WO2016141873A1 - 光信号传输系统、方法和光通信设备 - Google Patents

光信号传输系统、方法和光通信设备 Download PDF

Info

Publication number
WO2016141873A1
WO2016141873A1 PCT/CN2016/075880 CN2016075880W WO2016141873A1 WO 2016141873 A1 WO2016141873 A1 WO 2016141873A1 CN 2016075880 W CN2016075880 W CN 2016075880W WO 2016141873 A1 WO2016141873 A1 WO 2016141873A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
unit
silicon
electrical signal
Prior art date
Application number
PCT/CN2016/075880
Other languages
English (en)
French (fr)
Inventor
许国强
陈少华
刘长双
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016141873A1 publication Critical patent/WO2016141873A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the present invention relates to the field of optical communication technologies, and more particularly to an optical signal transmission system, method and optical communication device.
  • the spurt growth of data traffic brings huge bandwidth pressure to the transmission network.
  • the telecom operators are extremely urgent to introduce 100G/400G or higher transmission.
  • the flattening of the data network and the IP of the mobile network further bring the transmission network.
  • the demand for larger capacity scheduling, the rapid development of data services and the increasingly complex network topology require that the transport network can achieve fast service opening, and has large capacity, multi-service granularity, multi-directional cross-scheduling capabilities. Therefore, high-capacity transmission equipment with high transmission capability and flexible and efficient scheduling has become the focus of telecom operators.
  • the existing optical transmission technology needs to realize the photoelectric/electrical light conversion through the optical transceiver integrated module, and the transmitting part inputs the electrical signal of a certain code rate through the internal driving chip to drive the semiconductor laser or the light emitting diode to emit the modulated optical signal of the corresponding rate.
  • the internal optical power automatic control circuit keeps the output optical signal power stable.
  • the receiving part is an optical signal input module of a certain code rate, and is converted into an electric signal by the photo detecting diode, and outputs an electric signal of a corresponding code rate after the amplifier.
  • the steps of processing, transforming, encoding, decoding, etc. of signals in the optical transmission system also require the use of electrical quantities as information carriers, and optical signals are only present in optical fiber transmission.
  • the optical signal when data is transmitted inside the optical communication device, the optical signal needs to be converted into an electrical signal, and the electrical signal is used as a data carrier for transmission and processing on the main backplane and the daughter card of the device, but an electrical signal is used inside the optical communication device.
  • the reliability of data transmission is caused by the attenuation of the electrical signal during transmission (for example, the electrical signal link may damage the electrical signal, or the device may cause the electrical signal transmission to be attenuated or the electrical signal is too large). low.
  • the sub-card photoelectric conversion module on the back-board of the optical communication device converts the optical signal into an electrical signal, and then the electrical signal passes the electrical signal on the PCB daughter card.
  • the link is transmitted, and the electrical signal is transmitted to other daughter cards through the electrical signal link on the backplane of the PCB.
  • the electrical signal will have transmission attenuation problems on both the daughter card and the backplane, resulting in reduced reliability of data transmission. .
  • the main technical problem to be solved by the present invention is to provide an optical signal transmission system, method and optical communication device, which can solve the technical problem that the existing optical communication device has low reliability when transmitting large-capacity high-speed data.
  • the present invention provides an optical signal transmission system including: a PCB board and a silicon optical chip unit, an optical transmission unit, and a light receiving unit disposed on the PCB; the silicon optical chip unit and the Light transmission list The element is connected by a fiber link on the PCB board, and the silicon optical chip unit and the light receiving unit are connected by a fiber link on the PCB board;
  • the light receiving unit is configured to receive an externally transmitted optical signal
  • the silicon optical chip unit is configured to convert the optical signal into an electrical signal, process the electrical signal, and convert the processed electrical signal into an optical signal;
  • the optical transmission unit is configured to transmit the optical signal converted by the silicon optical chip unit through a fiber link.
  • the silicon optical chip unit includes: a first silicon optical chip, an electrical signal processing module, and a second silicon optical chip;
  • the first silicon optical chip is configured to convert the optical signal into an electrical signal and transmit the electrical signal to the electrical signal processing module;
  • the electrical signal processing module is configured to process the electrical signal, and transmit the processed electrical signal to the second silicon optical chip;
  • the second silicon optical chip is configured to convert the processed electrical signal into an optical signal.
  • the light receiving unit includes: an optical connector
  • the optical transmission unit includes: a first optical adapter
  • the optical connector is configured to receive an optical signal transmitted by an external optical fiber connected thereto;
  • the first optical adapter is configured to transmit an optical signal converted by the silicon optical chip unit to an external PCB connected to the first optical connector through a fiber link.
  • the light receiving unit includes: a second optical adapter, the optical transmission unit comprising: a third optical adapter;
  • the second optical adapter is configured to receive an optical signal transmitted by an external PCB connected thereto;
  • the third optical adapter is configured to transmit the optical signal converted by the silicon optical chip unit to an external PCB connected to the third optical adapter through a fiber link.
  • optical signal transmission system further includes: an optical signal processing unit;
  • the optical signal processing unit is configured to process the optical signal converted by the silicon optical chip unit before the optical transmission unit transmits the optical signal converted by the silicon optical chip unit.
  • the present invention provides an optical communication apparatus comprising the optical signal transmission system according to any of the above.
  • the present invention provides another optical signal transmission system, including: a PCB backplane, a first PCB board and a second PCB board disposed on the PCB backplane, the first a silicon optical chip unit, an optical transmission unit, and a light receiving unit are disposed on the PCB board and the second PCB board; the silicon optical chip unit and the optical transmission unit pass the optical fiber link on the PCB board where the two are located Connecting, the silicon optical chip unit and the light receiving unit are connected by a fiber link on a PCB board where the two are located; the optical transmission unit on the first PCB and the light receiving unit on the second PCB Connected by fiber optic links on the backplane of the PCB;
  • a light receiving unit in the first PCB board configured to receive an externally transmitted optical signal
  • a silicon optical chip unit in the first PCB board configured to convert the optical signal into an electrical signal, process the electrical signal, and convert the processed electrical signal into an optical signal
  • An optical transmission unit in the first PCB board configured to convert an optical signal of the silicon optical chip unit in the first PCB board The number is transmitted to the light receiving unit in the second PCB through the optical fiber link on the PCB backplane;
  • a silicon optical chip unit in the second PCB board configured to convert an optical signal received by the light receiving unit in the second PCB board into an electrical signal, process the electrical signal, and convert the processed electrical signal into Optical signal
  • An optical transmission unit in the second PCB board is configured to transmit an optical signal converted by the silicon optical chip unit in the second PCB board.
  • the silicon optical chip unit includes: a first silicon optical chip, an electrical signal processing module, and a second silicon optical chip;
  • the first silicon optical chip is configured to convert an optical signal into an electrical signal and transmit the electrical signal to the electrical signal processing module;
  • the electrical signal processing module is configured to process the electrical signal, and transmit the processed electrical signal to the second silicon optical chip;
  • the second silicon optical chip is configured to convert the processed electrical signal into an optical signal.
  • the present invention provides another optical communication apparatus including the other optical signal transmission system according to any one of the above.
  • the present invention also provides an optical signal transmission method, comprising the following steps:
  • the silicon optical chip unit converts the optical signal into an electrical signal, processes the electrical signal, and converts the processed electrical signal into an optical signal
  • the optical signal converted by the silicon optical chip unit is transmitted through a fiber link.
  • the present invention provides an optical signal transmission system, method, and optical communication device.
  • the optical signal transmission system of the present invention includes: a PCB board and a silicon optical chip unit, an optical transmission unit, and a light receiving unit disposed on the PCB;
  • the silicon optical chip unit and the optical transmission unit are connected by a fiber link on the PCB, and the silicon optical chip unit and the light receiving unit are connected by a fiber link on the PCB;
  • the light a receiving unit configured to receive an externally transmitted optical signal;
  • the silicon optical chip unit configured to convert the optical signal into an electrical signal, process the electrical signal, and convert the processed electrical signal into an optical signal
  • the optical transmission unit is configured to remove the optical signal converted by the silicon optical chip unit through a fiber link.
  • the optical signal transmission system of the present invention can use optical signals as data carriers to transmit between PCB boards and PCB boards when transmitting data, specifically using optical fiber links to transmit optical signals, since the optical fiber links are basically lossless, There is no problem of heat generation, so there is no problem of attenuation during signal transmission. Even when transmitting large-capacity high-speed data, there is no problem that the signal is attenuated during transmission; the optical signal transmission system to which the present invention is applied can be realized in an optical communication device.
  • the internal use of optical signals to transmit data improves the reliability of data transmitted by optical communication devices compared with the prior art, and thus enables all-optical passive transmission in the true sense of optical transmission systems in optical communication.
  • optical signal transmission system of the present invention applies a silicon optical chip unit to realize photoelectric conversion, and saves cost compared with the prior art application of the photoelectric conversion module.
  • FIG. 1 is a schematic structural view of a PCB backplane in the prior art
  • FIG. 2 is a schematic structural diagram of a first optical signal transmission system according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of a second optical signal transmission system according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a third optical signal transmission system according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of a fourth optical signal transmission system according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural diagram of a fifth optical signal transmission system according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic structural diagram of an optical signal transmission system according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural diagram of another optical signal transmission system according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic structural diagram of an optical communication device according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic flowchart diagram of an optical signal transmission method according to Embodiment 3 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the present invention provides an optical signal transmission system, as shown in FIG. 2, including: a PCB board 20 and a PCB board, in view of the technical problem that the existing optical communication device has low reliability when transmitting large-capacity high-speed data.
  • the light receiving unit 23 is configured to receive an externally transmitted optical signal
  • the silicon optical chip unit 21 is configured to convert the optical signal into an electrical signal, process the electrical signal, and convert the processed electrical signal into an optical signal;
  • the optical transmission unit 22 is configured to transmit the optical signal converted by the silicon optical chip unit 21 through a fiber link.
  • the optical transmission unit 22 may transmit the optical signal converted by the silicon optical chip unit 21 to an external PCB connected to the optical transmission unit 22 through a fiber link; or directly directly The optical signal converted by the optical chip unit 21 is transmitted to an external optical fiber connected thereto for transmission.
  • the silicon optical chip unit 21 can be composed of a silicon optical chip and a signal processing module.
  • the silicon optical chip can realize photoelectric or electro-optical conversion function, which is formed by utilizing silicon photonic technology, that is, integrating the optical module into In the conventional silicon-based chip, the production process and packaging technology of the chip are used.
  • the function of the silicon optical chip unit 21 of this embodiment can also be implemented by a silicon optical chip.
  • the optical fiber link is a carrier for transmitting optical signals inside the PCB function, and can be implemented by using a PCB buried fiber or a polymer light guiding material.
  • the silicon optical chip unit 21 in this embodiment includes: a first silicon optical chip 211, an electrical signal processing module 212, and a second silicon optical chip 213;
  • the first silicon optical chip 211 is configured to convert the optical signal into an electrical signal and transmit the electrical signal to the electrical signal processing module 212;
  • the electrical signal processing module 212 is configured to process the electrical signal, and transmit the processed electrical signal to the second silicon optical chip 213;
  • the second silicon optical chip 213 is configured to convert the processed electrical signal into an optical signal.
  • the optical signal transmission system of the embodiment uses the optical signal as a data carrier to transmit between the PCB board and the PCB board when transmitting data, specifically, the optical signal is transmitted by using the optical fiber link, since the optical fiber link is basically lossless, There is no heat generation problem, so there is no problem of attenuation during signal transmission. Even when transmitting large-capacity high-speed data, there is no problem that the signal is attenuated during transmission; the PCB board of the embodiment can be implemented inside the optical communication device.
  • the optical receiving unit can receive the optical signal transmitted by the external optical fiber or the optical signal transmitted by the external PCB, and the optical transmission unit can transmit the optical signal to the external optical fiber or transmit it through the optical fiber link.
  • the other optical board therefore, as shown in FIG. 4, the light receiving unit 23 in this embodiment includes: an optical connector 231, the optical transmission unit 22 includes: a first optical adapter 221;
  • the optical connector 231 is configured to receive an optical signal transmitted by an external optical fiber connected thereto;
  • the first optical adapter 221 is configured to transmit an optical signal converted by the silicon optical chip unit 21 to an external PCB connected to the first optical connector 221 through a fiber link.
  • the optical signal transmission system shown in FIG. 4 receives the optical signal transmitted by the external optical fiber, and then transmits the optical signal to the silicon optical chip unit 21 through the optical fiber link on the PCB, and processes the optical signal by the silicon optical chip unit 21, and then outputs the optical signal.
  • the optical signal output from the silicon optical chip unit 21 is transmitted through an optical adapter to other PCB boards connected to the optical adapter through a fiber optic link.
  • the light receiving unit in the PCB board of the embodiment can also receive the optical signal transmitted by the external PCB.
  • the light receiving unit 23 includes: a second optical adapter 232
  • the optical transmission unit 22 includes: a third optical adapter 222;
  • the second optical adapter 232 is configured to receive an optical signal transmitted by an external PCB connected thereto;
  • the third optical adapter 222 is configured to transmit the optical signal converted by the silicon optical chip unit 21 to an external PCB connected to the third optical adapter 222 through a fiber link.
  • the second optical adapter 232 and the third optical adapter 222 are the same optical adapter.
  • the PCB board shown in FIG. 5 receives the optical signal transmitted by the PCB board connected thereto, and then transmits the optical signal to the silicon optical chip unit 21 through the optical fiber link on the PCB board, and outputs the optical signal after being processed by the silicon optical chip unit 21. Then, the optical signal output from the silicon optical chip unit 21 is transmitted through the optical adapter to other PCB boards connected to the optical adapter through the optical fiber link.
  • the optical signal transmission system of this embodiment further includes: optical signal processing unit 24;
  • the optical signal processing unit 24 is configured to process the optical signal converted by the silicon optical chip unit 21 before the optical transmission unit 22 transmits the optical signal converted by the silicon optical chip unit 21.
  • the optical signal transmission system of the present embodiment can use the optical signal to replace the electrical signal to transmit data on the PCB, thereby avoiding the use of electrical signals to transmit data on the PCB, and the data transmission is improved due to the attenuation of the electrical signal during transmission.
  • the reliability can meet the requirements of transmitting large-capacity and high-speed data.
  • the silicon optical chip is used for photoelectric conversion, which improves the integration of the PCB and simplifies the layout of the PCB.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the present embodiment provides an optical signal transmission system, as shown in FIG. 7, comprising: a PCB backplane 70, a first PCB board 71 and a second PCB board 72 disposed on the PCB backplane 70, a silicon optical chip unit, an optical transmission unit, and a light receiving unit are disposed on a PCB board 71 and the second PCB board 72; the silicon optical chip unit and the optical transmission unit pass through a PCB board on which the two are located An optical fiber link is connected, the silicon optical chip unit and the light receiving unit are connected by a fiber link on a PCB board where the two are located; the optical transmission unit 712 and the second PCB board 72 on the first PCB 71 The upper light receiving unit 723 is connected by a fiber link on the PCB backplane 70;
  • the light receiving unit 713 of the first PCB board 71 is configured to receive an externally transmitted optical signal
  • the silicon optical chip unit 711 of the first PCB board 71 is configured to convert the optical signal into an electrical signal, process the electrical signal, and convert the processed electrical signal into an optical signal;
  • the optical transmission unit 712 of the first PCB board 71 is configured to transmit the optical signal converted by the silicon optical chip unit 711 in the first PCB board 71 to the second PCB through the optical fiber link on the PCB backplane 70.
  • the silicon optical chip unit 721 of the second PCB board 72 is configured to convert an optical signal received by the light receiving unit 723 of the second PCB board 72 into an electrical signal, process the electrical signal, and process the processed Converting an electrical signal into an optical signal;
  • the optical transmission unit 722 of the second PCB board 72 is configured to transmit the optical signal converted by the silicon optical chip unit 721 in the second PCB board 72.
  • the optical transmission unit 722 of the second PCB board 72 can transmit the optical signal to the external optical fiber, and can also replace the optical signal with other PCB boards for processing.
  • the silicon optical chip unit comprises: a first silicon optical chip, an electrical signal processing module and a second silicon optical chip;
  • the first silicon optical chip is configured to convert an optical signal into an electrical signal and transmit the electrical signal to the electrical signal processing module;
  • the electrical signal processing module is configured to process the electrical signal, and transmit the processed electrical signal to the second silicon optical chip;
  • the second silicon optical chip is configured to convert the processed electrical signal into an optical signal.
  • the optical signal transmission system of this embodiment can transmit data by using optical signals between the PCB board and the PCB board to avoid The use of electrical signals to transmit data on the PCB board, the optical signal transmission system of the present embodiment can improve the reliability of data transmission in the optical communication device due to the problem of attenuation of the electrical signal during transmission, and in particular, can satisfy the high-speed transmission. Data requirements.
  • the embodiment provides an optical signal transmission system, as shown in FIG. 8, comprising: a PCB backplane 81, a PCB daughter card 811-812, a multi-core optical fiber 82, a multi-core optical connector 83, and a PCB.
  • the PCB backplane 81 can provide possible power, low frequency signals, and monitoring signal transmission and processing for each unit of the system equipment including the PCB daughter cards 811-812.
  • the PCB daughter cards 811-812 can be securely attached to the PCB backplane 81 in a variety of ways including, but not limited to, locating pins, electrical connectors, screw mounting connections, and the like.
  • the PCB daughter card on the PCB backplane 81 may have one, two or more to meet the actual use function.
  • the multi-core optical fiber 82 is connected to the PCB daughter cards 811-812 through a multi-core optical connector 83.
  • the shape of the multi-core optical fiber 82 may be a strip shape or a circular shape.
  • the multi-core optical connector 83 is composed of a plug and a socket, and the plug is connected with the multi-core optical fiber 82 to form a plug assembly.
  • the socket can be directly connected to the daughter card or transferred through the optical fiber medium and then connected to the daughter card.
  • the multi-core optical connector 83 is required to meet high-density, high-efficiency, and high-reliability optical fiber interconnections, and may be an MPO/MT type optical fiber movable connector or other forms of optical fiber connectors.
  • the fiber link 84 on the PCB is the carrier through which the optical signal is transmitted between the inside of the PCB and the PCB. It can be realized by PCB buried fiber or polymer photoconductive material.
  • the silicon optical chip 85 integrates the optical module into a conventional silicon-based chip, and uses the chip production process and packaging technology to mass-produce the photovoltaic module to realize photoelectric conversion, electro-optical conversion function and electrical signal processing function.
  • the optical signal processing unit 86 includes a series of processes for processing the optical signals and corresponding optical devices, such as transforming, amplifying, encoding, decoding, and the like.
  • the multi-core optical adapter 87 is used to realize the switching of optical signals on different PCB fiber links, that is, to realize optical signal transmission between PCB boards.
  • the embodiment further provides an optical communication device, including the optical signal transmission system according to the second embodiment or the optical signal transmission system according to the first embodiment.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • this embodiment provides an optical signal transmission method, including the following steps:
  • Step 101 Receive an optical signal transmitted outside the PCB board, and transmit the optical signal to the silicon optical chip unit on the PCB board through a fiber link on the PCB board.
  • Step 102 The silicon optical chip unit converts the optical signal into an electrical signal, processes the electrical signal, and converts the processed electrical signal into an optical signal.
  • Step 103 Transmit the optical signal converted by the silicon optical chip unit through a fiber link.
  • the PCB board can transmit the converted optical signal to other external PCB boards.
  • the step 103 specifically includes: passing the PCB board.
  • the optical fiber link on the PCB backplane transmits the optical signal converted by the silicon optical chip unit to an external PCB connected to the PCB.
  • the optical signal transmission method of the present embodiment can be used to transmit an optical signal as a data carrier between a PCB board and a PCB board when transmitting data, specifically using an optical fiber link to transmit optical signals, since the optical fiber link is basically lossless. There is no heat problem, so there is no problem of attenuation during signal transmission. Even when transmitting large-capacity high-speed data, there is no problem that the signal is attenuated during transmission; further, optical signals can be utilized inside the optical communication device. Compared with the prior art, the data transmission is improved, the reliability of the data transmitted by the optical communication device is improved, the data transmission of the ultra-large capacity is satisfied, and the all-optical passive transmission in the true sense of the optical transmission system can be realized in the optical communication.
  • the optical signal transmission system of the present application can be applied to an optical communication device, and uses an optical signal as a data carrier to transmit between the PCB and the PCB when transmitting data, specifically, using an optical fiber link to transmit the optical signal. Since the fiber link is basically lossless and has no heat generation problem, there is no problem of attenuation during signal transmission, and even if large-capacity high-speed data is transmitted, there is no problem that the signal is attenuated during transmission.
  • the optical signal transmission system of the present invention can realize the use of optical signals to transmit data inside the optical communication device, and improves the reliability of the data transmitted by the optical communication device compared with the prior art, thereby realizing the true meaning of the optical transmission system.
  • Optical passive transmission can realize the use of optical signals to transmit data inside the optical communication device, and improves the reliability of the data transmitted by the optical communication device compared with the prior art, thereby realizing the true meaning of the optical transmission system.
  • Optical passive transmission can realize the use of optical signals to transmit data inside the optical communication

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种光信号传输系统、方法和光通信设备。本发明的光信号传输系统包括:PCB板和设置在所述PCB板上的硅光芯片单元、光传输单元、光接收单元;所述硅光芯片单元与所述光传输单元通过所述PCB板上的光纤链路连接,所述硅光芯片单元与所述光接收单元通过所述PCB板上的光纤链路连接;所述光接收单元,用于接收外部传输的光信号;所述硅光芯片单元,用于将所述光信号转换为电信号,对所述电信号进行处理,以及将处理后的电信号转换为光信号;所述光传输单元,用于通过光纤链路将所述硅光芯片单元转换的光信号出去。本发明的光信号传输系统能够解决现有光通信设备传输大容量高速数据时可靠性低的技术问题。

Description

光信号传输系统、方法和光通信设备
本申请要求于2015年3月12日提交中国专利局、申请号为201510110151.7的中国专利申请的优先权,以上全部内容通过引用结合在本申请中。
技术领域
本发明涉及光通信技术领域,尤其一种光信号传输系统、方法和光通信设备。
背景技术
数据流量的井喷式增长给传输网络带来巨大的带宽压力,电信运营商对引入100G/400G甚至更高传输要求极为迫切;同时数据网络的扁平化和移动网络的IP化进一步给传送网络带来了更大容量的调度需求,数据业务的迅猛发展和日益复杂的网络拓扑要求传送网络能够实现业务的快速开通,并且具备大容量、多业务颗粒、多方向的交叉调度能力。因此具备高传输能力,能够灵活高效调度的大容量传送设备成为电信运营商关注的焦点。
现有的光传输技术需通过光收发一体化模块实现光电/电光的变换,发射部分输入一定码率的电信号经内部的驱动芯片处理后驱动半导体激光器或发光二极管发射出相应速率的调制光信号,内部带有光功率自动控制电路,使输出的光信号功率保持稳定。接收部分是一定码率的光信号输入模块后由光探测二极管转换为电信号,经放大器后输出相应码率的电信号。光传输系统中信号的处理、变换、编码、解码等步骤还需要用电学量作为信息载体,光信号只是在光纤传输中存在。
具体地,在光通讯设备内部传输数据时,需要将光信号转换为电信号,在设备主背板和子卡上用电信号作为数据载体来进行传输和处理,然而在光通讯设备内部采用电信号传输大容量高速数据时,由于电信号会在传输过程中出现衰减(例如电信号链路会损坏电信号,或者设备发热导致电信号传输衰减或者电信号过大等),导致数据传输的可靠性低。
如图1所示,当光传输系统需要传输大容量高速数据时,光通信设备中背板上子卡光电转换模块会将光信号转换为电信号,之后电信号在PCB子卡上通过电信号链路进行传输,且通过PCB背板上的电信号链路将电信号传输至其他子卡,然而此时电信号在子卡和背板均会出现传输衰减问题,导致数据传输的可靠性降低。
发明内容
本发明要解决的主要技术问题是,提供一种光信号传输系统、方法和光通信设备,能够解决现有光通信设备传输大容量高速数据时可靠性低的技术问题。
为解决上述技术问题,本发明提供一种光信号传输系统,包括:PCB板和设置在所述PCB板上的硅光芯片单元、光传输单元、光接收单元;所述硅光芯片单元与所述光传输单 元通过所述PCB板上的光纤链路连接,所述硅光芯片单元与所述光接收单元通过所述PCB板上的光纤链路连接;
所述光接收单元,用于接收外部传输的光信号;
所述硅光芯片单元,用于将所述光信号转换为电信号,对所述电信号进行处理,以及将处理后的电信号转换为光信号;
所述光传输单元,用于通过光纤链路将所述硅光芯片单元转换的光信号传输出去。
进一步地,所述硅光芯片单元包括:第一硅光芯片、电信号处理模块和第二硅光芯片;
所述第一硅光芯片,用于将所述光信号转换为电信号传输给所述电信号处理模块;
所述电信号处理模块,用于对所述电信号进行处理,并将处理后的电信号传输给所述第二硅光芯片;
所述第二硅光芯片,用于将所述处理后的电信号转换为光信号。
进一步地,所述光接收单元包括:光连接器,所述光传输单元包括:第一光转接器;
所述光连接器,用于接收与之连接的外部光纤传输的光信号;
所述第一光转接器,用于通过光纤链路将所述硅光芯片单元转换的光信号传输给与所述第一光连接器连接的外部PCB板。
进一步地,所述光接收单元包括:第二光转接器,所述光传输单元包括:第三光转接器;
所述第二光转接器,用于接收与之连接的外部PCB板传输的光信号;
所述第三光转接器,用于通过光纤链路将所述硅光芯片单元转换的光信号传输给与所述第三光转接器连接的外部PCB板。
进一步地,所述光信号传输系统还包括:光信号处理单元;
所述光信号处理单元,用于在光传输单元将所述硅光芯片单元转换的光信号传输出去之前,对所述硅光芯片单元转换的光信号进行处理。
同样为了解决上述的技术问题,本发明还提供了一种光通信设备,包括如上任一项所述的光信号传输系统。
同样为了解决上述的技术问题,本发明还提供了另一种光信号传输系统,包括:PCB背板、设置在所述PCB背板上的第一PCB板和第二PCB板,所述第一PCB板和所述第二PCB板上均设有硅光芯片单元、光传输单元、光接收单元;所述硅光芯片单元与所述光传输单元通过二者所在的PCB板上的光纤链路连接,所述硅光芯片单元与所述光接收单元通过二者所在的PCB板上的光纤链路连接;所述第一PCB上的光传输单元与所述第二PCB板上的光接收单元通过所述PCB背板上的光纤链路连接;
所述第一PCB板中光接收单元,用于接收外部传输的光信号;
所述第一PCB板中硅光芯片单元,用于将所述光信号转换为电信号,对所述电信号进行处理,以及将处理后的电信号转换为光信号;
所述第一PCB板中光传输单元,用于将所述第一PCB板中硅光芯片单元转换的光信 号通过所述PCB背板上的光纤链路传输给第二PCB板中的光接收单元;
所述第二PCB板中硅光芯片单元,用于将第二PCB板中光接收单元接收到的光信号转换为电信号,对所述电信号进行处理,以及将处理后的电信号转换为光信号;
所述第二PCB板中光传输单元,用于将所述第二PCB板中硅光芯片单元转换的光信号传输出去。
进一步地,所述硅光芯片单元包括:第一硅光芯片、电信号处理模块和第二硅光芯片;
所述第一硅光芯片,用于将光信号转换为电信号传输给所述电信号处理模块;
所述电信号处理模块,用于对所述电信号进行处理,并将处理后的电信号传输给所述第二硅光芯片;
所述第二硅光芯片,用于将所述处理后的电信号转换为光信号。
同样为了解决上述的技术问题,本发明还提供了另一种光通信设备,包括如上任一项所述的另一种光信号传输系统。
同样为了解决上述的技术问题,本发明还提供了光信号传输方法,包括如下步骤:
接收PCB板外部传输的光信号,通过所述PCB板上的光纤链路将所述光信号传输至所述PCB板上的硅光芯片单元;
所述硅光芯片单元将所述光信号转换为电信号,对所述电信号进行处理,以及将处理后的电信号转换为光信号;
通过光纤链路将所述硅光芯片单元转换的光信号传输出去。
本发明的有益效果是:
本发明提供了一种光信号传输系统、方法和光通信设备;本发明的光信号传输系统包括:PCB板和设置在所述PCB板上的硅光芯片单元、光传输单元、光接收单元;所述硅光芯片单元与所述光传输单元通过所述PCB板上的光纤链路连接,所述硅光芯片单元与所述光接收单元通过所述PCB板上的光纤链路连接;所述光接收单元,用于接收外部传输的光信号;所述硅光芯片单元,用于将所述光信号转换为电信号,对所述电信号进行处理,以及将处理后的电信号转换为光信号;所述光传输单元,用于通过光纤链路将所述硅光芯片单元转换的光信号出去。本发明的光信号传输系统可以在传输数据时利用光信号作为数据载体在PCB板上以及PCB板之间传输,具体地利用光纤链路传输光信号,由于光纤链路基本上是无损的、也没有发热问题,因此不会存在信号传输过程中衰减的问题,即使在传输大容量高速数据也不会存在信号在传输过程中衰减的问题;应用本发明的光信号传输系统可以实现在光通信设备内部利用光信号传输数据,与现有技术相比,提高了光通信设备传输的数据可靠性,进而在光通信可以实现光传输系统真正意义上的全光无源传输。
进一步地,本发明的光信号传输系统应用硅光芯片单元实现光电转换,相比现有技术应用光电转换模块,节约了成本。
附图说明
图1为现有技术中PCB背板的结构示意图;
图2为本发明实施例一提供第一种光信号传输系统的结构示意图;
图3为本发明实施例一提供第二种光信号传输系统的结构示意图;
图4为本发明实施例一提供第三种光信号传输系统的结构示意图;
图5为本发明实施例一提供第四种光信号传输系统的结构示意图;
图6为本发明实施例一提供第五种光信号传输系统的结构示意图;
图7为本发明实施例二提供的一种光信号传输系统的结构示意图;
图8为本发明实施例二提供的另一种光信号传输系统的结构示意图;
图9为本发明实施例二提供的一种光通信设备的结构示意图;
图10为本发明实施例三提供的一种光信号传输方法的流程示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
实施例一:
考虑到现有光通信设备传输大容量高速数据时可靠性低的技术问题,本实施例提供了一种光信号传输系统,如图2所示,包括:PCB板20和设置在所述PCB板20上的硅光芯片单元21、光传输单元22、光接收单元23;所述硅光芯片单元21与所述光传输单元22通过所述PCB板20上的光纤链路连接,所述硅光芯片单元21与所述光接收单元23通过所述PCB板20上的光纤链路连接;
所述光接收单元23,用于接收外部传输的光信号;
所述硅光芯片单元21,用于将所述光信号转换为电信号,对所述电信号进行处理,以及将处理后的电信号转换为光信号;
所述光传输单元22,用于通过光纤链路将所述硅光芯片单元21转换的光信号传输出去。
具体地,在本实施例中光传输单元22可以通过光纤链路将所述硅光芯片单元21转换的光信号传输给与所述光传输单元22连接的外部PCB板;或者直接将所述硅光芯片单元21转换的光信号传输给与之连接的外部光纤从而传输出去。
本实施例中硅光芯片单元21可以由硅光芯片和信号处理模块构成;本实施例中硅光芯片可实现光电或者电光转换功能,是利用硅光子技术形成的,即为将光模块集成到传统的硅基芯片中,利用芯片的生产工艺和封装技术形成的。
当然,本实施例硅光芯片单元21的功能还可以由一个硅光芯片实现。
本实施例中光纤链路是光信号在PCB功能内部传输的载体,可采用PCB埋纤或高分子光导材料来实现。
优选地,如图3所示,本实施例中所述硅光芯片单元21包括:第一硅光芯片211、电信号处理模块212和第二硅光芯片213;
所述第一硅光芯片211,用于将所述光信号转换为电信号传输给所述电信号处理模块212;
所述电信号处理模块212,用于对所述电信号进行处理,并将处理后的电信号传输给所述第二硅光芯片213;
所述第二硅光芯片213,用于将所述处理后的电信号转换为光信号。
本实施例的光信号传输系统在传输数据时利用光信号作为数据载体在PCB板上和PCB板之间传输,具体地利用光纤链路传输光信号,由于光纤链路基本上是无损的、也没有发热问题,因此不会存在信号传输过程中衰减的问题,即使在传输大容量高速数据也不会存在信号在传输过程中衰减的问题;应用本实施例的PCB板可以实现在光通信设备内部利用光信号传输数据,与现有技术相比,提高了光通信设备传输的数据可靠性,满足超大容量的数据传输,进而在光通信可以实现光传输系统真正意义上的全光无源传输。
本实施例光信号传输系统中光接收单元可以接收外部光纤传输的光信号或者外部PCB板传输的光信号,其光传输单元可以通过将光信号传输给外部光纤传输出去或者通过光纤链路传输给其他PCB板;因此,如图4所示,本实施例中所述光接收单元23包括:光连接器231,所述光传输单元22包括:第一光转接器221;
所述光连接器231,用于接收与之连接的外部光纤传输的光信号;
所述第一光转接器221,用于通过光纤链路将所述硅光芯片单元21转换的光信号传输给与所述第一光连接器221连接的外部PCB板。
图4所示的光信号传输系统接收外部光纤传输的光信号,然后将光信号通过PCB板上的光纤链路传输至硅光芯片单元21,由硅光芯片单元21处理后输出光信号,然后将硅光芯片单元21输出的光信号通过光转接器传输至通过光纤链路与该光转接器连接的其他PCB板中。
本实施例PCB板中光接收单元还可以接收外部PCB板传输的光信号;如图5所示,所述光接收单元23包括:第二光转接器232,所述光传输单元22包括:第三光转接器222;
所述第二光转接器232,用于接收与之连接的外部PCB板传输的光信号;
所述第三光转接器222,用于通过光纤链路将所述硅光芯片单元21转换的光信号传输给与所述第三光转接器222连接的外部PCB板。
优选地,第二光转接器232与第三光转接器222为同一个光转接器。
图5所示的PCB板接收与之相连的PCB板传输的光信号,然后将光信号通过PCB板上的光纤链路传输至硅光芯片单元21,由硅光芯片单元21处理后输出光信号,然后将硅光芯片单元21输出的光信号通过光转接器传输至通过光纤链路与该光转接器连接的其他PCB板中。
考虑到在硅光芯片单元21输出光信号之后,还需要对光信号进行一系列的处理,例 如变换、放大、编码、解码等,在上述光信号传输系统的基础上,如图6所示,本实施例光信号传输系统后还包括:光信号处理单元24;
所述光信号处理单元24,用于在光传输单元22将所述硅光芯片单元21转换的光信号传输之前,对所述硅光芯片单元21转换的光信号进行处理。
应用本实施例的光信号传输系统可以利用光信号替换电信号在PCB板上传输数据,避免了在PCB板上采用电信号传输数据,由于电信号在传输过程中衰减的问题,提高了数据传输的可靠性,可以满足传输大容量高速数据的要求,另外应用硅光芯片进行光电转换,提升了PCB板的集成度,简化了PCB板的布局。
实施例二:
本实施例提供了一种光信号传输系统,如图7所示,包括:PCB背板70、设置在所述PCB背板70上的第一PCB板71和第二PCB板72,所述第一PCB板71和所述第二PCB板72上均设有硅光芯片单元、光传输单元、光接收单元;所述硅光芯片单元与所述光传输单元通过二者所在的PCB板上的光纤链路连接,所述硅光芯片单元与所述光接收单元通过二者所在的PCB板上的光纤链路连接;所述第一PCB71上的光传输单元712与所述第二PCB板72上的光接收单元723通过所述PCB背板70上的光纤链路连接;
所述第一PCB板71中光接收单元713,用于接收外部传输的光信号;
所述第一PCB板71中硅光芯片单元711,用于将所述光信号转换为电信号,对所述电信号进行处理,以及将处理后的电信号转换为光信号;
所述第一PCB板71中光传输单元712,用于将所述第一PCB板71中硅光芯片单元711转换的光信号通过所述PCB背板70上的光纤链路传输给第二PCB板72中的光接收单元723;
所述第二PCB板72中硅光芯片单元721,用于将第二PCB板72中光接收单元723接收到的光信号转换为电信号,对所述电信号进行处理,以及将处理后的电信号转换为光信号;
所述第二PCB板72中光传输单元722,用于将所述第二PCB板72中硅光芯片单元721转换的光信号传输出去。
本实施例中第二PCB板72中光传输单元722可以将光信号传输给外部光纤,也可以将光信号换上给其他PCB板处理。
优选地,所述硅光芯片单元包括:第一硅光芯片、电信号处理模块和第二硅光芯片;
所述第一硅光芯片,用于将光信号转换为电信号传输给所述电信号处理模块;
所述电信号处理模块,用于对所述电信号进行处理,并将处理后的电信号传输给所述第二硅光芯片;
所述第二硅光芯片,用于将所述处理后的电信号转换为光信号。
本实施例光信号传输系统可以在PCB板上和PCB板之间利用光信号传输数据,避免 了在PCB板上采用电信号传输数据,由于电信号在传输过程中衰减的问题,在光通信设备应用本实施例的光信号传输系统可以提高数据传输的可靠性,尤其可以满足传输大容量高速数据的要求。
根据上述的描述,本实施例提供了一种光信号传输系统,如图8所示,包括:PCB背板81、PCB子卡811-812、多芯光纤82、多芯光连接器83、PCB上的光纤链路84、硅光芯片85、光信号处理单元86、多芯光转接器87;图8中,PCB子卡811-812即为PCB板,硅光芯片85实现上述硅光芯片单元的所有功能;
PCB背板81可为系统设备各单元包括PCB子卡811-812提供可能的供电、低频信号和监控信号的传输及处理等。
PCB子卡811-812可通过多种方式可靠固定在PCB背板81上,包括但不限于定位销、电连接器、螺钉安装连接等。本实施例中PCB背板81上的PCB子卡可以有1个、2个或多个,以满足实际使用功能。
多芯光纤82,通过多芯光连接器83与PCB子卡811-812相连。其中多芯光纤82的外形可以是带状的也可以是圆形。多芯光连接器83由插头和插座互配组成,插头与多芯光纤82连接组成插头组件,插座可直接与子卡连接或通过光纤介质转接后再与子卡连接。多芯光连接器83需满足高密度、高效率和高可靠性的光纤互连,可以是MPO/MT型光纤活动连接器,也可以是其他形式光纤连接器。
PCB上的光纤链路84是光信号在PCB内部和PCB之间传输的载体。可采用PCB埋纤或高分子光导材料来实现。
硅光芯片85是将光模块集成到传统的硅基芯片中,利用芯片的生产工艺和封装技术大规模生产光电模块,实现光电转换、电光转换功能和电信号处理功能。
光信号处理单元86,包括对光信号进行处理的一系列过程及相应的光器件,如变换、放大、编码、解码等。
多芯光转接器87,用于实现光信号在不同PCB光纤链路的转接,即实现PCB板之间的光信号传输。
如图9所示,本实施例还提供了一种光通信设备,包括如实施例二所述的光信号传输系统或者如实施例一所述的光信号传输系统。
实施例三:
如图10所示,本实施例提供了一种光信号传输方法,包括如下步骤:
步骤101:接收PCB板外部传输的光信号,通过所述PCB板上的光纤链路将所述光信号传输至所述PCB板上的硅光芯片单元。
步骤102:所述硅光芯片单元将所述光信号转换为电信号,对所述电信号进行处理,以及将处理后的电信号转换为光信号。
步骤103:通过光纤链路将所述硅光芯片单元转换的光信号传输出去。
优选地,本实施例中PCB板可以将转换的光信号传输给其他外部PCB板,例如在所述PCB板与外部PCB板设置在PCB背板上时,步骤103具体包括:通过所述PCB板所在PCB背板上的光纤链路将所述硅光芯片单元转换的光信号传输给与所述PCB板相连的外部PCB板。
应用本实施例的光信号传输方法可以使得在传输数据时利用光信号作为数据载体在PCB板上和PCB板之间传输,具体地利用光纤链路传输光信号,由于光纤链路基本上是无损的、也没有发热问题,因此不会存在信号传输过程中衰减的问题,即使在传输大容量高速数据也不会存在信号在传输过程中衰减的问题;进而可以实现在光通信设备内部利用光信号传输数据,与现有技术相比,提高了光通信设备传输数据的可靠性,满足超大容量的数据传输,进而在光通信可以实现光传输系统真正意义上的全光无源传输。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
工业实用性
本申请的光信号传输系统可以应用于光通信设备中,在传输数据时利用光信号作为数据载体在PCB板上以及PCB板之间传输,具体地利用光纤链路传输光信号。由于光纤链路基本上是无损的、也没有发热问题,因此不会存在信号传输过程中衰减的问题,即使在传输大容量高速数据也不会存在信号在传输过程中衰减的问题。应用本发明的光信号传输系统可以实现在光通信设备内部利用光信号传输数据,与现有技术相比,提高了光通信设备传输的数据可靠性,进而可以实现光传输系统真正意义上的全光无源传输。

Claims (10)

  1. 一种光信号传输系统,其中,包括:PCB板和设置在所述PCB板上的硅光芯片单元、光传输单元、光接收单元;所述硅光芯片单元与所述光传输单元通过所述PCB板上的光纤链路连接,所述硅光芯片单元与所述光接收单元通过所述PCB板上的光纤链路连接;
    所述光接收单元,配置为接收外部传输的光信号;
    所述硅光芯片单元,配置为将所述光信号转换为电信号,对所述电信号进行处理,以及将处理后的电信号转换为光信号;
    所述光传输单元,配置为通过光纤链路将所述硅光芯片单元转换的光信号传输出去。
  2. 如权利要求1所述的光信号传输系统,其中,所述硅光芯片单元包括:第一硅光芯片、电信号处理模块和第二硅光芯片;
    所述第一硅光芯片,配置为将所述光信号转换为电信号传输给所述电信号处理模块;
    所述电信号处理模块,配置为对所述电信号进行处理,并将处理后的电信号传输给所述第二硅光芯片;
    所述第二硅光芯片,配置为将所述处理后的电信号转换为光信号。
  3. 如权利要求1或2所述的光传输系统,其中,所述光接收单元包括:光连接器,所述光传输单元包括:第一光转接器;
    所述光连接器,配置为接收与之连接的外部光纤传输的光信号;
    所述第一光转接器,配置为通过光纤链路将所述硅光芯片单元转换的光信号传输给与所述第一光连接器连接的外部PCB板。
  4. 如权利要求1或2所述的光信号传输系统,其中,所述光接收单元包括:第二光转接器,所述光传输单元包括:第三光转接器;
    所述第二光转接器,配置为接收与之连接的外部PCB板传输的光信号;
    所述第三光转接器,配置为通过光纤链路将所述硅光芯片单元转换的光信号传输给与所述第三光转接器连接的外部PCB板。
  5. 如权利要求1或2所述的光信号传输系统,其中,还包括:光信号处理单元;
    所述光信号处理元,配置为在光传输单元将所述硅光芯片单元转换的光信号传输出去之前,对所述硅光芯片单元转换的光信号进行处理。
  6. 一种光信号传输系统,其中,包括:PCB背板、设置在所述PCB背板上的第一PCB板和第二PCB板,所述第一PCB板和所述第二PCB板上均设有硅光芯片单元、光传输单元、光接收单元;所述硅光芯片单元与所述光传输单元通过二者所在的PCB板上的光纤链路连接,所述硅光芯片单元与所述光接收单元通过二者所在的PCB板上的光纤链路连接;所述第一PCB上的光传输单元与所述第二PCB板上的光接收单元通过所述PCB 背板上的光纤链路连接;
    所述第一PCB板中光接收单元,配置为接收外部传输的光信号;
    所述第一PCB板中硅光芯片单元,配置为将所述光信号转换为电信号,对所述电信号进行处理,以及将处理后的电信号转换为光信号;
    所述第一PCB板中光传输单元,配置为将所述第一PCB板中硅光芯片单元转换的光信号通过所述PCB背板上的光纤链路传输给第二PCB板中的光接收单元;
    所述第二PCB板中硅光芯片单元,配置为将所述第二PCB板中光接收单元接收到的光信号转换为电信号,对所述电信号进行处理,以及将处理后的电信号转换为光信号;
    所述第二PCB板中光传输单元,配置为将所述第二PCB板中硅光芯片单元转换的光信号传输出去。
  7. 如权利要求6所述的光信号传输系统,其中,所述硅光芯片单元包括:第一硅光芯片、电信号处理模块和第二硅光芯片;
    所述第一硅光芯片,配置为将光信号转换为电信号传输给所述电信号处理模块;
    所述电信号处理模块,配置为对所述电信号进行处理,并将处理后的电信号传输给所述第二硅光芯片;
    所述第二硅光芯片,配置为将所述处理后的电信号转换为光信号。
  8. 一种光通信设备,其中,包括如权利要求1-5任一项所述的光信号传输系统。
  9. 一种光通信设备,其中,包括如权利要求6或7所述的光信号传输系统。
  10. 一种光信号传输方法,其中,包括如下步骤:
    接收PCB板外部传输的光信号,通过所述PCB板上的光纤链路将所述光信号传输至所述PCB板上的硅光芯片单元;
    所述硅光芯片单元将所述光信号转换为电信号,对所述电信号进行处理,以及将处理后的电信号转换为光信号;
    通过光纤链路将所述硅光芯片单元转换的光信号传输出去。
PCT/CN2016/075880 2015-03-12 2016-03-08 光信号传输系统、方法和光通信设备 WO2016141873A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510110151.7A CN106034000B (zh) 2015-03-12 2015-03-12 光信号传输系统、方法和光通信设备
CN201510110151.7 2015-03-12

Publications (1)

Publication Number Publication Date
WO2016141873A1 true WO2016141873A1 (zh) 2016-09-15

Family

ID=56879900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075880 WO2016141873A1 (zh) 2015-03-12 2016-03-08 光信号传输系统、方法和光通信设备

Country Status (2)

Country Link
CN (1) CN106034000B (zh)
WO (1) WO2016141873A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782813A (zh) * 2019-11-07 2021-05-11 青岛海信宽带多媒体技术有限公司 一种光模块
CN113917624A (zh) * 2020-07-07 2022-01-11 青岛海信宽带多媒体技术有限公司 一种光模块

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114384653B (zh) * 2022-01-12 2024-03-19 中天宽带技术有限公司 一种基于异构多芯光纤的硅光模块

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089276A1 (en) * 2003-10-27 2005-04-28 Yoon Keun B. Optical printed circuit board system having tapered waveguide
CN102882601A (zh) * 2012-09-10 2013-01-16 胡朝阳 硅光子集成高速光通信收发模块
CN103312415A (zh) * 2012-03-16 2013-09-18 卢克斯特拉有限公司 用于通信的方法和系统
CN103576256A (zh) * 2012-08-09 2014-02-12 索尼公司 光电复合模块

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349598B1 (ko) * 2000-02-03 2002-08-23 삼성전자 주식회사 실리콘 광벤치를 이용한 스몰 폼 팩터 광송수신 집적 모듈
WO2011044090A2 (en) * 2009-10-09 2011-04-14 Corning Incorporated Integrated silicon photonic active optical cable components, sub-assemblies and assemblies
CN103176250A (zh) * 2011-12-26 2013-06-26 环隆科技股份有限公司 光互联传送模块
CN202837618U (zh) * 2012-01-19 2013-03-27 青岛海信宽带多媒体技术有限公司 多路并行光收发模块
CN103676037A (zh) * 2013-12-25 2014-03-26 武汉电信器件有限公司 一种并行光纤传输的硅基光收发组件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089276A1 (en) * 2003-10-27 2005-04-28 Yoon Keun B. Optical printed circuit board system having tapered waveguide
CN103312415A (zh) * 2012-03-16 2013-09-18 卢克斯特拉有限公司 用于通信的方法和系统
CN103576256A (zh) * 2012-08-09 2014-02-12 索尼公司 光电复合模块
CN102882601A (zh) * 2012-09-10 2013-01-16 胡朝阳 硅光子集成高速光通信收发模块

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782813A (zh) * 2019-11-07 2021-05-11 青岛海信宽带多媒体技术有限公司 一种光模块
CN113917624A (zh) * 2020-07-07 2022-01-11 青岛海信宽带多媒体技术有限公司 一种光模块
CN113917624B (zh) * 2020-07-07 2022-11-29 青岛海信宽带多媒体技术有限公司 一种光模块

Also Published As

Publication number Publication date
CN106034000B (zh) 2018-06-22
CN106034000A (zh) 2016-10-19

Similar Documents

Publication Publication Date Title
US9590737B2 (en) Multi-channel, parallel transmission optical module, and methods of making and using the same
CN110837150B (zh) 互连封装件、互连器件和制成光学通信的互连器件的方法
US10848246B2 (en) Method and system for an optical connection service interface
De Dobbelaere et al. Si photonics based high-speed optical transceivers
CN105891979B (zh) 一种光模块
CN105634611A (zh) 光模块及信号处理的方法
CN117055178A (zh) 内封装型光电模块
US11585993B2 (en) Integrated passive optical tap and optical signal termination
WO2016141873A1 (zh) 光信号传输系统、方法和光通信设备
US8606112B2 (en) Pluggable module with bi-directional host-module optical interface
US7901144B2 (en) Optical interconnect solution
US10153849B2 (en) FSO communications terminals for connecting telecommunications cards
CN113917631A (zh) 共封装集成光电模块及共封装光电交换芯片结构
CN104105989A (zh) 用于光通信模块的模块装置
WO2017162146A1 (zh) 一种实现板间通信的方法和装置
WO2015024489A1 (zh) 光电转换器和光电连接装置
US10505632B1 (en) Fiber bus extender embedment
CN207021995U (zh) 光通信系统及光通信组件
CN102752049B (zh) 应用pof联网的局域网及其光交换机和光转换器
CN102654608A (zh) 基于平面光波导的单纤双向阵列组件和器件及其制作方法
CN105634608A (zh) 多通道光模块及光纤通信系统
CN103454734A (zh) 光传输模组及其传输组件
Taira Integration of optical interconnect for servers: Packaging approach toward near-CPU optics
CN102868454B (zh) 光通信装置及光通信方法
CN202353679U (zh) 用于视频传输的万兆发射光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761100

Country of ref document: EP

Kind code of ref document: A1