpoint of yield and reaction efficiency. ⁇ 1: 0.6 is more preferred, and 1: 0.01 to 1: 0.4 is even more preferred.
  • the ligand exemplified in the aromatic ring addition step 1 may be coordinated with the catalyst under the same conditions.
  • the bases exemplified in the aromatic ring addition step 1 may coexist on the same conditions.
  • the same solvent as in the aromatic ring addition step 1 can be used under the same conditions as the reaction solvent. Further, the reaction temperature can be adjusted in the same manner as in the aromatic ring addition step 1.
  • Cyclization step 2 (steps 13 and 15) Compound (IIA) or (IIB) can be obtained by reacting compound (IIA2) or (IIB2) with an azide compound in the presence of a base.
  • the azide compound is the same as the azide compound exemplified in the cyclization step 1 and can be used under the same conditions.
  • the base coexisting when the azide compound is reacted is the same as the base exemplified in the cyclization step 1, and can be used under the same conditions.
  • the same conditions as in the cyclization step 1 can be employed for the reaction solvent and the reaction temperature.
  • Organometallic compound addition step (step 16) Compound (IID) can be obtained by reacting compound (IIC) with a base and a halogenated organometallic compound.
  • M 12 is preferably a tin atom.
  • (IIC) for example, a compound represented by the following formula is preferable.
  • (ArI-1) has the same meaning as above.
  • Examples of the base include alkyl lithium, alkyl metal amide, alkyl magnesium, magnesium complex, alkali metal hydride and the like.
  • alkyl lithium examples include n-butyl lithium, sec-butyl lithium, and tert-butyl lithium.
  • alkyl metal amide examples include lithium diisopropylamide, lithium diethylamide, lithium bis (trimethylsilyl) amide, sodium bis (trimethylsilyl) amide, potassium bis (trimethylsilyl) amide, lithium-2,2,6,6-tetramethylpiperidide , Lithium amide, sodium amide, potassium amide.
  • alkylmagnesium and the magnesium complex examples include tert-butylmagnesium chloride, ethylmagnesium chloride, 2,2,6,6-tetramethylpiperidinylmagnesium chloride, and lithium chloride complex.
  • alkali metal hydride examples include lithium hydride, sodium hydride, and potassium hydride.
  • alkyl metal amides are preferable from the viewpoint of regioselectivity, and n-butyllithium and lithium diisopropylamide are particularly preferable.
  • the molar ratio of compound (IIC) to base is generally about 1: 1 to 1: 5, and from the viewpoint of yield and reaction efficiency, 1: 1.1 to 1: 4 Preferably, 1: 1.5 to 1: 3 is more preferable, and 1: 1.8 to 1: 2.5 is more preferable.
  • examples of the halogenated organometallic compound to be reacted with the compound (IIC) together with a base include a halogenated alkyltin compound, a halogenated cycloalkyltin compound, and a halogenated aryltin compound.
  • examples of the halogenated alkyltin compounds include triethyltin chloride, tripropyltin chloride, tributyltin chloride, trimethyltin bromide, triethyltin bromide, tripropyltin bromide, and tributyltin bromide.
  • halogenated cycloalkyl tin compound examples include tricyclohexyl tin chloride and tricyclohexyl tin bromide.
  • halogenated aryl tin compound examples include triphenyl tin chloride, tribenzyl tin chloride, triphenyl tin bromide, and tribenzyl tin bromide.
  • a halogenated alkyltin compound is preferable, and trimethyltin chloride and tributyltin chloride are more preferable.
  • the molar ratio of compound (IIC) to halogenated organometallic compound (compound (IIC): halogenated organometallic compound) is generally about 1: 1 to 1: 5. From the viewpoint of yield and reaction efficiency, 1: 1.1 to 1: 4 is preferable, 1: 1.5 to 1: 3 is more preferable, and 1: 1.8 to 1: 2.5 is more preferable.
  • the molar ratio of the base to the halogenated organometallic compound (base: halogenated organometallic compound) is, for example, about 1: 0.5 to 1: 2.0, and 1: 0.6 to 1: 1.7. Preferably, 1: 0.7 to 1: 1.5 is more preferable, and 1: 0.8 to 1: 1.2 is more preferable.
  • the base and the halogenated organometallic compound may be reacted with the compound (IIC) at the same time, but from the viewpoint of the reaction yield, the base is first reacted with the compound (IIC) and then the tin halide compound is reacted.
  • the reaction temperature is preferably room temperature or lower, more preferably 0 ° C. or lower, from the viewpoint of suppressing the formation of by-products.
  • an ether solvent As the reaction solvent, an ether solvent, a hydrocarbon solvent, or the like can be used.
  • the ether solvent include diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, methyltetrahydrofuran, dimethoxyethane, cyclopentyl methyl ether, t-butyl methyl ether, and dioxane.
  • the hydrocarbon solvent include pentane, hexane, heptane, benzene, toluene, and xylene. Of these, tetrahydrofuran is preferred.
  • a solvent may be used individually by 1 type and may be used in mixture of 2 or more types.
  • the amount of the solvent is generally about 1 mL or more and 70 mL or less with respect to 1 g of the compound (IIC). The following is more preferable.
  • Multimerization process 2 (process 17)
  • Compound (IIB) can be obtained by reacting compound (IID) with compound (IIE) in the presence of a metal catalyst.
  • M 12 , L 12 and k12 are the same as M 1 , L 1 and k1, respectively, and M 12 is preferably a tin atom.
  • * -M 12 (L 12 ) k12 is the same as * -M 1 (L 1 ) k1, and the groups exemplified as the group when M 1 is a tin atom are preferable.
  • the compound (IID) is preferably a compound represented by the following formula. In the table, (Om-5) to (Om-6) and (ArI-1) are as defined above.
  • the amount of compound (IID) is preferably 0.6 to 5 mol, more preferably 0.8 to 4 mol, relative to 1 mol of compound (IIE).
  • the catalyst include the same catalysts as those exemplified in the aromatic ring addition step 1, and they can be used under the same conditions.
  • the same ligand as the ligand illustrated in the aromatic ring addition step 1 can be coordinated with the catalyst, and the catalyst can be used under the same conditions as in the aromatic ring addition step 1.
  • the reaction solvent and the reaction temperature can be the same as in the aromatic ring addition step 1.
  • compound (IIB) can be obtained by reacting compound (IIC) with compound (IIF) in the presence of a base and a metal catalyst.
  • compound (IIF) a compound represented by the following formula is preferable.
  • (ArI-1) has the same meaning as above.
  • Compound (IIF) is preferably 0.1 to 10 mol, more preferably 0.5 to 2 mol, relative to 1 mol of compound (IIC).
  • the base As the base, the same bases as exemplified in the organometallic compound addition step can be used.
  • the molar ratio of compound (IIC) to base (compound (IIC): base) is generally about 1: 1 to 1: 5, and from the viewpoint of yield and reaction efficiency, 1: 1.1 to 1: 4 Preferably, 1: 1.5 to 1: 3 is more preferable, and 1: 1.8 to 1: 2.5 is more preferable.
  • examples of the metal catalyst include transition metal catalysts such as a palladium catalyst, a nickel catalyst, an iron catalyst, a copper catalyst, a rhodium catalyst, and a ruthenium catalyst.
  • a copper catalyst is preferable.
  • the copper-based catalyst examples include copper, copper fluoride (I), copper chloride (I), copper bromide (I), copper iodide (I), copper fluoride (II), copper chloride (II), Copper halide compounds such as copper (II) bromide and copper (II) iodide; copper (I) oxide, copper (I) sulfide, copper oxide (II), copper sulfide (II), copper acetate (I), Examples include copper acetate (II) and copper (II) sulfate, and copper halide compounds are preferred. You may coordinate a ligand with these metal catalysts as needed.
  • the molar ratio of the compound (IIC) to the metal catalyst (compound (IIC): metal catalyst) is generally about 1: 0.0001 to 1: 0.5, from the viewpoint of yield and reaction efficiency. To 1: 0.001 to 1: 0.4, more preferably 1: 0.005 to 1: 0.3, and even more preferably 1: 0.01 to 1: 0.2.
  • reaction solvent and reaction temperature the same conditions as in the organometallic compound addition step can be employed.
  • the compound (1) of the present invention can raise the HOMO level while keeping the LUMO level low, has excellent thermal stability, and can easily add various functional groups. Therefore, it is excellent as an organic semiconductor material, and an organic semiconductor material obtained using the compound (1) of the present invention is also included in the technical scope of the present invention.
  • the structural unit (I) derived from the compound (1) is also included in the technical scope of the present invention.
  • R 1 , A 20 , m, and n7 are as defined above.
  • R 1 , A 20 , m, and n7 are as defined above.
  • it Since it is electron accepting and can be expected to function as an acceptor unit in an extended ⁇ -conjugated system, it may be combined with a donor unit to form a donor-acceptor semiconductor polymer compound, and the structural unit (I) It is more preferable to arrange the donor units alternately.
  • organic electro devices such as organic electroluminescence elements and organic thin film transistor elements, organic semiconductor materials, photoelectric conversion elements, organic electronic devices, solar cells, solar cell module applications and the like.
  • Examples of the donor unit include structural units (groups) represented by the following formulas (Dn-1) to (Dn-12).
  • R 30 represents an aliphatic hydrocarbon group
  • R 31 represents a hydrogen atom or an aliphatic hydrocarbon group
  • the aliphatic hydrocarbon group for R 30 is the same as the aliphatic hydrocarbon group for R 1 and preferably has 1 to 30 carbon atoms, more preferably 1 to 24 carbon atoms, still more preferably 1 carbon atom. ⁇ 20.
  • R 1 , A x1 , X 1 , m, n4 and n5 have the same meanings as described above. ]
  • a 6 represents a divalent electron donating group
  • M 2 represents a boron atom or a tin atom.
  • L 2 represents an aliphatic hydrocarbon group, a hydroxyl group, an alkoxy group, or an aryloxy group.
  • k2 represents an integer of 2 or 3.
  • a 6 is preferably a divalent electron-donating group containing an aromatic ring, and is preferably a divalent group represented by any one of the above formulas (Dn-1) to (Dn-12). More preferred.
  • M 2 , L 2 and k2 are the same as M 1 , L 1 and k1, respectively.
  • * -M 2 (L 2 ) k2 is the same as * -M 1 (L 1 ) k1 .
  • the molar ratio of the compound (1) to the compound represented by the formula (5) is preferably in the range of 1:99 to 99: 1, and preferably in the range of 20:80 to 80:20. 40:60 to 60:40 is preferable.
  • the same catalyst as that used in the aromatic ring addition step 1 can be used.
  • the palladium of the palladium-based catalyst may be zero-valent or divalent.
  • any of the palladium-based catalysts exemplified in the above aromatic ring addition step 1 can be used, and these catalysts may be used alone or in combination of two or more.
  • tris (dibenzylideneacetone) dipalladium (0) and tris (dibenzylideneacetone) dipalladium (0) chloroform adduct are particularly preferable.
  • the molar ratio of the compound (1) to the catalyst is generally about 1: 0.0001 to 1: 0.5, and 1 from the viewpoint of yield and reaction efficiency. : 0.001 to 1: 0.3 is preferable, 1: 0.005 to 1: 0.2 is more preferable, and 1: 0.01 to 1: 0.1 is more preferable.
  • a specific ligand may be coordinated with the catalyst.
  • the ligand any of the ligands exemplified in the aromatic ring addition step 1 can be used, and a catalyst coordinated with any of these ligands may be used in the reaction.
  • a ligand may be used individually by 1 type and may be used in mixture of 2 or more types. Of these, triphenylphosphine, tris (o-tolyl) phosphine, and tris (2-methoxyphenyl) phosphine are preferable.
  • the molar ratio of the catalyst to the ligand is generally about 1: 0.5 to 1:10, From the viewpoint of reaction efficiency, 1: 1 to 1: 8 is preferable, 1: 1 to 1: 7 is more preferable, and 1: 1 to 1: 5 is further preferable.
  • a solvent that does not affect the reaction can be used.
  • ether solvents aromatic solvents, ester solvents, hydrocarbon solvents, halogen solvents, ketone solvents
  • An amide solvent or the like can be used.
  • the ether solvent include diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, methyltetrahydrofuran, dimethoxyethane, cyclopentyl methyl ether, tert-butyl methyl ether, and dioxane.
  • Examples of the aromatic solvent include benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, and tetralin.
  • Examples of the ester solvent include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, and butyl acetate.
  • Examples of the hydrocarbon solvent include pentane, hexane, heptane, octane, and decalin.
  • Examples of the halogen solvent include dichloromethane, chloroform, dichloroethane, and dichloropropane.
  • ketone solvent examples include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • amide solvents include N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro- (1H ) -Pyrimidinone.
  • nitrile solvents such as acetonitrile, sulfoxide solvents such as dimethyl sulfoxide, and sulfone solvents such as sulfolane can be used.
  • a solvent may be used individually by 1 type and may be used in mixture of 2 or more types.
  • the amount of the solvent used relative to the total 1 g of the compounds represented by the compound (1) and the compound (5) is generally about 1 mL or more and about 150 mL or less, and 5 mL or more from the viewpoint of yield or reaction efficiency. 100 mL or less is preferable, 8 mL or more and 90 mL or less are more preferable, and 10 mL or more and 80 mL or less are more preferable.
  • the organic semiconductor material of the present invention has high thermal stability and high electron acceptability, it is an organic electronic device, for example, an organic electro device such as an organic electroluminescence element and an organic thin film transistor element, an organic semiconductor material, and a photoelectric conversion. It is useful for devices, organic electronic devices, solar cells, solar cell module applications and the like. Useful for organic electronic devices.
  • Step 3 Synthesis of 2,5- (dithiophen-2-yl) pyridine-N-oxide
  • Step 9 Synthesis of 2,5-bis (5-bromothiophenyl) tetrazolopyridine (Compound (Tz-2))
  • Step 15 Synthesis of pyridine-N-oxide hexamer
  • Step 16 Synthesis of tetrazolopyridine hexamer (compound (Tz-4))
  • Step 4 Synthesis of 2,5-bis (4-methoxyphenyl) tetrazolopyridine (Compound (Tz-8))
  • Step 4 Synthesis of 2,5-bis (4-trifluoromethylphenyl) tetrazolopyridine (Compound (Tz-9))
  • Step 4 2,5-bis (piperidin-2-yl) tetrazolopyridine (compound (Tz-10))
  • Example 5 The process of Example 5 except that 4-pyridineboronic acid was used instead of phenylboronic acid and the reaction conditions were changed to heating and stirring at 130 ° C. for 20 minutes using microwave instead of stirring at 60 ° C. for 24 hours. Synthesis was performed as in 3 (white solid, 107 mg, 43%).
  • Step 4 Synthesis of 2,5-bis (piperidin-4-yl) tetrazolopyridine (Compound (Tz-11))
  • Step 3 Synthesis of 2- (piperidin-2-yl) -5- (piperidin-4-yl) pyridine-N-oxide
  • Step 4 Synthesis of 2- (piperidin-2-yl) -5- (piperidin-4-yl) tetrazolopyridine (Compound (Tz-12))
  • Step 3 Synthesis of 2- (piperidin-2-yl) -5- (piperidin-4-yl) pyridine-N-oxide
  • Step 4 Synthesis of 2- (piperidin-4-yl) -5- (piperidin-2-yl) tetrazolopyridine (Compound (Tz-13))
  • Step 4 Synthesis of 2- (piperidin-4-yl) -5- (piperidin-2-yl) tetrazolopyridine (Compound (Tz-14))
  • Step 4 Synthesis of 2- (piperidin-4-yl) -5- (piperidin-2-yl) tetrazolopyridine (Compound (Tz-15))
  • Step 4 Synthesis of 2- (thiophen-2-yl) -5- (5-hexylthiophen-2-yl) tetrazolopyridine (Compound (Tz-16))
  • Step 19 Synthesis of pyridine-N-oxide hexamer (compound (Tz-4))
  • Step 3 Synthesis of 2- (5-hexylthiophen-2-yl) -5- (thiophen-2-yl) tetrazolopyridine
  • Step 17 Synthesis of 2- (5-tributylstannylthiophen-2-yl) -5- (5-hexylthiophen-2-yl) tetrazolopyridine
  • Step 9 Synthesis of 2- (5-hexylthiophen-2-yl) -5- (5-bromothiophen-2-yl) tetrazolopyridine
  • Step 18 Synthesis of pyridine-N-oxide hexamer (compound (Tz-4))
  • thermogravimetric analysis measurement Thermogravimetric Analysis Measurement
  • TGA-50 thermogravimetric analyzer
  • UV-Vis absorption spectrum measurement Compound (Tz-1,1.44 ⁇ 10 ⁇ 5 M), (Tz-3,8.21 ⁇ 10 ⁇ 6 M), (Tz- 6 , 1.86 ⁇ 10 ⁇ 5 M) , (Tz-8, 7.83 ⁇ 10 ⁇ 6 M), (Tz-9, 2.70 ⁇ 10 ⁇ 5 M), (Tz-14, 4.53 ⁇ 10 ⁇ 5 M), (Tz-15 , 1.47 ⁇ 10 ⁇ 5 M) in each concentration, and UV-visible using an ultraviolet / visible spectroscope (manufactured by Shimadzu Corporation, “UV-3100PC”) and a cell with an optical path length of 1 cm. Absorption spectrum measurement was performed. The results are shown in FIGS.
  • Cyclic voltammetry For compounds (Tz-1), (Tz-3), (Tz-6), (Tz-8), (Tz-9), (Tz-14), (Tz-15), cyclic voltammetry Cyclic voltammetry measurement was performed using a measuring apparatus (manufactured by BAS, “CV-620C voltammetric analyzer”) and a mixed solvent of o-dichlorobenzene / MeCN (5: 1). The results are shown in FIGS. In addition, Table 25 shows the obtained numerical values.
  • the compound of the present invention raises the HOMO level while keeping the LUMO level low compared with the compounds (Tz-5) and (Tz-20) of Comparative Examples. It has become clear that it is useful as an organic semiconductor material.
  • the compound of the present invention has a high ON / OFF ratio and is useful as a semiconductor material. Further, the compound of the present invention is stable even without being decomposed even when heated to 200 ° C. or higher from the results of differential scanning calorimetry, and even when heated to 180 ° C. As a result, the thermal stability of the device was found to be good.
  • organic electrodevices such as organic electroluminescence elements and organic thin film transistor elements, organic semiconductor materials, photoelectric conversion elements, organic electronic devices, solar cells, Useful for solar cell modules.

Abstract

The objective of the present invention is to provide a tetrazolopyridine compound that is useful as an organic semiconductor material, is also useful as a gas generating agent due to the excellent heat stability thereof, and is further useful as a raw material for various compounds. The compound according to the present invention is characterized by being represented by formula (1). (In formula (1), R1 represents a hydrogen atom, an aliphatic hydrocarbon group, or an alicyclic hydrocarbon group, A1 represents an aromatic ring which may be substituted or a halogen atom, m represents an integer of 0-2, n represents an integer of 2-4, m+n is 4.)

Description

化合物、及びこれを含む有機半導体材料Compound and organic semiconductor material containing the same
 本発明は、テトラゾロピリジン化合物に関する。詳細には、有機半導体や医薬組成物、ガス発生剤に用いることができる新規なテトラゾロピリジン化合物に関する。 The present invention relates to a tetrazolopyridine compound. In detail, it is related with the novel tetrazolopyridine compound which can be used for an organic semiconductor, a pharmaceutical composition, and a gas generating agent.
 テトラゾロピリジン化合物は、医薬中間体として知られている。例えば、特許文献1には、6-クロロニコチン酸クロリドを原料としてグリシジル基を有するテトラゾロピリジン化合物を合成している。また非特許文献1には、種々の置換基を有するテトラゾロピリジン化合物が提案されている。 Tetrazolopyridine compounds are known as pharmaceutical intermediates. For example, in Patent Document 1, a tetrazolopyridine compound having a glycidyl group is synthesized using 6-chloronicotinic acid chloride as a raw material. Non-Patent Document 1 proposes tetrazolopyridine compounds having various substituents.
特表2001-526282号公報JP-T-2001-526282
 しかしながら、上記の化合物を有機半導体材料に用いた場合の効果は知られていなかった。また、上記の化合物では、熱安定性が十分でない場合があった。 However, the effect of using the above compound as an organic semiconductor material has not been known. In addition, the above compounds may not have sufficient thermal stability.
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、テトラゾロピリジン化合物の中でも、特定の官能基を2個以上有するものは、LUMO準位を低く維持したままHOMO準位を引き上げることができ有機半導体材料として有用であることを見出した。そして、特定の官能基を2個以上有するテトラゾロピリジン化合物は、熱安定性に優れガス発生剤としても有用であり、さらには種々の化合物の原料としても有用な化合物となることを見出して、本発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that among tetrazolopyridine compounds, those having two or more specific functional groups have a HOMO level while keeping the LUMO level low. It has been found that it is useful as an organic semiconductor material. And, the tetrazolopyridine compound having two or more specific functional groups is found to be excellent in thermal stability and useful as a gas generating agent, and also useful as a raw material for various compounds, The present invention has been completed.
 すなわち本発明の化合物は、式(1)で表されることを特徴とする。 That is, the compound of the present invention is represented by the formula (1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[式(1)中、R1は、水素原子、脂肪族炭化水素基、又は脂環式炭化水素基を表す。A1は、置換されていてもよい芳香族環、又はハロゲン原子を表す。mは、0~2の整数、nは、2~4の整数を表す。ただしm+nは4である。] In Expression (1), R 1 represents a hydrogen atom, an aliphatic hydrocarbon group, or an alicyclic hydrocarbon group. A 1 represents an optionally substituted aromatic ring or a halogen atom. m represents an integer of 0 to 2, and n represents an integer of 2 to 4. However, m + n is 4. ]
 本発明の化合物は、また、式(1-I)で表される。 The compound of the present invention is also represented by the formula (1-I).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[式(1-I)中、A1は、置換されていてもよい芳香族環、又はハロゲン原子を表す。] [In formula (1-I), A 1 represents an optionally substituted aromatic ring or a halogen atom. ]
 上記化合物において、2つ以上のA1が、ハロゲン原子で置換されている芳香族環、又はハロゲン原子であることが好ましい。上記化合物において、2つ以上のA1が、ハロゲン原子であることが好ましく、2つ以上のA1が、ハロゲン原子で置換されている芳香族環であることも好ましい。 In the above compound, it is preferable that two or more A 1 are an aromatic ring substituted with a halogen atom or a halogen atom. In the above compound, two or more A 1 are preferably halogen atoms, and two or more A 1 are also preferably aromatic rings substituted with a halogen atom.
 また、A1は、下記式(Ar1)~(Ar8)から選ばれるいずれかの芳香族環であることがより好ましい。 A 1 is more preferably any aromatic ring selected from the following formulas (Ar1) to (Ar8).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式(Ar1)~(Ar8)中、R2は、ハロゲン原子、アルキル基、アルコキシ基、又はハロゲン化アルキル基を表す。R3は、水素原子、又はアルキル基を表す。p1は、0~3の整数、p2は、0~2の整数、p3は0~5の整数、p4は0~4の整数を表す。] [In the formulas (Ar1) to (Ar8), R 2 represents a halogen atom, an alkyl group, an alkoxy group, or a halogenated alkyl group. R 3 represents a hydrogen atom or an alkyl group. p1 represents an integer of 0 to 3, p2 represents an integer of 0 to 2, p3 represents an integer of 0 to 5, and p4 represents an integer of 0 to 4. ]
 本発明には、下記式(2)で表される化合物に、塩基の存在下、アジド化合物を反応させる、式(1)で表される化合物の製造方法も含まれる。 The present invention also includes a method for producing a compound represented by the formula (1), in which a compound represented by the following formula (2) is reacted with an azide compound in the presence of a base.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式(2)中、R1は、水素原子、脂肪族炭化水素基、又は脂環式炭化水素基を表す。A1は、置換されていてもよい芳香族環、又はハロゲン原子を表す。mは、0~2の整数、nは、2~4の整数を表す。ただしm+nは4である。] [In formula (2), R 1 represents a hydrogen atom, an aliphatic hydrocarbon group, or an alicyclic hydrocarbon group. A 1 represents an optionally substituted aromatic ring or a halogen atom. m represents an integer of 0 to 2, and n represents an integer of 2 to 4. However, m + n is 4. ]
 また本発明には、下記式(2-I)で表される化合物に、塩基の存在下、アジド化合物を反応させる、式(1-I)で表される化合物の製造方法も含まれる。 The present invention also includes a process for producing a compound represented by the formula (1-I), in which a compound represented by the following formula (2-I) is reacted with an azide compound in the presence of a base.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式(2-I)中、A1は、置換されていてもよい芳香族環、又はハロゲン原子を表す。] [In the formula (2-I), A 1 represents an optionally substituted aromatic ring or a halogen atom. ]
 さらに本発明には、下記式で表される化合物も包含される。 Furthermore, the present invention includes a compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式(II)中、R1は、水素原子、脂肪族炭化水素基、又は脂環式炭化水素基を表す。A20は、置換されていてもよい芳香族環を表す。mは、0~2の整数、n7は、1以上の整数、rは、1以上の整数を表す。ただし、n7またはrのいずれかは、2以上である。] [In Formula (II), R 1 represents a hydrogen atom, an aliphatic hydrocarbon group, or an alicyclic hydrocarbon group. A 20 represents an optionally substituted aromatic ring. m represents an integer of 0 to 2, n7 represents an integer of 1 or more, and r represents an integer of 1 or more. However, either n7 or r is 2 or more. ]
 さらに、上記の化合物を含む有機半導体材料、及び、この有機半導体材料を含む有機電子デバイスも本発明の範囲に包含される。 Furthermore, an organic semiconductor material containing the above compound and an organic electronic device containing this organic semiconductor material are also included in the scope of the present invention.
 本発明の化合物が特定の官能基を2個以上有するテトラゾロピリジン化合物であるため、LUMO準位を低く維持したままHOMO準位を引き上げることができ有機半導体材料として有用であるとともに、熱安定性が優れており、さらには種々の化合物の原料としても有用である。 Since the compound of the present invention is a tetrazolopyridine compound having two or more specific functional groups, the HOMO level can be raised while keeping the LUMO level low, and it is useful as an organic semiconductor material, and has thermal stability. And is also useful as a raw material for various compounds.
図1は、化合物(Tz-6)、(Tz-8)、(Tz-9)の示差走査熱量測定の結果を表す。FIG. 1 shows the results of differential scanning calorimetry of the compounds (Tz-6), (Tz-8) and (Tz-9). 図2は、化合物(Tz-11)の示差走査熱量測定の結果を表す。FIG. 2 shows the results of differential scanning calorimetry of compound (Tz-11). 図3は、化合物(Tz-1)、(Tz-7)の示差走査熱量測定の結果を表す。FIG. 3 shows the results of differential scanning calorimetry of the compounds (Tz-1) and (Tz-7). 図4は、化合物(Tz-14)、(Tz-15)の示差走査熱量測定の結果を表す。FIG. 4 shows the results of differential scanning calorimetry of the compounds (Tz-14) and (Tz-15). 図5は、化合物(Tz-3)、(Tz-4)の示差走査熱量測定の結果を表す。FIG. 5 shows the results of differential scanning calorimetry of the compounds (Tz-3) and (Tz-4). 図6は、化合物(Tz-2)、(Tz-16)の示差走査熱量測定の結果を表す。FIG. 6 shows the results of differential scanning calorimetry of the compounds (Tz-2) and (Tz-16). 図7は、化合物(Tz-3)の紫外可視吸収スペクトルを表す。FIG. 7 represents an ultraviolet-visible absorption spectrum of the compound (Tz-3). 図8は、化合物(Tz-6)の紫外可視吸収スペクトルを表す。FIG. 8 shows an ultraviolet-visible absorption spectrum of the compound (Tz-6). 図9は、化合物(Tz-9)の紫外可視吸収スペクトルを表す。FIG. 9 represents an ultraviolet-visible absorption spectrum of the compound (Tz-9). 図10は、化合物(Tz-8)の紫外可視吸収スペクトルを表す。FIG. 10 represents an ultraviolet-visible absorption spectrum of the compound (Tz-8). 図11は、化合物(Tz-1)の紫外可視吸収スペクトルを表す。FIG. 11 represents an ultraviolet-visible absorption spectrum of the compound (Tz-1). 図12は、化合物(Tz-14)の紫外可視吸収スペクトルを表す。FIG. 12 represents an ultraviolet-visible absorption spectrum of the compound (Tz-14). 図13は、化合物(Tz-15)の紫外可視吸収スペクトルを表す。FIG. 13 shows an ultraviolet-visible absorption spectrum of the compound (Tz-15). 図14は、化合物(Tz-3)のサイクリックボルタンメトリー測定の結果を表す。FIG. 14 shows the results of cyclic voltammetry measurement of the compound (Tz-3). 図15は、化合物(Tz-6)、(Tz-8)、(Tz-9)のサイクリックボルタンメトリー測定の結果を表す。実線が化合物(Tz-8)、破線が化合物(Tz-6)、点線が化合物(Tz-9)を表す。FIG. 15 shows the results of cyclic voltammetry measurement of the compounds (Tz-6), (Tz-8) and (Tz-9). The solid line represents the compound (Tz-8), the broken line represents the compound (Tz-6), and the dotted line represents the compound (Tz-9). 図16は、化合物(Tz-1)、(Tz-14)、(Tz-15)のサイクリックボルタンメトリー測定の結果を表す。実線が化合物(Tz-1)、破線が化合物(Tz-14)、点線が化合物(Tz-15)を表す。FIG. 16 shows the results of cyclic voltammetry measurement of the compounds (Tz-1), (Tz-14) and (Tz-15). The solid line represents the compound (Tz-1), the broken line represents the compound (Tz-14), and the dotted line represents the compound (Tz-15).
 以下、本発明について説明する。なお、以下「式(x)で表される化合物」を、単に「化合物(x)」という場合がある。
1.化合物
 本発明の化合物は、下記式(1)で表される。
The present invention will be described below. Hereinafter, the “compound represented by the formula (x)” may be simply referred to as “compound (x)”.
1. Compound The compound of the present invention is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[式(1)中、
 R1は、水素原子、脂肪族炭化水素基、又は脂環式炭化水素基を表す。
 A1は、置換されていてもよい芳香族環、又はハロゲン原子を表す。
 mは、0~2の整数、nは、2~4の整数を表す。ただしm+nは4である。]
[In Formula (1),
R 1 represents a hydrogen atom, an aliphatic hydrocarbon group, or an alicyclic hydrocarbon group.
A 1 represents an optionally substituted aromatic ring or a halogen atom.
m represents an integer of 0 to 2, and n represents an integer of 2 to 4. However, m + n is 4. ]
 式(1)において、mは、より好ましくは1~2、特に好ましくは2であり、nは、より好ましくは2である。R1、A1は、それぞれ2~5位のいずれの位置に結合していてもよく、例えば、以下の配置が挙げられる。 In the formula (1), m is more preferably 1 to 2, particularly preferably 2, and n is more preferably 2. R 1 and A 1 may be bonded to any of the 2 to 5 positions, for example, the following arrangements.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[式(1-1)~(1-11)中、R1、A1は上記と同義である。] [In the formulas (1-1) to (1-11), R 1 and A 1 are as defined above. ]
 中でも、式(1-1)~(1-6)が好ましく、より好ましくは式(1-1)、(1-2)、(1-4)であり、特に好ましくは式(1-1)である。 Of these, the formulas (1-1) to (1-6) are preferable, the formulas (1-1), (1-2), and (1-4) are more preferable, and the formula (1-1) is particularly preferable. It is.
 また、式(1)中、A1の全てがハロゲン原子であってもよく(下記式(1A))、A1の全てが置換されていてもよい芳香族環であってもよく(下記式(1B))、A1のいずれかがハロゲン原子、いずれかが置換されていてもよい芳香族環であってもよい(下記式(1C))。 In the formula (1), all of A 1 may be a halogen atom (the following formula (1A)), or all of A 1 may be an optionally substituted aromatic ring (the following formula (1B)), any one of A 1 may be a halogen atom, and any of them may be an optionally substituted aromatic ring (the following formula (1C)).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[式(1A)~(1B)中、
 R1、mは、上記と同義である。
 A2は、置換されていてもよい芳香族環を表す。
 X1は、ハロゲン原子を表す。
 n1は、2~4の整数、n2は1~3の整数、n3は、1~3の整数を表す。ただし、m+n1、m+n2+n3は4以下である。]
[In the formulas (1A) to (1B)
R 1 and m are as defined above.
A 2 represents an optionally substituted aromatic ring.
X 1 represents a halogen atom.
n1 represents an integer of 2 to 4, n2 represents an integer of 1 to 3, and n3 represents an integer of 1 to 3. However, m + n1 and m + n2 + n3 are 4 or less. ]
 式中、X1のハロゲン原子は、A1のハロゲン原子と同様であり、A2の置換されていてもよい芳香族環は、A1の置換されていてもよい芳香族環と同様である。
 n1は、2~3であることが好ましく2であることが特に好ましい。n2、n3は、それぞれ、1~2であることが好ましく、1であることが特に好ましい。
In the formula, the halogen atom of X 1 is the same as the halogen atom of A 1 , and the optionally substituted aromatic ring of A 2 is the same as the optionally substituted aromatic ring of A 1. .
n1 is preferably 2 to 3, and particularly preferably 2. n2 and n3 are each preferably 1 to 2, and particularly preferably 1.
 さらに、化合物(1)において、2つ以上のA1が、ハロゲン原子で置換されている芳香族環、又はハロゲン原子であることが好ましい。A1がハロゲン原子で置換されている芳香族環、又はハロゲン原子であると、このハロゲン原子が起点となって多様な置換基と結合することができ、多様な化合物を合成することが容易となる。
 また、2つ以上のA1がいずれもハロゲン原子であることや、2つ以上のA1が、いずれもハロゲン原子で置換されている芳香族環であることも好ましい。2つ以上のA1が、ハロゲン原子で置換されている芳香族環であると、後述する有機半導体材料として、特に有用である。
Furthermore, in the compound (1), two or more A 1 are preferably an aromatic ring substituted with a halogen atom or a halogen atom. When A 1 is an aromatic ring substituted with a halogen atom or a halogen atom, it can be bonded to various substituents starting from the halogen atom, and it is easy to synthesize various compounds. Become.
It is also preferable that two or more A 1 are all halogen atoms, or that two or more A 1 are both aromatic rings substituted with a halogen atom. When two or more A 1 is an aromatic ring substituted with a halogen atom, it is particularly useful as an organic semiconductor material described later.
 また、式(1)中、R1の脂肪族炭化水素基又は脂環式炭化水素基の炭素数は、1~30であることが好ましい。
 また、R1の脂肪族炭化水素基は、直鎖状、又は分岐鎖状のいずれであってもよい。R1の脂肪族炭化水素基は、アルキル基、或いはアルケニル基、アルキニル基等の不飽和脂肪族炭化水素基のいずれであってもよく、アルキル基であることが好ましい。R1の脂肪族炭化水素基の炭素数は、1~24であることが好ましく、より好ましくは炭素数1~20である。
 R1の脂肪族炭化水素基としては、具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、1-n-ブチルブチル基、1-n-プロピルペンチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、1-メチルヘプチル基、2-メチルヘプチル基、6-メチルヘプチル基、2,4,4-トリメチルペンチル基、2,5-ジメチルヘキシル基、n-ノニル基、1-n-プロピルヘキシル基、2-n-プロピルヘキシル基、1-エチルヘプチル基、2-エチルヘプチル基、1-メチルオクチル基、2-メチルオクチル基、6-メチルオクチル基、2,3,3,4-テトラメチルペンチル基、3,5,5-トリメチルヘキシル基、n-デシル基、1-n-ペンチルペンチル基、1-n-ブチルヘキシル基、2-n-ブチルヘキシル基、1-n-プロピルヘプチル基、1-エチルオクチル基、2-エチルオクチル基、1-メチルノニル基、2-メチルノニル基、3,7-ジメチルオクチル基、n-ウンデシル基、1-n-ブチルヘプチル基、2-n-ブチルヘプチル基、1-n-プロピルオクチル基、2-n-プロピルオクチル基、1-エチルノニル基、2-エチルノニル基、n-ドデシル基、1-n-ペンチルヘプチル基、2-n-ペンチルヘプチル基、1-n-ブチルオクチル基、2-n-ブチルオクチル基、1-n-プロピルノニル基、2-n-プロピルノニル基、n-トリデシル基、1-n-ペンチルオクチル基、2-n-ペンチルオクチル基、1-n-ブチルノニル基、2-n-ブチルノニル基、1-メチルデシル基、2-メチルデシル基、n-テトラデシル基、1-n-ヘプチルヘプチル基、1-n-ヘキシルオクチル基、2-n-ヘキシルオクチル基、1-n-ペンチルノニル基、2-n-ペンチルノニル基、n-ペンタデシル基、1-n-ヘプチルオクチル基、1-n-ヘキシルノニル基、2-n-ヘキシルノニル基、n-ヘキサデシル基、2-ヘキシルデシル基、1-n-オクチルオクチル基、1-n-ヘプチルノニル基、2-n-ヘプチルノニル基、n-ヘプタデシル基、1-n-オクチルノニル基、n-オクタデシル基、1-n-ノニルノニル基、n-ノナデシル基、n-エイコシル基、2-オクチルドデシル基、n-ヘンエイコシル基、n-ドコシル基、n-トリコシル基、n-テトラコシル基、2-デシルテトラデシル基等が挙げられる。
In the formula (1), the aliphatic hydrocarbon group or alicyclic hydrocarbon group represented by R 1 preferably has 1 to 30 carbon atoms.
Further, the aliphatic hydrocarbon group for R 1 may be either linear or branched. The aliphatic hydrocarbon group for R 1 may be an alkyl group, or an unsaturated aliphatic hydrocarbon group such as an alkenyl group or an alkynyl group, and is preferably an alkyl group. The carbon number of the aliphatic hydrocarbon group for R 1 is preferably 1 to 24, and more preferably 1 to 20 carbon atoms.
Specific examples of the aliphatic hydrocarbon group for R 1 include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, and n-octyl group. Group, 1-n-butylbutyl group, 1-n-propylpentyl group, 1-ethylhexyl group, 2-ethylhexyl group, 3-ethylhexyl group, 4-ethylhexyl group, 1-methylheptyl group, 2-methylheptyl group, 6 -Methylheptyl group, 2,4,4-trimethylpentyl group, 2,5-dimethylhexyl group, n-nonyl group, 1-n-propylhexyl group, 2-n-propylhexyl group, 1-ethylheptyl group, 2-ethylheptyl group, 1-methyloctyl group, 2-methyloctyl group, 6-methyloctyl group, 2,3,3,4-tetramethylpentyl group, 3,5,5-trimethyl Hexyl, n-decyl, 1-n-pentylpentyl, 1-n-butylhexyl, 2-n-butylhexyl, 1-n-propylheptyl, 1-ethyloctyl, 2-ethyloctyl Group, 1-methylnonyl group, 2-methylnonyl group, 3,7-dimethyloctyl group, n-undecyl group, 1-n-butylheptyl group, 2-n-butylheptyl group, 1-n-propyloctyl group, 2 -N-propyloctyl group, 1-ethylnonyl group, 2-ethylnonyl group, n-dodecyl group, 1-n-pentylheptyl group, 2-n-pentylheptyl group, 1-n-butyloctyl group, 2-n- Butyloctyl group, 1-n-propylnonyl group, 2-n-propylnonyl group, n-tridecyl group, 1-n-pentyloctyl group, 2-n-pentyloctyl group, 1- n-butylnonyl group, 2-n-butylnonyl group, 1-methyldecyl group, 2-methyldecyl group, n-tetradecyl group, 1-n-heptylheptyl group, 1-n-hexyloctyl group, 2-n-hexyloctyl group 1-n-pentylnonyl group, 2-n-pentylnonyl group, n-pentadecyl group, 1-n-heptyloctyl group, 1-n-hexylnonyl group, 2-n-hexylnonyl group, n-hexadecyl group 2-hexyldecyl group, 1-n-octyloctyl group, 1-n-heptylnonyl group, 2-n-heptylnonyl group, n-heptadecyl group, 1-n-octylnonyl group, n-octadecyl group, 1-n -Nonylnonyl group, n-nonadecyl group, n-eicosyl group, 2-octyldodecyl group, n-heneicosyl group, n-docosyl group, n-tricosyl group n- tetracosyl group, 2-decyl tetradecyl group and the like.
 R1の脂環式炭化水素基は、単環、多環のいずれであってもよい。また、R1の脂環式炭化水素基は、シクロアルキル基、或いはシクロアルケニル基、シクロアルキニル基等の不飽和脂環式炭化水素基のいずれであってもよく、シクロアルキル基であることが好ましい。R1の脂環式炭化水素基の炭素数は、3~20であることが好ましく、より好ましくは炭素数3~14である。
 R1の脂環式炭化水素基としては、具体的には、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基等の単環式のシクロアルキル基;ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基等の多環式のシクロアルキル基等が挙げられる。
The alicyclic hydrocarbon group for R 1 may be monocyclic or polycyclic. The alicyclic hydrocarbon group for R 1 may be any of a cycloalkyl group, or an unsaturated alicyclic hydrocarbon group such as a cycloalkenyl group or a cycloalkynyl group, and is a cycloalkyl group. preferable. The carbon number of the alicyclic hydrocarbon group of R 1 is preferably 3 to 20, more preferably 3 to 14.
Specific examples of the alicyclic hydrocarbon group for R 1 include monocyclic cycloalkyl groups such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclononyl group; And polycyclic cycloalkyl groups such as a bicyclohexyl group, a bicycloheptyl group, and a bicyclooctyl group.
 中でもR1としては、水素原子、又は脂肪族炭化水素基が好ましく、より好ましくは水素原子である。 Among them, R 1 is preferably a hydrogen atom or an aliphatic hydrocarbon group, and more preferably a hydrogen atom.
 A1のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、好ましくは臭素原子、ヨウ素原子であり、より好ましくは臭素原子である。 Examples of the halogen atom for A 1 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a bromine atom and an iodine atom, and more preferably a bromine atom.
 A1の芳香族環としては、芳香族炭化水素環、芳香族複素環が挙げられる。
 芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環等が挙げられ、ベンゼン環が好ましい。
 芳香族複素環としては、下記式で表される芳香族複素環が挙げられ、中でも、チオフェン環、チアゾール環、ピリジン環、ピロール環、イミダゾール環、フラン環、オキサゾール環等が好ましい。
Examples of the aromatic ring for A 1 include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
Examples of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, and the like, and a benzene ring is preferable.
Examples of the aromatic heterocycle include an aromatic heterocycle represented by the following formula, and among them, a thiophene ring, a thiazole ring, a pyridine ring, a pyrrole ring, an imidazole ring, a furan ring, and an oxazole ring are preferable.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 また、A1の芳香族環は、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子で置換されていることが好ましい。このハロゲン原子としては、臭素原子、ヨウ素原子が好ましく、臭素原子が特に好ましい。ハロゲン原子の置換数は、1~2であることが好ましく、1であることが特に好ましい。
 A1の芳香族環は、ハロゲン原子以外の置換基を有していてもよい。ハロゲン原子以外の置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン化アルキル基等が挙げられる。前記アルキル基としては、R1の脂肪族炭化水素基として例示したアルキル基と同様の基が挙げられ、好ましくは炭素数1~30、より好ましくは炭素数1~24である。前記アルコキシ基としては、前記アルキル基に-O-が結合した基が挙げられ、好ましくは炭素数1~30、より好ましくは炭素数1~24である。さらに、前記ハロゲン化アルキル基としては、前記アルキル基の水素原子がフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子(特に好ましくはフッ素原子)で置換された基が挙げられ、好ましくは炭素数1~30、より好ましくは炭素数1~10、さらに好ましくは炭素数1~4であり、具体的には、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基等のペルフルオロアルキル基等が挙げられ、トリフルオロメチル基が特に好ましい。
The aromatic ring of A 1 is preferably substituted with a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. As this halogen atom, a bromine atom and an iodine atom are preferable, and a bromine atom is particularly preferable. The number of halogen atom substitutions is preferably 1 to 2, particularly preferably 1.
The aromatic ring of A 1 may have a substituent other than a halogen atom. Examples of substituents other than halogen atoms include alkyl groups, alkoxy groups, and halogenated alkyl groups. Examples of the alkyl group include the same groups as the alkyl groups exemplified as the aliphatic hydrocarbon group for R 1 , and preferably have 1 to 30 carbon atoms, more preferably 1 to 24 carbon atoms. Examples of the alkoxy group include groups in which —O— is bonded to the alkyl group, and preferably has 1 to 30 carbon atoms, more preferably 1 to 24 carbon atoms. Furthermore, examples of the halogenated alkyl group include groups in which a hydrogen atom of the alkyl group is substituted with a halogen atom (particularly preferably a fluorine atom) such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, It has 1 to 30 carbon atoms, more preferably 1 to 10 carbon atoms, still more preferably 1 to 4 carbon atoms, and specifically includes a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, and a nonafluorobutyl group. And a trifluoromethyl group is particularly preferable.
 上記A1の芳香族環のうち、芳香族炭化水素環は、2位、又は5位でテトラゾロピリジンのピリジン環と結合していることが好ましく、芳香族複素環は、2位でテトラゾロピリジンのピリジン環と結合していることが好ましい。 Of the aromatic rings of A 1, the aromatic hydrocarbon ring is preferably bonded to the pyridine ring of tetrazolopyridine at the 2-position or 5-position, and the aromatic heterocyclic ring is tetrazolo at the 2-position. It is preferably bonded to the pyridine ring of pyridine.
 A1の芳香族環としては、具体的には、下記式で表される芳香族環が好ましい。 Specifically, the aromatic ring represented by A 1 is preferably an aromatic ring represented by the following formula.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
[式(Ar1)~(Ar8)中、
 R2は、ハロゲン原子、アルキル基、アルコキシ基、又はハロゲン化アルキル基を表す。
 R3は、水素原子、又はアルキル基を表す。
 p1は、0~3の整数、p2は、0~2の整数、p3は0~5の整数、p4は0~4の整数を表す。]
[In the formulas (Ar1) to (Ar8),
R 2 represents a halogen atom, an alkyl group, an alkoxy group, or a halogenated alkyl group.
R 3 represents a hydrogen atom or an alkyl group.
p1 represents an integer of 0 to 3, p2 represents an integer of 0 to 2, p3 represents an integer of 0 to 5, and p4 represents an integer of 0 to 4. ]
 前記R2のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、臭素原子、ヨウ素原子が好ましい。
 R2のアルキル基、アルコキシ基、ハロゲン化アルキル基、R3のアルキル基としては、上記A1の芳香族環が有していてもよい置換基と同様であり、アルコキシ基、ハロゲン化アルキル基が好ましい。
Examples of the halogen atom for R 2 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a bromine atom and an iodine atom are preferable.
Alkyl group R 2, an alkoxy group, halogenated alkyl group, the alkyl group of R 3, is the same as the substituent which may be an aromatic ring of the A 1 optionally has, alkoxy group, halogenated alkyl group Is preferred.
 上記式(Ar1)~(Ar8)において、少なくとも1つのR2がハロゲン原子であることが好ましい。ハロゲン原子の置換位置は、式(Ar1)~(Ar2)、(Ar5)~(Ar8)では、5位であることが好ましく、式(Ar3)では4位、式(Ar4)では6位であることが好ましい。
 p1、p2、p3、p4は、それぞれ、0~2であることが好ましい。
In the above formulas (Ar1) to (Ar8), at least one R 2 is preferably a halogen atom. The substitution position of the halogen atom is preferably the 5-position in the formulas (Ar1) to (Ar2) and (Ar5) to (Ar8), the 4-position in the formula (Ar3), and the 6-position in the formula (Ar4). It is preferable.
p1, p2, p3, and p4 are each preferably 0 to 2.
 式(Ar1)~(Ar8)の中でも、式(Ar1)~(Ar4)が好ましく、式(Ar1)~(Ar4)は、それぞれ、下記式(Ar1-1)~(Ar4-1)であることがより好ましい。
 また、(Ar1-1)~(Ar1-2)、(Ar4-1)において、X2は2位に結合していることが好ましく、(Ar3-1)において、X2は4位に結合していることが好ましい。
Of the formulas (Ar1) to (Ar8), the formulas (Ar1) to (Ar4) are preferable, and the formulas (Ar1) to (Ar4) are respectively the following formulas (Ar1-1) to (Ar4-1) Is more preferable.
In (Ar1-1) to (Ar1-2) and (Ar4-1), X 2 is preferably bonded to the 2-position, and in (Ar3-1), X 2 is bonded to the 4-position. It is preferable.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
[式(Ar1-1)~(Ar4-2)中、
 R4は、アルキル基、アルコキシ基、又はハロゲン化アルキル基を表す。
 X2は、ハロゲン原子を表す。
 p5は0~2の整数、p6は0~1の整数、p7は0~4の整数、p8は0~3の整数を表す。p9は0~3の整数、p10は0~2の整数、p11は0~5の整数、p12は0~4の整数を表す。
 *は結合手を表す。]
[In the formulas (Ar1-1) to (Ar4-2),
R 4 represents an alkyl group, an alkoxy group, or a halogenated alkyl group.
X 2 represents a halogen atom.
p5 represents an integer of 0 to 2, p6 represents an integer of 0 to 1, p7 represents an integer of 0 to 4, and p8 represents an integer of 0 to 3. p9 represents an integer of 0 to 3, p10 represents an integer of 0 to 2, p11 represents an integer of 0 to 5, and p12 represents an integer of 0 to 4.
* Represents a bond. ]
 X2のハロゲン原子は、上記R2のハロゲン原子と同様であり、臭素原子又はヨウ素原子が好ましく、臭素原子がより好ましい。
 R4は、それぞれ、上記R2のアルキル基、アルコキシ基、ハロゲン化アルキル基と同様であり、アルコキシ基、ハロゲン化アルキル基が好ましい。
 p5、p6、p7、p8、p9、p10、p11、p12は0~1が好ましい。
The halogen atom for X 2 is the same as the halogen atom for R 2 described above, preferably a bromine atom or an iodine atom, and more preferably a bromine atom.
R 4 is the same as the alkyl group, alkoxy group, and halogenated alkyl group of R 2 above, and is preferably an alkoxy group or a halogenated alkyl group.
p5, p6, p7, p8, p9, p10, p11, and p12 are preferably 0 to 1.
 式(1)で表される化合物としては、例えば、下記式(1-I)で表される化合物が挙げられる。 Examples of the compound represented by the formula (1) include a compound represented by the following formula (1-I).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表中、各式番号は、それぞれ、下記式で表される基であることを意味する。下記式中、R4は、上記と同義であり、*は結合手を表す。 In the table, each formula number means a group represented by the following formula. In the following formula, R 4 has the same meaning as above, and * represents a bond.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 中でも、化合物(1-I-1)~(1-I-107)がより好ましく、化合物(1-I-1)~(1-I-16)がより好ましく、化合物(1-I-1)~(1-I-10)がさらに好ましい。 Among these, compounds (1-I-1) to (1-I-107) are more preferable, compounds (1-I-1) to (1-I-16) are more preferable, and compound (1-I-1) More preferable is (1-I-10).
2.製造方法
 本発明の製造方法の概要は、下記スキームで表される。
2. Production Method The outline of the production method of the present invention is represented by the following scheme.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 [式中、
 R1、A1、A2、X1、m、n、n1、n2、n3は、それぞれ上記と同義である。
 A3は、ハロゲン原子で置換されていない芳香族環を表す。
 Ax1は、ハロゲン原子で置換されている芳香族環を表す。
 M1は、ホウ素原子、又はスズ原子を表す。
 L1は、脂肪族炭化水素基、水酸基、アルコキシ基、又はアリールオキシ基を表し、複数のL1は、M1とともに環を形成していてもよい。
 n4は1~3の整数、n5は1~3の整数を表す。
 k1は、2又は3の整数を表す。]
[Where:
R 1 , A 1 , A 2 , X 1 , m, n, n1, n2, and n3 are as defined above.
A 3 represents an aromatic ring not substituted with a halogen atom.
A x1 represents an aromatic ring substituted with a halogen atom.
M 1 represents a boron atom or a tin atom.
L 1 represents an aliphatic hydrocarbon group, a hydroxyl group, an alkoxy group, or an aryloxy group, and a plurality of L 1 may form a ring together with M 1 .
n4 represents an integer of 1 to 3, and n5 represents an integer of 1 to 3.
k1 represents an integer of 2 or 3. ]
 すなわち、上記本発明の化合物(1)は、化合物(3)を酸化し(酸化工程:工程1)、必要に応じて芳香族環を付加して(芳香族環付加工程1:工程3、5、7)、化合物(2)を得て、この化合物(2)に、塩基の存在下、アジド化合物を反応させることにより製造することができる(環化工程1:工程2、4、6、8、11)。 That is, the compound (1) of the present invention oxidizes the compound (3) (oxidation step: step 1) and adds an aromatic ring as necessary (aromatic ring addition step 1: steps 3, 5). 7), compound (2) is obtained, and this compound (2) can be produced by reacting an azide compound in the presence of a base (cyclization step 1: steps 2, 4, 6, 8). 11).
 また、上記化合物(1)が、A1がハロゲン原子で置換されている芳香族環を含む、式(1E)で表される化合物である場合化合物(1E)は、下記式(2E)で表される化合物に、塩基の存在下、アジド化合物を反応させることにより製造してもよく(環化工程1:工程11)、 When the compound (1) is a compound represented by the formula (1E) containing an aromatic ring in which A 1 is substituted with a halogen atom, the compound (1E) is represented by the following formula (2E). May be prepared by reacting the compound to be reacted with an azide compound in the presence of a base (cyclization step 1: step 11),
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
[式(1E)中、R1、Ax1、X1、m、n4、n5は、上記と同義である。] [In the formula (1E), R 1 , A x1 , X 1 , m, n4, and n5 have the same meanings as described above. ]
 或いは、ハロゲン原子で置換されていない芳香族環を有する化合物(2D)に、塩基の存在下、アジド化合物を反応させて(環化工程1:工程8)、ハロゲン原子で置換されていない芳香族環を有する化合物(1D)とした後、芳香族環をハロゲン原子で置換することにより製造してもよい(ハロゲン化工程:工程9)。 Alternatively, the compound (2D) having an aromatic ring not substituted with a halogen atom is reacted with an azide compound in the presence of a base (cyclization step 1: step 8), and the aromatic not substituted with a halogen atom After making the compound (1D) having a ring, the aromatic ring may be substituted with a halogen atom (halogenation step: step 9).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
[式(2D)中、R1、A3、X1、m、n4、n5は、上記と同義である。] [In the formula (2D), R 1 , A 3 , X 1 , m, n4 and n5 have the same meanings as described above. ]
 以下、各工程について説明する。 Hereinafter, each process will be described.
2-1.酸化工程(工程1)
 上記化合物(3)と、酸化剤とを反応させることにより、化合物(2)を得ることができる。化合物(3)としては、例えば、下記式(3-I)で表される化合物が好ましい。
2-1. Oxidation process (process 1)
The compound (2) can be obtained by reacting the compound (3) with an oxidizing agent. As the compound (3), for example, a compound represented by the following formula (3-I) is preferable.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 前記酸化剤としては、メタクロロ過安息香酸等の過カルボン酸を用いることができる。前記酸化剤の量は、化合物(3A)1モルに対して、0.1モル以上、10モル以下であることが好ましく、より好ましくは0.5モル以上、5モル以下である。
 酸化工程における反応溶媒としては、ジクロロメタン、クロロホルム、ジクロロエタン、ジクロロプロパン等のハロゲン系溶媒が好ましい。
As the oxidizing agent, a percarboxylic acid such as metachloroperbenzoic acid can be used. The amount of the oxidizing agent is preferably 0.1 mol or more and 10 mol or less, more preferably 0.5 mol or more and 5 mol or less with respect to 1 mol of the compound (3A).
As the reaction solvent in the oxidation step, halogen solvents such as dichloromethane, chloroform, dichloroethane, dichloropropane and the like are preferable.
2-2.芳香族環付加工程1(工程3、5、7)
 芳香族環付加工程1では、化合物(2)と、下記式(4)
2-2. Aromatic ring addition step 1 ( steps 3, 5, and 7)
In the aromatic ring addition step 1, the compound (2) and the following formula (4)
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
[式(4)中、A2、M1、L1、k1は、上記と同義である。] [In formula (4), A 2 , M 1 , L 1 and k 1 have the same meanings as described above. ]
で表される化合物(以下、「化合物(4)」という場合がある。)とを反応させることにより、芳香族環を有する化合物(2)を製造することができる。本工程で用いられる化合物(2)としては、例えば、下記式(2-I)で表される化合物が好ましく、化合物(2A)が好ましい。表中、各式番号は、それぞれ、上記と同義である。 The compound (2) which has an aromatic ring can be manufactured by making it react with the compound (henceforth "compound (4)") represented by these. As the compound (2) used in this step, for example, a compound represented by the following formula (2-I) is preferable, and a compound (2A) is preferable. In the table, each formula number has the same meaning as described above.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 複数のA1が同一のハロゲン原子である化合物(2)を用いた場合、ハロゲン原子を有せず芳香族環を有する化合物(2B)を製造することができ、複数のA1が異なるハロゲン原子である化合物(2)を用いた場合、ハロゲン原子と芳香族環とを有する化合物(2C)を製造することができる。また、複数のA1が同一のハロゲン原子である化合物(2)を用いた場合でも、化合物(4)を化合物(2)1モルに対して1.2モル未満、好ましくは1.1モル以下とすることで、化合物(2C)を製造できる。
 さらに、A11が芳香族環である化合物(2)を用いた場合、2位と5位に結合する芳香族環の種類が異なる化合物(2B)を得ることができる。
When a compound (2) in which a plurality of A 1 are the same halogen atom is used, a compound (2B) having no halogen atom and having an aromatic ring can be produced, and the plurality of A 1 are different halogen atoms. When the compound (2) is used, a compound (2C) having a halogen atom and an aromatic ring can be produced. Even when a plurality of compounds (2) in which A 1 is the same halogen atom are used, compound (4) is less than 1.2 mol, preferably 1.1 mol or less, relative to 1 mol of compound (2). Thus, the compound (2C) can be produced.
Furthermore, when the compound (2) in which A 11 is an aromatic ring is used, a compound (2B) having different types of aromatic rings bonded to the 2-position and 5-position can be obtained.
 上記式(4)において、L1の炭素数は、脂肪族炭化水素基、アルコキシ基としては、それぞれ、R1の脂肪族炭化水素基、R2のアルコキシ基として例示した基と同様の基が挙げられる。L1の脂肪族炭化水素基の炭素数は、1~6であることが好ましく、1~4であることがより好ましい。また、L1のアルコキシ基の炭素数は、1~6が好ましく、1~2がより好ましい。L1のアリールオキシ基の炭素数は、好ましくは6~10、より好ましくは6~10であり、具体的には、フェニルオキシ基、ベンジルオキシ基、フェニレンビス(メチレンオキシ)基等が挙げられる。
 k1は、M1の種類に応じて2又は3であり、M1がホウ素原子の場合2であり、M1がスズ原子の場合3である。
In the above formula (4), the number of carbon atoms of L 1 is an aliphatic hydrocarbon group, the alkoxy group, respectively, an aliphatic hydrocarbon group R 1, the same groups exemplified as the alkoxy group R 2 Can be mentioned. The number of carbon atoms of the aliphatic hydrocarbon group represented by L 1 is preferably 1 to 6, and more preferably 1 to 4. Further, the number of carbon atoms of the alkoxy group of L 1 is preferably 1 to 6, and more preferably 1 to 2. The number of carbon atoms of the aryloxy group of L 1 is preferably 6 to 10, more preferably 6 to 10, and specific examples include a phenyloxy group, a benzyloxy group, and a phenylenebis (methyleneoxy) group. .
k1 is 2 or 3, depending on the type of M 1, a 2 when M 1 is a boron atom, a 3 when M 1 is a tin atom.
 M1がホウ素原子の場合、*-M1(L1k1としては、下記式で表される基等が挙げられる。式中、R4は、水素原子、又は、炭素数1~4のアルキル基(好ましくは水素原子)を表す。*は結合手を表す。 When M 1 is a boron atom, examples of * -M 1 (L 1 ) k1 include groups represented by the following formulae. In the formula, R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms (preferably a hydrogen atom). * Represents a bond.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 M1がスズ原子の場合、*-M1(L1k1としては、下記式で表される基等が挙げられる。式中、*は結合手を表す。 When M 1 is a tin atom, examples of * -M 1 (L 1 ) k1 include groups represented by the following formulae. In the formula, * represents a bond.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 中でも、上記式(Om-1)、(Om-2)、(Om-5)、(Om-6)で表される基が好ましい。
 化合物(4)としては、下記式(4-I)で表される化合物等が挙げられる。表中、各式番号は、それぞれ、上記と同義である。
Of these, groups represented by the above formulas (Om-1), (Om-2), (Om-5), and (Om-6) are preferable.
Examples of the compound (4) include compounds represented by the following formula (4-I). In the table, each formula number has the same meaning as described above.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 中でも、化合物(4-I-1)~(4-I-28)、(4-I-57)~(4-I-84)が好ましい。 Of these, compounds (4-I-1) to (4-I-28) and (4-I-57) to (4-I-84) are preferable.
 化合物(4)の量は、化合物(2)1モルに対して、1.2~10モルであることが好ましく、より好ましくは2~7モルである。 The amount of the compound (4) is preferably 1.2 to 10 mol, more preferably 2 to 7 mol, relative to 1 mol of the compound (2).
 化合物(2)と化合物(4)とを反応させる際には、触媒を共存させてもよい。触媒としては、金属触媒が挙げられ、パラジウム系触媒、ニッケル系触媒、鉄系触媒、銅系触媒、ロジウム系触媒、ルテニウム系触媒などの遷移金属触媒が挙げられる。中でも、パラジウム系触媒が好ましい。 When reacting compound (2) and compound (4), a catalyst may coexist. Examples of the catalyst include metal catalysts, and transition metal catalysts such as palladium catalysts, nickel catalysts, iron catalysts, copper catalysts, rhodium catalysts, and ruthenium catalysts. Among these, a palladium-based catalyst is preferable.
 前記パラジウム系触媒としては、塩化パラジウム(II)、臭化パラジウム(II)、ヨウ化パラジウム(II)、酸化パラジウム(II)、硫化パラジウム(II)、テルル化パラジウム(II)、水酸化パラジウム(II)、セレン化パラジウム(II)、パラジウムシアニド(II)、パラジウムアセテート(II)、パラジウムトリフルオロアセテート(II)、パラジウムアセチルアセトナート(II)、ジアセテートビス(トリフェニルホスフィン)パラジウム(II)、テトラキス(トリフェニルホスフィン)パラジウム(0)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、ジクロロビス(アセトニトリル)パラジウム(II)、ジクロロビス(ベンゾニトリル)パラジウム(II)、ジクロロ[1,2-ビス(ジフェニルホスフィノ)エタン]パラジウム(II)、ジクロロ[1,3-ビス(ジフェニルホスフィノ)プロパン]パラジウム(II)、ジクロロ[1,4-ビス(ジフェニルホスフィノ)ブタン]パラジウム(II)、ジクロロ[1,1-ビス(ジフェニルホスフィノフェロセン)]パラジウム(II)、ジクロロ[1,1-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロロメタン付加体、ビス(ジベンジリデンアセトン)パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体、ジクロロ[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン](3-クロロピリジル)パラジウム(II)、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)、ジクロロ[2,5-ノルボルナジエン]パラジウム(II)、ジクロロビス(エチレンジアミン)パラジウム(II)、ジクロロ(1,5-シクロオクタジエン)パラジウム(II)、ジクロロビス(メチルジフェニルホスフィン)パラジウム(II)が挙げられる。これらの触媒は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。中でも、テトラキス(トリフェニルホスフィン)パラジウム(0)、または、ジクロロビス(トリフェニルホスフィン)パラジウム(II)が好ましい。 Examples of the palladium-based catalyst include palladium (II) chloride, palladium (II) bromide, palladium (II) iodide, palladium (II) oxide, palladium (II) sulfide, palladium (II) telluride, palladium hydroxide ( II), palladium selenide (II), palladium cyanide (II), palladium acetate (II), palladium trifluoroacetate (II), palladium acetylacetonate (II), diacetate bis (triphenylphosphine) palladium (II) ), Tetrakis (triphenylphosphine) palladium (0), dichlorobis (triphenylphosphine) palladium (II), dichlorobis (acetonitrile) palladium (II), dichlorobis (benzonitrile) palladium (II), dichloro [1,2 Bis (diphenylphosphino) ethane] palladium (II), dichloro [1,3-bis (diphenylphosphino) propane] palladium (II), dichloro [1,4-bis (diphenylphosphino) butane] palladium (II) Dichloro [1,1-bis (diphenylphosphinoferrocene)] palladium (II), dichloro [1,1-bis (diphenylphosphino) ferrocene] palladium (II) dichloromethane adduct, bis (dibenzylideneacetone) palladium ( 0), tris (dibenzylideneacetone) dipalladium (0), tris (dibenzylideneacetone) dipalladium (0) chloroform adduct, dichloro [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene ] (3-chloropyridyl) paradi (II), bis (tri-tert-butylphosphine) palladium (0), dichloro [2,5-norbornadiene] palladium (II), dichlorobis (ethylenediamine) palladium (II), dichloro (1,5-cyclooctadiene ) Palladium (II), dichlorobis (methyldiphenylphosphine) palladium (II). These catalysts may be used individually by 1 type, and may mix and use 2 or more types. Of these, tetrakis (triphenylphosphine) palladium (0) or dichlorobis (triphenylphosphine) palladium (II) is preferable.
 前記化合物(2)と触媒とのモル比(化合物(2):触媒)は、一般に1:0.0001~1:0.5程度であり、収率や反応効率の観点から1:0.001~1:0.4が好ましく、1:0.005~1:0.3がより好ましく、1:0.01~1:0.2がさらに好ましい。 The molar ratio of the compound (2) to the catalyst (compound (2): catalyst) is generally about 1: 0.0001 to 1: 0.5, and is 1: 0.001 from the viewpoint of yield and reaction efficiency. ˜1: 0.4 is preferable, 1: 0.005 to 1: 0.3 is more preferable, and 1: 0.01 to 1: 0.2 is more preferable.
 前記触媒には、特定の配位子を配位させてもよい。配位子としては、トリメチルホスフィン、トリエチルホスフィン、トリ(n-ブチル)ホスフィン、トリ(イソプロピル)ホスフィン、トリ(tert-ブチル)ホスフィン、トリ-tert-ブチルホスホニウムテトラフルオロボラート、ビス(tert-ブチル)メチルホスフィン、トリシクロヘキシルホスフィン、ジフェニル(メチル)ホスフィン、トリフェニスホスフィン、トリス(o-トリル)ホスフィン、トリス(m-トリル)ホスフィン、トリス(p-トリル)ホスフィン、トリス(2-フリル)ホスフィン、トリス(2-メトキシフェニル)ホスフィン、トリス(3-メトキシフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、2-ジシクロヘキシルホスフィノビフェニル、2-ジシクロヘキシルホスフィノ-2’-メチルビフェニル、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシ-1,1’-ビフェニル、2-ジシクロヘキシルホスフィノ-2’-(N,N’-ジメチルアミノ)ビフェニル、2-ジフェニルホスフィノ-2’-(N,N’-ジメチルアミノ)ビフェニル、2-(ジ-tert-ブチル)ホスフィノ-2’-(N,N’-ジメチルアミノ)ビフェニル、2-(ジ-tert-ブチル)ホスフィノビフェニル、2-(ジ-tert-ブチル)ホスフィノ-2’-メチルビフェニル、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,2-ビス(ジシクロヘキシルホスフィノ)エタン、1,3-ビス(ジシクロヘキシルホスフィノ)プロパン、1,4-ビス(ジシクロヘキシルホスフィノ)ブタン、1,2-ビスジフェニルホスフィノエチレン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、1,2-エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、2,2’-ビピリジル、1,3-ジフェニルジヒドロイミダゾリリデン、1,3-ジメチルジヒドロイミダゾリリデン、ジエチルジヒドロイミダゾリリデン、1,3-ビス(2,4,6-トリメチルフェニル)ジヒドロイミダゾリリデン、1,3-ビス(2,6-ジイソプロピルフェニル)ジヒドロイミダゾリリデン、1,10-フェナントロリン、5,6-ジメチル-1,10-フェナントロリン、バトフェナントロリンが挙げられる。配位子は、一種のみを用いてもよく、二種以上を用いてもよい。 A specific ligand may be coordinated with the catalyst. The ligands include trimethylphosphine, triethylphosphine, tri (n-butyl) phosphine, tri (isopropyl) phosphine, tri (tert-butyl) phosphine, tri-tert-butylphosphonium tetrafluoroborate, bis (tert-butyl) ) Methylphosphine, tricyclohexylphosphine, diphenyl (methyl) phosphine, triphenisphosphine, tris (o-tolyl) phosphine, tris (m-tolyl) phosphine, tris (p-tolyl) phosphine, tris (2-furyl) phosphine, Tris (2-methoxyphenyl) phosphine, Tris (3-methoxyphenyl) phosphine, Tris (4-methoxyphenyl) phosphine, 2-dicyclohexylphosphinobiphenyl, 2-dicyclohexylphosphine No-2′-methylbiphenyl, 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropyl-1,1′-biphenyl, 2-dicyclohexylphosphino-2 ′, 6′-dimethoxy-1,1 '-Biphenyl, 2-dicyclohexylphosphino-2'-(N, N'-dimethylamino) biphenyl, 2-diphenylphosphino-2 '-(N, N'-dimethylamino) biphenyl, 2- (di-tert -Butyl) phosphino-2 '-(N, N'-dimethylamino) biphenyl, 2- (di-tert-butyl) phosphinobiphenyl, 2- (di-tert-butyl) phosphino-2'-methylbiphenyl, 1 , 2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphine) Dino) butane, 1,2-bis (dicyclohexylphosphino) ethane, 1,3-bis (dicyclohexylphosphino) propane, 1,4-bis (dicyclohexylphosphino) butane, 1,2-bisdiphenylphosphinoethylene 1,1′-bis (diphenylphosphino) ferrocene, 1,2-ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, 2,2′-bipyridyl, 1,3-diphenyldihydroimidazolylidene 1,3-dimethyldihydroimidazolidene, diethyldihydroimidazolylidene, 1,3-bis (2,4,6-trimethylphenyl) dihydroimidazolidene, 1,3-bis (2,6-diisopropylphenyl) Dihydroimidazolidene, 1,10-phenanthroline, 5,6-dimethyl- Examples include 1,10-phenanthroline and butophenanthroline. Only 1 type may be used for a ligand and 2 or more types may be used for it.
 配位子を配位させる場合、触媒と配位子とのモル比(触媒:配位子)は、一般に1:0.5~1:10程度であり、収率や反応効率の観点から1:1~1:8が好ましく、1:1~1:7がより好ましく、1:1~1:5がさらに好ましい。 When the ligand is coordinated, the molar ratio of the catalyst to the ligand (catalyst: ligand) is generally about 1: 0.5 to 1:10, and 1 from the viewpoint of yield and reaction efficiency. Is preferably 1: 1 to 1: 8, more preferably 1: 1 to 1: 7, and still more preferably 1: 1 to 1: 5.
 化合物(2)と化合物(4)とを反応させる際、さらに塩基を共存させてもよい。特に、上記M1がホウ素原子であるときは、塩基を共存させることが好ましく、M1がスズ原子であるときは、塩基を共存させなくともよい。 When reacting compound (2) and compound (4), a base may be allowed to coexist. In particular, when M 1 is a boron atom, a base is preferably allowed to coexist, and when M 1 is a tin atom, the base may not be allowed to coexist.
 塩基としては、水素化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属塩化合物;水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム等のアルカリ土類金属塩化合物;リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムイソプロポキシド、ナトリウムイソプロポキシド、カリウムイソプロポキシド、リチウムtert-ブトキシド、ナトリウムtert-ブトキシド、カリウムtert-ブトキシド、リチウムtert-アミルアルコキシド、ナトリウムtert-アミルアルコキシド、カリウムtert-アミルアルコキシド等のアルコキシアルカリ金属化合物;水素化リチウム、水素化ナトリウム、水素化カリウム等の水素化金属化合物等が挙げられる。中でも、塩基としては、アルコキシアルカリ金属化合物が好ましく、リチウムtert-ブトキシド、ナトリウムtert-ブトキシド、カリウムtert-ブトキシド、炭酸ナトリウム、炭酸カリウム、炭酸セシウムがより好ましい。 Examples of the base include lithium metal hydride, sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate and other alkali metal salt compounds; magnesium hydroxide, calcium hydroxide, barium hydroxide, Alkaline earth metal salt compounds such as magnesium carbonate, calcium carbonate, barium carbonate; lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide, sodium ethoxide, potassium ethoxide, lithium isopropoxide, sodium isopropoxide Potassium isopropoxide, lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, lithium tert-amyl alkoxide, sodium tert-amyl alkoxide Alkoxymethyl alkali metal compounds such as potassium tert- amyl alkoxide; lithium hydride, sodium hydride, metal hydride compounds such as potassium hydride. Among them, as the base, an alkoxyalkali metal compound is preferable, and lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, sodium carbonate, potassium carbonate, and cesium carbonate are more preferable.
 化合物(2)と塩基とのモル比(化合物(2):塩基)は、一般に1:1~1:10程度であり、収率や反応効率の観点から1:1.5~1:8が好ましく、1:1.8~1:6がより好ましく、1:2~1:5がさらに好ましい。 The molar ratio of compound (2) to base (compound (2): base) is generally about 1: 1 to 1:10, and from the viewpoint of yield and reaction efficiency, 1: 1.5 to 1: 8 Preferably, 1: 1.8 to 1: 6 is more preferable, and 1: 2 to 1: 5 is more preferable.
 反応溶媒としては、反応に影響を及ぼさない溶媒を用いることができ、エーテル系溶媒、芳香族系溶媒、エステル系溶媒、炭化水素系溶媒、ハロゲン系溶媒、ケトン系溶媒、アミド系溶媒等を用いることができる。前記エーテル系溶媒としては、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジメトキシエタン、シクロペンチルメチルエーテル、t-ブチルメチルエーテル、ジオキサンが挙げられる。前記芳香族系溶媒としては、ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼンが挙げられる。前記エステル系溶媒としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチルが挙げられる。前記炭化水素系溶媒としては、ペンタン、ヘキサン、ヘプタンが挙げられる。前記ハロゲン系溶媒としては、ジクロロメタン、クロロホルム、ジクロロエタン、ジクロロプロパンが挙げられる。前記ケトン系溶媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトンが挙げられる。前記アミド系溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチル3,4,5,6-テトラヒドロ-(1H)-ピリミジンが挙げられる。また、アセトニトリル等のニトリル系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、スルホラン等のスルホン系溶媒を用いることができる。
 これらの中でも、トルエン、キシレン、テトラヒドロフラン、ジオキサン、N,N-ジメチルホルムアミドが特に好ましい。
As the reaction solvent, a solvent that does not affect the reaction can be used, and ether solvents, aromatic solvents, ester solvents, hydrocarbon solvents, halogen solvents, ketone solvents, amide solvents, and the like are used. be able to. Examples of the ether solvent include diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, methyltetrahydrofuran, dimethoxyethane, cyclopentyl methyl ether, t-butyl methyl ether, and dioxane. Examples of the aromatic solvent include benzene, toluene, xylene, mesitylene, chlorobenzene, and dichlorobenzene. Examples of the ester solvent include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, and butyl acetate. Examples of the hydrocarbon solvent include pentane, hexane, and heptane. Examples of the halogen solvent include dichloromethane, chloroform, dichloroethane, and dichloropropane. Examples of the ketone solvent include acetone, methyl ethyl ketone, and methyl isobutyl ketone. Examples of the amide solvent include N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyl3,4,5,6-tetrahydro- (1H ) -Pyrimidine. A nitrile solvent such as acetonitrile, a sulfoxide solvent such as dimethyl sulfoxide, and a sulfone solvent such as sulfolane can be used.
Among these, toluene, xylene, tetrahydrofuran, dioxane, and N, N-dimethylformamide are particularly preferable.
 反応溶媒の量は、化合物(2)1gに対して、一般に1mL以上、100mL以下程度であり、収率や反応効率の観点から5mL以上、80mL以下が好ましく、8mL以上、70mL以下がより好ましく、10mL以上、60mL以下がさらに好ましい。 The amount of the reaction solvent is generally about 1 mL or more and 100 mL or less with respect to 1 g of the compound (2), preferably 5 mL or more and 80 mL or less, more preferably 8 mL or more and 70 mL or less from the viewpoint of yield or reaction efficiency. 10 mL or more and 60 mL or less are more preferable.
 反応温度は、反応収率を高める観点から0℃以上、200℃以下であることが好ましい。特に上記化合物(2B)を得る場合、30℃以上、180℃以下であることがより好ましく、40℃以上、150℃以下であることがさらに好ましい。また、化合物(2C)を得る場合、0℃以上、200℃以下であることが好ましく、30℃以上、180℃以下であることがより好ましい。
 反応には、マイクロウェーブを使用してもよい。
The reaction temperature is preferably 0 ° C. or higher and 200 ° C. or lower from the viewpoint of increasing the reaction yield. When obtaining the said compound (2B) especially, it is more preferable that they are 30 degreeC or more and 180 degrees C or less, and it is further more preferable that they are 40 degreeC or more and 150 degrees C or less. Moreover, when obtaining a compound (2C), it is preferable that it is 0 to 200 degreeC, and it is more preferable that it is 30 to 180 degreeC.
Microwave may be used for the reaction.
2-3.環化工程1(工程2、4、6、8、11)
 化合物(2)に、塩基の存在下、アジド化合物を反応させることにより、化合物(1)を得ることができる。
 本工程に用いられる化合物(2)において、R1、R2は、それぞれ2~5位のいずれかに結合していることが好ましく、例えば、以下の配置が挙げられる。
2-3. Cyclization step 1 ( steps 2, 4, 6, 8, 11)
Compound (1) can be obtained by reacting compound (2) with an azide compound in the presence of a base.
In the compound (2) used in this step, R 1 and R 2 are each preferably bonded to any of the 2 to 5 positions, and examples thereof include the following arrangements.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
[式(2-1)~(2-11)中、R1、A1は上記と同義である。] [In the formulas (2-1) to (2-11), R 1 and A 1 are as defined above. ]
 中でも、式(2-1)~(2-6)が好ましく、より好ましくは式(2-1)、(2-2)、(2-4)であり、特に好ましくは式(2-1)である。 Among them, the formulas (2-1) to (2-6) are preferable, the formulas (2-1), (2-2), and (2-4) are more preferable, and the formula (2-1) is particularly preferable. It is.
 また、式(2)中、A1の全てがハロゲン原子であってもよく(下記式(2A))、A1の全てが置換されていてもよい芳香族環であってもよく(下記式(2B))、A1のいずれかがハロゲン原子、いずれかが置換されていてもよい芳香族環であってもよい(下記式(2C))。 In the formula (2), all of A 1 may be a halogen atom (the following formula (2A)), or all of A 1 may be an optionally substituted aromatic ring (the following formula (2B)), any one of A 1 may be a halogen atom, and any of them may be an optionally substituted aromatic ring (the following formula (2C)).
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
[式(2A)~(2C)中、R1、A2、X1、m、n1、n2、n3は、それぞれ上記と同義である。] [In the formulas (2A) to (2C), R 1 , A 2 , X 1 , m, n1, n2, and n3 are as defined above. ]
 式(2)で表される化合物としては、例えば、下記式(2-I)で表される化合物が挙げられる。表中、R3は上記と同義であり、*は結合手を表す。表中、各式番号は、それぞれ、上記と同義である。 Examples of the compound represented by the formula (2) include a compound represented by the following formula (2-I). In the table, R 3 has the same meaning as above, and * represents a bond. In the table, each formula number has the same meaning as described above.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 上記化合物(2-I-1)~(2-I-2)が化合物(2A)に対応し、化合物(2-I-3)~(2-I-107)が化合物(2B)に対応し、化合物(2-I-108)~(2-I-121)が化合物(2C)に対応する。また、A10、A11の少なくともいずれかが、式(Ar1-1-1)、(Ar1-1-2)、(Ar2-1-1)、(Ar2-1-2)、(Ar3-1-1)、(Ar3-1-2)、(Ar4-1-1)、(Ar4-1-2)等のハロゲン原子で置換された芳香族環である化合物が化合物(2D)に対応し、A10、A11のいずれもが式(Ar1-2-1)、(Ar2-2-1)、(Ar3-2-1)、(Ar3-2-2)、(Ar3-2-3)、(Ar4-2-1)等のハロゲン原子で置換されていない芳香族環である化合物が化合物(2E)に対応する。中でも、化合物(2-I-1)~(2-I-107)が好ましく、化合物(2-I-1)~(2-I-10)がより好ましい。 The above compounds (2-I-1) to (2-I-2) correspond to the compound (2A), and the compounds (2-I-3) to (2-I-107) correspond to the compound (2B). Compounds (2-I-108) to (2-I-121) correspond to the compound (2C). Further, at least one of A 10 and A 11 has the formula (Ar1-1-1), (Ar1-1-2), (Ar2-1-1), (Ar2-1-2), (Ar3-1) -1), (Ar3-1-2), (Ar4-1-1), (Ar4-1-2) and the like, which is an aromatic ring substituted with a halogen atom, corresponds to compound (2D), All of A 10 and A 11 are represented by the formulas (Ar1-2-1), (Ar2-2-1), (Ar3-2-1), (Ar3-2-2), (Ar3-2-3), A compound that is an aromatic ring not substituted with a halogen atom, such as (Ar4-2-1), corresponds to compound (2E). Of these, compounds (2-I-1) to (2-I-107) are preferable, and compounds (2-I-1) to (2-I-10) are more preferable.
 前記アジド化合物としては、ジフェニルホスホリルアジド(DPPA)、ビス(4-ニトロフェニル)ホスホリルアジド等のジアリールホスホリルアジド;トリメチルシリルアジド(TMSA)等のトリアルキルシリルアジド;等の有機アジド化合物、およびナトリウムアジドなどの無機アジド化合物が好ましい。前記有機アジド化合物は、ポリマー担持されていてもよい。中でも、トリメチルシリルアジド等のトリアルキルシリルアジド化合物が好ましい。 Examples of the azide compounds include diarylphosphoryl azides such as diphenylphosphoryl azide (DPPA) and bis (4-nitrophenyl) phosphoryl azide; trialkylsilyl azides such as trimethylsilyl azide (TMSA); organic azide compounds such as sodium azide and the like Inorganic azide compounds are preferred. The organic azide compound may be polymer-supported. Among these, trialkylsilyl azide compounds such as trimethylsilyl azide are preferable.
 特に、アジド化合物の量は、前記化合物(2)1モルに対して、0.5モル以上、10モル以下であることが好ましく、より好ましくは1モル以上、8モル以下、さらに好ましくは1モル以上、5モル以下である。アジド化合物の量がこの範囲にあると、収率や反応効率が良好である。 In particular, the amount of the azide compound is preferably 0.5 mol or more and 10 mol or less, more preferably 1 mol or more and 8 mol or less, and further preferably 1 mol with respect to 1 mol of the compound (2). The amount is 5 mol or less. When the amount of the azide compound is within this range, the yield and reaction efficiency are good.
 前記アジド化合物として、トリアルキルシリルアジド化合物を用いる場合、さらに、スルホニルハライド化合物又はリン酸ハライド化合物を共存させることが好ましい。
 前記スルホニルハライド化合物としては、メタンスルホニルクロリド、エタンスルホニルクロリド、プロパンスルホニルクロリド、イソプロパンスルホニルクロリド、ブタンスルホニルクロリド、ペンタンスルホニルクロリド、ヘキサンスルホニルクロリド;等のアルキルスルホニルクロリド化合物;ベンゼンスルホニルクロリド、2-メチルベンゼンスルホニルクロリド、3-メチルベンゼンスルホニルクロリド、4-メチルベンゼンスルホニルクロリド、2-クロロベンゼンスルホニルクロリド、3-クロロベンゼンスルホニルクロリド、4-クロロベンゼンスルホニルクロリド、2-ブロモベンゼンスルホニルクロリド、3-ブロモベンゼンスルホニルクロリド、4-ブロモベンゼンスルホニルクロリド、2-ヨードベンゼンスルホニルクロリド、3-ヨードベンゼンスルホニルクロリド、4-ヨードベンゼンスルホニルクロリド、2-フルオロベンゼンスルホニルクロリド、3-フルオロベンゼンスルホニルクロリド、4-フルオロベンゼンスルホニルクロリド、2-トリフルオロメチルベンゼンスルホニルクロリド、3-トリフルオロメチルベンゼンスルホニルクロリド、4-トリフルオロメチルベンゼンスルホニルクロリド等のアリールスルホニルクロリド化合物;塩化スルフリル;等のスルホニルクロリド化合物;ノナフルオロブタンスルホン酸フルオリド、フェニルスルホン酸フルオリド等のスルホニルフルオリド化合物;等が挙げられる。中でも、スルホニルクロリド化合物が好ましく、アリールスルホニルクロリド化合物がより好ましく、4-メチルベンゼンスルホニルクロリドがさらに好ましい。
When a trialkylsilyl azide compound is used as the azide compound, it is preferable that a sulfonyl halide compound or a phosphoric acid halide compound coexist.
Examples of the sulfonyl halide compound include methanesulfonyl chloride, ethanesulfonyl chloride, propanesulfonyl chloride, isopropanesulfonyl chloride, butanesulfonyl chloride, pentanesulfonyl chloride, hexanesulfonyl chloride; alkylsulfonyl chloride compounds such as benzenesulfonyl chloride, 2-methyl Benzenesulfonyl chloride, 3-methylbenzenesulfonyl chloride, 4-methylbenzenesulfonyl chloride, 2-chlorobenzenesulfonyl chloride, 3-chlorobenzenesulfonyl chloride, 4-chlorobenzenesulfonyl chloride, 2-bromobenzenesulfonyl chloride, 3-bromobenzenesulfonyl chloride, 4-bromobenzenesulfonyl chloride, 2-iodobenzenesulfonyl Chloride, 3-iodobenzenesulfonyl chloride, 4-iodobenzenesulfonyl chloride, 2-fluorobenzenesulfonyl chloride, 3-fluorobenzenesulfonyl chloride, 4-fluorobenzenesulfonyl chloride, 2-trifluoromethylbenzenesulfonyl chloride, 3-trifluoro Arylsulfonyl chloride compounds such as methylbenzenesulfonyl chloride and 4-trifluoromethylbenzenesulfonyl chloride; sulfonyl chloride compounds such as sulfuryl chloride; sulfonyl fluoride compounds such as nonafluorobutanesulfonic acid fluoride and phenylsulfonic acid fluoride; It is done. Of these, sulfonyl chloride compounds are preferable, arylsulfonyl chloride compounds are more preferable, and 4-methylbenzenesulfonyl chloride is more preferable.
 前記スルホニルハライド化合物の量は、前記化合物(2)1モルに対して、0.5モル以上、20モル以下であることが好ましく、より好ましくは1モル以上、15モル以下、さらに好ましくは1モル以上、13モル以下、特に好ましくは1モル以上、10モル以下である。スルホニルハライド化合物の量がこの範囲にあると、収率や反応効率が良好である。 The amount of the sulfonyl halide compound is preferably 0.5 mol or more and 20 mol or less, more preferably 1 mol or more and 15 mol or less, further preferably 1 mol, per 1 mol of the compound (2). The amount is 13 mol or less, particularly preferably 1 mol or more and 10 mol or less. When the amount of the sulfonyl halide compound is within this range, the yield and reaction efficiency are good.
 前記リン酸ハライド化合物としては、ジメチルホスホリルクロリド、ジエチルホスホリルクロリド、ジプロピルホスホリルクロリド、ジイソプロピルホスホリルクロリド、ジブチルホスホリルクロリド等のジアルキルホスホリルクロリド化合物;ビス(2,2,2-トリクロロエチル)ホスホリルクロリド等のジハロゲン化アルキルホスホリルクロリド化合物;2-クロロ-2-オキソ-1,3,2-ジオキサホスホラン;ジフェニルホスホリルクロリド、ビス(2-メチルフェニル)ホスホリルクロリド、ビス(3-メチルフェニル)ホスホリルクロリド、ビス(4-メチルフェニル)ホスホリルクロリド、ビス(3,5-ジメチルフェニル)ホスホリルクロリド、ビス(2-クロロフェニル)ホスホリルクロリド、ビス(3-クロロフェニル)ホスホリルクロリド、ビス(4-クロロフェニル)ホスホリルクロリド、ビス(3,5-ジクロロフェニル)ホスホリルクロリド等のジアリールホスホリルクロリド化合物;1,2-フェニレンホスホロクロリデート;等が挙げられる。中でも、ジハロゲン化アルキルホスホリルクロリド化合物、ジアリールホスホリルクロリド化合物が好ましく、ビス(2,2,2-トリクロロエチル)ホスホリルクロリド、ジフェニルホスホリルクロリドがより好ましい。 Examples of the phosphoric acid halide compound include dialkyl phosphoryl chloride compounds such as dimethyl phosphoryl chloride, diethyl phosphoryl chloride, dipropyl phosphoryl chloride, diisopropyl phosphoryl chloride, dibutyl phosphoryl chloride; bis (2,2,2-trichloroethyl) phosphoryl chloride and the like. Dihalogenated alkylphosphoryl chloride compounds; 2-chloro-2-oxo-1,3,2-dioxaphosphorane; diphenylphosphoryl chloride, bis (2-methylphenyl) phosphoryl chloride, bis (3-methylphenyl) phosphoryl chloride, Bis (4-methylphenyl) phosphoryl chloride, bis (3,5-dimethylphenyl) phosphoryl chloride, bis (2-chlorophenyl) phosphoryl chloride, bis (3-chlorophenyl) Yl) phosphoryl chloride, bis (4-chlorophenyl) phosphoryl chloride, bis (3,5-dichlorophenyl) diaryl phosphoryl chloride compound such as phosphoryl chloride; 1,2-phenylene phosphorochloridate; and the like. Of these, dihalogenated alkyl phosphoryl chloride compounds and diaryl phosphoryl chloride compounds are preferable, and bis (2,2,2-trichloroethyl) phosphoryl chloride and diphenyl phosphoryl chloride are more preferable.
 前記リン酸ハライド化合物の量は、前記化合物(2)1モルに対して、0.5モル以上、20モル以下であることが好ましく、より好ましくは1モル以上、15モル以下、さらに好ましくは1モル以上、13モル以下、特に好ましくは1モル以上、10モル以下である。リン酸ハライド化合物の量がこの範囲にあると、収率や反応効率が良好である。 The amount of the phosphate halide compound is preferably 0.5 mol or more and 20 mol or less, more preferably 1 mol or more and 15 mol or less, and further preferably 1 with respect to 1 mol of the compound (2). It is at least 1 mol and at most 13 mol, particularly preferably at least 1 mol and not more than 10 mol. When the amount of the phosphate halide compound is in this range, the yield and reaction efficiency are good.
 アジド化合物を反応させる際に共存させる塩基としては、ピリジン;N-メチルイミダゾール、イミダゾール等のイミダゾール化合物;水酸化リチウム、水酸化ナトリウム、水酸化セシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属塩化合物;水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム等のアルカリ土類金属塩化合物;リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムイソプロポキシド、ナトリウムイソプロポキシド、カリウムイソプロポキシド、リチウムtert-ブトキシド、ナトリウムtert-ブトキシド、カリウムtert-ブトキシド、リチウムtert-アミルアルコキシド、ナトリウムtert-アミルアルコキシド、カリウムtert-アミルアルコキシド等のアルコキシアルカリ金属化合物;水素化リチウム、水素化ナトリウム、水素化カリウム等の水素化金属化合物;トリメチルアミン、トリエチルアミン、トリプロピルアミン、ジイソプロピルエチルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリオクチルアミン、トリアリルアミン、ピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、N-メチルモルホリン、N,N-ジメチルシクロヘキシルアミン、N,N-ジメチルアニリン、N-メチルイミダゾール、1,4-ジアザビシクロ[2.2.2]オクタン、1,8-ジアザビシクロ[5.4.0]ウンデセ-7-エンなどの3級アミン;等が挙げられる。中でも、ピリジン、イミダゾール化合物、アルカリ金属塩化合物、アミンが好ましく、より好ましくはピリジン、N-メチルイミダゾール、炭酸カリウム、トリエチルアミンであり、さらに好ましくはピリジン、炭酸カリウム、トリエチルアミンである。 Bases that coexist when the azide compound is reacted include pyridine; imidazole compounds such as N-methylimidazole and imidazole; lithium hydroxide, sodium hydroxide, cesium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, etc. Alkali metal salt compounds; alkaline earth metal salt compounds such as magnesium hydroxide, calcium hydroxide, barium hydroxide, magnesium carbonate, calcium carbonate, barium carbonate; lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide Sodium ethoxide, potassium ethoxide, lithium isopropoxide, sodium isopropoxide, potassium isopropoxide, lithium tert-butoxide, sodium tert-butoxide, potassium ter Alkoxy alkali metal compounds such as butoxide, lithium tert-amyl alkoxide, sodium tert-amyl alkoxide, potassium tert-amyl alkoxide; metal hydride compounds such as lithium hydride, sodium hydride, potassium hydride; trimethylamine, triethylamine, tri Propylamine, diisopropylethylamine, tributylamine, tripentylamine, trihexylamine, trioctylamine, triallylamine, pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, N-methylmorpholine, N, N- Dimethylcyclohexylamine, N, N-dimethylaniline, N-methylimidazole, 1,4-diazabicyclo [2.2.2] octane, 1,8-diazabicyclo [5 4.0] tertiary amine such as undec-7-ene; and the like. Of these, pyridine, imidazole compounds, alkali metal salt compounds and amines are preferable, pyridine, N-methylimidazole, potassium carbonate and triethylamine are more preferable, and pyridine, potassium carbonate and triethylamine are more preferable.
 塩基の量は、前記化合物(2)1モルに対して、0.5モル以上、10モル以下であることが好ましく、より好ましくは1モル以上、8モル以下、さらに好ましくは1モル以上、7モル以下、特に好ましくは1モル以上、5モル以下である。 The amount of the base is preferably 0.5 mol or more and 10 mol or less, more preferably 1 mol or more and 8 mol or less, further preferably 1 mol or more, 7 mol per 1 mol of the compound (2). The amount is not more than mol, particularly preferably not less than 1 mol and not more than 5 mol.
 上記反応時、反応溶媒は用いないことが好ましい。反応溶媒を使用する場合、反応に影響を及ぼさない範囲で使用でき、例えば、エーテル系溶媒、芳香族系溶媒、炭化水素系溶媒、ハロゲン系溶媒、ケトン系溶媒、アミド系溶媒等を用いることができる。前記エーテル系溶媒としては、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフタン、メチルテトラヒドロフラン、ジメトキシエタン、シクロペンチルメチルエーテル、t-ブチルメチルエーテル、ジオキサンが挙げられる。前記芳香族系溶媒としては、ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼンが挙げられる。前記エステル系溶媒としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチルが挙げられる。前記炭化水素系溶媒としては、ペンタン、ヘキサン、シクロヘキサン、ヘプタンが挙げられる。前記ハロゲン系溶媒としては、ジクロロメタン、クロロホルム、ジクロロエタン、ジクロロプロパンが挙げられる。前記ケトン系溶媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトンが挙げられる。前記アミド系溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチル3,4,5,6-テトラヒドロ-(1H)-ピリミジンが挙げられる。また、アセトニトリル等のニトリル系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、スルホラン等のスルホン系溶媒を用いることができる。 In the above reaction, it is preferable not to use a reaction solvent. When using a reaction solvent, it can be used as long as it does not affect the reaction. For example, an ether solvent, an aromatic solvent, a hydrocarbon solvent, a halogen solvent, a ketone solvent, an amide solvent or the like can be used. it can. Examples of the ether solvent include diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, tetrahydrophthalane, methyltetrahydrofuran, dimethoxyethane, cyclopentyl methyl ether, t-butyl methyl ether, and dioxane. Examples of the aromatic solvent include benzene, toluene, xylene, mesitylene, chlorobenzene, and dichlorobenzene. Examples of the ester solvent include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, and butyl acetate. Examples of the hydrocarbon solvent include pentane, hexane, cyclohexane, and heptane. Examples of the halogen solvent include dichloromethane, chloroform, dichloroethane, and dichloropropane. Examples of the ketone solvent include acetone, methyl ethyl ketone, and methyl isobutyl ketone. Examples of the amide solvent include N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyl3,4,5,6-tetrahydro- (1H ) -Pyrimidine. A nitrile solvent such as acetonitrile, a sulfoxide solvent such as dimethyl sulfoxide, and a sulfone solvent such as sulfolane can be used.
 反応温度は、反応収率を高める観点から0℃以上、200℃以下であることが好ましく、30℃以上、180℃以下であることがより好ましく、40℃以上、150℃以下であることがさらに好ましい。反応温度は、マイクロウェーブを用いて調節しても良い。 From the viewpoint of increasing the reaction yield, the reaction temperature is preferably 0 ° C. or higher and 200 ° C. or lower, more preferably 30 ° C. or higher and 180 ° C. or lower, and further preferably 40 ° C. or higher and 150 ° C. or lower. preferable. The reaction temperature may be adjusted using a microwave.
2-4.ハロゲン化工程(工程9、10)
 ハロゲン化は、種々の方法により行うことができ、例えば、化合物(1D)を、酸の共存下、ハロゲン化試薬と接触させることにより行うことができる。前記酸としては、酢酸等の有機酸が好ましく、ハロゲン化試薬としては、N-ブロモスクシンイミド、N-クロロスクシンイミド、ピリジン臭素錯体塩、臭素、塩素等が好ましい。
 反応溶媒としては、ジクロロメタン、クロロホルム、ジクロロエタン、ジクロロプロパン等のハロゲン系溶媒、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチルなどのエステル系溶媒、ペンタン、ヘキサン、シクロヘキサン、ヘプタンなどの炭化水素系溶媒、ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼンなどの芳香族系溶媒が好ましい。
2-4. Halogenation process (process 9, 10)
Halogenation can be carried out by various methods, for example, by bringing compound (1D) into contact with a halogenating reagent in the presence of an acid. The acid is preferably an organic acid such as acetic acid, and the halogenating reagent is preferably N-bromosuccinimide, N-chlorosuccinimide, pyridine bromine complex salt, bromine, chlorine or the like.
Reaction solvents include dichloromethane, chloroform, dichloroethane, dichloropropane and other halogen solvents, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate and other ester solvents, pentane, hexane, cyclohexane, heptane and other hydrocarbons. Preference is given to aromatic solvents such as benzene solvents, toluene, xylene, mesitylene, chlorobenzene and dichlorobenzene.
3.テトラゾロピリジン多量体
 本発明の化合物(1)から導かれる構造単位(以下、単に「構造単位(I)」という場合がある。)を含むテトラゾロピリジン多量体も本発明の範囲に包含される。
3. Tetrazolopyridine multimer A tetrazolopyridine multimer containing a structural unit derived from the compound (1) of the present invention (hereinafter sometimes simply referred to as “structural unit (I)”) is also encompassed in the scope of the present invention. .
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
[式(I)中、R1、mは、上記と同義である。A20は、A2の置換されていてもよい芳香族環の1つの水素原子を結合手とした基を表す。
 n7は、1以上の整数を表す。]
[In the formula (I), R 1 and m are as defined above. A 20 represents a group having one hydrogen atom of the optionally substituted aromatic ring of A 2 as a bond.
n7 represents an integer of 1 or more. ]
 上記構造単位(I)を含む化合物としては、具体的には、下記式(II)で表される化合物が挙げられる。 Specific examples of the compound containing the structural unit (I) include compounds represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
[式(II)中、R1、A20、mは、上記と同義である。
 n7は、1以上の整数を表す。
 rは、1以上の整数を表す。
 ただし、n7またはrのいずれかは、2以上である。]
[In the formula (II), R 1 , A 20 and m are as defined above.
n7 represents an integer of 1 or more.
r represents an integer of 1 or more.
However, either n7 or r is 2 or more. ]
 上記式中、n7は、1又は2であることが好ましい。
 rは、1又は2であることが好ましい。
In the above formula, n7 is preferably 1 or 2.
r is preferably 1 or 2.
 化合物(II)としては、例えば、下記式で表される化合物が好ましい。 As the compound (II), for example, a compound represented by the following formula is preferable.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
[式(IIA)、(IIB)中、R1、A20、m、n8は上記と同義である。
 n9は、2以上の整数を表し、r1は、2以上の整数を表す。]
[In formulas (IIA) and (IIB), R 1 , A 20 , m and n8 have the same meanings as described above.
n9 represents an integer of 2 or more, and r1 represents an integer of 2 or more. ]
 化合物(IIA)、(IIB)としては、下記式(IIA-I)、(IIB-I)で表される化合物が好ましい。 Compounds (IIA) and (IIB) are preferably compounds represented by the following formulas (IIA-I) and (IIB-I).
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
 表中、(ArI-1)は、下記式で表される基を意味する。*は結合手を表す。 In the table, (ArI-1) means a group represented by the following formula. * Represents a bond.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 上記化合物(IIA)の製造方法の概要は、下記スキームで表される。 The outline of the production method of the compound (IIA) is represented by the following scheme.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
[式中、
 R1、A20、m、n9、r1は、上記と同義である。
 X10は、ハロゲン原子を表す。
 M10は、ホウ素原子、又はスズ原子を表す。
 L10は、脂肪族炭化水素基、水酸基、アルコキシ基、又はアリールオキシ基を表し、複数のL1は、M1とともに環を形成していてもよい。
 n10は、1以上の整数を表す。
 k10は、2又は3の整数を表す。]
[Where:
R 1 , A 20 , m, n9, and r1 are as defined above.
X 10 represents a halogen atom.
M 10 represents a boron atom or a tin atom.
L 10 represents an aliphatic hydrocarbon group, a hydroxyl group, an alkoxy group, or an aryloxy group, and a plurality of L 1 may form a ring together with M 1 .
n10 represents an integer of 1 or more.
k10 represents an integer of 2 or 3. ]
 すなわち、化合物(IIA)は、化合物(IIA3)に芳香族環を付加し(芳香族環付加工程2:工程12)、化合物(IIA2)を得て、この化合物(IIA2)に、塩基の存在下、アジド化合物を反応させることにより製造することができる(環化工程2:工程13)。また化合物(IIA)は、化合物(IIA5)に芳香族環を付加することにより製造することができる(芳香族環付加工程2:工程14)。 That is, compound (IIA) adds an aromatic ring to compound (IIA3) (aromatic ring addition step 2: step 12) to obtain compound (IIA2), and this compound (IIA2) is added to compound (IIA2) in the presence of a base. It can be produced by reacting an azide compound (cyclization step 2: step 13). Compound (IIA) can be produced by adding an aromatic ring to compound (IIA5) (aromatic ring addition step 2: step 14).
 さらに、上記化合物(IIB)の製造方法の概要は、下記スキームで表される。 Furthermore, the outline of the production method of the compound (IIB) is represented by the following scheme.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
[式中、
 R1、A20、m、n8、n9は、上記と同義である。
 X11、X12は、ハロゲン原子を表す。
 M11、M12は、ホウ素原子、又はスズ原子を表す。
 L11、L12は、脂肪族炭化水素基、水酸基、アルコキシ基、又はアリールオキシ基を表し、複数のL11又はL12は、M11又はM12とともに環を形成していてもよい。
 k11、k12は、2又は3の整数を表す。]
[Where:
R 1 , A 20 , m, n8, and n9 are as defined above.
X 11 and X 12 represent a halogen atom.
M 11 and M 12 represent a boron atom or a tin atom.
L 11 and L 12 represent an aliphatic hydrocarbon group, a hydroxyl group, an alkoxy group, or an aryloxy group, and a plurality of L 11 or L 12 may form a ring together with M 11 or M 12 .
k11 and k12 represent an integer of 2 or 3. ]
 すなわち、化合物(IIB)は、下記3通りのルートで製造することができる。
 ルート1では、化合物(IIB3)、化合物(IIB4)、化合物(IIB5)を反応させ(芳香族環付加工程3:工程15)、化合物(IIB2)を得て、この化合物(IIB2)に、塩基の存在下、アジド化合物を反応させることにより製造することができる(環化工程2:工程16)。
 ルート2では、化合物(IIC)に、塩基と、ハロゲン化有機金属化合物とを反応させて化合物(IID)とした後(有機金属化合物付加工程:工程17)、この化合物(IID)と化合物(IIE)とを金属触媒の存在下、反応させることにより、製造することができる(多量体化工程1:工程18)。
 ルート3では、化合物(IIC)と化合物(IIF)とを塩基及び金属触媒の存在下、反応させることにより、製造することができる(多量体化工程2:工程19)
 以下、各工程について説明する。
That is, compound (IIB) can be produced by the following three routes.
In route 1, compound (IIB3), compound (IIB4), and compound (IIB5) are reacted (aromatic ring addition step 3: step 15) to obtain compound (IIB2). It can be produced by reacting an azide compound in the presence (cyclization step 2: step 16).
In route 2, compound (IIC) is reacted with a base and a halogenated organometallic compound to give compound (IID) (organometallic compound addition step: step 17), and then this compound (IID) and compound (IIE) ) In the presence of a metal catalyst (multimerization step 1: step 18).
Route 3 can be produced by reacting compound (IIC) and compound (IIF) in the presence of a base and a metal catalyst (multimerization step 2: step 19).
Hereinafter, each step will be described.
3-1.芳香族環付加工程2(工程12、14)
 芳香族環付加工程2では、化合物(IIA3)と、化合物(IIA4)
3-1. Aromatic ring addition step 2 (steps 12 and 14)
In the aromatic ring addition step 2, compound (IIA3) and compound (IIA4)
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
[式中、R1、A20、M10、L10、k10は、上記と同義である。]
とを反応させることにより、化合物(IIA2)を製造することができる。本工程で用いられる化合物(IIA3)としては、上記で例示した化合物(2)のうち、ハロゲン原子で置換されている芳香族環を有する化合物(2E)が挙げられる。
 さらに、化合物(IIA5)と化合物(IIA4)を反応させることにより、化合物(IIA)を製造することができる。本工程で用いられる化合物(IIA5)としては、上記で例示した化合物(1)のうち、ハロゲン原子で置換されている芳香族環を有する化合物が挙げられる。
 式(IIA4)のM10、L10、k10は、式(4)のM1、L1、k1と同様であり、化合物(IIA4)としては、上記で例示した化合物(4)のうち、芳香族環がハロゲン原子で置換されていないものが挙げられる。
[Wherein, R 1 , A 20 , M 10 , L 10 , k10 are as defined above. ]
Can be reacted to produce compound (IIA2). Examples of compound (IIA3) used in this step include compound (2E) having an aromatic ring substituted with a halogen atom among compounds (2) exemplified above.
Furthermore, compound (IIA) can be produced by reacting compound (IIA5) with compound (IIA4). As compound (IIA5) used at this process, the compound which has the aromatic ring substituted by the halogen atom among the compound (1) illustrated above is mentioned.
M 10 , L 10 , and k10 in the formula (IIA4) are the same as M 1 , L 1 , and k1 in the formula (4). Examples thereof include those in which the group ring is not substituted with a halogen atom.
 さらに、化合物(IIA3)又は化合物(IIA5)と(IIA4)とを反応させる際には、芳香族環付加工程1で例示した触媒と同様の触媒を同様の条件で用いることができる。前記触媒には、芳香族環付加工程1で例示した配位子と同様の特定の配位子を同様の条件で配位させてもよい。さらに化合物(IIA3)又は化合物(IIA5)と化合物(IIA2)を反応させる際、芳香族環付加工程1で例示した塩基と同様の塩基を同様の条件で共存させてもよい。
 芳香族環付加工程2で用いられる反応溶媒は、芳香族環付加工程1で用いられる反応溶媒と同様であり、同様の条件で用いることができる。
 さらに、芳香族環付加工程2の反応温度は芳香族環付加工程1と同様である。
Furthermore, when reacting compound (IIA3) or compound (IIA5) and (IIA4), the same catalyst as that exemplified in the aromatic ring addition step 1 can be used under the same conditions. A specific ligand similar to the ligand exemplified in the aromatic ring addition step 1 may be coordinated with the catalyst under the same conditions. Furthermore, when reacting compound (IIA3) or compound (IIA5) with compound (IIA2), a base similar to the base exemplified in the aromatic ring addition step 1 may coexist under the same conditions.
The reaction solvent used in the aromatic ring addition step 2 is the same as the reaction solvent used in the aromatic ring addition step 1 and can be used under the same conditions.
Furthermore, the reaction temperature in the aromatic ring addition step 2 is the same as that in the aromatic ring addition step 1.
3-2.芳香族環付加工程3(工程15)
 芳香族環付加工程3では、化合物(IIB3)と、化合物(IIB4)とを、下記式(IIB5)
3-2. Aromatic ring addition step 3 (step 15)
In the aromatic ring addition step 3, the compound (IIB3) and the compound (IIB4) are converted into the following formula (IIB5)
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
[式中、A20、M11、L11、n8、k11は、上記と同義である。]
で表される化合物と反応させることにより、化合物(IIB2)を製造することができる。本工程で用いられる化合物(IIB3)、化合物(IIB4)は、上記化合物(2A)、又は(2C)を出発物質として、本工程により製造することができる。
[Wherein, A 20 , M 11 , L 11 , n8, and k11 have the same meanings as described above. ]
Compound (IIB2) can be produced by reacting with the compound represented by the formula: Compound (IIB3) or compound (IIB4) used in this step can be produced by this step using compound (2A) or (2C) as a starting material.
 化合物(IIB3)、(IIB4)としては、下記式で表される化合物が好ましい。表中、(ArI-1)は上記と同義である。 Compounds (IIB3) and (IIB4) are preferably compounds represented by the following formula. In the table, (ArI-1) has the same meaning as above.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
 また式(IIB5)中、M11、L11、k11は、それぞれ、式(4)のM1、L1、k1と同様であり、化合物(IIB5)としては、下記式で表される化合物等が挙げられる。表中、(Om-1)~(Om-6)、(ArI-1)は上記と同義である。 In formula (IIB5), M 11 , L 11 and k11 are the same as M 1 , L 1 and k1 in formula (4), respectively. Examples of compound (IIB5) include compounds represented by the following formulas, etc. Is mentioned. In the table, (Om-1) to (Om-6) and (ArI-1) are as defined above.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
 化合物(IIB5)の量は、化合物(IIB3)1モルに対して、0.6~5モルであることが好ましく、より好ましくは0.8~3モルである。
 また化合物(IIB4)の量は、化合物(IIB3)1モルに対して、0.1~10モルであることが好ましく、より好ましくは0.5~2モルである。
The amount of compound (IIB5) is preferably 0.6 to 5 mol, more preferably 0.8 to 3 mol, relative to 1 mol of compound (IIB3).
The amount of compound (IIB4) is preferably 0.1 to 10 mol, more preferably 0.5 to 2 mol, relative to 1 mol of compound (IIB3).
 化合物(IIB3)、(IIB4)、(IIB5)を反応させる際に共存させる触媒は、芳香族環付加工程1で例示した触媒と同様であり、化合物(IIB5)と触媒とのモル比(化合物(IIB5):触媒)は、一般に1:0.0001~1:1.0程度であり、収率や反応効率の観点から1:0.001~1:0.8が好ましく、1:0.005~1:0.6がより好ましく、1:0.01~1:0.4がさらに好ましい。 The catalyst that coexists when the compounds (IIB3), (IIB4), and (IIB5) are reacted is the same as the catalyst exemplified in the aromatic ring addition step 1, and the molar ratio of the compound (IIB5) to the catalyst (compound ( IIB5): catalyst) is generally about 1: 0.0001 to 1: 1.0, preferably 1: 0.001 to 1: 0.8, and preferably 1: 0.005 from the viewpoint of yield and reaction efficiency. ˜1: 0.6 is more preferred, and 1: 0.01 to 1: 0.4 is even more preferred.
 前記触媒には、芳香族環付加工程1で例示した配位子を、同様の条件で配位させてもよい。また、芳香族環付加工程3では、芳香族環付加工程1で例示した塩基を、同様の条件で共存させてもよい。また本工程において、反応溶媒も芳香族環付加工程1と同様の溶媒を同様の条件で用いることができる。さらに反応温度も、芳香族環付加工程1と同様に調整できる。 The ligand exemplified in the aromatic ring addition step 1 may be coordinated with the catalyst under the same conditions. In the aromatic ring addition step 3, the bases exemplified in the aromatic ring addition step 1 may coexist on the same conditions. In this step, the same solvent as in the aromatic ring addition step 1 can be used under the same conditions as the reaction solvent. Further, the reaction temperature can be adjusted in the same manner as in the aromatic ring addition step 1.
3-3.環化工程2(工程13、15)
 化合物(IIA2)、或いは(IIB2)に、塩基の存在下、アジド化合物を反応させることにより、化合物(IIA)、或いは化合物(IIB)を得ることができる。
 前記アジド化合物としては、環化工程1で例示したアジド化合物と同様であり、同様の条件で用いることができる。さらに、アジド化合物を反応させる際に共存させる塩基も、環化工程1で例示した塩基と同様であり、同様の条件で用いることができる。また、反応溶媒、反応温度についても、環化工程1と同様の条件を採用できる。
3-3. Cyclization step 2 (steps 13 and 15)
Compound (IIA) or (IIB) can be obtained by reacting compound (IIA2) or (IIB2) with an azide compound in the presence of a base.
The azide compound is the same as the azide compound exemplified in the cyclization step 1 and can be used under the same conditions. Furthermore, the base coexisting when the azide compound is reacted is the same as the base exemplified in the cyclization step 1, and can be used under the same conditions. Moreover, the same conditions as in the cyclization step 1 can be employed for the reaction solvent and the reaction temperature.
3-4.有機金属化合物付加工程(工程16)
 化合物(IIC)に、塩基とハロゲン化有機金属化合物とを反応させることにより、化合物(IID)を得ることができる。なお式(IID)において、M12はスズ原子であることが好ましい。
3-4. Organometallic compound addition step (step 16)
Compound (IID) can be obtained by reacting compound (IIC) with a base and a halogenated organometallic compound. In the formula (IID), M 12 is preferably a tin atom.
 化合物(IIC)としては、例えば、下記式で表される化合物が好ましい。表中、(ArI-1)は、上記と同義である。 As the compound (IIC), for example, a compound represented by the following formula is preferable. In the table, (ArI-1) has the same meaning as above.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
 塩基としては、アルキルリチウム、アルキル金属アミド、アルキルマグネシウム、マグネシウム錯体、水素化アルカリ金属等が挙げられる。 Examples of the base include alkyl lithium, alkyl metal amide, alkyl magnesium, magnesium complex, alkali metal hydride and the like.
 前記アルキルリチウムとしては、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウムが挙げられる。前記アルキル金属アミドとしては、リチウムジイソプロピルアミド、リチウムジエチルアミド、リチウムビス(トリメチルシリル)アミド、ナトリウムビス(トリメチルシリル)アミド、カリウムビス(トリメチルシリル)アミド、リチウム-2,2,6,6-テトラメチルピペリジド、リチウムアミド、ナトリウムアミド、カリウムアミドが挙げられる。前記アルキルマグネシウム、および、マグネシウム錯体としては、tert-ブチルマグネシウムクロライド、エチルマグネシウムクロライド、2,2,6,6-テトラメチルピペリジニルマグネシウムクロリド、リチウムクロリド錯体が挙げられる。前記水素化アルカリ金属としては、水素化リチウム、水素化ナトリウム、水素化カリウムが挙げられる。中でも、位置選択性の観点から、アルキル金属アミドであることが好ましく、n-ブチルリチウム、リチウムジイソプロピルアミドが特に好ましい。 Examples of the alkyl lithium include n-butyl lithium, sec-butyl lithium, and tert-butyl lithium. Examples of the alkyl metal amide include lithium diisopropylamide, lithium diethylamide, lithium bis (trimethylsilyl) amide, sodium bis (trimethylsilyl) amide, potassium bis (trimethylsilyl) amide, lithium-2,2,6,6-tetramethylpiperidide , Lithium amide, sodium amide, potassium amide. Examples of the alkylmagnesium and the magnesium complex include tert-butylmagnesium chloride, ethylmagnesium chloride, 2,2,6,6-tetramethylpiperidinylmagnesium chloride, and lithium chloride complex. Examples of the alkali metal hydride include lithium hydride, sodium hydride, and potassium hydride. Of these, alkyl metal amides are preferable from the viewpoint of regioselectivity, and n-butyllithium and lithium diisopropylamide are particularly preferable.
 化合物(IIC)と塩基とのモル比(化合物(IIC):塩基)は、一般に1:1~1:5程度であり、収率や反応効率の観点から1:1.1~1:4が好ましく、1:1.5~1:3がより好ましく、1:1.8~1:2.5がさらに好ましい。 The molar ratio of compound (IIC) to base (compound (IIC): base) is generally about 1: 1 to 1: 5, and from the viewpoint of yield and reaction efficiency, 1: 1.1 to 1: 4 Preferably, 1: 1.5 to 1: 3 is more preferable, and 1: 1.8 to 1: 2.5 is more preferable.
 また、塩基とともに化合物(IIC)に反応させるハロゲン化有機金属化合物としては、ハロゲン化アルキル錫化合物、ハロゲン化シクロアルキル錫化合物、ハロゲン化アリール錫化合物が挙げられる。ハロゲン化アルキル錫化合物としては、トリエチル錫クロリド、トリプロピル錫クロリド、トリブチル錫クロリド、トリメチル錫ブロミド、トリエチル錫ブロミド、トリプロピル錫ブロミド、トリブチル錫ブロミドが挙げられる。ハロゲン化シクロアルキル錫化合物としては、トリシクロヘキシル錫クロリド、トリシクロヘキシル錫ブロミドが挙げられる。ハロゲン化アリール錫化合物としては、トリフェニル錫クロリド、トリベンジル錫クロリド、トリフェニル錫ブロミド、トリベンジル錫ブロミドが挙げられる。これらの中でも、ハロゲン化アルキル錫化合物が好ましく、トリメチル錫クロリド、トリブチル錫クロリドがより好ましい。 Also, examples of the halogenated organometallic compound to be reacted with the compound (IIC) together with a base include a halogenated alkyltin compound, a halogenated cycloalkyltin compound, and a halogenated aryltin compound. Examples of the halogenated alkyltin compounds include triethyltin chloride, tripropyltin chloride, tributyltin chloride, trimethyltin bromide, triethyltin bromide, tripropyltin bromide, and tributyltin bromide. Examples of the halogenated cycloalkyl tin compound include tricyclohexyl tin chloride and tricyclohexyl tin bromide. Examples of the halogenated aryl tin compound include triphenyl tin chloride, tribenzyl tin chloride, triphenyl tin bromide, and tribenzyl tin bromide. Among these, a halogenated alkyltin compound is preferable, and trimethyltin chloride and tributyltin chloride are more preferable.
 化合物(IIC)とハロゲン化有機金属化合物とのモル比(化合物(IIC):ハロゲン化有機金属化合物)は、一般に1:1~1:5程度であり、収率や反応効率の観点から1:1.1~1:4が好ましく、1:1.5~1:3がより好ましく、1:1.8~1:2.5がさらに好ましい。
 塩基とハロゲン化有機金属化合物とのモル比(塩基:ハロゲン化有機金属化合物)は、例えば1:0.5~1:2.0程度であり、1:0.6~1:1.7が好ましく、1:0.7~1:1.5がより好ましく、1:0.8~1:1.2がさらに好ましい。
The molar ratio of compound (IIC) to halogenated organometallic compound (compound (IIC): halogenated organometallic compound) is generally about 1: 1 to 1: 5. From the viewpoint of yield and reaction efficiency, 1: 1.1 to 1: 4 is preferable, 1: 1.5 to 1: 3 is more preferable, and 1: 1.8 to 1: 2.5 is more preferable.
The molar ratio of the base to the halogenated organometallic compound (base: halogenated organometallic compound) is, for example, about 1: 0.5 to 1: 2.0, and 1: 0.6 to 1: 1.7. Preferably, 1: 0.7 to 1: 1.5 is more preferable, and 1: 0.8 to 1: 1.2 is more preferable.
 塩基とハロゲン化有機金属化合物とは、同時に化合物(IIC)と反応させてもよいが、反応収率の観点から、まず化合物(IIC)に塩基を反応させ、次いでハロゲン化錫化合物を反応させることが好ましい。反応温度は、副生成物の生成を抑制する観点から、室温以下であることが好ましく、0℃以下であることがより好ましい。 The base and the halogenated organometallic compound may be reacted with the compound (IIC) at the same time, but from the viewpoint of the reaction yield, the base is first reacted with the compound (IIC) and then the tin halide compound is reacted. Is preferred. The reaction temperature is preferably room temperature or lower, more preferably 0 ° C. or lower, from the viewpoint of suppressing the formation of by-products.
 反応溶媒としては、エーテル系溶媒、および、炭化水素系溶媒などを用いることができる。前記エーテル系溶媒としては、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジメトキシエタン、シクロペンチルメチルエーテル、t-ブチルメチルエーテル、ジオキサンが挙げられる。炭化水素系溶媒としては、ペンタン、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレンが挙げられる。これらの中でも、テトラヒドロフランが好ましい。溶媒は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。 As the reaction solvent, an ether solvent, a hydrocarbon solvent, or the like can be used. Examples of the ether solvent include diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, methyltetrahydrofuran, dimethoxyethane, cyclopentyl methyl ether, t-butyl methyl ether, and dioxane. Examples of the hydrocarbon solvent include pentane, hexane, heptane, benzene, toluene, and xylene. Of these, tetrahydrofuran is preferred. A solvent may be used individually by 1 type and may be used in mixture of 2 or more types.
 溶媒量は、化合物(IIC)1gに対して、一般に1mL以上、70mL以下程度であり、収率や反応効率の観点から5mL以上、60mL以下が好ましく10mL以上、50mLがより好ましく、20mL以上、45mL以下がさらに好ましい。 The amount of the solvent is generally about 1 mL or more and 70 mL or less with respect to 1 g of the compound (IIC). The following is more preferable.
3-5.多量体化工程2(工程17)
 化合物(IID)と化合物(IIE)とを金属触媒の存在下、反応させることにより化合物(IIB)を得ることができる。
3-5. Multimerization process 2 (process 17)
Compound (IIB) can be obtained by reacting compound (IID) with compound (IIE) in the presence of a metal catalyst.
 上記式(IID)中、M12、L12、k12は、それぞれ、M1、L1、k1と同様であり、M12はスズ原子であることが好ましい。*-M12(L12k12は、*-M1(L1k1と同様のであり、M1がスズ原子の場合の基として例示した基が好ましい。
 前記化合物(IID)としては、具体的には、下記式で表される化合物であることが好ましい。表中、(Om-5)~(Om-6)、(ArI-1)は、上記と同義である。
In the above formula (IID), M 12 , L 12 and k12 are the same as M 1 , L 1 and k1, respectively, and M 12 is preferably a tin atom. * -M 12 (L 12 ) k12 is the same as * -M 1 (L 1 ) k1, and the groups exemplified as the group when M 1 is a tin atom are preferable.
Specifically, the compound (IID) is preferably a compound represented by the following formula. In the table, (Om-5) to (Om-6) and (ArI-1) are as defined above.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
 また、化合物(IIE)としては、下記式で表される化合物が好ましい。表中、(ArI-1)は、上記と同義である。 Further, as the compound (IIE), a compound represented by the following formula is preferable. In the table, (ArI-1) has the same meaning as above.
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
 化合物(IID)の量は、化合物(IIE)1モルに対して、0.6~5モルであることが好ましく、より好ましくは0.8~4モルである。
 前記触媒としては、芳香族環付加工程1で例示した触媒と同様の触媒が挙げられ、同様の条件で用いることができる。また、前記触媒には、芳香族環付加工程1で例示した配位子と同様の配位子を配位させることもでき、芳香族環付加工程1と同様の条件で用いることができる。また、反応溶媒、反応温度についても、芳香族環付加工程1と同様の条件を採用できる。
The amount of compound (IID) is preferably 0.6 to 5 mol, more preferably 0.8 to 4 mol, relative to 1 mol of compound (IIE).
Examples of the catalyst include the same catalysts as those exemplified in the aromatic ring addition step 1, and they can be used under the same conditions. Moreover, the same ligand as the ligand illustrated in the aromatic ring addition step 1 can be coordinated with the catalyst, and the catalyst can be used under the same conditions as in the aromatic ring addition step 1. The reaction solvent and the reaction temperature can be the same as in the aromatic ring addition step 1.
3-6.多量体化工程2(工程18)
 また、化合物(IIC)と化合物(IIF)とを塩基及び金属触媒の存在下、反応させることにより、化合物(IIB)を得ることができる。
 化合物(IIF)としては、下記式で表される化合物が好ましい。表中、(ArI-1)は、上記と同義である。
3-6. Multimerization process 2 (process 18)
In addition, compound (IIB) can be obtained by reacting compound (IIC) with compound (IIF) in the presence of a base and a metal catalyst.
As the compound (IIF), a compound represented by the following formula is preferable. In the table, (ArI-1) has the same meaning as above.
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
 化合物(IIF)は、化合物(IIC)1モルに対して、0.1~10モルであることが好ましく、0.5~2モルであることがより好ましい。 Compound (IIF) is preferably 0.1 to 10 mol, more preferably 0.5 to 2 mol, relative to 1 mol of compound (IIC).
 塩基としては、有機金属化合物付加工程で例示した塩基と同様の塩基を用いることができる。化合物(IIC)と塩基とのモル比(化合物(IIC):塩基)は、一般に1:1~1:5程度であり、収率や反応効率の観点から1:1.1~1:4が好ましく、1:1.5~1:3がより好ましく、1:1.8~1:2.5がさらに好ましい。 As the base, the same bases as exemplified in the organometallic compound addition step can be used. The molar ratio of compound (IIC) to base (compound (IIC): base) is generally about 1: 1 to 1: 5, and from the viewpoint of yield and reaction efficiency, 1: 1.1 to 1: 4 Preferably, 1: 1.5 to 1: 3 is more preferable, and 1: 1.8 to 1: 2.5 is more preferable.
 また金属触媒としては、パラジウム系触媒、ニッケル系触媒、鉄系触媒、銅系触媒、ロジウム系触媒、ルテニウム系触媒などの遷移金属触媒が挙げられる。中でも、銅系触媒が好ましい。 Further, examples of the metal catalyst include transition metal catalysts such as a palladium catalyst, a nickel catalyst, an iron catalyst, a copper catalyst, a rhodium catalyst, and a ruthenium catalyst. Among these, a copper catalyst is preferable.
 前記銅系触媒としては、銅、フッ化銅(I)、塩化銅(I)、臭化銅(I)、よう化銅(I)等、フッ化銅(II)、塩化銅(II)、臭化銅(II)、よう化銅(II)等のハロゲン化銅化合物;酸化銅(I)、硫化銅(I)、酸化銅(II)、硫化銅(II)、酢酸銅(I)、酢酸銅(II)、硫酸銅(II)等が挙げられ、ハロゲン化銅化合物が好ましい。これらの金属触媒には、必要に応じて、配位子を配位させてもよい。 Examples of the copper-based catalyst include copper, copper fluoride (I), copper chloride (I), copper bromide (I), copper iodide (I), copper fluoride (II), copper chloride (II), Copper halide compounds such as copper (II) bromide and copper (II) iodide; copper (I) oxide, copper (I) sulfide, copper oxide (II), copper sulfide (II), copper acetate (I), Examples include copper acetate (II) and copper (II) sulfate, and copper halide compounds are preferred. You may coordinate a ligand with these metal catalysts as needed.
 第一工程において、化合物(IIC)と金属触媒とのモル比(化合物(IIC):金属触媒)は、一般に1:0.0001~1:0.5程度であり、収率や反応効率の観点から1:0.001~1:0.4が好ましく、1:0.005~1:0.3がより好ましく、1:0.01~1:0.2がさらに好ましい。 In the first step, the molar ratio of the compound (IIC) to the metal catalyst (compound (IIC): metal catalyst) is generally about 1: 0.0001 to 1: 0.5, from the viewpoint of yield and reaction efficiency. To 1: 0.001 to 1: 0.4, more preferably 1: 0.005 to 1: 0.3, and even more preferably 1: 0.01 to 1: 0.2.
 反応溶媒及び反応温度としては、有機金属化合物付加工程と同様の条件を採用することができる。 As the reaction solvent and reaction temperature, the same conditions as in the organometallic compound addition step can be employed.
4.有機半導体材料
 本発明の化合物(1)は、LUMO準位を低く維持したままHOMO準位を引き上げることができるとともに、熱安定性が優れ、さらには種々の官能基を付加することも容易であるため、有機半導体材料として優れており、本発明の化合物(1)を用いて得られる有機半導体材料も本発明の技術的範囲に包含される。
 特に、上記化合物(1)から導かれる構造単位(I)
4). Organic Semiconductor Material The compound (1) of the present invention can raise the HOMO level while keeping the LUMO level low, has excellent thermal stability, and can easily add various functional groups. Therefore, it is excellent as an organic semiconductor material, and an organic semiconductor material obtained using the compound (1) of the present invention is also included in the technical scope of the present invention.
In particular, the structural unit (I) derived from the compound (1)
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
[式(I)中、R1、A20、m、n7は、上記と同義である。]
は、電子受容性であり、拡張π共役系でのアクセプター性ユニットとしての機能が期待できるため、ドナー性ユニットとを組み合わせてドナー-アクセプター型半導体高分子化合物としてもよく、構造単位(I)と、ドナー性ユニットとを交互に配置することがより好ましい。特に、有機エレクトロルミネッセンス素子、有機薄膜トランジスタ素子等の有機エレクトロデバイス、有機半導体材料、光電変換素子、有機電子デバイス、太陽電池、太陽電池モジュール用途等に有用である。
[In the formula (I), R 1 , A 20 , m, and n7 are as defined above. ]
Since it is electron accepting and can be expected to function as an acceptor unit in an extended π-conjugated system, it may be combined with a donor unit to form a donor-acceptor semiconductor polymer compound, and the structural unit (I) It is more preferable to arrange the donor units alternately. In particular, it is useful for organic electro devices such as organic electroluminescence elements and organic thin film transistor elements, organic semiconductor materials, photoelectric conversion elements, organic electronic devices, solar cells, solar cell module applications and the like.
 前記ドナー性ユニットとしては、下記式(Dn-1)~(Dn-12)で表される構造単位(基)が挙げられる。 Examples of the donor unit include structural units (groups) represented by the following formulas (Dn-1) to (Dn-12).
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
[式(Dn-1)~(Dn-12)中、R30は、脂肪族炭化水素基を表し、R31は、水素原子又は脂肪族炭化水素基を表す。] [In the formulas (Dn-1) to (Dn-12), R 30 represents an aliphatic hydrocarbon group, and R 31 represents a hydrogen atom or an aliphatic hydrocarbon group. ]
 R30の脂肪族炭化水素基としては、R1の脂肪族炭化水素基と同様であり、炭素数1~30であることが好ましく、より好ましくは炭素数1~24、さらに好ましくは炭素数1~20である。 The aliphatic hydrocarbon group for R 30 is the same as the aliphatic hydrocarbon group for R 1 and preferably has 1 to 30 carbon atoms, more preferably 1 to 24 carbon atoms, still more preferably 1 carbon atom. ~ 20.
 化合物(1)から導かれる構造単位と、上記ドナー性ユニットとを交互に配置するためには、例えば、下記式(1E) In order to alternately arrange the structural unit derived from the compound (1) and the donor unit, for example, the following formula (1E)
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
[式(1E)中、R1、Ax1、X1、m、n4、n5は上記と同義である。] [In the formula (1E), R 1 , A x1 , X 1 , m, n4 and n5 have the same meanings as described above. ]
で表される化合物を用いることが好ましく、この化合物(1E)と、下記式(5)で表される化合物とを反応させることが好ましい。 It is preferable to use the compound represented by this, It is preferable to make this compound (1E) and the compound represented by following formula (5) react.
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
[式(5)中、
 A6は、2価の電子供与性基を表す
 M2は、ホウ素原子又はスズ原子を表す。
 L2は、脂肪族炭化水素基、水酸基、アルコキシ基、又はアリールオキシ基を表す。
 k2は、2又は3の整数を表す。]
[In Formula (5),
A 6 represents a divalent electron donating group M 2 represents a boron atom or a tin atom.
L 2 represents an aliphatic hydrocarbon group, a hydroxyl group, an alkoxy group, or an aryloxy group.
k2 represents an integer of 2 or 3. ]
 A6は、芳香族環を含む2価の電子供与性基であることが好ましく、上記式(Dn-1)~(Dn-12)のいずれかで表される2価の基であることがより好ましい。
 M2、L2、k2は、それぞれ、M1、L1、k1と同様であり、*-M2(L2k2は、*-M1(L1k1と同様である。
A 6 is preferably a divalent electron-donating group containing an aromatic ring, and is preferably a divalent group represented by any one of the above formulas (Dn-1) to (Dn-12). More preferred.
M 2 , L 2 and k2 are the same as M 1 , L 1 and k1, respectively. * -M 2 (L 2 ) k2 is the same as * -M 1 (L 1 ) k1 .
 化合物(1)と、式(5)で表される化合物とのモル比は、1:99~99:1の範囲であることが好ましく、20:80~80:20の範囲であることが好ましく、40:60~60:40の範囲であることが好ましい。 The molar ratio of the compound (1) to the compound represented by the formula (5) is preferably in the range of 1:99 to 99: 1, and preferably in the range of 20:80 to 80:20. 40:60 to 60:40 is preferable.
 カップリング用の触媒としては、上記芳香族環付加工程1で用いることができる触媒と同様の触媒を用いることができ、パラジウム系触媒、ニッケル系触媒、鉄系触媒、銅系触媒、ロジウム系触媒、ルテニウム系触媒等の金属触媒が挙げられ、中でも、パラジウム系触媒が好ましい。パラジウム系触媒のパラジウムは、0価でも2価でもよい。 As the catalyst for coupling, the same catalyst as that used in the aromatic ring addition step 1 can be used. Palladium catalyst, nickel catalyst, iron catalyst, copper catalyst, rhodium catalyst And metal catalysts such as ruthenium catalysts, among which palladium catalysts are preferred. The palladium of the palladium-based catalyst may be zero-valent or divalent.
 パラジウム系触媒としては、上記芳香族環付加工程1で例示したパラジウム系触媒をいずれも使用でき、これらの触媒は一種を単独で用いてもよく、二種以上を混合して用いても良い。これらの中でも、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体が特に好ましい。 As the palladium-based catalyst, any of the palladium-based catalysts exemplified in the above aromatic ring addition step 1 can be used, and these catalysts may be used alone or in combination of two or more. Among these, dichlorobis (triphenylphosphine) palladium (II), tris (dibenzylideneacetone) dipalladium (0), and tris (dibenzylideneacetone) dipalladium (0) chloroform adduct are particularly preferable.
 カップリング工程において、化合物(1)と触媒とのモル比(化合物(1):触媒)は、一般に1:0.0001~1:0.5程度であり、収率や反応効率の観点から1:0.001~1:0.3が好ましく、1:0.005~1:0.2がより好ましく、1:0.01~1:0.1がさらに好ましい。 In the coupling step, the molar ratio of the compound (1) to the catalyst (compound (1): catalyst) is generally about 1: 0.0001 to 1: 0.5, and 1 from the viewpoint of yield and reaction efficiency. : 0.001 to 1: 0.3 is preferable, 1: 0.005 to 1: 0.2 is more preferable, and 1: 0.01 to 1: 0.1 is more preferable.
 カップリング反応の際には、触媒に特定の配位子を配位させてもよい。配位子としては、上記芳香族環付加工程1で例示した配位子がいずれも使用でき、これらの配位子のいずれかが配位した触媒を反応に用いても良い。配位子は一種を単独で用いてもよく、二種以上を混合して用いても良い。中でも、トリフェニルホスフィン、トリス(o-トリル)ホスフィン、トリス(2-メトキシフェニル)ホスフィンが好ましい。 In the coupling reaction, a specific ligand may be coordinated with the catalyst. As the ligand, any of the ligands exemplified in the aromatic ring addition step 1 can be used, and a catalyst coordinated with any of these ligands may be used in the reaction. A ligand may be used individually by 1 type and may be used in mixture of 2 or more types. Of these, triphenylphosphine, tris (o-tolyl) phosphine, and tris (2-methoxyphenyl) phosphine are preferable.
 カップリング工程において触媒に配位子を配位させる場合、触媒と配位子とのモル比(触媒:配位子)は、一般に1:0.5~1:10程度であり、収率や反応効率の観点から1:1~1:8が好ましく、1:1~1:7がより好ましく、1:1~1:5がさらに好ましい。 When the ligand is coordinated to the catalyst in the coupling step, the molar ratio of the catalyst to the ligand (catalyst: ligand) is generally about 1: 0.5 to 1:10, From the viewpoint of reaction efficiency, 1: 1 to 1: 8 is preferable, 1: 1 to 1: 7 is more preferable, and 1: 1 to 1: 5 is further preferable.
 カップリング工程で用いられる溶媒としては、反応に影響を及ぼさない溶媒を用いることができ、例えば、エーテル系溶媒、芳香族系溶媒、エステル系溶媒、炭化水素系溶媒、ハロゲン系溶媒、ケトン系溶媒、アミド系溶媒等を用いることができる。前記エーテル系溶媒としては、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジメトキシエタン、シクロペンチルメチルエーテル、tert-ブチルメチルエーテル、ジオキサンが挙げられる。前記芳香族系溶媒としては、ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、テトラリンが挙げられる。前記エステル系溶媒としては酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチルが挙げられる。前記炭化水素系溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、デカリンが挙げられる。前記ハロゲン系溶媒としては、ジクロロメタン、クロロホルム、ジクロロエタン、ジクロロプロパンが挙げられる。前記ケトン系溶媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトンが挙げられる。アミド系溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-(1H)-ピリミジノンが挙げられる。その他、アセトニトリル等のニトリル系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、スルホラン等のスルホン系溶媒を用いることができる。これらの中でも、テトラヒドロフラン、トルエン、クロロベンゼン、N,N-ジメチルホルムアミドが好ましく、クロロベンゼンが特に好ましい。溶媒は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。 As the solvent used in the coupling step, a solvent that does not affect the reaction can be used. For example, ether solvents, aromatic solvents, ester solvents, hydrocarbon solvents, halogen solvents, ketone solvents An amide solvent or the like can be used. Examples of the ether solvent include diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, methyltetrahydrofuran, dimethoxyethane, cyclopentyl methyl ether, tert-butyl methyl ether, and dioxane. Examples of the aromatic solvent include benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, and tetralin. Examples of the ester solvent include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, and butyl acetate. Examples of the hydrocarbon solvent include pentane, hexane, heptane, octane, and decalin. Examples of the halogen solvent include dichloromethane, chloroform, dichloroethane, and dichloropropane. Examples of the ketone solvent include acetone, methyl ethyl ketone, and methyl isobutyl ketone. Examples of amide solvents include N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro- (1H ) -Pyrimidinone. In addition, nitrile solvents such as acetonitrile, sulfoxide solvents such as dimethyl sulfoxide, and sulfone solvents such as sulfolane can be used. Among these, tetrahydrofuran, toluene, chlorobenzene, and N, N-dimethylformamide are preferable, and chlorobenzene is particularly preferable. A solvent may be used individually by 1 type and may be used in mixture of 2 or more types.
 カップリング工程において、化合物(1)と化合物(5)で表される化合物の合計1gに対する溶媒の使用量は、一般に1mL以上、150mL以下程度であり、収率や反応効率の観点から5mL以上、100mL以下が好ましく、8mL以上、90mL以下がより好ましく、10mL以上、80mL以下がさらに好ましい。 In the coupling step, the amount of the solvent used relative to the total 1 g of the compounds represented by the compound (1) and the compound (5) is generally about 1 mL or more and about 150 mL or less, and 5 mL or more from the viewpoint of yield or reaction efficiency. 100 mL or less is preferable, 8 mL or more and 90 mL or less are more preferable, and 10 mL or more and 80 mL or less are more preferable.
 上記本発明の有機半導体材料は、熱的安定性が高く、また電子受容性が高いため、有機電子デバイス、例えば、有機エレクトロルミネッセンス素子、有機薄膜トランジスタ素子等の有機エレクトロデバイス、有機半導体材料、光電変換素子、有機電子デバイス、太陽電池、太陽電池モジュール用途等に有用である。有機電子デバイスに有用に用いられる。 Since the organic semiconductor material of the present invention has high thermal stability and high electron acceptability, it is an organic electronic device, for example, an organic electro device such as an organic electroluminescence element and an organic thin film transistor element, an organic semiconductor material, and a photoelectric conversion. It is useful for devices, organic electronic devices, solar cells, solar cell module applications and the like. Useful for organic electronic devices.
 本願は、2015年3月10日に出願された日本国特許出願第2015-047661号に基づく優先権の利益を主張するものである。2015年3月10日に出願された日本国特許出願第2015-047661号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2015-047661 filed on Mar. 10, 2015. The entire contents of the specification of Japanese Patent Application No. 2015-047661 filed on Mar. 10, 2015 are incorporated herein by reference.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、以下においては、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味する。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention. In the following, “part” means “part by mass” and “%” means “mass%” unless otherwise specified.
実施例1:2,5-ビス(5-ブロモチオフェニル)テトラゾロピリジンの合成(化合物(Tz-1)、(Tz-2))
工程1:2,5-ジブロモピリジン-N-オキシドの合成
Example 1: Synthesis of 2,5-bis (5-bromothiophenyl) tetrazolopyridine (Compounds (Tz-1), (Tz-2))
Step 1: Synthesis of 2,5-dibromopyridine-N-oxide
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
 300mLナスフラスコに2,5-dibromopyridine(11.8g、50mmol)、メタクロロ過安息香酸(mCPBA)(18.5g、75mmol)、および無水ジクロロメタン(100mL)を入れ、室温で2日撹拌した。反応終了後、飽和炭酸水素ナトリウム水溶液を加え有機層をジクロロメタンで抽出し、無水硫酸ナトリウムを用いて乾燥させた。濃縮後、シリカゲルカラムクロマトグラフィー(Hexane/AcOEt=5:1)を用いて精製し2,5-dibromopyridine N-oxide(白色固体)を6.74g(収率53%)得た。 In a 300 mL eggplant flask, 2,5-dibromopyridine (11.8 g, 50 mmol), metachloroperbenzoic acid (mCPBA) (18.5 g, 75 mmol), and anhydrous dichloromethane (100 mL) were added and stirred at room temperature for 2 days. After completion of the reaction, a saturated aqueous sodium hydrogen carbonate solution was added, and the organic layer was extracted with dichloromethane and dried using anhydrous sodium sulfate. After concentration, the residue was purified using silica gel column chromatography (Hexane / AcOEt = 5: 1) to obtain 6.74 g (yield 53%) of 2,5-dibromopyridine N-oxide (white solid).
1H NMR (400 MHz, CDCl3) δ 7.23 (dd, J = 2.1, 8.7 Hz, 1H), 7.52 (d, J =8.7 Hz, 1H), 8.50 (d, J = 2.1 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.23 (dd, J = 2.1, 8.7 Hz, 1H), 7.52 (d, J = 8.7 Hz, 1H), 8.50 (d, J = 2.1 Hz, 1H).
工程3:2,5-(ジチオフェン-2-イル)ピリジン-N-オキシドの合成 Step 3: Synthesis of 2,5- (dithiophen-2-yl) pyridine-N-oxide
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
 耐圧試験管に2,5-dibromopyridine N-oxide(500mg、2mmol)、2-(Tributylstannyl)thiophene(1.79g、4.8mmol)、Pd(PPh(165mg、0.14mmol)、および無水トルエン(4mL)を入れ、マイクロウェーブ反応装置を用い180℃で20分撹拌した。反応終了後、溶媒を濃縮しシリカゲルカラムクロマトグラフィー(CHCl/Hexane/AcOEt=2:1:1)を用いて精製し2,5-(dithiophen-2-yl)pyridine N-oxide(黄色固体)を450mg(収率88%)得た。 2,5-Dibromopyridine N-oxide (500 mg, 2 mmol), 2- (Tributylstannyl) thiophene (1.79 g, 4.8 mmol), Pd (PPh 3 ) 4 (165 mg, 0.14 mmol), and anhydrous Toluene (4 mL) was added and stirred at 180 ° C. for 20 minutes using a microwave reactor. After completion of the reaction, the solvent was concentrated and purified using silica gel column chromatography (CHCl 3 / Hexane / AcOEt = 2: 1: 1) to purify 2,5- (dithiophen-2-yl) pyridine N-oxide (yellow solid). 450 mg (yield 88%) was obtained.
1H NMR (400 MHz, CDCl3) δ 7.14 (dd, J = 4.0, 5.0 Hz, 1H), 7.22 (dd, J = 4.0, 5.0 Hz, 1H), 7.39 (dd, J =1.0, 4.0 Hz, 1H), 7.41 (dd, J =1.0, 5.0 Hz, 1H), 7.52 (dd, J =1.9, 8.6 Hz, 1H), 7.58 (dd, J = 1.0, 5.0 Hz, 1H), 7.85 (dd, J = 1.0, 4.0 Hz, 1H), 7.92 (d, J = 8.6 Hz, 1H), 8.61 (d, J = 1.9 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.14 (dd, J = 4.0, 5.0 Hz, 1H), 7.22 (dd, J = 4.0, 5.0 Hz, 1H), 7.39 (dd, J = 1.0, 4.0 Hz, 1H), 7.41 (dd, J = 1.0, 5.0 Hz, 1H), 7.52 (dd, J = 1.9, 8.6 Hz, 1H), 7.58 (dd, J = 1.0, 5.0 Hz, 1H), 7.85 (dd, J = 1.0, 4.0 Hz, 1H), 7.92 (d, J = 8.6 Hz, 1H), 8.61 (d, J = 1.9 Hz, 1H).
工程4:ジチオフェニルテトラゾロピリジンの合成(化合物(Tz-1)) Step 4: Synthesis of dithiophenyltetrazolopyridine (compound (Tz-1))
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
 ねじ口試験管に2,5-(dithiophen-2-yl)pyridine N-oxide(390mg、1.5mmol)、DPPA(1.6mL、7.5mmol)、および無水ピリジン(0.24mL、3.0mmol)を入れ、窒素雰囲気下、120℃で24時間撹拌した。反応液は直接シリカゲルカラムクロマトグラフィー(CHCl/MeOH=20:1)を用いて精製しジチオフェニルテトラゾロピリジン(黄色固体)を198mg(収率46%)得た。 2,5- (dithiophen-2-yl) pyridine N-oxide (390 mg, 1.5 mmol), DPPA (1.6 mL, 7.5 mmol), and anhydrous pyridine (0.24 mL, 3.0 mmol) ) And stirred at 120 ° C. for 24 hours under a nitrogen atmosphere. The reaction solution was directly purified using silica gel column chromatography (CH 2 Cl 2 / MeOH = 20: 1) to obtain 198 mg (yield 46%) of dithiophenyltetrazolopyridine (yellow solid).
1H NMR (400 MHz, CDCl3) δ 7.25 (m, 1H), 7.29 (dd, J = 4.0, 5.0 Hz, 1H), 7.51 (dd, J = 1.0, 5.0 Hz, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.63 (dd, J = 1.0, 5.0 Hz, 1H), 7.89 (d, J = 7.7 Hz, 1H), 8.39 (dd, J = 1.0, 4.0 Hz, 1H), 8.41 (dd, J = 1.0, 4.0 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.25 (m, 1H), 7.29 (dd, J = 4.0, 5.0 Hz, 1H), 7.51 (dd, J = 1.0, 5.0 Hz, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.63 (dd, J = 1.0, 5.0 Hz, 1H), 7.89 (d, J = 7.7 Hz, 1H), 8.39 (dd, J = 1.0, 4.0 Hz, 1H), 8.41 ( dd, J = 1.0, 4.0 Hz, 1H).
工程9:2,5-ビス(5-ブロモチオフェニル)テトラゾロピリジンの合成(化合物(Tz-2)) Step 9: Synthesis of 2,5-bis (5-bromothiophenyl) tetrazolopyridine (Compound (Tz-2))
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
 ねじ口試験管にジチオフェニルテトラゾロピリジン(30mg、0.1mmol)、N-ブロモスクシンイミド(NBS)(36mg、0.2mmol)、無水クロロホルム2mL)、および酢酸(0.4mL)を入れ、窒素雰囲気下60℃で24時間撹拌した。反応終了後、飽和炭酸水素ナトリウム水溶液を加え中和し有機層をジクロロメタンで抽出し,無水硫酸ナトリウムを用いて乾燥させた。濃縮後、シリカゲルカラムクロマトグラフィー(CHCl/MeOH=20:1)を用いて精製し対応するブロモ化体(黄色固体)を37mg(収率84%)得た。 Dithiophenyltetrazolopyridine (30 mg, 0.1 mmol), N-bromosuccinimide (NBS) (36 mg, 0.2 mmol), anhydrous chloroform 2 mL), and acetic acid (0.4 mL) are placed in a screw test tube, and a nitrogen atmosphere The mixture was stirred at 60 ° C. for 24 hours. After completion of the reaction, a saturated aqueous sodium hydrogen carbonate solution was added for neutralization, and the organic layer was extracted with dichloromethane and dried using anhydrous sodium sulfate. After concentration, the residue was purified by silica gel column chromatography (CH 2 Cl 2 / MeOH = 20: 1) to obtain 37 mg (yield 84%) of the corresponding brominated product (yellow solid).
1H NMR (400 MHz, CDCl3) δ 7.19 (d, J = 4.0 Hz, 1H), 7.25 (m, 1H), 7.47 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 7.8 Hz, 1H), 8.07 (d, J = 4.0 Hz, 1H), 8.13 (d, J = 4.0 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.19 (d, J = 4.0 Hz, 1H), 7.25 (m, 1H), 7.47 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 7.8 Hz , 1H), 8.07 (d, J = 4.0 Hz, 1H), 8.13 (d, J = 4.0 Hz, 1H).
実施例2:工程14:テトラゾロピリジン5量体の合成(化合物(Tz-3)) Example 2: Step 14: Synthesis of tetrazolopyridine pentamer (compound (Tz-3))
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 ねじ口試験管に臭素化したジチエニルテトラゾロピリジン(133mg、0.3mmol)、2-Hexyl-5-(tributylstannyl)thiophene(411mg、0.9mmol)、Pd(PPh(35mg、0.03mmol)、および無水トルエン(10mL)を入れ、120℃で60分撹拌した。反応終了後、溶媒を濃縮しシリカゲルカラムクロマトグラフィー(CHCl/MeOH=20:1)を用いて精製し、テトラゾロピリジン5量体(赤色固体)を53mg(収率27%)得た。 Brominated dithienyltetrazolopyridine (133 mg, 0.3 mmol), 2-Hexyl-5- (tributylstannyl) thiophene (411 mg, 0.9 mmol), Pd (PPh 3 ) 4 (35 mg, 0. 03 mmol) and anhydrous toluene (10 mL) were added, and the mixture was stirred at 120 ° C. for 60 minutes. After completion of the reaction, the solvent was concentrated and purified using silica gel column chromatography (CH 2 Cl 2 / MeOH = 20: 1) to obtain 53 mg (yield 27%) of tetrazolopyridine pentamer (red solid). .
1H NMR (400 MHz, CDCl3) δ 0.90 (t, J = 6.8 Hz, 6H), 1.28-1.45 (m, 12H), 1.65-1.75 (m, 4H), 2.77-2.86 (m, 4H), 6.72 (d, J = 3.6 Hz, 1H), 6.74 (d, J= 3.6 Hz, 1H), 7.10 (d, J = 3.6 Hz, 1H), 7.15 (d, J = 3.6 Hz, 1H), 7.19 (d, J = 3.9 Hz, 1H), 7.21 (d, J = 3.9 Hz, 1H), 7.46 (d, J =7.8 Hz, 1H), 7.77 (d, J =7.8 Hz, 1H), 8.24(d, J =3.9 Hz, 1H), 8.29 (d, J =3.9 Hz, 1H) 1 H NMR (400 MHz, CDCl 3 ) δ 0.90 (t, J = 6.8 Hz, 6H), 1.28-1.45 (m, 12H), 1.65-1.75 (m, 4H), 2.77-2.86 (m, 4H), 6.72 (d, J = 3.6 Hz, 1H), 6.74 (d, J = 3.6 Hz, 1H), 7.10 (d, J = 3.6 Hz, 1H), 7.15 (d, J = 3.6 Hz, 1H), 7.19 ( d, J = 3.9 Hz, 1H), 7.21 (d, J = 3.9 Hz, 1H), 7.46 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 8.24 (d, J = 3.9 Hz, 1H), 8.29 (d, J = 3.9 Hz, 1H)
実施例3:テトラゾロピリジン6量体の合成1(化合物(Tz-4))
工程5:5-ブロモ-2-(5-ヘキシルチオフェン-2-イル)ピリジン-N-オキシドの合成
Example 3: Synthesis 1 of tetrazolopyridine hexamer (compound (Tz-4))
Step 5: Synthesis of 5-bromo-2- (5-hexylthiophen-2-yl) pyridine-N-oxide
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 ねじ口試験管に2,5-dibromopyridine N-oxide(3.0g、12mmol)、2-Hexyl-5-(tributylstannyl)thiophene(5.48g、12mmol)、Pd(PPh34(1.38g、1.2mmol)、および無水トルエン(48mL)を入れ、120℃で16時間加熱撹拌した。反応終了後、溶媒を濃縮しシリカゲルカラムクロマトグラフィー(CH2Cl2/MeOH=50:1)を用いて精製し5-bromo-2-(5-hexylthiophen-2-yl)pyridine N-oxide(A)(黄色固体)を2.61g(収率64%)得た。 2,5-Dibromopyridine N-oxide (3.0 g, 12 mmol), 2-Hexyl-5- (tributylstannyl) thiophene (5.48 g, 12 mmol), Pd (PPh 3 ) 4 (1.38 g, 1.2 mmol) and anhydrous toluene (48 mL) were added, and the mixture was heated and stirred at 120 ° C. for 16 hours. After completion of the reaction, the solvent was concentrated and purified using silica gel column chromatography (CH 2 Cl 2 / MeOH = 50: 1) to give 5-bromo-2- (5-hexylthiophen-2-yl) pyridine N-oxide (A ) (Yellow solid) was obtained (yield 64%).
1H NMR (400 MHz, CDCl3) δ 0.88 (t, J = 7.0 Hz, 3H), 1.27-1.40 (m, 6H), 1.58-1.68 (m, 2H), 2.86 (t, J = 7.6 Hz, 2H), 6.90 (d, J = 4.1 Hz, 1H), 7.39 (dd, J = 1.8, 8.8 Hz, 1H), 7.67 (d, J = 4.1 Hz, 1H), 7.73 (dd, J =8.8 Hz, 1H), 8.43 (d, J = 1.8 Hz, 1H). 1 H NMR (400 MHz, CDCl3) δ 0.88 (t, J = 7.0 Hz, 3H), 1.27-1.40 (m, 6H), 1.58-1.68 (m, 2H), 2.86 (t, J = 7.6 Hz, 2H ), 6.90 (d, J = 4.1 Hz, 1H), 7.39 (dd, J = 1.8, 8.8 Hz, 1H), 7.67 (d, J = 4.1 Hz, 1H), 7.73 (dd, J = 8.8 Hz, 1H) ), 8.43 (d, J = 1.8 Hz, 1H).
工程15:ピリジン-N-オキシド6量体の合成 Step 15: Synthesis of pyridine-N-oxide hexamer
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
 ねじ口試験管に5,5’-ditributylstannyl-2,2’-bithiophene(58mg、0.078mmol)、5-bromo-2-(5-hexylthiophen-2-yl)pyridine N-oxide(A)(53mg、0.156mmol)、Pd(PPh(9mg、0.008mmol)、および無水トルエン(2mL)を入れ、マイクロウェーブ反応装置を用いて180℃で20分間加熱撹拌した。反応終了後、溶媒を濃縮しシリカゲルカラムクロマトグラフィー(Hexane/AcOEt=1:1)を用いて精製しピリジン-N-オキシド6量体(橙色固体)を74mg(収率100%)得た。 5,5′-dibutylbutanyl-2,2′-bithiophene (58 mg, 0.078 mmol), 5-brom-2- (5-hexylthiophene-2-yl) pyridine N-oxide (A) (53 mg) 0.156 mmol), Pd (PPh 3 ) 4 (9 mg, 0.008 mmol), and anhydrous toluene (2 mL) were added, and the mixture was heated and stirred at 180 ° C. for 20 minutes using a microwave reactor. After completion of the reaction, the solvent was concentrated and purified using silica gel column chromatography (Hexane / AcOEt = 1: 1) to obtain 74 mg (yield 100%) of pyridine-N-oxide hexamer (orange solid).
1H NMR (400 MHz, CDCl3) δ 0.85-0.92 (m, 6H), 1.23-1.43 (m, 12H), 1.64-1.78 (m, 4H), 2.78-2.91 (m, 4H), 6.78 (d, J = 3.6 Hz, 1H), 6.89 (d, J = 4.0 Hz, 1H), 7.18(d, J = 3.6 Hz, 1H), 7.43 (dd, J = 1.9, 8.7 Hz, 1H), 7.66 (d, J = 4.0 Hz, 1H), 7.81 (d, J = 8.7 Hz, 1H), 8.52 (d, J = 1.9 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 0.85-0.92 (m, 6H), 1.23-1.43 (m, 12H), 1.64-1.78 (m, 4H), 2.78-2.91 (m, 4H), 6.78 (d , J = 3.6 Hz, 1H), 6.89 (d, J = 4.0 Hz, 1H), 7.18 (d, J = 3.6 Hz, 1H), 7.43 (dd, J = 1.9, 8.7 Hz, 1H), 7.66 (d , J = 4.0 Hz, 1H), 7.81 (d, J = 8.7 Hz, 1H), 8.52 (d, J = 1.9 Hz, 1H).
工程16:テトラゾロピリジン6量体の合成(化合物(Tz-4)) Step 16: Synthesis of tetrazolopyridine hexamer (compound (Tz-4))
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
 ねじ口試験管にピリジン-N-オキシド6量体(74mg、0.11mmol)、DPPA(600mg、2.2mmol)、および無水ピリジン(71μL、0.88mmol)を入れ、窒素雰囲気、120℃で24時間撹拌した。反応液は直接シリカゲルカラムクロマトグラフィー(CH2Cl2/MeOH=20:1)をおよび分取GPC(CHCl)により精製することにより、テトラゾロピリジン6量体(赤色固体)を7mg(収率8%)得た。 Pyridine-N-oxide hexamer (74 mg, 0.11 mmol), DPPA (600 mg, 2.2 mmol), and anhydrous pyridine (71 μL, 0.88 mmol) are placed in a screw-cap test tube, and 24 ° C. at 120 ° C. in a nitrogen atmosphere. Stir for hours. The reaction solution was directly purified by silica gel column chromatography (CH 2 Cl 2 / MeOH = 20: 1) and preparative GPC (CHCl 3 ) to obtain 7 mg (yield) of tetrazolopyridine hexamer (red solid). 8%).
1H NMR (400 MHz, CDCl3) 0.90 (m, 6H), 1.30-1.37 (m, 8H), 1.38-1.45 (m, 4H), 1.72-1.79 (m, 4H), 2.91 (t, J = 7.6 Hz, 4H), 6.94 (d, J = 3.6 Hz, 1H), 7.05 (m, 1H),7.43 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 8.22 (d, J = 4.0 Hz, 1H), 8.27 (d, J = 4.0 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) 0.90 (m, 6H), 1.30-1.37 (m, 8H), 1.38-1.45 (m, 4H), 1.72-1.79 (m, 4H), 2.91 (t, J = 7.6 Hz, 4H), 6.94 (d, J = 3.6 Hz, 1H), 7.05 (m, 1H), 7.43 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 8.22 (d, J = 4.0 Hz, 1H), 8.27 (d, J = 4.0 Hz, 1H).
実施例4:2-(チオフェン-2-イル)テトラゾロピリジンの合成(化合物(Tz-5))
工程1:2-ブロモピリジン-N-オキシドの合成
Example 4: Synthesis of 2- (thiophen-2-yl) tetrazolopyridine (Compound (Tz-5))
Step 1: Synthesis of 2-bromopyridine-N-oxide
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
 原料を2,5-dibromopyridineから2-bromopyridineへと変更し、反応時間を3日とした以外は実施例1の工程1と同様にして合成を行った。 Synthesis was carried out in the same manner as in Step 1 of Example 1 except that the raw material was changed from 2,5-dibromopyridine to 2-bromopyridine and the reaction time was 3 days.
1H NMR (400 MHz, CDCl3) δ 7.11 (td, J = 1.4, 8.0 Hz, 1H), 7.25 (td, J = 1.9, 6.4 Hz, 1H), 7.67 (dd, J =1.9, 8.0 Hz, 1H), 7.67 (dd, J =1.4, 6.4 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.11 (td, J = 1.4, 8.0 Hz, 1H), 7.25 (td, J = 1.9, 6.4 Hz, 1H), 7.67 (dd, J = 1.9, 8.0 Hz, 1H), 7.67 (dd, J = 1.4, 6.4 Hz, 1H).
工程3:2-(チオフェン-2-イル)ピリジン-N-オキシドの合成 Step 3: Synthesis of 2- (thiophen-2-yl) pyridine-N-oxide
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
 耐圧試験管に2-Bromopyridine N-oxide(174mg、1mmol)、2-(Tributylstannyl)thiophene(560mg、1.5mmol)、Pd(PPh34(116mg、0.1mmol)、および無水トルエン(2mL)を入れ、マイクロウェーブ反応装置を用い180℃で20分撹拌した。反応終了後、溶媒を濃縮しシリカゲルカラムクロマトグラフィー(Hexane/AcOEt=1:1)を用いて精製し2-(Thiophen-2-yl)pyridine N-oxide(白色固体)を117mg(収率66%)得た。 2-Bromopyridine N-oxide (174 mg, 1 mmol), 2- (Tributylstannyl) thiophene (560 mg, 1.5 mmol), Pd (PPh 3 ) 4 (116 mg, 0.1 mmol), and anhydrous toluene (2 mL) And stirred at 180 ° C. for 20 minutes using a microwave reactor. After completion of the reaction, the solvent was concentrated and purified using silica gel column chromatography (Hexane / AcOEt = 1: 1) to purify 117 mg of 2- (Thiophen-2-yl) pyridine N-oxide (white solid) (yield 66%). )Obtained.
1H NMR (400 MHz, CDCl3) δ 7.14 (td, J = 2.0, 7.0 Hz, 1H), 7.21 (dd, J = 4.0, 5.0 Hz, 1H), 7.32 (td, J =1.3, 8.0 Hz, 1H), 7.58 (d, J =5.0 Hz, 1H), 7.86 (dd, J =1.0, 4.0 Hz, 1H), 7.95 (dd, J = 2.0, 8.0 Hz, 1H), 8.32 (d, J = 7.0 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.14 (td, J = 2.0, 7.0 Hz, 1H), 7.21 (dd, J = 4.0, 5.0 Hz, 1H), 7.32 (td, J = 1.3, 8.0 Hz, 1H), 7.58 (d, J = 5.0 Hz, 1H), 7.86 (dd, J = 1.0, 4.0 Hz, 1H), 7.95 (dd, J = 2.0, 8.0 Hz, 1H), 8.32 (d, J = 7.0 Hz, 1H).
工程4:2-(チオフェン-2-イル)テトラゾロピリジンの合成(化合物(Tz-5)) Step 4: Synthesis of 2- (thiophen-2-yl) tetrazolopyridine (Compound (Tz-5))
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
 実施例1の工程4と同様にして合成を行った(白色固体、41mg、41%)。 Synthesis was performed in the same manner as in Step 4 of Example 1 (white solid, 41 mg, 41%).
1H NMR (400 MHz, CDCl3) δ 7.29 (dd, J = 3.8, 5.0 Hz, 1H), 7.54 (dd, J = 0.9, 7.1 Hz, 1H), 7.65 (dd, J = 1.2, 5.0 Hz, 1H), 7.72 (dd, J = 7.1, 8.9 Hz, 1H), 7.97 (dd, J = 0.9, 8.9 Hz, 1H), 8.39 (dd, J = 1.2, 3.8 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.29 (dd, J = 3.8, 5.0 Hz, 1H), 7.54 (dd, J = 0.9, 7.1 Hz, 1H), 7.65 (dd, J = 1.2, 5.0 Hz, 1H), 7.72 (dd, J = 7.1, 8.9 Hz, 1H), 7.97 (dd, J = 0.9, 8.9 Hz, 1H), 8.39 (dd, J = 1.2, 3.8 Hz, 1H).
実施例5:2,5-ジフェニルテトラゾロピリジンの合成(化合物(Tz-6))
工程3:2,5-ジフェニルピリジン-N-オキシドの合成
Example 5: Synthesis of 2,5-diphenyltetrazolopyridine (Compound (Tz-6))
Step 3: Synthesis of 2,5-diphenylpyridine-N-oxide
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
 ねじ口試験管に2,5-dibromopyridine N-oxide(250mg、1mmol)、フェニルボロン酸(366mg、3.0mmol)、Pd(PPh(115mg、0.1mmol)、2MKCO水溶液(3mL)およびTHF(6mL)を入れ、60℃で24時間撹拌した。反応終了後、有機層をジクロロメタンを用いて、抽出し溶媒を濃縮後シリカゲルカラムクロマトグラフィー(Hexane/AcOEt=1:2)を用いて精製し2,5-diphenylpyridine N-oxide(白色固体)を311mg(収率100%)得た。 2,5-dibromopyridine N-oxide (250 mg, 1 mmol), phenylboronic acid (366 mg, 3.0 mmol), Pd (PPh 3 ) 4 (115 mg, 0.1 mmol), 2MK 2 CO 3 aqueous solution ( 3 mL) and THF (6 mL) were added, and the mixture was stirred at 60 ° C. for 24 hours. After completion of the reaction, the organic layer was extracted with dichloromethane, the solvent was concentrated, and then purified using silica gel column chromatography (Hexane / AcOEt = 1: 2) to purify 2,5-diphenylpyridine N-oxide (white solid) (311 mg). (Yield 100%).
1H NMR (400 MHz, CDCl3) δ 7.42-7.54 (m, 8H), 7.59 (d, J =8.0 Hz, 2H), 7.85 (d, J =8.0 Hz, 2H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.42-7.54 (m, 8H), 7.59 (d, J = 8.0 Hz, 2H), 7.85 (d, J = 8.0 Hz, 2H).
工程4:2,5-ジフェニルテトラゾロピリジンの合成(化合物(Tz-6)) Step 4: Synthesis of 2,5-diphenyltetrazolopyridine (Compound (Tz-6))
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
 実施例1の工程4と同様にして合成を行った(白色固体、55mg、40%)。 Synthesis was performed in the same manner as in Step 4 of Example 1 (white solid, 55 mg, 40%).
1H NMR (400 MHz, CDCl3) δ 7.41 (d, J = 7.2 Hz, 1H), 7.47-7.64 (m, 6H), 7.91 (d,J = 7.2 Hz, 1H), 8.03-8.07 (m, 2H), 8.16-8.20 (m, 2H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.41 (d, J = 7.2 Hz, 1H), 7.47-7.64 (m, 6H), 7.91 (d, J = 7.2 Hz, 1H), 8.03-8.07 (m, 2H), 8.16-8.20 (m, 2H).
実施例6:5-ブロモ-2-(チオフェン-2-イル)テトラゾロピリジンの合成(化合物(Tz-7))
工程5:5-ブロモ-2-(チオフェン-2-イル)ピリジン-N-オキシドの合成
Example 6: Synthesis of 5-bromo-2- (thiophen-2-yl) tetrazolopyridine (Compound (Tz-7))
Step 5: Synthesis of 5-bromo-2- (thiophen-2-yl) pyridine-N-oxide
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
 2-(Tributylstannyl)thiopheneを1当量とした以外は実施例1の工程3と同様にして、5-bromo-2-(5-hexylthiophen-2-yl)pyridine N-oxideを合成した(黄色固体、1.98g、77%)。 5-bromo-2- (5-hexylthiophen-2-yl) pyridine N-oxide was synthesized in the same manner as in Step 3 of Example 1 except that 1 equivalent of 2- (Tributylstanny) thiophene was used (yellow solid, 1.98 g, 77%).
1H NMR (400 MHz, CDCl3) δ 7.21 (t, J = 4.6 Hz, 1H), 7.44 (dd, J = 1.8, 8.8 Hz, 1H), 7.59 (d, J = 5.1 Hz, 1H), 7.80 (d, J = 8.8 Hz, 1H), 7.84 (d, J = 4.0 Hz, 1H), 8.47 (d, J = 1.8 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.21 (t, J = 4.6 Hz, 1H), 7.44 (dd, J = 1.8, 8.8 Hz, 1H), 7.59 (d, J = 5.1 Hz, 1H), 7.80 (d, J = 8.8 Hz, 1H), 7.84 (d, J = 4.0 Hz, 1H), 8.47 (d, J = 1.8 Hz, 1H).
工程6:5-ブロモ-2-(チオフェン-2-イル)テトラゾロピリジンの合成(化合物(Tz-7)) Step 6: Synthesis of 5-bromo-2- (thiophen-2-yl) tetrazolopyridine (Compound (Tz-7))
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
 実施例1の工程4と同様にして5-ブロモ-2-(チオフェン-2-イル)テトラゾロピリジンの合成を行った(淡黄色固体、10mg、10%)。 5-Bromo-2- (thiophen-2-yl) tetrazolopyridine was synthesized in the same manner as in Step 4 of Example 1 (pale yellow solid, 10 mg, 10%).
1H NMR (400 MHz, CDCl3) δ 7.30 (dd, J = 4.0, 5.0 Hz, 1H), 7.41 (d, J = 7.8 Hz, 1H), 7.67 (dd, J = 1.2, 5.0 Hz, 1H), 7.91 (d, J = 7.8 Hz, 1H), 8.39 (dd, J = 1.2, 4.0 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.30 (dd, J = 4.0, 5.0 Hz, 1H), 7.41 (d, J = 7.8 Hz, 1H), 7.67 (dd, J = 1.2, 5.0 Hz, 1H) , 7.91 (d, J = 7.8 Hz, 1H), 8.39 (dd, J = 1.2, 4.0 Hz, 1H).
実施例7:2,5-ビス(4-メトキシフェニル)テトラゾロピリジンの合成(化合物(Tz-8))
工程3:2,5-ビス(4-メトキシフェニル)ピリジン-N-オキシドの合成
Example 7: Synthesis of 2,5-bis (4-methoxyphenyl) tetrazolopyridine (Compound (Tz-8))
Step 3: Synthesis of 2,5-bis (4-methoxyphenyl) pyridine-N-oxide
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
 2-(Tributylstannyl)thiopheneを2当量用いる代わりに、2-(Tributylstannyl)-4-methoxybenzeneを3当量用いた以外は実施例1の工程3と同様にして合成を行った(白色固体、335mg、100%)。 Synthesis was carried out in the same manner as in Step 3 of Example 1 except that 2 equivalents of 2- (Tributylstannyl) thiophene was used instead of 3 equivalents of 2- (Tributylstannyl) -4-methoxybenzene (white solid, 335 mg, 100 %).
1H NMR (400 MHz, CDCl3) δ 3.87 (s, 6H), 7.01 (d, J = 7.8 Hz, 4H), 7.45 (br s, 2H), 7.52 (d, J = 8.5 Hz, 2H), 7.86 (d, J = 8.5 Hz, 2H), 8.55 (s, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 3.87 (s, 6H), 7.01 (d, J = 7.8 Hz, 4H), 7.45 (br s, 2H), 7.52 (d, J = 8.5 Hz, 2H), 7.86 (d, J = 8.5 Hz, 2H), 8.55 (s, 1H).
工程4:2,5-ビス(4-メトキシフェニル)テトラゾロピリジンの合成(化合物(Tz-8)) Step 4: Synthesis of 2,5-bis (4-methoxyphenyl) tetrazolopyridine (Compound (Tz-8))
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
 実施例1の工程4と同様にして2,5-ビス(4-メトキシフェニル)テトラゾロピリジンの合成を行った(白色固体、111mg、92%)。 2,5-bis (4-methoxyphenyl) tetrazolopyridine was synthesized in the same manner as in Step 4 of Example 1 (white solid, 111 mg, 92%).
1H NMR (400 MHz, CDCl3) δ 3.90 (s, 3H), 3.92 (s, 3H), 7.09 (d, J= 8.8 Hz, 2H), 7.10 (d, J = 8.8 Hz, 2H), 7.32 (d, J = 7.4 Hz, 1H), 7.83 (d, J = 7.4 Hz, 1H), 8.03 (d, J = 8.8 Hz, 2H), 8.17 (d, J = 8.8 Hz, 2H). 1 H NMR (400 MHz, CDCl 3 ) δ 3.90 (s, 3H), 3.92 (s, 3H), 7.09 (d, J = 8.8 Hz, 2H), 7.10 (d, J = 8.8 Hz, 2H), 7.32 (d, J = 7.4 Hz, 1H), 7.83 (d, J = 7.4 Hz, 1H), 8.03 (d, J = 8.8 Hz, 2H), 8.17 (d, J = 8.8 Hz, 2H).
実施例8:2,5-ビス(4-トリフルオロメチルフェニル)テトラゾロピリジンの合成(化合物(Tz-9))
工程3:2,5-ビス(4-トリフルオロメチルフェニル)ピリジン-N-オキシドの合成
Example 8: Synthesis of 2,5-bis (4-trifluoromethylphenyl) tetrazolopyridine (Compound (Tz-9))
Step 3: Synthesis of 2,5-bis (4-trifluoromethylphenyl) pyridine-N-oxide
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
 フェニルボロン酸(366mg、3.0mmol)の代わりに4-トリフルオロメチルフェニルボロン酸を用い、反応条件を60℃で24時間撹拌する代わりに、マイクロウェーブを用いて130℃で20分加熱撹拌に変更した以外は実施例5の工程3と同様にして、2,5-ビス(4-トリフルオロメチルフェニル)ピリジン-N-オキシドを合成した(白色固体、208mg、100%)。 Instead of phenylboronic acid (366 mg, 3.0 mmol), 4-trifluoromethylphenylboronic acid was used, and instead of stirring reaction conditions at 60 ° C. for 24 hours, microwave heating was performed at 130 ° C. for 20 minutes. Except for the change, 2,5-bis (4-trifluoromethylphenyl) pyridine-N-oxide was synthesized in the same manner as in Step 3 of Example 5 (white solid, 208 mg, 100%).
1H NMR (400 MHz, CDCl3) δ 7.55 (d, J =1.2 Hz, 2H), 7.72 (d, J =8.0 Hz, 2H), 7.77 (t, J =7.2 Hz, 4H), 7.99 (d, J =8.0 Hz, 2H), 8.62 (t, J =1.2 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.55 (d, J = 1.2 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.77 (t, J = 7.2 Hz, 4H), 7.99 (d , J = 8.0 Hz, 2H), 8.62 (t, J = 1.2 Hz, 1H).
工程4:2,5-ビス(4-トリフルオロメチルフェニル)テトラゾロピリジンの合成(化合物(Tz-9)) Step 4: Synthesis of 2,5-bis (4-trifluoromethylphenyl) tetrazolopyridine (Compound (Tz-9))
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
 実施例1の工程4と同様にして合成を行った(白色固体、134mg、82%)。 Synthesis was performed in the same manner as in Step 4 of Example 1 (white solid, 134 mg, 82%).
1H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 7.4 Hz, 1H), 7.85 (d, J = 8.3 Hz, 2H), 7.89 (d, J = 8.3 Hz, 2H), 8.00 (d, J = 7.4 Hz, 1H), 8.20 (d, J = 8.2 Hz, 2H), 8.32 (d, J = 8.2 Hz, 2H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.50 (d, J = 7.4 Hz, 1H), 7.85 (d, J = 8.3 Hz, 2H), 7.89 (d, J = 8.3 Hz, 2H), 8.00 (d , J = 7.4 Hz, 1H), 8.20 (d, J = 8.2 Hz, 2H), 8.32 (d, J = 8.2 Hz, 2H).
実施例9:2,5-ビス(ピペリジン-2-イル)テトラゾロピリジンの合成(化合物(Tz-10))
工程3:2,5-ビス(ピペリジン-2-イル)ピリジン-N-オキシドの合成
Example 9 Synthesis of 2,5-bis (piperidin-2-yl) tetrazolopyridine (Compound (Tz-10))
Step 3: Synthesis of 2,5-bis (piperidin-2-yl) pyridine-N-oxide
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
 2-(Tributylstannyl)thiopheneを2.4当量用いる代わりに、2-(Tributylstannyl)Pyridineを3.0当量用い、触媒の量を変更した以外は実施例1の工程3と同様にして合成を行った(白色固体、237mg、63%)。 Synthesis was performed in the same manner as in Step 3 of Example 1, except that 3.0 equivalents of 2- (Tributylstannyl) pyridine were used instead of 2.4 equivalents of 2- (Tributylstannyl) thiophene, and the amount of catalyst was changed. (White solid, 237 mg, 63%).
1H NMR (400 MHz, CDCl3) δ 7.33-7.39 (m, 2H), 7.74-7.78 (m, 1H), 7.81-7.88 (m, 2H), 8.02 (dd, J = 1.9, 8.7 Hz, 4H), 8.32 (d, J = 8.7 Hz, 1H), 8.75 (m, 1H), 8.98(d, J = 1.8 Hz, 1H), 9.01 (d, J = 8.2 Hz, 1H) 1 H NMR (400 MHz, CDCl 3 ) δ 7.33-7.39 (m, 2H), 7.74-7.78 (m, 1H), 7.81-7.88 (m, 2H), 8.02 (dd, J = 1.9, 8.7 Hz, 4H ), 8.32 (d, J = 8.7 Hz, 1H), 8.75 (m, 1H), 8.98 (d, J = 1.8 Hz, 1H), 9.01 (d, J = 8.2 Hz, 1H)
工程4:2,5-ビス(ピペリジン-2-イル)テトラゾロピリジン(化合物(Tz-10)) Step 4: 2,5-bis (piperidin-2-yl) tetrazolopyridine (compound (Tz-10))
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
 実施例1の工程4と同様にして合成を行った(淡黄色固体、66mg、44%)。 Synthesis was performed in the same manner as in Step 4 of Example 1 (pale yellow solid, 66 mg, 44%).
1H NMR (400 MHz, CDCl3) δ 7.30 (t, J = 6.8 Hz, 1H), 7.36 (dd, J = 4.9, 7.6 Hz, 1H), 7.49 (t, J = 7.8 Hz, 1H), 7.88 (td, J = 1.6, 7.6 Hz, 1H), 8.16 (d, J = 8.7 Hz, 1H), 8.45 (d, J = 8.5 Hz, 1H), 8.56 (d, J = 8.5 Hz, 1H), 8.72 (br d, J = 4.9Hz, 1H), 8.79 (d, J = 8.0 Hz, 1H), 8.89 (d, J = 6.8 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.30 (t, J = 6.8 Hz, 1H), 7.36 (dd, J = 4.9, 7.6 Hz, 1H), 7.49 (t, J = 7.8 Hz, 1H), 7.88 (td, J = 1.6, 7.6 Hz, 1H), 8.16 (d, J = 8.7 Hz, 1H), 8.45 (d, J = 8.5 Hz, 1H), 8.56 (d, J = 8.5 Hz, 1H), 8.72 (br d, J = 4.9Hz, 1H), 8.79 (d, J = 8.0 Hz, 1H), 8.89 (d, J = 6.8 Hz, 1H).
実施例10:2,5-ビス(ピペリジン-4-イル)テトラゾロピリジンの合成(化合物(Tz-11))
工程3:2,5-ビス(ピペリジン-4-イル)ピリジン-N-オキシドの合成
Example 10 Synthesis of 2,5-bis (piperidin-4-yl) tetrazolopyridine (Compound (Tz-11))
Step 3: Synthesis of 2,5-bis (piperidin-4-yl) pyridine-N-oxide
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
 フェニルボロン酸の代わりに、4-ピリジンボロン酸を用い、反応条件を60℃で24時間撹拌する代わりに、マイクロウェーブを用いて130℃で20分加熱撹拌に変更した以外は実施例5の工程3と同様にして、合成を行った(白色固体、107mg、43%)。 The process of Example 5 except that 4-pyridineboronic acid was used instead of phenylboronic acid and the reaction conditions were changed to heating and stirring at 130 ° C. for 20 minutes using microwave instead of stirring at 60 ° C. for 24 hours. Synthesis was performed as in 3 (white solid, 107 mg, 43%).
1H NMR (400 MHz, CDCl3) δ 7.51 (d, J = 6.2 Hz, 2H), 7.60 (br d, 2H), 7.81 (d, J= 6.2 Hz, 2H), 8.64 (s, 1H), 8.76-8.82 (m, 4H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.51 (d, J = 6.2 Hz, 2H), 7.60 (br d, 2H), 7.81 (d, J = 6.2 Hz, 2H), 8.64 (s, 1H), 8.76-8.82 (m, 4H).
工程4:2,5-ビス(ピペリジン-4-イル)テトラゾロピリジンの合成(化合物(Tz-11)) Step 4: Synthesis of 2,5-bis (piperidin-4-yl) tetrazolopyridine (Compound (Tz-11))
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
 実施例1の工程4と同様にして合成を行った(白色固体、75mg、50%)。 Synthesis was performed in the same manner as in Step 4 of Example 1 (white solid, 75 mg, 50%).
1H NMR (400 MHz, CDCl3) δ 7.59 (d, J = 7.4 Hz, 1H), 8.02 (d, J = 6.3 Hz, 2H), 8.11 (d, J = 7.4 Hz, 1H), 8.19 (d, J = 6.2 Hz, 2H), 8.86 (d, J = 6.2 Hz, 2H), 8.92 (d, J = 6.2 Hz, 2H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.59 (d, J = 7.4 Hz, 1H), 8.02 (d, J = 6.3 Hz, 2H), 8.11 (d, J = 7.4 Hz, 1H), 8.19 (d , J = 6.2 Hz, 2H), 8.86 (d, J = 6.2 Hz, 2H), 8.92 (d, J = 6.2 Hz, 2H).
実施例11:2-(ピペリジン-2-イル)-5-(ピペリジン-4-イル)テトラゾロピリジンの合成(化合物(Tz-12))
工程5:5-ブロモ(2-ピペリジン-2-イル)ピリジン-N-オキシドの合成
Example 11: Synthesis of 2- (piperidin-2-yl) -5- (piperidin-4-yl) tetrazolopyridine (Compound (Tz-12))
Step 5: Synthesis of 5-bromo (2-piperidin-2-yl) pyridine-N-oxide
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
 2-(Tributylstannyl)Pyridineを3.0当量用いる代わりに1.0当量用い、マイクロウェーブ装置を用いず120℃で18時間加熱撹拌に変更した以外は実施例9の工程3と同様にして合成を行った(白色固体、337mg、67%)。 Synthesis was performed in the same manner as in Step 3 of Example 9, except that 1.0 equivalent of 2- (Tributylstanny) Pyridine was used instead of 1.0 equivalent, and the mixture was heated and stirred at 120 ° C. for 18 hours without using a microwave apparatus. Performed (white solid, 337 mg, 67%).
1H NMR (400 MHz, CDCl3) δ 7.32-7.38 (m, 1H), 7.36 (dd, J = 4.9, 7.6 Hz, 1H), 7.79-7.86 (m, 1H), 8.12 (d, J = 8.7 Hz, 1H), 8.46 (d, J= 1.8 Hz, 1H), 8.71 (d, J =4.9 Hz, 1H), 8.88 (d, J = 8.0 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.32-7.38 (m, 1H), 7.36 (dd, J = 4.9, 7.6 Hz, 1H), 7.79-7.86 (m, 1H), 8.12 (d, J = 8.7 Hz, 1H), 8.46 (d, J = 1.8 Hz, 1H), 8.71 (d, J = 4.9 Hz, 1H), 8.88 (d, J = 8.0 Hz, 1H).
工程3:2-(ピペリジン-2-イル)-5-(ピペリジン-4-イル)ピリジン-N-オキシドの合成 Step 3: Synthesis of 2- (piperidin-2-yl) -5- (piperidin-4-yl) pyridine-N-oxide
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
 4-トリフルオロメチルフェニルボロン酸を3当量用いる代わりに4-ピリジンボロン酸を1.5当量用いた以外は実施例8の工程3と同様にして合成を行った(白色固体、165mg、55%)。 Synthesis was performed in the same manner as in Step 3 of Example 8 except that 1.5 equivalents of 4-pyridineboronic acid was used instead of 3 equivalents of 4-trifluoromethylphenylboronic acid (white solid, 165 mg, 55% ).
1H NMR (400 MHz, CDCl3) δ 7.36-7.41 (m, 1H), 7.52 (d, J = 6.3 Hz, 2H),7.60 (dd,J = 1.8, 8.4 Hz, 1H), 7.86 (td, J = 1.7, 7.8 Hz, 1H), 8.35 (d, J = 8.5 Hz, 1H),8.62 (d, J = 1.6 Hz, 1H), 8.74-8.79 (m, 1H), 8.98 (d, J = 8.2 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.36-7.41 (m, 1H), 7.52 (d, J = 6.3 Hz, 2H), 7.60 (dd, J = 1.8, 8.4 Hz, 1H), 7.86 (td, J = 1.7, 7.8 Hz, 1H), 8.35 (d, J = 8.5 Hz, 1H), 8.62 (d, J = 1.6 Hz, 1H), 8.74-8.79 (m, 1H), 8.98 (d, J = 8.2 Hz, 1H).
工程4:2-(ピペリジン-2-イル)-5-(ピペリジン-4-イル)テトラゾロピリジンの合成(化合物(Tz-12)) Step 4: Synthesis of 2- (piperidin-2-yl) -5- (piperidin-4-yl) tetrazolopyridine (Compound (Tz-12))
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
 実施例1の工程4と同様にして合成を行った(白色固体、84mg、56%)。 Synthesis was performed in the same manner as in Step 4 of Example 1 (white solid, 84 mg, 56%).
1H NMR (400 MHz, CDCl3) δ 7.47-7.52 (m, 1H), 7.95 (td, J = 1.8, 8.0 Hz, 1H), 8.13 (d, J = 7.4 Hz, 1H), 8.16 (d, J = 6.0 Hz, 1H), 8.37 (d, J = 7.4 Hz, 1H), 8.82-8.85 (m, 1H), 7.86 (td, J = 1.7, 7.8 Hz, 3H), 9.02 (d, J = 7.9 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.47-7.52 (m, 1H), 7.95 (td, J = 1.8, 8.0 Hz, 1H), 8.13 (d, J = 7.4 Hz, 1H), 8.16 (d, J = 6.0 Hz, 1H), 8.37 (d, J = 7.4 Hz, 1H), 8.82-8.85 (m, 1H), 7.86 (td, J = 1.7, 7.8 Hz, 3H), 9.02 (d, J = 7.9 Hz, 1H).
実施例12:2-(ピペリジン-4-イル)-5-(ピペリジン-2-イル)テトラゾロピリジンの合成(化合物(Tz-13))
工程5:5-ブロモ(2-ピペリジン-2-イル)ピリジン-N-オキシドの合成
Example 12: Synthesis of 2- (piperidin-4-yl) -5- (piperidin-2-yl) tetrazolopyridine (Compound (Tz-13))
Step 5: Synthesis of 5-bromo (2-piperidin-2-yl) pyridine-N-oxide
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
 フェニルボロン酸の代わりに4-ピリジンボロン酸を用い、反応時間を24時間撹拌する代わりに、17時間加熱撹拌に変更した以外は実施例5の工程3と同様にして、合成を行った(白色固体、466mg、46%)。 Synthesis was performed in the same manner as in Step 3 of Example 5 except that 4-pyridineboronic acid was used instead of phenylboronic acid and the reaction time was changed to heating and stirring for 17 hours instead of stirring for 24 hours (white color) Solid, 466 mg, 46%).
1H NMR (400 MHz, CDCl3) δ 7.34 (d, J = 8.7 Hz, 1H), 7.48 (dd, J = 1.6, 8.2 Hz, 1H), 7.72 (d, J = 6.3 Hz, 1H), 8.49 (d, J = 1.6 Hz, 1H), 8.76 (d, J = 6.3 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.34 (d, J = 8.7 Hz, 1H), 7.48 (dd, J = 1.6, 8.2 Hz, 1H), 7.72 (d, J = 6.3 Hz, 1H), 8.49 (d, J = 1.6 Hz, 1H), 8.76 (d, J = 6.3 Hz, 1H).
工程3:2-(ピペリジン-2-イル)-5-(ピペリジン-4-イル)ピリジン-N-オキシドの合成 Step 3: Synthesis of 2- (piperidin-2-yl) -5- (piperidin-4-yl) pyridine-N-oxide
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
 2-(Tributylstannyl)Pyridineを3当量用いる代わりに2.0当量用いた以外は実施例9の工程3と同様にして合成を行った(白色固体、186mg、47%)。 Synthesis was performed in the same manner as in Step 3 of Example 9 except that 2.0 equivalents of 2- (Tributylstanny) Pyridine were used instead of 3 equivalents (white solid, 186 mg, 47%).
1H NMR (400 MHz, CDCl3) δ 7.36-7.40 (m, 1H), 7.58 (d, J = 8.3 Hz, 1H), 7.75 (d,J = 7.9 Hz, 1H), 7.82-7.87 (m, 3H), 8.01 (dd, J = 1.6, 8.3 Hz, 1H), 8.74-8.76 (m, 1H), 8.78 (d, J = 6.3 Hz, 1H), 9.00 (d, J = 1.7 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.36-7.40 (m, 1H), 7.58 (d, J = 8.3 Hz, 1H), 7.75 (d, J = 7.9 Hz, 1H), 7.82-7.87 (m, 3H), 8.01 (dd, J = 1.6, 8.3 Hz, 1H), 8.74-8.76 (m, 1H), 8.78 (d, J = 6.3 Hz, 1H), 9.00 (d, J = 1.7 Hz, 1H).
工程4:2-(ピペリジン-4-イル)-5-(ピペリジン-2-イル)テトラゾロピリジンの合成(化合物(Tz-13)) Step 4: Synthesis of 2- (piperidin-4-yl) -5- (piperidin-2-yl) tetrazolopyridine (Compound (Tz-13))
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
 実施例1の工程4と同様にして合成を行った(白色固体、45mg、30%)。 Synthesis was performed in the same manner as in Step 4 of Example 1 (white solid, 45 mg, 30%).
1H NMR (400 MHz, CDCl3) δ7.35 (td, J = 1.5, 7.0 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.74 (d, J = 8.5 Hz, 1H), 8.15 (d, J = 6.2 Hz, 1H), 8.18 (d, J = 8.6 Hz, 1H),8.56 (d, J = 8.5 Hz, 1H), 8.77 (d, J = 6.2 Hz, 1H), 8.92 (d, J = 6.9 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ7.35 (td, J = 1.5, 7.0 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.74 (d, J = 8.5 Hz, 1H), 8.15 (d, J = 6.2 Hz, 1H), 8.18 (d, J = 8.6 Hz, 1H), 8.56 (d, J = 8.5 Hz, 1H), 8.77 (d, J = 6.2 Hz, 1H), 8.92 ( d, J = 6.9 Hz, 1H).
 実施例13:2-(チオフェン-2-イル)-5-(ピリジン-2-イル)テトラゾロピリジンの合成工程3:2-(チオフェン-2-イル)-5-(ピリジン-2-イル)ピリジン-N-オキシドの合成(化合物(Tz-14)) Example 13: Synthesis of 2- (thiophen-2-yl) -5- (pyridin-2-yl) tetrazolopyridine 3: 2- (thiophen-2-yl) -5- (pyridin-2-yl) Synthesis of pyridine-N-oxide (compound (Tz-14))
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
 実施例12の工程3と同様にして合成を行った(淡黄色固体、347mg、73%)。 Synthesis was performed in the same manner as in Step 3 of Example 12 (pale yellow solid, 347 mg, 73%).
1H NMR (400 MHz, CDCl3) δ 7.24-7.26 (m, 1H), 7.32-7.35 (m, 1H), 7.61 (dd, J = 1.0, 5.0 Hz, 1H), 7.72 (d, J= 7.8 Hz, 1H), 7.82 (td, J = 1.7, 7.7 Hz, 1H), 7.92 (dd, J = 1.0, 4.0 Hz, 1H), 7.98-8.05 (m, 3H), 8.71-8.75 (m, 1H), 8.97 (d, J = 1.0Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.24-7.26 (m, 1H), 7.32-7.35 (m, 1H), 7.61 (dd, J = 1.0, 5.0 Hz, 1H), 7.72 (d, J = 7.8 Hz, 1H), 7.82 (td, J = 1.7, 7.7 Hz, 1H), 7.92 (dd, J = 1.0, 4.0 Hz, 1H), 7.98-8.05 (m, 3H), 8.71-8.75 (m, 1H) , 8.97 (d, J = 1.0Hz, 1H).
工程4:2-(ピペリジン-4-イル)-5-(ピペリジン-2-イル)テトラゾロピリジンの合成(化合物(Tz-14)) Step 4: Synthesis of 2- (piperidin-4-yl) -5- (piperidin-2-yl) tetrazolopyridine (Compound (Tz-14))
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
 実施例1の工程4と同様にして合成を行った(淡黄色固体、70mg、63%)。 Synthesis was performed in the same manner as in Step 4 of Example 1 (pale yellow solid, 70 mg, 63%).
1H NMR (400 MHz, CDCl3) δ7.25-7.26 (m, 1H), 7.28-7.32 (m, 1H), 7.67 (dd, J = 1.0, 5.0 Hz, 1H), 7.70 (d, J= 7.8 Hz, 1H), 7.93 (td, J = 1.8, 7.8 Hz, 1H), 8.44 (dd, J = 1.0, 4.0 Hz, 1H), 8.76 (d, J = 4.0 Hz, 1H), 8.81 (d, J = 7.8 Hz, 1H), 9.14 (d, J = 8.2 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ7.25-7.26 (m, 1H), 7.28-7.32 (m, 1H), 7.67 (dd, J = 1.0, 5.0 Hz, 1H), 7.70 (d, J = 7.8 Hz, 1H), 7.93 (td, J = 1.8, 7.8 Hz, 1H), 8.44 (dd, J = 1.0, 4.0 Hz, 1H), 8.76 (d, J = 4.0 Hz, 1H), 8.81 (d, J = 7.8 Hz, 1H), 9.14 (d, J = 8.2 Hz, 1H).
 実施例14:2-(ピリジン-2-イル)-5-(チオフェン-2-イル)テトラゾロピリジンの合成工程3:2-(ピリジン-2-イル)-5-(チオフェン-2-イル)ピリジン-N-オキシドの合成(化合物(Tz-15)) Example 14: Synthesis of 2- (pyridin-2-yl) -5- (thiophen-2-yl) tetrazolopyridine 3: 2- (Pyridin-2-yl) -5- (thiophen-2-yl) Synthesis of pyridine-N-oxide (compound (Tz-15))
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
 実施例6の工程5と同様にして合成を行った(淡黄色固体、138mg、27%)。 Synthesis was performed in the same manner as in Step 5 of Example 6 (pale yellow solid, 138 mg, 27%).
1H NMR (400 MHz, CDCl3) δ7.15 (dd, J = 4.0, 5.0 Hz, 1H), 7.32-7.37 (m, 1H), 7.42-7.45 (m, 2H), 7.55 (dd, J= 1.8, 8.6 Hz, 1H), 7.84 (td, J = 1.8, 7.8 Hz, 1H), 8.22 (d, J = 8.5 Hz, 1H), 8.61 (d, J = 1.7 Hz, 1H), 8.71-8.74 (m, 1H), 8.96 (d, J= 8.2 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ7.15 (dd, J = 4.0, 5.0 Hz, 1H), 7.32-7.37 (m, 1H), 7.42-7.45 (m, 2H), 7.55 (dd, J = 1.8, 8.6 Hz, 1H), 7.84 (td, J = 1.8, 7.8 Hz, 1H), 8.22 (d, J = 8.5 Hz, 1H), 8.61 (d, J = 1.7 Hz, 1H), 8.71-8.74 ( m, 1H), 8.96 (d, J = 8.2 Hz, 1H).
工程4:2-(ピペリジン-4-イル)-5-(ピペリジン-2-イル)テトラゾロピリジンの合成(化合物(Tz-15)) Step 4: Synthesis of 2- (piperidin-4-yl) -5- (piperidin-2-yl) tetrazolopyridine (Compound (Tz-15))
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
 実施例1の工程4と同様にして合成を行った(淡黄色固体、73mg、57%)。 Synthesis was performed in the same manner as in Step 4 of Example 1 (pale yellow solid, 73 mg, 57%).
1H NMR (400 MHz, CDCl3) δ7.27 (dd, J = 4.0, 5.0 Hz, 1H), 7.43-7.47 (m, 1H), 7.55 (dd, J = 1.4, 5.3 Hz, 1H), 7.97 (td, J = 1.8, 7.8 Hz, 1H), 8.01 (d, J = 7.9 Hz, 1H), 8.26 (d, J = 7.9 Hz, 1H), 8.48 (dd, J = 1.0, 4.0 Hz, 1H), 8.80-8.83(m, 1H), 8.99 (d, J = 8.2 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) δ 7.27 (dd, J = 4.0, 5.0 Hz, 1H), 7.43-7.47 (m, 1H), 7.55 (dd, J = 1.4, 5.3 Hz, 1H), 7.97 (td, J = 1.8, 7.8 Hz, 1H), 8.01 (d, J = 7.9 Hz, 1H), 8.26 (d, J = 7.9 Hz, 1H), 8.48 (dd, J = 1.0, 4.0 Hz, 1H) , 8.80-8.83 (m, 1H), 8.99 (d, J = 8.2 Hz, 1H).
実施例15:テトラゾロピリジン6量体の合成2(化合物(Tz-4)、化合物(Tz-16))
工程3:2-(チオフェン-2-イル)-5-(5-ヘキシルチオフェン-2-イル)ピリジン-N-オキシドの合成
Example 15: Synthesis of tetrazolopyridine hexamer 2 (compound (Tz-4), compound (Tz-16))
Step 3: Synthesis of 2- (thiophen-2-yl) -5- (5-hexylthiophen-2-yl) pyridine-N-oxide
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
 2-(Tributylstannyl)thiopheneを2.4当量用いる代わりに、2-(Tributylstannyl)-5-hexylthiopheneを1.5当量用い、反応温度及び時間を変更したこと以外は実施例1の工程3と同様にして、合成した(橙色固体、2.56g(92%))。 Instead of using 2.4 equivalents of 2- (Tributylstannyl) thiophene, use 1.5 equivalents of 2- (Tributylstannyl) -5-hexylthiophene and change the reaction temperature and time in the same manner as in Step 3 of Example 1. (Orange solid, 2.56 g (92%)).
1H NMR (400 MHz, CDCl3) 0.89 (t, J = 7.1 Hz, 3H), 1.30-1.36 (m, 4H), 1.38-1.44 (m, 2H), 1.70-1.79 (m, 2H), 2.83 (t, J = 7.6 Hz, 2H), 6.80 (d, J= 3.6 Hz, 1H), 7.19-7.27 (m, 2H), 7.45 (dd, J= 2.0, 8.7 Hz, 1H), 7.56 (dd, J = 1.0, 5.0 Hz, 1H), 7.83 (dd, J = 1.0, 4.0 Hz, 1H), 7.89 (d, J = 8.7 Hz, 1H), 8.54 (d, J = 1.8 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) 0.89 (t, J = 7.1 Hz, 3H), 1.30-1.36 (m, 4H), 1.38-1.44 (m, 2H), 1.70-1.79 (m, 2H), 2.83 (t, J = 7.6 Hz, 2H), 6.80 (d, J = 3.6 Hz, 1H), 7.19-7.27 (m, 2H), 7.45 (dd, J = 2.0, 8.7 Hz, 1H), 7.56 (dd, J = 1.0, 5.0 Hz, 1H), 7.83 (dd, J = 1.0, 4.0 Hz, 1H), 7.89 (d, J = 8.7 Hz, 1H), 8.54 (d, J = 1.8 Hz, 1H).
工程4:2-(チオフェン-2-イル)-5-(5-ヘキシルチオフェン-2-イル)テトラゾロピリジンの合成(化合物(Tz-16)) Step 4: Synthesis of 2- (thiophen-2-yl) -5- (5-hexylthiophen-2-yl) tetrazolopyridine (Compound (Tz-16))
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
 実施例1の工程4と同様にして、合成を行った(橙色固体、590mg(22%)。 Synthesis was performed in the same manner as in Step 4 of Example 1 (orange solid, 590 mg (22%)).
1H NMR (400 MHz, CDCl3) 0.90 (m, 3H), 1.30-1.37 (m, 4H), 1.38-1.45 (m, 2H), 1.72-1.79 (m, 2H), 2.91 (t, J = 7.6 Hz, 2H), 6.94 (d, J = 3.6 Hz, 1H), 7.05 (m, 1H),7.43 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 8.22 (d, J = 4.0 Hz, 1H), 8.27 (d, J = 4.0 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) 0.90 (m, 3H), 1.30-1.37 (m, 4H), 1.38-1.45 (m, 2H), 1.72-1.79 (m, 2H), 2.91 (t, J = 7.6 Hz, 2H), 6.94 (d, J = 3.6 Hz, 1H), 7.05 (m, 1H), 7.43 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 8.22 (d, J = 4.0 Hz, 1H), 8.27 (d, J = 4.0 Hz, 1H).
工程19:ピリジン-N-オキシド6量体の合成(化合物(Tz-4)) Step 19: Synthesis of pyridine-N-oxide hexamer (compound (Tz-4))
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
 2-(チオフェン-2-イル)-5-(5-ヘキシルチオフェン-2-イル)テトラゾロピリジン(110mg、0.3mmol)およびテトラヒドロフラン(3mL)を加え-78℃に冷却して、ジイソプロピルアミン(1.65eq)及びn-ブチルリチウム(1.5eq)より調製したリチウムジイソプロピルアミドを滴下して30分撹拌した。その後、CuCl2(2eq)を加え0℃に昇温して4時間撹拌した。反応終了後、溶媒を濃縮しシリカゲルカラムクロマトグラフィー(CHCl/MeOH=30:1)を用いて精製し、テトラゾロピリジン6量体(赤色固体)を得た。 Add 2- (thiophen-2-yl) -5- (5-hexylthiophen-2-yl) tetrazolopyridine (110 mg, 0.3 mmol) and tetrahydrofuran (3 mL), cool to -78 ° C., diisopropylamine ( 1.65 eq) and lithium diisopropylamide prepared from n-butyllithium (1.5 eq) were added dropwise and stirred for 30 minutes. Thereafter, CuCl 2 ( 2 eq) was added and the temperature was raised to 0 ° C. and stirred for 4 hours. After completion of the reaction, the solvent was concentrated and purified using silica gel column chromatography (CH 2 Cl 2 / MeOH = 30: 1) to obtain a tetrazolopyridine hexamer (red solid).
実施例16:テトラゾロピリジン6量体の合成3
工程3:2-(5-ヘキシルチオフェン-2-イル)-5-(ヘキシルチオフェン-2-イル)ピリジン-N-オキシドの合成
Example 16: Synthesis of tetrazolopyridine hexamer 3
Step 3: Synthesis of 2- (5-hexylthiophen-2-yl) -5- (hexylthiophen-2-yl) pyridine-N-oxide
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
 2-(Tributylstannyl)thiopheneを2.4当量用いる代わりに1.0当量用い、反応温度及び時間を変更したこと以外は実施例1の工程3と同様にして、合成した(黄色固体、2.56g(5.9mmol))。 Synthesis was performed in the same manner as in Step 3 of Example 1 except that 1.0 equivalent was used instead of 2.4 equivalent of 2- (Tributylstannyl) thiophene, and the reaction temperature and time were changed (yellow solid, 2.56 g (5.9 mmol)).
1H NMR (400 MHz, CDCl3) 0.90 (m, 3H), 1.30-1.37 (m, 4H), 1.38-1.45 (m, 2H), 1.72-1.79 (m, 2H), 2.87 (t, J = 7.6 Hz, 2H), 6.90 (d, J = 4.0 Hz, 1H), 7.13 (dd, J =4.0, 5.0 Hz, 1H), 7.38 (m, 2H), 7.47 (dd, J = 1.8, 8.7 Hz, 1H), 7.69 (d, J = 4.0 Hz, 1H), 7.84 (d, J = 8.6 Hz, 1H), 8.57 (d, J = 1.7 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) 0.90 (m, 3H), 1.30-1.37 (m, 4H), 1.38-1.45 (m, 2H), 1.72-1.79 (m, 2H), 2.87 (t, J = 7.6 Hz, 2H), 6.90 (d, J = 4.0 Hz, 1H), 7.13 (dd, J = 4.0, 5.0 Hz, 1H), 7.38 (m, 2H), 7.47 (dd, J = 1.8, 8.7 Hz, 1H), 7.69 (d, J = 4.0 Hz, 1H), 7.84 (d, J = 8.6 Hz, 1H), 8.57 (d, J = 1.7 Hz, 1H).
工程3:2-(5-ヘキシルチオフェン-2-イル)-5-(チオフェン-2-イル)テトラゾロピリジンの合成 Step 3: Synthesis of 2- (5-hexylthiophen-2-yl) -5- (thiophen-2-yl) tetrazolopyridine
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
 実施例1の工程4と同様にして、合成を行った(黄色固体、530mg(23%)。 Synthesis was performed in the same manner as in Step 4 of Example 1 (yellow solid, 530 mg (23%)).
1H NMR (400 MHz, CDCl3) 0.90 (m, 3H), 1.30-1.37 (m, 4H), 1.38-1.45 (m, 2H), 1.72-1.79 (m, 2H), 2.91 (t, J = 7.6 Hz, 2H), 6.94 (d, J = 3.6 Hz, 1H), 7.05 (m, 1H),7.43 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 8.22 (d, J = 4.0 Hz, 1H), 8.27 (d, J = 4.0 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) 0.90 (m, 3H), 1.30-1.37 (m, 4H), 1.38-1.45 (m, 2H), 1.72-1.79 (m, 2H), 2.91 (t, J = 7.6 Hz, 2H), 6.94 (d, J = 3.6 Hz, 1H), 7.05 (m, 1H), 7.43 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 8.22 (d, J = 4.0 Hz, 1H), 8.27 (d, J = 4.0 Hz, 1H).
工程17:2-(5-トリブチルスタンニルチオフェン-2-イル)-5-(5-ヘキシルチオフェン-2-イル)テトラゾロピリジンの合成 Step 17: Synthesis of 2- (5-tributylstannylthiophen-2-yl) -5- (5-hexylthiophen-2-yl) tetrazolopyridine
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
 2-(チオフェン-2-イル)-5-(5-ヘキシルチオフェン-2-イル)テトラゾロピリジン(110mg、0.3mmol)にテトラヒドロフラン(5mL)を加え-78℃に冷却して、ジイソプロピルアミン(1.65当量)、n-ブチルリチウム(1.5当量)より調製したリチウムジイソプロピルアミドを加え、-78℃で30分反応した。次いで、塩化トリブチルスズ(2当量)を加えて0℃で4時間反応した。反応終了後、室温まで昇温し、精製して目的とする化合物を得た(黄色固体、133mg、66%)。 To 2- (thiophen-2-yl) -5- (5-hexylthiophen-2-yl) tetrazolopyridine (110 mg, 0.3 mmol) was added tetrahydrofuran (5 mL), and the mixture was cooled to −78 ° C. and diisopropylamine ( 1.65 equivalents) and lithium diisopropylamide prepared from n-butyllithium (1.5 equivalents) were added and reacted at −78 ° C. for 30 minutes. Subsequently, tributyltin chloride (2 equivalents) was added and reacted at 0 ° C. for 4 hours. After completion of the reaction, the mixture was warmed to room temperature and purified to obtain the target compound (yellow solid, 133 mg, 66%).
1H NMR (400 MHz, CDCl3) 0.91 (m, 12H), 1.07-1.80 (m, 26H), 2.88 (t, J= 7.6 Hz, 2H), 6.90 (d, J = 3.8 Hz, 1H), 7.32 (d, J = 3.3 Hz, 1H), 7.51 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 8.21 (d, J = 3.8 Hz, 1H), 8.47 (d, J = 3.5 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) 0.91 (m, 12H), 1.07-1.80 (m, 26H), 2.88 (t, J = 7.6 Hz, 2H), 6.90 (d, J = 3.8 Hz, 1H), 7.32 (d, J = 3.3 Hz, 1H), 7.51 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 8.21 (d, J = 3.8 Hz, 1H), 8.47 ( d, J = 3.5 Hz, 1H).
工程9:2-(5-ヘキシルチオフェン-2-イル)-5-(5-ブロモチオフェン-2-イル)テトラゾロピリジンの合成 Step 9: Synthesis of 2- (5-hexylthiophen-2-yl) -5- (5-bromothiophen-2-yl) tetrazolopyridine
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
 2-(5-ヘキシルチオフェン-2-イル)-5-(チオフェン-2-イル)テトラゾロピリジン(38mg、0.1mmol)、N-ブチルスクシンイミド(1.0当量)、及びテトラヒドロフランを加えて、-10℃で6時間反応した。反応終了後、室温まで昇温し、精製して目的とする化合物(黄色固体、48mg、100%)を得た。 2- (5-hexylthiophen-2-yl) -5- (thiophen-2-yl) tetrazolopyridine (38 mg, 0.1 mmol), N-butylsuccinimide (1.0 eq), and tetrahydrofuran were added, The reaction was performed at −10 ° C. for 6 hours. After completion of the reaction, the mixture was warmed to room temperature and purified to obtain the target compound (yellow solid, 48 mg, 100%).
1H NMR (400 MHz, CDCl3) 0.91 (m, 3H), 1.30-1.37 (m, 4H), 1.38-1.45 (m, 2H), 1.72-1.79 (m, 2H), 2.92 (t, J = 7.6 Hz, 2H), 6.96 (d, J = 4.0 Hz, 1H), 7.19 (d, J = 4.0 Hz, 1H), 7.43 (d, J = 7.7 Hz, 1H), 7.75 (d, J = 7.7 Hz, 1H), 8.09 (d, J = 4.0 Hz, 1H), 8.25 (d, J = 4.0 Hz, 1H). 1 H NMR (400 MHz, CDCl 3 ) 0.91 (m, 3H), 1.30-1.37 (m, 4H), 1.38-1.45 (m, 2H), 1.72-1.79 (m, 2H), 2.92 (t, J = 7.6 Hz, 2H), 6.96 (d, J = 4.0 Hz, 1H), 7.19 (d, J = 4.0 Hz, 1H), 7.43 (d, J = 7.7 Hz, 1H), 7.75 (d, J = 7.7 Hz , 1H), 8.09 (d, J = 4.0 Hz, 1H), 8.25 (d, J = 4.0 Hz, 1H).
 工程18:ピリジン-N-オキシド6量体の合成(化合物(Tz-4)) Step 18: Synthesis of pyridine-N-oxide hexamer (compound (Tz-4))
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
 2-(5-トリブチルスタンニルチオフェン-2-イル)-5-(5-ヘキシルチオフェン-2-イル)テトラゾロピリジン(67mg、0.1mmol)、2-(5-ヘキシルチオフェン-2-イル)-5-(5-ブロモチオフェン-2-イル)テトラゾロピリジン(48mg、0.1mmol)、Pd(PPh(6mg、0.005mmol)、およびトルエン(10mL)、DMF(1mL)を入れ、窒素雰囲気下、120℃で60分撹拌したのち、精製しテトラゾロピリジン6量体(赤色固体)を得る。 2- (5-Tributylstannylthiophen-2-yl) -5- (5-hexylthiophen-2-yl) tetrazolopyridine (67 mg, 0.1 mmol), 2- (5-hexylthiophen-2-yl) Add 5- (5-bromothiophen-2-yl) tetrazolopyridine (48 mg, 0.1 mmol), Pd (PPh 3 ) 4 (6 mg, 0.005 mmol), and toluene (10 mL), DMF (1 mL) The mixture is stirred at 120 ° C. for 60 minutes in a nitrogen atmosphere and purified to obtain a tetrazolopyridine hexamer (red solid).
示差走査熱量測定
 得られた化合物(Tz-1)、(Tz-2)、(Tz-3)、(Tz-4)、(Tz-6)、(Tz-7)、(Tz-8)、(Tz-9)、(Tz-11)、(Tz-14)、(Tz-15)、(Tz-16)について、示差走査熱量測定装置(島津製作所社製、「DSC-60」)を用いて示差走査熱量測定を行った。結果を図1~6に示す。
Differential scanning calorimetry The obtained compounds (Tz-1), (Tz-2), (Tz-3), (Tz-4), (Tz-6), (Tz-7), (Tz-8), For (Tz-9), (Tz-11), (Tz-14), (Tz-15), and (Tz-16), a differential scanning calorimeter (“DSC-60” manufactured by Shimadzu Corporation) was used. Differential scanning calorimetry was performed. The results are shown in FIGS.
熱重量分析測定
 化合物(Tz-3)について、熱重量分析装置(島津製作所社製、「TGA-50」)を用いて熱重量分析測定を行った。その結果本発明の化合物は、いずれも熱安定性に優れ、ガス発生剤として有用であることが明らかになった。
Thermogravimetric Analysis Measurement The compound (Tz-3) was subjected to thermogravimetric analysis measurement using a thermogravimetric analyzer (“TGA-50” manufactured by Shimadzu Corporation). As a result, it has been clarified that all the compounds of the present invention have excellent thermal stability and are useful as gas generating agents.
紫外可視吸収スペクトル測定
 化合物(Tz-1,1.44×10-5M)、(Tz-3,8.21×10-6M)、(Tz-6,1.86×10-5M)、(Tz-8,7.83×10-6M)、(Tz-9,2.70×10-5M)、(Tz-14,4.53×10-5M)、(Tz-15,1.47×10-5M)の各濃度のジクロロメタン溶液を調製し、紫外・可視分光装置(島津製作所社製、「UV-3100PC」)、および、光路長1cmのセルを用いて紫外可視吸収スペクトル測定を行った。結果を図7~13に示す。
UV-Vis absorption spectrum measurement Compound (Tz-1,1.44 × 10 −5 M), (Tz-3,8.21 × 10 −6 M), (Tz- 6 , 1.86 × 10 −5 M) , (Tz-8, 7.83 × 10 −6 M), (Tz-9, 2.70 × 10 −5 M), (Tz-14, 4.53 × 10 −5 M), (Tz-15 , 1.47 × 10 −5 M) in each concentration, and UV-visible using an ultraviolet / visible spectroscope (manufactured by Shimadzu Corporation, “UV-3100PC”) and a cell with an optical path length of 1 cm. Absorption spectrum measurement was performed. The results are shown in FIGS.
サイクリックボルタンメトリー
 化合物(Tz-1)、(Tz-3)、(Tz-6)、(Tz-8)、(Tz-9)、(Tz-14)、(Tz-15)について、サイクリックボルタンメトリー測定装置(BAS社製、「CV-620C voltammetric analyzer」)を用い、溶媒としてo-ジクロロベンゼン/MeCN(5:1)混合溶媒を用いて、サイクリックボルタンメトリー測定を行った。結果を図14~16に示す。また、得られた数値を表25に示す。
Cyclic voltammetry For compounds (Tz-1), (Tz-3), (Tz-6), (Tz-8), (Tz-9), (Tz-14), (Tz-15), cyclic voltammetry Cyclic voltammetry measurement was performed using a measuring apparatus (manufactured by BAS, “CV-620C voltammetric analyzer”) and a mixed solvent of o-dichlorobenzene / MeCN (5: 1). The results are shown in FIGS. In addition, Table 25 shows the obtained numerical values.
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000116
密度汎関数法によるシミュレーション
 下記式で表される化合物について、それぞれ、密度汎関数法によるシミュレーションを行って、LUMO準位、HOMO準位を計算した。結果を表26に示す。
Simulation by Density Functional Method For the compounds represented by the following formulas, the LUMO level and the HOMO level were calculated by performing a simulation by the density functional method, respectively. The results are shown in Table 26.
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000118
 上記サイクリックボルタンメトリー測定、及びシミュレーションにより、本発明の化合物は、比較例の化合物(Tz-5)、(Tz-20)と比較して、LUMO準位を低く維持したままHOMO準位を引き上げることができており、有機半導体材料として有用であることが明らかになった。 From the cyclic voltammetry measurement and simulation, the compound of the present invention raises the HOMO level while keeping the LUMO level low compared with the compounds (Tz-5) and (Tz-20) of Comparative Examples. It has become clear that it is useful as an organic semiconductor material.
FET測定
 上記化合物(Tz-3)を、10mg/mLの濃度となるようにクロロホルムに溶解し、ODTS(オクタデシルトリクロロシラン)処理したSiO2/Si基板にスピンコート(1000rpm、1分)することで、ボトムゲート-ボトムコンタクト型のFET素子を作製し、FET測定を行った。チャンネル長さは5μmとした。次に、得られた素子を80℃、120℃、150℃、180℃の各温度で1時間アニールし、同様の方法でFET特性の評価を行った。得られた数値を表27に示す。
FET measurement The above compound (Tz-3) was dissolved in chloroform to a concentration of 10 mg / mL, and spin-coated (1000 rpm, 1 minute) on a SiO 2 / Si substrate treated with ODTS (octadecyltrichlorosilane). Then, a bottom gate-bottom contact type FET element was fabricated, and FET measurement was performed. The channel length was 5 μm. Next, the obtained device was annealed at each temperature of 80 ° C., 120 ° C., 150 ° C., and 180 ° C. for 1 hour, and the FET characteristics were evaluated in the same manner. The obtained numerical values are shown in Table 27.
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000119
 上記の結果から、本発明の化合物は、ON/OFF比が高いものであり、半導体材料として有用であることが明らかになった。また本発明の化合物は、示差走査熱量分析測定の結果からも、200℃以上に加熱しても、分解することなく安定に存在しており、かつ、180℃まで加熱した場合でも、電子移動度がほとんど低下していないことから、素子としての熱安定性も良好であることが明らかになった。 From the above results, it was revealed that the compound of the present invention has a high ON / OFF ratio and is useful as a semiconductor material. Further, the compound of the present invention is stable even without being decomposed even when heated to 200 ° C. or higher from the results of differential scanning calorimetry, and even when heated to 180 ° C. As a result, the thermal stability of the device was found to be good.
 本発明の化合物は、熱的安定性が高く、また電子受容性が高いため、有機エレクトロルミネッセンス素子、有機薄膜トランジスタ素子等の有機エレクトロデバイス、有機半導体材料、光電変換素子、有機電子デバイス、太陽電池、太陽電池モジュール等に有用である。 Since the compound of the present invention has high thermal stability and high electron acceptability, organic electrodevices such as organic electroluminescence elements and organic thin film transistor elements, organic semiconductor materials, photoelectric conversion elements, organic electronic devices, solar cells, Useful for solar cell modules.

Claims (11)

  1.  式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001

    [式(1)中、
     R1は、水素原子、脂肪族炭化水素基、又は脂環式炭化水素基を表す。
     A1は、置換されていてもよい芳香族環、又はハロゲン原子を表す。
     mは、0~2の整数、nは、2~4の整数を表す。ただしm+nは4である。]
    The compound represented by Formula (1).
    Figure JPOXMLDOC01-appb-C000001

    [In Formula (1),
    R 1 represents a hydrogen atom, an aliphatic hydrocarbon group, or an alicyclic hydrocarbon group.
    A 1 represents an optionally substituted aromatic ring or a halogen atom.
    m represents an integer of 0 to 2, and n represents an integer of 2 to 4. However, m + n is 4. ]
  2.  式(1-I)で表される化合物。
    Figure JPOXMLDOC01-appb-C000002

    [式(1-I)中、
     A1は、置換されていてもよい芳香族環、又はハロゲン原子を表す。]
    A compound represented by formula (1-I).
    Figure JPOXMLDOC01-appb-C000002

    [In the formula (1-I),
    A 1 represents an optionally substituted aromatic ring or a halogen atom. ]
  3.  2つ以上のA1が、ハロゲン原子で置換されている芳香族環、又はハロゲン原子である請求項1又は2に記載の化合物。 The compound according to claim 1 or 2, wherein two or more A 1 are an aromatic ring substituted with a halogen atom, or a halogen atom.
  4.  2つ以上のA1が、ハロゲン原子である請求項1~3のいずれかに記載の化合物。 The compound according to any one of claims 1 to 3, wherein two or more of A 1 are halogen atoms.
  5.  2つ以上のA1が、ハロゲン原子で置換されている芳香族環である請求項1~3のいずれかに記載の化合物。 The compound according to any one of claims 1 to 3, wherein two or more A 1 are aromatic rings substituted with a halogen atom.
  6.  A1が、下記式(Ar1)~(Ar8)から選ばれるいずれかの芳香族環である請求項1~5のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000003

    [式(Ar1)~(Ar8)中、
     R2は、ハロゲン原子、アルキル基、アルコキシ基、又はハロゲン化アルキル基を表す。
     R3は、水素原子、又はアルキル基を表す。
     p1は、0~3の整数、p2は、0~2の整数、p3は0~5の整数、p4は0~4の整数を表す。]
    A 1 is A compound according to any one of claims 1 to 5, which is one of the aromatic ring selected from the following formulas (Ar1) ~ (Ar8).
    Figure JPOXMLDOC01-appb-C000003

    [In the formulas (Ar1) to (Ar8),
    R 2 represents a halogen atom, an alkyl group, an alkoxy group, or a halogenated alkyl group.
    R 3 represents a hydrogen atom or an alkyl group.
    p1 represents an integer of 0 to 3, p2 represents an integer of 0 to 2, p3 represents an integer of 0 to 5, and p4 represents an integer of 0 to 4. ]
  7.  下記式(2)
    Figure JPOXMLDOC01-appb-C000004

    [式(2)中、
     R1は、水素原子、脂肪族炭化水素基、又は脂環式炭化水素基を表す。
     A1は、置換されていてもよい芳香族環、又はハロゲン原子を表す。
     mは、0~2の整数、nは、2~4の整数を表す。ただしm+nは4である。]
    で表される化合物に、塩基の存在下、アジド化合物を反応させる式(1)
    Figure JPOXMLDOC01-appb-C000005

    [式(1)中、R1、A1、m、nは、上記と同義である。]
    で表される化合物の製造方法。
    Following formula (2)
    Figure JPOXMLDOC01-appb-C000004

    [In Formula (2),
    R 1 represents a hydrogen atom, an aliphatic hydrocarbon group, or an alicyclic hydrocarbon group.
    A 1 represents an optionally substituted aromatic ring or a halogen atom.
    m represents an integer of 0 to 2, and n represents an integer of 2 to 4. However, m + n is 4. ]
    A compound represented by the formula (1) is reacted with an azide compound in the presence of a base:
    Figure JPOXMLDOC01-appb-C000005

    In Expression (1), R 1, A 1, m, n are as defined above. ]
    The manufacturing method of the compound represented by these.
  8.  下記式(2-I)
    Figure JPOXMLDOC01-appb-C000006

    [式(2-I)中、
     A1は、置換されていてもよい芳香族環、又はハロゲン原子を表す。]
    で表される化合物に、塩基の存在下、アジド化合物を反応させる式(1-I)
    Figure JPOXMLDOC01-appb-C000007

    [式(1-I)中、A1は上記と同義である。]
    で表される化合物の製造方法。
    The following formula (2-I)
    Figure JPOXMLDOC01-appb-C000006

    [In the formula (2-I),
    A 1 represents an optionally substituted aromatic ring or a halogen atom. ]
    The compound represented by formula (1-I) is reacted with an azide compound in the presence of a base.
    Figure JPOXMLDOC01-appb-C000007

    [In the formula (1-I), A 1 has the same meaning as described above. ]
    The manufacturing method of the compound represented by these.
  9.  下記式で表される化合物。
    Figure JPOXMLDOC01-appb-C000008

    [式(II)中、
     R1は、水素原子、脂肪族炭化水素基、又は脂環式炭化水素基を表す。
     A20は、置換されていてもよい芳香族環を表す。
     mは、0~2の整数、n7は、1以上の整数、rは、1以上の整数を表す。
     ただし、n7またはrのいずれかは、2以上である。]
    A compound represented by the following formula.
    Figure JPOXMLDOC01-appb-C000008

    [In the formula (II),
    R 1 represents a hydrogen atom, an aliphatic hydrocarbon group, or an alicyclic hydrocarbon group.
    A 20 represents an optionally substituted aromatic ring.
    m represents an integer of 0 to 2, n7 represents an integer of 1 or more, and r represents an integer of 1 or more.
    However, either n7 or r is 2 or more. ]
  10.  請求項1~6、または9のいずれかに記載の化合物を含む有機半導体材料。 An organic semiconductor material comprising the compound according to any one of claims 1 to 6 or 9.
  11.  請求項10に記載の有機半導体材料を含む有機電子デバイス。 An organic electronic device comprising the organic semiconductor material according to claim 10.
PCT/JP2016/057383 2015-03-10 2016-03-09 Compound, and organic semiconductor material containing same WO2016143823A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017505379A JP6706822B2 (en) 2015-03-10 2016-03-09 Compound and organic semiconductor material containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015047661 2015-03-10
JP2015-047661 2015-03-10

Publications (1)

Publication Number Publication Date
WO2016143823A1 true WO2016143823A1 (en) 2016-09-15

Family

ID=56879490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057383 WO2016143823A1 (en) 2015-03-10 2016-03-09 Compound, and organic semiconductor material containing same

Country Status (2)

Country Link
JP (1) JP6706822B2 (en)
WO (1) WO2016143823A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155030A1 (en) * 2016-03-09 2017-09-14 国立大学法人大阪大学 Compound, and organic semiconductor material including same
WO2018051979A1 (en) * 2016-09-14 2018-03-22 国立大学法人大阪大学 Polymer compound and organic semiconductor material containing same
WO2019078040A1 (en) * 2017-10-18 2019-04-25 国立大学法人大阪大学 Compound, bonded body of same, and organic semiconductor material
WO2019181645A1 (en) * 2018-03-22 2019-09-26 国立大学法人大阪大学 Compound, precursor to compound, organic semiconductor material including compound, and organic electronic device including organic semiconductor material
WO2019181646A1 (en) * 2018-03-22 2019-09-26 国立大学法人大阪大学 Macromolecular compound, organic semiconductor material including macromolecular compound, and organic electronic device including organic semiconductor material
WO2020195632A1 (en) * 2019-03-27 2020-10-01 国立大学法人大阪大学 Compound and organic semiconductor material containing said compound
WO2021024675A1 (en) * 2019-08-05 2021-02-11 国立大学法人大阪大学 Compound and production method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063818A (en) * 1998-08-18 2000-02-29 Fuji Photo Film Co Ltd Organic electroluminescent device material and organic electroluminescent device made therefrom
JP2005539349A (en) * 2002-08-13 2005-12-22 アグフア−ゲヴエルト Nano-porous metal oxide semiconductors spectrally sensitized with metal chalcogenide nanoparticles
JP2013028588A (en) * 2011-06-24 2013-02-07 Ishihara Sangyo Kaisha Ltd Pest-controlling agent
JP2014049314A (en) * 2012-08-31 2014-03-17 Toppan Forms Co Ltd Light emitting element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063818A (en) * 1998-08-18 2000-02-29 Fuji Photo Film Co Ltd Organic electroluminescent device material and organic electroluminescent device made therefrom
JP2005539349A (en) * 2002-08-13 2005-12-22 アグフア−ゲヴエルト Nano-porous metal oxide semiconductors spectrally sensitized with metal chalcogenide nanoparticles
JP2013028588A (en) * 2011-06-24 2013-02-07 Ishihara Sangyo Kaisha Ltd Pest-controlling agent
JP2014049314A (en) * 2012-08-31 2014-03-17 Toppan Forms Co Ltd Light emitting element

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE REGISTRY [o] retrieved from STN Database accession no. 1255574-42-5 *
LIU,S. ET AL.: "Conversion of Pyridine N-Oxides to Tetrazolopyridines", JOURNAL OF ORGANIC CHEMISTRY, vol. 79, no. 7, 4 April 2014 (2014-04-04), pages 3249 - 3254, XP055313089 *
REISINGER,A. ET AL.: "N,N-dialkyl-N'-(2-pyridyl) formamidines and N-(3,5-dichloro-2-pyridyl) formamide. Reactions of azides, tetrazoles and nitrenes with nucleophiles.", PART 1, ARKIVOC, 2005, pages 131 - 134, XP055313097 *
SHUNSUKE TANBA ET AL.: "Tetrazolopyridine o Fukumu n Kyoekikei Bunshi no Gosei to Bussei, Oyobi Yuki Handotai to shiteno Oyo", SYMPOSIUM ON MAIN GROUP ELEMENT CHEMISTRY KOEN YOSHISHU, vol. 42 nd, 3 December 2015 (2015-12-03), pages 48 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155030A1 (en) * 2016-03-09 2017-09-14 国立大学法人大阪大学 Compound, and organic semiconductor material including same
WO2018051979A1 (en) * 2016-09-14 2018-03-22 国立大学法人大阪大学 Polymer compound and organic semiconductor material containing same
JPWO2019078040A1 (en) * 2017-10-18 2021-01-21 国立大学法人大阪大学 Compounds or their conjugates, and organic semiconductor materials
WO2019078040A1 (en) * 2017-10-18 2019-04-25 国立大学法人大阪大学 Compound, bonded body of same, and organic semiconductor material
JP7320784B2 (en) 2017-10-18 2023-08-04 国立大学法人大阪大学 Bonds of compounds and organic semiconductor materials
WO2019181645A1 (en) * 2018-03-22 2019-09-26 国立大学法人大阪大学 Compound, precursor to compound, organic semiconductor material including compound, and organic electronic device including organic semiconductor material
JPWO2019181645A1 (en) * 2018-03-22 2021-03-25 国立大学法人大阪大学 Compounds, precursors of compounds, organic semiconductor materials containing compounds, and organic electronic devices containing organic semiconductor materials.
JPWO2019181646A1 (en) * 2018-03-22 2021-03-25 国立大学法人大阪大学 Polymer compounds, organic semiconductor materials containing polymer compounds, and organic electronic devices containing organic semiconductor materials
JP7194392B2 (en) 2018-03-22 2022-12-22 国立大学法人大阪大学 Polymer compounds, organic semiconductor materials containing polymer compounds, and organic electronic devices containing organic semiconductor materials
JP7308489B2 (en) 2018-03-22 2023-07-14 国立大学法人大阪大学 Compounds, precursors of compounds, organic semiconductor materials containing compounds, and organic electronic devices containing organic semiconductor materials
WO2019181646A1 (en) * 2018-03-22 2019-09-26 国立大学法人大阪大学 Macromolecular compound, organic semiconductor material including macromolecular compound, and organic electronic device including organic semiconductor material
WO2020195632A1 (en) * 2019-03-27 2020-10-01 国立大学法人大阪大学 Compound and organic semiconductor material containing said compound
WO2021024675A1 (en) * 2019-08-05 2021-02-11 国立大学法人大阪大学 Compound and production method therefor

Also Published As

Publication number Publication date
JP6706822B2 (en) 2020-06-10
JPWO2016143823A1 (en) 2017-12-21

Similar Documents

Publication Publication Date Title
JP6706822B2 (en) Compound and organic semiconductor material containing the same
JP6883806B2 (en) Compounds and organic semiconductor materials containing them
JP4908882B2 (en) Organic π-electron material having benzobisazole skeleton and method for producing the same
JP2013189434A (en) Heteroacene derivative, tetrahaloterphenyl derivative and method for manufacturing the derivatives
WO2018051979A1 (en) Polymer compound and organic semiconductor material containing same
JP7097573B2 (en) Compounds and organic semiconductor materials containing them
TWI617550B (en) Boron ester fused thiophene monomers
GB2450050A (en) Process for production of fused ring compound
JP2013220996A (en) Dithienobenzodithiophene derivative, solution for drop-casting film production, and organic semiconductor layer
JP6146214B2 (en) Benzobisthiazole compounds
JP7179614B2 (en) Method for producing nitrogen-containing heterocyclic compound
JP7308489B2 (en) Compounds, precursors of compounds, organic semiconductor materials containing compounds, and organic electronic devices containing organic semiconductor materials
JP7320784B2 (en) Bonds of compounds and organic semiconductor materials
Kieffer et al. Sequential one pot double CH heteroarylation of thiophene using bromopyridines to synthesize unsymmetrical 2, 5-bipyridylthiophenes
JP7194392B2 (en) Polymer compounds, organic semiconductor materials containing polymer compounds, and organic electronic devices containing organic semiconductor materials
JP6386754B2 (en) Organic semiconductors containing polycyclic aromatic compounds
JP7279412B2 (en) Method for producing aromatic compound
WO2017094872A1 (en) Ultraviolet absorber
US11254650B1 (en) Use of pnictogenium compounds in carbon-carbon bond formation
WO2021024675A1 (en) Compound and production method therefor
JP6682115B2 (en) Fluorene compound, method for producing fluorene compound, and organic light emitting device
JP5765371B2 (en) Heterocyclic oligomer compound having a pentafluorosulfanyl group
JP2020189793A (en) Method for producing aromatic compound
JP2015224239A (en) Method for producing dithienobenzodithiophene derivative
JP5336149B2 (en) (Thiophene / phenylene) co-oligomer, method for producing the same, and organic semiconductor material and light-emitting material containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505379

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761790

Country of ref document: EP

Kind code of ref document: A1