WO2016141888A1 - 飞行器及其翻转方法 - Google Patents

飞行器及其翻转方法 Download PDF

Info

Publication number
WO2016141888A1
WO2016141888A1 PCT/CN2016/076115 CN2016076115W WO2016141888A1 WO 2016141888 A1 WO2016141888 A1 WO 2016141888A1 CN 2016076115 W CN2016076115 W CN 2016076115W WO 2016141888 A1 WO2016141888 A1 WO 2016141888A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
tilt angle
aircraft
motor
real
Prior art date
Application number
PCT/CN2016/076115
Other languages
English (en)
French (fr)
Inventor
田瑜
江文彦
Original Assignee
优利科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 优利科技有限公司 filed Critical 优利科技有限公司
Priority to EP16761115.1A priority Critical patent/EP3269639B1/en
Priority to US15/557,092 priority patent/US10620642B2/en
Publication of WO2016141888A1 publication Critical patent/WO2016141888A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0858Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/02Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the invention relates to an aircraft, in particular to a quadrotor aircraft, a six-rotor aircraft or an eight-rotor aircraft and a method for turning the same.
  • a quadrotor uses four propellers to provide lift to the body, real-time calculations of the data read by sensors in the body, and then an inertial navigation algorithm to estimate the attitude of the aircraft, ie the angle of inclination of the aircraft relative to the horizontal plane, and then according to the current body.
  • the tilt angle regulates the speed of the four motors that provide lift.
  • the propeller When the aircraft needs to perform a 180° attitude flight, the propeller must be required to output the thrust in the opposite direction.
  • the prior art solution generally designes the propeller into two parts that can be independently operated, and the pitch of the propeller is changed by the steering gear and a plurality of transmission devices, so as to directly change the reverse direction of the thrust output.
  • the existing implementation requires the addition of a complicated transmission mechanism, which increases the structural complexity of the aircraft. In addition, the transmission mechanism needs to be manually adjusted during production, and slight collisions affect the stability of the complicated transmission mechanism during use. .
  • the technical problem to be solved by the present invention is to overcome the need to additionally add complex in the aircraft in the prior art.
  • the miscellaneous transmission mechanism can realize the overturning of the aircraft, resulting in the complicated mechanical structure of the aircraft. It provides an aircraft and its turning method that can be realized by using the principle of positive and negative motor reversal without adding complicated transmission mechanism.
  • the invention provides an aircraft comprising a body and a remote controller, the body comprising a motor and a power source, wherein the body further comprises a controller and a six-axis inertial sensor;
  • the remote controller is configured to allow a user to input a desired tilt angle of the aircraft, and transmit the desired tilt angle to the controller, wherein the desired tilt angle is 180° or 360°;
  • the six-axis inertial sensor is configured to detect a real-time tilt angle of the aircraft relative to a horizontal plane, and transmit the real-time tilt angle to the controller;
  • the controller is configured to calculate a difference between the desired tilt angle and the real-time tilt angle, and calculate a reverse voltage according to the difference;
  • the controller is further configured to control the power source to output the reverse voltage to the motor, so that the motor is reversed, so that the aircraft is flipped at an inclination angle of 180° or 360°, that is, the aircraft is in the air by using the forward and reverse rotation of the motor. Flip.
  • the body further includes an H-bridge chip short-circuiting the two ends of the motor
  • the controller is further configured to control the H-bridge chip to generate an electromagnetic braking torque to decelerate the motor in a short time (for example, 50 milliseconds) After that, the speed of the motor has dropped drastically, and then the motor is reversed according to the input reverse voltage.
  • the controller is further configured to control the H-bridge chip to change the magnitude and direction of the power supply voltage to accelerate or evenly operate the motor, that is, the stable operation and the acceleration operation of the motor are implemented by the H-bridge chip control. .
  • the remote controller is configured to receive the input of the i-th tilt angle, and transmit the tilt angle to the controller;
  • the six-axis inertial sensor is configured to detect a real-time tilt angle of the i-th current aircraft relative to a horizontal plane, and transmit the i-th real-time tilt angle to the controller;
  • the controller is configured to calculate a difference between the i tilt angles and the ith real-time tilt angle, and calculate a voltage according to the difference.
  • the i tilt angles are between 90° and 180°, the voltage is reversed. Turn voltage
  • the controller is further configured to control the power source to output the voltage to the motor
  • the controller is further configured to determine whether the i tilt angle is 360°, and if so, end, if otherwise increase the value of i by 1, and call the remote controller.
  • the aircraft when it is desired that the aircraft achieve 360° air flip, it is not directly input 360° through the remote controller to reach 360° of the aircraft in the air, but first input a certain tilt angle, for example 45°, and then pass The controller outputs a voltage to control the aircraft to flip over the air at an angle of 45°. Thereafter, an angle of inclination greater than the angle of inclination of the previous input, for example, 90°, is input, and the aircraft will be flipped in the air at a tilt angle of 90° in a short period of time.
  • the user inputs 135°, 180°, 225°, and 360° in sequence, so that the aircraft finally flips over the air at an angle of 360°.
  • the above-mentioned 360° inversion target of the aircraft is divided into 6 steps.
  • This implementation has the following advantages: First, preventing the aircraft from flipping too fast, resulting in poor visual perception of the user, and feeling that the aircraft does not flip, the scheme enables the aircraft to achieve " Elegant "flips, the visual experience is excellent; Second, to prevent the aircraft from flipping too fast, causing the aircraft to overturn and fall from the air.
  • the aircraft is a quadrotor, a six-rotor or an eight-rotor aircraft.
  • the invention also provides a method for inverting an aircraft, characterized in that it is realized by the above-mentioned aircraft, which comprises the following steps:
  • the six-axis inertial sensor detects a real-time tilt angle of the aircraft relative to a horizontal plane, and transmits the real-time tilt angle to the controller;
  • the controller calculates the difference between the desired tilt angle and tilt angle in real time, and calculates a reverse voltage in accordance with the difference;
  • the controller controls the power output of the inverting voltage to the motor.
  • the body further comprises a short-circuit chip of the H-bridge across the motor, in step S 4, the controller controls the H-bridge chip to generate an electromagnetic braking torque so that the deceleration of the motor.
  • the controller controls the H-bridge to change the magnitude and direction of the power supply voltage to accelerate or evenly operate the motor.
  • the flipping method comprises:
  • the remote controller receives the input of the i-th tilt angle, and transmits the tilt angle to the controller;
  • the six-axis inertial sensor detects a real-time tilt angle of the i-th current aircraft relative to a horizontal plane, and transmits the i-th real-time tilt angle to the controller;
  • the controller calculates a difference between the i tilt angles and the ith real-time tilt angle, and calculates a voltage according to the difference, when the i tilt angles are between 90° and 180°, The voltage is a reverse voltage;
  • the controller controls the power source to output the voltage to the motor
  • the controller determines whether the i tilt angle is 360°, and if so, ends the flow, if otherwise increases the value of i by 1, and executes S 1 ' again.
  • the invention abandons the complicated transmission mechanism, realizes the air inversion of the aircraft by making the motor forward and reverse, and the aircraft is free from debugging during mass production, and the durability is no different from that of the conventional aircraft.
  • the aircraft of the present invention greatly exerts the dynamic performance of the conventional aircraft, and increases the interest and economy of the aircraft as a model sports equipment.
  • FIG. 1 is a block diagram showing the structure of an aircraft according to Embodiment 1 of the present invention.
  • Embodiment 2 is a method of inverting an aircraft according to Embodiment 1 of the present invention.
  • Embodiment 3 is a method of turning over an aircraft according to Embodiment 1 of the present invention.
  • This embodiment provides an aircraft that is a four-rotor aircraft, a six-rotor aircraft, or an eight-rotor aircraft.
  • the aircraft includes a body (not shown) and a remote controller 1 including a controller 2, a power source (such as a lithium battery) 3, and a six-axis inertial sensor 4.
  • a motor 6 and an H-bridge chip 5 shorting the ends of the motor 6.
  • the remote controller 1 is used for a user to input a desired tilt angle of the aircraft, and transmits the desired tilt angle to the controller 2, wherein the desired tilt angle is 180° or 360°;
  • the six-axis inertial sensor 4 is used to detect the current tilt angle of the aircraft relative to the horizontal plane, and transmit the real-time tilt angle to the controller 2;
  • the controller 2 is configured to calculate a difference between the desired tilt angle and the real-time tilt angle, and calculate a reverse voltage according to the difference;
  • the controller 2 is further configured to control the power source 3 to output the reverse voltage to the motor 6, so that the motor 6 is reversed, so that the aircraft is flipped at an inclination angle of 180° or 360°, that is, using the positive and negative rotation of the motor. Realize the aerial flip of the aircraft.
  • the controller 2 is further configured to control the H-bridge chip 5 to generate an electromagnetic braking torque to make the motor 6 After deceleration, after a short period of time (for example, 50 milliseconds), the speed of the motor has dropped drastically, and then the motor is reversed according to the input reverse voltage.
  • a short period of time for example, 50 milliseconds
  • the stable operation and the acceleration operation of the motor 6 are all controlled by the H-bridge chip 5.
  • the controller 2 controls the H-bridge chip 5 to change the magnitude and direction of the power supply voltage to accelerate the motor 6 or
  • the motor is operated at a constant speed, for example, by controlling the H-bridge chip 5 to increase the power supply voltage, so that the motor 6 is accelerated, and, for example, the H-bridge chip 5 is controlled to maintain a constant power supply voltage, so that the motor 6 operates stably.
  • the embodiment further provides an inversion method for an aircraft, which is implemented by using the above-mentioned aircraft, and includes the following steps:
  • Step 101 the remote controller is for a user to input a desired tilt angle of the aircraft, and transmits the desired tilt angle to the controller, wherein the desired tilt angle is 180° or 360°;
  • Step 102 The six-axis inertial sensor detects a real-time tilt angle of the aircraft relative to a horizontal plane, and transmits the real-time tilt angle to the controller;
  • Step 103 The controller calculates a difference between the expected tilt angle and the real-time tilt angle, and calculates a reverse voltage according to the difference;
  • Step 104 The controller controls the power source to output the reverse voltage to the motor, and controls the H-bridge chip to generate an electromagnetic braking torque to decelerate the motor.
  • the user When the user wants the aircraft to perform a 180° flip in the air, the user inputs 180° on the remote controller 1 or presses a button on the remote controller 1 indicating 180°, and the remote controller 1 receives the desired tilt angle of the user input by 180°.
  • the desired tilt angle of 180° is transmitted to the controller 2, while the six-axis inertial sensor 4 detects the current tilt angle of the aircraft with respect to the horizontal plane, such as 30°, and transmits the real-time tilt angle to the controller 2.
  • the controller 2 calculates a difference of 150° between the desired tilt angle 180° and the real-time tilt angle 30°, and calculates a reverse voltage according to the difference 150°, and then the controller 2 controls the power source. 3 Outputting the reverse voltage to the motor 6 causes the motor 6 to reverse, thereby causing the aircraft to flip at an inclination angle of 180°.
  • the structure of the aircraft of this embodiment is the same as that of the aircraft of Embodiment 1, and is identical in the manner of realizing the 180° air flip of the aircraft, except that the manner of implementing the 360° air flip of the aircraft is different. .
  • the remote controller is configured to receive an input of the i-th tilt angle, and transmit the tilt angle to the controller;
  • the six-axis inertial sensor is configured to detect a real-time tilt angle of the i-th current aircraft relative to a horizontal plane, and transmit the i-th real-time tilt angle to the controller;
  • the controller is configured to calculate a difference between the i tilt angles and the ith real-time tilt angle, and calculate a voltage according to the difference.
  • the i tilt angles are between 90° and 180°, the voltage is reversed. Turn voltage
  • the controller is further configured to control the power source to output the voltage to the motor
  • the controller is further configured to determine whether the i tilt angle is 360°, and if so, end, if otherwise increase the value of i by 1, and call the remote controller.
  • the embodiment further provides an inversion method for an aircraft, which is implemented by using the aircraft of the above structure.
  • the desired tilt angle is 360°
  • Step 201 the remote controller receives the input of the i-th tilt angle, and transmits the tilt angle to the controller;
  • Step 202 The six-axis inertial sensor detects a real-time tilt angle of the i-th current aircraft relative to a horizontal plane, and transmits the i-th real-time tilt angle to the controller;
  • Step 203 The controller calculates a difference between the i tilt angles and the ith real-time tilt angle, and calculates a voltage according to the difference.
  • the i tilt angles are between 90° and 180°, the voltage is To reverse the voltage;
  • Step 204 the controller controls the power source to output the voltage to the motor
  • Step 205 The controller determines whether the i tilt angles are 360°, and if yes, ends the process, if otherwise increases the value of i by 1, and executes S 1 ' again.
  • the user When the user wants the aircraft to perform 360° inversion in the air, the user does not directly input 360° on the remote controller 1 or presses the button on the remote controller 1 to indicate 360°, thereby achieving 360° inversion of the aircraft. Instead, the user first inputs 45° on the remote controller 1, and the remote controller 1 transmits the tilt angle of the user input to the controller 2 after receiving the tilt angle of 45°, while the six-axis inertial sensor 4 detects that the aircraft is currently relative to the controller. The real-time tilt angle of the water level is transmitted to the controller 2.
  • the controller 2 calculates a difference between the tilt angle 45° and the real-time tilt angle, and calculates a voltage according to the difference, and then the controller 2 controls the power source 3 to output the voltage to the motor 6, the motor 6
  • the forward rotation causes the aircraft to be turned over at an inclination angle of 45°.
  • the user again inputs the tilt angle of 90°, and the aircraft will flip over the air at an angle of 90° within 50 milliseconds.
  • the user inputs 135°, 180°, 225°, and 360° in sequence, so that the aircraft finally flips over the air at an angle of 360°.
  • This implementation has the following advantages: First, preventing the aircraft from flipping too fast, resulting in poor visual perception of the user, and feeling that the aircraft is not flipped. This solution enables the aircraft to achieve "elegant" flipping, and the visual experience is excellent; second, preventing the aircraft from flipping The speed is too fast, causing the aircraft to overturn and fall from the air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toys (AREA)

Abstract

一种飞行器及其翻转方法,该飞行器包括一机身和一遥控器,该机身包括一马达和一电源,该机身还包括一控制器和一六轴惯性传感器;该遥控器用于供用户输入该飞行器的一期望倾斜角度,并将该期望倾斜角度传输至该控制器,其中该期望倾斜角度为180°或360°;该六轴惯性传感器用于检测该飞行器当前相对于水平面的实时倾斜角度,并将该实时倾斜角度传输至该控制器;该控制器用于计算该期望倾斜角度与该实时倾斜角度的差值,并根据该差值计算出一反转电压;该控制器还用于控制该电源输出该反转电压至该马达。该飞行器及其翻转方法摒弃了复杂的传动机构,并通过控制马达的正反转实现飞行器的自由翻转飞行。

Description

飞行器及其翻转方法
本申请要求申请日为2015年3月12日的中国专利申请CN201510108721.9的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种飞行器,特别涉及一种四旋翼飞行器、六旋翼飞行器或八旋翼飞行器及其翻转方法。
背景技术
传统的四旋翼飞行器、六旋翼飞行器或八旋翼飞行器由于空气动力学结构的限制,只能实现简单的飞行动作。当需要实现机体翻转、“钟摆”动作等复杂飞行动作时,需要增加许多额外的机械结构,这将导致飞行器的机械结构非常复杂。
例如,四旋翼飞行器使用四个螺旋桨为机体提供升力,通过对机体内的传感器读出的数据进行实时运算,然后通过惯性导航算法估计飞行器姿态即飞行器相对于水平面的倾斜角度,进而根据当前机体的倾斜角度分别调控四个提供升力的电机转速。当飞行器需要进行翻转180°姿态飞行时,必须要求螺旋桨输出和原先方向相反的推力。已有的技术方案一般是将螺旋桨设计成可以独立活动的两部分,通过舵机和若干传动装置改变螺旋桨的螺距,达到直接改变推力输出反向的目的。现有的这种实现方式需要增加复杂的传动机构,进而增加了飞行器的结构复杂性;此外,在生产时需要手工调试传动机构,在使用时,轻微的碰撞都会影响复杂的传动机构的稳定性。
发明内容
本发明要解决的技术问题是为了克服现有技术中需在飞行器中额外增加复 杂的传动机构才能实现飞行器的翻转,导致飞行器的机械结构复杂的缺陷,提供一种无需增加复杂的传动机构而是利用电机正反转原理就能够实现的飞行器及其翻转方法。
本发明是通过下述技术方案来解决上述技术问题的:
本发明提供一种飞行器,其包括一机身和一遥控器,该机身包括一马达和一电源,其特点在于,该机身还包括一控制器和一六轴惯性传感器;
该遥控器用于供用户输入该飞行器的一期望倾斜角度,并将该期望倾斜角度传输至该控制器,其中该期望倾斜角度为180°或360°;
该六轴惯性传感器用于检测该飞行器当前相对于水平面的实时倾斜角度,并将该实时倾斜角度传输至该控制器;
该控制器用于计算该期望倾斜角度与该实时倾斜角度的差值,并根据该差值计算出一反转电压;
该控制器还用于控制该电源输出该反转电压至该马达,使得该马达反转,进而使得飞行器以倾斜角度为180°或360°进行翻转,即利用电机的正反转实现飞行器的空中翻转。
较佳地,该机身还包括一短接该马达两端的H桥芯片,该控制器还用于控制该H桥芯片产生电磁刹车力矩以使该马达减速,在很短的时间(例如50毫秒)后,该马达的速度已大幅度下降,然后马达根据输入的反转电压进行反转。
较佳地,该控制器还用于控制该H桥芯片改变电源电压的大小和方向以使该马达加速或匀速运转,即该马达的稳定运行以及加速运转均是通过该H桥芯片控制实现的。
较佳地,当该期望倾斜角度为360°时,设定i=1:该遥控器用于接收第i个倾斜角度的输入,并将该倾斜角度传输至该控制器;
该六轴惯性传感器用于检测第i个该飞行器当前相对于水平面的实时倾斜角度,并将该第i个实时倾斜角度传输至该控制器;
该控制器用于计算该i个倾斜角度与该第i个实时倾斜角度的差值,并根据该差值计算出一电压,当该i个倾斜角度在90°-180°时,该电压为反转电压;
该控制器还用于控制该电源输出该电压至该马达;
该控制器还用于判断该i个倾斜角度是否为360°,若是则结束,若否则将i的数值增加1,并调用该遥控器。
在本方案中,当希望飞行器实现360°的空中翻转时,并不是直接通过遥控器输入360°进而达到飞行器空中翻转360°,而是先输入某一较小的倾斜角度例如45°,然后通过控制器输出一电压进而控制飞行器以45°的倾斜角度进行空中翻转。之后,再输入比前次输入的倾斜角度大的倾斜角度例如90°,飞行器将在很短的时间内以90°的倾斜角度进行空中翻转。以此类推,用户再依次输入135°、180°、225°以及360°,使得飞行器最终以360°的倾斜角度进行空中翻转。
上述将飞行器的360°翻转目标分为6步执行,这种实现方式具有以下优点:一、防止飞行器翻转速度太快,导致用户视觉感受不佳,觉得飞行器没有翻转,本方案使得飞行器能够实现“优雅”翻转,视觉感受极佳;二、防止飞行器翻转速度过快,导致飞行器翻转过猛,从空中坠落。
较佳地,该飞行器为四旋翼飞行器、六旋翼飞行器或八旋翼飞行器。
本发明还提供一种飞行器的翻转方法,其特点在于,其利用上述的飞行器实现,其包括以下步骤:
S1、该遥控器供用户输入该飞行器的一期望倾斜角度,并将该期望倾斜角度传输至该控制器,其中该期望倾斜角度为180°或360°;
S2、该六轴惯性传感器检测该飞行器当前相对于水平面的实时倾斜角度,并将该实时倾斜角度传输至该控制器;
S3、该控制器计算该期望倾斜角度与该实时倾斜角度的差值,并根据该差值计算出一反转电压;
S4、该控制器控制该电源输出该反转电压至该马达。
较佳地,该机身还包括一短接该马达两端的H桥芯片,在步骤S4中,该控制器控制该H桥芯片产生电磁刹车力矩以使该马达减速。
较佳地,在该翻转方法中,该控制器控制该H桥芯片改变电源电压的大小和方向以使该马达加速或匀速运转。
较佳地,当该期望倾斜角度为360°时,设定i=1,该翻转方法包括:
S1’、该遥控器接收第i个倾斜角度的输入,并将该倾斜角度传输至该控制器;
S2’、该六轴惯性传感器检测第i个该飞行器当前相对于水平面的实时倾斜角度,并将该第i个实时倾斜角度传输至该控制器;
S3’、该控制器计算该i个倾斜角度与该第i个实时倾斜角度的差值,并根据该差值计算出一电压,当该i个倾斜角度在90°-180°时,该电压为反转电压;
S4’、该控制器控制该电源输出该电压至该马达;
S5’、该控制器判断该i个倾斜角度是否为360°,若是则结束流程,若否则将i的数值增加1,并再次执行S1’。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明的积极进步效果在于:
本发明摒弃了复杂的传动机构,通过使得电机正反转进而实现飞行器的空中翻转,且飞行器批量生产时免调试,耐用程度和传统的飞行器没有区别。本发明的飞行器极大地发挥了传统飞行器的动力性能,增加了飞行器作为航模运动器材的趣味性和经济性。
附图说明
图1为本发明实施例1的飞行器的结构框图。
图2为本发明实施例1的飞行器的翻转方法。
图3为本发明实施例1的飞行器的翻转方法。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例提供一种飞行器,该飞行器为四旋翼飞行器、六旋翼飞行器或八旋翼飞行器。如图1所示,该飞行器包括一机身(图中未示出)和一遥控器1,该机身包括一控制器2、一电源(例如锂电池)3、一六轴惯性传感器4、一马达6和一短接该马达6两端的H桥芯片5。
下面具体介绍该飞行器包括的各部件所实现的功能:
该遥控器1用于供用户输入该飞行器的一期望倾斜角度,并将该期望倾斜角度传输至该控制器2,其中该期望倾斜角度为180°或360°;
该六轴惯性传感器4用于检测该飞行器当前相对于水平面的实时倾斜角度,并将该实时倾斜角度传输至该控制器2;
该控制器2用于计算该期望倾斜角度与该实时倾斜角度的差值,并根据该差值计算出一反转电压;
该控制器2还用于控制该电源3输出该反转电压至该马达6,使得该马达6反转,进而使得飞行器以倾斜角度为180°或360°进行翻转,即利用电机的正反转实现飞行器的空中翻转。
该控制器2还用于控制该H桥芯片5产生电磁刹车力矩以使该马达6 减速,在很短的时间(例如50毫秒)后,该马达的速度已大幅度下降,然后马达根据输入的反转电压进行反转。
而且,该马达6的稳定运行以及加速运转均是通过该H桥芯片5控制实现的,具体地,该控制器2控制该H桥芯片5改变电源电压的大小和方向以使该马达6加速或匀速运转,例如控制该H桥芯片5增大电源电压,使得该马达6加速运行,又例如,控制该H桥芯片5恒定电源电压,使得该马达6稳定运行。
如图2所示,本实施例还提供一种飞行器的翻转方法,其利用上述的飞行器实现,其包括以下步骤:
步骤101、该遥控器供用户输入该飞行器的一期望倾斜角度,并将该期望倾斜角度传输至该控制器,其中该期望倾斜角度为180°或360°;
步骤102、该六轴惯性传感器检测该飞行器当前相对于水平面的实时倾斜角度,并将该实时倾斜角度传输至该控制器;
步骤103、该控制器计算该期望倾斜角度与该实时倾斜角度的差值,并根据该差值计算出一反转电压;
步骤104、该控制器控制该电源输出该反转电压至该马达,并控制该H桥芯片产生电磁刹车力矩以使该马达减速。
为了使得本领域的技术人员更好地理解本发明,下面举一具体的例子进行说明:
当用户想要飞行器在空中进行180°翻转时,用户在遥控器1上输入180°或按下遥控器1上表示180°的按键,遥控器1在接收到用户输入的期望倾斜角度180°后,将期望倾斜角度180°传输至该控制器2,同时,六轴惯性传感器4检测飞行器当前相对于水平面的实时倾斜角度如30°,并将该实时倾斜角度传输至该控制器2。
该控制器2计算该期望倾斜角度180°与该实时倾斜角度30°的差值150°,并根据该差值150°计算出一反转电压,然后,该控制器2控制该电源 3输出该反转电压至该马达6,使得该马达6反转,进而使得飞行器以倾斜角度为180°进行翻转。
实施例2
本实施例的飞行器的结构与实施例1中的飞行器的结构相同,且在实现飞行器180°空中翻转的方式上完全相同,不同之处在于:在实现飞行器360°空中翻转的方式上有所不同。
具体地,当该期望倾斜角度为360°时,设定i=1:该遥控器用于接收第i个倾斜角度的输入,并将该倾斜角度传输至该控制器;
该六轴惯性传感器用于检测第i个该飞行器当前相对于水平面的实时倾斜角度,并将该第i个实时倾斜角度传输至该控制器;
该控制器用于计算该i个倾斜角度与该第i个实时倾斜角度的差值,并根据该差值计算出一电压,当该i个倾斜角度在90°-180°时,该电压为反转电压;
该控制器还用于控制该电源输出该电压至该马达;
该控制器还用于判断该i个倾斜角度是否为360°,若是则结束,若否则将i的数值增加1,并调用该遥控器。
如图3所示,本实施例还提供一种飞行器的翻转方法,其利用上述结构的飞行器实现,当该期望倾斜角度为360°时,设定i=1,该翻转方法包括:
步骤201、遥控器接收第i个倾斜角度的输入,并将该倾斜角度传输至该控制器;
步骤202、该六轴惯性传感器检测第i个该飞行器当前相对于水平面的实时倾斜角度,并将该第i个实时倾斜角度传输至该控制器;
步骤203、该控制器计算该i个倾斜角度与该第i个实时倾斜角度的差值,并根据该差值计算出一电压,当该i个倾斜角度在90°-180°时,该电压为反转电压;
步骤204、该控制器控制该电源输出该电压至该马达;
步骤205、该控制器判断该i个倾斜角度是否为360°,若是则结束流程,若否则将i的数值增加1,并再次执行S1’。
为了使得本领域的技术人员更好地理解本发明,下面举一具体的例子进行说明:
当用户想要飞行器在空中进行360°翻转时,用户并不直接在遥控器1上输入360°或按下遥控器1上表示360°的按键,进而达到飞行器空中翻转360°。而是,用户先在遥控器1上输入45°,遥控器1在接收到用户输入的倾斜角度45°后,将其传输至该控制器2,同时,六轴惯性传感器4检测飞行器当前相对于水平面的实时倾斜角度,并将该实时倾斜角度传输至该控制器2。
该控制器2计算该倾斜角度45°与该实时倾斜角度的差值,并根据该差值计算出一电压,然后,该控制器2控制该电源3输出该电压至该马达6,该马达6正转,进而使得飞行器以倾斜角度为45°进行翻转。
其后,用户再次输入倾斜角度90°,飞行器将在50毫秒内以90°的倾斜角度进行空中翻转。以此类推,用户再依次输入135°、180°、225°以及360°,使得飞行器最终以360°的倾斜角度进行空中翻转。
这种实现方式具有以下优点:一、防止飞行器翻转速度太快,导致用户视觉感受不佳,觉得飞行器没有翻转,本方案使得飞行器能够实现“优雅”翻转,视觉感受极佳;二、防止飞行器翻转速度过快,导致飞行器翻转过猛,从空中坠落。
本发明中的各个功能模块均能够在现有的硬件条件下结合现有的软件编程手段加以实现,故在此对其具体实现方法均不做赘述。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求 书限定。

Claims (9)

  1. 一种飞行器,其包括一机身和一遥控器,该机身包括一马达和一电源,其特征在于,该机身还包括一控制器和一六轴惯性传感器;
    该遥控器用于供用户输入该飞行器的一期望倾斜角度,并将该期望倾斜角度传输至该控制器,其中该期望倾斜角度为180°或360°;
    该六轴惯性传感器用于检测该飞行器当前相对于水平面的实时倾斜角度,并将该实时倾斜角度传输至该控制器;
    该控制器用于计算该期望倾斜角度与该实时倾斜角度的差值,并根据该差值计算出一反转电压;
    该控制器还用于控制该电源输出该反转电压至该马达。
  2. 如权利要求1所述的飞行器,其特征在于,该机身还包括一短接该马达两端的H桥芯片,该控制器还用于控制该H桥芯片产生电磁刹车力矩以使该马达减速。
  3. 如权利要求2所述的飞行器,其特征在于,该控制器还用于控制该H桥芯片改变该电源电压的大小和方向以使该马达加速或匀速运转。
  4. 如权利要求1-3中至少一项所述的飞行器,其特征在于,当该期望倾斜角度为360°时,设定i=1:该遥控器用于接收第i个倾斜角度的输入,并将该倾斜角度传输至该控制器;
    该六轴惯性传感器用于检测第i个该飞行器当前相对于水平面的实时倾斜角度,并将该第i个实时倾斜角度传输至该控制器;
    该控制器用于计算该i个倾斜角度与该第i个实时倾斜角度的差值,并根据该差值计算出一电压,当该i个倾斜角度在90°-180°时,该电压为反转电压;
    该控制器还用于控制该电源输出该电压至该马达;
    该控制器还用于判断该i个倾斜角度是否为360°,若是则结束,若否则 将i的数值增加1,并调用该遥控器。
  5. 如权利要求1-4中至少一项所述的飞行器,其特征在于,该飞行器为四旋翼飞行器、六旋翼飞行器或八旋翼飞行器。
  6. 一种飞行器的翻转方法,其特征在于,其利用如权利要求1-5中至少一项所述的飞行器实现,其包括以下步骤:
    S1、该遥控器供用户输入该飞行器的一期望倾斜角度,并将该期望倾斜角度传输至该控制器,其中该期望倾斜角度为180°或360°;
    S2、该六轴惯性传感器检测该飞行器当前相对于水平面的实时倾斜角度,并将该实时倾斜角度传输至该控制器;
    S3、该控制器计算该期望倾斜角度与该实时倾斜角度的差值,并根据该差值计算出一反转电压;
    S4、该控制器控制该电源输出该反转电压至该马达。
  7. 如权利要求6所述的翻转方法,其特征在于,该机身还包括一短接该马达两端的H桥芯片,在步骤S4中,该控制器控制该H桥芯片产生电磁刹车力矩以使该马达减速。
  8. 如权利要求7所述的翻转方法,其特征在于,在该翻转方法中,该控制器控制该H桥芯片改变电源电压的大小和方向以使该马达加速或匀速运转。
  9. 如权利要求6-8中至少一项所述的翻转方法,其特征在于,当该期望倾斜角度为360°时,设定i=1,该翻转方法包括:
    S1’、该遥控器接收第i个倾斜角度的输入,并将该倾斜角度传输至该控制器;
    S2’、该六轴惯性传感器检测第i个该飞行器当前相对于水平面的实时倾斜角度,并将该第i个实时倾斜角度传输至该控制器;
    S3’、该控制器计算该i个倾斜角度与该第i个实时倾斜角度的差值,并根据该差值计算出一电压,当该i个倾斜角度在90°-180°时,该电压为反转 电压;
    S4’、该控制器控制该电源输出该电压至该马达;
    S5’、该控制器判断该i个倾斜角度是否为360°,若是则结束流程,若否则将i的数值增加1,并再次执行S1’。
PCT/CN2016/076115 2015-03-12 2016-03-11 飞行器及其翻转方法 WO2016141888A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16761115.1A EP3269639B1 (en) 2015-03-12 2016-03-11 Aircraft and roll method thereof
US15/557,092 US10620642B2 (en) 2015-03-12 2016-03-11 Aircraft and roll method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510108721.9 2015-03-12
CN201510108721.9A CN106032166B (zh) 2015-03-12 2015-03-12 飞行器及其翻转方法

Publications (1)

Publication Number Publication Date
WO2016141888A1 true WO2016141888A1 (zh) 2016-09-15

Family

ID=56879995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076115 WO2016141888A1 (zh) 2015-03-12 2016-03-11 飞行器及其翻转方法

Country Status (4)

Country Link
US (1) US10620642B2 (zh)
EP (1) EP3269639B1 (zh)
CN (1) CN106032166B (zh)
WO (1) WO2016141888A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106774368B (zh) * 2016-12-30 2020-12-04 深圳市大疆创新科技有限公司 飞行器操控和遥控方法、飞行器、遥控设备及飞行器系统
CN108594839B (zh) * 2018-05-22 2019-06-28 深圳智航无人机有限公司 基于多矢量技术的控制方法、飞机及存储介质
CN110307759B (zh) * 2019-06-24 2021-10-01 中国航天空气动力技术研究院 一种快速自翻转导弹布局
CN112327933B (zh) * 2020-12-04 2024-03-08 上海磐启微电子有限公司 一种飞行器控制系统及方法
CN116888045A (zh) * 2021-03-31 2023-10-13 深圳市大疆创新科技有限公司 无人飞行器、控制终端、救机方法和救机系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743582A2 (en) * 1995-05-15 1996-11-20 The Boeing Company Method and apparatus for the linear real time estimation of an aircraft center of gravity
WO2003067351A2 (en) * 2002-02-07 2003-08-14 Levitation Technologies Ltd. Stabilisation and control of aircraft and other objects
CN201429796Y (zh) * 2009-04-23 2010-03-24 深圳市大疆创新科技有限公司 无人直升机自动飞行控制系统电路
CN103365296A (zh) * 2013-06-29 2013-10-23 天津大学 一种四旋翼无人飞行器非线性输出反馈飞行控制方法
CN203909620U (zh) * 2014-06-03 2014-10-29 温州大学 具备自主航线飞行能力的六旋翼无人飞行器飞行控制系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2988868B1 (fr) * 2012-03-30 2015-04-24 Parrot Procede de pilotage d'un drone a voilure tournante a rotors multiples avec estimation et compensation du vent lateral
US9011250B2 (en) 2012-10-05 2015-04-21 Qfo Labs, Inc. Wireless communication system for game play with multiple remote-control flying craft
CN102955477B (zh) * 2012-10-26 2015-01-14 南京信息工程大学 一种四旋翼飞行器姿态控制系统及控制方法
CN203332391U (zh) * 2013-05-30 2013-12-11 淮安信息职业技术学院 四旋翼航模飞行器
US10101736B1 (en) * 2014-02-26 2018-10-16 Horizon Hobby, LLC Systems and methods for open-loop control of a brushless motor
CN203705964U (zh) 2014-02-28 2014-07-09 哈尔滨伟方智能科技开发有限责任公司 一种机载三自由度云台稳定闭环控制装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743582A2 (en) * 1995-05-15 1996-11-20 The Boeing Company Method and apparatus for the linear real time estimation of an aircraft center of gravity
WO2003067351A2 (en) * 2002-02-07 2003-08-14 Levitation Technologies Ltd. Stabilisation and control of aircraft and other objects
CN201429796Y (zh) * 2009-04-23 2010-03-24 深圳市大疆创新科技有限公司 无人直升机自动飞行控制系统电路
CN103365296A (zh) * 2013-06-29 2013-10-23 天津大学 一种四旋翼无人飞行器非线性输出反馈飞行控制方法
CN203909620U (zh) * 2014-06-03 2014-10-29 温州大学 具备自主航线飞行能力的六旋翼无人飞行器飞行控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3269639A4 *

Also Published As

Publication number Publication date
EP3269639B1 (en) 2019-09-25
US10620642B2 (en) 2020-04-14
EP3269639A4 (en) 2018-12-05
US20180046200A1 (en) 2018-02-15
CN106032166A (zh) 2016-10-19
CN106032166B (zh) 2018-12-04
EP3269639A1 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
WO2016141888A1 (zh) 飞行器及其翻转方法
WO2018099198A1 (zh) 无人机姿态控制方法、装置及无人机
Bapst et al. Design and implementation of an unmanned tail-sitter
US20200062386A1 (en) Air, sea, land and underwater tilt tri-rotor uav capable of performing vertical take-off and landing
US20170371352A1 (en) Method for dynamically converting the attitude of a rotary-wing drone
WO2018099260A1 (zh) 一种云台姿态控制方法及系统
US20170060128A1 (en) Multi-mode remote control flying systems
TW381202B (en) Moving body control device
CN207374661U (zh) 多旋翼无人机
CN109606674A (zh) 尾坐式垂直起降无人机及其控制系统与控制方法
CN106200665A (zh) 携带不确定负载的四轴飞行器的建模与自适应控制方法
WO2018103462A1 (zh) 一种飞行器航向控制方法、装置和电子设备
WO2015172558A1 (zh) 变距飞行器的控制方法和控制装置
WO2018090807A1 (zh) 飞行拍摄控制系统和方法、智能移动通信终端、飞行器
US11822350B2 (en) Adjusting load on tethered aircraft
WO2019052530A1 (zh) 油电混合动力无人机
WO2020187092A1 (zh) 一种无人机控制装置和无人机
JP2016215958A (ja) マルチコプター及びマルチコプターシステム
CN107249980A (zh) 船舶应急停止
CN105159086B (zh) 独轮机器人的基于事件触发机制有限时间自平衡控制方法
JP6867634B1 (ja) 姿勢制御装置及び姿勢制御方法
CN110379285A (zh) 一种四棱锥立体倒立摆装置及控制方法
WO2018072693A1 (zh) 飞行器的控制方法、装置及飞行器
CN109533233B (zh) 水下机器人推进器的自适应控制方法
CN206781957U (zh) 风帆助力系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761115

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15557092

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016761115

Country of ref document: EP