WO2016141764A1 - 一种智能太阳能光伏组件电路及其控制/保护方法 - Google Patents

一种智能太阳能光伏组件电路及其控制/保护方法 Download PDF

Info

Publication number
WO2016141764A1
WO2016141764A1 PCT/CN2015/099482 CN2015099482W WO2016141764A1 WO 2016141764 A1 WO2016141764 A1 WO 2016141764A1 CN 2015099482 W CN2015099482 W CN 2015099482W WO 2016141764 A1 WO2016141764 A1 WO 2016141764A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
module
switch tube
photovoltaic module
smart
Prior art date
Application number
PCT/CN2015/099482
Other languages
English (en)
French (fr)
Inventor
倪志春
胡雷振
许明江
许志祥
Original Assignee
中利腾晖光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中利腾晖光伏科技有限公司 filed Critical 中利腾晖光伏科技有限公司
Priority to US15/553,461 priority Critical patent/US20180062015A1/en
Publication of WO2016141764A1 publication Critical patent/WO2016141764A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to the field of photovoltaic devices, in particular to a control/protection method for a smart solar photovoltaic module circuit.
  • the MPPT conversion circuit is provided on the DC side of the grid-connected inverter, including the traditional centralized grid-connected photovoltaic inverter and the string-type grid-connected photovoltaic inverter. .
  • the AC component has more complicated electronic components and higher cost due to its complicated circuit structure.
  • smart components can be used to achieve mismatch optimization, communication, and the like.
  • the structure of the general intelligent component is shown in Figure 2: In which the duty cycle of the switch S is adjusted, the output voltage can be adjusted to achieve the maximum power point tracking purpose; the CPU & memory communicate with the outside world through the RF method, and when the smart component fails, it needs to be When the entire string is disconnected, T1 and T2 are disconnected by remote control, thereby isolating the smart components. In this scenario, when a single solar PV module is disconnected, the entire string is broken, affecting the output of the entire string, as shown in Figure 3: For the cause of the fault, the intermediate solar photovoltaic module of FIG. 3 needs to be isolated from the string.
  • the output of the intermediate solar photovoltaic module is in an off state, and the intermediate solar photovoltaic module is isolated from the string by this method.
  • the switch in the red circle is broken, there is no current in the whole circuit, resulting in no power output in the whole series of solar photovoltaic modules.
  • the object of the present invention is to provide a photovoltaic power plant with intelligent components, which does not affect other solar photovoltaic components in the string when the output is turned off for a single solar photovoltaic module, and has the original power optimization and communication functions. Smart solar PV module circuit.
  • an intelligent solar photovoltaic module circuit comprising a plurality of sets of photovoltaic strings in series, each set of the photovoltaic strings comprising a smart photovoltaic component unit and a smart photovoltaic component unit a series connected MPPT function module, further comprising: a CPU memory module for receiving a state of analyzing the smart photovoltaic component unit, a control module electrically connected to the CPU memory module and configured to control the MPPT function, each of the A switch tube capable of short-circuiting or disconnecting the PV string from other PV strings is also connected to the PV string, and the switch tube is controlled by the control module.
  • each of the photovoltaic strings has one of the switch tubes, the switch tube is anode connected to an anode of the smart photovoltaic module unit, a cathode thereof is connected to a cathode of the photovoltaic module, and a control electrode thereof is The output terminals of the control module are connected, and the switch tubes in any of the photovoltaic strings are turned on, and the photovoltaic module units in the photovoltaic string are in a short circuit state.
  • each of the MPPT function modules includes a negative switch connected to a positive electrode of the photovoltaic module unit for adjusting a duty ratio, and a positive electrode connected to a negative electrode of the photovoltaic module unit.
  • a first diode and a second diode an induction coil connected between the first diode and the cathode of the second diode, and one end connected between the induction coil and the cathode of the second diode Connected to a capacitor of a negative pole of the photovoltaic module unit, a cathode of the first diode is connected to a positive pole of the adjustment switch
  • the switch tube includes a first switch tube and a second switch tube, and a positive pole of the first switch tube Connected to the connection end of the induction coil and the capacitor, the negative electrode of which is connected to the negative electrode of the second diode, and the negative electrode of the second switch tube is connected to the negative electrode of the photovoltaic module unit, and the positive electrode thereof Connected to
  • the present invention also provides a control/protection method for a smart solar photovoltaic module circuit, comprising the steps of: first detecting, by the CPU memory module, whether the smart photovoltaic component unit is faulty or requires maintenance, when a fault occurs or needs During maintenance, the CPU memory module outputs a signal to the control module; and the control module outputs a signal to the switch tube to short the smart photovoltaic module unit or disconnect the PV string from other PV groups. open.
  • the beneficial effects of the invention are as follows: 1.
  • the MPPT structure can be simplified, the application of power electronic components can be reduced, the efficiency can be improved, and the cost can be reduced; 2. Even if it is disconnected due to the failure of a single solar photovoltaic module, it will not be affected. The output of the entire string greatly improves the utilization of photovoltaics.
  • FIG. 1 is a schematic structural view of a conventional conventional, alternating current, smart photovoltaic module
  • FIG. 2 is a schematic structural view of a conventional photovoltaic module unit
  • FIG. 3 is a schematic structural view of a conventional photovoltaic string
  • Figure 4 is a diagram showing the IV characteristics of nonlinear and linear electrical components
  • Figure 5 is a schematic structural view of a photovoltaic module unit in Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural view of a photovoltaic string in Embodiment 1 of the present invention.
  • FIG. 7 is a schematic structural view of a photovoltaic module unit according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural view of a photovoltaic string in Embodiment 2 of the present invention.
  • the solar photovoltaic module is a non-linear component, its IV characteristics are not like the IV characteristics of a typical power supply.
  • the IV curve of a solar photovoltaic module can be approximated as being composed of a portion perpendicular to the vertical axis (current axis) and perpendicular to the horizontal axis (voltage axis).
  • the solar photovoltaic module can be approximated.
  • the current source when the working point of the load is on the latter, the solar photovoltaic module can be approximated as a voltage source. Therefore, it can be said that the solar photovoltaic module has both the characteristics of the current source and the characteristics of the voltage source.
  • the solar photovoltaic module can be short-circuited like a current source.
  • design the intelligent solar photovoltaic module circuit cancel the two switches T1 and T2 in Figure 2, and add the switching tube T between the positive and negative electrodes of the PV module unit.
  • the intelligent solar photovoltaic module circuit is formed.
  • the utility model comprises a plurality of sets of photovoltaic strings connected in series, each set of the photovoltaic strings comprises a smart photovoltaic component unit, a MPPT (maximum power point tracking) function module connected in series with the smart photovoltaic component unit, and the smart solar photovoltaic component circuit further comprises receiving a CPU memory module for analyzing the state of the smart photovoltaic module unit, a control module electrically connected to the CPU memory module and configured to control the MPPT function, and each of the photovoltaic strings is further connected with a photovoltaic module unit A switch tube that is shorted or disconnects the photovoltaic string from other photovoltaic strings, the switch tube being controlled by the control module.
  • a MPPT maximum power point tracking
  • Each of the photovoltaic strings has one of the switching tubes, the switching tube is anode connected to an anode of the photovoltaic module unit, a cathode thereof is connected to a cathode of the photovoltaic module unit, and a control electrode thereof and the control module The outputs are connected.
  • the smart solar photovoltaic module circuit comprises a plurality of sets of photovoltaic strings connected in series, and each set of the photovoltaic strings comprises a smart photovoltaic component unit and a series connected MPPT function module of the smart photovoltaic component unit.
  • the smart solar photovoltaic module circuit further includes a CPU memory module for receiving and analyzing the state of the smart photovoltaic component unit, a control module electrically connected to the CPU memory module and configured to control the MPPT function, each of the photovoltaic groups
  • a switch tube capable of shorting the smart photovoltaic module unit or disconnecting the photovoltaic string from other photovoltaic strings is also connected to the string, and the switch tube is controlled by the control module.
  • Each of the MPPT function modules includes an adjustment switch for adjusting a duty ratio connected to a cathode of the photovoltaic module unit, a first diode and a second cathode connected to a cathode of the photovoltaic module unit.
  • a diode an induction coil connected between the anode of the first diode and the second diode, one end connected between the induction coil and the cathode of the second diode, and the other end connected to the cathode of the photovoltaic module unit
  • Capacitor a cathode of the first diode is connected to a positive pole of the adjustment switch
  • the switch tube includes a first switch tube and a second switch tube, and an anode of the first switch tube is connected to the induction coil and the On the connection end of the capacitor, a negative electrode thereof is connected to a negative electrode of the second diode, a negative electrode of the second switch tube is connected to a negative electrode of the photovoltaic module unit, and a positive electrode thereof is connected to the second diode On the positive side of the tube.
  • the first photovoltaic module unit can be isolated from the entire string by controlling the first and second switching tubes to be disconnected without affecting the working state of the entire string. As shown in Figure 8 below: If it is necessary to isolate the intermediate PV module unit, simply disconnect T3 and T4 to remove the intermediate solar PV module out of the entire string without affecting the output of the string.
  • the method includes the following steps: first detecting, by the CPU memory module, whether the smart photovoltaic component unit is faulty or needs maintenance, when a fault occurs or When maintenance is required, a signal is outputted by the CPU memory module to the control module; and the control module outputs a signal to the switch tube to short-circuit the smart photovoltaic module unit or string the PV string with other PV strings. disconnect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种智能太阳能光伏组件电路及其控制/保护方法。电路包括多组串联的光伏组串。每组光伏组串包括智能光伏组件单元、最大功率跟踪点(MPPT)功能模块、能使智能光伏组件单元处于短路或使该光伏组串与其他光伏组串断开的开关管(T)、CPU内存模块以及控制该开关管的控制模块。该电路可简化MPPT结构,减少电力电子元器件的应用,提高效率,降低成本,并且即使由于单块太阳能光伏组件故障原因而处于断开状态,也不会影响到整个组串的输出,大幅度提高了光电的利用率。

Description

一种智能太阳能光伏组件电路及其控制/保护方法
本申请要求于2015年3月9日提交中国专利局、申请号为201510100986.4、发明名称为“一种智能太阳能光伏组件电路及其控制/保护方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种光伏设备领域,特别涉及一种智能太阳能光伏组件电路的控制/保护方法。
背景技术
一般,在光伏电站中,为解决失配问题,在并网逆变器的直流侧都带有MPPT变换电路,包括传统的集中式并网光伏逆变器和组串式并网光伏逆变器。
近年来,为解决单个太阳能光伏组件间不匹配的问题,新出现了交流组件和智能组件,他们以及传统太阳能光伏组件比较,主要结构如图1。
其中,交流组件由于其电路结构较复杂,使用的电子元器件较多,成本较高。一般使用智能组件即可达到失配优化、通信等目的。
一般智能组件结构如图2:其中,调节开关S的占空比,即可达到调节输出电压,从而达到最大功率点跟踪目的;CPU&内存通过RF方式与外界通信,当智能组件出现故障,需要从整个组串中断开的时候,通过远程控制,使T1、T2处于断开状态,从而将智能组件隔离。在此方案中,当单个太阳能光伏组件断开的时候,会使整个组串断掉,影响到整个组串的输出,如图3:假设由 于故障原因,需要将图3中间太阳能光伏组件隔离出组串,通过控制T3、T4开关的动作,使中间太阳能光伏组件输出处于断开状态,通过此方法将中间太阳能光伏组件隔离出组串,如图红圈内开关断开,则整个回路中无电流,造成整串太阳能光伏组件中无功率输出。
发明内容
本发明的目的是提供一种在智能组件的光伏电站中,在对单块太阳能光伏组件进行输出关断的时候,不影响组串中其他太阳能光伏组件,同时具有原有的功率优化及通信功能的智能太阳能光伏组件电路。
为解决上述技术问题,本发明采用如下技术方案:一种智能太阳能光伏组件电路,其包括多组串联的光伏组串,每组所述光伏组串包括智能光伏组件单元、与智能光伏组件单元的串联的MPPT功能模块,它还包括用于接收分析所述智能光伏组件单元状态的CPU内存模块,与所述CPU内存模块相电连接且用于控制所述MPPT功能的控制模块,每个所述光伏组串上还连接有能使智能光伏组件单元处于短路或使该光伏组串与其他光伏组串断开的开关管,所述开关管由所述控制模块控制。
优化的,每个所述光伏组串具有一个所述开关管,所述开关管阳极连接于所述智能光伏组件单元的阳极,其阴极连接于所述光伏组件的阴极,其控制极与所述控制模块的输出端相连接,任一光伏组串中所述开关管接通,该光伏组串中的光伏组件单元处于短路状态。
优化的,每个所述MPPT功能模块包括负极与所述光伏组件单元的正极相连接的用于调节占空比的调节开关、正极与所述光伏组件单元的负极相连接的 第一二极管和第二二极管、连接于第一二极管和第二二极管的负极之间的感应线圈、一端连接在感应线圈与第二二极管的负极之间另一端连接在所述光伏组件单元负极的电容,所述第一二极管的负极连接于调节开关的正极,所述开关管包括第一开关管和第二开关管,所述第一开关管的正极连接在所述感应线圈与所述电容的连接端上,其负极连接在所述第二二极管的负极上,所述第二开关管的负极连接在所述光伏组件单元的负极,其正极连接在所述第二二极管的正极上,仍一光伏组串中所述第一开关管和第二二极管断开,该光伏组串中的光伏组件单元处于断开状态。
本发明还提供了一种智能太阳能光伏组件电路的控制/保护方法,它包括以下步骤:首先由所述CPU内存模块检测所述智能光伏组件单元是否出现故障或是否需要维护,当出现故障或需要维护时,由所述CPU内存模块输出信号至所述控制模块;再由所述控制模块输出信号至所述开关管从而使智能光伏组件单元处于短路或使该光伏组串与其他光伏组串断开。
本发明的有益效果在于:1、可简化MPPT结构,减少电力电子元器件的应用,提高效率,降低成本;2、即使由于单块太阳能光伏组件故障原因而处于断开状态,也不会影响到整个组串的输出,大幅度提高了光电的利用率。
附图说明
附图1为现有的传统、交流、智能光伏组件的结构简图;
附图2为现有的光伏组件单元的结构示意图;
附图3为现有的光伏组串的结构示意图;
附图4为非线性及线性电气元件的IV特性图;
附图5为本发明实施例1中光伏组件单元的结构示意图;
附图6为本发明实施例1中光伏组串的结构示意图;
附图7为本发明实施例2中光伏组件单元的结构示意图;
附图8为本发明实施例2中光伏组串的结构示意图;
具体实施方式
下面结合附图所示的实施例对本发明作以下详细描述:
实施例一
如图4所示,由于太阳能光伏组件为非线性元器件,其IV特性不像一般电源的IV特性。太阳能光伏组件的IV曲线可以近似看成由垂直于纵轴(电流轴)部分与垂直于横轴(电压轴)部分组成,当负载的工作点在前者上的时候,可以将太阳能光伏组件近似看作电流源;当负载的工作点在后者上的时候,可以将太阳能光伏组件近似看作电压源,所以,可以说太阳能光伏组件既有电流源的特性又有电压源的特性。即太阳能光伏组件可以像电流源那样短路工作。利用此特性,设计智能太阳能光伏组件电路,将图2中原T1、T2两个开关取消,在光伏组件单元输出正负极间加入开关管T,如图5所示,形成的智能太阳能光伏组件电路包括多组串联的光伏组串,每组所述光伏组串包括智能光伏组件单元、与智能光伏组件单元的串联的MPPT(最大功率点跟踪)功能模块,智能太阳能光伏组件电路还包括用于接收分析所述智能光伏组件单元状态的CPU内存模块、与所述CPU内存模块相电连接且用于控制所述MPPT功能的控制模块,每个所述光伏组串上还连接有能使光伏组件单元处于短路或使该光伏组串与其他光伏组串断开的开关管,所述开关管由所述控制模块控制。每个所述光伏组串具有一个所述开关管,所述开关管阳极连接于所述光伏组件单元的阳极,其阴极连接于所述光伏组件单元的阴极,其控制极与所述控制模块的 输出端相连接。
当某个光伏组件单元出故障或需要维护时,通过控制开关管T,来控制该光伏组件单元正负极间是否处于短路状态,只需接通开关管T,光伏组件单元正负极间处于短路状态,则该光伏组件单元对外界无输出。如图6:假设由于故障原因,需要将中间光伏组件单元隔离出光伏组串,只需通过控制开关T2,使其光伏组件单元处于短路状态,则可以将中间的光伏组件单元从整串中隔离,同时又不影响整个组串的工作状态,从而提高了能源利用率。
实施例二
如图7所示,在本实施例中智能太阳能光伏组件电路包括多组串联的光伏组串,每组所述光伏组串包括智能光伏组件单元、与智能光伏组件单元的串联的MPPT功能模块,智能太阳能光伏组件电路还包括用于接收分析所述智能光伏组件单元状态的CPU内存模块,与所述CPU内存模块相电连接且用于控制所述MPPT功能的控制模块,每个所述光伏组串上还连接有能使智能光伏组件单元处于短路或使该光伏组串与其他光伏组串断开的开关管,所述开关管由所述控制模块控制。每个所述MPPT功能模块包括负极与所述光伏组件单元的正极相连接的用于调节占空比的调节开关、正极与所述光伏组件单元的负极相连接的第一二极管和第二二极管、连接于第一二极管和第二二极管的负极之间的感应线圈、一端连接在感应线圈与第二二极管的负极之间另一端连接在所述光伏组件单元负极的电容,所述第一二极管的负极连接于调节开关的正极,所述开关管包括第一开关管和第二开关管,所述第一开关管的正极连接在所述感应线圈与所述电容的连接端上,其负极连接在所述第二二极管的负极上,所述第二开关管的负极连接在所述光伏组件单元的负极,其正极连接在所述第二二极 管的正极上。
可以通过控第一、第二开关管断开,使单个光伏组件单元隔离出整个组串,同时又不影响整个组串的工作状态。如下图8:假如需要将中间的光伏组件单元隔离,只需将T3、T4断开即可将中间太阳能光伏组件剔除出整个组串,同时不影响该组串的输出。
基于上述两个实施例中的智能太阳能光伏组件电路的控制/保护方法,它包括以下步骤:首先由所述CPU内存模块检测所述智能光伏组件单元是否出现故障或是否需要维护,当出现故障或需要维护时,由所述CPU内存模块输出信号至所述控制模块;再由所述控制模块输出信号至所述开关管从而使智能光伏组件单元处于短路或使该光伏组串与其他光伏组串断开。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (4)

  1. 一种智能太阳能光伏组件电路,其包括多组串联的光伏组串,每组所述光伏组串包括智能光伏组件单元、与智能光伏组件单元的串联的MPPT功能模块,它还包括用于接收分析所述智能光伏组件单元状态的CPU内存模块,与所述CPU内存模块相电连接且用于控制所述MPPT功能的控制模块,其特征在于:每个所述光伏组串上还连接有能使智能光伏组件单元处于短路或使该光伏组串与其他光伏组串断开的开关管,所述开关管由所述控制模块控制。
  2. 根据权利要求1所述的智能太阳能光伏组件电路,其特征在于:每个所述光伏组串具有一个所述开关管,所述开关管阳极连接于所述智能光伏组件单元的阳极,其阴极连接于所述光伏组件的阴极,其控制极与所述控制模块的输出端相连接,任一光伏组串中所述开关管接通,该光伏组串中的光伏组件单元处于短路状态。
  3. 根据权利要求1所述的智能太阳能光伏组件电路,其特征在于:每个所述MPPT功能模块包括负极与所述光伏组件单元的正极相连接的用于调节占空比的调节开关、正极与所述光伏组件单元的负极相连接的第一二极管和第二二极管、连接于第一二极管和第二二极管的负极之间的感应线圈、一端连接在感应线圈与第二二极管的负极之间另一端连接在所述光伏组件单元负极的电容,所述第一二极管的负极连接于调节开关的正极,所述开关管包括第一开关管和第二开关管,所述第一开关管的正极连接在所述感应线圈与所述电容的连接端上,其负极连接在所述第二二极管的负极上,所述第二开关管的负极连接在所述光伏组件单元的负极,其正极连接在所述第二二极管的正极上,仍一光伏组串中所述第一开关管和第二二极管断开,该光伏组串中的光伏组件单元 处于断开状态。
  4. 一种基于权利要求1~3中任一智能太阳能光伏组件电路的控制/保护方法,其特征在于,它包括以下步骤:首先由所述CPU内存模块检测所述智能光伏组件单元是否出现故障或是否需要维护,当出现故障或需要维护时,由所述CPU内存模块输出信号至所述控制模块;再由所述控制模块输出信号至所述开关管从而使智能光伏组件单元处于短路或使该光伏组串与其他光伏组串断开。
PCT/CN2015/099482 2015-03-09 2015-12-29 一种智能太阳能光伏组件电路及其控制/保护方法 WO2016141764A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/553,461 US20180062015A1 (en) 2015-03-09 2015-12-29 Intelligent solar photovoltaic module circuit and control/protection method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510100986.4A CN104660038A (zh) 2015-03-09 2015-03-09 一种智能太阳能光伏组件电路及其控制/保护方法
CN201510100986.4 2015-03-09

Publications (1)

Publication Number Publication Date
WO2016141764A1 true WO2016141764A1 (zh) 2016-09-15

Family

ID=53250830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099482 WO2016141764A1 (zh) 2015-03-09 2015-12-29 一种智能太阳能光伏组件电路及其控制/保护方法

Country Status (3)

Country Link
US (1) US20180062015A1 (zh)
CN (1) CN104660038A (zh)
WO (1) WO2016141764A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104660038A (zh) * 2015-03-09 2015-05-27 中利腾晖光伏科技有限公司 一种智能太阳能光伏组件电路及其控制/保护方法
US11196272B2 (en) * 2016-06-29 2021-12-07 Koolbridge Solar, Inc. Rapid de-energization of DC conductors with a power source at both ends
US20180166975A1 (en) * 2017-12-11 2018-06-14 LT Lighting (Taiwan) Corp. Energy utilization point tracker inverter
CN110912398B (zh) * 2018-09-18 2021-09-28 台达电子工业股份有限公司 具异常能量保护的电源转换系统及其操作方法
CN111697627B (zh) * 2020-07-06 2022-05-24 阳光电源股份有限公司 光伏发电系统的电流电压生成方法、装置以及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826739A (zh) * 2009-03-06 2010-09-08 英伟力新能源科技(上海)有限公司 一种两级双向的高效光伏充电器
US20110175454A1 (en) * 2010-01-20 2011-07-21 Williams Bertrand J Dual-Loop Dynamic Fast-Tracking MPPT Control Method, Device, and System
CN202042502U (zh) * 2011-05-19 2011-11-16 北京景新电气技术开发有限责任公司 汇流箱及应用其的光伏发电系统
CN202261101U (zh) * 2011-09-30 2012-05-30 上海大全赛奥法电气科技有限公司 一种功率优化器及智能光伏组件
CN102655380A (zh) * 2011-03-01 2012-09-05 上海康威特吉能源技术有限公司 一种分散式最大功率追踪的光伏系统及其控制方法
US20120255591A1 (en) * 2009-03-25 2012-10-11 Tigo Energy Enhanced Systems and Methods for Using a Power Converter for Balancing Modules in Single-String and Multi-String Configurations
CN104660038A (zh) * 2015-03-09 2015-05-27 中利腾晖光伏科技有限公司 一种智能太阳能光伏组件电路及其控制/保护方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE049949T2 (hu) * 2010-03-05 2020-11-30 Flisom Ag Eljárás és berendezés monolitikusan integrált fényelektromos modulok gyártására, valamint fényelektromos modul
DE102011110682A1 (de) * 2011-08-19 2013-02-21 Phoenix Contact Gmbh & Co. Kg Anschlussdose für ein Solarpanel mit einer Schutzschaltung
DE102013111869A1 (de) * 2012-11-05 2014-05-08 Sma Solar Technology Ag Photovoltaikanlage und Vorrichtung zum Betreiben einer Photovoltaikanlage
CN105308856A (zh) * 2013-04-13 2016-02-03 索莱克赛尔公司 利用叠层嵌入式远程访问模块开关的太阳能光伏模块功率控制和状态监控系统
JP2014212212A (ja) * 2013-04-18 2014-11-13 Jx日鉱日石エネルギー株式会社 スイッチング装置、故障検知装置、太陽光発電システム、及びスイッチング方法
JP6135647B2 (ja) * 2014-11-14 2017-05-31 コニカミノルタ株式会社 画像形成装置、電源制御方法および電源制御プログラム
CN204392083U (zh) * 2015-03-09 2015-06-10 中利腾晖光伏科技有限公司 一种智能太阳能光伏组件电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826739A (zh) * 2009-03-06 2010-09-08 英伟力新能源科技(上海)有限公司 一种两级双向的高效光伏充电器
US20120255591A1 (en) * 2009-03-25 2012-10-11 Tigo Energy Enhanced Systems and Methods for Using a Power Converter for Balancing Modules in Single-String and Multi-String Configurations
US20110175454A1 (en) * 2010-01-20 2011-07-21 Williams Bertrand J Dual-Loop Dynamic Fast-Tracking MPPT Control Method, Device, and System
CN102655380A (zh) * 2011-03-01 2012-09-05 上海康威特吉能源技术有限公司 一种分散式最大功率追踪的光伏系统及其控制方法
CN202042502U (zh) * 2011-05-19 2011-11-16 北京景新电气技术开发有限责任公司 汇流箱及应用其的光伏发电系统
CN202261101U (zh) * 2011-09-30 2012-05-30 上海大全赛奥法电气科技有限公司 一种功率优化器及智能光伏组件
CN104660038A (zh) * 2015-03-09 2015-05-27 中利腾晖光伏科技有限公司 一种智能太阳能光伏组件电路及其控制/保护方法

Also Published As

Publication number Publication date
CN104660038A (zh) 2015-05-27
US20180062015A1 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
WO2016141764A1 (zh) 一种智能太阳能光伏组件电路及其控制/保护方法
US10122176B2 (en) Photovoltaic intelligent power supply
CN106253330B (zh) 一种光伏功率优化系统
WO2020228701A1 (zh) 一种光伏逆变器及其光伏发电系统
EP3297117B1 (en) Distributed power system including a solar array, a dc-dc converter, and an inverter
WO2011120311A1 (zh) 太阳能光发电系统、控制装置及控制方法
CN105915156B (zh) 带有功率优化器的光伏发电系统
CN105958934B (zh) 一种功率优化器
CN203368360U (zh) 改进了电路结构的无变压器的单相pv逆变器
CN206164112U (zh) 一种用于光伏发电系统的抗电势诱导衰减装置
CN104953945B (zh) 高效率的光伏发电系统以及发电方法
CN104242349A (zh) 防电势诱导衰减的光伏系统和光伏逆变器
EP2882090A1 (en) Single-phase fullbridge inverter with switchable output filter
CN106329565B (zh) 一种光伏功率优化系统的数据通信方法
WO2024066832A1 (zh) 一种pid效应抑制系统
CN110299727A (zh) 一种组件关断器及光伏发电系统安全保护系统
CN105978476B (zh) 一种逆变器
CN103178734A (zh) 一种光伏逆变器
CN105262138B (zh) 一种光伏组件优化器
CN203827203U (zh) 一种大功率光储一体化变流器
WO2020133351A1 (zh) 一种逆变器
CN203522317U (zh) 一种光伏逆变器供电装置
CN105656082A (zh) 一种光伏电池板组串电压稳定控制结构
CN205407286U (zh) 一种光伏电池板组串电压稳定控制装置
CN204392083U (zh) 一种智能太阳能光伏组件电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884442

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15553461

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884442

Country of ref document: EP

Kind code of ref document: A1