WO2016140311A1 - Separator, manufacturing method for said separator, and lithium ion secondary battery using said separator - Google Patents

Separator, manufacturing method for said separator, and lithium ion secondary battery using said separator Download PDF

Info

Publication number
WO2016140311A1
WO2016140311A1 PCT/JP2016/056611 JP2016056611W WO2016140311A1 WO 2016140311 A1 WO2016140311 A1 WO 2016140311A1 JP 2016056611 W JP2016056611 W JP 2016056611W WO 2016140311 A1 WO2016140311 A1 WO 2016140311A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
lithium ion
ion secondary
secondary battery
supporting salt
Prior art date
Application number
PCT/JP2016/056611
Other languages
French (fr)
Japanese (ja)
Inventor
登 吉田
志村 健一
井上 和彦
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017503713A priority Critical patent/JP6819571B2/en
Publication of WO2016140311A1 publication Critical patent/WO2016140311A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator, and more particularly, to a separator capable of suppressing a short circuit due to lithium metal dendrite precipitation.
  • the present invention further relates to a method for manufacturing the separator and a lithium ion secondary battery using the separator.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries have already been put into practical use as batteries for notebook computers and mobile phones due to advantages such as high energy density, low self-discharge, and excellent long-term reliability.
  • electronic devices have been enhanced in functionality and used in electric vehicles, and there has been a demand for the development of lithium ion secondary batteries having higher energy density and superior battery characteristics.
  • the separator is one of the basic components of a lithium ion secondary battery.
  • battery characteristics such as a safety imparting function by meltdown, cycle characteristics, rate characteristics, etc.
  • a separator having a high porosity that allows easy movement of lithium ions.
  • a separator having a high porosity when lithium is precipitated during charging, there is a problem in that metallic lithium penetrates the inside of the separator and easily causes a short circuit.
  • Patent Document 1 a separator in which a resin film having fine holes and a non-woven fabric are overlapped, or as disclosed in Patent Document 2, between a negative electrode and a separator.
  • the initial charge voltage is (open circuit voltage at full charge ⁇ 2000 mV) or more at the first charge (open circuit voltage at full charge ⁇ 25 mV).
  • a method for producing a lithium ion secondary battery is disclosed.
  • the batteries described in Patent Documents 1 and 2 described above have problems such as an increase in resistance accompanying an increase in the thickness of the separator, and a man-hour and cost for manufacturing the separator. Further, the method described in Patent Document 3 is still insufficient in terms of preventing a short circuit due to lithium deposition while maintaining good battery characteristics.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a lithium ion secondary battery separator capable of suppressing a short circuit due to dendrite deposition of lithium metal during lithium deposition.
  • One embodiment of the present invention relates to a separator for a lithium ion secondary battery, characterized by having a decomposition layer of a supporting salt on at least one surface of a substrate.
  • the present invention it is possible to provide a lithium ion secondary battery separator capable of suppressing a short circuit due to lithium metal dendrite precipitation during lithium deposition.
  • the separator according to the present invention is a separator for a lithium ion secondary battery having a decomposition product layer of a supporting salt on at least one surface of a substrate.
  • the present invention it is possible to suppress short-circuiting due to lithium metal dendrite precipitation during lithium deposition and improve the short-circuit resistance of the lithium ion secondary battery.
  • the reason for this is not clear, but is estimated as follows. That is, in the lithium ion secondary battery, when gas is generated from the positive electrode or the negative electrode during charging and discharging, the gas stays in the separator and obstructs the flow of ions, and as a result, lithium is liable to precipitate. When the metallic lithium deposited on the negative electrode further grows and reaches the positive electrode, a short circuit occurs.
  • the separator according to the present invention is used, the decomposition product layer of the supporting salt formed on the base material of the separator prevents air bubbles from entering the separator.
  • the decomposition product layer is a decomposition product layer of the supporting salt, the Li ion conductivity is high, and the resistance is higher than that of a separator having a two-layer structure in which a polyolefin microporous film or the like is laminated on a substrate. Can be small.
  • the separator according to the present invention uses a porous film or a nonwoven fabric as a base material, and a support salt (Li salt) decomposition product is supported on at least one side of the base material.
  • a porous film or a nonwoven fabric having a thickness of 5 ⁇ m or more and 50 ⁇ m or less, more preferably 10 ⁇ m or more and 30 ⁇ m or less can be used.
  • the base material preferably has a plurality of pores or voids continuously in the thickness direction of the base material, and does not have a straight path passing from one surface of the base material to the opposite surface.
  • the manifestation of the effect of the present invention does not depend on the physical properties of the base material itself.
  • polyamide especially wholly aromatic polyamide (aramid), polyimide, polyethylene terephthalate (PET), polyphenylene sulfide (PPS) Resin materials such as cellulose, polyethylene, and polypropylene can be used.
  • a high heat resistant resin material having a heat melting temperature or a thermal decomposition temperature of 160 ° C. or higher, preferably 180 ° C. or higher can be preferably used.
  • the high heat-resistant resin material include polyethylene terephthalate, cellulose, aramid, polyimide, polyamide, polyphenylene sulfite resin, and the like, among which polyimide, polyphenylene sulfite, and aramid resin are preferable.
  • thermal melting temperature represents a temperature measured by differential scanning calorimetry (DSC) according to JIS K 7121
  • thermal decomposition temperature refers to air using a thermogravimetric measuring device. Represents the temperature at which the 10% weight is reduced when the temperature is increased from 25 ° C. to 10 ° C./min in an air stream (10% weight loss temperature). The lower one of the thermal melting temperature and the thermal decomposition temperature represents 160 ° C. or higher.
  • the aramid resin is an aromatic polyamide in which one or more aromatic groups are directly connected by an amide bond.
  • the aromatic group include a phenylene group, and two aromatic rings may be bonded with oxygen, sulfur, or an alkylene group (for example, a methylene group, an ethylene group, a propylene group, etc.).
  • These divalent aromatic groups may have a substituent, and examples of the substituent include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, etc.), an alkoxy group (for example, a methoxy group, Ethoxy group, propoxy group and the like), halogen (chloro group and the like) and the like.
  • the aramid bond may be either a para type or a meta type.
  • aramids include, but are not limited to, polymetaphenylene isophthalamide, polyparaphenylene terephthalamide, copolyparaphenylene 3,4'-oxydiphenylene terephthalamide.
  • the base material may be composed of two or more different components, and two or more porous films and / or nonwoven fabrics having different components and / or physical properties may be used in combination.
  • the porosity of the substrate is preferably more than 55% and 85% or less, and more preferably 60% or more and 80% or less.
  • a separator with a large porosity is advantageous in that it has a large amount of electrolyte solution held inside and is advantageous for long-term use, a reduced amount of resin used for the base material, high ionic conductivity, and excellent rate characteristics. There is a point. On the other hand, if the porosity is too large, the mechanical strength may decrease.
  • the decomposition layer of the supporting salt formed on the separator base material can suppress gas intrusion into the separator and suppress short-circuiting due to lithium deposition. Even when a base material is employed, a short circuit can be effectively prevented.
  • the porosity of a base material measured a bulk density according to JISP8118
  • Porosity (%) [1 ⁇ (bulk density ⁇ (g / cm 3 ) / theoretical density of material ⁇ 0 (g / cm 3 ))] ⁇ 100
  • It can also be measured by a direct observation method using an electron microscope, a press-fitting method using a mercury porosimeter, or the like.
  • the average void diameter of the voids of the substrate is not particularly limited, but is preferably 0.05 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the void diameter can be measured by the bubble point method or the mean flow method described in SIM-F-316.
  • the average void diameter can be an average value of measured values at any five locations on the substrate.
  • the average thickness of the decomposed layer of the supporting salt is desirably 1 to 20 ⁇ m, and preferably 1 to 10 ⁇ m.
  • the thickness of the decomposition product layer is within the above range, a higher short-circuit prevention effect can be obtained, and a decrease in battery life characteristics can be suppressed.
  • the thickness of the decomposition product layer of the supporting salt can be measured using a cross-sectional SEM (scanning electron microscope) image of the separator according to the present invention, and the average thickness is an arbitrary five-point thickness. It can be calculated as an average value.
  • the coverage of the decomposed layer of the supporting salt is preferably 5% or more, more preferably 10% or more, and more preferably 15% or more from the viewpoint of the effect of suppressing gas intrusion into the separator. Further preferred. Moreover, the upper limit of a coverage is not specifically limited, 100% may be sufficient.
  • the coverage of the decomposed layer of the supporting salt can be measured by EDX analysis of the surface SEM (scanning electron microscope) image of the separator according to the present invention, and P or F is detected by EDX analysis. It can be obtained by the formula of area of area / area of visual field ⁇ 100 (%).
  • the average coverage can be calculated as an average value of the coverage calculated from arbitrary five points of view.
  • the “supported salt decomposition product layer” means a layer containing a compound produced by decomposition of the supporting salt in the electrolyte solution of the lithium ion secondary battery by the first charge.
  • the layer containing the decomposition product of the supporting salt is formed on the substrate because the separator surface is subjected to infrared absorption spectrum measurement (IR measurement), nuclear magnetic resonance (NMR), time-of-flight secondary ion mass spectrometry (TOF- SIMS), energy dispersive X-ray analysis (EDX analysis), and the like, and can be confirmed by detecting elements or partial structures constituting the supporting salt.
  • IR measurement infrared absorption spectrum measurement
  • NMR nuclear magnetic resonance
  • TOF- SIMS time-of-flight secondary ion mass spectrometry
  • EDX analysis energy dispersive X-ray analysis
  • the decomposition layer of the supporting salt formed on the separator substrate has an absorption exhibiting a PF bond at 825 to 865 nm (around 845 nm) in IR analysis, preferably maximum Shows absorption. Therefore, the decomposition product layer includes at least Li, P, F, O, and C, and includes a compound having a PF bond as at least a part thereof, and is a complex inorganic layer (including organic matter) insoluble in the electrolytic solution. It may be out).
  • the compound having a PF bond is, for example, a phosphate ester compound in which at least one oxygen atom is substituted with fluorine.
  • the decomposition product layer when the decomposition product layer was analyzed in detail by EDX analysis of a cross-sectional SEM image, the surface was mainly composed of a layer having a PF bond, but the inside was formed of a layer mainly composed of oxygen. . Since the strength of P, F, etc. is weak from the inner layer, it can be estimated that the layer is mainly composed of Li 2 O or Li 2 CO 3 . Therefore, the decomposition product layer preferably has a different composition between the surface side of the layer and the inside of the layer, and a large proportion of the compound having a PF bond on the surface side, and a proportion of the compound containing P and / or F inside. less, for example, the proportion of such Li, compounds containing O and C as Li 2 O or Li 2 CO 3 is higher inorganic layer.
  • the present invention further relates to a method for producing a separator for a lithium ion secondary battery having a decomposition layer of a supporting salt on at least one side of a substrate.
  • the separator according to the present invention can be produced, for example, by the following method.
  • a laminated body in which only the base material portion of the separator is sandwiched between the positive electrode and the negative electrode is prepared, and an electrolytic solution containing a supporting salt (Li salt) is enclosed to prepare at least two cells.
  • the first cell is charged with a predetermined current value, the voltage at the point where the voltage starts to drop temporarily is measured, and this voltage is defined as V 0 .
  • the voltage V 0 is estimated to be a voltage that causes a short circuit due to lithium deposition.
  • the Li salt decomposition layer is formed by performing initial charging until the voltage reaches within V 0 ⁇ 0.1 V by constant current charging under the same conditions as in the first cell. Can be formed.
  • the charging rate employed in the above manufacturing method is not particularly limited, but from the viewpoint of production efficiency, the current value for charging the initial charge capacity of the cell in 1 hour is 1 C, and is 0.05 C to 0.5 C. A constant current is preferred. Further, from the viewpoint of preventing short circuit, it is preferable to discharge quickly after the voltage reaches V 0 ⁇ 0.1 V in the first charge of the second and subsequent cells. Note that one or more charging / discharging cycles may be performed before the voltage reaches V 0 ⁇ 0.1 V, but from the viewpoint of production efficiency, up to the voltage V 0 ⁇ 0.1 V in the first charging. It is preferable to perform charging.
  • the present invention is applicable to any of these types.
  • the shape of the secondary battery to which the present invention is applied is preferably a laminated laminate type from the viewpoint of excellent heat dissipation when the battery element generates heat.
  • a laminated laminate type secondary battery will be described.
  • a laminated laminate type secondary battery has a battery element and an outer package in which the battery element is sealed.
  • a schematic cross-sectional view of the battery element is shown in FIG.
  • the battery element has a configuration in which a plurality of negative electrodes a and a plurality of positive electrodes c are alternately stacked with separators b each having a decomposed layer of a supporting salt according to the present invention.
  • separators b each having a decomposed layer of a supporting salt according to the present invention.
  • the decomposition product layer of the supporting salt on the base material can prevent the gas from entering the separator, and can prevent lithium precipitation. Furthermore, even when lithium is deposited, the deposited metal lithium can be prevented from reaching the positive electrode from the negative electrode.
  • the decomposition product layer is configured to exist on at least the negative electrode side surface of the separator.
  • the electrolytic solution is sealed in the exterior body together with the negative electrode a, the positive electrode c, and the separator b.
  • the negative electrode a has an extension (also called a tab) protruding from the separator b.
  • the extension is an end of the negative electrode current collector d of the negative electrode a that is not covered with the negative electrode active material.
  • an extension portion (tab) that is an end portion of the positive electrode current collector e of the positive electrode c that is not covered with the positive electrode active material protrudes from the separator b.
  • the extension part of the positive electrode c and the extension part of the negative electrode a are formed at positions that do not interfere with each other when the positive electrode c and the negative electrode a are laminated.
  • the extensions of all negative electrodes a are collected together and connected to the negative terminal g by welding.
  • all the positive electrode c extensions are gathered together and connected to the positive electrode terminal f by welding.
  • the secondary battery includes a battery element 20, a film outer package 10 that houses the battery element 20 together with an electrolyte, and a positive electrode tab 51 and a negative electrode tab 52 (hereinafter also simply referred to as “electrode tabs”). .
  • the battery element 20 is formed by alternately stacking a plurality of positive electrodes 30 and a plurality of negative electrodes 40 with separators 25 therebetween.
  • the electrode material 32 is applied to both surfaces of the metal foil 31.
  • the electrode material 42 is applied to both surfaces of the metal foil 41.
  • the secondary battery in FIG. 1 has electrode tabs drawn out on both sides of the outer package. However, in the secondary battery to which the present invention can be applied, the electrode tab is drawn out on one side of the outer package as shown in FIG. It may be a configuration. Although detailed illustration is omitted, each of the positive and negative metal foils has an extension on a part of the outer periphery. The extensions of the negative electrode metal foil are collected together and connected to the negative electrode tab 52, and the extensions of the positive electrode metal foil are collected together and connected to the positive electrode tab 51 (see FIG. 7). The portions gathered together in the stacking direction between the extension portions in this way are also called “current collecting portions”.
  • the film outer package 10 is composed of two films 10-1 and 10-2 in this example.
  • the films 10-1 and 10-2 are heat sealed to each other at the periphery of the battery element 20 and sealed.
  • the positive electrode tab 51 and the negative electrode tab 52 are drawn out in the same direction from one short side of the film outer package 10 sealed in this way.
  • FIGS. 6 and 7 show an example in which the cup portion is formed on one film 10-1 and the cup portion is not formed on the other film 10-2.
  • a configuration in which a cup portion is formed on both films (not shown) or a configuration in which neither cup portion is formed (not shown) may be employed.
  • the negative electrode has a negative electrode current collector formed of a metal foil, and a negative electrode active material coated on both surfaces of the negative electrode current collector.
  • the negative electrode active material is bound so as to cover the negative electrode current collector with a negative electrode binder.
  • the negative electrode current collector is formed to have an extension connected to the negative electrode terminal, and the negative electrode active material is not applied to the extension.
  • the negative electrode active material in the present embodiment is not particularly limited.
  • a carbon material that can occlude and release lithium ions a metal that can be alloyed with lithium, a metal oxide that can occlude and release lithium ions, and the like. Is mentioned.
  • Examples of the carbon material include graphite (natural graphite, artificial graphite, etc.), amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof.
  • carbon with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • the metal examples include Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and alloys of two or more thereof. Moreover, you may use these metals or alloys in mixture of 2 or more types. These metals or alloys may contain one or more non-metallic elements.
  • the metal oxide examples include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof.
  • the negative electrode active material preferably contains tin oxide or silicon oxide, and more preferably contains silicon oxide. This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds. Moreover, it is preferable that the whole or one part has an amorphous structure. An amorphous structure is considered to have relatively few elements due to non-uniformity such as grain boundaries and defects. It can be confirmed by X-ray diffraction measurement (general XRD measurement) that all or part of the metal oxide has an amorphous structure. Specifically, when the metal oxide does not have an amorphous structure, a peak specific to the metal oxide is observed. However, the metal oxide may have a case where all or part of the metal oxide has an amorphous structure. Inherent peaks are broad and observed.
  • a carbon material, a metal, and a metal oxide can be mixed and used independently.
  • the same kind of materials such as graphite and amorphous carbon may be mixed, or different kinds of materials such as graphite and silicon may be mixed.
  • binder for the negative electrode examples include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, Polyimide, polyamideimide, or the like can be used.
  • the amount of the binder for the negative electrode used is 0.5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. Is preferred.
  • the negative electrode current collector aluminum, nickel, stainless steel, chromium, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
  • the shape include foil, flat plate, and mesh.
  • the positive electrode has a positive electrode current collector formed of a metal foil, and a positive electrode active material coated on both surfaces of the positive electrode current collector.
  • the positive electrode active material is bound so as to cover the positive electrode current collector with a positive electrode binder.
  • the positive electrode current collector is formed to have an extension connected to the positive electrode terminal, and the positive electrode active material is not applied to the extension.
  • LiMnO 2, Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3, Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2) layer such as Lithium manganate having a structure or lithium manganate having a spinel structure, LiCoO 2 , LiNiO 2 or a part of these transition metals replaced with another metal, LiNi 1/3 Co 1/3 Mn 1/3 O Lithium transition metal oxides in which a specific transition metal such as 2 does not exceed half, Li in excess of the stoichiometric composition in these lithium transition metal oxides, LiFePO 4 and other olivine structures, etc. Is mentioned.
  • these metal oxides were partially substituted with Al, Fe, P, Ti, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, etc. Materials can also be used.
  • a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
  • the positive electrode active material can be selected from several viewpoints. From the viewpoint of increasing the energy density, it is preferable to include a high-capacity compound.
  • the high-capacity compound include nickel-lithium oxide (LiNiO 2 ) or lithium-nickel composite oxide obtained by substituting a part of nickel in nickel-lithium oxide with another metal element.
  • the layered structure represented by the following formula (A) Lithium nickel composite oxide is preferred.
  • the Ni content is high, that is, in the formula (A), x is preferably less than 0.5, and more preferably 0.4 or less.
  • x is preferably less than 0.5, and more preferably 0.4 or less.
  • LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like.
  • the Ni content does not exceed 0.5, that is, in the formula (A), x is 0.5 or more. It is also preferred that the number of specific transition metals does not exceed half.
  • LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM532), etc. (however, the content of each transition metal in these compounds varies by about 10%) Can also be included).
  • two or more compounds represented by the formula (A) may be used as a mixture.
  • NCM532 or NCM523 and NCM433 range from 9: 1 to 1: 9 (typically 2 It is also preferable to use a mixture in 1).
  • a material having a high Ni content (x is 0.4 or less) and a material having a Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
  • radical materials or the like can be used as the positive electrode active material.
  • the positive electrode binder the same as the negative electrode binder can be used.
  • the amount of the positive electrode binder to be used is preferably 2 to 15 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
  • the positive electrode current collector for example, aluminum, nickel, silver, or an alloy thereof can be used.
  • the shape of the positive electrode current collector include a foil, a flat plate, and a mesh.
  • an aluminum foil can be suitably used.
  • a conductive auxiliary material may be added to the positive electrode active material coating layer for the purpose of reducing impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • the amount of the conductive auxiliary material is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • a nonaqueous electrolytic solution containing a supporting salt (lithium salt) and a nonaqueous solvent that dissolves the supporting salt can be used.
  • an aprotic organic solvent such as carbonate ester (chain or cyclic carbonate), carboxylic acid ester (chain or cyclic carboxylic acid ester), and phosphate ester can be used.
  • carbonate solvents examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. (EMC), chain carbonates such as dipropyl carbonate (DPC); and propylene carbonate derivatives.
  • PC propylene carbonate
  • EC ethylene carbonate
  • BC butylene carbonate
  • VVC vinylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • propylene carbonate derivatives examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate
  • carboxylic acid ester solvent examples include aliphatic carboxylic acid esters such as methyl formate, methyl acetate, and ethyl propionate; and lactones such as ⁇ -butyrolactone.
  • phosphate ester examples include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, trioctyl phosphate, triphenyl phosphate, and the like.
  • solvents that can be contained in the non-aqueous electrolyte include, for example, ethylene sulfite (ES), propane sultone (PS), butane sultone (BS), dioxathilane-2,2-dioxide (DD), and sulfolene.
  • ES ethylene sulfite
  • PS propane sultone
  • BS butane sultone
  • DD dioxathilane-2,2-dioxide
  • sulfolene sulfolene
  • Non-aqueous solvents can be used alone or in combination of two or more.
  • the supporting salt can be used alone or in combination of two or more.
  • the concentration of the supporting salt in the electrolytic solution is preferably 0.5 M or more and 2 M or less, and preferably 0.7 M or more and 1.5 M or less.
  • the electrolytic solution may further contain an additive.
  • an additive An overcharge inhibitor, surfactant, film formation additive, etc. are mentioned.
  • additives include fluorinated cyclic carbonates, unsaturated cyclic carbonates, cyclic disulfonic acid esters, and the like. These compounds can form a film on the surface of the electrode active material during charging and discharging of the secondary battery, and can improve battery characteristics such as cycle characteristics.
  • these additives may cause gas generation during charging and discharging, and as a result, may increase lithium deposition.
  • the reason is not clear, but there is a tendency that a decomposed layer of the supporting salt is more effectively formed by gas entering the separator, and when these compounds are used, A more excellent short-circuit prevention effect may be obtained.
  • Examples of the fluorinated cyclic carbonate include a compound represented by the following formula (1).
  • A, B, C and D are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms or a halogenated alkyl group, and at least one of A, B, C and D One is a fluorine atom or a fluorinated alkyl group.
  • the number of carbon atoms of the alkyl group and the halogenated alkyl group is more preferably 1 to 4, and further preferably 1 to 3.
  • fluorinated cyclic carbonate examples include compounds in which some or all of the hydrogen atoms are substituted with fluorine atoms, such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC). -Fluoro-1,3-dioxolan-2-one (fluoroethylene carbonate: FEC) is preferred.
  • the content of the fluorinated cyclic carbonate is not particularly limited, but is preferably 0.01% by mass or more and 10% by mass or less, and 0.05% by mass or more and 5% by mass or less in the electrolytic solution. Is more preferable, and it is preferably 0.05% by mass or more and 3% by mass or less.
  • the unsaturated cyclic carbonate is a cyclic carbonate having at least one carbon-carbon unsaturated bond in the molecule.
  • vinylene carbonate methyl vinylene carbonate, ethyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4,5- Vinylene carbonate compounds such as diethyl vinylene carbonate; 4-vinylethylene carbonate, 4-methyl-4-vinylethylene carbonate, 4-ethyl-4-vinylethylene carbonate, 4-n-propyl-4-vinylene ethylene carbonate, 5-methyl -4-vinylethylene carbonate, 4,4-divinylethylene carbonate, 4,5-divinylethylene carbonate, 4,4-dimethyl-5-methyleneethylene carbonate, 4,4-diethyl-5-methyle Vinyl ethylene carbonate compounds such as ethylene carbonate.
  • vinylene carbonate or 4-vinylethylene carbonate is preferable, and vinylene carbonate is particularly preferable.
  • the content of the unsaturated cyclic carbonate is not particularly limited, but is preferably 0.01% by mass or more and 10% by mass or less, and 0.05% by mass or more and 5% by mass or less in the electrolytic solution. Is more preferable, and it is preferably 0.05% by mass or more and 3% by mass or less.
  • Examples of the cyclic disulfonic acid ester include a compound represented by the following formula (2).
  • R 1 and R 2 are each independently a substituent selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a halogen group, and an amino group.
  • R 3 is an alkylene group having 1 to 5 carbon atoms, a carbonyl group, a sulfonyl group, a fluoroalkylene group having 1 to 6 carbon atoms, or an alkylene group or a fluoroalkylene unit having 2 to 6 carbon atoms bonded via an ether group. A divalent group is shown. )
  • R 1 and R 2 are preferably each independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a halogen group, and R 3 is an alkylene group having 1 or 2 carbon atoms. Or it is more preferable that it is a fluoroalkylene group.
  • Examples of preferred compounds of the cyclic disulfonic acid ester represented by the formula (2) include the following compounds, but are not limited thereto.
  • the content of the cyclic disulfonic acid ester is preferably 0.005% by mass or more and 10% by mass or less in the electrolytic solution, and more preferably 0.01% by mass or more and 5% by mass or less. By containing 0.005% by mass or more, a sufficient film effect can be obtained. Moreover, the raise of the viscosity of electrolyte solution and the accompanying increase in resistance can be suppressed as content is 10 mass% or less.
  • One additive can be used alone, or two or more additives can be used in combination. When two or more additives are used in combination, the total content of the additives is 0. It is preferable to add so that it may become 5 to 5 mass%.
  • the exterior body can be appropriately selected as long as it is stable to the electrolytic solution and has a sufficient water vapor barrier property.
  • the exterior body may be comprised with a single member and may be comprised combining several members.
  • Example 1 A battery as shown below was prepared using an aramid nonwoven fabric film having a thickness of 25 ⁇ m and a porosity of 70% as the base material.
  • LiNi 0.8 Co 0.15 Al 0.05 LiNi 0.8 Co 0.15 Al 0.05 , a carbon conductive agent (acetylene black), and polyvinylidene fluoride as a binder are dispersed in N-methyl-2-pyrrolidone at a weight ratio of 92: 4: 4.
  • a slurry was prepared, applied to a current collector foil made of aluminum, and dried to form a positive electrode active material layer. Similarly, after forming an active material layer on the back surface of the current collector foil made of aluminum, it was rolled to obtain a positive electrode plate.
  • Natural graphite, sodium carboxymethyl methylcellulose as a thickener, and styrene butadiene rubber as a binder are mixed in an aqueous solution at a weight ratio of 98: 1: 1 to prepare a slurry, which is applied to a copper current collector foil. And dried to form a negative electrode active material layer. Similarly, after forming an active material layer on the back surface of the current collector foil made of copper, a negative electrode plate was obtained by rolling.
  • Non-aqueous solvent for the electrolytic solution a non-aqueous solvent in which EC and DEC were mixed at a volume ratio of 30:70 was used. LiPF 6 was dissolved as a supporting salt to a concentration of 1M. Further, Compound (2-1), vinylene carbonate, and fluoroethylene carbonate were added by 1% by weight.
  • a positive electrode plate and a negative electrode plate were laminated via a separator base material to produce an electrode body.
  • a current extraction terminal was connected to each of the laminated positive electrode plate and negative electrode plate, and accommodated in a laminate film outer package of aluminum and resin. After injecting the electrolyte into the outer package, the outer package was sealed under reduced pressure to obtain a battery. The size of the electrode body was adjusted so that the initial charge capacity of the cell was 100 mAh.
  • the produced battery was charged in a constant current constant voltage mode at a current value of 30 mA up to a battery voltage of 4.2 V. By charging, the voltage of the battery increased to 4.2 V, and no decrease in battery voltage was observed during or after charging.
  • FIG. 2 When the above cell was disassembled and the separator was observed, it was found that a microporous layer was formed on the substrate (FIG. 2). Further, in the IR analysis of the surface of the formed layer, the maximum absorption was observed at around 845 nm (FIG. 3), which is considered to be a component containing a PF bond derived from a LiPF 6 decomposition product.
  • FIG. 3 For IR analysis, Spectrum Spotlight 200 (manufactured by PerkinElmer) and an MCT detector as a detector were used. The frequency region of 4000 to 7000 cm ⁇ 1 was measured by the ATR method. The number of integrations was 43. The average thickness of the decomposed layer of the supporting salt was 5 ⁇ m, and the coverage was 15%.
  • Reference example 1 A battery was produced in the same procedure as in Example 1.
  • the average thickness of the support salt decomposition product layer was 0.5 ⁇ m, and the coverage was 2%.
  • the produced battery was charged in a constant current constant voltage mode at a current value of 30 mA up to a battery voltage of 4.2 V. During charging, it was observed that the voltage temporarily dropped around 3.9 V and the positive and negative electrodes were short-circuited.
  • the layer containing the decomposition product of the supporting salt is effectively formed on the separator by charging up to a voltage immediately before the short-circuit due to lithium deposition at the time of initial charging and discharging immediately after that. It is presumed that the decrease in battery voltage due to a short circuit could be suppressed in the second and subsequent charging / discharging.
  • the effective support salt decomposition layer was not formed at the time of the initial charge, so that invasion of gas into the separator could not be suppressed during the second charge and discharge, and the positive and negative electrodes were short-circuited. Estimated.
  • Comparative Example 1 A cell was prepared in the same procedure as in Example 1 except that a polypropylene film having a thickness of 25 ⁇ m and a porosity of 55% was used as the substrate, and an initial charging process was performed.
  • Comparative Example 1 suggests that when a separator that does not contain gas is used, a decomposition layer of the supporting salt is not formed.
  • the battery according to the invention can be used, for example, in all industrial fields that require a power source, as well as in industrial fields related to the transport, storage and supply of electrical energy.
  • power supplies for mobile devices such as mobile phones and notebook computers
  • power supplies for transportation and transportation media such as trains, satellites, and submarines, including electric vehicles such as electric cars, hybrid cars, electric bikes, and electric assist bicycles
  • a backup power source such as a UPS
  • a power storage facility for storing power generated by solar power generation, wind power generation, etc .;
  • FIG. 4 and FIG. 5 show an electric vehicle 200 and a power storage facility 300, respectively, as examples of the various devices and power storage facilities described above.
  • Electric vehicle 200 and power storage facility 300 have assembled batteries 210 and 310, respectively.
  • the assembled batteries 210 and 310 are configured by connecting a plurality of batteries having the above-described separator according to the present invention in series and in parallel to satisfy required capacity and voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

Disclosed is a separator for a lithium ion secondary battery, said separator having a layer of a decomposed product of a supporting salt on at least one surface of a substrate. This separator can inhibit short-circuiting caused by dendrite deposition of a lithium metal during lithium deposition.

Description

セパレータ、その製造方法、およびそれを用いたリチウムイオン二次電池Separator, manufacturing method thereof, and lithium ion secondary battery using the same
 本発明はセパレータに関し、特にはリチウム金属のデンドライト析出による短絡を抑制することができるセパレータに関する。本発明は、さらに、そのセパレータの製造方法、及び、そのセパレータを用いたリチウムイオン二次電池に関する。 The present invention relates to a separator, and more particularly, to a separator capable of suppressing a short circuit due to lithium metal dendrite precipitation. The present invention further relates to a method for manufacturing the separator and a lithium ion secondary battery using the separator.
 リチウムイオン二次電池などの非水系二次電池は、エネルギー密度が高い、自己放電が小さい、長期信頼性に優れる等の利点により、ノート型パソコンや携帯電話などの電池としてすでに実用化されている。しかし、近年では電子機器の高機能化や電気自動車への利用が進み、よりエネルギー密度が高く、かつ、優れた電池特性を有するリチウムイオン二次電池の開発が求められている。 Non-aqueous secondary batteries such as lithium ion secondary batteries have already been put into practical use as batteries for notebook computers and mobile phones due to advantages such as high energy density, low self-discharge, and excellent long-term reliability. . However, in recent years, electronic devices have been enhanced in functionality and used in electric vehicles, and there has been a demand for the development of lithium ion secondary batteries having higher energy density and superior battery characteristics.
 セパレータはリチウムイオン二次電池の基本的な構成要素のひとつであり、正極と負極の短絡を防止する機能の他、メルトダウンによる安全性付与機能や、サイクル特性、レート特性等の電池特性に関して、種々の検討が行われている。 The separator is one of the basic components of a lithium ion secondary battery. In addition to the function of preventing a short circuit between the positive electrode and the negative electrode, with regard to battery characteristics such as a safety imparting function by meltdown, cycle characteristics, rate characteristics, etc. Various studies have been conducted.
 例えば、リチウムイオン二次電池のレート特性を改善する方法としては、リチウムイオンの移動が容易である空隙率の高いセパレータを採用することが有利である。一方、空隙率の高いセパレータを用いたリチウムイオン二次電池では、充電時にリチウムの析出が生じた場合、金属リチウムがセパレータ内部を貫通し短絡が生じやすいという問題がある。このような問題に対しては、特許文献1に開示されるような微細孔を有する樹脂フィルムと不織布とを重ね合わせたセパレータや、特許文献2に開示されるように、負極とセパレータとの間に、金属導電体層、半導体層、および絶縁体層の少なくとも一層を設ける方法等が検討されている。また、特許文献3には、デンドライトによるマイクロショートを回避する方法として、初回充電時において、初回充電電圧が(満充電時の開回路電圧―2000mV)以上(満充電時の開回路電圧-25mV)であることを特徴とするリチウムイオン二次電池の製造方法が開示されている。 For example, as a method for improving the rate characteristics of a lithium ion secondary battery, it is advantageous to employ a separator having a high porosity that allows easy movement of lithium ions. On the other hand, in a lithium ion secondary battery using a separator having a high porosity, when lithium is precipitated during charging, there is a problem in that metallic lithium penetrates the inside of the separator and easily causes a short circuit. For such a problem, as disclosed in Patent Document 1, a separator in which a resin film having fine holes and a non-woven fabric are overlapped, or as disclosed in Patent Document 2, between a negative electrode and a separator. In addition, a method of providing at least one of a metal conductor layer, a semiconductor layer, and an insulator layer has been studied. Further, in Patent Document 3, as a method of avoiding a micro-short due to dendrites, the initial charge voltage is (open circuit voltage at full charge−2000 mV) or more at the first charge (open circuit voltage at full charge−25 mV). A method for producing a lithium ion secondary battery is disclosed.
特許第2732371号明細書Japanese Patent No. 2732371 特許第2943127号明細書Japanese Patent No. 2943127 特開2014-17209号公報JP 2014-17209 A
 しかし、上述の特許文献1、2に記載されるような電池においては、セパレータの厚さ増に伴う抵抗増加、セパレータを作製する工数とコストがかかる、などの課題があった。また、特許文献3に記載の方法も、良好な電池特性を維持しながらリチウム析出による短絡を防止するという点では未だ不十分であった。 However, the batteries described in Patent Documents 1 and 2 described above have problems such as an increase in resistance accompanying an increase in the thickness of the separator, and a man-hour and cost for manufacturing the separator. Further, the method described in Patent Document 3 is still insufficient in terms of preventing a short circuit due to lithium deposition while maintaining good battery characteristics.
 本発明は上述の問題に鑑みて成されたものであり、リチウム析出時のリチウム金属のデンドライト析出による短絡を抑制することができるリチウムイオン二次電池用セパレータを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a lithium ion secondary battery separator capable of suppressing a short circuit due to dendrite deposition of lithium metal during lithium deposition.
課題を解決する手段Means to solve the problem
 本発明の一態様は、基材の少なくとも片面に支持塩の分解物層を有することを特徴とする、リチウムイオン二次電池用セパレータに関する。 One embodiment of the present invention relates to a separator for a lithium ion secondary battery, characterized by having a decomposition layer of a supporting salt on at least one surface of a substrate.
 本発明によれば、リチウム析出時のリチウム金属のデンドライト析出による短絡を抑制することができるリチウムイオン二次電池用セパレータを提供することができる。 According to the present invention, it is possible to provide a lithium ion secondary battery separator capable of suppressing a short circuit due to lithium metal dendrite precipitation during lithium deposition.
本発明の一実施形態に係る二次電池が有する電池要素の構造を示す模式的断面図である。It is typical sectional drawing which shows the structure of the battery element which the secondary battery which concerns on one Embodiment of this invention has. 実施例における本発明に係るセパレータのSEM像である。It is a SEM image of the separator which concerns on this invention in an Example. 実施例における本発明に係るセパレータ表面に形成された層のIR分析の結果を示すグラフである(スペクトル(下))。なお、支持塩の分解層を有さないセパレータのスペクトルをあわせて示す(スペクトル(上))。It is a graph which shows the result of the IR analysis of the layer formed in the separator surface which concerns on this invention in an Example (spectrum (lower)). In addition, the spectrum of the separator which does not have the decomposition layer of a support salt is shown together (spectrum (upper)). 本発明の一実施形態に係る二次電池を備えた電気自動車の一例を示す模式図である。It is a schematic diagram which shows an example of the electric vehicle provided with the secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池を備えた蓄電設備の一例を示す模式図である。It is a schematic diagram which shows an example of the electrical storage equipment provided with the secondary battery which concerns on one Embodiment of this invention. フィルム外装電池の基本的構造を示す分解斜視図である。It is a disassembled perspective view which shows the basic structure of a film-clad battery. 図6の電池の断面を模式的に示す断面図である。It is sectional drawing which shows the cross section of the battery of FIG. 6 typically.
<セパレータ>
 本発明に係るセパレータは、基材の少なくとも片面に、支持塩の分解物層を有することを特徴とするリチウムイオン二次電池用セパレータである。
<Separator>
The separator according to the present invention is a separator for a lithium ion secondary battery having a decomposition product layer of a supporting salt on at least one surface of a substrate.
 本発明によれば、リチウム析出時のリチウム金属のデンドライト析出による短絡を抑制し、リチウムイオン二次電池の短絡耐性を改善することができる。この理由は明らかではないが、以下のとおり推定される。すなわち、リチウムイオン二次電池では、充放電時に正極または負極からガスが発生した場合、ガスがセパレータ内に留まってイオンの流れを妨害し、結果としてリチウムの析出が生じ易くなる。負極上に析出した金属リチウムがさらに成長し正極に到達すると短絡が生じる。本発明に係るセパレータを用いた場合、セパレータの基材上に形成された支持塩の分解物層がセパレータ内部への気泡の侵入を防止する。このため、リチウムの析出が生じにくくなる。さらに、リチウムの析出が生じた場合においても、析出した金属リチウムが負極から正極に到達することを抑制し、リチウムの析出による短絡を防止することができる。さらに、当該分解物層は、支持塩の分解物層であるためにLiイオン伝導性が高く、基材上にポリオレフィン微多孔膜等を積層した2層構造のセパレータ等と比較して抵抗をより小さくすることができる。 According to the present invention, it is possible to suppress short-circuiting due to lithium metal dendrite precipitation during lithium deposition and improve the short-circuit resistance of the lithium ion secondary battery. The reason for this is not clear, but is estimated as follows. That is, in the lithium ion secondary battery, when gas is generated from the positive electrode or the negative electrode during charging and discharging, the gas stays in the separator and obstructs the flow of ions, and as a result, lithium is liable to precipitate. When the metallic lithium deposited on the negative electrode further grows and reaches the positive electrode, a short circuit occurs. When the separator according to the present invention is used, the decomposition product layer of the supporting salt formed on the base material of the separator prevents air bubbles from entering the separator. For this reason, precipitation of lithium becomes difficult to occur. Furthermore, even when lithium deposition occurs, the deposited metal lithium can be prevented from reaching the positive electrode from the negative electrode, and a short circuit due to lithium deposition can be prevented. Furthermore, since the decomposition product layer is a decomposition product layer of the supporting salt, the Li ion conductivity is high, and the resistance is higher than that of a separator having a two-layer structure in which a polyolefin microporous film or the like is laminated on a substrate. Can be small.
 以下、本発明に係るセパレータの構造についてより詳細に説明する。 Hereinafter, the structure of the separator according to the present invention will be described in more detail.
 本発明によるセパレータは、多孔膜または不織布を基材とし、基材の少なくとも片面に支持塩(Li塩)の分解物が担持されている。 The separator according to the present invention uses a porous film or a nonwoven fabric as a base material, and a support salt (Li salt) decomposition product is supported on at least one side of the base material.
 基材には、厚さ5μm以上50μm以下、より好ましくは10μm以上30μm以下の多孔膜または不織布を用いることができる。基材は、基材の厚さ方向に空孔、または空隙が複数連続して存在し、かつ、基材の片面から反対側の面へ直線で通過する経路が存在しないものが好ましい。 As the substrate, a porous film or a nonwoven fabric having a thickness of 5 μm or more and 50 μm or less, more preferably 10 μm or more and 30 μm or less can be used. The base material preferably has a plurality of pores or voids continuously in the thickness direction of the base material, and does not have a straight path passing from one surface of the base material to the opposite surface.
 本発明の効果の発現は、基材となる材料自体の物性には依存しないが、例えば、ポリアミド、なかでも全芳香族ポリアミド(アラミド)、ポリイミド、ポリエチレンテレフタラート(PET)、ポリフェニレンサルファイド(PPS)、セルロース、ポリエチレン、ポリプロピレン等の樹脂材料を用いることができる。 The manifestation of the effect of the present invention does not depend on the physical properties of the base material itself. For example, polyamide, especially wholly aromatic polyamide (aramid), polyimide, polyethylene terephthalate (PET), polyphenylene sulfide (PPS) Resin materials such as cellulose, polyethylene, and polypropylene can be used.
 一実施形態では、リチウムイオン二次電池の耐熱性の観点から、160℃以上、好ましくは180℃以上に熱溶融温度または熱分解温度を有する高耐熱性樹脂材料を好ましく用いることができる。高耐熱性樹脂材料の例としては、ポリエチレンテレフタレート、セルロース、アラミド、ポリイミド、ポリアミド、ポリフェニレンサルファイト樹脂等が挙げられ、中でも、ポリイミド、ポリフェニレンサルファイト、アラミド樹脂が好ましい。なお、本明細書において、「熱溶融温度」とはJIS K 7121に準じて示差走査熱量測定(DSC)により測定される温度を表し、「熱分解温度」とは熱重量測定装置を用いて空気気流中で25℃から10℃/分で昇温したときに10%重量が減少したときの温度(10%重量減少温度)を表し、「熱溶融温度または熱分解温度が160℃以上」とは、熱溶融温度及び熱分解温度のいずれか低い方の温度が160℃以上であることを表す。 In one embodiment, from the viewpoint of heat resistance of the lithium ion secondary battery, a high heat resistant resin material having a heat melting temperature or a thermal decomposition temperature of 160 ° C. or higher, preferably 180 ° C. or higher can be preferably used. Examples of the high heat-resistant resin material include polyethylene terephthalate, cellulose, aramid, polyimide, polyamide, polyphenylene sulfite resin, and the like, among which polyimide, polyphenylene sulfite, and aramid resin are preferable. In this specification, “thermal melting temperature” represents a temperature measured by differential scanning calorimetry (DSC) according to JIS K 7121, and “thermal decomposition temperature” refers to air using a thermogravimetric measuring device. Represents the temperature at which the 10% weight is reduced when the temperature is increased from 25 ° C. to 10 ° C./min in an air stream (10% weight loss temperature). The lower one of the thermal melting temperature and the thermal decomposition temperature represents 160 ° C. or higher.
 ここで、アラミド樹脂は、1種または2種以上の芳香族基がアミド結合により直接連結されている芳香族ポリアミドである。芳香族基としては、例えばフェニレン基が挙げられ、また、2個の芳香環が酸素、硫黄またはアルキレン基(例えば、メチレン基、エチレン基、プロピレン基等)で結合されたものであってもよい。これらの2価の芳香族基は置換基を有していてもよく、置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基等)、ハロゲン(クロル基等)等が挙げられる。アラミド結合は、パラ型およびメタ型のいずれであってもよい。アラミドの例としては、ポリメタフェニレンイソフタルアミド、ポリパラフェニレンテレフタルアミド、コポリパラフェニレン3,4’-オキシジフェニレンテレフタルアミド等が挙げられるがこれらに限定されない。 Here, the aramid resin is an aromatic polyamide in which one or more aromatic groups are directly connected by an amide bond. Examples of the aromatic group include a phenylene group, and two aromatic rings may be bonded with oxygen, sulfur, or an alkylene group (for example, a methylene group, an ethylene group, a propylene group, etc.). . These divalent aromatic groups may have a substituent, and examples of the substituent include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, etc.), an alkoxy group (for example, a methoxy group, Ethoxy group, propoxy group and the like), halogen (chloro group and the like) and the like. The aramid bond may be either a para type or a meta type. Examples of aramids include, but are not limited to, polymetaphenylene isophthalamide, polyparaphenylene terephthalamide, copolyparaphenylene 3,4'-oxydiphenylene terephthalamide.
 基材は、2種以上の異なる成分から構成されていてもよく、また、成分及び/又は物性の異なる2種以上の多孔膜及び/又は不織布を組み合せて用いることもできる。 The base material may be composed of two or more different components, and two or more porous films and / or nonwoven fabrics having different components and / or physical properties may be used in combination.
 基材の空孔率は、55%を超え85%以下であることが好ましく、60%以上80%以下であることがより好ましい。空孔率が大きいセパレータは内部に保持する電解液の量が多く長期使用に有利であること、基材に使用する樹脂の量が減ること、イオン伝導性が高く、レート特性に優れるなどの有利な点がある。一方、空孔率が大き過ぎると、機械的な強度が低下する場合がある。 The porosity of the substrate is preferably more than 55% and 85% or less, and more preferably 60% or more and 80% or less. A separator with a large porosity is advantageous in that it has a large amount of electrolyte solution held inside and is advantageous for long-term use, a reduced amount of resin used for the base material, high ionic conductivity, and excellent rate characteristics. There is a point. On the other hand, if the porosity is too large, the mechanical strength may decrease.
 なお、不織布や、空孔率の大きな多孔膜等をセパレータとして用いた場合、充放電時に発生したガスがセパレータ内部に侵入し、リチウム析出が生じ易いといった問題がより顕著になる。しかし、本発明によれば、セパレータの基材上に形成された支持塩の分解物層によりセパレータ内へのガスの侵入を抑制しリチウム析出による短絡を抑制することができるため、空隙率の大きな基材を採用した場合も、短絡を効果的に防止することができる。 When a nonwoven fabric or a porous film having a high porosity is used as the separator, the problem that the gas generated during charging / discharging penetrates into the separator and lithium is liable to occur becomes more prominent. However, according to the present invention, the decomposition layer of the supporting salt formed on the separator base material can suppress gas intrusion into the separator and suppress short-circuiting due to lithium deposition. Even when a base material is employed, a short circuit can be effectively prevented.
 なお、基材の空孔率は、JIS P 8118に準じて嵩密度を測定し、
   空孔率(%)=[1-(嵩密度ρ(g/cm)/材料の理論密度ρ(g/cm))]×100
として算出することができる。また、電子顕微鏡による直接観察法、水銀ポロシメータによる圧入法等により測定することもできる。
In addition, the porosity of a base material measured a bulk density according to JISP8118,
Porosity (%) = [1− (bulk density ρ (g / cm 3 ) / theoretical density of material ρ 0 (g / cm 3 ))] × 100
Can be calculated as It can also be measured by a direct observation method using an electron microscope, a press-fitting method using a mercury porosimeter, or the like.
 基材が有する空隙の平均空隙径としては、特に限定されないが、0.05μm以上10μm以下であることが好ましく、0.1μm以上5μm以下であることがより好ましい。なお、空隙径は、SIM-F-316記載のバブルポイント法またはミーンフロー法により測定することができる。平均空隙径は、基材の任意の5箇所の測定値の平均値とすることができる。 The average void diameter of the voids of the substrate is not particularly limited, but is preferably 0.05 μm or more and 10 μm or less, and more preferably 0.1 μm or more and 5 μm or less. The void diameter can be measured by the bubble point method or the mean flow method described in SIM-F-316. The average void diameter can be an average value of measured values at any five locations on the substrate.
 支持塩の分解物層の平均厚さは1~20μmが望ましく、1~10μmが好ましい。分解物層の厚さが上記範囲内であると、より高い短絡防止効果が得られ、かつ、電池の寿命特性の低下を抑制することができる。なお、支持塩の分解物層の厚さは、本発明に係るセパレータの断面SEM(走査型電子顕微鏡)像を用いて測定することができ、平均厚さは、任意の5点の厚さの平均値として算出することができる。 The average thickness of the decomposed layer of the supporting salt is desirably 1 to 20 μm, and preferably 1 to 10 μm. When the thickness of the decomposition product layer is within the above range, a higher short-circuit prevention effect can be obtained, and a decrease in battery life characteristics can be suppressed. In addition, the thickness of the decomposition product layer of the supporting salt can be measured using a cross-sectional SEM (scanning electron microscope) image of the separator according to the present invention, and the average thickness is an arbitrary five-point thickness. It can be calculated as an average value.
 支持塩の分解物層の被覆率は、セパレータ内部へのガスの侵入の抑制効果の観点から5%以上であることが好ましく、10%以上であることがより好ましく、15%以上であることがさらに好ましい。また、被覆率の上限は特に限定されず、100%であってもよい。なお、支持塩の分解物層の被覆率は、本発明に係るセパレータの表面SEM(走査型電子顕微鏡)像のEDX分析することで測定することができ、EDX分析によってPまたはFが検出される領域の面積/視野の面積×100(%)という式で求めることができる。平均被覆率は、任意の5点の視野から算出した被覆率の平均値として算出することができる。 The coverage of the decomposed layer of the supporting salt is preferably 5% or more, more preferably 10% or more, and more preferably 15% or more from the viewpoint of the effect of suppressing gas intrusion into the separator. Further preferred. Moreover, the upper limit of a coverage is not specifically limited, 100% may be sufficient. The coverage of the decomposed layer of the supporting salt can be measured by EDX analysis of the surface SEM (scanning electron microscope) image of the separator according to the present invention, and P or F is detected by EDX analysis. It can be obtained by the formula of area of area / area of visual field × 100 (%). The average coverage can be calculated as an average value of the coverage calculated from arbitrary five points of view.
 本発明において、「支持塩の分解物層」とは、リチウムイオン二次電池の電解液中の支持塩が初回充電により分解することにより生成する化合物を含む層を意味する。 In the present invention, the “supported salt decomposition product layer” means a layer containing a compound produced by decomposition of the supporting salt in the electrolyte solution of the lithium ion secondary battery by the first charge.
 基材上に支持塩の分解物を含む層が形成されていることは、セパレータ表面を赤外線吸収スペクトル測定(IR測定)、核磁気共鳴(NMR)、飛行時間型二次イオン質量分析(TOF-SIMS)、エネルギー分散型X線分析(EDX分析)等により解析し、支持塩を構成する元素、または部分構造を検出することによって確認することができる。 The layer containing the decomposition product of the supporting salt is formed on the substrate because the separator surface is subjected to infrared absorption spectrum measurement (IR measurement), nuclear magnetic resonance (NMR), time-of-flight secondary ion mass spectrometry (TOF- SIMS), energy dispersive X-ray analysis (EDX analysis), and the like, and can be confirmed by detecting elements or partial structures constituting the supporting salt.
 一例として支持塩がLiPFを含む場合、セパレータの基材上に形成された支持塩の分解物層は、IR分析において825~865nm(845nm付近)にP-F結合を示す吸収、好ましくは最大吸収を示す。従って、分解物層は、少なくともLi、P、F、OおよびCを含み、且つ少なくともその一部としてP-F結合を有する化合物を含む、電解液に不溶の複合的な無機物層(有機物を含んでいてもよい)である。P-F結合を有する化合物は、例えば、少なくとも一つの酸素原子をフッ素で置換したリン酸エステル化合物などである。 As an example, when the supporting salt contains LiPF 6 , the decomposition layer of the supporting salt formed on the separator substrate has an absorption exhibiting a PF bond at 825 to 865 nm (around 845 nm) in IR analysis, preferably maximum Shows absorption. Therefore, the decomposition product layer includes at least Li, P, F, O, and C, and includes a compound having a PF bond as at least a part thereof, and is a complex inorganic layer (including organic matter) insoluble in the electrolytic solution. It may be out). The compound having a PF bond is, for example, a phosphate ester compound in which at least one oxygen atom is substituted with fluorine.
 また、分解物層を断面SEM画像のEDX分析によって詳細に分析したところ、表面はP-F結合を有する層が主成分であったが、内部は酸素を主成分とする層で形成されていた。内部の層からはP、Fなどの強度が弱いことから、LiOやLiCOを主成分とする層であると推測できる。従って、分解物層は、好ましくは層の表面側と層の内部で組成が異なり、表面側でP-F結合を有する化合物の割合が大きく、内部ではPおよび/またはFを含有する化合物の割合が少なく、例えばLiOやLiCOのようなLi、OおよびCを含有する化合物の割合が大きい無機物層である。 Further, when the decomposition product layer was analyzed in detail by EDX analysis of a cross-sectional SEM image, the surface was mainly composed of a layer having a PF bond, but the inside was formed of a layer mainly composed of oxygen. . Since the strength of P, F, etc. is weak from the inner layer, it can be estimated that the layer is mainly composed of Li 2 O or Li 2 CO 3 . Therefore, the decomposition product layer preferably has a different composition between the surface side of the layer and the inside of the layer, and a large proportion of the compound having a PF bond on the surface side, and a proportion of the compound containing P and / or F inside. less, for example, the proportion of such Li, compounds containing O and C as Li 2 O or Li 2 CO 3 is higher inorganic layer.
 本発明は、さらに、基材の少なくとも片面に支持塩の分解物層を有するリチウムイオン二次電池用セパレータの製造方法に関する。 The present invention further relates to a method for producing a separator for a lithium ion secondary battery having a decomposition layer of a supporting salt on at least one side of a substrate.
 本発明に係るセパレータは、例えば以下の方法で作製することができる。セパレータの基材部分のみを正極と負極で挟み込んだ積層体を作製し、支持塩(Li塩)を含有する電解液を封入してセルを少なくとも2セル以上作製する。一つ目のセルを所定の電流値で充電し、電圧が一時的に低下し始める点における電圧を測定し、この電圧をVとする。当該電圧Vは、リチウムの析出による短絡が生じる電圧であると推定される。二つ目以降のセルにおいて、上記一つ目のセルと同条件の定電流充電により、電圧がV±0.1V以内に到達するまで初充電を行うことで、Li塩の分解物層を形成することができる。初充電終了時の電圧が低すぎる場合、有効なLi塩の分解物層を形成することができず、短絡防止効果が低下する。また、初充電終了時の電圧が高すぎる場合、支持塩が過剰に消費されることによりその後のサイクル特性が低下する、また、分解物層が過剰に形成され、抵抗の上昇及び寿命の低下につながる恐れがある。 The separator according to the present invention can be produced, for example, by the following method. A laminated body in which only the base material portion of the separator is sandwiched between the positive electrode and the negative electrode is prepared, and an electrolytic solution containing a supporting salt (Li salt) is enclosed to prepare at least two cells. The first cell is charged with a predetermined current value, the voltage at the point where the voltage starts to drop temporarily is measured, and this voltage is defined as V 0 . The voltage V 0 is estimated to be a voltage that causes a short circuit due to lithium deposition. In the second and subsequent cells, the Li salt decomposition layer is formed by performing initial charging until the voltage reaches within V 0 ± 0.1 V by constant current charging under the same conditions as in the first cell. Can be formed. If the voltage at the end of the initial charge is too low, an effective Li salt decomposition product layer cannot be formed, and the short-circuit prevention effect decreases. In addition, when the voltage at the end of the initial charge is too high, the supporting salt is excessively consumed, resulting in deterioration of the subsequent cycle characteristics, and an excessively decomposed layer is formed, resulting in an increase in resistance and a decrease in life. There is a risk of connection.
 上記の製造方法において採用する充電レートは特に限定されるものではないが、生産効率の観点からは、セルの初回充電容量を1時間で充電する電流値を1Cとして0.05C~0.5Cの定電流とすることが好ましい。また、短絡防止の観点からは、二つ目以降のセルの初回充電において、電圧がV±0.1Vに到達後、速やかに放電を行うことが好ましい。なお、電圧がV±0.1Vに到達するまでの間に1回以上の充放電サイクルを行ってもよいが、生産効率の観点からは、初回の充電において電圧V±0.1Vまで充電を行うことが好ましい。 The charging rate employed in the above manufacturing method is not particularly limited, but from the viewpoint of production efficiency, the current value for charging the initial charge capacity of the cell in 1 hour is 1 C, and is 0.05 C to 0.5 C. A constant current is preferred. Further, from the viewpoint of preventing short circuit, it is preferable to discharge quickly after the voltage reaches V 0 ± 0.1 V in the first charge of the second and subsequent cells. Note that one or more charging / discharging cycles may be performed before the voltage reaches V 0 ± 0.1 V, but from the viewpoint of production efficiency, up to the voltage V 0 ± 0.1 V in the first charging. It is preferable to perform charging.
 以下、本発明に係るセパレータを用いたリチウム二次電池の構成について説明する。 Hereinafter, the configuration of the lithium secondary battery using the separator according to the present invention will be described.
 二次電池は、電極の構造や形状等により、円筒型、扁平捲回角型、積層角型、コイン型、扁平捲回ラミネート型および積層ラミネート型等、種々のタイプがある。本発明はこれらの何れのタイプにも適用可能である。これらのうち、本発明が適用される二次電池の形状は、電池要素が発熱したときの放熱性に優れている観点から、積層ラミネート型であることが好ましい。以下、積層ラミネート型の二次電池について説明する。 There are various types of secondary batteries such as a cylindrical type, a flat wound square type, a laminated square type, a coin type, a flat wound laminate type, and a laminated laminate type, depending on the structure and shape of the electrode. The present invention is applicable to any of these types. Among these, the shape of the secondary battery to which the present invention is applied is preferably a laminated laminate type from the viewpoint of excellent heat dissipation when the battery element generates heat. Hereinafter, a laminated laminate type secondary battery will be described.
 積層ラミネート型の二次電池は、電池要素と、電池要素を封止した外装体とを有する。電池要素の断面模式図を図1に示す。図1に示すように、電池要素は、複数の負極aと複数の正極cとを、本発明に係る支持塩の分解物層を有するセパレータbを間に挟んで交互に積層した構成を有することができる。本発明に係るセパレータによれば、基材上の支持塩の分解物層がセパレータ内へのガスの侵入を防止し、リチウム析出を生じにくくできる。さらに、リチウムが析出した場合においても、析出した金属リチウムが負極から正極に到達することを抑制することができる。従って、当該分解物層がセパレータの少なくとも負極側表面に存在するように構成することがより好ましい。電解液は、これら負極a、正極cおよびセパレータbとともに、外装体内に封止される。負極aは、セパレータbから突き出ている延長部(タブともいう)を有している。延長部は、負極aが有する負極集電体dの負極活物質に覆われていない端部である。正極cも同様、正極cの正極集電体eの正極活物質に覆われていない端部である延長部(タブ)がセパレータbから突き出ている。正極cの延長部と負極aの延長部は、正極cと負極aとを積層したときに互いに干渉しない位置に形成されている。すべての負極aの延長部は一つに集められて、負極端子gに溶接により接続される。正極cも同様に、すべての正極cの延長部が一つに集められて、正極端子fに溶接によって接続される。 A laminated laminate type secondary battery has a battery element and an outer package in which the battery element is sealed. A schematic cross-sectional view of the battery element is shown in FIG. As shown in FIG. 1, the battery element has a configuration in which a plurality of negative electrodes a and a plurality of positive electrodes c are alternately stacked with separators b each having a decomposed layer of a supporting salt according to the present invention. Can do. According to the separator according to the present invention, the decomposition product layer of the supporting salt on the base material can prevent the gas from entering the separator, and can prevent lithium precipitation. Furthermore, even when lithium is deposited, the deposited metal lithium can be prevented from reaching the positive electrode from the negative electrode. Therefore, it is more preferable that the decomposition product layer is configured to exist on at least the negative electrode side surface of the separator. The electrolytic solution is sealed in the exterior body together with the negative electrode a, the positive electrode c, and the separator b. The negative electrode a has an extension (also called a tab) protruding from the separator b. The extension is an end of the negative electrode current collector d of the negative electrode a that is not covered with the negative electrode active material. Similarly, in the positive electrode c, an extension portion (tab) that is an end portion of the positive electrode current collector e of the positive electrode c that is not covered with the positive electrode active material protrudes from the separator b. The extension part of the positive electrode c and the extension part of the negative electrode a are formed at positions that do not interfere with each other when the positive electrode c and the negative electrode a are laminated. The extensions of all negative electrodes a are collected together and connected to the negative terminal g by welding. Similarly, all the positive electrode c extensions are gathered together and connected to the positive electrode terminal f by welding.
 さらに別の態様としては、図6および図7のような構造の二次電池としてもよい。この二次電池は、電池要素20と、それを電解質と一緒に収容するフィルム外装体10と、正極タブ51および負極タブ52(以下、これらを単に「電極タブ」ともいう)とを備えている。 As another aspect, a secondary battery having a structure as shown in FIGS. 6 and 7 may be used. The secondary battery includes a battery element 20, a film outer package 10 that houses the battery element 20 together with an electrolyte, and a positive electrode tab 51 and a negative electrode tab 52 (hereinafter also simply referred to as “electrode tabs”). .
 電池要素20は、図7に示すように、複数の正極30と複数の負極40とがセパレータ25を間に挟んで交互に積層されたものである。正極30は、金属箔31の両面に電極材料32が塗布されており、負極40も、同様に、金属箔41の両面に電極材料42が塗布されている。 As shown in FIG. 7, the battery element 20 is formed by alternately stacking a plurality of positive electrodes 30 and a plurality of negative electrodes 40 with separators 25 therebetween. In the positive electrode 30, the electrode material 32 is applied to both surfaces of the metal foil 31. Similarly, in the negative electrode 40, the electrode material 42 is applied to both surfaces of the metal foil 41.
 図1の二次電池は電極タブが外装体の両側に引き出されたものであったが、本発明を適用しうる二次電池は図6のように電極タブが外装体の片側に引き出された構成であってもよい。詳細な図示は省略するが、正極および負極の金属箔は、それぞれ、外周の一部に延長部を有している。負極金属箔の延長部は一つに集められて負極タブ52と接続され、正極金属箔の延長部は一つに集められて正極タブ51と接続される(図7参照)。このように延長部どうし積層方向に1つに集めた部分は「集電部」などとも呼ばれる。 The secondary battery in FIG. 1 has electrode tabs drawn out on both sides of the outer package. However, in the secondary battery to which the present invention can be applied, the electrode tab is drawn out on one side of the outer package as shown in FIG. It may be a configuration. Although detailed illustration is omitted, each of the positive and negative metal foils has an extension on a part of the outer periphery. The extensions of the negative electrode metal foil are collected together and connected to the negative electrode tab 52, and the extensions of the positive electrode metal foil are collected together and connected to the positive electrode tab 51 (see FIG. 7). The portions gathered together in the stacking direction between the extension portions in this way are also called “current collecting portions”.
 フィルム外装体10は、この例では、2枚のフィルム10-1、10-2で構成されている。フィルム10-1、10-2どうしは電池要素20の周辺部で互いに熱融着されて密閉される。図7では、このように密閉されたフィルム外装体10の1つの短辺から、正極タブ51および負極タブ52が同じ方向に引き出されている。 The film outer package 10 is composed of two films 10-1 and 10-2 in this example. The films 10-1 and 10-2 are heat sealed to each other at the periphery of the battery element 20 and sealed. In FIG. 7, the positive electrode tab 51 and the negative electrode tab 52 are drawn out in the same direction from one short side of the film outer package 10 sealed in this way.
 当然ながら、異なる2辺から電極タブがそれぞれ引き出されていてもよい。また、フィルムの構成に関し、図6、図7では、一方のフィルム10-1にカップ部が形成されるとともに他方のフィルム10-2にはカップ部が形成されていない例が示されているが、この他にも、両方のフィルムにカップ部を形成する構成(不図示)や、両方ともカップ部を形成しない構成(不図示)なども採用しうる。 Of course, electrode tabs may be drawn from two different sides. Further, regarding the film configuration, FIGS. 6 and 7 show an example in which the cup portion is formed on one film 10-1 and the cup portion is not formed on the other film 10-2. In addition, a configuration in which a cup portion is formed on both films (not shown) or a configuration in which neither cup portion is formed (not shown) may be employed.
 以下、各要素について詳細に説明する。 Hereinafter, each element will be described in detail.
<負極>
 負極は、金属箔で形成される負極集電体と、負極集電体の両面に塗工された負極活物質とを有する。負極活物質は負極用結着材によって負極集電体を覆うように結着される。負極集電体は、負極端子と接続する延長部を有して形成され、この延長部には負極活物質は塗工されない。
<Negative electrode>
The negative electrode has a negative electrode current collector formed of a metal foil, and a negative electrode active material coated on both surfaces of the negative electrode current collector. The negative electrode active material is bound so as to cover the negative electrode current collector with a negative electrode binder. The negative electrode current collector is formed to have an extension connected to the negative electrode terminal, and the negative electrode active material is not applied to the extension.
 本実施形態における負極活物質は、特に制限されるものではなく、例えば、リチウムイオンを吸蔵、放出し得る炭素材料、リチウムと合金可能な金属、およびリチウムイオンを吸蔵、放出し得る金属酸化物等が挙げられる。 The negative electrode active material in the present embodiment is not particularly limited. For example, a carbon material that can occlude and release lithium ions, a metal that can be alloyed with lithium, a metal oxide that can occlude and release lithium ions, and the like. Is mentioned.
 炭素材料としては、例えば、黒鉛(天然黒鉛、人造黒鉛等)、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物等が挙げられる。ここで、結晶性の高い炭素は、電気伝導性が高く、銅などの金属からなる負極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。 Examples of the carbon material include graphite (natural graphite, artificial graphite, etc.), amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof. Here, carbon with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper. On the other hand, since amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
 金属としては、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらの2種以上の合金等が挙げられる。また、これらの金属又は合金は2種以上混合して用いてもよい。また、これらの金属又は合金は1種以上の非金属元素を含んでもよい。 Examples of the metal include Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and alloys of two or more thereof. Moreover, you may use these metals or alloys in mixture of 2 or more types. These metals or alloys may contain one or more non-metallic elements.
 金属酸化物としては、例えば、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物等が挙げられる。負極活物質として酸化スズ若しくは酸化シリコンを含むことが好ましく、酸化シリコンを含むことがより好ましい。これは、酸化シリコンは、比較的安定で他の化合物との反応を引き起こしにくいからである。また、その全部または一部がアモルファス構造を有することが好ましい。アモルファス構造は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。なお、金属酸化物の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)にて確認することができる。具体的には、金属酸化物がアモルファス構造を有しない場合には、金属酸化物に固有のピークが観測されるが、金属酸化物の全部または一部がアモルファス構造を有する場合が、金属酸化物に固有ピークがブロードとなって観測される。 Examples of the metal oxide include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof. The negative electrode active material preferably contains tin oxide or silicon oxide, and more preferably contains silicon oxide. This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds. Moreover, it is preferable that the whole or one part has an amorphous structure. An amorphous structure is considered to have relatively few elements due to non-uniformity such as grain boundaries and defects. It can be confirmed by X-ray diffraction measurement (general XRD measurement) that all or part of the metal oxide has an amorphous structure. Specifically, when the metal oxide does not have an amorphous structure, a peak specific to the metal oxide is observed. However, the metal oxide may have a case where all or part of the metal oxide has an amorphous structure. Inherent peaks are broad and observed.
 なお、炭素材料、金属、金属酸化物を単独で用いずに、混合して用いることもできる。例えば、黒鉛と非晶質炭素のように、同種の材料同士を混合しても良いし、黒鉛とシリコンのように、異種の材料を混合しても構わない。 In addition, a carbon material, a metal, and a metal oxide can be mixed and used independently. For example, the same kind of materials such as graphite and amorphous carbon may be mixed, or different kinds of materials such as graphite and silicon may be mixed.
 負極用結着剤としては、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を用いることができる。使用する負極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、負極活物質100質量部に対して、0.5~25質量部が好ましい。 Examples of the binder for the negative electrode include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, Polyimide, polyamideimide, or the like can be used. The amount of the binder for the negative electrode used is 0.5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. Is preferred.
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、ステンレス、クロム、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。 As the negative electrode current collector, aluminum, nickel, stainless steel, chromium, copper, silver, and alloys thereof are preferable in view of electrochemical stability. Examples of the shape include foil, flat plate, and mesh.
<正極>
 正極は、金属箔で形成される正極集電体と、正極集電体の両面に塗工された正極活物質とを有する。正極活物質は正極用結着剤によって正極集電体を覆うように結着される。正極集電体は、正極端子と接続する延長部を有して形成され、この延長部には正極活物質は塗工されない。
<Positive electrode>
The positive electrode has a positive electrode current collector formed of a metal foil, and a positive electrode active material coated on both surfaces of the positive electrode current collector. The positive electrode active material is bound so as to cover the positive electrode current collector with a positive electrode binder. The positive electrode current collector is formed to have an extension connected to the positive electrode terminal, and the positive electrode active material is not applied to the extension.
 正極活物質としては、LiMnO、LiMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造を持つマンガン酸リチウムまたはスピネル構造を有するマンガン酸リチウム、LiCoO、LiNiOまたはこれらの遷移金属の一部を他の金属で置き換えたもの、LiNi1/3Co1/3Mn1/3などの特定の遷移金属が半数を超えないリチウム遷移金属酸化物、これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの、LiFePOなどのオリビン構造を有するもの、等が挙げられる。また、これらの金属酸化物に、Al、Fe,P,Ti,Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等により一部置換した材料も使用することができる。特に、LiαNiβCoγAlδ(1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)またはLiαNiβCoγMnδ(1≦α≦1.2、β+γ+δ=1、β≧0.6、γ≦0.2)が好ましい。正極活物質は、一種を単独で、または二種以上を組み合わせて使用することができる。 As the positive electrode active material, LiMnO 2, Li x Mn 2 O 4 (0 <x <2), Li 2 MnO 3, Li x Mn 1.5 Ni 0.5 O 4 (0 <x <2) layer, such as Lithium manganate having a structure or lithium manganate having a spinel structure, LiCoO 2 , LiNiO 2 or a part of these transition metals replaced with another metal, LiNi 1/3 Co 1/3 Mn 1/3 O Lithium transition metal oxides in which a specific transition metal such as 2 does not exceed half, Li in excess of the stoichiometric composition in these lithium transition metal oxides, LiFePO 4 and other olivine structures, etc. Is mentioned. Further, these metal oxides were partially substituted with Al, Fe, P, Ti, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, etc. Materials can also be used. In particular, Li α Ni β Co γ Al δ O 2 (1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.7, γ ≦ 0.2) or Li α Ni β Co γ Mn δ O 2 (1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.6, γ ≦ 0.2) are preferable. A positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
 正極活物質は、いくつかの観点から選ぶことができる。高エネルギー密度化の観点からは、高容量の化合物を含むことが好ましい。高容量の化合物としては、リチウム酸ニッケル(LiNiO)またはリチウム酸ニッケルのNiの一部を他の金属元素で置換したリチウムニッケル複合酸化物が挙げられ、下式(A)で表される層状リチウムニッケル複合酸化物が好ましい。 The positive electrode active material can be selected from several viewpoints. From the viewpoint of increasing the energy density, it is preferable to include a high-capacity compound. Examples of the high-capacity compound include nickel-lithium oxide (LiNiO 2 ) or lithium-nickel composite oxide obtained by substituting a part of nickel in nickel-lithium oxide with another metal element. The layered structure represented by the following formula (A) Lithium nickel composite oxide is preferred.
 LiNi(1-x)   (A)
(但し、0≦x<1、0<y≦1.2、MはCo、Al、Mn、Fe、Ti及びBからなる群より選ばれる少なくとも1種の元素である。)
Li y Ni (1-x) M x O 2 (A)
(However, 0 ≦ x <1, 0 <y ≦ 1.2, and M is at least one element selected from the group consisting of Co, Al, Mn, Fe, Ti, and B.)
 高容量の観点では、Niの含有量が高いこと、即ち式(A)において、xが0.5未満が好ましく、さらに0.4以下が好ましい。このような化合物としては、例えば、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiαNiβCoγAlδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.6好ましくはβ≧0.7、γ≦0.2)などが挙げられ、特に、LiNiβCoγMnδ(0.75≦β≦0.85、0.05≦γ≦0.15、0.10≦δ≦0.20)が挙げられる。より具体的には、例えば、LiNi0.8Co0.05Mn0.15、LiNi0.8Co0.1Mn0.1、LiNi0.8Co0.15Al0.05、LiNi0.8Co0.1Al0.1等を好ましく用いることができる。 From the viewpoint of high capacity, the Ni content is high, that is, in the formula (A), x is preferably less than 0.5, and more preferably 0.4 or less. Examples of such a compound include Li α Ni β Co γ Mn δ O 2 (0 <α ≦ 1.2, preferably 1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.7, γ ≦ 0. .2), Li α Ni β Co γ Al δ O 2 (0 <α ≦ 1.2, preferably 1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.6, preferably β ≧ 0.7, γ ≦ 0.2), etc., especially LiNi β Co γ Mn δ O 2 (0.75 ≦ β ≦ 0.85, 0.05 ≦ γ ≦ 0.15, 0.10 ≦ δ ≦ 0.20). ). More specifically, for example, LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like.
 また、熱安定性の観点では、Niの含有量が0.5を超えないこと、即ち、式(A)において、xが0.5以上であることも好ましい。また特定の遷移金属が半数を超えないことも好ましい。このような化合物としては、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、0.2≦β≦0.5、0.1≦γ≦0.4、0.1≦δ≦0.4)が挙げられる。より具体的には、LiNi0.4Co0.3Mn0.3(NCM433と略記)、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3(NCM523と略記)、LiNi0.5Co0.3Mn0.2(NCM532と略記)など(但し、これらの化合物においてそれぞれの遷移金属の含有量が10%程度変動したものも含む)を挙げることができる。 From the viewpoint of thermal stability, it is also preferable that the Ni content does not exceed 0.5, that is, in the formula (A), x is 0.5 or more. It is also preferred that the number of specific transition metals does not exceed half. Such compounds include Li α Ni β Co γ Mn δ O 2 (0 <α ≦ 1.2, preferably 1 ≦ α ≦ 1.2, β + γ + δ = 1, 0.2 ≦ β ≦ 0.5, 0 0.1 ≦ γ ≦ 0.4, 0.1 ≦ δ ≦ 0.4). More specifically, LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM532), etc. (however, the content of each transition metal in these compounds varies by about 10%) Can also be included).
 また、式(A)で表される化合物を2種以上混合して使用してもよく、例えば、NCM532またはNCM523とNCM433とを9:1~1:9の範囲(典型的な例として、2:1)で混合して使用することも好ましい。さらに、式(A)においてNiの含有量が高い材料(xが0.4以下)と、Niの含有量が0.5を超えない材料(xが0.5以上、例えばNCM433)とを混合することで、高容量で熱安定性の高い電池を構成することもできる。 In addition, two or more compounds represented by the formula (A) may be used as a mixture. For example, NCM532 or NCM523 and NCM433 range from 9: 1 to 1: 9 (typically 2 It is also preferable to use a mixture in 1). Furthermore, in the formula (A), a material having a high Ni content (x is 0.4 or less) and a material having a Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
 また、ラジカル材料等を正極活物質として用いることも可能である。 Also, radical materials or the like can be used as the positive electrode active material.
 正極用結着剤としては、負極用結着剤と同様のものと用いることができる。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質100質量部に対して、2~15質量部が好ましい。 As the positive electrode binder, the same as the negative electrode binder can be used. The amount of the positive electrode binder to be used is preferably 2 to 15 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
 正極集電体としては、例えば、アルミニウム、ニッケル、銀、又はそれらの合金を用いることができる。正極集電体の形状としては、例えば、箔、平板状、メッシュ状が挙げられる。正極集電体としては、アルミニウム箔を好適に用いることができる。 As the positive electrode current collector, for example, aluminum, nickel, silver, or an alloy thereof can be used. Examples of the shape of the positive electrode current collector include a foil, a flat plate, and a mesh. As the positive electrode current collector, an aluminum foil can be suitably used.
 正極活物質の塗工層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。導電補助材の量は、正極活物質100質量部に対して、0.1~10質量部が好ましい。 A conductive auxiliary material may be added to the positive electrode active material coating layer for the purpose of reducing impedance. Examples of the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black. The amount of the conductive auxiliary material is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material.
<電解液>
 本実施形態で用いる電解液は、支持塩(リチウム塩)と、この支持塩を溶解する非水溶媒を含む非水電解液を用いることができる。
<Electrolyte>
As the electrolytic solution used in the present embodiment, a nonaqueous electrolytic solution containing a supporting salt (lithium salt) and a nonaqueous solvent that dissolves the supporting salt can be used.
 非水溶媒としては、炭酸エステル(鎖状又は環状カーボネート)、カルボン酸エステル(鎖状又は環状カルボン酸エステル)、リン酸エステル等の非プロトン性有機溶媒を用いることができる。 As the non-aqueous solvent, an aprotic organic solvent such as carbonate ester (chain or cyclic carbonate), carboxylic acid ester (chain or cyclic carboxylic acid ester), and phosphate ester can be used.
 炭酸エステル溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体が挙げられる。 Examples of carbonate solvents include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. (EMC), chain carbonates such as dipropyl carbonate (DPC); and propylene carbonate derivatives.
 カルボン酸エステル溶媒としては、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;γ-ブチロラクトン等のラクトン類が挙げられる。 Examples of the carboxylic acid ester solvent include aliphatic carboxylic acid esters such as methyl formate, methyl acetate, and ethyl propionate; and lactones such as γ-butyrolactone.
 これらの中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(MEC)、ジプロピルカーボネート(DPC)等の炭酸エステル(環状または鎖状カーボネート類)が好ましい。 Among these, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (MEC), dipropyl carbonate Carbonic acid esters (cyclic or chain carbonates) such as (DPC) are preferred.
 リン酸エステルとしては、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリオクチル、リン酸トリフェニル等が挙げられる。 Examples of the phosphate ester include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, trioctyl phosphate, triphenyl phosphate, and the like.
 また、非水電解液に含有できる溶媒としては、その他にも、例えば、エチレンサルファイト(ES)、プロパンサルトン(PS)、ブタンスルトン(BS)、Dioxathiolane-2,2-dioxide(DD)、スルホレン、3-メチルスルホレン、スルホラン(SL)、無水コハク酸(SUCAH)、無水プロピオン酸、無水酢酸、無水マレイン酸、ジアリルカーボネート(DAC)、2,5-ジオキサヘキサンニ酸ジメチル、2,5-ジオキサヘキサンニ酸ジメチル、フラン、2,5-ジメチルフラン、ジフェニルジサルファイド(DPS)、ジメトキシエタン(DME)、ジメトキシメタン(DMM)、ジエトキシエタン(DEE)、エトキシメトキシエタン、クロロエチレンカーボネート、ジメチルエーテル、メチルエチルエーテル、メチルプロピルエーテル、エチルプロピルエーテル、ジプロピルエーテル、メチルブチルエーテル、ジエチルエーテル、フェニルメチルエーテル、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-MeTHF)、テトラヒドロピラン(THP)、1,4-ジオキサン(DIOX)、1,3-ジオキソラン(DOL)、メチルアセテート、エチルアセテート、プロピルアセテート、イソプロピルアセテート、ブチルアセテート、メチルジフルオロアセテート、メチルプロピオネート、エチルプロピオネート、プロピルプロピオネート、メチルフォルメイト、エチルフォルメイト、エチルブチレート、イソプロピルブチレート、メチルイソブチレート、メチルシアノアセテート、ビニルアセテート、ジフェニルジスルフィド、ジメチルスルフィド、ジエチルスルフィド、アジポニトリル、バレロニトリル、グルタロニトリル、マロノニトリル、スクシノニトリル、ピメロニトリル、スベロニトリル、イソブチロニトリル、ビフェニル、チオフェン、メチルエチルケトン、フルオロベンゼン、ヘキサフルオロベンゼン、カーボネート電解液、グライム、エーテル、アセトニトリル、プロピオンニトリル、γ-ブチロラクトン、γ-バレロラクトン、ジメチルスルホキシド(DMSO)イオン液体、ホスファゼン、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、又は、これらの化合物の一部の水素原子がフッ素原子で置換されたものが挙げられる。 Other solvents that can be contained in the non-aqueous electrolyte include, for example, ethylene sulfite (ES), propane sultone (PS), butane sultone (BS), dioxathilane-2,2-dioxide (DD), and sulfolene. 3-methylsulfolene, sulfolane (SL), succinic anhydride (SUCAH), propionic anhydride, acetic anhydride, maleic anhydride, diallyl carbonate (DAC), dimethyl 2,5-dioxahexanoate, 2,5 Dimethyl hexane hexanoate, furan, 2,5-dimethylfuran, diphenyl disulfide (DPS), dimethoxyethane (DME), dimethoxymethane (DMM), diethoxyethane (DEE), ethoxymethoxyethane, chloroethylene carbonate , Dimethyl ether, methyl Tyl ether, methyl propyl ether, ethyl propyl ether, dipropyl ether, methyl butyl ether, diethyl ether, phenyl methyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), tetrahydropyran (THP), 1,4-dioxane (DIOX), 1,3-dioxolane (DOL), methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, methyl difluoroacetate, methyl propionate, ethyl propionate, propyl propionate, methyl formate , Ethyl formate, ethyl butyrate, isopropyl butyrate, methyl isobutyrate, methyl cyanoacetate, vinyl acetate, diphe Rudisulfide, dimethylsulfide, diethylsulfide, adiponitrile, valeronitrile, glutaronitrile, malononitrile, succinonitrile, pimonitrile, suberonitrile, isobutyronitrile, biphenyl, thiophene, methyl ethyl ketone, fluorobenzene, hexafluorobenzene, carbonate electrolyte, Glyme, ether, acetonitrile, propiononitrile, γ-butyrolactone, γ-valerolactone, dimethyl sulfoxide (DMSO) ionic liquid, aliphatic carboxylic acid esters such as phosphazene, methyl formate, methyl acetate, ethyl propionate, or the like A compound in which a part of hydrogen atoms of a compound is substituted with a fluorine atom.
 非水溶媒は、一種を単独で、または二種以上を組み合わせて使用することができる。 Non-aqueous solvents can be used alone or in combination of two or more.
 本実施形態における支持塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiN(CFSO等の通常のリチウムイオン二次電池に使用可能なリチウム塩を用いることができる。支持塩は、一種を単独で、または二種以上を組み合わせて使用することができる。支持塩の電解液中の濃度は、0.5M以上2M以下であることが好ましく、0.7M以上1.5M以下であることが好ましい。 As the supporting salt in this embodiment, LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN ( A lithium salt that can be used for a normal lithium ion secondary battery such as CF 3 SO 2 ) 2 can be used. The supporting salt can be used alone or in combination of two or more. The concentration of the supporting salt in the electrolytic solution is preferably 0.5 M or more and 2 M or less, and preferably 0.7 M or more and 1.5 M or less.
 また、本発明の一実施形態では、電解液がさらに添加剤を含むことができる。添加剤としては特に限定されるものではないが、過充電防止剤、界面活性剤、皮膜形成添加剤等が挙げられる。 In one embodiment of the present invention, the electrolytic solution may further contain an additive. Although it does not specifically limit as an additive, An overcharge inhibitor, surfactant, film formation additive, etc. are mentioned.
 添加剤の例としては、例えば、フッ素化環状カーボネート、不飽和環状カーボネート、環状ジスルホン酸エステル等が挙げられる。これらの化合物は、二次電池の充放電時に電極活物質表面に皮膜を形成し、サイクル特性等の電池特性を改善することができる。 Examples of additives include fluorinated cyclic carbonates, unsaturated cyclic carbonates, cyclic disulfonic acid esters, and the like. These compounds can form a film on the surface of the electrode active material during charging and discharging of the secondary battery, and can improve battery characteristics such as cycle characteristics.
 一方、これらの添加剤は充放電時のガス発生の原因となり、結果としてリチウムの析出を増加させる場合がある。しかし、本発明においては、その理由は明らかではないが、ガスがセパレータ内部に入ることによってより効果的に支持塩の分解物層が形成される傾向があり、これらの化合物を用いた場合に、より優れた短絡防止効果が得られる場合がある。 On the other hand, these additives may cause gas generation during charging and discharging, and as a result, may increase lithium deposition. However, in the present invention, the reason is not clear, but there is a tendency that a decomposed layer of the supporting salt is more effectively formed by gas entering the separator, and when these compounds are used, A more excellent short-circuit prevention effect may be obtained.
 フッ素化環状カーボネートとしては、例えば、下記式(1)で表される化合物を挙げることができる。 Examples of the fluorinated cyclic carbonate include a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)において、A、B、CおよびDは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基またはハロゲン化アルキル基であり、A、B、CおよびDの少なくともひとつは、フッ素原子またはフッ素化アルキル基である。アルキル基およびハロゲン化アルキル基の炭素数は1~4であることがより好ましく、1~3であることがさらに好ましい。 In the formula (1), A, B, C and D are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms or a halogenated alkyl group, and at least one of A, B, C and D One is a fluorine atom or a fluorinated alkyl group. The number of carbon atoms of the alkyl group and the halogenated alkyl group is more preferably 1 to 4, and further preferably 1 to 3.
 フッ素化環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の一部または全部の水素原子をフッ素原子に置換した化合物等を挙げることができ、中でも、4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート:FEC)が好ましい。 Examples of the fluorinated cyclic carbonate include compounds in which some or all of the hydrogen atoms are substituted with fluorine atoms, such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC). -Fluoro-1,3-dioxolan-2-one (fluoroethylene carbonate: FEC) is preferred.
 フッ素化環状カーボネートの含有量は、特に制限されるものではないが、電解液中0.01質量%以上10質量%以下であることが好ましく、0.05質量%以上5質量%以下であることがより好ましく、0.05質量%以上3質量%以下であることが好ましい。 The content of the fluorinated cyclic carbonate is not particularly limited, but is preferably 0.01% by mass or more and 10% by mass or less, and 0.05% by mass or more and 5% by mass or less in the electrolytic solution. Is more preferable, and it is preferably 0.05% by mass or more and 3% by mass or less.
 不飽和環状カーボネートは、分子内に炭素-炭素不飽和結合を少なくとも1つ有する環状カーボネートであり、例えば、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、4,5-ジエチルビニレンカーボネート等のビニレンカーボネート化合物;4-ビニルエチレンカーボネート、4-メチル-4-ビニルエチレンカーボネート、4-エチル-4-ビニルエチレンカーボネート、4-n-プロピル-4-ビニレンエチレンカーボネート、5-メチル-4-ビニルエチレンカーボネート、4,4-ジビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4,4-ジメチル-5-メチレンエチレンカーボネート、4,4-ジエチル-5-メチレンエチレンカーボネート等のビニルエチレンカーボネート化合物等が挙げられる。中でも、ビニレンカーボネート又は4-ビニルエチレンカーボネートが好ましく、ビニレンカーボネートが特に好ましい。 The unsaturated cyclic carbonate is a cyclic carbonate having at least one carbon-carbon unsaturated bond in the molecule. For example, vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4,5- Vinylene carbonate compounds such as diethyl vinylene carbonate; 4-vinylethylene carbonate, 4-methyl-4-vinylethylene carbonate, 4-ethyl-4-vinylethylene carbonate, 4-n-propyl-4-vinylene ethylene carbonate, 5-methyl -4-vinylethylene carbonate, 4,4-divinylethylene carbonate, 4,5-divinylethylene carbonate, 4,4-dimethyl-5-methyleneethylene carbonate, 4,4-diethyl-5-methyle Vinyl ethylene carbonate compounds such as ethylene carbonate. Among these, vinylene carbonate or 4-vinylethylene carbonate is preferable, and vinylene carbonate is particularly preferable.
 不飽和環状カーボネートの含有量は、特に制限されるものではないが、電解液中0.01質量%以上10質量%以下であることが好ましく、0.05質量%以上5質量%以下であることがより好ましく、0.05質量%以上3質量%以下であることが好ましい。 The content of the unsaturated cyclic carbonate is not particularly limited, but is preferably 0.01% by mass or more and 10% by mass or less, and 0.05% by mass or more and 5% by mass or less in the electrolytic solution. Is more preferable, and it is preferably 0.05% by mass or more and 3% by mass or less.
 環状ジスルホン酸エステルとしては、例えば、下記式(2)で表される化合物を挙げることができる。 Examples of the cyclic disulfonic acid ester include a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2)において、R、Rは、それぞれ独立して、水素原子、炭素数1~5のアルキル基、ハロゲン基、アミノ基からなる群の中から選ばれる置換基である。Rは炭素数1~5のアルキレン基、カルボニル基、スルホニル基、炭素数1~6のフルオロアルキレン基、または、エーテル基を介してアルキレン単位もしくはフルオロアルキレン単位が結合した炭素数2~6の2価の基を示す。) In the formula (2), R 1 and R 2 are each independently a substituent selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a halogen group, and an amino group. R 3 is an alkylene group having 1 to 5 carbon atoms, a carbonyl group, a sulfonyl group, a fluoroalkylene group having 1 to 6 carbon atoms, or an alkylene group or a fluoroalkylene unit having 2 to 6 carbon atoms bonded via an ether group. A divalent group is shown. )
 式(2)において、R、Rは、それぞれ独立して、水素原子、炭素数1~3のアルキル基またはハロゲン基であることが好ましく、Rは、炭素数1または2のアルキレン
基またはフルオロアルキレン基であることがより好ましい。
In the formula (2), R 1 and R 2 are preferably each independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a halogen group, and R 3 is an alkylene group having 1 or 2 carbon atoms. Or it is more preferable that it is a fluoroalkylene group.
 式(2)で表される環状ジスルホン酸エステルの好ましい化合物としては、例えば以下の化合物を挙げることができるが、これらに限定されるものではない。 Examples of preferred compounds of the cyclic disulfonic acid ester represented by the formula (2) include the following compounds, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 環状ジスルホン酸エステルの含有量は、電解液中0.005質量%以上10質量%以下であることが好ましく、0.01質量%以上5質量%以下であることがより好ましい。0.005質量%以上含有することにより、十分な皮膜効果を得ることができる。また、含有量が10質量%以下であると電解液の粘性の上昇、及びそれに伴う抵抗の増加を抑制することができる。 The content of the cyclic disulfonic acid ester is preferably 0.005% by mass or more and 10% by mass or less in the electrolytic solution, and more preferably 0.01% by mass or more and 5% by mass or less. By containing 0.005% by mass or more, a sufficient film effect can be obtained. Moreover, the raise of the viscosity of electrolyte solution and the accompanying increase in resistance can be suppressed as content is 10 mass% or less.
 添加剤は1種を単独で、または2種以上を混合して用いることができるが、2種以上の添加剤を組合せて使用する場合、添加剤の含有量の合計が、電解液中0.5質量%以上5質量%以下となるように添加することが好ましい。 One additive can be used alone, or two or more additives can be used in combination. When two or more additives are used in combination, the total content of the additives is 0. It is preferable to add so that it may become 5 to 5 mass%.
<外装体>
 外装体としては、電解液に安定で、かつ十分な水蒸気バリア性を持つものであれば、適宜選択することができる。例えば、積層ラミネート型の二次電池の場合、外装体としては、アルミニウムと樹脂のラミネートフィルムを用いることが好ましい。外装体は、単一の部材で構成してもよいし、複数の部材を組み合わせて構成してもよい。
<Exterior body>
The exterior body can be appropriately selected as long as it is stable to the electrolytic solution and has a sufficient water vapor barrier property. For example, in the case of a laminated laminate type secondary battery, it is preferable to use a laminate film of aluminum and resin as the outer package. An exterior body may be comprised with a single member and may be comprised combining several members.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
実施例1
 基材には、厚さ25μm、空孔率70%のアラミド不織布膜を用いて、以下に示すような電池を作製した。
Example 1
A battery as shown below was prepared using an aramid nonwoven fabric film having a thickness of 25 μm and a porosity of 70% as the base material.
 (正極)
 LiNi0.8Co0.15Al0.05と、炭素導電剤(アセチレンブラック)と、結着材としてポリフッ化ビニリデンとを重量比92:4:4でN-メチル-2-ピロリドンに分散させてスラリーを作製し、アルミニウムによる集電箔に塗布、乾燥して正極活物質層を形成した。同様にしてアルミニウムによる集電箔の裏面にも活物質層を形成したあと、圧延して正極電極板を得た。
(Positive electrode)
LiNi 0.8 Co 0.15 Al 0.05 , a carbon conductive agent (acetylene black), and polyvinylidene fluoride as a binder are dispersed in N-methyl-2-pyrrolidone at a weight ratio of 92: 4: 4. A slurry was prepared, applied to a current collector foil made of aluminum, and dried to form a positive electrode active material layer. Similarly, after forming an active material layer on the back surface of the current collector foil made of aluminum, it was rolled to obtain a positive electrode plate.
 (負極)
 天然黒鉛と、増粘剤のカルボキシメチルメチルセルロースナトリウムと、結着材のスチレンブタジエンゴムとを、重量比98:1:1で水溶液中に混合してスラリーを作製し、銅による集電箔に塗布、乾燥して負極活物質層を形成した。同様にして、銅による集電箔の裏面にも活物質層を形成したあと、圧延して負極電極板を得た。
(Negative electrode)
Natural graphite, sodium carboxymethyl methylcellulose as a thickener, and styrene butadiene rubber as a binder are mixed in an aqueous solution at a weight ratio of 98: 1: 1 to prepare a slurry, which is applied to a copper current collector foil. And dried to form a negative electrode active material layer. Similarly, after forming an active material layer on the back surface of the current collector foil made of copper, a negative electrode plate was obtained by rolling.
 (電解液)
 電解液の非水溶媒には、ECとDECを、体積比30:70で混合した非水溶媒を用いた。支持塩として、1Mの濃度になるようにLiPFを溶解した。さらに、化合物(2-1)、ビニレンカーボネート、フルオロエチレンカーボネートを1重量%ずつ添加した。
(Electrolyte)
As the non-aqueous solvent for the electrolytic solution, a non-aqueous solvent in which EC and DEC were mixed at a volume ratio of 30:70 was used. LiPF 6 was dissolved as a supporting salt to a concentration of 1M. Further, Compound (2-1), vinylene carbonate, and fluoroethylene carbonate were added by 1% by weight.
 (電池の作製)
 正極電極板と負極電極板を、セパレータの基材を介して積層し、電極体を作製した。積層した正極板と負極板それぞれに電流取り出し端子を接続し、アルミニウムと樹脂のラミネートフィルム外装体に、収容した。電解液を外装体内に注入した後、外装体を減圧封止して電池とした。セルの初回充電容量が100mAhになるように電極体のサイズを調整した。
(Production of battery)
A positive electrode plate and a negative electrode plate were laminated via a separator base material to produce an electrode body. A current extraction terminal was connected to each of the laminated positive electrode plate and negative electrode plate, and accommodated in a laminate film outer package of aluminum and resin. After injecting the electrolyte into the outer package, the outer package was sealed under reduced pressure to obtain a battery. The size of the electrode body was adjusted so that the initial charge capacity of the cell was 100 mAh.
 (初充電処理)
 一つ目の電池を30mAで充電したところ、3.8Vで電圧が一時的に低下した。二つ目の電池は、同様の電流値で3.8Vに到達するまで充電を行った。その後、2.5Vに到達するまで、100mAで放電を行い、基材上にLi塩の分解物層を形成した。この二つ目のセルを用いて以下の測定を実施した。
(First charging process)
When the first battery was charged at 30 mA, the voltage temporarily dropped at 3.8V. The second battery was charged until it reached 3.8 V with a similar current value. Thereafter, discharge was performed at 100 mA until 2.5 V was reached, and a Li salt decomposition product layer was formed on the substrate. The following measurements were performed using this second cell.
(電池特性評価)
 作製した電池を、30mAの電流値で、電池電圧4.2Vまで定電流定電圧モードで充電した。充電により、電池の電圧は4.2Vまで上昇し、充電中や充電終了後に電池電圧の低下は見られなかった。
(Battery characteristics evaluation)
The produced battery was charged in a constant current constant voltage mode at a current value of 30 mA up to a battery voltage of 4.2 V. By charging, the voltage of the battery increased to 4.2 V, and no decrease in battery voltage was observed during or after charging.
 上記のセルを分解し、セパレータの観察を行ったところ、基材上に微多孔状の層が形成されていることが分かった(図2)。さらに、形成された層表面のIR分析において845nm付近に最大吸収が認められ(図3)、これは、LiPFの分解物に由来するP-F結合を含む成分であると考えられる。IR分析は、SpectrumSpotlight200(パーキンエルマー製)と、検出器としてMCT検出器を用いた。4000~7000cm-1の周波数領域についてATR法で測定を行った。積算回数は43回とした。支持塩の分解物層の平均厚さは5μmであり、また、被覆率は15%であった。 When the above cell was disassembled and the separator was observed, it was found that a microporous layer was formed on the substrate (FIG. 2). Further, in the IR analysis of the surface of the formed layer, the maximum absorption was observed at around 845 nm (FIG. 3), which is considered to be a component containing a PF bond derived from a LiPF 6 decomposition product. For IR analysis, Spectrum Spotlight 200 (manufactured by PerkinElmer) and an MCT detector as a detector were used. The frequency region of 4000 to 7000 cm −1 was measured by the ATR method. The number of integrations was 43. The average thickness of the decomposed layer of the supporting salt was 5 μm, and the coverage was 15%.
参考例1
 実施例1と同様の手順で電池を作製した。
Reference example 1
A battery was produced in the same procedure as in Example 1.
(初充電処理)
 一つ目の電池を30mAで充電したところ、3.8Vで電圧が一時的に低下した。二つ目の電池は、同様の電流値で3.5Vに到達するまで充電を行った。その後、2.5Vに到達するまで、100mAで放電を行った。
(First charging process)
When the first battery was charged at 30 mA, the voltage temporarily dropped at 3.8V. The second battery was charged with similar current values until it reached 3.5V. Thereafter, discharging was performed at 100 mA until 2.5V was reached.
 上記のセルを分解し、セパレータの観察を行ったところ、支持塩の分解物層の平均厚さは0.5μmであり、また、被覆率は2%であった。 When the above cell was disassembled and the separator was observed, the average thickness of the support salt decomposition product layer was 0.5 μm, and the coverage was 2%.
(電池特性評価)
 作製した電池を、30mAの電流値で、電池電圧4.2Vまで定電流定電圧モードで充電した。充電中、3.9V付近で電圧が一時的に低下し、正負極が短絡している様子が観測された。
(Battery characteristics evaluation)
The produced battery was charged in a constant current constant voltage mode at a current value of 30 mA up to a battery voltage of 4.2 V. During charging, it was observed that the voltage temporarily dropped around 3.9 V and the positive and negative electrodes were short-circuited.
 実施例1の電池では、初回充電時にリチウム析出による短絡が生じる直前の電圧まで充電し、その直後に放電を行ったことにより、セパレータ上に支持塩の分解物を含む層を効果的に形成することができ、2回め以降の充放電において短絡による電池電圧の低下を抑制できたものと推定される。一方、参考例1の電池では、初充電時に、有効な支持塩の分解層が形成されなかったため、2回め以降の充放電においてセパレータへのガスの侵入を抑制できず、正負極の短絡に至ったものと推定される。 In the battery of Example 1, the layer containing the decomposition product of the supporting salt is effectively formed on the separator by charging up to a voltage immediately before the short-circuit due to lithium deposition at the time of initial charging and discharging immediately after that. It is presumed that the decrease in battery voltage due to a short circuit could be suppressed in the second and subsequent charging / discharging. On the other hand, in the battery of Reference Example 1, the effective support salt decomposition layer was not formed at the time of the initial charge, so that invasion of gas into the separator could not be suppressed during the second charge and discharge, and the positive and negative electrodes were short-circuited. Estimated.
比較例1
 基材として厚さ25μm、空孔率55%のポリプロピレン膜を用いたこと以外は、実施例1と同様の手順でセルを作製し、初充電処理を行った。
Comparative Example 1
A cell was prepared in the same procedure as in Example 1 except that a polypropylene film having a thickness of 25 μm and a porosity of 55% was used as the substrate, and an initial charging process was performed.
 上記のセルを分解し、基材の観察を行ったところ、Li塩の分解物層は確認できなかった。 When the above cell was disassembled and the base material was observed, a decomposition layer of Li salt could not be confirmed.
 比較例1より、内部にガスが入らないセパレータを用いた場合、支持塩の分解物層が形成されないことが示唆される。 Comparative Example 1 suggests that when a separator that does not contain gas is used, a decomposition layer of the supporting salt is not formed.
 本発明による電池は、例えば、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野にて利用することができる。具体的に
は、携帯電話、ノートパソコンなどのモバイル機器の電源;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車などの電動車両を含む、電車や衛星や潜水艦などの移動・輸送用媒体の電源;UPSなどのバックアップ電源;太陽光発電、風力発電などで発電した電力を貯める蓄電設備;などに、利用することができる。
The battery according to the invention can be used, for example, in all industrial fields that require a power source, as well as in industrial fields related to the transport, storage and supply of electrical energy. Specifically, power supplies for mobile devices such as mobile phones and notebook computers; power supplies for transportation and transportation media such as trains, satellites, and submarines, including electric vehicles such as electric cars, hybrid cars, electric bikes, and electric assist bicycles A backup power source such as a UPS; a power storage facility for storing power generated by solar power generation, wind power generation, etc .;
 上記の各種機器および蓄電設備の一例として、図4および図5に、それぞれ電気自動車200および蓄電設備300を示す。電気自動車200および蓄電設備300は、それぞれ組電池210、310を有する。組電池210、310は、上述した本発明にかかるセパレータを有する電池を複数、直列および並列に接続し、必要とされる容量および電圧を満たすように構成したものである。 FIG. 4 and FIG. 5 show an electric vehicle 200 and a power storage facility 300, respectively, as examples of the various devices and power storage facilities described above. Electric vehicle 200 and power storage facility 300 have assembled batteries 210 and 310, respectively. The assembled batteries 210 and 310 are configured by connecting a plurality of batteries having the above-described separator according to the present invention in series and in parallel to satisfy required capacity and voltage.
a 負極
b セパレータ
c 正極
d 負極集電体
e 正極集電体
f 正極端子
g 負極端子
10 フィルム外装体
20 電池要素
25 セパレータ
30 正極
40 負極
200 電気自動車
210、310 組電池
300 蓄電設備
a negative electrode b separator c positive electrode d negative electrode current collector e positive electrode current collector f positive electrode terminal g negative electrode terminal 10 film outer package 20 battery element 25 separator 30 positive electrode 40 negative electrode 200 electric vehicle 210, 310 assembled battery 300 power storage equipment

Claims (15)

  1.  基材の少なくとも片面に支持塩の分解物層を有することを特徴とする、リチウムイオン二次電池用セパレータ。 A separator for a lithium ion secondary battery, comprising a base salt decomposition product layer on at least one side of a substrate.
  2.  前記基材の空孔率が60%以上である、請求項1に記載のリチウムイオン二次電池用セパレータ。 The lithium ion secondary battery separator according to claim 1, wherein the porosity of the substrate is 60% or more.
  3.  前記基材が不織布を含む、請求項1または2に記載のリチウムイオン二次電池用セパレータ。 The separator for a lithium ion secondary battery according to claim 1 or 2, wherein the substrate includes a nonwoven fabric.
  4.  前記基材が、熱溶融温度または熱分解温度が160℃以上の樹脂を含む、請求項1~3のいずれか一項に記載のリチウムイオン二次電池用セパレータ。 The lithium ion secondary battery separator according to any one of claims 1 to 3, wherein the base material contains a resin having a heat melting temperature or a heat decomposition temperature of 160 ° C or higher.
  5.  前記基材がアラミド樹脂を含む、請求項1~4のいずれか一項に記載のリチウムイオン二次電池用セパレータ。 The lithium ion secondary battery separator according to any one of claims 1 to 4, wherein the base material contains an aramid resin.
  6.  前記支持塩の分解物層が、IR測定において825~865nmに検出可能な吸収を有する、請求項1~5のいずれか一項に記載のリチウムイオン二次電池用セパレータ。 The lithium ion secondary battery separator according to any one of claims 1 to 5, wherein the decomposition product layer of the supporting salt has an absorption detectable at 825 to 865 nm in IR measurement.
  7.  前記支持塩の分解物層が、IR測定において825~865nmに最大吸収を有する、請求項6に記載のリチウムイオン二次電池用セパレータ。 The lithium ion secondary battery separator according to claim 6, wherein the decomposition layer of the supporting salt has a maximum absorption at 825 to 865 nm in IR measurement.
  8.  前記支持塩の分解物層の平均厚さが1μm以上20μm以下である、請求項1~7のいずれか一項に記載のリチウムイオン二次電池用セパレータ。 The separator for a lithium ion secondary battery according to any one of claims 1 to 7, wherein an average thickness of a decomposition product layer of the supporting salt is 1 µm or more and 20 µm or less.
  9.  前記支持塩の分解物層による基材の平均被覆率が10%以上100%以下である、請求項1~8のいずれか一項に記載のリチウムイオン二次電池用セパレータ。 The separator for a lithium ion secondary battery according to any one of claims 1 to 8, wherein an average coverage of the substrate by the decomposed layer of the supporting salt is 10% or more and 100% or less.
  10.  請求項1~9のいずれか一項に記載のリチウムイオン二次電池用セパレータを有するリチウムイオン二次電池。 A lithium ion secondary battery comprising the lithium ion secondary battery separator according to any one of claims 1 to 9.
  11.  前記支持塩の分解物層が、セパレータの少なくとも負極側に存在する、請求項10に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 10, wherein the decomposition product layer of the supporting salt is present at least on the negative electrode side of the separator.
  12.  請求項10または11に記載のリチウムイオン二次電池を備えた電動車両。 An electric vehicle comprising the lithium ion secondary battery according to claim 10 or 11.
  13.  請求項10または11に記載のリチウムイオン二次電池を備えた蓄電設備。 A power storage facility comprising the lithium ion secondary battery according to claim 10 or 11.
  14.  基材の少なくとも片面に支持塩の分解物層を有するリチウムイオン二次電池用セパレータの製造方法であって、
     正極と、負極と、セパレータの基材と、支持塩を含有する電解液と、を有するリチウムイオン二次電池を2個以上製造する工程と、
     1個めのリチウムイオン二次電池を所定の電流値(I)で充電し、電圧が一時的に低下する電圧(V)を測定する工程と、
     残りのリチウムイオン二次電池を、前記電流値(I)で電圧がV±0.1Vに到達するまで充電する工程と、次いで、放電する工程と、
    を含むことを特徴とする、セパレータの製造方法。
    A method for producing a separator for a lithium ion secondary battery having a decomposition product layer of a supporting salt on at least one side of a substrate,
    Producing two or more lithium ion secondary batteries having a positive electrode, a negative electrode, a separator substrate, and an electrolyte containing a supporting salt;
    Charging a first lithium ion secondary battery at a predetermined current value (I) and measuring a voltage (V 0 ) at which the voltage temporarily decreases;
    Charging the remaining lithium ion secondary battery until the voltage reaches V 0 ± 0.1 V at the current value (I), and then discharging,
    A separator manufacturing method, comprising:
  15.  基材の少なくとも片面に支持塩の分解物層を有するセパレータを備えたリチウムイオン二次電池の製造方法であって、
     正極と、負極と、セパレータの基材と、支持塩を含有する電解液と、を有するリチウムイオン二次電池を2個以上製造する工程と、
     1個めのリチウムイオン二次電池を所定の電流値(I)で充電し、電圧が一時的に低下する電圧(V)を測定する工程と、
     残りのリチウムイオン二次電池を、前記電流値(I)で、電圧がV±0.1Vに到達するまで充電する工程と、次いで、放電する工程と、
    を含むことを特徴とする、リチウムイオン二次電池の製造方法。
     
    A method for producing a lithium ion secondary battery comprising a separator having a decomposition product layer of a supporting salt on at least one side of a substrate,
    Producing two or more lithium ion secondary batteries having a positive electrode, a negative electrode, a separator substrate, and an electrolyte containing a supporting salt;
    Charging a first lithium ion secondary battery at a predetermined current value (I) and measuring a voltage (V 0 ) at which the voltage temporarily decreases;
    Charging the remaining lithium ion secondary battery at the current value (I) until the voltage reaches V 0 ± 0.1 V, and then discharging,
    A method for producing a lithium ion secondary battery, comprising:
PCT/JP2016/056611 2015-03-05 2016-03-03 Separator, manufacturing method for said separator, and lithium ion secondary battery using said separator WO2016140311A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017503713A JP6819571B2 (en) 2015-03-05 2016-03-03 Separator, its manufacturing method, and lithium ion secondary battery using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-044099 2015-03-05
JP2015044099 2015-03-05

Publications (1)

Publication Number Publication Date
WO2016140311A1 true WO2016140311A1 (en) 2016-09-09

Family

ID=56848509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056611 WO2016140311A1 (en) 2015-03-05 2016-03-03 Separator, manufacturing method for said separator, and lithium ion secondary battery using said separator

Country Status (2)

Country Link
JP (1) JP6819571B2 (en)
WO (1) WO2016140311A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101392A (en) * 2018-12-20 2020-07-02 トヨタ自動車株式会社 Appearance inspection method for lithium ion battery and appearance inspection device for lithium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198025A (en) * 2000-12-27 2002-07-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell
JP2003187867A (en) * 2001-12-21 2003-07-04 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198025A (en) * 2000-12-27 2002-07-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell
JP2003187867A (en) * 2001-12-21 2003-07-04 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROBERT KOSTECKI ET AL.: "Diagnostic Studies of Polyolefin Separators in High- Power Li-Ion Cells", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 151, no. 4, 2004, pages A522 - A526 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101392A (en) * 2018-12-20 2020-07-02 トヨタ自動車株式会社 Appearance inspection method for lithium ion battery and appearance inspection device for lithium ion battery
JP7125233B2 (en) 2018-12-20 2022-08-24 トヨタ自動車株式会社 Lithium-ion battery visual inspection method and lithium-ion battery visual inspection apparatus

Also Published As

Publication number Publication date
JPWO2016140311A1 (en) 2017-12-21
JP6819571B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JP6398985B2 (en) Lithium ion secondary battery
JP6221669B2 (en) Secondary battery
WO2017094712A1 (en) Lithium ion secondary battery
JP2011096638A (en) Secondary battery
WO2015046537A1 (en) Lithium ion secondary battery and method for manufacturing same
JPWO2012029551A1 (en) Secondary battery and electrolyte for secondary battery used therefor
WO2014133165A1 (en) Lithium-ion secondary cell
WO2017204213A1 (en) Lithium ion secondary battery
US20180076486A1 (en) Secondary battery
JPWO2016194733A1 (en) Lithium ion secondary battery
US10840551B2 (en) Lithium secondary battery and manufacturing method therefor
JP6648694B2 (en) Electrolyte and secondary battery
US10361431B2 (en) Lithium ion secondary battery
JP6398984B2 (en) New compounds, electrolytes and secondary batteries
JP7148198B2 (en) SECONDARY BATTERY SEPARATOR AND SECONDARY BATTERY HAVING THE SAME
WO2016140311A1 (en) Separator, manufacturing method for said separator, and lithium ion secondary battery using said separator
JP6973621B2 (en) Lithium ion secondary battery
JP6451638B2 (en) NOVEL COMPOUND, ELECTROLYTE SOLUTION AND SECONDARY BATTERY, ELECTRIC VEHICLE AND POWER SYSTEM
US20200020986A1 (en) Nonaqueous electrolyte secondary battery
WO2015118675A1 (en) Negative electrode material for lithium ion secondary battery
KR102295370B1 (en) Additive for electrolyte of lithium secondary battery and electrolyte of lithium secondary battery and lithium secondary battery including the same
WO2015037379A1 (en) Novel compound, electrolyte, and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16759003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16759003

Country of ref document: EP

Kind code of ref document: A1