WO2016143721A1 - しゅう動部品 - Google Patents
しゅう動部品 Download PDFInfo
- Publication number
- WO2016143721A1 WO2016143721A1 PCT/JP2016/056903 JP2016056903W WO2016143721A1 WO 2016143721 A1 WO2016143721 A1 WO 2016143721A1 JP 2016056903 W JP2016056903 W JP 2016056903W WO 2016143721 A1 WO2016143721 A1 WO 2016143721A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sliding
- dimples
- sliding surface
- pulse laser
- ultrashort pulse
- Prior art date
Links
- 238000012545 processing Methods 0.000 claims description 39
- 230000000630 rising effect Effects 0.000 claims description 2
- 238000003754 machining Methods 0.000 abstract description 8
- 238000009826 distribution Methods 0.000 abstract description 2
- 238000007789 sealing Methods 0.000 description 44
- 239000012530 fluid Substances 0.000 description 36
- 238000005461 lubrication Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 9
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 8
- 229910010271 silicon carbide Inorganic materials 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000001050 lubricating effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- -1 cemented carbide Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000003028 elevating effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000002679 ablation Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/103—Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
- B23K26/0624—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/352—Working by laser beam, e.g. welding, cutting or boring for surface treatment
- B23K26/355—Texturing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/34—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
- F16J15/3404—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
- F16J15/3408—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
- F16J15/3412—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/34—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
- F16J15/3404—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
- F16J15/3408—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
- F16J15/3424—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with microcavities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/14—Special methods of manufacture; Running-in
Definitions
- the present invention relates to a sliding part suitable for a sliding part, for example, a mechanical seal, a bearing, and the like.
- the present invention relates to a sliding component such as a seal ring or a bearing that requires a fluid to be interposed on a sliding surface to reduce friction and prevent fluid from leaking from the sliding surface.
- Patent Document 1 For example, in the invention described in Japanese Patent Application Laid-Open No. 11-287329 (hereinafter referred to as “Patent Document 1”), a large number of dimples having different depths are formed on the sliding surface, so that the other side slides during sliding. The load capacity due to the hydrodynamic bearing pressure generated in the fluid intervening with the surface is reduced in some dimples as the fluid temperature changes but increases in other dimples. In spite of this, the effect of always maintaining good sliding performance can be obtained. Further, the invention described in Japanese Patent Application Laid-Open No.
- Patent Document 2 forms a sliding surface by depositing a hard film on the surface of a base material made of a sintered ceramic material, By adopting a structure having a large number of dimples on the sliding surface, the wear resistance is improved and the liquid lubricity by dimples is improved.
- Patent Document 1 pays attention to the depth of the dimple provided on the sliding surface in order to always maintain good sliding performance regardless of the temperature change. It has not been considered to improve the sliding characteristics in a wide range of the number of characteristics and to generate a predetermined dynamic pressure by dimples with high machining accuracy.
- the invention described in Patent Document 2 is intended to improve liquid lubricity by providing dimples on the sliding surface. Like Patent Document 1, the number of bearing characteristics on the sliding surface is wide. It has not been considered to improve the sliding characteristics in the range and to generate a predetermined dynamic pressure by dimples with good machining accuracy.
- the present invention provides a sliding component capable of improving the sliding characteristics in a wide range of bearing characteristics on the sliding surface and at the same time generating a predetermined dynamic pressure by dimples with good machining accuracy. It is intended to do.
- a sliding component in which a plurality of dimples are arranged on at least one sliding surface of a pair of sliding components that slide relative to each other. These dimples are provided independently of each other and arranged so as to be distributed randomly, and each dimple is formed by irradiation with an ultrashort pulse laser, and the depth is shallow in the range of 0.05 ⁇ m to 5 ⁇ m.
- the groove is characterized in that the roughness Ra of the bottom surface of the dimple is 1/10 or less of the processing depth.
- the coefficient of friction can be reduced in a wide range of bearing characteristic numbers, the fluid film between the sliding surfaces can be increased, the lubrication performance can be improved, and a predetermined positive pressure generating groove can be used to increase the predetermined performance. It is possible to provide a sliding component having a sliding surface that can generate a dynamic pressure and does not have a waviness on the sliding surface because it is less affected by heat during processing.
- the sliding component of the present invention is secondly characterized in that, in the first feature, the bulge due to debris at the processed portion is less than 0.01 ⁇ m. According to this feature, it is possible to provide a sliding component having a sliding surface with better sealing performance.
- the sliding component of the present invention is characterized in that, in the first or second feature, the plurality of dimples have an opening diameter set in a range of 10 to 500 ⁇ m. According to this feature, the sliding characteristics can be further improved in a wide range of the number of bearing characteristics on the sliding surface.
- the sliding part according to any one of the first to third features, wherein the plurality of dimples have a depth set in a range of 50 to 10,000 nm. According to this feature, the friction coefficient on the sliding surface can be reduced.
- the sliding component of the present invention is fifthly characterized in that, in any of the first to third features, the depth of the plurality of dimples is set in a range of 50 to 1000 nm. According to this feature, it is possible to improve the sliding characteristics at an extremely low speed on the sliding surface.
- the sliding component according to the present invention is sixthly characterized in that, in any of the first to fifth features, the area ratio of the plurality of dimples to the sliding surface is 30 to 50%. According to this feature, it is possible to achieve both sealing and lubrication on the sliding surface.
- the sliding component of the present invention is seventhly characterized in that, in any of the first to sixth features, the repetition frequency of the ultrashort pulse laser is 5 kHz or more. According to this feature, the processing time can be set to an appropriate value even when the number of overlapping pulses is large.
- the sliding component of the present invention is seventhly characterized in that, in any of the first to seventh features, the pulse width of the ultrashort pulse laser is less than 10 picoseconds. According to this feature, heat generation by one pulse can be reduced.
- the present invention has the following excellent effects.
- (1) The friction coefficient can be reduced over a wide range of bearing characteristics, the fluid film between the sliding surfaces can be increased, the lubrication performance can be improved, and a predetermined dynamic pressure can be obtained by a precise positive pressure generating groove.
- a sliding component having a sliding surface with good sealing performance can be provided.
- the sliding characteristics can be further improved in a wide range of bearing characteristics on the sliding surface.
- the processing time can be set to an appropriate value even when the number of overlapping pulses is large.
- the pulse width of the ultrashort pulse laser is less than 10 picoseconds, the generation of heat due to one pulse can be reduced.
- FIG. 4 is a cross-sectional view taken along line BB. It is explanatory drawing explaining the function which a dimple has. It is a top view of the sliding surface which shows the dimple arrange
- the processing test result of the sliding part according to the present invention is shown, and the wavelength of the ultrashort pulse laser is 1030 nm.
- the processing test result of the sliding part of the present invention is shown, and the case where the wavelength of the ultrashort pulse laser is 515 nm is shown.
- It is a figure which shows the evaluation result of the state of the process surface at the time of processing by each irradiation fluence of an ultrashort pulse laser, and the swelling at the process part. It shows the state of the processed surface when processed using a picosecond laser as an ultrashort pulse laser, where (a) shows a micrograph of the processed surface, and (b) shows a cross section of the processed surface. It represents roughness.
- (a) shows a micrograph of the machined surface
- (b) shows a cross-section of the machined surface with roughness.
- (a) shows a micrograph of the machined surface
- (b) shows a cross-section of the machined surface with roughness.
- a mechanical seal which is an example of a sliding component
- the present invention is not limited to this, and for example, lubricating oil is applied to one axial side of a cylindrical sliding surface. It can also be used as a sliding part of a bearing that slides on a rotating shaft while being sealed.
- the outer peripheral side of the sliding part constituting the mechanical seal is described as the high pressure fluid side (sealed fluid side) and the inner peripheral side is described as the low pressure fluid side (atmosphere side), the present invention is not limited to this. The present invention can also be applied to the case where the high pressure fluid side and the low pressure fluid side are reversed.
- FIG. 1 is a longitudinal sectional view showing an example of a mechanical seal, which is an inside type that seals a sealed fluid on the high-pressure fluid side that is about to leak from the outer periphery of the sliding surface toward the inner peripheral direction.
- a mechanical seal which is an inside type that seals a sealed fluid on the high-pressure fluid side that is about to leak from the outer periphery of the sliding surface toward the inner peripheral direction.
- annular ring which is one sliding component provided on the rotary shaft 1 side for driving a pump impeller (not shown) on the high pressure fluid side via a sleeve 2 so as to be rotatable integrally with the rotary shaft 1.
- the annular stationary side sealing ring 5 which is the other sliding part provided in the pump housing 4 in a non-rotating state and movable in the axial direction.
- FIG. 1 shows the case where the width of the sliding surface of the rotation-side sealing ring 3 is wider than the width of the sliding surface of the stationary-side sealing ring 5.
- the present invention can also be applied.
- the material of the rotating side sealing ring 3 and the stationary side sealing ring 5 is selected from silicon carbide (SiC) having excellent wear resistance and carbon having excellent self-lubricating properties.
- SiC silicon carbide
- the side seal ring 3 can be made of SiC and the fixed side seal ring 5 can be combined with carbon.
- dimples 10 are disposed on at least one of the sliding surfaces of the rotating side sealing ring 3 and the stationary side sealing ring 5 that slide relative to each other.
- a plurality of dimples 10 are disposed on the sliding surface S of the stationary seal ring 5.
- the rotation-side sealing ring 3 may not be provided with dimples or may be provided.
- the cross-sectional shape of the sliding component 1 is a convex shape as shown in FIG. 1 (c), and the top surface forms a flat sliding surface S.
- a large number of dimples 10 as shown in FIG. 2B are provided on the sliding surface S independently. These dimples 10 are not the entire radial width of the sliding surface S, but the low-pressure fluid side sealing surface IS formed so that the flat land portion R remains on the entire circumference with a constant width on the low-pressure fluid side. It is provided in the part. On the high pressure fluid side of the sliding surface S, the dimple 10 may be provided up to the edge.
- the “dimple” is a recess formed in the flat sliding surface S, and the shape thereof is not particularly limited.
- the planar shape of the depression includes various shapes such as a circle, an ellipse, an oval, or a polygon
- the sectional shape of the depression includes various shapes such as a bowl or a rectangle.
- a large number of dimples 10 formed on the sliding surface S allow a part of the liquid to intervene as a hydrodynamic lubricating liquid film between the sliding surface S and the opposing sliding surface that slides relative to the sliding surface S. Holding and stabilizing the lubricating liquid film.
- Each dimple 10 can be regarded as constituting a Rayleigh step as shown in FIG.
- a Rayleigh step 10a extending in a direction orthogonal to the cross section of the drawing is formed on the sliding surface S (R) of the fixed side sealing ring 5, and the sliding surface S of the rotation side sealing ring 3 is flat. Is formed.
- the fluid interposed between the sliding surfaces tends to follow in the direction of the arrow due to its viscosity.
- the presence of the Rayleigh step 10a causes a dynamic pressure (positive pressure). Pressure).
- the generation of dynamic pressure increases the lubricating liquid film between the sliding surfaces, thereby improving the lubricating performance. While the lubrication performance is improved by the dynamic pressure effect, the amount of leakage may increase, and if the amount of dimples is reduced to reduce the amount of leakage to reduce the amount of leakage, the sliding surface S will contact and cause wear. It becomes easy.
- FIG. 4 is a plan view of the sliding surface showing dimples randomly arranged on the sliding surface of the sliding component according to the embodiment of the present invention. 4, the same reference numerals as those in FIG. 2 denote the same members as in FIG. 1, and detailed descriptions thereof are omitted.
- a plurality of dimples 2 formed on the sliding surface are provided independently of each other dimple and are arranged so as to be randomly distributed.
- the opening diameters of the plurality of dimples 2 may be distributed in a certain range in addition to the case where they are all the same.
- it is preferably distributed in the range of 10 to 500 ⁇ m, more preferably 30 to 100 ⁇ m.
- the depth of the plurality of dimples 2 is preferably set in the range of 50 to 10000 nm from the viewpoint of reducing the friction coefficient, but preferably 50 to 10000 when emphasizing the sliding characteristics at extremely low speed. It is set within the range of 1000 nm, more preferably 50 to 500 nm.
- the area ratio of the plurality of dimples to the sliding surface is 40%. However, the area ratio is not limited to this and may be 30 to 50%.
- FIG. 5 is a schematic diagram showing a schematic configuration of the processing apparatus 20 used in the processing step of the sliding surface of the sliding component of the present invention.
- the processing apparatus 20 includes an ultrashort pulse laser oscillator 21 that oscillates an ultrashort pulse laser, a scanning optical system 22 that irradiates the ultrashort pulse laser to a predetermined position of the fixed-side sealing ring 5 that is a workpiece, and a control unit. 24, an XYZ stage 25, a gantry 26, and an elevating member 27.
- the scanning optical system 22 includes a galvano scanner 23, which scans in one direction, for example, the X-axis direction, is performed by the galvano scanner 23, and scans in the Y-axis direction is performed by moving the XYZ stage 25. 23 is used. For this reason, the XYZ stage 25 only needs to be movable in at least the Y and Z directions.
- An XYZ stage 25 is installed on the upper surface of the gantry 26, and a fixed-side sealing ring 5 that is a workpiece is mounted on the XYZ stage 25.
- the elevating member 27 is connected to the gantry 26 via the shaft 28.
- the ultrashort pulse laser beam generated from the ultrashort pulse laser oscillator 21 enters the scanning optical system 22.
- the scanning optical system 22 shapes the ultrashort pulse laser beam into a desired beam shape and focuses it on a predetermined position on the surface of the fixed side sealing ring 5 that is a workpiece on the XYZ stage 25.
- the material of the fixed-side sealing ring 5 that is a workpiece is, for example, SiC, Al 2 O 3, ceramics, cemented carbide, stainless steel, or the like. In this embodiment, SiC is used as the fixed-side sealing ring 5 that is a workpiece.
- the control unit 24 functions as a control device that controls driving of the ultrashort pulse laser oscillator 21, the scanning optical system 22, and the XYZ stage 25. That is, the control unit 24 outputs the drive signal to the ultrashort pulse laser oscillator 21, the scanning optical system 22, and the XYZ stage 25.
- the ultrashort pulse laser oscillator 21 generates an ultrashort pulse laser based on the fluence and the pulse width specified by the drive signal from the control unit 24 and irradiates the laser outside the apparatus. Specifically, the driving of components such as a diffraction grating, a prism, and a light shielding filter in the ultrashort pulse laser oscillator 21 is controlled by a driving signal from the control unit 24.
- the ultrashort pulse laser oscillator 21 uses a light source whose pulse repetition frequency can be changed to 5 kHz or more, a laser wavelength of 1030 nm or 515 nm, and a pulse width of less than 20 picoseconds.
- the basic parameters of the ultrashort pulse laser beam to be irradiated are set using the control unit 24.
- the basic parameters may be set using, for example, an input device provided in the control unit 24.
- the basic parameters to be input are, for example, fluence, pulse width, number of shots, etc. These basic parameters may be automatically calculated by an application program provided in the control unit 24. Based on the obtained basic parameters, the control unit 24 outputs a drive signal to the ultrashort pulse laser oscillator 21.
- the ultrashort pulse laser oscillator 21 When the ultrashort pulse laser oscillator 21 receives the drive signal from the control unit 24, the ultrashort pulse laser oscillator 21 generates and outputs a laser beam having a fluence and a pulse width specified by the drive signal.
- the ultrashort pulse laser beam generated from the ultrashort pulse laser oscillator 21 enters the scanning optical system 22, and the scanning optical system 22 forms the ultrashort pulse laser beam into a desired beam shape and is a workpiece on the XYZ stage 25.
- the light is condensed at a predetermined position on the surface of a certain fixed-side sealing ring 5.
- the galvano scanner 23 and the XYZ stage 25 are driven to relatively move the ultrashort pulse laser and the fixed-side sealing ring 5 that is a workpiece. Thereby, laser irradiation can be performed at a plurality of positions with respect to the fixed-side sealing ring 5 which is one workpiece.
- Fig. 6 shows the processing test results for each of the basic parameters.
- the ultrashort pulse laser used a picosecond laser with a wavelength of 1030 nm and a pulse width of 10 ps or less.
- Fig. 7 shows the processing test results for each of the basic parameters.
- the ultrashort pulse laser used a picosecond laser with a wavelength of 515 nm and a pulse width of 10 ps or less.
- FIG. 8 is a diagram showing the evaluation results of the state of the processed surface and the rising of the processed part when processed at each irradiation fluence when the wavelength of the ultrashort pulse laser is 1030 nm and 515 nm.
- the items are (1) the state of the processed surface and the state of swell due to debris at the processed part.
- the state of the processed surface when the roughness Ra of the processed surface (referred to as the bottom surface of the dimple; the same applies hereinafter) is 1/10 or less of the processed depth, it is OK, otherwise NG.
- the bulge at the processed part when the bulge due to debris at the processed part (dimple) was less than 0.01 ⁇ m, it was OK, and otherwise NG.
- the state of the processed surface is 0.5 / 1, 2, 3, 5, 7 and the roughness Ra is 1/10 of the processing depth. It was the following. Moreover, the state of the swell in the processed part is swelled when the fluence is 0.1, 0.2, 0.4, 0.5, 1, 2, 3, 5, 7, 8, 9, 10, 30. It was less than 0.01 ⁇ m. In addition, when the wavelength of the ultrashort pulse laser is 515 nm, the state of the processed surface is a fluence of 0.5, 1, 2, 3, 5, and 7, and the roughness Ra is 1/10 or less of the processing depth. .
- the swelled state in the processed part is less than 0.01 ⁇ m when the fluence is 0.1, 0.2, 0.4, 0.5, 1, 2, 3, 5, 7, 8, 9 Met. From the above results, it was found that the energy fluence of the ultrashort pulse laser used in the processing step is suitable in the range of 0.5 J / (cm 2 .pulse) to 7 J / (cm 2 .pulse).
- FIG. 9 shows a state of a processed surface when processing is performed using a picosecond laser as an ultrashort pulse laser, where (a) is a micrograph of the processed surface, and (b) is A of (a). -A cross section showing the roughness of the machined surface.
- the wavelength of the ultrashort pulse laser used was 1030 nm, the energy fluence was 2.5 J / (cm 2 .pulse), and the processing depth for one shot was 0.02 ⁇ m.
- the depth of the processed surface (referred to as the bottom surface of the dimple; hereinafter the same) is 1.025 ⁇ m and the processed surface has a roughness Ra of about 0.03 ⁇ m. Ra was about 3/100 of the processing depth, and was sufficiently smaller than 1/10 of the processing depth.
- the bulge due to debris at the processing part (dimple) was as small as 0.01 ⁇ m.
- FIG. 10 shows a state of a processed surface when processing is performed using a nanosecond laser as a pulse laser, where (a) is a micrograph of the processed surface, and (b) is a BB of (a).
- the cross section represents the roughness of the processed surface. From FIG. 10B, the roughness Ra of the processed surface (the bottom surface of the dimple) is about 0.75 ⁇ m. Further, the rise due to debris at the time of the processed portion (dimple) is about 0.784 ⁇ m.
- the state of the processed surface when processed using a nanosecond laser is higher than that of the processed surface when processed using a picosecond laser. It can be seen that the roughness Ra of the bottom surface of the pressure generating groove is about 25 times, and the rise due to debris at the time of processing (dimple) is about 78 times.
- a sliding part made of SiC or the like is processed using an ultrashort pulse laser with an extremely short pulse width, so that the temperature around the area irradiated with the ultrashort pulse laser is irradiated with a conventional nanosecond laser. It is harder to rise than the case. This is because in an ultrashort pulse laser, heat generation by one pulse is extremely less than that in a normal nanosecond laser. Therefore, the part irradiated with the ultrashort pulse laser is removed by ablation by the irradiation of the laser to form a flat groove, while the groove does not swell with debris caused by the laser irradiation and is extremely clean processing You can get a plane. In particular, by controlling the energy fluence of the ultrashort pulse laser, it is possible to accurately form an extremely flat processed surface and a highly accurate groove that does not rise due to debris during processing.
- the ultrashort pulse laser is used for processing as described above, the thermal influence on the periphery of the laser irradiation region can be extremely reduced. As a result, the temperature around the laser irradiation area of the sliding surface of the sliding part made of SiC or the like increases due to the laser irradiation, and a problem arises in that the sliding surface swells due to the influence of the heat. Can be suppressed. In addition, with conventional machining, it is impossible to perform machining with a groove depth of 0.05 ⁇ m to 5 ⁇ m. Furthermore, known ion milling has a problem that processing time is required, and etching is time consuming and expensive.
- the energy fluence is set in the range of 0.5 J / (cm 2 .pulse) to 7 J / (cm 2 .pulse), so that an extremely flat processing surface and A high-accuracy sliding surface that does not rise due to debris during processing can be obtained, and the working efficiency is good.
- the energy fluence is 8 J / (cm 2 .pulse) or more, the pulse energy of one shot is too large, so that the processed surface becomes rough and the roughness Ra increases.
- the energy fluence is 50 J / (cm 2 .pulse) or more
- the wavelength is 515 nm
- the debris is generated when the energy fluence is 10 J / (cm 2 .pulse) or more. The part gets excited.
- the energy fluence of the ultrashort pulse laser is 0.5 J / (cm 2 .pulse) to 7 J / ( cm 2 .pulse) is preferable.
- a plurality of dimples are provided independently of each other and arranged so as to be randomly distributed, and each dimple is formed by irradiation with an ultrashort pulse laser and has a depth of 0.05 ⁇ m to 5 ⁇ m.
- the roughness Ra of the bottom surface of the dimple is 1/10 or less of the processing depth, so that the friction coefficient can be reduced in a wide range of bearing characteristics and the sliding surface can be reduced.
- a sliding component having a sliding surface with good sealing performance There can be provided a sliding component having a sliding surface with good sealing performance.
- the depth of the plurality of dimples By setting the depth of the plurality of dimples in the range of 50 to 10000 nm, the friction coefficient on the sliding surface can be reduced.
- the depth of the plurality of dimples is preferably set in the range of 50 to 1000 nm, and more preferably in the range of 50 to 500 nm, so that the sliding characteristics at extremely low speed can be improved.
- the area ratio of the plurality of dimples to the sliding surface within a range of 30 to 50%, it is possible to achieve both sealing and lubrication.
- the repetition frequency of the ultrashort pulse laser is 5 kHz or more, the processing time can be set to an appropriate value even when the number of overlapping pulses is large.
- the pulse width of the ultrashort pulse laser is less than 10 picoseconds, the generation of heat due to one pulse can be reduced.
- the sliding component is used for at least one of the pair of rotation sealing rings and the fixing sealing ring in the mechanical seal device. It can also be used as a sliding part of a bearing that slides on a rotating shaft while sealing lubricating oil.
- the present invention is not limited to these, and it is important that a plurality of dimples are randomly distributed, and the distribution ratio is determined by the bearing characteristic number G (fluid viscosity ⁇ speed / load) of the vine surface. Accordingly, the optimum value may be set.
- the depth of the plurality of dimples is preferably selected from the range of 50 to 10,000 nm from the viewpoint of reducing the friction coefficient.
- the thickness is preferably set in the range of 50 to 1000 nm, more preferably 50 to 500 nm.
- the dimple 10 is provided in almost the entire region except for the low-pressure fluid side sealing surface IS formed so that the flat land portion R remains on the entire circumference with a constant width on the low-pressure fluid side.
- the present invention is not limited to this, and a plurality of dimples 10 having the same opening diameter are randomly arranged only on the high-pressure fluid side in the radial direction of the sliding surface, as shown in FIG.
- the side including the low pressure fluid side sealing surface IS) may be flat without providing dimples. In the case of FIG.
- dimples are provided in a width of approximately 60% on the high-pressure fluid side in the radial direction of the sliding surface, and a width of approximately 40% on the low-pressure fluid side is formed in a flat state without dimples. For this reason, the width
- the range in which the dimples are provided is not limited to a width of approximately 60%, and may be, for example, a width of 20 to 80%.
- a deep groove 11 is provided over the entire circumference in the radial center of the sliding surface, and a plurality of dimples having the same opening diameter on the sliding surfaces on both sides in the radial direction of the deep groove 11 are provided. 10 may be arranged at random. At that time, the dimple 10 is not provided on the low pressure fluid side sealing surface IS in the sliding surface on the low pressure fluid side from the deep groove 11. In this case, the fluid that leaks from the high-pressure fluid side to the low-pressure fluid side is stored in the deep groove 11, so that the amount of leakage can be reduced, and the wear powder on the sliding surface is also captured in the deep groove 11, so Surface wear can be reduced.
- the deep groove 11 may be communicated with the high-pressure fluid side through a radial groove.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Mechanical Sealing (AREA)
- Sliding-Contact Bearings (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
また、特開2000-169266号公報(以下、「特許文献2」という。)に記載の発明は、焼結したセラミックス材料からなる下地材の表面に硬質皮膜を蒸着したしゅう動面を形成し、このしゅう動面に、多数のディンプルを有する構成とすることにより、耐摩耗性の向上を図ると共に、ディンプルによる液体潤滑性の向上を図るようにしたものである。
また、特許文献2に記載の発明は、しゅう動面にディンプルを設けることで液体潤滑性の向上を図るようにしたものであるが、特許文献1と同様、しゅう動面における軸受特性数の広い範囲においてしゅう動特性を向上させると共に、加工精度のよいディンプルにより所定の動圧を発生させることについては考察されていない。
この特徴によれば、軸受特性数の広い範囲において摩擦係数を低減させることができると共に摺動面間の流体膜を増加させ、潤滑性能を向上させると共に、精度のよい正圧発生溝により所定の動圧を発生させることができ、また、加工時における熱の影響が少ないため摺動面にうねりがなく、密封性のよい摺動面を備えた摺動部品を提供することができる。
また、本発明のしゅう動部品は、第2に、第1の特徴において、加工部の際のデブリによる盛り上がりが0.01μm未満であることを特徴としている。
この特徴によれば、より一層、密封性のよい摺動面を備えた摺動部品を提供することができる。
この特徴によれば、しゅう動面における軸受特性数の広い範囲において、より一層、しゅう動特性を向上することができる。
この特徴によれば、しゅう動面における摩擦係数を低減することができる。
この特徴によれば、しゅう動面における極低速でのしゅう動特性を良好にすることができる。
この特徴によれば、しゅう動面における密封と潤滑の両立を図ることができる。
この特徴によれば、パルスの重ね数が多い場合でも加工時間を適度な値に設定することができる。
この特徴によれば、1つのパルスによる熱の発生を少なくすることができる。
(1)軸受特性数の広い範囲において摩擦係数を低減させることができると共に摺動面間の流体膜を増加させ、潤滑性能を向上させると共に、精度のよい正圧発生溝により所定の動圧を発生させることができ、また、加工時における熱の影響が少ないため摺動面にうねりがなく、密封性のよい摺動面を備えた摺動部品を提供することができる。
(2)また、加工部の際のデブリによる盛り上がりが0.01μm未満であることにより、より一層、密封性のよい摺動面を備えた摺動部品を提供することができる。
なお、以下の実施例においては、しゅう動部品の一例であるメカニカルシールを例にして説明するが、これに限定されることなく、例えば、円筒状しゅう動面の軸方向一方側に潤滑油を密封しながら回転軸としゅう動する軸受のしゅう動部品として利用することも可能である。
なお、メカニカルシールを構成するしゅう動部品の外周側を高圧流体側(被密封流体側)、内周側を低圧流体側(大気側)として説明するが、本発明はこれに限定されることなく、高圧流体側と低圧流体側とが逆の場合も適用可能である。
なお、図1では、回転側密封環3のしゅう動面の幅が固定側密封環5のしゅう動面の幅より広い場合を示しているが、これに限定されることなく、逆の場合においても本発明を適用出来ることはもちろんである。
相対しゅう動する回転側密封環3あるいは固定側密封環5の少なくともいずれか一方のしゅう動面には、図2に示すように、ディンプル10が配設されている。
本例では、固定側密封環5のしゅう動面Sに複数のディンプル10が配設されている。この場合、回転側密封環3にはディンプルは設けられなくてもよく、また、設けられてもよい。
そして、しゅう動面Sに形成された多数のディンプル10は、このしゅう動面Sと相対しゅう動する相手側しゅう動面との間に流体力学的な潤滑液膜として介入する液体の一部を保持して、潤滑液膜を安定化させる機能を有するものである。
図3において、固定側密封環5のしゅう動面S(R)には図の断面と直交する方向に延びるレイリーステップ10aが形成されており、回転側密封環3のしゅう動面Sは平坦に形成されている。回転側密封環3が矢印で示す方向に相対移動すると、両しゅう動面間に介在する流体が、その粘性によって矢印方向に追随移動しようとし、その際、レイリーステップ10aの存在によって動圧(正圧)を発生する。動圧の発生によりしゅう動面間の潤滑液膜が増大され、潤滑性能が向上されるものである。動圧効果により潤滑性能が向上させられる一方、漏れ量が増える恐れがあり、漏れ量を減らすため潤滑液膜を薄くするようにディンプルの量を少なくすると、しゅう動面Sが接触し摩耗を起こしやすくなる。
図4において、しゅう動面に形成された複数のディンプル2は、相互に他のディンプ
と独立して設けられ、ランダムに分布するように配置されている。
例えば、図4の場合、好ましくは10~500μm、より好ましくは30~100μmの範囲に分布されている。このため、より一層、しゅう動特性を向上することができる。
また、複数のディンプル2の深さは、摩擦係数低減の面から50~10000nmの範囲内に設定されることが好ましいが、極低速でのしゅう動特性を重視する場合には、好ましくは50~1000nm、より好ましくは50~500nmの範囲内に設定される。
また、密封と潤滑の両立を図るため、複数のディンプルのしゅう動面に対する面積率は40%を採用したが、これに限らず30~50%でもよい。
なお、図5は、本発明の摺動部品の摺動面の加工工程において用いられる加工装置20の概略構成を示す模式図である。
まず、制御部24を用いて照射すべき超短パルスレーザ光の基本パラメータを設定する。 基本パラメータの設定は、例えば制御部24に設けられた入力装置を用いて入力すればよい。入力する基本パラメータとしては、例えばフルエンス、パルス幅、ショット数などであるが、これら基本パラメータは、制御部24内に設けられたアプリケーションプログラムが自動で算出してもよい。得られた基本パラメータに基づき制御部24は超短パルスレーザ発振器21に駆動信号を出力する。
また、超短パルスレーザの波長が515nmの場合、加工面の状態は、フルエンスが0.5、1、2、3、5、7において粗さRaが加工深さの1/10以下であった。また、加工部の際の盛り上がりの状態は、フルエンスが0.1、0.2、0.4、0.5、1、2、3、5、7、8、9において盛り上がりが0.01μm未満であった。
以上の結果から、加工工程において用いられる超短パルスレーザのエネルギーフルエンスは、0.5J/(cm2.pulse)~7J/(cm2.pulse)の範囲において好適であることが判明した。
図9(b)から、加工面(ディンプルの底面をいう。以下、同じ)の深さは1.025μmであって加工面の粗さRaは約0.03μmであり、加工面の面粗さRaは、加工深さの約3/100であり、加工深さの1/10より十分小さいものであった。また、加工部の際(ディンプルの際)のデブリによる盛り上がりは0.01μmときわめて小さいものであった。
図10(b)から、加工面(ディンプルの底面)の粗さRaは約0.75μmである。また、加工部の際(ディンプルの際)のデブリによる盛り上がりは約0.784μmである。
エネルギーフルエンスが8J/(cm2.pulse)以上では、1回のショットのパルスエネルギが大きすぎるため、加工面が荒れて粗さRaが大きくなる。
さらに、波長が1030nmにおいては、エネルギーフルエンスが50J/(cm2.pulse)以上では、また、波長が515nmにおいては、エネルギーフルエンスが10J/(cm2.pulse)以上では、デブリが発生し、加工部の際が盛り上がる。
(1)複数のディンプルは相互に他のディンプルと独立して設けられると共にランダムに分布するように配置され、それぞれのディンプルは超短パルスレーザの照射により形成され、深さは0.05μm~5μmの範囲の浅い溝であって、前記ディンプルの底面の粗さRaは加工深さの1/10以下であることにより、軸受特性数の広い範囲において摩擦係数を低減させることができると共に摺動面間の流体膜を増加させ、潤滑性能を向上させると共に、精度のよい正圧発生溝により所定の動圧を発生させることができ、また、加工時における熱の影響が少ないため摺動面にうねりがなく、密封性のよい摺動面を備えた摺動部品を提供することができる。
(2)加工部の際のデブリによる盛り上がりが0.01μm未満であることにより、より一層、密封性のよい摺動面を備えた摺動部品を提供することができる。
(3)複数のディンプルは開口径が好ましくは10~500μm、より好ましくは30~100μmの範囲に設定されることにより、しゅう動面における軸受特性数の広い範囲において、より一層、しゅう動特性を向上することができる。
(4)複数のディンプルは深さが50~10000nmの範囲に設定されることにより、しゅう動面における摩擦係数を低減することができる。
(5)複数のディンプルは深さが好ましくは50~1000nm、より好ましくは50~500nmの範囲に設定されることにより、極低速でのしゅう動特性を良好にすることができる。
(6)複数のディンプルはしゅう動面に対する面積率が30~50%の範囲に設定されることにより、密封と潤滑の両立を図ることができる。
(7)超短パルスレーザの繰返し周波数は5kHz以上であることにより、パルスの重ね数が多い場合でも加工時間を適度な値に設定することができる。
(8)超短パルスレーザのパルス幅は10ピコ秒未満であることにより、1つのパルスによる熱の発生を少なくすることができる。
なお、ディンプルを設ける範囲は略60%の幅に限らず、例えば、20~80%の幅でもよい。
この場合、高圧流体側から低圧流体側に漏れようとする流体は深溝11に貯留されるため漏れ量を低減させることができると共に、しゅう動面の摩耗粉も深溝11に捕獲されるためしゅう動面の摩耗を低減させることができる。
なお、深溝11は半径方向の溝を介して高圧流体側に連通されるようにしてもよい。
2 スリーブ
3 回転側密封環
4 ハウジング
5 固定側密封環
6 コイルドウェーブスプリング
7 ベローズ
10 ディンプル
10a レイリーステップ
11 深溝
20 加工装置
21 超短パルスレーザ発振器
22 走査光学系
23 ガルバノスキャナー
24 制御部
25 XYZステージ
26 架台
27 昇降部材
28 シャフト
S しゅう動面
IS 低圧流体側密封面
R ランド部
Claims (8)
- 一対のしゅう動部品の互いに相対しゅう動する少なくとも一方側のしゅう動面にディンプルが複数配置されたしゅう動部品において、前記複数のディンプルは相互に他のディンプルと独立して設けられると共にランダムに分布するように配置され、それぞれのディンプルは超短パルスレーザの照射により形成され、深さは0.05μm~5μmの範囲の浅い溝であって、前記ディンプルの底面の粗さRaは加工深さの1/10以下であることを特徴とするしゅう動部品。
- 加工部の際のデブリによる盛り上がりが0.01μm未満であることを特徴とする請求項1記載のしゅう動部品。
- 前記複数のディンプルは、開口径が10~500μmの範囲に設定されることを特徴とする請求項1又は2記載のしゅう動部品。
- 前記複数のディンプルは、深さが50~10000nmの範囲に設定されることを特徴とする請求項1乃至3のいずれか1項に記載のしゅう動部品。
- 前記複数のディンプルは、深さが50~1000nmの範囲に設定されることを特徴とする請求項1乃至3のいずれか1項に記載のしゅう動部品。
- 前記複数のディンプルは、しゅう動面に対する面積率が30~50%の範囲に設定されることを特徴とする請求項1乃至5のいずれか1項に記載のしゅう動部品。
- 前記超短パルスレーザの繰返し周波数は、5kHz以上であることを特徴とする請求項1乃至6に記載のしゅう動部品。
- 前記超短パルスレーザのパルス幅は、10ピコ秒未満であることを特徴とする請求項1乃至7のいずれか1項に記載のしゅう動部品。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680014949.4A CN107429848A (zh) | 2015-03-11 | 2016-03-06 | 滑动部件 |
EP16761691.1A EP3270016B1 (en) | 2015-03-11 | 2016-03-06 | Method of processing a sliding component |
JP2017505317A JP6763850B2 (ja) | 2015-03-11 | 2016-03-06 | しゅう動部品及びしゅう動部品の製造方法 |
US15/557,089 US20180058502A1 (en) | 2015-03-11 | 2016-03-06 | Sliding component |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-047888 | 2015-03-11 | ||
JP2015047888 | 2015-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016143721A1 true WO2016143721A1 (ja) | 2016-09-15 |
Family
ID=56879599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/056903 WO2016143721A1 (ja) | 2015-03-11 | 2016-03-06 | しゅう動部品 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180058502A1 (ja) |
EP (1) | EP3270016B1 (ja) |
JP (1) | JP6763850B2 (ja) |
CN (1) | CN107429848A (ja) |
WO (1) | WO2016143721A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018092829A1 (ja) * | 2016-11-18 | 2018-05-24 | イーグル工業株式会社 | 摺動部材 |
JPWO2018139232A1 (ja) * | 2017-01-30 | 2019-11-14 | イーグル工業株式会社 | 摺動部品 |
CN110770456A (zh) * | 2017-07-07 | 2020-02-07 | 伊格尔工业股份有限公司 | 滑动部件 |
EP3627011A4 (en) * | 2017-05-19 | 2021-01-20 | Eagle Industry Co., Ltd. | SLIDING COMPONENT |
US11035411B2 (en) | 2017-07-14 | 2021-06-15 | Eagle Industry Co., Ltd. | Sliding parts |
US11248707B2 (en) | 2017-05-19 | 2022-02-15 | Eagle Industry Co., Ltd | Sliding component |
US11708911B2 (en) | 2017-10-03 | 2023-07-25 | Eagle Industry Co., Ltd. | Sliding component |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10337619B2 (en) * | 2013-08-27 | 2019-07-02 | Eaton Intelligent Power Limited | Seal ring composite for improved hydrodynamic seal performance |
US11125334B2 (en) | 2016-12-21 | 2021-09-21 | Eaton Intelligent Power Limited | Hydrodynamic sealing component and assembly |
CN110005818A (zh) * | 2019-04-22 | 2019-07-12 | 盛瑞传动股份有限公司 | 一种机械密封装置 |
CN110273921A (zh) * | 2019-06-13 | 2019-09-24 | 天津大学 | 一种全工况复合结构滑动轴承 |
CN110547751A (zh) * | 2019-09-06 | 2019-12-10 | 重庆金山医疗技术研究院有限公司 | 按钮杆、按钮和内窥镜系统 |
US20210078109A1 (en) * | 2019-09-18 | 2021-03-18 | Lincoln Global, Inc. | Surface modification of welding wire drive rolls |
CN113198105A (zh) * | 2021-06-03 | 2021-08-03 | 烟台大学 | 一种表面毛化的随机仿生微织构脑深部刺激套管电极 |
DE102022122965A1 (de) | 2022-09-09 | 2024-03-14 | Trumpf Laser Gmbh | Erzeugen von Dimples auf der Oberfläche eines transparenten Materials |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002507270A (ja) * | 1996-09-30 | 2002-03-05 | サーフェイス テクノロジーズ リミテッド | 微細孔を有する軸受およびその設計方法 |
JP2003184883A (ja) * | 2001-12-20 | 2003-07-03 | Nissan Motor Co Ltd | 軸受摺動部材 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5834094A (en) * | 1996-09-30 | 1998-11-10 | Surface Technologies Ltd. | Bearing having micropores and design method thereof |
US6739238B2 (en) * | 2000-11-20 | 2004-05-25 | Nissan Motor Co., Ltd. | Sliding structure for a reciprocating internal combustion engine and a reciprocating internal combustion engine using the sliding structure |
US6655845B1 (en) * | 2001-04-22 | 2003-12-02 | Diamicron, Inc. | Bearings, races and components thereof having diamond and other superhard surfaces |
EP1275864B2 (de) * | 2001-07-09 | 2010-10-27 | Gehring Technologies GmbH | Werkstück mit einer tribologisch beanspruchbaren Fläche und Verfahren zur Herstellung einer solchen Fläche |
JP2008060139A (ja) * | 2006-08-29 | 2008-03-13 | Sunx Ltd | レーザ加工装置 |
US20110048810A1 (en) * | 2009-08-26 | 2011-03-03 | Baker Hughes Incorporated | Synergic surface modification for bearing seal |
JP6004199B2 (ja) * | 2011-07-01 | 2016-10-05 | パナソニックIpマネジメント株式会社 | 摺動部材 |
WO2013176011A1 (ja) * | 2012-05-21 | 2013-11-28 | イーグル工業株式会社 | 摺動部品 |
CN104185755B (zh) * | 2012-05-21 | 2016-08-17 | 伊格尔工业股份有限公司 | 滑动部件 |
US9772037B2 (en) * | 2012-08-04 | 2017-09-26 | Eagle Industry Co., Ltd. | Sliding component |
-
2016
- 2016-03-06 EP EP16761691.1A patent/EP3270016B1/en active Active
- 2016-03-06 JP JP2017505317A patent/JP6763850B2/ja active Active
- 2016-03-06 WO PCT/JP2016/056903 patent/WO2016143721A1/ja active Application Filing
- 2016-03-06 US US15/557,089 patent/US20180058502A1/en not_active Abandoned
- 2016-03-06 CN CN201680014949.4A patent/CN107429848A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002507270A (ja) * | 1996-09-30 | 2002-03-05 | サーフェイス テクノロジーズ リミテッド | 微細孔を有する軸受およびその設計方法 |
JP2003184883A (ja) * | 2001-12-20 | 2003-07-03 | Nissan Motor Co Ltd | 軸受摺動部材 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10808752B2 (en) | 2016-11-18 | 2020-10-20 | Eagle Industry Co., Ltd | Sliding members |
CN109964054A (zh) * | 2016-11-18 | 2019-07-02 | 伊格尔工业股份有限公司 | 滑动部件 |
JPWO2018092829A1 (ja) * | 2016-11-18 | 2019-10-17 | イーグル工業株式会社 | 摺動部材 |
CN109964054B (zh) * | 2016-11-18 | 2021-09-17 | 伊格尔工业股份有限公司 | 滑动部件 |
WO2018092829A1 (ja) * | 2016-11-18 | 2018-05-24 | イーグル工業株式会社 | 摺動部材 |
EP3543552A4 (en) * | 2016-11-18 | 2020-06-24 | Eagle Industry Co., Ltd. | SLIDING ELEMENTS |
JPWO2018139232A1 (ja) * | 2017-01-30 | 2019-11-14 | イーグル工業株式会社 | 摺動部品 |
JP7224745B2 (ja) | 2017-01-30 | 2023-02-20 | イーグル工業株式会社 | 摺動部品 |
JP2022097663A (ja) * | 2017-01-30 | 2022-06-30 | イーグル工業株式会社 | 摺動部品 |
JP7139067B2 (ja) | 2017-01-30 | 2022-09-20 | イーグル工業株式会社 | 摺動部品 |
EP3627011A4 (en) * | 2017-05-19 | 2021-01-20 | Eagle Industry Co., Ltd. | SLIDING COMPONENT |
US11053975B2 (en) | 2017-05-19 | 2021-07-06 | Eagle Industry Co., Ltd | Sliding component |
US11248707B2 (en) | 2017-05-19 | 2022-02-15 | Eagle Industry Co., Ltd | Sliding component |
CN110770456A (zh) * | 2017-07-07 | 2020-02-07 | 伊格尔工业股份有限公司 | 滑动部件 |
CN110770456B (zh) * | 2017-07-07 | 2021-11-09 | 伊格尔工业股份有限公司 | 滑动部件 |
US11035411B2 (en) | 2017-07-14 | 2021-06-15 | Eagle Industry Co., Ltd. | Sliding parts |
US11708911B2 (en) | 2017-10-03 | 2023-07-25 | Eagle Industry Co., Ltd. | Sliding component |
Also Published As
Publication number | Publication date |
---|---|
EP3270016A4 (en) | 2018-11-07 |
EP3270016A1 (en) | 2018-01-17 |
CN107429848A (zh) | 2017-12-01 |
JPWO2016143721A1 (ja) | 2017-12-21 |
US20180058502A1 (en) | 2018-03-01 |
JP6763850B2 (ja) | 2020-09-30 |
EP3270016B1 (en) | 2022-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016143721A1 (ja) | しゅう動部品 | |
JP6572203B2 (ja) | 摺動部品 | |
US10132411B2 (en) | Sliding component | |
JP5995967B2 (ja) | 摺動部品 | |
JP5278970B2 (ja) | メカニカルシール摺動材及びメカニカルシール | |
US9228660B2 (en) | Sliding member | |
JP6076971B2 (ja) | 摺動部品 | |
JP6080845B2 (ja) | 摺動部品 | |
JP6800089B2 (ja) | しゅう動部品の製造方法 | |
JP5122607B2 (ja) | 平面摺動機構 | |
EP3508763A1 (en) | Sliding component | |
Antoszewski | Mechanical seals with sliding surface texture–model fluid flow and some aspects of the laser forming of the texture | |
JP4263185B2 (ja) | 低摩擦しゅう動面 | |
Ezhilmaran et al. | Femtosecond pulsed Ti: Sapphire laser-assisted surface texturing on piston ring and its tribology characterization | |
JP5259455B2 (ja) | 平面摺動機構 | |
Abhishek et al. | Tribological performance studies of micro-patterned seal-shaft contacts | |
JP2016502042A (ja) | 摩擦軸受またはその一部を製造するための方法および装置、並びに、摩擦軸受またはその一部 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16761691 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017505317 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15557089 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2016761691 Country of ref document: EP |