WO2016143675A1 - Magnesium secondary battery and charge/discharge method - Google Patents

Magnesium secondary battery and charge/discharge method Download PDF

Info

Publication number
WO2016143675A1
WO2016143675A1 PCT/JP2016/056667 JP2016056667W WO2016143675A1 WO 2016143675 A1 WO2016143675 A1 WO 2016143675A1 JP 2016056667 W JP2016056667 W JP 2016056667W WO 2016143675 A1 WO2016143675 A1 WO 2016143675A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
secondary battery
positive electrode
magnesium secondary
charge
Prior art date
Application number
PCT/JP2016/056667
Other languages
French (fr)
Japanese (ja)
Inventor
井手本 康
尚斗 北村
直哉 石田
松本 一
啓吾 窪田
Original Assignee
学校法人東京理科大学
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学, 国立研究開発法人産業技術総合研究所 filed Critical 学校法人東京理科大学
Publication of WO2016143675A1 publication Critical patent/WO2016143675A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a magnesium secondary battery and a charge / discharge method using the same.
  • next-generation secondary batteries with low energy density and high energy density is expected to replace conventional lithium ion secondary batteries.
  • next-generation secondary batteries especially magnesium secondary batteries can be expected to have high capacity because (i) two-electron reaction can be used for charging and discharging, and (ii) magnesium that can be used for the negative electrode has excellent safety.
  • the battery can be operated at a high voltage.
  • Magnesium has many advantages such as low risk of uneven distribution in the production area and is inexpensive, and research and development are progressing.
  • Japanese Patent Laid-Open No. 2002-100344 discloses Mg (M 1-x A x ) 2 O 4 (wherein x is a number in the range of 0 ⁇ x ⁇ 0.2, and M is a transition metal) And A is a typical element, an alkali metal, or an alkaline earth metal.)
  • a magnesium secondary battery including a magnesium compound represented by the following formula is disclosed.
  • Japanese Patent Application Laid-Open No. 2011-165639 discloses a magnesium secondary battery containing a magnesium metal oxide having a spinel crystal structure composed of magnesium ions, metal ions, and oxygen ions as a positive electrode active material.
  • JP-A-2014-007155 discloses, for example, MgMn (2-x) M1 (x) O 4 (wherein M1 is one or more elements selected from Fe, Co, Ni, and x Is a number in the range of 0.4 ⁇ x ⁇ 2.)
  • Tetsu Ichitsubo, et al., J. Mater. Chem., 2011, 21, 11764 is magnesium secondary battery comprising MgCo 2 O 4 or MgNi 2 O 4 as a positive electrode active material is disclosed.
  • the mobility of magnesium ions can be improved as compared with the magnesium composite oxide having another structure.
  • a magnesium composite oxide is used as the positive electrode active material, it is difficult to obtain a magnesium secondary battery having a small discharge capacity and good charge / discharge characteristics because magnesium in the crystal is difficult to be detached. It was.
  • an object of the present disclosure is to provide a magnesium secondary battery exhibiting good charge / discharge characteristics and a charge / discharge method using the same.
  • a positive electrode comprising a positive electrode active material represented by: at least one element selected from the group consisting of 0.7 ⁇ x ⁇ 1.2; A negative electrode, And a non-aqueous electrolyte containing an ionic liquid whose anion portion is bis (trifluoromethanesulfonyl) amide or bis (fluorosulfonyl) amide.
  • M in the formula is at least one element selected from the group consisting of Co, Ni, and Mn.
  • ⁇ 4> The magnesium secondary battery according to any one of ⁇ 1> to ⁇ 3>, wherein the cation portion of the ionic liquid is tetraethylammonium.
  • ⁇ 5> A charge / discharge method using the magnesium secondary battery according to any one of ⁇ 1> to ⁇ 4> and performing charge / discharge at an operating temperature of 85 ° C. or higher.
  • FIG. 3 is a diagram showing an initial charge / discharge curve of a magnesium secondary battery produced in Example 1.
  • 5 is a diagram showing an initial charge / discharge curve of a magnesium secondary battery produced in Comparative Example 1.
  • FIG. 6 is a graph showing an initial charge / discharge curve of a magnesium secondary battery produced in Example 2.
  • FIG. 6 is a diagram showing an initial charge / discharge curve of a magnesium secondary battery produced in Comparative Example 2.
  • the term “layer” includes a configuration formed in a part in addition to a configuration formed in the entire surface when observed as a plan view.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the magnesium secondary battery of this embodiment has the following formula: Mg x M 3-x O 4 (where M is Co, Ni, Mn, Ti, V, Cr, Fe, Cu, Ru, Ge, Mo, Si , Al, Zr, and B, at least one element selected from the group consisting of 0.7 ⁇ x ⁇ 1.2)), a negative electrode, and an anion And a non-aqueous electrolyte containing an ionic liquid whose part is bis (trifluoromethanesulfonyl) amide or bis (fluorosulfonyl) amide.
  • a separator is interposed between the positive electrode and the negative electrode.
  • the magnesium secondary battery of the present embodiment has a large discharge capacity and good charge / discharge characteristics by adopting the above configuration. This is because the ionic liquid whose anion portion is bis (trifluoromethanesulfonyl) amide or bis (fluorosulfonyl) amide has high heat resistance, so that the magnesium secondary battery can be operated at a high temperature (for example, 85 ° C. or more). As a result, it is assumed that the conductivity of magnesium ions in the positive electrode active material is increased.
  • the positive electrode in the magnesium secondary battery of the present embodiment has the following formula: Mg x M 3-x O 4 (where M is Co, Ni, Mn, Ti, V, Cr, Fe, Cu, Ru, Ge, Mo) And at least one element selected from the group consisting of Si, Al, Zr, and B, and 0.7 ⁇ x ⁇ 1.2.
  • the magnesium secondary battery of the present embodiment exhibits good charge / discharge characteristics by having a positive electrode active material having a spinel structure represented by the above formula and a specific non-aqueous electrolyte described later.
  • M in the above formula is at least one element selected from the group consisting of Co, Ni, Mn, Ti, V, Cr, Fe, Cu, Ru, Ge, Mo, Si, Al, Zr, and B. .
  • at least one element selected from the group consisting of Co, Ni, Mn, Cr, Fe, and Cu is preferable, and at least selected from the group consisting of Co, Ni, and Mn.
  • M in the above formula is Co.
  • M in the above formula is a combination of Ni and Mn.
  • X in the above formula is in the range of 0.7 to 1.2.
  • the value of x is preferably in the range of 0.8 to 1.2, and more preferably in the range of 0.9 to 1.2.
  • the method for producing the positive electrode active material represented by the above formula is not particularly limited, and a known production method such as a solid phase method or a coprecipitation method can be appropriately employed. Among these production methods, the coprecipitation method is preferable because a homogeneous phase is easily obtained.
  • a method for producing a compound in which M in the above formula is Co by a coprecipitation method is, for example, as follows. First, an aqueous solution containing a magnesium compound and a cobalt compound and a precipitating agent in a predetermined ratio is stirred at 20 ° C. to 100 ° C. to form a precipitate. Next, the precipitate is washed and dried to obtain a precursor. By calcination of this precursor at 250 ° C. to 350 ° C., a magnesium cobalt composite oxide can be obtained.
  • magnesium compound examples include magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium oxalate, magnesium phosphate, magnesium sulfate, magnesium hydroxide, magnesium fluoride, magnesium chloride, magnesium bromide, and magnesium iodide.
  • the magnesium compound may be a hydrate.
  • a magnesium compound may be used individually by 1 type, and may use 2 or more types together.
  • the cobalt compound include cobalt nitrate, cobalt acetate, cobalt phosphate, cobalt sulfate, cobalt fluoride, cobalt chloride, and cobalt bromide.
  • the cobalt compound may be a hydrate.
  • a cobalt compound may be used individually by 1 type, and may use 2 or more types together.
  • sodium carbonate, sodium hydroxide or the like can be used as the precipitating agent.
  • the precipitant it is preferable to use the precipitant excessively with respect to the total amount of the magnesium compound and the cobalt compound.
  • a method for producing a compound in which M in the above formula is a combination of Ni and Mn by a coprecipitation method is, for example, as follows. First, an aqueous solution containing a nickel compound and a manganese compound and a precipitating agent in a predetermined ratio is stirred while blowing air at 20 ° C. to 80 ° C. to generate a precipitate. Next, the precipitate is washed and dried, and then mixed with a magnesium compound to obtain a precursor. By firing this precursor at 600 ° C. to 1000 ° C., a magnesium nickel manganese composite oxide can be obtained.
  • the same compounds as those used in producing the magnesium cobalt composite oxide can be used.
  • the nickel compound include nickel nitrate, nickel carbonate, nickel acetate, nickel oxalate, nickel sulfate, nickel fluoride, nickel chloride, nickel bromide, nickel iodide and the like.
  • the nickel compound may be a hydrate.
  • a nickel compound may be used individually by 1 type, and may use 2 or more types together.
  • manganese compound examples include manganese nitrate, manganese carbonate, manganese acetate, manganese oxalate, manganese sulfate, manganese fluoride, manganese chloride, manganese bromide, and manganese iodide.
  • the manganese compound may be a hydrate.
  • a manganese compound may be used individually by 1 type, and may use 2 or more types together.
  • the positive electrode in the magnesium secondary battery of this embodiment can be produced by applying a positive electrode mixture paste containing the above positive electrode active material on a current collector, drying it, and rolling it as necessary. .
  • Examples of the current collector include foils and meshes made of aluminum, stainless steel, copper, and the like.
  • the positive electrode mixture paste can be prepared by adding a positive electrode active material and, if necessary, a binder, a conductive auxiliary agent and the like to an organic solvent and mixing them.
  • a binder include polyimide, polyvinyl acetate, nitrocellulose, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, styrene butadiene rubber, and acrylonitrile rubber.
  • a binder may be used individually by 1 type and may use 2 or more types together.
  • the conductive aid include carbon black, graphite, carbon fiber, and metal fiber. Examples of carbon black include acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black.
  • a conductive support agent may be used individually by 1 type, and may use 2 or more types together.
  • the organic solvent include N-methyl-2-pyrrolidone, tetrahydrofuran, N, N-dimethylformamide and the like.
  • An organic solvent may be used individually by 1 type, and may use 2 or more types together.
  • the amount of the positive electrode mixture paste applied to the current collector is preferably appropriately determined according to the use of the magnesium secondary battery.
  • the negative electrode in the magnesium secondary battery of this embodiment includes a negative electrode active material capable of occluding and releasing magnesium ions.
  • Examples of the negative electrode active material include magnesium metal and magnesium alloys.
  • Examples of the magnesium alloy include Mg—Al alloy, Mg—Zn alloy, Mg—Mn alloy, Mg—Ni alloy, Mg—Sb alloy, Mg—Sn alloy, Mg—In alloy and the like.
  • materials such as aluminum, zinc, lithium, silicon, and tin that are alloyed with magnesium can be used.
  • a carbon material such as graphite or amorphous carbon capable of electrochemically occluding and releasing magnesium ions can be used.
  • the negative electrode in the magnesium secondary battery of this embodiment can be formed by forming a negative electrode active material such as magnesium metal or a magnesium alloy into a shape (plate shape or the like) suitable for the electrode.
  • the negative electrode can also be produced by applying a negative electrode mixture paste containing the above negative electrode active material on a current collector, drying it, and rolling it as necessary.
  • a current collector include foils and meshes made of aluminum, stainless steel, copper, and the like.
  • the negative electrode mixture paste can be prepared by adding a negative electrode active material and, if necessary, a binder, a conductive auxiliary agent and the like to an organic solvent and mixing them.
  • a binder As the binder, the conductive additive, and the organic solvent, the same materials as those for the positive electrode can be used.
  • the separator in the magnesium secondary battery of this embodiment is provided so as to be interposed between the positive electrode and the negative electrode, and insulates the positive electrode and the negative electrode.
  • the material for the separator include polyethylene, polypropylene, polyamide, polyimide, polytetrafluoroethylene, glass, and ceramics.
  • the shape of the separator include a porous body.
  • the nonaqueous electrolytic solution in the magnesium secondary battery of the present embodiment includes an ionic liquid that is a nonaqueous solvent and a supporting salt that is a solute.
  • the anion portion is bis (trifluoromethanesulfonyl) amide ((CF 3 SO 2 ) 2 N ⁇ ) or bis (fluorosulfonyl) amide ((FSO 2 ) 2 N ⁇ ).
  • the magnesium secondary battery of the present embodiment has good charge / discharge characteristics by having a non-aqueous electrolyte containing an ionic liquid whose anion portion is bis (trifluoromethanesulfonyl) amide or bis (fluorosulfonyl) amide.
  • the cation portion of the ionic liquid is not particularly limited and can be appropriately selected from those known as the cation portion of the ionic liquid.
  • the cation part of the ionic liquid includes quaternary ammonium cations such as tetramethylammonium, tetraethylammonium, tetrabutylammonium, methyltriethylammonium, ethyltrimethylammonium, 2-hydroxyethyltrimethylammonium; 1-methylpyridinium, 1-ethylpyridinium Pyridinium cations such as 1-propylpyridinium; 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium, 1-methyl-3-propylimidazolium, 1-butyl-3-methylimidazolium, 1- Imidazolium cations such as ethyl-3-propylimidazolium and 1-butyl-3-ethylimida
  • quaternary ammonium is preferable from the viewpoint of improving charge / discharge characteristics, tetraalkylammonium having 1 to 10 carbon atoms in each alkyl group is more preferable, and tetraethylammonium is more preferable.
  • a magnesium salt that dissolves in an ionic liquid that is a non-aqueous solvent can be used.
  • the supporting salt include magnesium bis (trifluoromethylsulfonyl) amide, magnesium bis (fluorosulfonyl) amide, magnesium bis (pentafluoroethylsulfonyl) amide, magnesium (fluorosulfonyl) (trifluoromethylsulfonyl) amide, and the like.
  • magnesium bis (trifluoromethylsulfonyl) amide and magnesium bis (fluorosulfonyl) amide are preferable from the viewpoint of improving charge / discharge characteristics.
  • the shape of the magnesium secondary battery is not particularly limited, and can be applied to any of a coin type, a cylindrical type, a stacked type, and the like.
  • the electrical connection form (electrode structure) in the magnesium ion secondary battery may be a non-bipolar type (internal parallel connection type) or a bipolar type (internal series connection type).
  • the charging / discharging method of this embodiment performs charging / discharging at the operating temperature of 85 degreeC or more using the magnesium secondary battery of this embodiment.
  • the operating temperature of the magnesium secondary battery is preferably 85 ° C. to 300 ° C., more preferably 90 ° C. to 200 ° C., and 130 ° C. More preferably, the temperature is -200 ° C.
  • the anion portion of the ionic liquid is bis (fluorosulfonyl) amide
  • the operating temperature of the magnesium secondary battery is preferably 85 ° C. to 100 ° C.
  • the obtained precursor was mixed in an automatic mortar for 24 hours, and then fired in the atmosphere at 300 ° C. for 24 hours to obtain a magnesium cobalt composite oxide.
  • the heating rate during firing was 5 ° C./min.
  • the obtained magnesium-cobalt composite oxide, inductively coupled plasma emission spectrometer (manufactured by Shimadzu Corporation, ICPE-9000) Analysis of the chemical composition, the composition formula Mg 0.852 Co 2.148 O 4 It was confirmed that. Further, when the crystal structure was analyzed by a powder X-ray diffractometer (manufactured by PANalytical, X'Pert Pro), it was found that the spinel structure of the space group Fd-3m had good crystallinity.
  • Example 1 90 parts by mass of the magnesium cobalt composite oxide (positive electrode active material) obtained in Synthesis Example 1, 5 parts by mass of polyimide (binder), 2 parts by mass of vapor grown carbon fiber (conducting aid), and ketjen black (Conductive auxiliary agent) 3 parts by mass were mixed, and N-methyl-2-pyrrolidone was added to make a paste to obtain a positive electrode mixture paste.
  • This positive electrode mixture paste was coated on a carbon-coated aluminum foil (current collector, thickness 21 ⁇ m) so that the coating thickness was 20 ⁇ m, and dried at 300 ° C. After drying, a positive electrode was produced by punching out to 16 mm ⁇ . The amount of the positive electrode active material in the positive electrode was 0.842 mg. Further, a metal magnesium plate (manufactured by Niraco Co., Ltd., purity 99.9%, thickness 0.10 mm) was punched out to 16 mm ⁇ to produce a negative electrode.
  • glass paper manufactured by Nippon Sheet Glass Co., Ltd., TGP-008F
  • a non-aqueous solvent for the non-aqueous electrolyte an ionic liquid was prepared in which the anion portion was bis (trifluoromethanesulfonyl) amide and the cation portion was tetraethylammonium.
  • magnesium bis (trifluoromethanesulfonyl) amide was prepared as a supporting salt for the non-aqueous electrolyte.
  • the ionic liquid and the supporting salt were mixed at a molar ratio of 90:10 to prepare a nonaqueous electrolytic solution, and the positive electrode and the separator were melt impregnated.
  • a positive electrode, a separator, and a negative electrode were sequentially laminated in a heat-resistant stainless steel cell (HS2 cell, manufactured by Hosen Co., Ltd.) to produce a magnesium secondary battery for testing.
  • HS2 cell heat-resistant stainless steel cell
  • Example 1 A positive electrode was produced in the same manner as in Example 1. The amount of the positive electrode active material in the positive electrode was 0.770 mg. Further, a metal magnesium plate (manufactured by Niraco Co., Ltd., purity 99.9%, thickness 0.25 mm) was punched out to 16 mm ⁇ to produce a negative electrode.
  • glass paper manufactured by Nippon Sheet Glass Co., Ltd., TGP-008F
  • sulfolane was prepared instead of the ionic liquid used in Example 1.
  • magnesium bis (trifluoromethanesulfonyl) amide was prepared as a supporting salt for the non-aqueous electrolyte.
  • a non-aqueous electrolyte was prepared by dissolving in sulfolane so that the concentration of the supporting salt was 0.5 mol / L, and the positive electrode and the separator were melt impregnated.
  • a positive electrode, a separator, and a negative electrode were sequentially laminated in a heat-resistant stainless steel cell (HS2 cell, manufactured by Hosen Co., Ltd.) to produce a magnesium secondary battery for testing.
  • HS2 cell heat-resistant stainless steel cell
  • Example 1A and 1B show initial charge / discharge curves of the magnesium secondary batteries of Example 1 and Comparative Example 1, respectively.
  • the magnesium secondary battery of Example 1 could be operated at a high temperature of 150 ° C. and showed a high discharge capacity of 439 mAh / g.
  • the magnesium secondary battery of Comparative Example 1 could not be operated at a high temperature of 150 ° C., and the discharge capacity was 103 mAh / g.
  • Example 2 A positive electrode was produced in the same manner as in Example 1 except that the magnesium nickel manganese composite oxide obtained in Synthesis Example 2 was used instead of the magnesium cobalt composite oxide obtained in Synthesis Example 1. The amount of the positive electrode active material in the positive electrode was 1.404 mg. Using the produced positive electrode, a test magnesium secondary battery was produced in the same manner as in Example 1.
  • Example 2 A positive electrode was produced in the same manner as in Example 1 except that the magnesium nickel manganese composite oxide obtained in Synthesis Example 2 was used instead of the magnesium cobalt composite oxide obtained in Synthesis Example 1. The amount of the positive electrode active material in the positive electrode was 1.38 mg. Using the produced positive electrode, a magnesium secondary battery for test was produced in the same manner as in Comparative Example 1.
  • Example 2A and 2B show initial charge / discharge curves of the magnesium secondary batteries of Example 2 and Comparative Example 2, respectively.
  • the magnesium secondary battery of Example 2 could be operated at a high temperature of 150 ° C. and showed a high discharge capacity of 246 mAh / g.
  • the magnesium secondary battery of Comparative Example 2 could not be operated at a high temperature of 150 ° C., and the discharge capacity was 103 mAh / g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided are: a magnesium secondary battery which comprises a positive electrode containing a positive electrode active material that is represented by formula MgxM3-xO4 (wherein M represents at least one element selected from the group consisting of Co, Ni, Mn, Ti, V, Cr, Fe, Cu, Ru, Ge, Mo, Si, Al, Zr and B, and 0.7 ≤ x ≤ 1.2), a negative electrode, and a nonaqueous electrolyte solution containing an ionic liquid wherein the anionic component is bis(trifluoromethanesulfonyl)amide or bis(fluorosulfonyl)amide; and a charge/discharge method which uses this magnesium secondary battery.

Description

マグネシウム二次電池及び充放電方法Magnesium secondary battery and charge / discharge method
 本開示は、マグネシウム二次電池及びそれを用いた充放電方法に関する。 The present disclosure relates to a magnesium secondary battery and a charge / discharge method using the same.
 近年、蓄電池の用途がモバイル機器から自動車、定置用電源等へと多様化しており、従来のリチウムイオン二次電池に代わる安価で高エネルギー密度を有する次世代二次電池の開発が期待されている。次世代二次電池の中でも特にマグネシウム二次電池は、(i)充放電で二電子反応を利用できるため高容量が期待できる、(ii)負極に使用可能なマグネシウムは安全性に優れていることに加えて電位が比較的低いため、電池の高電圧作動が可能になる、(iii)マグネシウムは産地偏在のリスクが少なく安価である、等の多くの利点があり、研究開発が進みつつある。 In recent years, the use of storage batteries has been diversified from mobile devices to automobiles, stationary power supplies, etc., and development of next-generation secondary batteries with low energy density and high energy density is expected to replace conventional lithium ion secondary batteries. . Among the next-generation secondary batteries, especially magnesium secondary batteries can be expected to have high capacity because (i) two-electron reaction can be used for charging and discharging, and (ii) magnesium that can be used for the negative electrode has excellent safety. In addition, since the potential is relatively low, the battery can be operated at a high voltage. (Iii) Magnesium has many advantages such as low risk of uneven distribution in the production area and is inexpensive, and research and development are progressing.
 開発当初、マグネシウム二次電池の正極活物質としてはTiS、ZrS、RuO、Co、V等が用いられていたが、近年では、スピネル型構造を有するマグネシウム複合酸化物が種々提案されている。 Initially, TiS 2 , ZrS 2 , RuO 2 , Co 3 O 4 , V 2 O 5, etc. were used as positive electrode active materials for magnesium secondary batteries, but in recent years, magnesium composite oxide having a spinel structure has been used. Various things have been proposed.
 例えば、特開2002-100344号公報には、Mg(M1-x(式中、xは0≦x≦0.2の範囲の数である。また、Mは遷移金属であり、Aは典型元素、アルカリ金属、又はアルカリ土類金属である。)で表されるマグネシウム化合物を正極活物質として含むマグネシウム二次電池が開示されている。
 また、特開2011-165639号公報には、マグネシウムイオン、金属イオン、及び酸素イオンからなるスピネル結晶構造を有するマグネシウム金属酸化物を正極活物質として含むマグネシウム二次電池が開示されている。
 また、特開2014-007155号公報には、例えば、MgMn(2-x)M1(x)(式中、M1は、Fe、Co、Niから選ばれる1種以上の元素であり、xは0.4≦x<2の範囲の数である。)で表される正極活物質を含むマグネシウム二次電池が開示されている。
For example, Japanese Patent Laid-Open No. 2002-100344 discloses Mg (M 1-x A x ) 2 O 4 (wherein x is a number in the range of 0 ≦ x ≦ 0.2, and M is a transition metal) And A is a typical element, an alkali metal, or an alkaline earth metal.) A magnesium secondary battery including a magnesium compound represented by the following formula is disclosed.
Japanese Patent Application Laid-Open No. 2011-165639 discloses a magnesium secondary battery containing a magnesium metal oxide having a spinel crystal structure composed of magnesium ions, metal ions, and oxygen ions as a positive electrode active material.
JP-A-2014-007155 discloses, for example, MgMn (2-x) M1 (x) O 4 (wherein M1 is one or more elements selected from Fe, Co, Ni, and x Is a number in the range of 0.4 ≦ x <2.) A magnesium secondary battery including a positive electrode active material represented by:
 また、Tetsu Ichitsubo, et al., J. Mater. Chem., 2011, 21, 11764には、MgCo又はMgNiを正極活物質として含むマグネシウム二次電池が開示されている。 Further, Tetsu Ichitsubo, et al., J. Mater. Chem., 2011, 21, 11764 is magnesium secondary battery comprising MgCo 2 O 4 or MgNi 2 O 4 as a positive electrode active material is disclosed.
 上記のスピネル型構造を有するマグネシウム複合酸化物によれば、他の構造を有するマグネシウム複合酸化物と比較して、マグネシウムイオンの移動性を向上させることができると考えられる。
 しかし、マグネシウム複合酸化物を正極活物質とした場合、結晶中のマグネシウムが脱離し難い等の理由から、放電容量が小さく、良好な充放電特性を示すマグネシウム二次電池を得ることは困難であった。
According to the magnesium composite oxide having the above spinel structure, it is considered that the mobility of magnesium ions can be improved as compared with the magnesium composite oxide having another structure.
However, when a magnesium composite oxide is used as the positive electrode active material, it is difficult to obtain a magnesium secondary battery having a small discharge capacity and good charge / discharge characteristics because magnesium in the crystal is difficult to be detached. It was.
 そこで、本開示は、良好な充放電特性を示すマグネシウム二次電池及びそれを用いた充放電方法を提供することを課題とする。 Therefore, an object of the present disclosure is to provide a magnesium secondary battery exhibiting good charge / discharge characteristics and a charge / discharge method using the same.
 上記課題を解決するための具体的な手段には、以下の実施態様が含まれる。
<1> 次式:Mg3-x(式中、MはCo、Ni、Mn、Ti、V、Cr、Fe、Cu、Ru、Ge、Mo、Si、Al、Zr、及びBからなる群より選ばれる少なくとも1種の元素であり、0.7≦x≦1.2である。)で表される正極活物質を含む正極と、
 負極と、
 アニオン部がビス(トリフルオロメタンスルホニル)アミド又はビス(フルオロスルホニル)アミドであるイオン液体を含む非水電解液と、を有するマグネシウム二次電池。
Specific means for solving the above problems include the following embodiments.
<1> following formula: Mg x M 3-x O 4 ( where, M is Co, Ni, Mn, Ti, V, Cr, Fe, Cu, Ru, Ge, Mo, Si, Al, Zr, and B A positive electrode comprising a positive electrode active material represented by: at least one element selected from the group consisting of 0.7 ≦ x ≦ 1.2;
A negative electrode,
And a non-aqueous electrolyte containing an ionic liquid whose anion portion is bis (trifluoromethanesulfonyl) amide or bis (fluorosulfonyl) amide.
<2> 前記式中のMがCo、Ni、及びMnからなる群より選ばれる少なくとも1種の元素である、<1>に記載のマグネシウム二次電池。 <2> The magnesium secondary battery according to <1>, wherein M in the formula is at least one element selected from the group consisting of Co, Ni, and Mn.
<3> 前記イオン液体のカチオン部が第4級アンモニウムである、<1>又は<2>に記載のマグネシウム二次電池。 <3> The magnesium secondary battery according to <1> or <2>, wherein the cation portion of the ionic liquid is quaternary ammonium.
<4> 前記イオン液体のカチオン部がテトラエチルアンモニウムである、<1>~<3>のいずれか1つに記載のマグネシウム二次電池。 <4> The magnesium secondary battery according to any one of <1> to <3>, wherein the cation portion of the ionic liquid is tetraethylammonium.
<5> <1>~<4>のいずれか1つに記載のマグネシウム二次電池を用い、85℃以上の作動温度で充放電を行う充放電方法。 <5> A charge / discharge method using the magnesium secondary battery according to any one of <1> to <4> and performing charge / discharge at an operating temperature of 85 ° C. or higher.
 本開示によれば、良好な充放電特性を示すマグネシウム二次電池及びそれを用いた充放電方法を提供することができる。 According to the present disclosure, it is possible to provide a magnesium secondary battery exhibiting good charge / discharge characteristics and a charge / discharge method using the same.
実施例1で作製したマグネシウム二次電池の初回充放電曲線を示す図である。FIG. 3 is a diagram showing an initial charge / discharge curve of a magnesium secondary battery produced in Example 1. 比較例1で作製したマグネシウム二次電池の初回充放電曲線を示す図である。5 is a diagram showing an initial charge / discharge curve of a magnesium secondary battery produced in Comparative Example 1. FIG. 実施例2で作製したマグネシウム二次電池の初回充放電曲線を示す図である。6 is a graph showing an initial charge / discharge curve of a magnesium secondary battery produced in Example 2. FIG. 比較例2で作製したマグネシウム二次電池の初回充放電曲線を示す図である。6 is a diagram showing an initial charge / discharge curve of a magnesium secondary battery produced in Comparative Example 2. FIG.
 以下、本発明を適用した具体的な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構成に加え、一部に形成されている形状の構成も包含される。また、本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
Hereinafter, specific embodiments to which the present invention is applied will be described in detail. However, the present invention is not limited to the following embodiments.
In this specification, the term “layer” includes a configuration formed in a part in addition to a configuration formed in the entire surface when observed as a plan view. In the present specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
<マグネシウム二次電池>
 本実施形態のマグネシウム二次電池は、次式:Mg3-x(式中、MはCo、Ni、Mn、Ti、V、Cr、Fe、Cu、Ru、Ge、Mo、Si、Al、Zr、及びBからなる群より選ばれる少なくとも1種の元素であり、0.7≦x≦1.2である。)で表される正極活物質を含む正極と、負極と、アニオン部がビス(トリフルオロメタンスルホニル)アミド又はビス(フルオロスルホニル)アミドであるイオン液体を含む非水電解液と、を有する。正極と負極との間にはセパレータが介在している。
 本実施形態のマグネシウム二次電池は、上記構成とすることにより、放電容量が大きく、良好な充放電特性を示す。これは、アニオン部がビス(トリフルオロメタンスルホニル)アミド又はビス(フルオロスルホニル)アミドであるイオン液体は耐熱性が高いため、マグネシウム二次電池を高温(例えば、85℃以上)で作動させることが可能であり、その結果、正極活物質内におけるマグネシウムイオンの伝導性が高まるためと推察される。
<Magnesium secondary battery>
The magnesium secondary battery of this embodiment has the following formula: Mg x M 3-x O 4 (where M is Co, Ni, Mn, Ti, V, Cr, Fe, Cu, Ru, Ge, Mo, Si , Al, Zr, and B, at least one element selected from the group consisting of 0.7 ≦ x ≦ 1.2)), a negative electrode, and an anion And a non-aqueous electrolyte containing an ionic liquid whose part is bis (trifluoromethanesulfonyl) amide or bis (fluorosulfonyl) amide. A separator is interposed between the positive electrode and the negative electrode.
The magnesium secondary battery of the present embodiment has a large discharge capacity and good charge / discharge characteristics by adopting the above configuration. This is because the ionic liquid whose anion portion is bis (trifluoromethanesulfonyl) amide or bis (fluorosulfonyl) amide has high heat resistance, so that the magnesium secondary battery can be operated at a high temperature (for example, 85 ° C. or more). As a result, it is assumed that the conductivity of magnesium ions in the positive electrode active material is increased.
 以下、本実施形態のマグネシウム二次電池について詳細に説明する。 Hereinafter, the magnesium secondary battery of this embodiment will be described in detail.
(正極)
 本実施形態のマグネシウム二次電池における正極は、次式:Mg3-x(式中、MはCo、Ni、Mn、Ti、V、Cr、Fe、Cu、Ru、Ge、Mo、Si、Al、Zr、及びBからなる群より選ばれる少なくとも1種の元素であり、0.7≦x≦1.2である。)で表される正極活物質を含む。本実施形態のマグネシウム二次電池は、上記式で表されるスピネル型構造を有する正極活物質と、後述する特定の非水電解液とを有することにより、良好な充放電特性を示す。
(Positive electrode)
The positive electrode in the magnesium secondary battery of the present embodiment has the following formula: Mg x M 3-x O 4 (where M is Co, Ni, Mn, Ti, V, Cr, Fe, Cu, Ru, Ge, Mo) And at least one element selected from the group consisting of Si, Al, Zr, and B, and 0.7 ≦ x ≦ 1.2. The magnesium secondary battery of the present embodiment exhibits good charge / discharge characteristics by having a positive electrode active material having a spinel structure represented by the above formula and a specific non-aqueous electrolyte described later.
 上記式中のMは、Co、Ni、Mn、Ti、V、Cr、Fe、Cu、Ru、Ge、Mo、Si、Al、Zr、及びBからなる群より選ばれる少なくとも1種の元素である。この中でも、エネルギー密度を向上させる観点から、Co、Ni、Mn、Cr、Fe、及びCuからなる群より選ばれる少なくとも1種の元素が好ましく、Co、Ni、及びMnからなる群より選ばれる少なくとも1種の元素がより好ましい。ある実施態様では、上記式中のMはCoである。他の実施態様では、上記式中のMはNi及びMnの組み合わせである。 M in the above formula is at least one element selected from the group consisting of Co, Ni, Mn, Ti, V, Cr, Fe, Cu, Ru, Ge, Mo, Si, Al, Zr, and B. . Among these, from the viewpoint of improving energy density, at least one element selected from the group consisting of Co, Ni, Mn, Cr, Fe, and Cu is preferable, and at least selected from the group consisting of Co, Ni, and Mn. One element is more preferred. In certain embodiments, M in the above formula is Co. In another embodiment, M in the above formula is a combination of Ni and Mn.
 上記式中のxは0.7~1.2の範囲である。電池容量を向上させる観点から、xの値は0.8~1.2の範囲であることが好ましく、0.9~1.2の範囲であることがより好ましい。 X in the above formula is in the range of 0.7 to 1.2. From the viewpoint of improving battery capacity, the value of x is preferably in the range of 0.8 to 1.2, and more preferably in the range of 0.9 to 1.2.
 上記式で表される正極活物質を製造する方法としては、特に制限されず、固相法、共沈法等の公知の製造方法を適宜採用することができる。これらの製造方法の中でも、均一相を得やすいことから、共沈法が好ましい。 The method for producing the positive electrode active material represented by the above formula is not particularly limited, and a known production method such as a solid phase method or a coprecipitation method can be appropriately employed. Among these production methods, the coprecipitation method is preferable because a homogeneous phase is easily obtained.
 上記式中のMがCoである化合物を共沈法により製造する方法は、例えば以下のとおりである。まず、マグネシウム化合物及びコバルト化合物と沈殿剤とを所定の割合で含む水溶液を20℃~100℃で撹拌し、沈殿物を生成させる。次に、沈殿物を洗浄して乾燥することにより、前駆体を得る。この前駆体を250℃~350℃で焼成することにより、マグネシウムコバルト複合酸化物を得ることができる。 A method for producing a compound in which M in the above formula is Co by a coprecipitation method is, for example, as follows. First, an aqueous solution containing a magnesium compound and a cobalt compound and a precipitating agent in a predetermined ratio is stirred at 20 ° C. to 100 ° C. to form a precipitate. Next, the precipitate is washed and dried to obtain a precursor. By calcination of this precursor at 250 ° C. to 350 ° C., a magnesium cobalt composite oxide can be obtained.
 マグネシウム化合物としては、硝酸マグネシウム、炭酸マグネシウム、酢酸マグネシウム、シュウ酸マグネシウム、リン酸マグネシウム、硫酸マグネシウム、水酸化マグネシウム、フッ化マグネシウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム等が挙げられる。マグネシウム化合物は水和物であってもよい。マグネシウム化合物は、1種を単独で使用してもよく、2種以上を併用してもよい。
 コバルト化合物としては、硝酸コバルト、酢酸コバルト、リン酸コバルト、硫酸コバルト、フッ化コバルト、塩化コバルト、臭化コバルト等が挙げられる。コバルト化合物は水和物であってもよい。コバルト化合物は、1種を単独で使用してもよく、2種以上を併用してもよい。
Examples of the magnesium compound include magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium oxalate, magnesium phosphate, magnesium sulfate, magnesium hydroxide, magnesium fluoride, magnesium chloride, magnesium bromide, and magnesium iodide. The magnesium compound may be a hydrate. A magnesium compound may be used individually by 1 type, and may use 2 or more types together.
Examples of the cobalt compound include cobalt nitrate, cobalt acetate, cobalt phosphate, cobalt sulfate, cobalt fluoride, cobalt chloride, and cobalt bromide. The cobalt compound may be a hydrate. A cobalt compound may be used individually by 1 type, and may use 2 or more types together.
 沈殿剤としては、炭酸ナトリウム、水酸化ナトリウム等を用いることができる。各成分の沈殿速度を近づけるため、沈殿剤は、マグネシウム化合物及びコバルト化合物の合計量に対して過剰に用いることが好ましい。 As the precipitating agent, sodium carbonate, sodium hydroxide or the like can be used. In order to approximate the precipitation rate of each component, it is preferable to use the precipitant excessively with respect to the total amount of the magnesium compound and the cobalt compound.
 また、上記式中のMがNi及びMnの組み合わせである化合物を共沈法により製造する方法は、例えば以下のとおりである。まず、ニッケル化合物及びマンガン化合物と沈殿剤とを所定の割合で含む水溶液を20℃~80℃で空気を吹き込みながら撹拌し、沈殿物を生成させる。次に、沈殿物を洗浄して乾燥した後、マグネシウム化合物と混合し、前駆体を得る。この前駆体を600℃~1000℃で焼成することにより、マグネシウムニッケルマンガン複合酸化物を得ることができる。 Further, a method for producing a compound in which M in the above formula is a combination of Ni and Mn by a coprecipitation method is, for example, as follows. First, an aqueous solution containing a nickel compound and a manganese compound and a precipitating agent in a predetermined ratio is stirred while blowing air at 20 ° C. to 80 ° C. to generate a precipitate. Next, the precipitate is washed and dried, and then mixed with a magnesium compound to obtain a precursor. By firing this precursor at 600 ° C. to 1000 ° C., a magnesium nickel manganese composite oxide can be obtained.
 マグネシウム化合物及び沈殿剤としては、マグネシウムコバルト複合酸化物を製造する際と同様の化合物を用いることができる。
 ニッケル化合物としては、硝酸ニッケル、炭酸ニッケル、酢酸ニッケル、シュウ酸ニッケル、硫酸ニッケル、フッ化ニッケル、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル等が挙げられる。ニッケル化合物は水和物であってもよい。ニッケル化合物は、1種を単独で使用してもよく、2種以上を併用してもよい。
 マンガン化合物としては、硝酸マンガン、炭酸マンガン、酢酸マンガン、シュウ酸マンガン、硫酸マンガン、フッ化マンガン、塩化マンガン、臭化マンガン、ヨウ化マンガン等が挙げられる。マンガン化合物は水和物であってもよい。マンガン化合物は、1種を単独で使用してもよく、2種以上を併用してもよい。
As the magnesium compound and the precipitating agent, the same compounds as those used in producing the magnesium cobalt composite oxide can be used.
Examples of the nickel compound include nickel nitrate, nickel carbonate, nickel acetate, nickel oxalate, nickel sulfate, nickel fluoride, nickel chloride, nickel bromide, nickel iodide and the like. The nickel compound may be a hydrate. A nickel compound may be used individually by 1 type, and may use 2 or more types together.
Examples of the manganese compound include manganese nitrate, manganese carbonate, manganese acetate, manganese oxalate, manganese sulfate, manganese fluoride, manganese chloride, manganese bromide, and manganese iodide. The manganese compound may be a hydrate. A manganese compound may be used individually by 1 type, and may use 2 or more types together.
 本実施形態のマグネシウム二次電池における正極は、上記の正極活物質を含有する正極合剤ペーストを集電体上に塗布し、乾燥し、更に必要に応じて圧延することにより作製することができる。 The positive electrode in the magnesium secondary battery of this embodiment can be produced by applying a positive electrode mixture paste containing the above positive electrode active material on a current collector, drying it, and rolling it as necessary. .
 集電体としては、アルミニウム、ステンレス、銅等からなる箔、メッシュ等が挙げられる。 Examples of the current collector include foils and meshes made of aluminum, stainless steel, copper, and the like.
 正極合剤ペーストは、正極活物質と、必要に応じて結着剤、導電助剤等とを有機溶媒に添加して混合することにより調製することができる。
 結着剤としては、ポリイミド、ポリ酢酸ビニル、ニトロセルロース、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、スチレンブタジエンゴム、アクリロニトリルゴム等が挙げられる。結着剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 導電助剤としては、カーボンブラック、黒鉛、炭素繊維、金属繊維等が挙げられる。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等が挙げられる。導電助剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 有機溶媒としては、N-メチル-2-ピロリドン、テトラヒドロフラン、N,N-ジメチルホルムアミド等が挙げられる。有機溶媒は、1種を単独で使用してもよく、2種以上を併用してもよい。
The positive electrode mixture paste can be prepared by adding a positive electrode active material and, if necessary, a binder, a conductive auxiliary agent and the like to an organic solvent and mixing them.
Examples of the binder include polyimide, polyvinyl acetate, nitrocellulose, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, styrene butadiene rubber, and acrylonitrile rubber. A binder may be used individually by 1 type and may use 2 or more types together.
Examples of the conductive aid include carbon black, graphite, carbon fiber, and metal fiber. Examples of carbon black include acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. A conductive support agent may be used individually by 1 type, and may use 2 or more types together.
Examples of the organic solvent include N-methyl-2-pyrrolidone, tetrahydrofuran, N, N-dimethylformamide and the like. An organic solvent may be used individually by 1 type, and may use 2 or more types together.
 集電体に対する正極合剤ペーストの塗布量は、マグネシウム二次電池の用途等に応じて適宜決定することが好ましい。 The amount of the positive electrode mixture paste applied to the current collector is preferably appropriately determined according to the use of the magnesium secondary battery.
(負極)
 本実施形態のマグネシウム二次電池における負極は、マグネシウムイオンを吸蔵及び放出可能な負極活物質を含む。
(Negative electrode)
The negative electrode in the magnesium secondary battery of this embodiment includes a negative electrode active material capable of occluding and releasing magnesium ions.
 負極活物質としては、金属マグネシウム及びマグネシウム合金が挙げられる。マグネシウム合金としては、Mg-Al合金、Mg-Zn合金、Mg-Mn合金、Mg-Ni合金、Mg-Sb合金、Mg-Sn合金、Mg-In合金等が挙げられる。
 また、負極活物質としては、マグネシウムと合金化するアルミニウム、亜鉛、リチウム、シリコン、スズ等の材料を用いることもできる。また、負極活物質としては、マグネシウムイオンを電気化学的に吸蔵及び放出可能な黒鉛、非晶質炭素等の炭素材料を用いることもできる。
Examples of the negative electrode active material include magnesium metal and magnesium alloys. Examples of the magnesium alloy include Mg—Al alloy, Mg—Zn alloy, Mg—Mn alloy, Mg—Ni alloy, Mg—Sb alloy, Mg—Sn alloy, Mg—In alloy and the like.
In addition, as the negative electrode active material, materials such as aluminum, zinc, lithium, silicon, and tin that are alloyed with magnesium can be used. Further, as the negative electrode active material, a carbon material such as graphite or amorphous carbon capable of electrochemically occluding and releasing magnesium ions can be used.
 本実施形態のマグネシウム二次電池における負極は、金属マグネシウム、マグネシウム合金等の負極活物質を電極に適した形状(板状等)に成形して作成することができる。 The negative electrode in the magnesium secondary battery of this embodiment can be formed by forming a negative electrode active material such as magnesium metal or a magnesium alloy into a shape (plate shape or the like) suitable for the electrode.
 また、負極は、上記の負極活物質を含有する負極合剤ペーストを集電体上に塗布し、乾燥し、更に必要に応じて圧延することにより作製することもできる。集電体としては、アルミニウム、ステンレス、銅等からなる箔、メッシュ等が挙げられる。 The negative electrode can also be produced by applying a negative electrode mixture paste containing the above negative electrode active material on a current collector, drying it, and rolling it as necessary. Examples of the current collector include foils and meshes made of aluminum, stainless steel, copper, and the like.
 負極合剤ペーストは、負極活物質と、必要に応じて結着剤、導電助剤等とを有機溶媒に添加して混合することにより調製することができる。結着剤、導電助剤、及び有機溶媒としては、正極と同様の材料を用いることができる。 The negative electrode mixture paste can be prepared by adding a negative electrode active material and, if necessary, a binder, a conductive auxiliary agent and the like to an organic solvent and mixing them. As the binder, the conductive additive, and the organic solvent, the same materials as those for the positive electrode can be used.
(セパレータ)
 本実施形態のマグネシウム二次電池におけるセパレータは、正極と負極との間に介在するように設けられ、正極と負極とを絶縁する。セパレータの材料としては、ポリエチレン、ポリプロピレン、ポリアミド、ポリイミド、ポリテトラフルオロエチレン、ガラス、セラミックス等が挙げられる。セパレータの形状としては多孔質体等が挙げられる。
(Separator)
The separator in the magnesium secondary battery of this embodiment is provided so as to be interposed between the positive electrode and the negative electrode, and insulates the positive electrode and the negative electrode. Examples of the material for the separator include polyethylene, polypropylene, polyamide, polyimide, polytetrafluoroethylene, glass, and ceramics. Examples of the shape of the separator include a porous body.
(非水電解液)
 本実施形態のマグネシウム二次電池における非水電解液は、非水溶媒であるイオン液体と、溶質である支持塩とを含む。
(Nonaqueous electrolyte)
The nonaqueous electrolytic solution in the magnesium secondary battery of the present embodiment includes an ionic liquid that is a nonaqueous solvent and a supporting salt that is a solute.
 イオン液体は、アニオン部がビス(トリフルオロメタンスルホニル)アミド((CFSO)又はビス(フルオロスルホニル)アミド((FSO)である。本実施形態のマグネシウム二次電池は、アニオン部がビス(トリフルオロメタンスルホニル)アミド又はビス(フルオロスルホニル)アミドであるイオン液体を含む非水電解液を有することにより、良好な充放電特性を示す。 In the ionic liquid, the anion portion is bis (trifluoromethanesulfonyl) amide ((CF 3 SO 2 ) 2 N ) or bis (fluorosulfonyl) amide ((FSO 2 ) 2 N ). The magnesium secondary battery of the present embodiment has good charge / discharge characteristics by having a non-aqueous electrolyte containing an ionic liquid whose anion portion is bis (trifluoromethanesulfonyl) amide or bis (fluorosulfonyl) amide.
 イオン液体のカチオン部は特に制限されず、イオン液体のカチオン部として公知のものから適宜選択することができる。
 イオン液体のカチオン部としては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム、メチルトリエチルアンモニウム、エチルトリメチルアンモニウム、2-ヒドロキシエチルトリメチルアンモニウム等の第4級アンモニウムカチオン;1-メチルピリジニウム、1-エチルピリジニウム、1-プロピルピリジニウム等のピリジニウムカチオン;1,3-ジメチルイミダゾリウム、1-エチル-3-メチルイミダゾリウム、1-メチル-3-プロピルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム、1-エチル-3-プロピルイミダゾリウム、1-ブチル-3-エチルイミダゾリウム等のイミダゾリウムカチオン;テトラメチルホスホニウム、テトラエチルホスホニウム、テトラオクチルホスホニウム、トリエチル(メトキシメチル)ホスホニウム、ジエチルメチル(メトキシメチル)ホスホニウム、トリヘキシル(メトキシエチル)ホスホニウム等の第4級ホスホニウムカチオン;などが挙げられる。
 これらのカチオン部の中でも、充放電特性を向上させる観点から、第4級アンモニウムが好ましく、各アルキル基の炭素数が1~10であるテトラアルキルアンモニウムがより好ましく、テトラエチルアンモニウムが更に好ましい。
The cation portion of the ionic liquid is not particularly limited and can be appropriately selected from those known as the cation portion of the ionic liquid.
The cation part of the ionic liquid includes quaternary ammonium cations such as tetramethylammonium, tetraethylammonium, tetrabutylammonium, methyltriethylammonium, ethyltrimethylammonium, 2-hydroxyethyltrimethylammonium; 1-methylpyridinium, 1-ethylpyridinium Pyridinium cations such as 1-propylpyridinium; 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium, 1-methyl-3-propylimidazolium, 1-butyl-3-methylimidazolium, 1- Imidazolium cations such as ethyl-3-propylimidazolium and 1-butyl-3-ethylimidazolium; tetramethylphosphonium, tetraethylphosphonium, tetraoctylphospho Um, triethyl (methoxymethyl) phosphonium, diethyl methyl (methoxymethyl) phosphonium, trihexyl quaternary phosphonium cations such as (methoxyethyl) phosphonium; and the like.
Among these cation moieties, quaternary ammonium is preferable from the viewpoint of improving charge / discharge characteristics, tetraalkylammonium having 1 to 10 carbon atoms in each alkyl group is more preferable, and tetraethylammonium is more preferable.
 支持塩としては、非水溶媒であるイオン液体に溶解するマグネシウム塩を用いることができる。支持塩としては、マグネシウムビス(トリフルオロメチルスルホニル)アミド、マグネシウムビス(フルオロスルホニル)アミド、マグネシウムビス(ペンタフルオロエチルスルホニル)アミド、マグネシウム(フルオロスルホニル)(トリフルオロメチルスルホニル)アミド等が挙げられる。これらの支持塩の中でも、充放電特性を向上させる観点から、マグネシウムビス(トリフルオロメチルスルホニル)アミド及びマグネシウムビス(フルオロスルホニル)アミドが好ましい。 As the supporting salt, a magnesium salt that dissolves in an ionic liquid that is a non-aqueous solvent can be used. Examples of the supporting salt include magnesium bis (trifluoromethylsulfonyl) amide, magnesium bis (fluorosulfonyl) amide, magnesium bis (pentafluoroethylsulfonyl) amide, magnesium (fluorosulfonyl) (trifluoromethylsulfonyl) amide, and the like. Among these supporting salts, magnesium bis (trifluoromethylsulfonyl) amide and magnesium bis (fluorosulfonyl) amide are preferable from the viewpoint of improving charge / discharge characteristics.
(マグネシウム二次電池の形状等)
 マグネシウム二次電池の形状は特に制限されず、コイン型、円筒型、積層型等のいずれにも適用し得る。また、マグネシウムイオン二次電池内の電気的な接続形態(電極構造)は、非双極型(内部並列接続型)であっても双極型(内部直列接続型)であってもよい。
(Magnesium secondary battery shape, etc.)
The shape of the magnesium secondary battery is not particularly limited, and can be applied to any of a coin type, a cylindrical type, a stacked type, and the like. Further, the electrical connection form (electrode structure) in the magnesium ion secondary battery may be a non-bipolar type (internal parallel connection type) or a bipolar type (internal series connection type).
<充放電方法>
 本実施形態の充放電方法は、本実施形態のマグネシウム二次電池を用い、85℃以上の作動温度で充放電を行うものである。作動温度を85℃以上とすることにより、マグネシウム二次電池の放電容量をより向上させることができる。
 イオン液体のアニオン部がビス(トリフルオロメタンスルホニル)アミドである場合、マグネシウム二次電池の作動温度は85℃~300℃であることが好ましく、90℃~200℃であることがより好ましく、130℃~200℃であることが更に好ましい。一方、イオン液体のアニオン部がビス(フルオロスルホニル)アミドである場合、マグネシウム二次電池の作動温度は85℃~100℃であることが好ましい。
<Charging / discharging method>
The charging / discharging method of this embodiment performs charging / discharging at the operating temperature of 85 degreeC or more using the magnesium secondary battery of this embodiment. By setting the operating temperature to 85 ° C. or higher, the discharge capacity of the magnesium secondary battery can be further improved.
When the anion portion of the ionic liquid is bis (trifluoromethanesulfonyl) amide, the operating temperature of the magnesium secondary battery is preferably 85 ° C. to 300 ° C., more preferably 90 ° C. to 200 ° C., and 130 ° C. More preferably, the temperature is -200 ° C. On the other hand, when the anion portion of the ionic liquid is bis (fluorosulfonyl) amide, the operating temperature of the magnesium secondary battery is preferably 85 ° C. to 100 ° C.
 以下、実施例により本発明を具体的に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to the examples.
[合成例1]
 炭酸ナトリウム23.134gを二次蒸留水800mLに溶解し、水溶液を70℃に加熱した。水溶液中に、1.0mol/L硝酸マグネシウム水溶液61.78mLと1.0mol/L硝酸コバルト水溶液117.74mLとを添加し、70℃で30分間撹拌した。水溶液中のナトリウムとマグネシウム及びコバルトとのモル比は、Na/Mg+Co=2.5であった。撹拌後、沈殿物を吸引濾過し、70℃の水で洗浄した後、大気中、100℃で24時間乾燥させることにより、前駆体を得た。得られた前駆体を自動乳鉢で24時間混合した後、大気中、300℃で24時間焼成することにより、マグネシウムコバルト複合酸化物を得た。焼成時の昇温速度は5℃/分とした。
 得られたマグネシウムコバルト複合酸化物について、誘導結合プラズマ発光分光分析装置((株)島津製作所製、ICPE-9000)により化学組成を分析したところ、Mg0.852Co2.148の組成式であることが確認された。また、粉末X線回折装置(PANalytical製、X’Pert Pro)により結晶構造を分析したところ、良好な結晶性を有する、空間群Fd-3mのスピネル型構造であることが明らかとなった。
[Synthesis Example 1]
23.134 g of sodium carbonate was dissolved in 800 mL of secondary distilled water, and the aqueous solution was heated to 70 ° C. In the aqueous solution, 61.78 mL of 1.0 mol / L magnesium nitrate aqueous solution and 117.74 mL of 1.0 mol / L cobalt nitrate aqueous solution were added, and stirred at 70 ° C. for 30 minutes. The molar ratio of sodium to magnesium and cobalt in the aqueous solution was Na / Mg + Co = 2.5. After stirring, the precipitate was filtered by suction, washed with 70 ° C. water, and then dried in air at 100 ° C. for 24 hours to obtain a precursor. The obtained precursor was mixed in an automatic mortar for 24 hours, and then fired in the atmosphere at 300 ° C. for 24 hours to obtain a magnesium cobalt composite oxide. The heating rate during firing was 5 ° C./min.
The obtained magnesium-cobalt composite oxide, inductively coupled plasma emission spectrometer (manufactured by Shimadzu Corporation, ICPE-9000) Analysis of the chemical composition, the composition formula Mg 0.852 Co 2.148 O 4 It was confirmed that. Further, when the crystal structure was analyzed by a powder X-ray diffractometer (manufactured by PANalytical, X'Pert Pro), it was found that the spinel structure of the space group Fd-3m had good crystallinity.
[合成例2]
 炭酸ナトリウム19.958gを二次蒸留水800mLに溶解し、水溶液を80℃に加熱した。水溶液中に、1.0mol/L硝酸ニッケル水溶液28.22mLと1.0mol/L硝酸マンガン水溶液30.28mLとを添加し、空気を吹き込みながら80℃で12時間撹拌した。撹拌後、沈殿物を吸引濾過し、二次蒸留水で洗浄した後、大気中、100℃で24時間乾燥させた。乾燥後の沈殿物6.94gと硝酸マグネシウム六水和物7.618gとを乳鉢で混合し、前駆体を得た。得られた前駆体を、大気中、500℃で5時間仮焼成した後、950℃で15時間焼成することにより、マグネシウムニッケルマンガン複合酸化物(MgNiMnO)を得た。仮焼成時及び焼成時の昇温速度は5℃/分とした。
 得られたマグネシウムニッケルマンガン複合酸化物について、粉末X線回折装置(PANalytical製、X’Pert Pro)により結晶構造を分析したところ、良好な結晶性を有する、空間群Fd-3mのスピネル型構造であることが明らかとなった。
[Synthesis Example 2]
19.958 g of sodium carbonate was dissolved in 800 mL of secondary distilled water, and the aqueous solution was heated to 80 ° C. In the aqueous solution, 28.22 mL of 1.0 mol / L nickel nitrate aqueous solution and 30.28 mL of 1.0 mol / L manganese nitrate aqueous solution were added, and the mixture was stirred at 80 ° C. for 12 hours while blowing air. After stirring, the precipitate was filtered by suction, washed with secondary distilled water, and then dried in the atmosphere at 100 ° C. for 24 hours. 6.94 g of the precipitate after drying and 7.618 g of magnesium nitrate hexahydrate were mixed in a mortar to obtain a precursor. The obtained precursor was calcined at 500 ° C. for 5 hours in the air, and then calcined at 950 ° C. for 15 hours to obtain a magnesium nickel manganese composite oxide (MgNiMnO 4 ). The rate of temperature increase during pre-firing and firing was 5 ° C./min.
When the crystal structure of the obtained magnesium nickel manganese composite oxide was analyzed by a powder X-ray diffractometer (manufactured by PANalytical, X'Pert Pro), the spinel structure of the space group Fd-3m having good crystallinity was obtained. It became clear that there was.
[実施例1]
 合成例1で得たマグネシウムコバルト複合酸化物(正極活物質)90質量部と、ポリイミド(結着剤)5質量部と、気相法炭素繊維(導電助剤)2質量部と、ケッチェンブラック(導電助剤)3質量部とを混合し、N-メチル-2-ピロリドンを加えてペースト化し、正極合剤ペーストを得た。この正極合剤ペーストを、塗工厚みが20μmとなるようにカーボンコートアルミニウム箔(集電体、厚さ21μm)に塗工し、300℃で乾燥させた。乾燥後、16mmφに打ち抜いて正極を作製した。正極中の正極活物質の量は0.842mgであった。
 また、金属マグネシウム板((株)ニラコ製、純度99.9%、厚さ0.10mm)を16mmφに打ち抜いて負極を作製した。
[Example 1]
90 parts by mass of the magnesium cobalt composite oxide (positive electrode active material) obtained in Synthesis Example 1, 5 parts by mass of polyimide (binder), 2 parts by mass of vapor grown carbon fiber (conducting aid), and ketjen black (Conductive auxiliary agent) 3 parts by mass were mixed, and N-methyl-2-pyrrolidone was added to make a paste to obtain a positive electrode mixture paste. This positive electrode mixture paste was coated on a carbon-coated aluminum foil (current collector, thickness 21 μm) so that the coating thickness was 20 μm, and dried at 300 ° C. After drying, a positive electrode was produced by punching out to 16 mmφ. The amount of the positive electrode active material in the positive electrode was 0.842 mg.
Further, a metal magnesium plate (manufactured by Niraco Co., Ltd., purity 99.9%, thickness 0.10 mm) was punched out to 16 mmφ to produce a negative electrode.
 セパレータとしては、ガラスペーパー(日本板硝子(株)製、TGP-008F)を準備した。
 非水電解液の非水溶媒としては、アニオン部がビス(トリフルオロメタンスルホニル)アミドであり、カチオン部がテトラエチルアンモニウムであるイオン液体を準備した。また、非水電解液の支持塩としては、マグネシウムビス(トリフルオロメタンスルホニル)アミドを準備した。イオン液体と支持塩とを90:10のモル比で混合して非水電解液を調製し、正極及びセパレータに溶融含浸させた。
As a separator, glass paper (manufactured by Nippon Sheet Glass Co., Ltd., TGP-008F) was prepared.
As a non-aqueous solvent for the non-aqueous electrolyte, an ionic liquid was prepared in which the anion portion was bis (trifluoromethanesulfonyl) amide and the cation portion was tetraethylammonium. Further, magnesium bis (trifluoromethanesulfonyl) amide was prepared as a supporting salt for the non-aqueous electrolyte. The ionic liquid and the supporting salt were mixed at a molar ratio of 90:10 to prepare a nonaqueous electrolytic solution, and the positive electrode and the separator were melt impregnated.
 その後、正極、セパレータ、負極の順に耐熱性ステンレスセル(宝泉(株)製、HS2セル)内に積層し、試験用のマグネシウム二次電池を作製した。 Thereafter, a positive electrode, a separator, and a negative electrode were sequentially laminated in a heat-resistant stainless steel cell (HS2 cell, manufactured by Hosen Co., Ltd.) to produce a magnesium secondary battery for testing.
[比較例1]
 実施例1と同様にして正極を作製した。正極中の正極活物質の量は0.770mgであった。
 また、金属マグネシウム板((株)ニラコ製、純度99.9%、厚さ0.25mm)を16mmφに打ち抜いて負極を作製した。
[Comparative Example 1]
A positive electrode was produced in the same manner as in Example 1. The amount of the positive electrode active material in the positive electrode was 0.770 mg.
Further, a metal magnesium plate (manufactured by Niraco Co., Ltd., purity 99.9%, thickness 0.25 mm) was punched out to 16 mmφ to produce a negative electrode.
 セパレータとしては、ガラスペーパー(日本板硝子(株)製、TGP-008F)を準備した。
 非水電解液の非水溶媒としては、実施例1で用いたイオン液体の代わりに、スルホランを準備した。また、非水電解液の支持塩としては、マグネシウムビス(トリフルオロメタンスルホニル)アミドを準備した。支持塩の濃度が0.5mol/Lとなるようにスルホラン中に溶解して非水電解液を調製し、正極及びセパレータに溶融含浸させた。
As a separator, glass paper (manufactured by Nippon Sheet Glass Co., Ltd., TGP-008F) was prepared.
As a nonaqueous solvent for the nonaqueous electrolytic solution, sulfolane was prepared instead of the ionic liquid used in Example 1. Further, magnesium bis (trifluoromethanesulfonyl) amide was prepared as a supporting salt for the non-aqueous electrolyte. A non-aqueous electrolyte was prepared by dissolving in sulfolane so that the concentration of the supporting salt was 0.5 mol / L, and the positive electrode and the separator were melt impregnated.
 その後、正極、セパレータ、負極の順に耐熱性ステンレスセル(宝泉(株)製、HS2セル)内に積層し、試験用のマグネシウム二次電池を作製した。 Thereafter, a positive electrode, a separator, and a negative electrode were sequentially laminated in a heat-resistant stainless steel cell (HS2 cell, manufactured by Hosen Co., Ltd.) to produce a magnesium secondary battery for testing.
[評価]
 実施例1及び比較例1のマグネシウム二次電池について、恒温槽内で充放電試験を行った。詳細には、電流密度10mA/g(0.046C相当)で充電を行い、電位が上がらなくなった時点で放電に切り替え、電位が0V(vs.Mg/Mg2+)に達するまで、電流密度10mA/gで放電を続けた。
 なお、実施例1のマグネシウム二次電池については、作動温度が150℃となるように恒温槽内の温度を設定した。一方、比較例1のマグネシウム二次電池については、非水電解液に用いているスルホランの耐熱性が低く、150℃の高温で作動させることができないため、作動温度が80℃となるように恒温槽内の温度を設定した。
[Evaluation]
About the magnesium secondary battery of Example 1 and Comparative Example 1, the charge / discharge test was done in the thermostat. Specifically, charging is performed at a current density of 10 mA / g (equivalent to 0.046 C), and when the potential stops increasing, switching is performed to discharge, and the current density of 10 mA / g until the potential reaches 0 V (vs. Mg / Mg 2+ ). Discharge continued at g.
In addition, about the magnesium secondary battery of Example 1, the temperature in a thermostat was set so that operating temperature might be 150 degreeC. On the other hand, for the magnesium secondary battery of Comparative Example 1, since the heat resistance of sulfolane used in the non-aqueous electrolyte is low and cannot be operated at a high temperature of 150 ° C., the constant temperature is set so that the operating temperature becomes 80 ° C. The temperature in the tank was set.
 実施例1及び比較例1のマグネシウム二次電池の初回充放電曲線をそれぞれ図1A、図1Bに示す。実施例1のマグネシウム二次電池は、150℃の高温で作動させることができ、439mAh/gという高い放電容量を示した。一方、比較例1のマグネシウム二次電池は、150℃の高温で作動させることができず、放電容量は103mAh/gであった。 1A and 1B show initial charge / discharge curves of the magnesium secondary batteries of Example 1 and Comparative Example 1, respectively. The magnesium secondary battery of Example 1 could be operated at a high temperature of 150 ° C. and showed a high discharge capacity of 439 mAh / g. On the other hand, the magnesium secondary battery of Comparative Example 1 could not be operated at a high temperature of 150 ° C., and the discharge capacity was 103 mAh / g.
[実施例2]
 合成例1で得たマグネシウムコバルト複合酸化物の代わりに合成例2で得たマグネシウムニッケルマンガン複合酸化物を用いたほかは、実施例1と同様にして正極を作製した。正極中の正極活物質の量は1.404mgであった。
 作製した正極を用いて、実施例1と同様にして試験用のマグネシウム二次電池を作製した。
[Example 2]
A positive electrode was produced in the same manner as in Example 1 except that the magnesium nickel manganese composite oxide obtained in Synthesis Example 2 was used instead of the magnesium cobalt composite oxide obtained in Synthesis Example 1. The amount of the positive electrode active material in the positive electrode was 1.404 mg.
Using the produced positive electrode, a test magnesium secondary battery was produced in the same manner as in Example 1.
[比較例2]
 合成例1で得たマグネシウムコバルト複合酸化物の代わりに合成例2で得たマグネシウムニッケルマンガン複合酸化物を用いたほかは、実施例1と同様にして正極を作製した。正極中の正極活物質の量は1.38mgであった。
 作製した正極を用いて、比較例1と同様にして試験用のマグネシウム二次電池を作製した。
[Comparative Example 2]
A positive electrode was produced in the same manner as in Example 1 except that the magnesium nickel manganese composite oxide obtained in Synthesis Example 2 was used instead of the magnesium cobalt composite oxide obtained in Synthesis Example 1. The amount of the positive electrode active material in the positive electrode was 1.38 mg.
Using the produced positive electrode, a magnesium secondary battery for test was produced in the same manner as in Comparative Example 1.
[評価]
 実施例2及び比較例2のマグネシウム二次電池について、恒温槽内で充放電試験を行った。詳細には、電流密度10mA/g(0.038C相当)で充電を行い、電位が上がらなくなった時点で放電に切り替え、電位が0V(vs.Mg/Mg2+)に達するまで、電流密度10mA/gで放電を続けた。
 なお、実施例2のマグネシウム二次電池については、作動温度が150℃となるように恒温槽内の温度を設定した。一方、比較例2のマグネシウム二次電池については、非水電解液に用いているスルホランの耐熱性が低く、150℃の高温で作動させることができないため、作動温度が80℃となるように恒温槽内の温度を設定した。
[Evaluation]
About the magnesium secondary battery of Example 2 and Comparative Example 2, the charge / discharge test was done in the thermostat. Specifically, charging is performed at a current density of 10 mA / g (equivalent to 0.038 C), switching to discharging when the potential stops increasing, and until the potential reaches 0 V (vs. Mg / Mg 2+ ), the current density is 10 mA / g. Discharge continued at g.
In addition, about the magnesium secondary battery of Example 2, the temperature in a thermostat was set so that operating temperature might be 150 degreeC. On the other hand, for the magnesium secondary battery of Comparative Example 2, since the heat resistance of sulfolane used in the non-aqueous electrolyte is low and cannot be operated at a high temperature of 150 ° C., the constant temperature is set so that the operating temperature becomes 80 ° C. The temperature in the tank was set.
 実施例2及び比較例2のマグネシウム二次電池の初回充放電曲線をそれぞれ図2A、図2Bに示す。実施例2のマグネシウム二次電池は、150℃の高温で作動させることができ、246mAh/gという高い放電容量を示した。一方、比較例2のマグネシウム二次電池は、150℃の高温で作動させることができず、放電容量は103mAh/gであった。 2A and 2B show initial charge / discharge curves of the magnesium secondary batteries of Example 2 and Comparative Example 2, respectively. The magnesium secondary battery of Example 2 could be operated at a high temperature of 150 ° C. and showed a high discharge capacity of 246 mAh / g. On the other hand, the magnesium secondary battery of Comparative Example 2 could not be operated at a high temperature of 150 ° C., and the discharge capacity was 103 mAh / g.
 2015年3月6日に出願された日本出願2015-044810の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese application 2015-044810 filed on March 6, 2015 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (5)

  1.  次式:Mg3-x(式中、MはCo、Ni、Mn、Ti、V、Cr、Fe、Cu、Ru、Ge、Mo、Si、Al、Zr、及びBからなる群より選ばれる少なくとも1種の元素であり、0.7≦x≦1.2である。)で表される正極活物質を含む正極と、
     負極と、
     アニオン部がビス(トリフルオロメタンスルホニル)アミド又はビス(フルオロスルホニル)アミドであるイオン液体を含む非水電解液と、を有するマグネシウム二次電池。
    The following formula: Mg x M 3-x O 4 (wherein M is a group consisting of Co, Ni, Mn, Ti, V, Cr, Fe, Cu, Ru, Ge, Mo, Si, Al, Zr, and B) A positive electrode containing a positive electrode active material represented by: at least one element selected from the group consisting of 0.7 ≦ x ≦ 1.2;
    A negative electrode,
    And a non-aqueous electrolyte containing an ionic liquid whose anion portion is bis (trifluoromethanesulfonyl) amide or bis (fluorosulfonyl) amide.
  2.  前記式中のMがCo、Ni、及びMnからなる群より選ばれる少なくとも1種の元素である、請求項1に記載のマグネシウム二次電池。 The magnesium secondary battery according to claim 1, wherein M in the formula is at least one element selected from the group consisting of Co, Ni, and Mn.
  3.  前記イオン液体のカチオン部が第4級アンモニウムである、請求項1又は請求項2に記載のマグネシウム二次電池。 The magnesium secondary battery according to claim 1 or 2, wherein the cation portion of the ionic liquid is quaternary ammonium.
  4.  前記イオン液体のカチオン部がテトラエチルアンモニウムである、請求項1~請求項3のいずれか1項に記載のマグネシウム二次電池。 The magnesium secondary battery according to any one of claims 1 to 3, wherein a cation portion of the ionic liquid is tetraethylammonium.
  5.  請求項1~請求項4のいずれか1項に記載のマグネシウム二次電池を用い、85℃以上の作動温度で充放電を行う充放電方法。 A charge / discharge method using the magnesium secondary battery according to any one of claims 1 to 4 to perform charge / discharge at an operating temperature of 85 ° C or higher.
PCT/JP2016/056667 2015-03-06 2016-03-03 Magnesium secondary battery and charge/discharge method WO2016143675A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015044810A JP2018073455A (en) 2015-03-06 2015-03-06 Magnesium secondary battery and charge/discharge method
JP2015-044810 2015-03-06

Publications (1)

Publication Number Publication Date
WO2016143675A1 true WO2016143675A1 (en) 2016-09-15

Family

ID=56880313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056667 WO2016143675A1 (en) 2015-03-06 2016-03-03 Magnesium secondary battery and charge/discharge method

Country Status (2)

Country Link
JP (1) JP2018073455A (en)
WO (1) WO2016143675A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119494A1 (en) * 2016-01-06 2017-07-13 国立研究開発法人産業技術総合研究所 Magnesium compound, positive electrode active material for secondary battery, secondary battery, and magnesium compound production method
EP3367472A1 (en) * 2017-02-28 2018-08-29 Commissariat à l'énergie atomique et aux énergies alternatives Electrochemical storage cell with bipolar architecture, with high voltage per electrochemical cell
US11018330B2 (en) 2018-03-22 2021-05-25 Panasonic Intellectual Property Management Co., Ltd. Cathode active material containing magnesium-transition metal composite oxide and magnesium secondary battery using the same
US11081698B2 (en) 2018-04-23 2021-08-03 Panasonic Intellectual Property Management Co., Ltd. Cathode active material containing boron and carbon, and magnesium secondary battery using the same
US11267707B2 (en) 2019-04-16 2022-03-08 Honeywell International Inc Purification of bis(fluorosulfonyl) imide
CN115117314A (en) * 2022-07-04 2022-09-27 中国科学院青岛生物能源与过程研究所 Sulfide-coated magnesium ion storage positive electrode material, preparation method and application in magnesium metal secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7418805B2 (en) 2019-03-12 2024-01-22 国立研究開発法人産業技術総合研究所 Anolytes for polyvalent metal secondary batteries and polyvalent metal secondary batteries

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100344A (en) * 2000-09-22 2002-04-05 Sony Corp Positive electrode and battery
JP2011165639A (en) * 2010-02-04 2011-08-25 Samsung Electro-Mechanics Co Ltd Positive electrode active material with magnesium, and magnesium secondary battery with the same
WO2013157189A1 (en) * 2012-04-16 2013-10-24 パナソニック株式会社 Electrochemical energy storage device, active substance using same, and production method therefor
JP2014036113A (en) * 2012-08-08 2014-02-24 Toyo Tanso Kk Capacitor
JP2014035868A (en) * 2012-08-08 2014-02-24 Denso Corp Magnesium secondary battery
JP2014139917A (en) * 2012-12-17 2014-07-31 Toyota Central R&D Labs Inc Nonaqueous electrolyte secondary battery and nonaqueous electrolyte magnesium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100344A (en) * 2000-09-22 2002-04-05 Sony Corp Positive electrode and battery
JP2011165639A (en) * 2010-02-04 2011-08-25 Samsung Electro-Mechanics Co Ltd Positive electrode active material with magnesium, and magnesium secondary battery with the same
WO2013157189A1 (en) * 2012-04-16 2013-10-24 パナソニック株式会社 Electrochemical energy storage device, active substance using same, and production method therefor
JP2014036113A (en) * 2012-08-08 2014-02-24 Toyo Tanso Kk Capacitor
JP2014035868A (en) * 2012-08-08 2014-02-24 Denso Corp Magnesium secondary battery
JP2014139917A (en) * 2012-12-17 2014-07-31 Toyota Central R&D Labs Inc Nonaqueous electrolyte secondary battery and nonaqueous electrolyte magnesium secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119494A1 (en) * 2016-01-06 2017-07-13 国立研究開発法人産業技術総合研究所 Magnesium compound, positive electrode active material for secondary battery, secondary battery, and magnesium compound production method
JPWO2017119494A1 (en) * 2016-01-06 2018-11-22 国立研究開発法人産業技術総合研究所 Magnesium compound, positive electrode active material for secondary battery, secondary battery, and method for producing magnesium compound
JP7060866B2 (en) 2016-01-06 2022-04-27 国立研究開発法人産業技術総合研究所 A method for manufacturing a positive electrode active material for a secondary battery, a secondary battery, and a positive electrode active material for a secondary battery.
EP3367472A1 (en) * 2017-02-28 2018-08-29 Commissariat à l'énergie atomique et aux énergies alternatives Electrochemical storage cell with bipolar architecture, with high voltage per electrochemical cell
US11018330B2 (en) 2018-03-22 2021-05-25 Panasonic Intellectual Property Management Co., Ltd. Cathode active material containing magnesium-transition metal composite oxide and magnesium secondary battery using the same
US11081698B2 (en) 2018-04-23 2021-08-03 Panasonic Intellectual Property Management Co., Ltd. Cathode active material containing boron and carbon, and magnesium secondary battery using the same
US11267707B2 (en) 2019-04-16 2022-03-08 Honeywell International Inc Purification of bis(fluorosulfonyl) imide
CN115117314A (en) * 2022-07-04 2022-09-27 中国科学院青岛生物能源与过程研究所 Sulfide-coated magnesium ion storage positive electrode material, preparation method and application in magnesium metal secondary battery

Also Published As

Publication number Publication date
JP2018073455A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
WO2016143675A1 (en) Magnesium secondary battery and charge/discharge method
KR101897645B1 (en) Material consisting of composite oxide particles, method for preparing same, and use thereof as electrode active material
JP6063468B2 (en) Condensed polyanion electrode
JPWO2017047015A1 (en) battery
JP2007280627A (en) Magnesium secondary battery
US20170187039A1 (en) Positive electrode active material for sodium secondary battery, and method for preparing same
US10205168B2 (en) Sodium transition metal silicates
JP6369126B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5493330B2 (en) Water-based lithium secondary battery
WO2014170979A1 (en) Negative electrode active material for sodium secondary battery using molten salt electrolyte solution, negative electrode, and sodium secondary battery using molten salt electrolyte solution
JP6477152B2 (en) Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6047086B2 (en) Sodium secondary battery
JP2012023006A (en) Anode material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery including the material
JP6677405B2 (en) Positive active material for magnesium secondary battery, positive electrode for magnesium secondary battery, and magnesium secondary battery
KR20180018884A (en) Surface-modified cathode active materials for aqueous lithium secondary battery
JP4415556B2 (en) Non-aqueous electrolyte battery
WO2018097250A1 (en) Electrode active material for nonaqueous secondary batteries, and nonaqueous secondary battery using same
JP2016076422A (en) Hybrid ion battery system
US9466835B2 (en) Cathode active material
JP7006066B2 (en) Positive electrode active material, manufacturing method of positive electrode active material, positive electrode and secondary battery
JP6493913B2 (en) Method for producing magnesium composite oxide
JPWO2020012739A1 (en) Positive electrode active material and battery equipped with it
JP2016189239A (en) Lithium ion secondary battery
CN105074030A (en) Alloy method for complex metal for negative electrode active material
JP2015082488A (en) Sodium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761645

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16761645

Country of ref document: EP

Kind code of ref document: A1