KR101424978B1 - Novel method for preparing hetero fused ring compounds using gilman reagent compounds - Google Patents
Novel method for preparing hetero fused ring compounds using gilman reagent compounds Download PDFInfo
- Publication number
- KR101424978B1 KR101424978B1 KR1020120055585A KR20120055585A KR101424978B1 KR 101424978 B1 KR101424978 B1 KR 101424978B1 KR 1020120055585 A KR1020120055585 A KR 1020120055585A KR 20120055585 A KR20120055585 A KR 20120055585A KR 101424978 B1 KR101424978 B1 KR 101424978B1
- Authority
- KR
- South Korea
- Prior art keywords
- compound
- formula
- fused ring
- reagent
- present
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 74
- 239000003153 chemical reaction reagent Substances 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 21
- 125000005842 heteroatom Chemical group 0.000 title claims description 8
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims abstract description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- 229910052717 sulfur Inorganic materials 0.000 claims description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- 125000003118 aryl group Chemical group 0.000 claims description 13
- 125000001072 heteroaryl group Chemical group 0.000 claims description 13
- 238000002360 preparation method Methods 0.000 claims description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 11
- 229910052744 lithium Inorganic materials 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- 229910052736 halogen Inorganic materials 0.000 claims description 8
- 150000002367 halogens Chemical class 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims description 7
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 7
- 150000004820 halides Chemical class 0.000 claims description 6
- 229910052711 selenium Inorganic materials 0.000 claims description 6
- 239000011669 selenium Substances 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 5
- 125000000923 (C1-C30) alkyl group Chemical group 0.000 claims description 4
- 125000006376 (C3-C10) cycloalkyl group Chemical group 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 125000001979 organolithium group Chemical group 0.000 claims description 4
- 150000002900 organolithium compounds Chemical class 0.000 claims description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- 125000004450 alkenylene group Chemical group 0.000 claims description 2
- 125000002947 alkylene group Chemical group 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 29
- 239000000463 material Substances 0.000 abstract description 19
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 239000012776 electronic material Substances 0.000 abstract description 8
- 238000011161 development Methods 0.000 abstract description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 17
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 16
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 7
- 238000005160 1H NMR spectroscopy Methods 0.000 description 6
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 5
- -1 benzodithiophene compound Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- CMZHFIPCSRETSP-UHFFFAOYSA-N n,n-dimethylthiophene-3-carboxamide Chemical compound CN(C)C(=O)C=1C=CSC=1 CMZHFIPCSRETSP-UHFFFAOYSA-N 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 4
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000005677 ethinylene group Chemical group [*:2]C#C[*:1] 0.000 description 3
- 150000002642 lithium compounds Chemical class 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- GSXCEVHRIVLFJV-UHFFFAOYSA-N thiophene-3-carbonitrile Chemical compound N#CC=1C=CSC=1 GSXCEVHRIVLFJV-UHFFFAOYSA-N 0.000 description 3
- YNVOMSDITJMNET-UHFFFAOYSA-N thiophene-3-carboxylic acid Chemical compound OC(=O)C=1C=CSC=1 YNVOMSDITJMNET-UHFFFAOYSA-N 0.000 description 3
- XCMISAPCWHTVNG-UHFFFAOYSA-N 3-bromothiophene Chemical compound BrC=1C=CSC=1 XCMISAPCWHTVNG-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 2
- 235000019439 ethyl acetate Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- CCEVCNMGRIHQHN-UHFFFAOYSA-N C[n](cc1)c2c1[o]c(C(c1c3[o]c4c1[n](C)cc4)=S)c2C3=S Chemical compound C[n](cc1)c2c1[o]c(C(c1c3[o]c4c1[n](C)cc4)=S)c2C3=S CCEVCNMGRIHQHN-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- YIIMEMSDCNDGTB-UHFFFAOYSA-N Dimethylcarbamoyl chloride Chemical compound CN(C)C(Cl)=O YIIMEMSDCNDGTB-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- AERJHXFNKODHEL-UHFFFAOYSA-N S=C(c1c2[o]c3c1[nH]cc3)c([o]c1c3[nH]cc1)c3C2=S Chemical compound S=C(c1c2[o]c3c1[nH]cc3)c([o]c1c3[nH]cc1)c3C2=S AERJHXFNKODHEL-UHFFFAOYSA-N 0.000 description 1
- YQWKZGQWSBXFLX-UHFFFAOYSA-N S=C(c1c2[o]c3c1[o]cc3)c([o]c1c3[o]cc1)c3C2=S Chemical compound S=C(c1c2[o]c3c1[o]cc3)c([o]c1c3[o]cc1)c3C2=S YQWKZGQWSBXFLX-UHFFFAOYSA-N 0.000 description 1
- AQVGZRRDZVDZLV-UHFFFAOYSA-N S=C(c1c2[s]c3c1S=C3)c([s]c1c3[s]cc1)c3C2=S Chemical compound S=C(c1c2[s]c3c1S=C3)c([s]c1c3[s]cc1)c3C2=S AQVGZRRDZVDZLV-UHFFFAOYSA-N 0.000 description 1
- JCOBAMSSIZKJMJ-UHFFFAOYSA-N S=C(c1c2[s]c3c1[s]cc3)c([s]c1c3[s]cc1)c3C2=S Chemical compound S=C(c1c2[s]c3c1[s]cc3)c([s]c1c3[s]cc1)c3C2=S JCOBAMSSIZKJMJ-UHFFFAOYSA-N 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 150000001602 bicycloalkyls Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- OPHUWKNKFYBPDR-UHFFFAOYSA-N copper lithium Chemical compound [Li].[Cu] OPHUWKNKFYBPDR-UHFFFAOYSA-N 0.000 description 1
- DOBRDRYODQBAMW-UHFFFAOYSA-N copper(i) cyanide Chemical compound [Cu+].N#[C-] DOBRDRYODQBAMW-UHFFFAOYSA-N 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical group 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- QTWBEVAYYDZLQL-UHFFFAOYSA-N thiophene-3-carbonyl chloride Chemical compound ClC(=O)C=1C=CSC=1 QTWBEVAYYDZLQL-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/22—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/22—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/22—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D517/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms
- C07D517/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms in which the condensed system contains two hetero rings
- C07D517/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D517/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms
- C07D517/22—Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms in which the condensed system contains four or more hetero rings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6574—Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6576—Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
본 발명은 유기 전자재료 OLED, OPV, OTFT의 기본재료 물질로 사용되는 헤테로 융합고리 화합물의 새로운 제조방법에 관한 것으로, 본 발명에 따른 4, 8-다이온-벤조디티오펜 유도체의 제조방법은 길만시약 존재 하에 탄소-탄소 짝지음 반응을 시킴으로 인해 반응의 공정을 대폭 축소하고 그에 따라 반응 수율을 월등히 높이는 효과를 가져온다. 또한 본 발명에 따른 4, 8-다이온-벤조디티오펜 유도체들은 유기 전자재료 OLED, OPV, OTFT의 기본재료 물질로 유용하게 사용되며, OLED, OPV, OTFT등 유기 전자재료의 개발 및 제조에 있어서 시간 및 비용을 절감할 수 있는 효과를 가져올 수 있다.The present invention relates to a novel process for preparing a hetero-fused ring compound which is used as a basic material material for organic electronic materials OLED, OPV and OTFT, and a process for producing a 4,8-poly-ion-benzodithiophene derivative according to the present invention, The carbon-carbon pairing reaction in the presence of the reagent causes the reaction process to be greatly reduced and the reaction yield to be greatly improved. Also, the 4,8-poly-ion-benzodithiophene derivatives according to the present invention are usefully used as a basic material material for organic electronic materials OLED, OPV and OTFT. In the development and manufacture of organic electronic materials such as OLED, OPV and OTFT Time and cost can be reduced.
Description
본 발명은 유기 전자재료 OLED, OPV, OTFT의 기본재료 물질로 사용되는 헤테로 융합고리 화합물의 새로운 제조방법에 관한 것이다.The present invention relates to a novel process for producing a hetero-fused ring compound which is used as a basic material material for organic electronic materials OLED, OPV and OTFT.
21세기 정보통신의 발달과 개인 휴대용 통신기기에 대한 욕구는 크기가 작고, 중량이 가볍고, 두께가 얇고, 사용하기 편리한 정보통신기기를 가능하게 하는 초미세 가공, 초고집적회로를 제작할 수 있는 고성능 전기전자재료, 신개념의 디스플레이를 가능케 하는 새로운 정보통신 재료를 필요로 하고 있다. The development of information communication in the 21st century and the desire for personal portable communication devices are required for ultra-fine processing that enables information communication devices that are small in size, light in weight, thin in thickness, and easy to use, Electronic materials, and new information communication materials that enable new concept display.
최근, 유기 반도체 재료를 이용한 유기 박막 트랜지스터가 활발하게 연구 및 개발되고 있다. 유기 반도체 재료는 웨트 공정, 예컨대 인쇄, 스핀 코팅 등과 같은 용이한 공정에 의해 용이하게 박막으로 형성할 수 있다. 유기반도체 재료를 이용한 박막 트랜지스터는 또한 무기 반도체 재료를 이용한 박막 트랜지스터에 비해 제조 공정 온도를 낮출 수 있다는 이점이 있다. 따라서, 일반적으로 내열성이 낮은 플라스틱 기판 상에 막을 증착시킬 수 있어, 디스플레이 소자와 같은 전자 소자를 경량화시키고 저비용화할 수 있다. 또한, 플라스틱 기판의 유연성의 이점을 살려 전자 소자를 폭넓게 사용할 수 있을 것으로 기대된다.Recently, organic thin film transistors using organic semiconductor materials have been actively studied and developed. The organic semiconductor material can be easily formed into a thin film by a wet process, such as an easy process such as printing, spin coating and the like. The thin film transistor using the organic semiconductor material also has an advantage that the manufacturing process temperature can be lowered compared with the thin film transistor using the inorganic semiconductor material. Therefore, it is possible to deposit a film on a plastic substrate, which is generally low in heat resistance, so that an electronic device such as a display device can be lightened and reduced in cost. In addition, it is expected that a wide range of electronic devices can be used by taking advantage of the flexibility of the plastic substrate.
지금까지, 저분자 화합물의 유기 반도체 재료로서 펜타센과 같은 아센계 재료가 보고되어 있다(특허문헌 1 및 비특허문헌 1). 유기 반도체 층에 펜타센을 이용한 유기 박막 트랜지스터는 비교적 높은 전계 효과 이동도를 갖는 것으로 보고되어 있다. 그러나, 아센계 재료는 범용 용매에 대한 용해성이 매우 낮다. 따라서, 이러한 아센계 재료를 유기 박막 트랜지스터의 얇은 유기 반도체 층의 형성에 사용하는 경우, 진공 증착 단계를 실시할 필요가 있다. 즉, 코팅, 인쇄 등과 같은 용이한 공정에 의해 박막을 증착시킬 수 없어, 아센계 재료는 유기 반도체 재료에 대한 기대를 항상 충족시키지는 않는다.Up to now, an acetylene-based material such as pentacene has been reported as an organic semiconductor material of a low-molecular compound (Patent Document 1 and Non-Patent Document 1). Organic thin film transistors using pentacene in the organic semiconductor layer have been reported to have a relatively high field effect mobility. However, acetylene-based materials have very low solubility in general-purpose solvents. Therefore, when such an acetylene-based material is used for forming a thin organic semiconductor layer of an organic thin film transistor, it is necessary to perform a vacuum deposition step. That is, the thin film can not be deposited by an easy process such as coating, printing, and the like, and the acetene-based material does not always meet the expectation for the organic semiconductor material.
최근에는 비치환 벤조디티오펜 및 벤조디셀레노펜 기재 분자의 유기 박막 반도체로서의 용도가 발견되었다(비특허문헌 2).Recently, there has been found a use of unsubstituted benzodithiophenes and benzodiselenophene-based molecules as organic thin film semiconductors (Non-Patent Document 2).
그러나 기존의 방법으로는 출발물질로부터 총 5단계의 공정을 거쳐 벤조디티오펜화합물을 제조하게 되고, 각 단계의 공정마다 물질을 합성 및 정제하는 과정에서 합성 수율이 많이 떨어지게 되는 한계점이 있었다. However, in the conventional method, a benzodithiophene compound is produced through a total of five steps from the starting material, and there is a limit in that the synthesis yield is greatly reduced in the course of synthesizing and purifying a substance in each step.
본 발명의 목적은 유기 전자재료물질로 유용하게 사용되는 헤테로 융합고리 화합물의 제조방법에 있어서 반응공정이 단순하고 반응수율이 높아 경제성이 있는 헤테로 융합고리 화합물의 신규한 제조방법을 제공하는 것이다.An object of the present invention is to provide a novel process for producing a hetero-fused ring compound which is economical because of a simple reaction process and a high reaction yield in a process for producing a hetero-fused ring compound useful as an organic electronic material.
본 발명은 하기 화학식 2의 화합물을 유기리튬 화합물 및 할라이드구리와 반응시켜 하기 화학식 3의 길만시약 화합물을 제조하는 단계; 및The present invention relates to a process for preparing a Gilman reagent compound represented by the following formula (3) by reacting a compound represented by the following formula (2) with an organic lithium compound and halide copper: And
하기 화학식 3의 길만시약 화합물과 하기 화학식 4의 화합물을 탄소-탄소 짝지음 반응시켜 하기 화학식 5의 화합물을 제조하는 단계;를 포함하는 하기 화학식 1의 헤테로 융합고리 화합물의 제조방법을 제공한다.Reacting a Gilman reagent represented by the following formula (3) with a compound represented by the following formula (4) by a carbon-carbon coupling reaction to prepare a compound of the following formula (5).
[화학식 2](2)
[화학식 3](3)
[화학식 4][Chemical Formula 4]
[화학식 5][Chemical Formula 5]
[화학식 1][Chemical Formula 1]
상기 화학식에서 R1 내지 R2는 수소, 할로겐, (C1-C30)알킬, (C6-C30)아릴, (C3-C30)헤테로아릴, (C3-C30)시클로알킬, 5원 내지 7원의 헤테로시클로알킬, 시아노, 나이트로 또는 하이드록시이거나, 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C2-C30)알킬렌 또는 (C2-C30)알케닐렌으로 연결되어 융합고리를 형성할 수 있으며, 상기 형성된 융합고리의 탄소 원자는 질소, 산소, 셀레늄 및 황으로부터 선택되는 하나 이상의 헤테로원자로 치환될 수 있고; X1 내지 X2는 할로겐이며; Y1은 S, Se, O, NR11, 또는 SiR12R13이고; Z는 S, Se, O 또는 NR14이며; A는 NR15R16, SiR17R18R19, SR20 또는 OR21이고; R11 내지 R21은 각각 독립적으로 수소, 할로겐, (C1-C30)알킬, (C6-C30)아릴, (C3-C30)헤테로아릴, 5원 내지 7원의 헤테로시클로알킬 또는 (C3-C30)시클로알킬이며; 상기 헤테로시클로알킬 및 헤테로아릴은 B, N, O, S, P(=O), Si 및 P로부터 선택된 하나 이상의 헤테로원자를 포함한다.Wherein R 1 to R 2 are independently selected from the group consisting of hydrogen, halogen, (C 1 -C 30) alkyl, (C 6 -C 30) aryl, (C 3 -C 30) heteroaryl, (C 3 -C 30) cycloalkyl, (C2-C30) alkylene or (C2-C30) alkenylene which may or may not be fused with an adjacent substituent to form a fused ring, The carbon atom of the fused ring formed may be substituted with one or more heteroatoms selected from nitrogen, oxygen, selenium and sulfur; X 1 to X 2 are halogen; Y 1 is S, Se, O, NR 11 , or SiR 12 R 13 ; Z is S, Se, O or NR 14 ; A is NR 15 R 16 , SiR 17 R 18 R 19 , SR 20 or OR 21 ; R 11 to R 21 are each independently selected from the group consisting of hydrogen, halogen, (C 1 -C 30) alkyl, (C 6 -C 30) aryl, (C 3 -C 30) heteroaryl, 5-7 membered heterocycloalkyl, Cycloalkyl; Wherein said heterocycloalkyl and heteroaryl comprise at least one heteroatom selected from B, N, O, S, P (= O), Si and P.
본 발명에 기재된 「알킬」 및 그 외 「알킬」부분을 포함하는 치환체는 직쇄 또는 분쇄 형태를 모두 포함하고, 「시클로알킬」은 단일 고리계 뿐만 아니라 아다만틸 또는 (C7-C30)바이시클로알킬과 같은 여러 고리계 탄화수소도 포함한다. 본 발명에 기재된 「아릴」은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 각 고리에 적절하게는 4 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합고리계를 포함하며, 다수개의 아릴이 단일결합으로 연결되어 있는 형태까지 포함한다. 본 발명에 기재된 「헤테로아릴」은 방향족 고리 골격 원자로서 B, N, O, S, P(=O), Si 및 P로부터 선택되는 1 내지 4개의 헤테로원자를 포함하고 나머지 방향족 고리 골격 원자가 탄소인 아릴 그룹을 의미하는 것으로, 5 내지 6원 단환 헤테로아릴, 및 하나 이상의 벤젠 환과 축합된 다환식 헤테로아릴이며, 부분적으로 포화될 수도 있다. 또한, 본 발명에서의 헤테로아릴은 하나 이상의 헤테로아릴이 단일결합으로 연결된 형태도 포함한다. The term " alkyl " and other substituents comprising the " alkyl " moiety of the present invention encompass both linear and branched forms, and " cycloalkyl " refers to adamantyl or (C7-C30) bicycloalkyl As well as various cyclic hydrocarbons. &Quot; Aryl " in the present invention means an organic radical derived from an aromatic hydrocarbon by one hydrogen elimination and is a single or fused ring containing 4 to 7, preferably 5 or 6 ring atoms, And includes a form in which a plurality of aryls are connected by a single bond. Heteroaryl " as used in the present invention includes 1 to 4 hetero atoms selected from B, N, O, S, P (= O), Si and P as aromatic ring skeletal atoms and the remaining aromatic ring skeletal atoms are carbon An aryl group, a 5- to 6-membered monocyclic heteroaryl, and a polycyclic heteroaryl condensed with one or more benzene rings, and may be partially saturated. The heteroaryl in the present invention also includes a form in which one or more heteroaryl is connected to a single bond.
보다 상세하게 상기 R1 내지 R2는 수소, 할로겐, (C1-C10)알킬, (C6-C18)아릴, (C3-C18)헤테로아릴, (C3-C10)시클로알킬, 5원 내지 7원의 헤테로시클로알킬, 시아노, 나이트로 또는 하이드록시이거나, 로 연결되어 융합고리를 형성할 수 있고; X1 내지 X2는 할로겐이며; Y1은 S, Se, O, NR11, 또는 SiR12R13이고; Z는 S, Se, O 또는 NR14이며; A는 NR15R16이고; Y11은 C, S, Se, O, 또는 NR22이며; R11 내지 R16 및 R22는 각각 독립적으로 수소, 할로겐, (C1-C10)알킬 또는 (C6-C18)아릴이고; 상기 헤테로시클로알킬 및 헤테로아릴은 B, N, O, S, P(=O), Si 및 P로부터 선택된 하나 이상의 헤테로원자를 포함한다.More specifically, R 1 to R 2 are independently selected from the group consisting of hydrogen, halogen, (C 1 -C 10) alkyl, (C 6 -C 18) aryl, (C 3 -C 18) heteroaryl, (C 3 -C 10) cycloalkyl, Heterocycloalkyl, cyano, nitro, or hydroxy, To form a fused ring; X 1 to X 2 are halogen; Y 1 is S, Se, O, NR 11 , or SiR 12 R 13 ; Z is S, Se, O or NR 14 ; A is NR 15 R 16 and; Y 11 is C, S, Se, O, or NR 22 ; R 11 to R 16 and R 22 are each independently hydrogen, halogen, (C 1 -C 10) alkyl or (C 6 -C 18) aryl; Wherein said heterocycloalkyl and heteroaryl comprise at least one heteroatom selected from B, N, O, S, P (= O), Si and P.
본 발명에 있어서, 길만시약은 (R21)2CuLi의 구조를 가지는 것으로써, 탄소-탄소 짝지음 반응을 유발하는 특징을 가지고 있다. In the present invention, the Gilman reagent has a structure of (R 21 ) 2 CuLi, and is characterized by causing a carbon-carbon pairing reaction.
상기 R21은 (C1-C10)알킬, (C6-C18)아릴 또는 (C3-C18)헤테로아릴일 수 있다.The R 21 may be (C 1 -C 10) alkyl, (C 6 -C 18) aryl or (C 3 -C 18) heteroaryl.
본 발명은 헤테로 융합고리 화합물의 제조에 있어서 할라이드헤테로고리 화합물을 유기리튬 화합물 및 할라이드구리와 먼저 반응시켜 길만시약 화합물로 제조하고, 제조된 길만시약 화합물을 이용하여 탄소-탄소 짝지음 반응을 유발함으로써 기존에 비해 헤테로 융합고리 화합물의 제조 공정단계가 월등히 간편해 짐에 따라 반응 수율도 높일 수 있는 효과가 나타남을 발견하고 본 발명을 완성하게 되었다. The present invention relates to a process for producing a hetero-fused ring compound by first reacting a halide heterocyclic compound with an organolithium compound and halide copper to prepare a Gilman reagent compound and causing a carbon-carbon coupling reaction using the prepared Gilman reagent compound The present inventors have found that the present invention has the effect of increasing the reaction yield as the manufacturing process steps of the hetero-fused ring compound are far simpler than those of the prior art.
본 발명에 따르는 길만시약 화합물의 제조는 -80 내지 -60℃에서 수행될 수 있으며, 보다 상세하게 -80 내지 -60℃의 유기용매 존재 하에 상기 화학식 2의 할라이드헤테로고리 화합물과 유기리튬화합물을 먼저 반응시킨 후, 할라이드구리를 투입하여 본 발명에 따르는 길만시약 화합물을 제조할 수 있다. 본 발명의 일 실시예에 있어서 상기 유기리튬 화합물은 화합물의 말단에 리튬이 치환된 유기화합물이라면 제한없이 사용 가능하지만, 본 발명의 일 실시예에 있어서 n-부틸리튬(n-BuLi)을 사용할 수 있다. 본 발명의 일 실시예에 있어서 상기 할라이드구리는 요오드화구리(CuI)를 사용할 수 있다. The preparation of the Gilman reagent compound according to the present invention can be carried out at -80 to -60 占 폚. More specifically, in the presence of an organic solvent at -80 to -60 占 폚, the halide heterocyclic compound of Formula 2 and the organolithium compound are firstly After the reaction, the halide copper compound may be added to prepare the Gilman reagent compound according to the present invention. In one embodiment of the present invention, the organic lithium compound can be used without limitation as long as it is an organic compound in which lithium is substituted at the terminal of the compound. In an embodiment of the present invention, n-butyllithium (n-BuLi) have. In one embodiment of the present invention, the halide copper may be copper iodide (CuI).
본 발명은 길만시약 화합물을 반응에 참여시킴으로써 기존에 5단계의 공정으로 제조되던 헤테로 융합고리 화합물의 제조를 3단계로 줄여서 제조할 수 있게 되고, 반응 공정이 짧고 간편해짐에 따라 목적 화합물의 수율을 월등히 높일 수 있는 효과를 가져온다. The present invention enables the production of a hetero-fused ring compound, which has been produced by a five-stage process, by reducing the production of the hetero-fused ring compound into three steps by participating in the reaction of the Gilman reagent compound. As the reaction process becomes short and simple, The effect can be greatly increased.
본 발명에 따라 상기 화학식 3의 길만시약 화합물과 상기 화학식 4의 화합물을 탄소-탄소 짝지음 반응시켜 상기 화학식 5의 화합물을 제조하는 단계는 -80 내지 30℃에서 12 내지 20시간동안 수행될 수 있으며, 보다 상세하게는 -80 내지 30℃에서 13 내지 18시간동안 수행되는 것이 반응의 수율을 높이고 과반응되어 불순물이 생기지 않아서 좋을 수 있다.According to the present invention, the step of preparing a compound of Formula 5 by carbon-carbon coupling reaction between the Gilman reagent of Formula 3 and the compound of Formula 4 may be performed at -80 to 30 ° C for 12 to 20 hours , And more specifically, at -80 to 30 캜 for 13 to 18 hours may increase the yield of the reaction, and may be undesirable due to over-reaction.
상기 화학식 3의 길만시약 화합물과 화학식 4의 화합물의 반응은 상기 화학식 3의 길만시약 화합물과 화학식 4의 화합물을 1: 2 내지 10의 몰(mol)비로 투입하여 반응시킬 수 있다. 상기 화학식 5의 화합물에 제조에 있어서 상기 화학식 4의 화합물이 길만시약 화합물 1몰에 대하여 2몰 미만으로 투입이 되는 경우 상기 길만시약 화합물의 리튬(Li)이온이 본 발명에서 원하는 위치에 반응하여 결합하지 않아 본 발명의 범주에 벗어나는 부산물이 생성될 수 있으며, 그에 따라 반응 수율이 낮아지는 점이 발생할 수 있다. The reaction between the Gilman reagent compound of Formula 3 and the compound of Formula 4 can be carried out by introducing the Gilman reagent compound of Formula 3 and the compound of Formula 4 at a molar ratio of 1: 2 to 10. When the compound of Formula 5 is added to the compound of Formula 5 at a molar ratio of less than 2 moles per mole of the Gilman reagent compound, the lithium (Li) ion of the Gilman reagent compound reacts at a desired position in the present invention, By-products which fall outside the scope of the present invention may be generated, and accordingly, the reaction yield may be lowered.
본 발명에 따라 길만시약 화합물의 존재 하에 제조된 상기 화학식 5의 화합물은 유기리튬시약의 존재하에 반응시켜 상기 화학식 1의 헤테로 융합고리 화합물로 제조될 수 있다. 상기 유기리튬시약은 말단에 리튬이 치환된 (C1-C10)알킬또는 (C3-C10)시클로알킬의 구조를 가지는 화합물이라면 제한 없이 사용할 수 있으며, 본 말명의 일 실시예에 있어서 유기리튬시약으로 노말부틸리튬(n-BuLi)을 사용할 수 있다.The compound of formula (5) prepared in the presence of a Gilman reagent compound according to the present invention may be prepared by reacting the compound of formula (5) in the presence of an organolithium reagent to form the hetero-fused ring compound of formula (1). The organic lithium reagent can be used without limitation as long as it is a compound having a structure of (C1-C10) alkyl or (C3-C10) cycloalkyl substituted at the end with lithium. In one embodiment, Butyl lithium (n-BuLi) can be used.
상기 유기리튬시약은 상기 화학식 5의 화합물 1몰에 대하여 0.5 내지 2몰 투입하여 반응에 참여될 수 있다. 유기리튬시약이 과량 첨가될 경우 과반응에 의해 부산물이 생성되어 반응 수율이 감소할 수 있고, 유기리튬시약이 소량 첨가되는 경우 반응공정시간이 길어지게 되는 점이 발생할 수 있다. The organic lithium reagent may be added to the reaction by adding 0.5 to 2 moles of the organic lithium reagent to 1 mole of the compound of the formula (5). When the organic lithium reagent is added in an excessive amount, by-products may be formed due to excessive reaction, and the reaction yield may be decreased. When a small amount of the organic lithium reagent is added, the reaction process time may be prolonged.
본 발명에 있어서 상기 화학식 5의 화합물과 유기리튬시약의 반응은 상온의 할라이드가 포함되지 않은 유기용매라면 제한 없이 사용할 수 있으며, 보다 상세하게는 테트라하이드로퓨란(THF), 디에틸에테르(ether), 헥산(Hexane), 사이클로헥산(Cyclohexane), 톨루엔(Toluene) 또는 이들의 혼합용매 하에서 수행되는 것을 특징으로 하며, 예를 들면 상온의 테트라하이드로퓨란(THF)용매 하에서 수행할 수 있다.In the present invention, the reaction between the compound of Chemical Formula 5 and the organic lithium reagent can be carried out without any limitation as long as the organic solvent does not contain a halide at room temperature. More specifically, tetrahydrofuran (THF), diethyl ether, The reaction is carried out in a solvent such as hexane (Hexane), cyclohexane, toluene or a mixed solvent thereof, for example, in a tetrahydrofuran (THF) solvent at room temperature.
본 발명에 따른 헤테로 융합고리 화합물의 제조방법은 할라이드헤테로고리 화합물을 유기리튬 화합물 및 할라이드구리와 반응시켜 길만시약 화합물을 제조하여 반응에 투입시킴으로 인해 반응의 공정을 대폭 축소하고 그에 따라 기존에 15% 미만이었던 헤테로 융합고리 화합물의 제조 수율을 35 내지 70%로 높이는 효과를 가져올 수 있다. The method of preparing a hetero-fused ring compound according to the present invention is a method of producing a hetero-fused ring compound by reacting a halide heterocyclic compound with an organic lithium compound and halide copper to prepare a Gilman reagent compound and introducing it into the reaction, The yield of the hetero-fused ring compound can be increased to 35 to 70%.
본 발명의 제조방법에 따라 제조된 헤테로 융합고리 화합물 화합물은 대표적으로 하기의 화합물을 들 수 있으나 이에 한정되는 것은 아니다.The hetero-fused ring compound prepared by the process of the present invention may be represented by the following compounds, but is not limited thereto.
본 발명에 따른 헤테로 융합고리 화합물의 제조방법은 제조 공정에 있어서 길만시약 화합물을 먼저 제조하고, 제조된 길만시약 화합물을 직접 반응에 참여시킴으로써 반응의 공정을 대폭 축소하고 그에 따라 반응 수율을 월등히 높이는 효과를 가져온다. The method for producing a hetero-fused ring compound according to the present invention is characterized in that a Gilman reagent compound is first prepared in the manufacturing process, and the produced Gilman reagent compound is directly involved in the reaction, thereby greatly reducing the reaction process and significantly increasing the reaction yield Lt; / RTI >
또한 본 발명에 따른 헤테로 융합고리 화합물들은 유기 전자재료 OLED, OPV, OTFT의 기본재료 물질로 유용하게 사용되며, OLED, OPV, OTFT등 유기 전자재료의 개발 및 제조에 있어서 시간 및 비용을 절감할 수 있는 효과를 가져온다. Also, the hetero-fused ring compounds according to the present invention are useful as basic material materials for organic electronic materials OLED, OPV and OTFT and can save time and cost in the development and manufacture of organic electronic materials such as OLED, OPV and OTFT Brings the effect.
도 1은 하기 실시예 1의 단계 2에서 제조된 화합물의 1H NMR 스펙트럼이다.Figure 1 is a 1 H NMR spectrum of the compound prepared in Step 2 of Example 1 below.
이하에서, 본 발명의 상세한 이해를 위하여 본 발명의 대표 화합물을 실시예 및 비교예를 들어 상세하게 설명하겠는바, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석 되어져서는 안된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다.For a better understanding of the present invention, representative compounds of the present invention will be described in detail with reference to Examples and Comparative Examples. However, the embodiments according to the present invention can be modified into various other forms, Should not be construed as being limited to the embodiments described below. The embodiments of the present invention are provided to enable those skilled in the art to more fully understand the present invention.
[실시예 1] 4, 8-다이온-벤조디티오펜의 제조[Example 1] Preparation of 4,8-dione-benzodithiophene
단계 1) Dithiophenecopperlithium 제조 Step 1) Preparation of Dithiophenecopperlithium
250 mL 삼구 둥근 바닥 플라스크에 3-bromothiophene (10.0 g, 61.33 mmol)를 넣고 ether(150 ml) 에 녹였다. 온도를 78℃로 낮추고 노말부틸리튬(n-BuLi) (2.5 M in hexane, 26.98 mL, 67.46 mmol)을 천천히 적가하였다. 질소 기류 하에서 40 분 동안 교반한 다음 copper(I) iodide (5.84 g, 30.66 mmol)을 여러 번 나눠서 넣어주었다. 질소 기류 하에서 온도를 78℃를 유지하면서 1시간동안 교반하여 dithiophenecopperlithium의 구조를 가지는 길만시약 화합물(14.4g, 95%)을 제조하였고, 길만시약 화합물의 제조 후 다음 단계로 진행하기까지 -78 ℃를 유지하여 주었다. 3-bromothiophene (10.0 g, 61.33 mmol) was added to a 250 mL three-neck round bottom flask and dissolved in ether (150 mL). The temperature was lowered to 78 ° C and normal butyl lithium (n-BuLi) (2.5 M in hexane, 26.98 mL, 67.46 mmol) was slowly added dropwise. The mixture was stirred under a nitrogen stream for 40 minutes and then copper (I) iodide (5.84 g, 30.66 mmol) was added several times. (14.4 g, 95%) having a structure of dithiophenecopperlithium was prepared by stirring for 1 hour while maintaining the temperature at 78 ° C. under a nitrogen gas stream. After the preparation of the Gilman reagent compound, the reaction was carried out at -78 ° C. .
1H NMR (300MHz, CDCl3) δ 7.52-7.50 (dd, 2 H, J=2.93, 1.24 ㎐), 7.32-7.29 (dd, 2 H, J=5.01, 2.95㎐), 7.22-7.20 (dd, 2H, J=4.99, 1.23 Hz) 1 H NMR (300MHz, CDCl 3) δ 7.52-7.50 (dd, 2 H, J = 2.93, 1.24 ㎐), 7.32-7.29 (dd, 2 H, J = 5.01, 2.95㎐), 7.22-7.20 (dd, 2H, J = 4.99, 1.23 Hz)
단계 2) N,N-Dimethylthiophene-3-carboxamide 제조 Step 2) Preparation of N, N-Dimethylthiophene-3-carboxamide
500 mL 삼구 둥근 바닥 플라스크에 dimethylcarbamyl chloride (7.59 g, 70.53 mmol)을 넣고 ehter (200 mL)에 녹이고 온도를 78℃로 내려주었다. 상기 단계1에서 제조한 길만시약 화합물 (14.4g, 95%)을 78℃를 유지하면서 적가해주었다. 이때 케뉼러 바늘이나, 주사기를 이용하였다. 그 후에 온도를 78℃로 10분 유지하고 천천히 실온으로 올려서 14시간 교반하였다. Ether로 추출하고 유기층을 물로 씻어준 다음 MgSO4로 건조시킨 후 회전식 증발기를 사용하여 용매를 제거하였다. n-Hexane/EtOAc(1/1)용매를 사용하여 컬럼 크로마토그래피로 분리해서 갈색 액체 화합물인 N,N-Dimethylthiophene-3-carboxamide (6.66g, 70%)를 수득하였고, 이에대한 1H NMR 스펙트럼을 하기 도 1에 나타내었다.Dimethylcarbamyl chloride (7.59 g, 70.53 mmol) was added to a 500 mL three-neck round bottom flask and dissolved in ehter (200 mL), and the temperature was lowered to 78 ° C. The Gilman reagent compound (14.4 g, 95%) prepared in the above step 1 was added dropwise thereto while maintaining 78 ° C. At this time, a cannula needle or a syringe was used. Thereafter, the temperature was maintained at 78 占 폚 for 10 minutes, slowly raised to room temperature, and stirred for 14 hours. Ether. The organic layer was washed with water, dried over MgSO4, and then the solvent was removed using a rotary evaporator. N, N-Dimethylthiophene-3-carboxamide (6.66 g, 70%) was obtained as a brown liquid compound by 1 H-NMR Is shown in Fig.
단계 3) 4,8- Dione - Benzodithiophene 의 제조 Step 3) Preparation of 4,8- Dione - Benzodithiophene
100 mL 이구 둥근 바닥 플라스크에 상기 단계 2에서 제조된 N,N-Dimethylthiophene-3-carboxamide (4 g, 25.77 mmol)을 넣고 THF (40 mL)에 녹였다. 실온에서 n-BuLi (2.5 M in hexane, 11.34 mL, 28.35 mmol)을 천천히 적가하였다. 질소 기류 하에서 10 분 동안 교반한 다음 물을 사용하여 반응을 종결시킨 후 올리브색 침전이 가라앉으면 유리거르개로 거른 다음 과량의 물과 THF로 씻은 후 건조시켜 노란 고체 화합물인 4,8-Dione-Benzodithiophene (5.05g, 89%)를 수득하였다. N, N-Dimethylthiophene-3-carboxamide (4 g, 25.77 mmol) prepared in Step 2 was added to a 100 mL two-neck round bottom flask and dissolved in THF (40 mL). N-BuLi (2.5 M in hexane, 11.34 mL, 28.35 mmol) was slowly added dropwise at room temperature. After stirring for 10 minutes under a nitrogen stream, the reaction was terminated using water. After the olive-colored precipitate had settled, it was filtered through a glass column, washed with excess water and THF, and dried to obtain a yellow solid compound, 4,8-Dione-Benzodithiophene 5.05 g, 89%).
EI, MS m/z (%): 220 (100, M+)EI, MS m / z (%): 220 (100, M < + &
1H-NMR (300 MHz, CDCl3):δ7.71-7.79 (d, 2 H, J=5.04㎐), 7.67-7.65 (d, 2 H, J=5.03㎐) 1 H-NMR (300 MHz, CDCl 3): δ7.71-7.79 (d, 2 H, J = 5.04㎐), 7.67-7.65 (d, 2 H, J = 5.03㎐)
13C-NMR (75 MHz, CDCl3): δ 174.5, 144.9, 142.8, 133.6, 126.6 13 C-NMR (75 MHz, CDCl 3 ):? 174.5, 144.9, 142.8, 133.6, 126.6
[비교예 1] 4, 8-다이온-벤조디티오펜의 제조[Comparative Example 1] Preparation of 4, 8-dione-benzodithiophene
단계 1) Thiophene -3- carbonitrile 제조 Step 1) Preparation of Thiophene- 3- carbonitrile
250 mL 이구 둥근 바닥 플라스크에 3-bromothiophene (10.0 g, 61.33 mmol)과 copper (Ⅰ) cyanide (13.73 g, 0.1534 mol)을 넣고 quinoline (100 mL) 에 녹였다. 질소 기류 하에서 2시간 동안 환류시킨 다음 실온으로 온도를 낮추고 CH2Cl2로 추출하였다. 유기층을 2 M HCl과 물로 씻어준 다음 MgSO4로 건조시킨 후 회전식 증발기를 사용하여 용매를 제거하였다. n-Hexane/EtOAc(5/1)용매를 사용하여 컬럼 크로마토그래피로 분리하여 노란색 고체 화합물인 Thiophene-3-carbonitrile을 4.08 g (61%)의 수득율로 얻었다.3-bromothiophene (10.0 g, 61.33 mmol) and copper (Ⅰ) cyanide (13.73 g, 0.1534 mol) were placed in a 250 mL two-neck round bottom flask and dissolved in quinoline (100 mL). The mixture was refluxed under a nitrogen stream for 2 hours, cooled to room temperature and extracted with CH 2 Cl 2 . The organic layer was washed with 2 M HCl and water, dried over MgSO 4, and then the solvent was removed using a rotary evaporator. n- Hexane / EtOAc (5/1) as the eluent to give 4.08 g (61%) of a yellow solid compound, Thiophene-3-carbonitrile.
1H-NMR (300 MHz, CDCl3): δ 7.92 - 7.91 (d, 1 H, J=3.05 ㎐), 7.42-7.39 (m, 1 H), 7.26 - 7.24 (d, 1H) 1 H-NMR (300 MHz, CDCl 3 ):? 7.92-7.91 (d, 1H, J = 3.05 Hz), 7.42-7.39
13C-NMR (75 MHz, CDCl3): δ 135.5, 128.7, 127.5, 115.2, 110.6 13 C-NMR (75 MHz, CDCl 3 ):? 135.5, 128.7, 127.5, 115.2, 110.6
EI, MS m/z(%) 109 (100, M+) EI, MS m / z (%) 109 (100, M < + &
단계 2) Thiophene-3-carboxylic acid 제조 Step 2) Preparation of thiophene-3-carboxylic acid
100 mL 이구 둥근 바닥 플라스크에 상기 단계 1에서 제조된 Thiophene-3-carbonitrile (10.00 g, 91.62 mmol)과 potassium hydroxide (23.13 g, 0.412 mol)을 넣고 ethylene glycol (170 mL)에 녹였다. 질소 기류 하에서 12시간 동안 환류시킨 다음 실온으로 온도를 낮추고 conc-HCl과 물을 첨가하여 반응을 종결시켰다. ether로 추출한 후 유기층을 물로 씻어준 다음 MgSO4로 건조시킨 후 회전식 증발기를 사용하여 용매를 제거하였다. 물을 사용해서 재결정하여 살구색 고체 화합물인 Thiophene-3-carboxylic acid를 10.56 g (89%)의 수득율로 얻었다.Thiophene-3-carbonitrile (10.00 g, 91.62 mmol) prepared in step 1 and potassium hydroxide (23.13 g, 0.412 mol) were placed in a 100 mL two-neck round bottom flask and dissolved in ethylene glycol (170 mL). The mixture was refluxed under a nitrogen stream for 12 hours, then cooled to room temperature, conc. HCl and water were added to terminate the reaction. ether. The organic layer was washed with water, dried over MgSO 4, and then the solvent was removed using a rotary evaporator. Recrystallization using water gave Thiophene-3-carboxylic acid, a pale green solid compound, at a yield of 10.56 g (89%).
1H-NMR (300 MHz, CDCl3): δ 8.25 (dd, 1 H, J=2.9, 1.2 ㎐), 7.54-7.49 (m, 2 H) 1 H-NMR (300 MHz, CDCl 3): δ 8.25 (dd, 1 H, J = 2.9, 1.2 ㎐), 7.54-7.49 (m, 2 H)
13C-NMR (75 MHz, CDCl3): δ 164.2, 135.1, 134.1, 129.0, 127.7 13 C-NMR (75 MHz, CDCl 3 ):? 164.2, 135.1, 134.1, 129.0, 127.7
EI, MS m/z (%):128.15 (100, M+)EI, MS m / z (%): 128.15 (100, M < + &
단계 3) Thiophene -3-carbonyl chloride 제조 Step 3) Preparation of thiophene-3-carbonyl chloride
250 mL 이구 둥근 바닥 플라스크에 상기 단계 2에서 제조된 Thiophene-3-carboxylic acid (10.00 g, 78.03 mmol)을 넣고 thionyl chloride (100 mL)에 녹였다. 질소 기류 하에서 6시간 동안 환류시킨 다음 실온으로 온도를 낮추고 회전식 증발기를 사용하여 용매를 제거한 뒤 정제 없이 어두운 갈색 고체 화합물을 얻었다. 정제없이 다음 반응에 사용하였다.Thiophene-3-carboxylic acid (10.00 g, 78.03 mmol) prepared in Step 2 was added to a 250 mL two-neck round bottom flask and dissolved in thionyl chloride (100 mL). The mixture was refluxed under a nitrogen stream for 6 hours, then cooled to room temperature, and the solvent was removed using a rotary evaporator to obtain a dark brown solid compound without purification. The following reaction was used without purification.
단계 4) N,N-Dimethylthiophene-3-carboxamide 제조 Step 4) Preparation of N, N-Dimethylthiophene-3-carboxamide
500 mL 이구 둥근 바닥 플라스크에 상기 단계 2에서 제조된 화합물 (10.00 g, 68.22 mmol)을 넣고 benzene (180 mL)에 녹였다. 실온에서 dimethylamine 과량(4당량)을 천천히 적가하였다. 질소 기류 하에서 12시간 동안 교반하였다. Ether로 추출하고 유기층을 물로 씻어준 다음 MgSO4로 건조시킨 후 회전식 증발기를 사용하여 용매를 제거하였다. n-Hexane/EtOAc(1/1)용매를 사용하여 컬럼 크로마토그래피로 분리해서 갈색 액체 화합물인 N,N-Dimethylthiophene-3-carboxamide를 4.44 g (42%)의 수득율로 얻었다. The compound prepared in Step 2 (10.00 g, 68.22 mmol) was added to a 500 mL two-neck round bottom flask and dissolved in benzene (180 mL). At room temperature an excess of dimethylamine (4 eq.) Was slowly added dropwise. The mixture was stirred for 12 hours under a stream of nitrogen. Ether. The organic layer was washed with water, dried over MgSO 4, and then evaporated using a rotary evaporator. n -Dimethylthiophene-3-carboxamide as a brown liquid compound was obtained in a yield of 4.44 g (42%) by column chromatography using n- Hexane / EtOAc (1/1) solvent.
1H-NMR (300 MHz, CDCl3):δ7.52-7.50 (dd, 1 H, J=2.93, 1.24 ㎐), 7.34-7.29 (dd, 1 H, J=5.01, 2.95㎐), 7.25-7.22 (dd 1H, J = 4.99, 1.23 Hz), 3.10 (s, 6H); 13C-NMR (75 MHz, CDCl3): δ 66.9, 136.9, 127.3, 126.4, 125.5 1 H-NMR (300 MHz, CDCl 3): δ7.52-7.50 (dd, 1 H, J = 2.93, 1.24 ㎐), 7.34-7.29 (dd, 1 H, J = 5.01, 2.95㎐), 7.25- 7.22 (dd 1H, J = 4.99, 1.23 Hz), 3.10 (s, 6H); 13 C-NMR (75 MHz, CDCl 3 ):? 66.9, 136.9, 127.3, 126.4, 125.5
EI, MS m/z (%): 155 (100, M+)EI, MS m / z (%): 155 (100, M < + &
단계 5) 4,8- Dione - Benzodithiophene 의 제조 Step 5) Preparation of 4,8- Dione - Benzodithiophene
100 mL 이구 둥근 바닥 플라스크에 상기 단계 4에서 제조된 N,N-Dimethylthiophene-3-carboxamide (4 g, 25.77 mmol)을 넣고 THF (40 mL)에 녹였다. 실온에서 n-BuLi (2.5 M in hexane, 11.34 mL, 28.35 mmol)을 천천히 적가하였다. 질소 기류 하에서 10 분 동안 교반한 다음 물을 사용하여 반응을 종결시킨 후 올리브색 침전이 가라앉으면 유리거르개로 거른 다음 과량의 물과 THF로 씻은 후 건조시켜 노란 고체 화합물인 4,8-Dione-Benzodithiophene (5.05g, 89%)를 수득하였다. N, N-Dimethylthiophene-3-carboxamide (4 g, 25.77 mmol) prepared in Step 4 was dissolved in THF (40 mL) into a 100 mL two-neck round bottom flask. N-BuLi (2.5 M in hexane, 11.34 mL, 28.35 mmol) was slowly added dropwise at room temperature. After stirring for 10 minutes under a nitrogen stream, the reaction was terminated using water. After the olive-colored precipitate had settled, it was filtered through a glass column, washed with excess water and THF, and dried to obtain a yellow solid compound, 4,8-Dione-Benzodithiophene 5.05 g, 89%).
1H-NMR (300 MHz, CDCl3):δ7.71-7.79 (d, 2 H, J=5.04㎐), 7.67-7.65 (d, 2 H, J=5.03㎐) 1 H-NMR (300 MHz, CDCl 3): δ7.71-7.79 (d, 2 H, J = 5.04㎐), 7.67-7.65 (d, 2 H, J = 5.03㎐)
13C-NMR (75 MHz, CDCl3): δ 174.5, 144.9, 142.8, 133.6, 126.6 13 C-NMR (75 MHz, CDCl 3 ):? 174.5, 144.9, 142.8, 133.6, 126.6
EI, MS m/z (%): 220 (100, M+)EI, MS m / z (%): 220 (100, M < + &
Claims (10)
하기 화학식 3의 길만시약 화합물과 하기 화학식 4의 화합물을 탄소-탄소 짝지음 반응시켜 하기 화학식 5의 화합물을 제조하는 단계; 및
상기 화학식 5의 화합물을 유기리튬시약의 존재하에 반응시켜 하기 화학식 1의 헤테로 융합고리 화합물을 제조하는 단계;를 포함하는 하기 화학식 1의 헤테로 융합고리 화합물의 제조방법.
[화학식 2]
[화학식 3]
[화학식 4]
[화학식 5]
[화학식 1]
[상기 화학식에서,
R1 내지 R2는 수소, (C1-C30)알킬, (C6-C30)아릴, (C3-C30)헤테로아릴, (C3-C30)시클로알킬 또는 5원 내지 7원의 헤테로시클로알킬이거나, 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C2-C30)알킬렌 또는 (C2-C30)알케닐렌으로 연결되어 융합고리를 형성할 수 있으며, 상기 형성된 융합고리의 탄소 원자는 질소, 산소, 셀레늄 및 황으로부터 선택되는 하나 이상의 헤테로원자로 치환될 수 있고;
X1 내지 X2는 할로겐이며;
Y1은 S, Se 또는 O이고;
Z는 S, Se 또는 O이며;
A는 NR15R16이고;
R15 및 R16은 각각 독립적으로 (C1-C30)알킬이며;
상기 헤테로시클로알킬 및 헤테로아릴은 B, N, O, S, P(=O), Si 및 P로부터 선택된 하나 이상의 헤테로원자를 포함한다.]
Reacting a compound of Formula 2 with an organolithium compound and halide copper to prepare a Gilman reagent compound of Formula 3;
Preparing a compound of Formula 5 by carbon-carbon coupling reaction of a Gilman reagent compound of Formula 3 and a compound of Formula 4 below; And
And reacting the compound of formula (5) in the presence of an organolithium reagent to prepare a hetero-fused ring compound of formula (1).
(2)
(3)
[Chemical Formula 4]
[Chemical Formula 5]
[Chemical Formula 1]
[In the formula,
R 1 to R 2 are hydrogen, (C 1 -C 30) alkyl, (C 6 -C 30) aryl, (C 3 -C 30) heteroaryl, (C 3 -C 30) cycloalkyl or 5- to 7- membered heterocycloalkyl, (C2-C30) alkylene or (C2-C30) alkenylene with or without a fused ring to form a fused ring, wherein the carbon atoms of the fused ring formed are selected from nitrogen, oxygen, selenium and Lt; / RTI > may be substituted with one or more heteroatoms selected from sulfur;
X 1 to X 2 are halogen;
Y 1 is S, Se or O;
Z is S, Se or O;
A is NR 15 R 16 and;
R 15 and R 16 are each independently (C 1 -C 30) alkyl;
Wherein said heterocycloalkyl and heteroaryl comprise at least one heteroatom selected from B, N, O, S, P (= O), Si and P.
상기 R1 내지 R2는 수소, (C1-C10)알킬, (C6-C18)아릴, (C3-C18)헤테로아릴, (C3-C10)시클로알킬 또는 5원 내지 7원의 헤테로시클로알킬이거나, 로 연결되어 융합고리를 형성할 수 있고;
X1 내지 X2는 할로겐이며;
Y1은 S, Se 또는 O이고;
Z는 S, Se 또는 O이며;
A는 NR15R16이고;
Y11은 C, S, Se, O, 또는 NR22이며;
R15, R16 및 R22는 각각 독립적으로 수소, (C1-C10)알킬 또는 (C6-C18)아릴이고;
상기 헤테로시클로알킬 및 헤테로아릴은 B, N, O, S, P(=O), Si 및 P로부터 선택된 하나 이상의 헤테로원자를 포함하는 것을 특징으로 하는 헤테로 융합고리 화합물의 제조방법.
The method according to claim 1,
Wherein R 1 to R 2 are hydrogen, (C 1 -C 10) alkyl, (C 6 -C 18) aryl, (C 3 -C 18) heteroaryl, (C 3 -C 10) cycloalkyl or 5- to 7- To form a fused ring;
X 1 to X 2 are halogen;
Y 1 is S, Se or O;
Z is S, Se or O;
A is NR 15 R 16 and;
Y 11 is C, S, Se, O, or NR 22 ;
R 15 , R 16 and R 22 are each independently hydrogen, (C 1 -C 10) alkyl or (C 6 -C 18) aryl;
Wherein said heterocycloalkyl and heteroaryl comprise at least one heteroatom selected from B, N, O, S, P (= O), Si and P.
상기 화학식 3의 길만시약 화합물의 제조는 -80 내지 -60℃에서 수행되는 것을 특징으로 하는 헤테로 융합고리 화합물의 제조방법.
The method according to claim 1,
Wherein the preparation of the Gilman reagent compound of Formula 3 is carried out at -80 to -60 < 0 > C.
상기 화학식 5의 화합물의 제조는 상기 화학식 3의 길만시약 화합물과 상기 화학식 4의 화합물을 1: 2 내지 10의 몰(mol)비로 반응시켜 제조되는 것을 특징으로 하는 헤테로 융합고리 화합물의 제조방법.
The method according to claim 1,
Wherein the compound of Formula 5 is prepared by reacting the Gilman reagent of Formula 3 with the compound of Formula 4 in a molar ratio of 1: 2 to 10.
상기 화학식 5의 화합물의 제조는 -80 내지 30℃에서 수행되는 것을 특징으로 하는 헤테로 융합고리 화합물의 제조방법.
The method according to claim 1,
Wherein the compound of formula (5) is carried out at -80 to < RTI ID = 0.0 > 30 C. < / RTI >
상기 유기리튬시약은 상기 화학식 5의 화합물 1몰에 대하여 0.5 내지 2몰 투입하는 것을 특징으로 하는 헤테로 융합고리 화합물의 제조방법.
The method according to claim 1,
Wherein the organolithium reagent is added in an amount of 0.5 to 2 moles per mole of the compound of the formula (5).
상기 유기리튬시약의 투입은 실온에서 수행되는 것을 특징으로 하는 헤테로 융합고리 화합물의 제조방법.
The method according to claim 1,
Wherein the organic lithium reagent is introduced at room temperature.
상기 유기리튬시약은 말단에 리튬이 치환된 (C1-C10)알킬또는 (C3-C10)시클로알킬인 것을 특징으로 하는 헤테로 융합고리 화합물의 제조방법.
The method according to claim 1,
Wherein said organolithium reagent is a (C1-C10) alkyl or (C3-C10) cycloalkyl substituted at the end with lithium.
상기 화학식 1의 헤테로 융합고리 화합물은 하기 화합물로부터 선택되는 것을 특징으로 하는 헤테로 융합고리 화합물의 제조방법.
The method according to claim 1,
Wherein the hetero-fused ring compound of Formula 1 is selected from the following compounds.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120055585A KR101424978B1 (en) | 2012-05-24 | 2012-05-24 | Novel method for preparing hetero fused ring compounds using gilman reagent compounds |
PCT/KR2012/004269 WO2013176325A1 (en) | 2012-05-24 | 2012-05-30 | Novel method for preparing fused heterocyclic compound using gilman reagent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120055585A KR101424978B1 (en) | 2012-05-24 | 2012-05-24 | Novel method for preparing hetero fused ring compounds using gilman reagent compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130131774A KR20130131774A (en) | 2013-12-04 |
KR101424978B1 true KR101424978B1 (en) | 2014-07-31 |
Family
ID=49623992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120055585A KR101424978B1 (en) | 2012-05-24 | 2012-05-24 | Novel method for preparing hetero fused ring compounds using gilman reagent compounds |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101424978B1 (en) |
WO (1) | WO2013176325A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102518835B1 (en) * | 2017-10-26 | 2023-04-05 | 엘지디스플레이 주식회사 | Organic compounds, lighe emitting diode and light emitting device having the compounds |
CN108192083B (en) * | 2018-01-02 | 2020-05-01 | 苏州大学 | Conjugated polymer containing trifluoromethyl as well as preparation method and application thereof |
CN114106007B (en) | 2019-01-18 | 2023-08-25 | 夏禾科技(江苏)有限公司 | Organic compound and electroluminescent device comprising same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070021055A (en) * | 2005-08-16 | 2007-02-22 | 메르크 파텐트 게엠베하 | Process for the polymerisation of thiophene or selenophene compounds |
KR20090021146A (en) * | 2006-03-10 | 2009-02-27 | 스미또모 가가꾸 가부시키가이샤 | Fused ring compound and method for producing same, polymer, organic thin film containing those, and organic thin film device and organic thin film transistor comprising such organic thin film |
KR20090033909A (en) * | 2006-07-26 | 2009-04-06 | 메르크 파텐트 게엠베하 | Substituted benzodithiophenes and benzodiselenophenes |
WO2010136401A2 (en) * | 2009-05-27 | 2010-12-02 | Basf Se | Polycyclic dithiophenes |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5164134B2 (en) * | 2006-03-10 | 2013-03-13 | 住友化学株式会社 | Fused ring compound and method for producing the same, polymer, organic thin film containing them, and organic thin film element and organic thin film transistor comprising the same |
JP5735418B2 (en) * | 2008-07-02 | 2015-06-17 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Poly (5,5'-bis (thiophen-2-yl) -benzo [2,1-b; 3,4-b '] dithiophene) and method for its use as a high performance solution capable of processing semiconductor polymers |
US8304512B2 (en) * | 2010-01-19 | 2012-11-06 | Xerox Corporation | Benzodithiophene based materials compositions |
-
2012
- 2012-05-24 KR KR1020120055585A patent/KR101424978B1/en active IP Right Grant
- 2012-05-30 WO PCT/KR2012/004269 patent/WO2013176325A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070021055A (en) * | 2005-08-16 | 2007-02-22 | 메르크 파텐트 게엠베하 | Process for the polymerisation of thiophene or selenophene compounds |
KR20090021146A (en) * | 2006-03-10 | 2009-02-27 | 스미또모 가가꾸 가부시키가이샤 | Fused ring compound and method for producing same, polymer, organic thin film containing those, and organic thin film device and organic thin film transistor comprising such organic thin film |
KR20090033909A (en) * | 2006-07-26 | 2009-04-06 | 메르크 파텐트 게엠베하 | Substituted benzodithiophenes and benzodiselenophenes |
WO2010136401A2 (en) * | 2009-05-27 | 2010-12-02 | Basf Se | Polycyclic dithiophenes |
Also Published As
Publication number | Publication date |
---|---|
KR20130131774A (en) | 2013-12-04 |
WO2013176325A1 (en) | 2013-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI620745B (en) | Method for producing aromatic compound | |
JP6080870B2 (en) | Organic semiconductor material for solution process and organic semiconductor device | |
US9076971B2 (en) | Spirobifluorene compounds | |
JP2014517820A (en) | Stannyl derivatives of naphthalene diimide and related compositions and methods | |
Ono et al. | Photooxidation and reproduction of pentacene derivatives substituted by aromatic groups | |
KR102362885B1 (en) | Synthetic method of fused heteroaromatic compound and fused heteroaromatic compound and intermediate therefor | |
CN113402561B (en) | High-color-purity platinum (II) complex luminescent material based on spirofluorene structure and application thereof | |
KR101424978B1 (en) | Novel method for preparing hetero fused ring compounds using gilman reagent compounds | |
JP5004071B2 (en) | Process for producing fused ring compound | |
JP5546142B2 (en) | Heterocyclic fused oligothiophene, method for producing the same, and polymer | |
KR102468876B1 (en) | Naphthobischalcogenadiazole derivatives and methods for their preparation | |
JP5147103B2 (en) | Method for synthesizing benzometall and novel diyne compound | |
KR101526169B1 (en) | Novel electron acceptor -donor-acceptor Naphthalene diimide compound and organic electronic device that contains it | |
KR101000784B1 (en) | Novel polyacene compounds substituted with dendron and organic thin film transistor using the same | |
CN113072417A (en) | Non-centrosymmetric nano graphene molecule based on triphenylene and preparation method thereof | |
JP2017190315A (en) | Boron-containing compound and application therefor | |
KR102564557B1 (en) | Synthetic method of fused heteroaromatic compound and fused heteroaromatic compound and intermediate therefor | |
KR20190083292A (en) | Organometallic iridium complex, synthetic method thereof, and organic light emitting device using the same | |
JP7241346B2 (en) | Method for producing aromatic compound | |
KR100809906B1 (en) | Novel iridium phosphorescent dendrimer, manufacturing method thereof and organic light-emitting diode using the same | |
KR101316093B1 (en) | A preparation method of polythiopene derivatives | |
KR20200062034A (en) | Compound and thin film transistor and electronic device | |
CN102977084A (en) | Thiophene pyrroloquinone type structure n-type semiconductor material synthesis and semiconductor device containing thiophene pyrroloquinone type structure n-type semiconductor material | |
JP2008184433A (en) | Method for synthesizing metallole ring-containing compound | |
JP2013166743A (en) | Fulvalene compound and method for producing the same, and solar cell material and organic transistor material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170703 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180702 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190627 Year of fee payment: 6 |