JP2020189793A - Method for producing aromatic compound - Google Patents

Method for producing aromatic compound Download PDF

Info

Publication number
JP2020189793A
JP2020189793A JP2019094923A JP2019094923A JP2020189793A JP 2020189793 A JP2020189793 A JP 2020189793A JP 2019094923 A JP2019094923 A JP 2019094923A JP 2019094923 A JP2019094923 A JP 2019094923A JP 2020189793 A JP2020189793 A JP 2020189793A
Authority
JP
Japan
Prior art keywords
group
atom
formula
general formula
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019094923A
Other languages
Japanese (ja)
Other versions
JP7241346B2 (en
Inventor
和男 瀧宮
Kazuo Takimiya
和男 瀧宮
公輔 川畑
Kosuke Kawabata
公輔 川畑
智史 岩田
Satoshi Iwata
智史 岩田
健太郎 前田
Kentaro Maeda
健太郎 前田
雄一 貞光
Yuichi Sadamitsu
雄一 貞光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nippon Kayaku Co Ltd
Original Assignee
Tohoku University NUC
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nippon Kayaku Co Ltd filed Critical Tohoku University NUC
Priority to JP2019094923A priority Critical patent/JP7241346B2/en
Publication of JP2020189793A publication Critical patent/JP2020189793A/en
Application granted granted Critical
Publication of JP7241346B2 publication Critical patent/JP7241346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a simple method for producing a DNTT intermediate that is a raw material for various DNTT derivatives.SOLUTION: Provided is a method for producing (3) that comprises a step of reacting (1) and (2). (R1 to R4, X1 are halogen atom, etc., R5 to R7 are alkyl group, X2 is S, etc.).SELECTED DRAWING: None

Description

本発明は、芳香族化合物の製造方法に関する。更に詳しくは、本発明はジナフト[3,2−b:2’,3’−f]チエノ[3,2−b]チオフェン(以下、「DNTT」と略す)誘導体の製造方法に関する。 The present invention relates to a method for producing an aromatic compound. More specifically, the present invention relates to a method for producing a dinaphtho [3,2-b: 2', 3'-f] thieno [3,2-b] thiophene (hereinafter abbreviated as "DNT") derivative.

近年、有機FET(電界効果トランジスタ)デバイス、有機EL(エレクトロルミネッセンス)デバイスなどの有機半導体を用いた薄膜デバイスが注目され、実用化されている。これらの薄膜デバイスに用いられる有機半導体材料として種々の化合物が研究、開発されており、例えば、特許文献1及び2には、DNTTは優れた電荷移動度を呈し、その薄膜が有機半導体特性を有することが示されている。しかしながら、特許文献1及び2に開示されているDNTT誘導体は、有機溶媒への溶解性が乏しく、塗布法等の溶液プロセスで有機半導体層を作製できないことが問題であった。
この問題に対して、特許文献3および非特許文献1には、DNTT骨格に分岐鎖アルキル基を導入することにより有機溶媒への溶解性が改善することが示されている。
In recent years, thin film devices using organic semiconductors such as organic FET (field effect transistor) devices and organic EL (electroluminescence) devices have attracted attention and have been put into practical use. Various compounds have been researched and developed as organic semiconductor materials used in these thin film devices. For example, in Patent Documents 1 and 2, DNT exhibits excellent charge mobility, and the thin film has organic semiconductor properties. Is shown. However, the DNT derivatives disclosed in Patent Documents 1 and 2 have a problem that they have poor solubility in an organic solvent and an organic semiconductor layer cannot be produced by a solution process such as a coating method.
To solve this problem, Patent Document 3 and Non-Patent Document 1 show that the solubility in an organic solvent is improved by introducing a branched chain alkyl group into the DNT skeleton.

以上のようにこれらの有機半導体として有益なDNTT誘導体の開発が行われてきていたが、これまでの製造法には、チエノチオフェン構造部分の構築法に制約があり、特に非対称な置換基を有するDNTTを製造することは困難であった。この様な状況において、DNTT誘導体の合成方法についても様々な検討がなされており、現在では主に3つの方法が知られている。 As described above, DNT derivatives that are useful as these organic semiconductors have been developed, but the conventional production methods have restrictions on the method for constructing the thienothiophene structural portion, and have a particularly asymmetric substituent. It was difficult to produce DNTT. Under such circumstances, various studies have been conducted on methods for synthesizing DNTT derivatives, and three main methods are currently known.

1つ目の方法は、チエノチオフェン構造をはじめから有しているテトラブロモチエノチオフェンを出発物質として構築していく下記合成フローの製造方法である(特許文献4)。 The first method is a method for producing the following synthetic flow in which tetrabromothienothiophene, which has a thienothiophene structure from the beginning, is used as a starting material (Patent Document 4).

Figure 2020189793
Figure 2020189793

この製造方法によれば、無置換のベンズアルデヒドを用いる場合は問題ないが、置換基を有するベンズアルデヒドを用いると、得られるDNTT誘導体は置換基の置換位置の異なる種々の化合物の混合物となってしまうことが問題であった。 According to this production method, there is no problem when unsubstituted benzaldehyde is used, but when benzaldehyde having a substituent is used, the obtained DNTT derivative becomes a mixture of various compounds having different substitution positions of the substituent. Was the problem.

2つ目の方法は、古くから知られているアセチレン誘導体(A)を出発物質とする下記合成フローの製造方法である(特許文献5)。 The second method is a method for producing the following synthetic flow using an acetylene derivative (A), which has been known for a long time, as a starting material (Patent Document 5).

Figure 2020189793
Figure 2020189793

この合成方法によれば、非対称のDNTTを選択的に合成することが可能だが、アセチレン誘導体(A)の原料となるBr体の工業的な製法が未だ確立できているとは言えないことや、アセチレン誘導体のヨウ素での環化反応は一般的に収率が低い(特許文献5では収率10%〜40%程度)こと等が問題であった。 According to this synthesis method, it is possible to selectively synthesize asymmetric DNTT, but it cannot be said that an industrial method for producing Br, which is a raw material for the acetylene derivative (A), has been established yet. The cyclization reaction of an acetylene derivative with iodine has a problem that the yield is generally low (in Patent Document 5, the yield is about 10% to 40%).

3つ目の方法は、エチレン誘導体を出発原料とする製造方法であり、大部分のDNTT誘導体はこの方法により合成されてきた(特許文献1、特許文献2、特許文献5、特許文献6)。
例えば、特許文献3および非特許文献1には、2つの異なる3−メチルチオ−2−トリフルオロメタンスルホニルオキシ)ナフタレン(B)及び(C)と、トランス−1,2−ビス(トリブチルスタニル)エチレンとをカップリングすることで非対称なトランス−1,2−ビス(3−メチルチオナフタレン−2−イル)エチレンが得られることが開示されており、次いでこれを閉環することによって目的化合物である非対称DNTTを得ることが可能である(下記合成フローを参照のこと)。
The third method is a production method using an ethylene derivative as a starting material, and most of the DNTT derivatives have been synthesized by this method (Patent Document 1, Patent Document 2, Patent Document 5, Patent Document 6).
For example, Patent Document 3 and Non-Patent Document 1 describe two different 3-methylthio-2-trifluoromethanesulfonyloxy) naphthalenes (B) and (C) and trans-1,2-bis (tributylstanyl) ethylene. It has been disclosed that asymmetric trans-1,2-bis (3-methylthionaphthalene-2-yl) ethylene can be obtained by coupling with, and then by closing the ring, the target compound, asymmetric DNTT. (See synthetic flow below).

Figure 2020189793
Figure 2020189793

しかしながら、この合成方法では化合物(D)の収率が低く、しかも副生成物の構造によっては精製が困難になる場合がある。 However, in this synthetic method, the yield of compound (D) is low, and purification may be difficult depending on the structure of the by-product.

また、特許文献7ではDNTT骨格に直接ハロゲン原子を付加させた後カップリング反応を行うことで目的の置換基を導入する方法が知られているが、置換位置は5、12位に限定されており、その他の位置への導入は困難である。 Further, in Patent Document 7, a method of introducing a target substituent by directly adding a halogen atom to the DNT skeleton and then performing a coupling reaction is known, but the substitution positions are limited to the 5th and 12th positions. It is difficult to introduce it to other locations.

Figure 2020189793
Figure 2020189793

WO2008/050726公報WO2008 / 050726 WO2010/098372公報WO2010 / 098372 Gazette WO2014/115749公報WO2014 / 115479 KR2008100982公報KR2008100982 Gazette 特開2009−196975号公報JP-A-2009-196975 WO2009/009790公報WO2009 / 09790 WO2014/027685公報WO2014 / 027685

ACS Appl.Mater.Interfaces,8,3810−3824(2016)ACS Appl. Mater. Interfaces, 8, 3810-3824 (2016)

本発明の目的は、様々なDNTT誘導体、特に非対称なDNTT誘導体を製造するための原料化合物として有用なDNTT中間体をより簡便な方法で製造する方法を提供することにある。 An object of the present invention is to provide a method for producing various DNTT derivatives, particularly DNTT intermediates useful as raw material compounds for producing asymmetric DNTT derivatives, by a simpler method.

本発明者らは鋭意検討の結果、特定構造の原料化合物を反応させる工程を含む簡便な製造方法が上記の課題を解決することを見出し、本発明を完成させるに至った。
即ち、本発明は、
[1]一般式(1)
As a result of diligent studies, the present inventors have found that a simple production method including a step of reacting a raw material compound having a specific structure solves the above-mentioned problems, and have completed the present invention.
That is, the present invention
[1] General formula (1)

Figure 2020189793
Figure 2020189793

(式(1)中、RおよびRの一方はハロゲン原子を表し、他方は水素原子、ハロゲン原子または置換基を表す。Xはハロゲン原子またはトリフルオロメタンスルホナート基を表す。)
で表される化合物と、
一般式(2)
(In the formula (1), one of R 1 and R 2 represents a halogen atom, and the other represents a hydrogen atom, a halogen atom or a substituent. X 1 represents a halogen atom or a trifluoromethanesulfonate group.)
And the compound represented by
General formula (2)

Figure 2020189793
Figure 2020189793

(式(2)中、RおよびRはそれぞれ独立に水素原子、アルキル基、アルコキシ基または芳香族基を表す。Xは硫黄原子またはセレン原子を表す。R乃至Rはそれぞれ独立にアルキル基を表す。)
で表される化合物を反応させる工程を含む、
一般式(3)
(In formula (2), R 3 and R 4 independently represent a hydrogen atom, an alkyl group, an alkoxy group or an aromatic group, respectively. X 2 represents a sulfur atom or a selenium atom. R 5 to R 7 are independent of each other. Represents an alkyl group.)
Including the step of reacting the compound represented by
General formula (3)

Figure 2020189793
Figure 2020189793

(式(3)中、RおよびRは式(1)におけるRおよびRと同じ意味を表す。R、RおよびXは式(2)におけるR、RおよびXと同じ意味を表す。)
で表される芳香族化合物の製造方法、
[2]Rおよび/またはRが塩素原子、臭素原子またはヨウ素原子である前項[1]に記載の芳香族化合物の製造方法、
[3]Xがヨウ素原子またはトリフルオロメタンスルホナート基である前項[1]または[2]に記載の芳香族化合物の製造方法、
[4]Xが硫黄原子である前項[1]乃至[3]のいずれか一項に記載の芳香族化合物の製造方法、
[5]R乃至Rがメチル基である前項[1]乃至[4]のいずれか一項に記載の芳香族化合物の製造方法、および
[6]RおよびRが水素原子である前項[1]乃至[5]のいずれか一項に記載の芳香族化合物の製造方法、
に関する。
(In the formula (3), R 1 and R 2 are .R 3, R 4 and X 2 is R 3 in the formula (2) representing the same meaning as R 1 and R 2 in Formula (1), R 4 and X It has the same meaning as 2. )
Method for producing aromatic compound represented by,
[2] The method for producing an aromatic compound according to the preceding item [1], wherein R 1 and / or R 2 is a chlorine atom, a bromine atom or an iodine atom.
[3] The method for producing an aromatic compound according to the above item [1] or [2], wherein X 1 is an iodine atom or a trifluoromethanesulfonate group.
[4] The method for producing an aromatic compound according to any one of the above items [1] to [3], wherein X 2 is a sulfur atom.
[5] The method for producing an aromatic compound according to any one of the above items [1] to [4], wherein R 5 to R 7 is a methyl group, and [6] R 3 and R 4 are hydrogen atoms. The method for producing an aromatic compound according to any one of the above items [1] to [5].
Regarding.

本発明によれば、従来の方法では製造が困難だったDNTT誘導体、特に非対称なDNTT誘導体を製造するための原料となるDNTT中間体を高選択的に製造することが可能であり、様々な構造のDNTT誘導体を製造するために利用可能なDNTT中間体を提供することができる。 According to the present invention, it is possible to highly selectively produce a DNTT intermediate which is a raw material for producing a DNTT derivative, particularly an asymmetric DNTT derivative, which has been difficult to produce by a conventional method, and has various structures. DNT intermediates that can be used to make DNT derivatives of

以下、本発明の製造法について詳細に述べる。
本発明の上記一般式(3)で表される芳香族化合物の製造方法は、上記一般式(1)で表される化合物と上記一般式(2)で表される化合物を反応させる工程を含む。
Hereinafter, the production method of the present invention will be described in detail.
The method for producing an aromatic compound represented by the general formula (3) of the present invention includes a step of reacting the compound represented by the general formula (1) with the compound represented by the general formula (2). ..

一般式(1)中、RおよびRの一方はハロゲン原子を表し、他方は水素原子、ハロゲン原子または置換基を表す。
一般式(1)のRおよびRが表すハロゲン原子として、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられ、塩素原子、臭素原子またはヨウ素原子が好ましい。
In the general formula (1), one of R 1 and R 2 represents a halogen atom, and the other represents a hydrogen atom, a halogen atom or a substituent.
Examples of the halogen atom represented by R 1 and R 2 of the general formula (1) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a chlorine atom, a bromine atom or an iodine atom is preferable.

一般式(1)のRおよびRが表す置換基としては、式(2)で表される化合物との反応に影響を及ぼさないものであれば特に限定されない。置換基としては、例えば、アルキル基、アルケニル基、アルキニル基、芳香族基、アルコキシ基およびアルキルチオ基等が挙げられる。 The substituents represented by R 1 and R 2 of the general formula (1) are not particularly limited as long as they do not affect the reaction with the compound represented by the formula (2). Examples of the substituent include an alkyl group, an alkenyl group, an alkynyl group, an aromatic group, an alkoxy group, an alkylthio group and the like.

一般式(1)のRおよびRが表す置換基としてのアルキル基は、炭素原子と水素原子からなる飽和の炭化水素基であれば直鎖型、分岐鎖型及び環状の何れにも限定されない。また、その炭素数も特に限定されないが、好ましくは1乃至20、より好ましくは1乃至16である。アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基およびペンチル基等が挙げられる。
一般式(1)のRおよびRが表す置換基としてのアルケニル基は、炭素原子と水素原子からなり、かつ飽和炭化水素基中に炭素−炭素二重結合を一つだけ有する置換基であれば直鎖型、分岐鎖型及び環状の何れにも限定されない。また、その炭素数も特に限定されないが、好ましくは2乃至20、より好ましくは2乃至16である。アルケニル基の具体れとしては、エチレン基、プロピレン基、ブテン基およびペンテン基等が挙げられる。
The alkyl group as a substituent represented by R 1 and R 2 in the general formula (1) is limited to any of linear type, branched chain type and cyclic type as long as it is a saturated hydrocarbon group consisting of a carbon atom and a hydrogen atom. Not done. Further, the number of carbon atoms is not particularly limited, but is preferably 1 to 20, more preferably 1 to 16. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group and the like.
The alkenyl group as a substituent represented by R 1 and R 2 of the general formula (1) is a substituent composed of a carbon atom and a hydrogen atom and having only one carbon-carbon double bond in the saturated hydrocarbon group. If there is, it is not limited to any of linear type, branched chain type and cyclic type. Further, the number of carbon atoms is not particularly limited, but is preferably 2 to 20, more preferably 2 to 16. Specific examples of the alkenyl group include an ethylene group, a propylene group, a butene group and a pentene group.

一般式(1)のRおよびRが表す置換基としてのアルキニル基とは、炭素原子と水素原子からなり、かつ飽和炭化水素基中に炭素−炭素三重結合を一つだけ有する置換基であれば直鎖型、分岐鎖型及び環状の何れにも限定されない。また、その炭素数も特に限定されないが、好ましくは2乃至20、より好ましくは2乃至16である。アルケニル基の具体例としては、アセチレン基、プロピン基、ブチン基およびペンチン基等を挙げることができる。 The alkynyl group as a substituent represented by R 1 and R 2 in the general formula (1) is a substituent composed of a carbon atom and a hydrogen atom and having only one carbon-carbon triple bond in the saturated hydrocarbon group. If there is, it is not limited to any of linear type, branched chain type and cyclic type. Further, the number of carbon atoms is not particularly limited, but is preferably 2 to 20, more preferably 2 to 16. Specific examples of the alkenyl group include an acetylene group, a propyne group, a butin group, a pentyne group and the like.

一般式(1)のRおよびRが表す置換基としての芳香族基とは、芳香族炭化水素化合物、縮合環芳香族化合物および複素芳香族化合物等の芳香族化合物の芳香環から水素原子を一つ除いた残基でありさえすれば特に限定されない。また、その炭素数も特に限定されないが、好ましくは6乃至18程度である。芳香族基の具体例としては、フェニル基、ナフチル基、アントラニル基、フリル基、チエニル基、セレノフリル基およびチエノチエニル基等を挙げることができる。 The aromatic group as a substituent represented by R 1 and R 2 of the general formula (1) is a hydrogen atom from the aromatic ring of an aromatic compound such as an aromatic hydrocarbon compound, a fused ring aromatic compound and a heteroaromatic compound. The residue is not particularly limited as long as it is a residue excluding one. The number of carbon atoms is not particularly limited, but is preferably about 6 to 18. Specific examples of the aromatic group include a phenyl group, a naphthyl group, an anthranyl group, a frill group, a thienyl group, a selenofryl group, a thienotienyl group and the like.

一般式(1)のRおよびRが表す置換基としてのアルコキシ基とは、アルキル基と酸素原子が結合した置換基である。アルコキシ基中のアルキル基は、炭素原子と水素原子からなる飽和の炭化水素基であれば直鎖型、分岐鎖型及び環状の何れにも限定されない。また、その炭素数も特に限定されないが、好ましくは1乃至20、より好ましくは1乃至16である。アルコキシ基の具体例としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基およびn−ペンチルオキシ基等が挙げられる。
一般式(1)のRおよびRが表す置換基としてのアルキルチオ基とは、アルキル基と硫黄原子が結合した置換基である。アルキルチオ基中のアルキル基は、炭素原子と水素原子からなる飽和の炭化水素基であれば直鎖型、分岐鎖型及び環状の何れにも限定されない。また、その炭素数も特に限定されないが、好ましくは1乃至20、より好ましくは1乃至16である。アルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、n−プロピルチオ基およびn−ペンチルチオ基等が挙げられる。
The alkoxy group as a substituent represented by R 1 and R 2 of the general formula (1) is a substituent in which an alkyl group and an oxygen atom are bonded. The alkyl group in the alkoxy group is not limited to any of linear type, branched chain type and cyclic type as long as it is a saturated hydrocarbon group consisting of a carbon atom and a hydrogen atom. Further, the number of carbon atoms is not particularly limited, but is preferably 1 to 20, more preferably 1 to 16. Specific examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an n-pentyloxy group and the like.
The alkylthio group as a substituent represented by R 1 and R 2 of the general formula (1) is a substituent in which an alkyl group and a sulfur atom are bonded. The alkyl group in the alkylthio group is not limited to a linear type, a branched chain type or a cyclic type as long as it is a saturated hydrocarbon group consisting of a carbon atom and a hydrogen atom. Further, the number of carbon atoms is not particularly limited, but is preferably 1 to 20, more preferably 1 to 16. Specific examples of the alkylthio group include a methylthio group, an ethylthio group, an n-propylthio group, an n-pentylthio group and the like.

上記アルキル基、アルケニル基、アルキニル基、アリール基、アルキルオキシ基およびアルキルチオ基の炭素原子は、酸素原子および/または硫黄原子に置換されていてもよい。また、上記置換基に含まれる1つ以上の水素原子がハロゲン原子で一部が置換されていてもよく、その分子構造は特に限定されるものではない。ただし、アリール基については一般式(3)中のR乃至Rと同一のハロゲン原子の場合を除く。さらに、上記置換基の一部がアリール基で置換されていてもよい。 The carbon atoms of the alkyl group, alkenyl group, alkynyl group, aryl group, alkyloxy group and alkylthio group may be substituted with oxygen atom and / or sulfur atom. Further, one or more hydrogen atoms contained in the above-mentioned substituent may be partially substituted with a halogen atom, and the molecular structure thereof is not particularly limited. However, the aryl group excludes the case of the same halogen atom as R 1 to R 4 in the general formula (3). Further, a part of the above substituents may be substituted with an aryl group.

一般式(1)におけるR及びRとしては、RおよびRの少なくとも一方が塩素原子、臭素原子またはヨウ素原子であることが好ましい。 As R 1 and R 2 in the general formula (1), it is preferable that at least one of R 1 and R 2 is a chlorine atom, a bromine atom or an iodine atom.

一般式(1)中、Xはハロゲン原子またはトリフルオロメタンスルホナート基を表す。
一般式(1)のXが表すハロゲン原子として、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられ、塩素原子、臭素原子またはヨウ素原子が好ましく、臭素原子またはヨウ素原子がより好ましい。
一般式(1)におけるXとしては、ヨウ素原子またはトリフルオロメタンスルホナート基であることが好ましい。
In the general formula (1), X 1 represents a halogen atom or a trifluoromethanesulfonate group.
Examples of the halogen atom represented by X 1 of the general formula (1) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a chlorine atom, a bromine atom or an iodine atom is preferable, and a bromine atom or an iodine atom is more preferable.
The X 1 in the general formula (1) is preferably an iodine atom or a trifluoromethanesulfonate group.

一般式(2)中、RおよびRはそれぞれ独立に水素原子、ハロゲン原子、アルキル基、アルコキシ基またはアリール基を表す。また、RとRは互いに結合してベンゼン環などの環を形成してもよい。
一般式式(2)のRおよびRが表すハロゲン原子としては、式(1)のRおよびRが表すハロゲン原子と同じものが挙げられ、好ましいものも同じである。
In the general formula (2), R 3 and R 4 independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group or an aryl group, respectively. Further, R 3 and R 4 may be bonded to each other to form a ring such as a benzene ring.
Examples of the halogen atom represented by R 3 and R 4 of the general formula (2) include the same halogen atoms represented by R 1 and R 2 of the general formula (1), and the same is preferable.

一般式(2)のRおよびRが表すアルキル基としては、一般式(1)のRおよびRが表す置換基としてのアルキル基と同じものが挙げられる。
一般式(2)のRおよびRが表すアルコキシ基としては、一般式(1)のRおよびRが表す置換基としてのアルコキシ基と同じものが挙げられる。
一般式(2)のRおよびRが表す芳香族基としては、一般式(1)のRおよびRが表す置換基としての芳香族基と同じものが挙げられる。
一般式(1)におけるRおよびRとしては、水素原子が好ましい。
Examples of the alkyl group represented by R 3 and R 4 of the general formula (2) include the same alkyl group as the substituent represented by R 1 and R 2 of the general formula (1).
Examples of the alkoxy group represented by R 3 and R 4 of the general formula (2) include the same alkoxy group as the substituent represented by R 1 and R 2 of the general formula (1).
Examples of the aromatic group represented by R 3 and R 4 of the general formula (2) include the same aromatic group as the substituent represented by R 1 and R 2 of the general formula (1).
As R 3 and R 4 in the general formula (1), a hydrogen atom is preferable.

一般式(2)中、Xは硫黄原子またはセレン原子を表し、硫黄原子が好ましい。
一般式(2)中、R乃至Rはそれぞれ独立にアルキル基を表す。
一般式(2)のR乃至Rが表すアルキル基としては、一般式(1)のRおよびRが表す置換基としてのアルキル基と同じものが挙げられる。
一般式(2)のR乃至Rが表すアルキル基の炭素数は通常1乃至8であり、好ましくは1乃至4である。直鎖アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、iso−ブチル基、n−ペンチル基及びn−ヘキシル基等が、分岐鎖アルキル基の具体例としては、i−プロピル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、iso−ペンチル基及びiso−ヘキシル基等が挙げられる。
一般式(2)におけるR乃至Rとしては、メチル基がより好ましい。
In the general formula (2), X 2 represents a sulfur atom or a selenium atom, and a sulfur atom is preferable.
In the general formula (2), R 5 to R 7 each independently represent an alkyl group.
Examples of the alkyl group represented by R 5 to R 7 of the general formula (2) include the same alkyl group as the substituent represented by R 1 and R 2 of the general formula (1).
The number of carbon atoms in the alkyl group R 5 or the R 7 represents the general formula (2) is usually 1 to 8, preferably 1 to 4. Specific examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an iso-butyl group, an n-pentyl group and an n-hexyl group, and specific examples of the branched alkyl group. Examples thereof include i-propyl group, iso-butyl group, sec-butyl group, tert-butyl group, iso-pentyl group and iso-hexyl group.
The R 5 to R 7 in the general formula (2), more preferably a methyl group.

本発明の製造方法における式(1)で表される化合物と式(2)で表される化合物とを反応させる工程は、下記のスキームに示した第一段階の反応と第二段階の反応を含む。 In the production method of the present invention, the step of reacting the compound represented by the formula (1) with the compound represented by the formula (2) involves the first-step reaction and the second-step reaction shown in the scheme below. Including.

Figure 2020189793
Figure 2020189793

第一段階の反応の反応温度は、通常−10乃至200℃、好ましくは40乃至180℃、より好ましくは80乃至150℃である。また、反応時間は特に限定されないが、通常1乃至72時間、好ましくは6乃至48時間である。
後述する触媒を併用することにより、反応温度を下げたり反応時間を短縮したりすることができる。
The reaction temperature of the reaction in the first step is usually −10 to 200 ° C., preferably 40 to 180 ° C., more preferably 80 to 150 ° C. The reaction time is not particularly limited, but is usually 1 to 72 hours, preferably 6 to 48 hours.
By using the catalyst described later in combination, the reaction temperature can be lowered and the reaction time can be shortened.

第一段階の反応は、アルゴン雰囲気下、窒素置換下、乾燥アルゴン雰囲気下、乾燥窒素気流下等の不活性ガス雰囲気下で行うことが好ましい。 The first-stage reaction is preferably carried out in an inert gas atmosphere such as an argon atmosphere, nitrogen substitution, a dry argon atmosphere, and a dry nitrogen stream.

第一段階の反応には、触媒を用いることが好ましい。触媒としては、例えば、トリ−tert−ブチルホスフィン、トリアダマンチルホスフィン、1,3−ビス(2,4,6−トリメチルフェニル)イミダゾリジニウムクロライド、1,3−ビス(2,6−ジイソプロピルフェニル)イミダゾリジニウムクロライド、1,3−ジアダマンチルイミダゾリジニウムクロライド、又はそれらの混合物;金属Pd、Pd/C(含水又は非含水)、ビス(トリフェニルホスフィノ)パラジウムジクロライド(Pd(PPhCl)、酢酸パラジウム(II)(Pd(OAc))、(1,1’−ビス(ジフェニルホスフィノ)フェロセン)パラジウムジクロライド(Pd(dppf)Cl)、テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh)、テトラキス(トリフェニルホスフィン)ニッケル(Ni(PPh)、ニッケル(II)アセチルアセトネート(Ni(acac))、ジクロロ(2,2’−ビピリジン)ニッケル(Ni(bpy)Cl)、ジブロモビス(トリフェニルホスフィン)ニッケル(Ni(PPhBr)、ビス(ジフェニルホスフィノ)プロパンニッケルジクロライド(Ni(dppp)Cl)及びビス(ジフェニルホスフィノ)エタンニッケルジクロライド(Ni(dppe)Cl)等が好ましく、ニッケル系の触媒又はパラジウム系の触媒がより好ましく、Pd/C(含水又は非含水)又はPd(PPhCl、Pd(PPhが更に好ましく、Pd(PPhCl、Pd(PPhが特に好ましい。
これらの触媒は複数種を混合して用いてもよいし、これらの触媒に他の触媒を混合して用いてもよい。
It is preferable to use a catalyst for the reaction in the first step. Examples of the catalyst include tri-tert-butylphosphine, triadamantylphosphine, 1,3-bis (2,4,6-trimethylphenyl) imidazolidinium chloride, 1,3-bis (2,6-diisopropylphenyl). Imidazolidinium chloride, 1,3-diadamantyl imidazolidinium chloride, or a mixture thereof; metal Pd, Pd / C (hydrated or non-hydrated), bis (triphenylphosphino) palladium dichloride (Pd (PPh 3 ) 2 ) Cl 2 ), palladium (II) acetate (Pd (OAc) 2 ), (1,1'-bis (diphenylphosphino) ferrocene) palladium dichloride (Pd (dppf) Cl 2 ), tetrakis (triphenylphosphine) palladium ( Pd (PPh 3 ) 4 ), tetrakis (triphenylphosphine) nickel (Ni (PPh 3 ) 4 ), nickel (II) acetylacetonate (Ni (acac) 2 ), dichloro (2,2'-bipyridine) nickel ( Ni (bpy) Cl 2 ), dibromobis (triphenylphosphine) nickel (Ni (PPh 3 ) 2 Br 2 ), bis (diphenylphosphino) propanenickel dichloride (Ni (dpppp) Cl 2 ) and bis (diphenylphosphino) Ethan nickel dichloride (Ni (dppe) Cl 2 ) and the like are preferable, nickel-based catalysts or palladium-based catalysts are more preferable, and Pd / C (hydrous or non-hydrated) or Pd (PPh 3 ) 2 Cl 2 , Pd (PPh). 3 ) 4 is more preferable, and Pd (PPh 3 ) 2 Cl 2 and Pd (PPh 3 ) 4 are particularly preferable.
A plurality of types of these catalysts may be mixed and used, or other catalysts may be mixed and used with these catalysts.

第一段階の反応に用いる触媒の量は、一般式(1)で表される化合物1molに対して、好ましくは0.001乃至0.500mol、より好ましくは、0.001乃至0.100mol、更に好ましくは0.001乃至0.050molである。 The amount of the catalyst used in the first-stage reaction is preferably 0.001 to 0.500 mol, more preferably 0.001 to 0.100 mol, and further, with respect to 1 mol of the compound represented by the general formula (1). It is preferably 0.001 to 0.050 mol.

第一段階の反応には、アルカリ金属塩を併用してもよい。アルカリ金属塩を併用することにより、反応の選択性を向上させることができる。
併用し得るアルカリ金属塩はアルカリ金属を含む塩であればいかなるものでも使用可能であるが、例えば、塩化リチウム、臭化リチウム及びヨウ化リチウム等が挙げられ、好ましくは塩化リチウムである。
アルカリ金属塩の添加量は、一般式(1)で表される化合物1molに対して、好ましくは0.001乃至5.0molである。
Alkali metal salts may be used in combination with the first stage reaction. By using an alkali metal salt in combination, the selectivity of the reaction can be improved.
Any alkali metal salt that can be used in combination can be used as long as it contains an alkali metal, and examples thereof include lithium chloride, lithium bromide, and lithium iodide, and lithium chloride is preferable.
The amount of the alkali metal salt added is preferably 0.001 to 5.0 mol with respect to 1 mol of the compound represented by the general formula (1).

第一段階の反応は、溶媒中で行ってもよい。用い得る溶媒は、原料である式(1)で表される化合物並びに式(2)で表される化合物、及び必要により用いられる触媒やアルカリ金属塩等を溶解し得る溶媒であれば、いかなるものでも使用可能である。
溶媒の具体例としては、クロロベンゼン、o−ジクロロベンゼン、ブロモベンゼン、ニトロベンゼン、トルエン、キシレン等の芳香族化合物類や、n−ヘキサン、n−ヘプタン並びにn−ペンタン等の飽和脂肪族炭化水素類;シクロヘキサン、シクロヘプタン並びにシクロペンタン等の脂環式炭化水素類;n−プロピルブロマイド、n−ブチルクロライド、n−ブチルブロマイド、ジクロロメタン、ジブロモメタン、ジクロロプロパン、ジブロモプロパン、ジクロロブタン、クロロホルム、ブロモホルム、四塩化炭素、四臭化炭素、トリクロロエタン、テトラクロロエタン並びにペンタクロロエタン等の飽和脂肪族ハロゲン化炭化水素類;クロロシクロヘキサン、クロロシクロペンタン並びにブロモシクロペンタン等のハロゲン化環状炭化水素類;酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、酪酸プロピル並びに酪酸ブチル等のエステル類;アセトン、メチルエチルケトン並びにメチルイソブチルケトン等のケトン類;ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,4−ジオキサン並びに1,3−ジオキサン等のエーテル類;N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド並びにN,N−ジメチルアセトアミド等のアミド類;エチレングリコール、プロピレングリコール並びにポリエチレングリコール等のグリコール類;及びジメチルスルホキシド等のスルホキシド類を挙げることができる。これらの溶媒は単独でも2種以上混合して使用してもよい。
The first step reaction may be carried out in a solvent. Any solvent can be used as long as it can dissolve the raw material compound represented by the formula (1), the compound represented by the formula (2), and the catalyst, alkali metal salt, etc. used as necessary. But it can be used.
Specific examples of the solvent include aromatic compounds such as chlorobenzene, o-dichlorobenzene, bromobenzene, nitrobenzene, toluene and xylene, and saturated aliphatic hydrocarbons such as n-hexane, n-heptan and n-pentane; Alicyclic hydrocarbons such as cyclohexane, cycloheptan and cyclopentane; n-propyl bromide, n-butyl chloride, n-butyl bromide, dichloromethane, dibromomethane, dichloropropane, dibromopropane, dichlorobutane, chloroform, bromoform, tetra Saturated aliphatic halogenated hydrocarbons such as carbon chloride, carbon tetrabromide, trichloroethane, tetrachloroethane and pentachloroethane; halogenated cyclic hydrocarbons such as chlorocyclohexane, chlorocyclopentane and bromocyclopentane; ethyl acetate, propyl acetate , Butyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, propyl butyrate and butyl butyrate and other esters; acetone, methyl ethyl ketone and methyl isobutyl ketone and other ketones; diethyl ether , Dipropyl ether, dibutyl ether, cyclopentylmethyl ether, dimethoxyethane, tetrahydrofuran, 1,4-dioxane and ethers such as 1,3-dioxane; N-methyl-2-pyrrolidone, N, N-dimethylformamide and N, Examples thereof include amides such as N-dimethylacetamide; glycols such as ethylene glycol, propylene glycol and polyethylene glycol; and sulfoxides such as dimethylsulfoxide. These solvents may be used alone or in combination of two or more.

第二段階の反応は、WO2016/152889公報で詳しく述べられているのと同様の方法で行うことができる。 The second stage reaction can be carried out in a manner similar to that detailed in WO 2016/152888.

本発明の製造方法で得られた式(3)で表される芳香族化合物は、精製を施した後にDNTT中間体として用いることが好ましい。精製方法は特に限定されるものではなく、式(3)で表される芳香族化合物の物性に応じて、公知の精製方法を用いることができる。具体的には、例えば再結晶法、カラムクロマトグラフィー法、昇華精製法が挙げられる。 The aromatic compound represented by the formula (3) obtained by the production method of the present invention is preferably used as a DNTT intermediate after purification. The purification method is not particularly limited, and a known purification method can be used depending on the physical properties of the aromatic compound represented by the formula (3). Specific examples thereof include a recrystallization method, a column chromatography method, and a sublimation purification method.

こうして得られた式(3)で表される化合物が有するハロゲン原子を、金属触媒を用いたカップリング反応等の公知の方法により置換基に変換することにより、所望の置換基を有するDNTT誘導体を製造することができる。 By converting the halogen atom of the compound represented by the formula (3) thus obtained into a substituent by a known method such as a coupling reaction using a metal catalyst, a DNTT derivative having a desired substituent can be obtained. Can be manufactured.

以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの例に限定されるものではない。
実施例において、融点はStanford Research Systems社製Optimelt MPA100、核磁気共鳴スペクトルはBruker社製Avance500、HR−MSはJEOL社製JMS−T100GCV、元素分析はYanaco社製MT−6 CHN CORDERを用いて測定した。
尚、実施例における「部」は質量部を意味する。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In the examples, the melting point is Optimelt MPA100 manufactured by Stand Research Systems, the nuclear magnetic resonance spectrum is Avance 500 manufactured by Bruker, the HR-MS is JMS-T100GCV manufactured by JEOL, and the elemental analysis is MT-6 CHN CORD manufactured by Yanaco. did.
In addition, "part" in an Example means a mass part.

実施例1(下記式6で表される芳香族化合物(DNTT中間体)の合成)
(工程1)下記式1で表される化合物の合成
滴下漏斗を取り付け加熱乾燥した500mL四口フラスコ中で、窒素雰囲気下、2,2,6,6−テトラメチルピペリジン(TMP)15.3mL(90mmol)をテトラヒドロフラン(THF)90mLに溶解させた。−80℃まで冷却した後、ノルマルブチルリチウム(n−BuLi)のモル濃度1.55Mヘキサン溶液58mL(溶液中のノルマルブチルリチウムのモル数;90mmol)をゆっくり滴下した。−80℃で10分間撹拌後、塩化亜鉛−テトラメチルエチレンジアミン錯体8.30部(22.5mmol)を加え、0℃まで昇温した。15分間撹拌後、再び−80℃まで冷却し、2−ブロモ−6−メトキシナフタレン7.11部(30.0mmol)を加えた。反応液を室温まで昇温して2時間撹拌後、ジメチルジスルフィド(MeS−SMe)16.0mL(180mmol)を加えた。17時間撹拌後、2N塩酸を加え、反応溶液を酢酸エチルで抽出し、有機層を無水硫酸マグネシウムで乾燥した後、反応混合物をろ取してロータリーエバポレーターで溶媒を留去した。得られた反応混合物をヘキサン:塩化メチレン8:2の混合溶媒を移動相とするシリカゲルクロマトグラフィーで精製し、下記式1で表される化合物6.23部(22.0mmol、収率73%)を白色固体として得た。
Example 1 (Synthesis of an aromatic compound (DNTT intermediate) represented by the following formula 6)
(Step 1) Synthesis of compound represented by the following formula 1 In a 500 mL four-necked flask equipped with a dropping funnel and dried by heating, 2,2,6,6-tetramethylpiperidin (TMP) 15.3 mL (in a nitrogen atmosphere) 90 mmol) was dissolved in 90 mL of tetrahydrofuran (THF). After cooling to −80 ° C., 58 mL of a 1.55 M hexane solution of normal butyllithium (n-BuLi) (number of moles of normal butyllithium in the solution; 90 mmol) was slowly added dropwise. After stirring at −80 ° C. for 10 minutes, 8.30 parts (22.5 mmol) of zinc chloride-tetramethylethylenediamine complex was added, and the temperature was raised to 0 ° C. After stirring for 15 minutes, the mixture was cooled to −80 ° C. again, and 7.11 parts (30.0 mmol) of 2-bromo-6-methoxynaphthalene was added. The reaction mixture was heated to room temperature, stirred for 2 hours, and then 16.0 mL (180 mmol) of dimethyl disulfide (MeS-SMe) was added. After stirring for 17 hours, 2N hydrochloric acid was added, the reaction solution was extracted with ethyl acetate, the organic layer was dried over anhydrous magnesium sulfate, the reaction mixture was collected by filtration, and the solvent was distilled off with a rotary evaporator. The obtained reaction mixture was purified by silica gel chromatography using a mixed solvent of hexane: methylene chloride 8: 2 as a mobile phase, and 6.23 parts of the compound represented by the following formula 1 (22.0 mmol, yield 73%). Was obtained as a white solid.

下記式1で表される化合物の融点、核磁気共鳴スペクトル、HR−MSスペクトル及び元素分析の結果は、以下のとおりであった。
m.p. 86.2 - 86.8 °C.
1H NMR (CDCl3, 400 MHz): d (ppm) 7.85 (d, 1H, J = 1.6 Hz), 7.56 (d, 1H, J = 8.8 Hz), 7.43 (dd, 1H, J = 8.8, 2.0 Hz), 7.32 (s, 1H), 7.03 (s, 1H), 3.99 (s, 3H), 2.53 (s, 3H).
13C NMR (CDCl3, 100 MHz): d (ppm) 154.63, 131.42, 130.40, 130.33, 128.52, 128.38, 128.07, 121.53, 117.59, 104.47, 55.93, 14.32.
HRMS (EI) m/z: Calcd for C12H11BrOS [M]+: 281.9714. Found: 281.9726.
Elemental analysis: Calcd for C12H11BrOS: C, 50.90; H, 3.92. Found: C, 50.73; H, 3.85.
The melting points, nuclear magnetic resonance spectra, HR-MS spectra, and elemental analysis results of the compounds represented by the following formula 1 were as follows.
mp 86.2 --86.8 ° C.
1 1 H NMR (CDCl 3 , 400 MHz): d (ppm) 7.85 (d, 1H, J = 1.6 Hz), 7.56 (d, 1H, J = 8.8 Hz), 7.43 (dd, 1H, J = 8.8, 2.0 Hz), 7.32 (s, 1H), 7.03 (s, 1H), 3.99 (s, 3H), 2.53 (s, 3H).
13 C NMR (CDCl 3 , 100 MHz): d (ppm) 154.63, 131.42, 130.40, 130.33, 128.52, 128.38, 128.07, 121.53, 117.59, 104.47, 55.93, 14.32.
HRMS (EI) m / z: Calcd for C 12 H 11 BrOS [M] + : 281.9714. Found: 281.9726.
Elemental analysis: Calcd for C 12 H 11 BrOS: C, 50.90; H, 3.92. Found: C, 50.73; H, 3.85.

Figure 2020189793
Figure 2020189793

(工程2)下記式2で表される化合物の合成
500mL四口フラスコ中で、工程1で得られた式1で表される化合物5.66部(20.0mmol)を塩化メチレン150mLに溶解させた。0℃で三臭化ホウ素(BBr)のモル濃度1.0M塩化メチレン溶液25mL(溶液中の三臭化ホウ素のモル数;25mmol)をゆっくり滴下した。9時間撹拌した後、氷水に注ぎ入れ、反応溶液を塩化メチレンで抽出し、有機層を無水硫酸マグネシウムで乾燥した後、反応混合物をろ取してロータリーエバポレーターで溶媒を留去した。得られた反応混合物を再結晶により精製し、下記式2で表される化合物5.28部(19.6mmol、98%)を白色固体として得た。
(Step 2) Synthesis of compound represented by the following formula 2 In a 500 mL four-necked flask, 5.66 parts (20.0 mmol) of the compound represented by formula 1 obtained in step 1 was dissolved in 150 mL of methylene chloride. It was. At 0 ° C., 25 mL of a 1.0 M molar concentration of boron tribromide (BBr 3 ) (molar number of boron tribromide in the solution; 25 mmol) was slowly added dropwise. After stirring for 9 hours, the mixture was poured into ice water, the reaction solution was extracted with methylene chloride, the organic layer was dried over anhydrous magnesium sulfate, the reaction mixture was collected by filtration, and the solvent was distilled off with a rotary evaporator. The obtained reaction mixture was purified by recrystallization to obtain 5.28 parts (19.6 mmol, 98%) of the compound represented by the following formula 2 as a white solid.

下記式2で表される化合物の融点、核磁気共鳴スペクトル、HR−MSスペクトル及び元素分析の結果は、以下のとおりであった。
m.p. 123.4 - 123.7 °C.
13C NMR (CDCl3, 100 MHz): d (ppm) 152.87, 133.25, 132.37, 130.18, 129.92, 129.18, 128.09, 125.92, 117.40, 109.29, 19.53.
HRMS (EI) m/z: Calcd for C11H9BrOS [M]+: 267,9558. Found: 267.9574.
Elemental analysis: Calcd for C11H9BrOS: C, 49.09; H, 3.37. Found: C, 48.99; H, 3.38.
The melting points, nuclear magnetic resonance spectra, HR-MS spectra, and elemental analysis results of the compounds represented by the following formula 2 were as follows.
mp 123.4 --123.7 ° C.
13 C NMR (CDCl 3 , 100 MHz): d (ppm) 152.87, 133.25, 132.37, 130.18, 129.92, 129.18, 128.09, 125.92, 117.40, 109.29, 19.53.
HRMS (EI) m / z: Calcd for C 11 H 9 BrOS [M] + : 267,9558. Found: 267.9574.
Elemental analysis: Calcd for C 11 H 9 BrOS: C, 49.09; H, 3.37. Found: C, 48.99; H, 3.38.

Figure 2020189793
Figure 2020189793

(工程3)下記式3で表される化合物の合成
500mL四口フラスコ中で、工程2で得られた式2で表される化合物5.20部(19.3mmol)を塩化メチレン120mLに溶解させた。そこにトリエチルアミン6.4mL(46mmol)を添加して0℃まで冷却した後、トリフルオロメタンスルホン酸無水物3.9mL(23mmol)をゆっくり滴下した。1時間撹拌後、1N塩酸を加え、反応溶液を塩化メチレンで抽出し、有機層を無水硫酸マグネシウムで乾燥した後、反応混合物をろ取してロータリーエバポレーターで溶媒を留去した。得られた反応混合物をヘキサン:塩化メチレン3:7の混合溶媒を移動相とするシリカゲルクロマトグラフィーで精製し、下記式3で表される化合物7.59部(18.9mmol、収率98%)を白色固体として得た。
(Step 3) Synthesis of compound represented by the following formula 3 In a 500 mL four-necked flask, 5.20 parts (19.3 mmol) of the compound represented by formula 2 obtained in step 2 was dissolved in 120 mL of methylene chloride. It was. After adding 6.4 mL (46 mmol) of triethylamine and cooling to 0 ° C., 3.9 mL (23 mmol) of trifluoromethanesulfonic anhydride was slowly added dropwise. After stirring for 1 hour, 1N hydrochloric acid was added, the reaction solution was extracted with methylene chloride, the organic layer was dried over anhydrous magnesium sulfate, the reaction mixture was collected by filtration, and the solvent was distilled off with a rotary evaporator. The obtained reaction mixture was purified by silica gel chromatography using a mixed solvent of hexane: methylene chloride 3: 7 as a mobile phase, and 7.59 parts of the compound represented by the following formula 3 (18.9 mmol, yield 98%). Was obtained as a white solid.

下記式3で表される化合物の融点、核磁気共鳴スペクトル、HR−MSスペクトル及び元素分析の結果は、以下のとおりであった。
m.p. 73.2 - 74.6 °C.
1H NMR (CDCl3, 500 MHz): d (ppm) 7.95 (d, 1H, J = 1.5 Hz), 7.68 (s, 1H), 7.65 (d, 1H, J = 9.0 Hz), 7.55 (dd, 1H, J = 8.5, 2.0 Hz), 7.53 (s, 1H), 2.59 (s, 3H).
HRMS (EI) m/z: Calcd for C12H8BrF3O3S2 [M]+: 399.9050. Found: 399.9065.
Elemental analysis: Calcd for C12H8BrF3O3S2: C, 35.92; H, 2.01. Found: C, 35.76; H, 2.09.
The melting points, nuclear magnetic resonance spectra, HR-MS spectra, and elemental analysis results of the compounds represented by the following formula 3 were as follows.
mp 73.2 --74.6 ° C.
1 1 H NMR (CDCl 3 , 500 MHz): d (ppm) 7.95 (d, 1H, J = 1.5 Hz), 7.68 (s, 1H), 7.65 (d, 1H, J = 9.0 Hz), 7.55 (dd, dd, 1H, J = 8.5, 2.0 Hz), 7.53 (s, 1H), 2.59 (s, 3H).
HRMS (EI) m / z: Calcd for C 12 H 8 BrF 3 O 3 S 2 [M] + : 399.9050. Found: 399.9065.
Elemental analysis: Calcd for C 12 H 8 BrF 3 O 3 S 2 : C, 35.92; H, 2.01. Found: C, 35.76; H, 2.09.

Figure 2020189793
Figure 2020189793

(工程4)下記式4で表される化合物の合成
2L四口フラスコ中で、工程3で得られた式3で表される化合物22.47部(56.00mmol)を塩化メチレン1000mLに溶解させた。0℃まで冷却後、メタクロロ過安息香酸(mCPBA)の20質量%水溶液13.10部(水溶液中のメタクロロ過安息香酸のモル数;60.70mmol)をゆっくり加えた。6時間撹拌後、飽和炭酸水素ナトリウム水溶液でクエンチし、有機層を無水硫酸マグネシウムで乾燥した後、反応混合物をろ取してロータリーエバポレーターで溶媒を留去した。得られた反応混合物を塩化メチレン:酢酸エチル=19:1の混合溶媒を移動相とするシリカゲルクロマトグラフィーで精製し、下記式4で表される化合物22.81部(54.67mmol、98%)を白色固体として得た。
(Step 4) Synthesis of compound represented by the following formula 4 In a 2 L four-necked flask, 22.47 parts (56.00 mmol) of the compound represented by formula 3 obtained in step 3 was dissolved in 1000 mL of methylene chloride. It was. After cooling to 0 ° C., 13.10 parts of a 20 mass% aqueous solution of meta-chloroperbenzoic acid (mCPBA) (number of moles of metachloroperbenzoic acid in the aqueous solution; 60.70 mmol) was slowly added. After stirring for 6 hours, the mixture was quenched with saturated aqueous sodium hydrogen carbonate solution, the organic layer was dried over anhydrous magnesium sulfate, the reaction mixture was collected by filtration, and the solvent was distilled off with a rotary evaporator. The obtained reaction mixture was purified by silica gel chromatography using a mixed solvent of methylene chloride: ethyl acetate = 19: 1 as a mobile phase, and 22.81 parts (54.67 mmol, 98%) of the compound represented by the following formula 4 was purified. Was obtained as a white solid.

下記式4で表される化合物の融点、核磁気共鳴スペクトル、HR−MSスペクトル及び元素分析の結果は、以下のとおりであった。
m.p. 122.0 - 122.4 °C.
1H NMR (CDCl3, 500 MHz): d (ppm) 8.42 (s, 1H), 8.19 (d, 1H, J = 1.5 Hz), 7.83 (s, 1H), 7.81 (d, 1H, J = 9.0 Hz), 7.76 (dd, 1H, J = 8.5 Hz, 2.0 Hz), 2.90 (s, 3H).
HRMS (EI) m/z: Calcd for C12H8BrF3O4S2 [M]+: 415.9000. Found: 415.9023.
Elemental analysis: Calcd for C12H8BrF3O4S2: C, 34.55; H, 1.93. Found: C, 34.40; H, 1.98.
The melting points, nuclear magnetic resonance spectra, HR-MS spectra, and elemental analysis results of the compounds represented by the following formula 4 were as follows.
mp 122.0 --122.4 ° C.
1 H NMR (CDCl 3 , 500 MHz): d (ppm) 8.42 (s, 1H), 8.19 (d, 1H, J = 1.5 Hz), 7.83 (s, 1H), 7.81 (d, 1H, J = 9.0) Hz), 7.76 (dd, 1H, J = 8.5 Hz, 2.0 Hz), 2.90 (s, 3H).
HRMS (EI) m / z: Calcd for C 12 H 8 BrF 3 O 4 S 2 [M] + : 415.9000. Found: 415.9023.
Elemental analysis: Calcd for C 12 H 8 BrF 3 O 4 S 2 : C, 34.55; H, 1.93. Found: C, 34.40; H, 1.98.

Figure 2020189793
Figure 2020189793

(工程5)下記式5で表される化合物の合成
500mL四口フラスコ中で、工程4で得られた式4で表される化合物4.17部(10.0mmol)、2−トリメチルスタニル(ナフト[2,3−b]チオフェン)3.61部(10.4mmol)、塩化リチウム1.27部(30.0mmol)およびPd(PPh 0.14部(0.20mmol)を1,4−ジオキサン125mLに溶解させた。前記で得られた混合溶液を50℃で48時間撹拌した後、水でクエンチし、反応溶液を塩化メチレンで抽出し、有機層を無水硫酸マグネシウムで乾燥した後、反応混合物をろ取してロータリーエバポレーターで溶媒を留去した。得られた反応混合物を再結晶により精製し、下記式5で表される化合物4.27部(94.5mmol、収率95%)を黄色固体として得た。
(Step 5) Synthesis of compound represented by the following formula 5 4.17 parts (10.0 mmol) of the compound represented by formula 4 obtained in step 4 in a 500 mL four-necked flask, 2-trimethylstanyl (2. Naft [2,3-b] thiophene) 3.61 parts (10.4 mmol), lithium chloride 1.27 parts (30.0 mmol) and Pd (PPh 3 ) 4 0.14 parts (0.20 mmol) 1, It was dissolved in 125 mL of 4-dioxane. The mixed solution obtained above is stirred at 50 ° C. for 48 hours, quenched with water, the reaction solution is extracted with methylene chloride, the organic layer is dried over anhydrous magnesium sulfate, and the reaction mixture is collected by filtration and rotary. The solvent was distilled off with an evaporator. The obtained reaction mixture was purified by recrystallization to obtain 4.27 parts (94.5 mmol, yield 95%) of the compound represented by the following formula 5 as a yellow solid.

下記式5で表される化合物の融点、核磁気共鳴スペクトル、HR−MSスペクトル及び元素分析の結果は、以下のとおりであった。
m.p. 262.9 - 264.9 °C.
1H NMR (CDCl3, 500 MHz): d (ppm) 8.56 (s, 1H), 8.37 (s, 1H), 8.36 (s, 1H), 8.20 (d, 1H, J = 1.5 Hz), 8.06 (s, 1H), 8.01-7.99 (m, 1H), 7.95-7.93 (m, 1H), 7.82 (d, 1H, J = 8.5 Hz), 7.71 (dd, 1H, J = 8.5, 1,5 Hz), 7.61 (s, 1H), 7.55-7.49 (m, 2H), 2.55 (s, 3H)
13C NMR (CDCl3, 100 MHz): d (ppm) 143.62, 139.89, 139.08, 138.18, 133.92, 132.29, 131.81, 131.42, 131.31, 130.83, 130.58, 129.62, 128.58, 128.33, 127.31, 125.97, 125.49, 124.17, 123.95, 122.72, 122.14, 120.47, 42.14.
HRMS (EI) m/z: Calcd for C23H15BrOS2 [M]+: 449.9748. Found:449.9753.
Elemental analysis: Calcd for C23H15BrOS2: C, 61.20; H, 3.35. Found: C, 61.19; H, 3.36.
The melting points, nuclear magnetic resonance spectra, HR-MS spectra, and elemental analysis results of the compounds represented by the following formula 5 were as follows.
mp 262.9 --264.9 ° C.
1 1 H NMR (CDCl 3 , 500 MHz): d (ppm) 8.56 (s, 1H), 8.37 (s, 1H), 8.36 (s, 1H), 8.20 (d, 1H, J = 1.5 Hz), 8.06 ( s, 1H), 8.01-7.99 (m, 1H), 7.95-7.93 (m, 1H), 7.82 (d, 1H, J = 8.5 Hz), 7.71 (dd, 1H, J = 8.5, 1,5 Hz) , 7.61 (s, 1H), 7.55-7.49 (m, 2H), 2.55 (s, 3H)
13 C NMR (CDCl 3 , 100 MHz): d (ppm) 143.62, 139.89, 139.08, 138.18, 133.92, 132.29, 131.81, 131.42, 131.31, 130.83, 130.58, 129.62, 128.58, 128.33, 127.31, 125.97, 125.49, 124.17 , 123.95, 122.72, 122.14, 120.47, 42.14.
HRMS (EI) m / z: Calcd for C 23 H 15 BrOS 2 [M] + : 449.9748. Found: 449.9753.
Elemental analysis: Calcd for C 23 H 15 BrOS 2 : C, 61.20; H, 3.35. Found: C, 61.19; H, 3.36.

Figure 2020189793
Figure 2020189793

(工程6)下記式6で表される化合物の合成
50mLフラスコに工程5で得られた式5で表される化合物226mg(0.500mmol)およびイートン試薬10mLを加えた。室温で4日間撹拌した後、氷水に注ぎ入れ、ろ過することで黄色固体を得た。この黄色固体をピリジン35mLに懸濁させ、20時間還流した。反応溶液を室温まで冷却し、メタノールに注ぎ入れ、ろ過することで黄色固体を得た。得られた反応混合物を加熱したクロロホルムを移動相とするシリカゲルクロマトグラフィーで精製し、さらに昇華精製することにより、下記式6で表される化合物140mg(0.343mmol、収率69%)を黄色微結晶として得た。
(Step 6) Synthesis of compound represented by the following formula 6 226 mg (0.500 mmol) of the compound represented by formula 5 obtained in step 5 and 10 mL of Eaton's reagent were added to a 50 mL flask. After stirring at room temperature for 4 days, the mixture was poured into ice water and filtered to obtain a yellow solid. The yellow solid was suspended in 35 mL of pyridine and refluxed for 20 hours. The reaction solution was cooled to room temperature, poured into methanol and filtered to give a yellow solid. The obtained reaction mixture was purified by silica gel chromatography using heated chloroform as a mobile phase, and further sublimated and purified to obtain 140 mg (0.343 mmol, yield 69%) of the compound represented by the following formula 6 in yellow. Obtained as crystals.

下記式6で表される化合物の融点、核磁気共鳴スペクトル、HR−MSスペクトル及び元素分析の結果は、以下のとおりであった。
m.p. > 350 °C.
1H-NMR (CDCl3, 500 MHz): δ (ppm) 8.46 (s, 1H), 8.42 (s, 1H), 8.37 (s, 2H), 8.14 (s, 1H), 8.10-8.00 (br, 2H), 7.93 (d, 1H, J = 8.5 Hz), 7.62 (dd, 1H, J = 9.0 Hz, 2.0 Hz) 7.58-7.56 (br, 2H).
HRMS (EI) m/z: Calcd for C22H11BrS2 [M]+: 417.9486. Found: 417.9495.
Elemental analysis: Calcd for C22H11BrS2: C, 63.01; H, 2.64. Found: C, 62.90; H, 2.71.
The melting points, nuclear magnetic resonance spectra, HR-MS spectra, and elemental analysis results of the compounds represented by the following formula 6 were as follows.
mp> 350 ° C.
1 H-NMR (CDCl 3, 500 MHz): δ (ppm) 8.46 (s, 1H), 8.42 (s, 1H), 8.37 (s, 2H), 8.14 (s, 1H), 8.10-8.00 (br, 2H), 7.93 (d, 1H, J = 8.5 Hz), 7.62 (dd, 1H, J = 9.0 Hz, 2.0 Hz) 7.58-7.56 (br, 2H).
HRMS (EI) m / z: Calcd for C 22 H 11 BrS 2 [M] + : 417.9486. Found: 417.9495.
Elemental analysis: Calcd for C 22 H 11 BrS 2 : C, 63.01; H, 2.64. Found: C, 62.90; H, 2.71.

Figure 2020189793
Figure 2020189793

参考例1(下記式7で表される芳香族化合物(DNTT誘導体)の合成)
(工程7)下記式7で表される化合物の合成
アルゴン置換した耐圧バイアルに工程6で得られた式6で表される化合物132mg(0.315mmol)、(トリメチルシリルエチニル)トリブチルスズ182mg(0.469mmol)、Pd(PPh 9.5mg(0.0082mmol)およびトルエン19mLを加え、マイクロウェーブ反応器で180℃1時間加熱した。反応溶液を、塩化メチレンを移動相とするシリカゲルクロマトグラフィーで精製し、さらに昇華精製することにより、下記式7で表される化合物99mg(0.228mmol、収率72%)を黄色固体として得た。
Reference Example 1 (Synthesis of aromatic compound (DNTT derivative) represented by the following formula 7)
(Step 7) Synthesis of compound represented by the following formula 7 132 mg (0.315 mmol) of the compound represented by the formula 6 obtained in step 6 and 182 mg (0.469 mmol) of (trimethylsilylethynyl) tributyltin were placed in an argon-substituted pressure-resistant vial. ), Pd (PPh 3) a 4 9.5 mg (0.0082 mmol) and toluene 19mL was added, and heated 180 ° C. 1 h in a microwave reactor. The reaction solution was purified by silica gel chromatography using methylene chloride as a mobile phase, and further sublimated to obtain 99 mg (0.228 mmol, yield 72%) of the compound represented by the following formula 7 as a yellow solid. ..

下記式7で表される化合物の融点、核磁気共鳴スペクトル、HR−MSスペクトル及び元素分析の結果は、以下のとおりであった。
m.p. > 350 °C.
1H-NMR (CDCl3, 500 MHz): δ (ppm) 8.43 (s, 1H), 8.39 (s, 1H), 8.36 (s, 1H), 8.32 (s, 1H), 8.10 (d, 1H), 8.04 (dt, 1H, J = 4.5 Hz, 2.0 Hz), 7.96 (m, 1H), 7.95 (m, 1H) 7.55~7.35 (m, 3H), 0.311 (s, 9H).
13C NMR (C2D2Cl4, 120 °C, 100 MHz): δ (ppm) 141.77, 141.03, 134.52, 133.93, 133.15, 132.40, 131.82, 131.53, 131.33, 131.03, 130.77, 128.56, 128.31, 128.10, 127.33, 126.11, 125.08, 122.50, 122.26, 121.05, 120.24, 119.93, 105.67, 96.01, 0.04.
HRMS (EI) m/z: Calcd for C27H20S2Si [M]+: 436.0776. Found: 436.0779.
Elemental analysis: Calcd for C27H20S2Si: C, 74.27; H, 4.62. Found: C, 74.18; H, 4.71.
The melting points, nuclear magnetic resonance spectra, HR-MS spectra, and elemental analysis results of the compounds represented by the following formula 7 were as follows.
mp> 350 ° C.
1 H-NMR (CDCl 3, 500 MHz): δ (ppm) 8.43 (s, 1H), 8.39 (s, 1H), 8.36 (s, 1H), 8.32 (s, 1H), 8.10 (d, 1H) , 8.04 (dt, 1H, J = 4.5 Hz, 2.0 Hz), 7.96 (m, 1H), 7.95 (m, 1H) 7.55 ~ 7.35 (m, 3H), 0.311 (s, 9H).
13 C NMR (C 2 D 2 Cl 4 , 120 ° C, 100 MHz): δ (ppm) 141.77, 141.03, 134.52, 133.93, 133.15, 132.40, 131.82, 131.53, 131.33, 131.03, 130.77, 128.56, 128.31, 128.10 , 127.33, 126.11, 125.08, 122.50, 122.26, 121.05, 120.24, 119.93, 105.67, 96.01, 0.04.
HRMS (EI) m / z: Calcd for C 27 H 20 S 2 Si [M] + : 436.0776. Found: 436.0779.
Elemental analysis: Calcd for C 27 H 20 S 2 Si: C, 74.27; H, 4.62. Found: C, 74.18; H, 4.71.

Figure 2020189793
Figure 2020189793

本発明によれば、従来の方法では製造が困難だったDNTT誘導体、特に非対称なDNTT誘導体を製造するための原料となるDNTT中間体を高選択的に製造することが可能であり、様々な構造のDNTT誘導体を製造するために利用可能なDNTT中間体を提供することができる。



According to the present invention, it is possible to highly selectively produce a DNTT intermediate which is a raw material for producing a DNTT derivative, particularly an asymmetric DNTT derivative, which has been difficult to produce by a conventional method, and has various structures. DNT intermediates that can be used to make DNT derivatives of



Claims (6)

一般式(1)
Figure 2020189793
(式(1)中、RおよびRの一方はハロゲン原子を表し、他方は水素原子、ハロゲン原子または置換基を表す。Xはハロゲン原子またはトリフルオロメタンスルホナート基を表す。)
で表される化合物と、
一般式(2)
Figure 2020189793
(式(2)中、RおよびRはそれぞれ独立に水素原子、ハロゲン原子、アルキル基、アルコキシ基または芳香族基を表す。Xは硫黄原子またはセレン原子を表す。R乃至Rはそれぞれ独立にアルキル基を表す。)
で表される化合物を反応させる工程を含む、
一般式(3)
Figure 2020189793
(式(3)中、RおよびRは式(1)におけるRおよびRと同じ意味を表す。R、RおよびXは式(2)におけるR、RおよびXと同じ意味を表す。)
で表される芳香族化合物の製造方法。
General formula (1)
Figure 2020189793
(In the formula (1), one of R 1 and R 2 represents a halogen atom, and the other represents a hydrogen atom, a halogen atom or a substituent. X 1 represents a halogen atom or a trifluoromethanesulfonate group.)
And the compound represented by
General formula (2)
Figure 2020189793
(In formula (2), R 3 and R 4 independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group or an aromatic group, respectively. X 2 represents a sulfur atom or a selenium atom. R 5 to R 7 Each independently represents an alkyl group.)
Including the step of reacting the compound represented by
General formula (3)
Figure 2020189793
(In the formula (3), R 1 and R 2 are .R 3, R 4 and X 2 is R 3 in the formula (2) representing the same meaning as R 1 and R 2 in Formula (1), R 4 and X It has the same meaning as 2. )
A method for producing an aromatic compound represented by.
および/またはRが塩素原子、臭素原子またはヨウ素原子である請求項1に記載の芳香族化合物の製造方法。 The method for producing an aromatic compound according to claim 1, wherein R 1 and / or R 2 are chlorine atoms, bromine atoms or iodine atoms. がヨウ素原子またはトリフルオロメタンスルホナート基である請求項1または2に記載の芳香族化合物の製造方法。 The method for producing an aromatic compound according to claim 1 or 2, wherein X 1 is an iodine atom or a trifluoromethanesulfonate group. が硫黄原子である請求項1乃至3のいずれか一項に記載の芳香族化合物の製造方法。 The method for producing an aromatic compound according to any one of claims 1 to 3, wherein X 2 is a sulfur atom. 乃至Rがメチル基である請求項1乃至4のいずれか一項に記載の芳香族化合物の製造方法。 The method for producing an aromatic compound according to any one of claims 1 to 4, wherein R 5 to R 7 is a methyl group. およびRが水素原子である請求項1乃至5のいずれか一項に記載の芳香族化合物の製造方法。


The method for producing an aromatic compound according to any one of claims 1 to 5, wherein R 3 and R 4 are hydrogen atoms.


JP2019094923A 2019-05-21 2019-05-21 Method for producing aromatic compound Active JP7241346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019094923A JP7241346B2 (en) 2019-05-21 2019-05-21 Method for producing aromatic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019094923A JP7241346B2 (en) 2019-05-21 2019-05-21 Method for producing aromatic compound

Publications (2)

Publication Number Publication Date
JP2020189793A true JP2020189793A (en) 2020-11-26
JP7241346B2 JP7241346B2 (en) 2023-03-17

Family

ID=73453361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019094923A Active JP7241346B2 (en) 2019-05-21 2019-05-21 Method for producing aromatic compound

Country Status (1)

Country Link
JP (1) JP7241346B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098372A1 (en) * 2009-02-27 2010-09-02 国立大学法人広島大学 Field effect transistor
WO2012115236A1 (en) * 2011-02-25 2012-08-30 国立大学法人広島大学 Novel heterocyclic compound, method for producing intermediate therefor, and use thereof
WO2013021953A1 (en) * 2011-08-05 2013-02-14 帝人株式会社 Condensed polycyclic aromatic compound, aromatic polymer, and method for synthesizing aromatic compound
WO2014115749A1 (en) * 2013-01-22 2014-07-31 日本化薬株式会社 Organic semiconductor material for solution process and organic semiconductor device
JP2015199716A (en) * 2014-03-31 2015-11-12 日本化薬株式会社 Polycyclic fused ring compound, organic semiconductor material, organic semiconductor device, and organic transistor
JP2016032047A (en) * 2014-07-29 2016-03-07 富士フイルム株式会社 Composition for organic semiconductor film formation, method for manufacturing organic semiconductor film for nonluminous organic semiconductor devices, organic semiconductor film for nonluminous organic semiconductor devices, method for manufacturing organic film transistor, and organic film transistor
JP2017141193A (en) * 2016-02-10 2017-08-17 国立研究開発法人理化学研究所 Organic compound and use thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098372A1 (en) * 2009-02-27 2010-09-02 国立大学法人広島大学 Field effect transistor
WO2012115236A1 (en) * 2011-02-25 2012-08-30 国立大学法人広島大学 Novel heterocyclic compound, method for producing intermediate therefor, and use thereof
WO2013021953A1 (en) * 2011-08-05 2013-02-14 帝人株式会社 Condensed polycyclic aromatic compound, aromatic polymer, and method for synthesizing aromatic compound
WO2014115749A1 (en) * 2013-01-22 2014-07-31 日本化薬株式会社 Organic semiconductor material for solution process and organic semiconductor device
JP2015199716A (en) * 2014-03-31 2015-11-12 日本化薬株式会社 Polycyclic fused ring compound, organic semiconductor material, organic semiconductor device, and organic transistor
JP2016032047A (en) * 2014-07-29 2016-03-07 富士フイルム株式会社 Composition for organic semiconductor film formation, method for manufacturing organic semiconductor film for nonluminous organic semiconductor devices, organic semiconductor film for nonluminous organic semiconductor devices, method for manufacturing organic film transistor, and organic film transistor
JP2017141193A (en) * 2016-02-10 2017-08-17 国立研究開発法人理化学研究所 Organic compound and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.AM.CHEM.SOC., vol. 128, JPN6023006601, 2006, pages 12604 - 12605, ISSN: 0004992064 *

Also Published As

Publication number Publication date
JP7241346B2 (en) 2023-03-17

Similar Documents

Publication Publication Date Title
TWI620745B (en) Method for producing aromatic compound
JP5940548B2 (en) Novel spirobifluorene compounds
WO2009096202A1 (en) Halogenated polycyclic aromatic compound and method for producing the same
TW201813959A (en) Bisfuran dihalide, method for producing bisfuran dihalide, and method for producing bisfuran diacid, bisfuran diol or bisfuran diamine using bisfuran dihalide
JP4792796B2 (en) 2,3-Dihalobiphenylene derivative, precursor compound thereof and production method thereof
JP6318863B2 (en) Method for producing dithienobenzodithiophene derivative
JP5008404B2 (en) Method for producing methylene disulfonate compound
JP7241346B2 (en) Method for producing aromatic compound
CN104046351B (en) There is the luminous organic material of afterglow performance and synthetic method thereof and application
CN114805013B (en) Synthesis method of halogenated biaryl compound
KR101424978B1 (en) Novel method for preparing hetero fused ring compounds using gilman reagent compounds
JP2010202523A (en) Method for producing aromatic compound
JP6344063B2 (en) Method for producing dithienobenzodithiophene derivative
JP6197037B2 (en) Novel phenylnaphthol derivatives
JP2017031097A (en) Method for producing dithienobenzodifuran derivative
JP4963970B2 (en) Method for producing methylene disulfonate compound
JP6532737B2 (en) Process for producing heteroacene compound
JP5899010B2 (en) ANANTHOLENE COMPOUND AND PROCESS FOR PRODUCING THE SAME
JP2014169273A (en) Method of producing cyclic aromatic compounds
JP4150168B2 (en) Process for producing polyethynyl-substituted aromatic compounds
CN109867645B (en) Synthetic method of 2, 2-difluoro-2, 3-dihydro-substituted benzofuran compound
JP6853086B2 (en) Aromatic compounds and methods for producing them
JP5218605B2 (en) 2,3-Dihalobiphenylene derivative, precursor compound thereof and production method thereof
JP4153834B2 (en) Novel synthesis method of 1,1'-biindenylidene derivatives having various substituents
JP4839678B2 (en) Method for producing dihalogenated biaryl derivative

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R150 Certificate of patent or registration of utility model

Ref document number: 7241346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150