JP7125233B2 - Lithium-ion battery visual inspection method and lithium-ion battery visual inspection apparatus - Google Patents

Lithium-ion battery visual inspection method and lithium-ion battery visual inspection apparatus Download PDF

Info

Publication number
JP7125233B2
JP7125233B2 JP2018238308A JP2018238308A JP7125233B2 JP 7125233 B2 JP7125233 B2 JP 7125233B2 JP 2018238308 A JP2018238308 A JP 2018238308A JP 2018238308 A JP2018238308 A JP 2018238308A JP 7125233 B2 JP7125233 B2 JP 7125233B2
Authority
JP
Japan
Prior art keywords
lithium
light
ion battery
infrared
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018238308A
Other languages
Japanese (ja)
Other versions
JP2020101392A (en
Inventor
篤志 前田
啓史 松尾
啓二 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Toyota Motor Corp
Original Assignee
Ricoh Elemex Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp, Toyota Motor Corp filed Critical Ricoh Elemex Corp
Priority to JP2018238308A priority Critical patent/JP7125233B2/en
Publication of JP2020101392A publication Critical patent/JP2020101392A/en
Application granted granted Critical
Publication of JP7125233B2 publication Critical patent/JP7125233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、光学的にリチウムイオン電池の外観を検査する方法に関する。さらに詳細には、リチウムイオン電池の外面への電解液の付着の有無を検査する検査方法及び検査装置に関するものである。 The present invention relates to a method for optically inspecting the appearance of lithium-ion batteries. More specifically, the present invention relates to an inspection method and an inspection apparatus for inspecting the presence or absence of adhesion of an electrolytic solution to the outer surface of a lithium ion battery.

リチウムイオン電池等の二次電池の製造工程において、製造された電池の外観を検査することが行われている。例えば、特許文献1には、電池ケースにレーザ光を照射して電池ケースの3次元形状を計測し、電池ケースの外面の傷や歪みを検出し易い3次元画像を表示する技術が開示されている。 In the manufacturing process of secondary batteries such as lithium ion batteries, the appearance of the manufactured batteries is inspected. For example, Patent Document 1 discloses a technique for irradiating a battery case with a laser beam to measure the three-dimensional shape of the battery case and displaying a three-dimensional image that facilitates detection of scratches and distortions on the outer surface of the battery case. there is

特開2015-059817号公報JP 2015-059817 A

リチウムイオン電池は、電池ケース内にリチウム塩を含む電解液を収容している。電解液が電池ケースの外部に付着していると腐食などの虞があるため、電解液の付着の有無を判定する外観検査が行われている。外観検査方法としては、例えば、検出紙による方法や目視検査による方法があるが、人員削減のために画像検査によって判別できることが望まれる。しかしながら、電解液が乾燥して析出したリチウム塩は白色であり、例えば、艶消しのアルミニウム材によって製造された電池ケースや電極端子との色の差が小さい。そのため、単にカメラ等で撮影した場合、撮影画像中でのリチウム塩と電池ケースとの光強度差が小さく、画像検査による安定した判定が難しい。 A lithium ion battery contains an electrolytic solution containing a lithium salt in a battery case. If the electrolyte adheres to the outside of the battery case, there is a risk of corrosion, etc. Therefore, an appearance inspection is performed to determine whether or not the electrolyte adheres. Appearance inspection methods include, for example, a method using detection paper and a method using visual inspection, but it is desirable to be able to make a determination by image inspection in order to reduce the number of personnel. However, the lithium salt deposited by drying the electrolytic solution is white, and the difference in color from, for example, the battery case and electrode terminals made of a matte aluminum material is small. Therefore, when simply photographing with a camera or the like, the difference in light intensity between the lithium salt and the battery case in the photographed image is small, making it difficult to make stable determination by image inspection.

本発明は、前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは、リチウムイオン電池の外部に付着した電解液の有無を容易に判別できるリチウムイオン電池の外観検査方法及びリチウムイオン電池の外観検査装置を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art described above. That is, the object is to provide a lithium-ion battery visual inspection method and a lithium-ion battery visual inspection apparatus capable of easily determining the presence or absence of electrolyte adhering to the outside of the lithium-ion battery.

この課題の解決を目的としてなされた本発明の一態様におけるリチウムイオン電池の外観検査方法は、LiPF を含む電解液を有するリチウムイオン電池の外観を検査する外観検査方法であって、検査対象のリチウムイオン電池である被検体に波長1381~1460nmの範囲内の近赤外線を含む光を照射し、前記被検体を近赤外線を撮像可能なカメラで撮影する近赤外線による撮像工程と、前記近赤外線による撮像工程にて撮影された前記被検体の近赤外線による撮影画像において、光強度が所定値以下である所定面積以上の領域が有る場合に、前記被検体に前記電解液が付着していると判定する判定工程と、を含むことを特徴としている。 A method for visual inspection of a lithium-ion battery according to one aspect of the present invention, which has been made for the purpose of solving this problem, is a method for visual inspection of a lithium-ion battery having an electrolytic solution containing LiPF 6 , comprising: A near- infrared imaging step of irradiating a subject, which is a lithium ion battery, with light containing near-infrared rays in the wavelength range of 1381 to 1460 nm, and photographing the subject with a camera capable of imaging near- infrared rays ; In the near- infrared image of the subject captured in the imaging step, when there is a region of a predetermined area or more where the light intensity is a predetermined value or less, the electrolyte is adhered to the subject. and a determination step of determining.

上述の一態様におけるリチウムイオン電池の外観検査方法では、被検体に近赤外線を含む光を照射して撮影する。リチウム塩はアルミニウムに比較して多くの近赤外線を吸収するため、リチウム塩の有る箇所の近赤外線の反射率は、リチウム塩の無い電池ケース等の近赤外線の反射率よりも小さい。そのため、近赤外線を含む光を照射して撮影した撮影画像では、リチウム塩の付着箇所は、他の箇所よりも光強度の小さい画像となる。そして、本態様では、光強度が所定値以下である所定面積以上の領域が有る場合に電解液が付着していると判定するので、ノイズによる誤判定を抑制できる。これにより、リチウムイオン電池の外部に付着した電解液の有無を容易に判別できる。 In the method for inspecting the appearance of a lithium-ion battery according to one aspect described above, the subject is irradiated with light containing near-infrared rays and photographed. Since the lithium salt absorbs more near-infrared rays than aluminum, the near-infrared reflectance of a portion with the lithium salt is smaller than the near-infrared reflectance of a battery case or the like without the lithium salt. Therefore, in an image captured by irradiating light containing near-infrared rays, the area where the lithium salt is attached has a lower light intensity than other areas. In this aspect, it is determined that the electrolytic solution is adhered when there is a region having a light intensity equal to or less than a predetermined value and having a predetermined area or more. Therefore, erroneous determination due to noise can be suppressed. As a result, it is possible to easily determine whether or not the electrolyte adheres to the outside of the lithium ion battery.

また、本発明の一態様におけるリチウムイオン電池の外観検査装置は、LiPF を含む電解液を有するリチウムイオン電池の外観を検査する外観検査方法であって、検査対象のリチウムイオン電池である被検体に波長1381~1460nmの範囲内の近赤外線を含む光を照射し、前記被検体を近赤外線を撮像可能なカメラで撮影する近赤外線による撮像工程と、前記近赤外線による撮像工程にて撮影された前記被検体の近赤外線による撮影画像において、光強度が所定値以下である所定面積以上の領域が有る場合に、前記被検体に前記電解液が付着していると判定する判定工程と、を含むことを特徴としている。この一態様におけるリチウムイオン電池の外観検査装置によれば、リチウムイオン電池の外部に付着した電解液の有無を容易に判別できる。
加えて、LiPF を含む電解液を有するリチウムイオン電池の外観を検査する外観検査方法であって、検査対象のリチウムイオン電池である被検体に波長1381~1460nmの範囲内の近赤外線を含む光を照射し、前記被検体を近赤外線を撮像可能なカメラで撮影する近赤外線による撮像工程と、可視光を用いて、前記被検体を可視光を撮像可能なカメラで撮影する可視光による撮像工程と、前記近赤外線による撮像工程にて撮影された前記被検体の近赤外線による撮影画像において、光強度が所定値以下である所定面積以上の領域が有るか否かを判断する判断工程と、上記判断工程で、前記所定面積以上の領域が有ると判断した場合に、可視光による撮影画像中の光強度と前記近赤外線による撮影画像中の光強度との差を取得する取得工程と、前記光強度の差が、前記所定面積以上の領域で周辺の画素に比較して有意に大きい場合に、前記所定面積以上の領域に電解液が付着していると判定する判定工程と、を含むことを特徴としても良い。
さらには、LiPF を含む電解液を有するリチウムイオン電池の外観を検査するリチウムイオン電池の外観検査装置であって、波長1381~1460nmの範囲内の近赤外線を含む光を照射する光源と、波長1381~1460nmの範囲内の近赤外線を撮像可能なカメラと、可視光を照射する光源と、可視光を撮像可能なカメラと、を備え、検査対象のリチウムイオン電池である被検体に前記光源にて光を照射し、前記被検体を前記カメラで撮影した近赤外線による撮影画像において、光強度が所定値以下である所定面積以上の領域が有るか否かを判断し、前記所定面積以上の領域が有ると判断した場合に、可視光による撮影画像中の光強度と近赤外線による撮影画像中の光強度との差を取得し、前記光強度の差が、前記所定面積以上の領域で周辺の画素に比較して有意に大きい場合に、前記所定面積以上の領域に電解液が付着していると判定するコンピュータを更に備えることを特徴としても良い。
Further, an appearance inspection apparatus for a lithium ion battery according to one aspect of the present invention is an appearance inspection method for inspecting the appearance of a lithium ion battery having an electrolytic solution containing LiPF 6 , the inspection object being a lithium ion battery. A near-infrared imaging step of irradiating light containing near-infrared rays in the wavelength range of 1381 to 1460 nm, and photographing the subject with a camera capable of imaging near- infrared rays, and the near-infrared imaging step. a determination step of determining that the electrolytic solution is adhered to the subject when there is a region having a predetermined area or more where the light intensity is less than or equal to a predetermined value in the near- infrared image of the subject; is characterized by including According to the external appearance inspection apparatus for a lithium ion battery in this aspect, it is possible to easily determine whether or not there is an electrolytic solution adhering to the outside of the lithium ion battery.
In addition, there is provided a visual inspection method for inspecting the appearance of a lithium ion battery having an electrolyte containing LiPF 6 , wherein light containing near-infrared rays in the wavelength range of 1381 to 1460 nm is applied to a test subject, which is a lithium ion battery. and a near-infrared imaging step of imaging the subject with a camera capable of imaging near-infrared rays, and a visible light imaging step of imaging the subject with a camera capable of imaging visible light using visible light. a determination step of determining whether or not there is an area of a predetermined area or more with a light intensity of a predetermined value or less in the near-infrared captured image of the subject captured in the near-infrared imaging step; In the determination step, when it is determined that there is a region having a predetermined area or more, an acquisition step of acquiring a difference between the light intensity in the image captured by visible light and the light intensity in the image captured by near-infrared light; and a determination step of determining that the electrolytic solution adheres to the area of the predetermined area or more when the intensity difference is significantly larger in the area of the predetermined area or more than in the surrounding pixels. It can also be used as a feature.
Furthermore, a lithium-ion battery visual inspection apparatus for inspecting the appearance of a lithium-ion battery having an electrolytic solution containing LiPF 6 , comprising: Equipped with a camera capable of imaging near-infrared light within the range of 1381 to 1460 nm, a light source that irradiates visible light, and a camera capable of imaging visible light, and a subject that is a lithium ion battery to be inspected is attached to the light source. and determining whether or not there is a region of a predetermined area or more where the light intensity is a predetermined value or less in the near-infrared image of the subject photographed by the camera, and determining whether or not there is a region of the predetermined area or more When it is determined that there is It may be characterized by further comprising a computer that determines that the electrolytic solution is adhered to the area of the predetermined area or more when the area is significantly larger than the pixel.

本発明によれば、リチウムイオン電池の外部に付着した電解液の有無を容易に判別できるリチウムイオン電池の外観検査方法及びリチウムイオン電池の外観検査装置が提供される。 According to the present invention, there are provided a lithium ion battery visual inspection method and a lithium ion battery visual inspection apparatus capable of easily determining the presence or absence of electrolyte adhering to the outside of the lithium ion battery.

二次電池を示す説明図である。FIG. 3 is an explanatory diagram showing a secondary battery; 外観検査装置の例を示す説明図である。It is an explanatory view showing an example of a visual inspection device. 光の波長と反射率との関係を示すグラフである。4 is a graph showing the relationship between the wavelength of light and reflectance; 電池ケースの蓋部材を検査した結果の例を示す説明図である。FIG. 5 is an explanatory diagram showing an example of the result of inspection of the lid member of the battery case; 二次電池の製造工程を示す工程図である。It is a process drawing which shows the manufacturing process of a secondary battery.

以下、本発明を具体化した第1の形態について、添付図面を参照しつつ詳細に説明する。本形態は、製造後のリチウムイオン二次電池の外観を光学的に検査する外観検査方法に、本発明を適用したものである。 A first embodiment of the present invention will be described in detail below with reference to the accompanying drawings. In this embodiment, the present invention is applied to an appearance inspection method for optically inspecting the appearance of a manufactured lithium-ion secondary battery.

本形態の検査方法による検査の対象となる電池は、電池ケースの内部に電極体と非水電解液とが封入されている電池であり、具体的には、アルミニウム製の電池ケースと、リチウム塩を含む非水電解液と、を用いるリチウムイオン二次電池である。そして、本形態の検査は、外観検査であり、個々の電池に対して電池ケースの外側から行う、光学的検査である。 The battery to be inspected by the inspection method of the present embodiment is a battery in which an electrode body and a non-aqueous electrolyte are sealed inside a battery case. Specifically, a battery case made of aluminum and a lithium salt A lithium ion secondary battery using a non-aqueous electrolyte containing The inspection of this embodiment is a visual inspection, which is an optical inspection performed on each battery from the outside of the battery case.

まず、検査の対象となる電池の一例について、図1を参照して説明する。電池10は、図1に示すように、扁平角形の電池ケース11を有し、その電池ケース11の内部に、捲回型の電極体12と、リチウム塩を含む電解液13と、が封入されているものである。 First, an example of a battery to be tested will be described with reference to FIG. As shown in FIG. 1, the battery 10 has a flat prismatic battery case 11 in which a wound electrode body 12 and an electrolytic solution 13 containing a lithium salt are enclosed. There is.

電池ケース11は、アルミニウムまたはアルミニウム合金等によって形成された金属製の容器であり、有底箱状のケース本体111に蓋部材112が固定されて密閉されている。蓋部材112には、図1に示すように、正負の電極端子21、22と、安全弁23と、注液口24と、が設けられている。 The battery case 11 is a metal container made of aluminum, an aluminum alloy, or the like. The lid member 112 is provided with positive and negative electrode terminals 21 and 22, a safety valve 23, and an injection port 24, as shown in FIG.

電極体12は、例えば、帯状の正極板と帯状の負極板とがセパレータを介して重ねられ扁平に捲回されたものである。正極板は、例えば、アルミニウム箔に正極活物質層を形成したものであり、負極板は、例えば、銅箔に負極活物質層を形成したものである。負極板と正極板とはそれぞれ、電池ケース11の内部で電極端子21と電極端子22とに接続されている。 The electrode body 12 is formed by, for example, stacking a strip-shaped positive electrode plate and a strip-shaped negative electrode plate with a separator interposed therebetween and winding them flat. The positive electrode plate is, for example, an aluminum foil on which a positive electrode active material layer is formed, and the negative electrode plate is, for example, a copper foil on which a negative electrode active material layer is formed. The negative plate and the positive plate are respectively connected to electrode terminals 21 and 22 inside the battery case 11 .

電解液13は、所定の溶媒に所定量のリチウム塩を含有させた非水電解液である。溶媒は、例えば、エチレンカーボネート等を含む有機溶媒であり、リチウム塩としては、例えば、ヘキサフルオロリン酸リチウム(LiPF6)が好適に用いられる。 The electrolytic solution 13 is a non-aqueous electrolytic solution containing a predetermined amount of lithium salt in a predetermined solvent. The solvent is, for example, an organic solvent containing ethylene carbonate or the like, and the lithium salt is preferably lithium hexafluorophosphate (LiPF 6 ), for example.

電池ケース11の外部に電解液13が付着すると、電池ケース11の腐食等の原因となり得る。電解液13が付着している電池10を検出するために、例えば、図2に示すように、外観検査装置100を用いた画像検査を行う。図2に示す外観検査装置100は、コンピュータ30と、照明31と、カメラ32と、を備え、照明31とカメラ32とがコンピュータ30にて制御される。具体的には、コンピュータ30は、照明31を制御して電池10に光を照射させ、カメラ32を制御して光が照射されている電池10を撮影させる。そして、コンピュータ30は、カメラ32にて撮影された画像データに基づいて、検査対象の電池10の良否を判定する。 Adhesion of the electrolyte solution 13 to the outside of the battery case 11 may cause corrosion of the battery case 11 or the like. In order to detect the battery 10 to which the electrolytic solution 13 is attached, for example, as shown in FIG. 2, an image inspection using a visual inspection apparatus 100 is performed. A visual inspection apparatus 100 shown in FIG. 2 includes a computer 30 , a lighting 31 , and a camera 32 . Specifically, the computer 30 controls the illumination 31 to illuminate the battery 10 and controls the camera 32 to photograph the illuminated battery 10 . Then, the computer 30 determines the quality of the battery 10 to be inspected based on the image data captured by the camera 32 .

カメラ32で撮影された画像では、照明31から照射された光が電池10の外面にて反射した反射光の強度に応じて、場所による明暗や色差が現れる。反射光の強度や色に有意な差があれば、例えば、撮影した画像を自動で解析し、電解液13が付着している電池10を検出することができる。しかし、ヘキサフルオロリン酸リチウムは、乾燥すると白色であり、電池ケース11の色と近いため、可視光による検査では有意な差が得られず、判別が難しい。 In the image captured by the camera 32 , light and darkness and color differences appear depending on the location according to the intensity of the light emitted from the illumination 31 and reflected by the outer surface of the battery 10 . If there is a significant difference in the intensity and color of the reflected light, for example, it is possible to automatically analyze the photographed image and detect the battery 10 to which the electrolytic solution 13 is adhered. However, when lithium hexafluorophosphate is dried, it is white, which is close to the color of the battery case 11. Therefore, no significant difference can be obtained by inspection using visible light, making discrimination difficult.

そこで、照明31の波長を変化させて、電池ケース11のうちの電解液13の付着していない箇所と、電解液13が付着している箇所と、のそれぞれにおける光の反射率を調べたところ、図3のような結果が得られた。図3(A)は、電解液13が付着していない箇所の反射率の変化であり、図3(B)は、電解液13が付着している箇所の反射率の変化である。図3(A)と(B)では、横軸を波長とし、縦軸を反射率としている。 Therefore, by changing the wavelength of the illumination 31, the reflectance of light at a portion of the battery case 11 to which the electrolytic solution 13 is not adhered and a portion to which the electrolytic solution 13 is adhered was examined. , the results shown in FIG. 3 were obtained. FIG. 3A shows changes in reflectance at locations where the electrolytic solution 13 is not adhered, and FIG. 3B shows changes in reflectance at locations where the electrolytic solution 13 is adhered. In FIGS. 3A and 3B, the horizontal axis is the wavelength and the vertical axis is the reflectance.

図3(A)に示すように、電解液13が付着していない電池ケース11では、波長を変化させても、反射率に大きい変化はなかった。一方、電解液13が付着している箇所では、図3(B)に示すように、波長が図中のLの範囲では、他の波長と比較して反射率が大きく低下した。波長がLの範囲は波長が1381~1460nmの範囲の近赤外線領域であり、特に、波長が1426~1435nmの範囲の近赤外線領域で反射率の低下が顕著であった。これは、LiPF6がこの範囲の近赤外線を吸収するからであると推測される。 As shown in FIG. 3A, in the case of the battery case 11 to which the electrolytic solution 13 was not attached, the reflectance did not change significantly even when the wavelength was changed. On the other hand, as shown in FIG. 3B, the reflectance of the portion where the electrolytic solution 13 adhered was significantly lower in the wavelength range of L than in the other wavelengths. The wavelength range of L is the near-infrared region with a wavelength range of 1381 to 1460 nm, and the decrease in reflectance was particularly remarkable in the near-infrared region with a wavelength range of 1426 to 1435 nm. It is speculated that this is because LiPF 6 absorbs near-infrared rays in this range.

本形態の検査方法では、波長1381~1460nmの範囲を含む近赤外線を検査対象の電池10に照射し、電池10からの反射光量を検出する。具体的には、図2に示した外観検査装置100にて、照明31を波長1381~1460nmの範囲内の近赤外線、より好ましくは波長が1426~1435nmの範囲内の近赤外線を含む光を照射するものとし、カメラ32を波長1381~1460nmの範囲内の近赤外線、より好ましくは波長が1426~1435nmの範囲内の近赤外線を検出可能なものとする。このようにすると、撮影画像中で電解液13が付着している箇所の画像は、他の箇所に比較して反射光の光量が少なく、光強度が小さい画像となる。 In the inspection method of this embodiment, the battery 10 to be inspected is irradiated with near-infrared rays including a wavelength range of 1381 to 1460 nm, and the amount of light reflected from the battery 10 is detected. Specifically, in the visual inspection apparatus 100 shown in FIG. 2, the illumination 31 is irradiated with near-infrared light with a wavelength in the range of 1381 to 1460 nm, more preferably near-infrared light with a wavelength in the range of 1426 to 1435 nm. The camera 32 shall be capable of detecting near-infrared light within the wavelength range of 1381-1460 nm, more preferably near-infrared light within the wavelength range of 1426-1435 nm. In this way, the image of the portion where the electrolytic solution 13 is adhered in the photographed image has a smaller amount of reflected light and a lower light intensity than the other portions.

本形態の検査方法で蓋部材112の一部に電解液13が付着している電池10を撮影し、撮影画像中の蓋部材112の画像の1ライン(例えば、図2中のラインS)における光強度の例を図4に示す。図4では、横軸をラインS中の横方向の位置とし、縦軸を光強度(画像の階調)としている。この図は、階調8bitのカメラ32による撮影画像の例であり、光強度の範囲は0~255階調で表される。 By the inspection method of this embodiment, the battery 10 with the electrolyte solution 13 adhering to a part of the lid member 112 is photographed, and one line (for example, line S in FIG. 2) of the image of the lid member 112 in the photographed image An example of light intensity is shown in FIG. In FIG. 4, the horizontal axis is the horizontal position in the line S, and the vertical axis is the light intensity (image gradation). This figure is an example of an image captured by the camera 32 with 8-bit gradation, and the range of light intensity is represented by 0 to 255 gradations.

例えば、図4に示すように、電解液13が付着している箇所Wの画像は、他の箇所よりも光強度が小さい。そして、電解液13の付着の有無による光強度の強度差fは、安定検出の目途となる階調差の50より大きい。そこで、電解液13が付着していない領域の最小の階調と、電解液13が付着している箇所Wの最小の階調とを実験から取得し、例えば、図4中に破線で示すように、それらの中間の階調Tを検出閾値として設定する。 For example, as shown in FIG. 4, the image of the area W where the electrolytic solution 13 is adhered has a lower light intensity than the other areas. The intensity difference f between the light intensities due to the presence or absence of adhesion of the electrolytic solution 13 is greater than 50, which is the gradation difference used as a criterion for stable detection. Therefore, the minimum gradation of the area where the electrolytic solution 13 is not adhered and the minimum gradation of the area W where the electrolytic solution 13 is adhered are obtained from experiments. , an intermediate gradation T between them is set as a detection threshold.

そして、本形態では、前述した方法で撮影した画像の画像データをコンピュータ30にて解析し、階調が検出閾値以下の画素が所定の閾値個数以上集まっている箇所が有るか否かを判断する。コンピュータ30は、例えば、階調が検出閾値以下の画素が閾値個数以上集まっている領域が有ると判断した場合、検査対象の電池10に電解液13が付着していると判定する。検出閾値は、所定値の一例であり、閾値個数は、例えば、電解液13の1滴の付着面積に対応する画素数であり、所定面積の一例である。 In this embodiment, the computer 30 analyzes the image data of the image captured by the method described above, and determines whether or not there is a location where pixels with gradations equal to or less than the detection threshold are gathered in a predetermined number or more. . For example, when the computer 30 determines that there is an area in which the number of pixels whose gradations are equal to or less than the detection threshold value is greater than the threshold value, the computer 30 determines that the electrolyte solution 13 is adhered to the battery 10 to be inspected. The detection threshold is an example of a predetermined value, and the threshold number is, for example, the number of pixels corresponding to the adhesion area of one droplet of the electrolytic solution 13, and is an example of a predetermined area.

近赤外線を用いることで、撮影画像中のリチウム塩とアルミニウムとの階調差は大きく、自動化に適している。さらに、階調が小さい画素が閾値個数以上の領域が有るか否かに応じて電解液13の付着の有無を判定するので、ノイズ等による誤判定の可能性は小さい。従って、本形態の検査方法によれば、電解液13の付着の有無を自動で容易にかつ確実に検出できる。 By using near-infrared rays, the gradation difference between the lithium salt and the aluminum in the photographed image is large, making it suitable for automation. Furthermore, since the presence or absence of adhesion of the electrolytic solution 13 is determined depending on whether or not there is an area with pixels of low gradation equal to or greater than the threshold number, the possibility of erroneous determination due to noise or the like is small. Therefore, according to the inspection method of this embodiment, the presence or absence of adhesion of the electrolytic solution 13 can be automatically detected easily and reliably.

次に、本形態の検査方法による検査工程を含む電池10の製造工程について、図5を参照して説明する。この図の製造工程の開始前に、正極板と負極板とがそれぞれ製造され、電池ケース11の各部材が用意されている。 Next, the manufacturing process of the battery 10 including the inspection process by the inspection method of this embodiment will be described with reference to FIG. Before starting the manufacturing process shown in this figure, the positive electrode plate and the negative electrode plate are manufactured, respectively, and each member of the battery case 11 is prepared.

そして、本製造工程では、まず、組立工程が行われる(工程1)。工程1では、正負の電極板とセパレータとで電極体12を作成し、蓋部材112に取り付けられた電極端子21、22に電極体12を接続する。さらに、電極体12をケース本体111に収容して、ケース本体111に蓋部材112を固定する。 In this manufacturing process, an assembly process is first performed (process 1). In step 1, the electrode body 12 is formed by positive and negative electrode plates and a separator, and the electrode body 12 is connected to the electrode terminals 21 and 22 attached to the lid member 112 . Furthermore, the electrode body 12 is housed in the case body 111 and the cover member 112 is fixed to the case body 111 .

組立工程の後、注液・浸透工程が行われる(工程2)。工程2では、蓋部材112の注液口24から、ケース本体111の内部へ電解液13を注液し、注液された電解液13を電極体12の各電極板に浸透させる。さらに、注液口24を封じ、電池10の組み立てが完了する。 After the assembly process, a liquid injection/permeation process is performed (process 2). In step 2, the electrolytic solution 13 is injected into the case main body 111 through the inlet 24 of the lid member 112 , and the injected electrolytic solution 13 is permeated into each electrode plate of the electrode body 12 . Furthermore, the injection port 24 is sealed, and the assembly of the battery 10 is completed.

注液・浸透工程の後、拘束工程が行われる(工程3)。工程3では、電極体12と電解液13とが封入された電池ケース11を、例えば、拘束治具によって外部から押圧された状態として拘束する。これにより、電池ケース11内の電極体12に適切な面圧が加えられる。 After the liquid injection/permeation process, a restraining process is performed (process 3). In step 3, the battery case 11 in which the electrode body 12 and the electrolytic solution 13 are sealed is restrained by being pressed from the outside by a restraining jig, for example. As a result, an appropriate surface pressure is applied to the electrode body 12 inside the battery case 11 .

拘束工程の後、初回充電工程が行われる(工程4)。工程4では、拘束により面圧が加えられている状態で、所定の電圧となるまで電池10を充電する。これにより、電池10は満充電状態となる。 After the restraining step, an initial charging step is performed (step 4). In step 4, the battery 10 is charged to a predetermined voltage while the surface pressure is applied by restraint. As a result, the battery 10 is fully charged.

初回充電工程の後、高温エージング工程が行われる(工程5)。工程5では、満充電状態とされた電池10を、充電装置から外して高温環境にて所定時間静置する。本形態では、例えば、60℃の環境にて1日間エージング処理を行う。 After the initial charging step, a high temperature aging step is performed (step 5). In step 5, the fully charged battery 10 is removed from the charging device and allowed to stand in a high-temperature environment for a predetermined period of time. In this embodiment, for example, the aging process is performed in an environment of 60° C. for one day.

高温エージング工程の後、自己放電工程が行われる(工程6)。工程6では、エージング処理された電池10を常温環境へ移し、電極端子21、22を開放した状態のままでさらに放置する。これにより、電池10は、自己放電する。本形態では、例えば、25℃で3日間、自己放電させる。 After the high temperature aging step, a self-discharge step is performed (step 6). In step 6, the aged battery 10 is moved to a room temperature environment and further left with the electrode terminals 21 and 22 left open. Thereby, the battery 10 self-discharges. In this embodiment, for example, the battery is self-discharged at 25° C. for three days.

自己放電工程の後、性能確認工程が行われる(工程7)。工程7では、自己放電後の電池10を所定の手順で充放電し、電池容量と内部抵抗値とを測定する。この段階で、電池容量または内部抵抗値の少なくとも一方が許容範囲外であった電池10は、不良品として除外される。 After the self-discharge process, a performance confirmation process is performed (process 7). In step 7, the self-discharged battery 10 is charged and discharged according to a predetermined procedure, and the battery capacity and internal resistance are measured. At this stage, the battery 10 whose at least one of the battery capacity and the internal resistance value is out of the allowable range is excluded as a defective product.

性能確認工程の後、外観検査工程が行われる(工程8)。工程8では、本形態の外観検査装置100によって、電池10の外面に照明31によって近赤外線を照射しつつ、電池10をカメラ32で撮影する。つまり、例えば、図2に示したように、波長が1381~1460nmの範囲内の近赤外線、より好ましくは1426~1435nmの範囲内の近赤外線を発光する照明31によって、電池ケース11に近赤外線を照射し、電池ケース11で反射した近赤外線をカメラ32で撮影する。工程8のうち、カメラ32で撮影する工程が撮像工程の一例である。 After the performance confirmation process, an appearance inspection process is performed (process 8). In step 8, the battery 10 is photographed by the camera 32 while irradiating the outer surface of the battery 10 with near-infrared light from the illumination 31 by the appearance inspection apparatus 100 of the present embodiment. That is, for example, as shown in FIG. 2, near-infrared rays are emitted to the battery case 11 by illumination 31 that emits near-infrared rays with a wavelength in the range of 1381 to 1460 nm, more preferably near-infrared rays in the range of 1426 to 1435 nm. The near-infrared rays reflected by the battery case 11 are photographed by a camera 32. - 特許庁Among the steps 8, the step of photographing with the camera 32 is an example of the imaging step.

さらに、本形態の外観検査装置100のコンピュータ30は、得られた画像から、階調が所定の検出閾値以下である画素を抽出し、抽出された画素が閾値個数以上連続する領域が有る場合に、その電池10をNG品と判定する。この工程が判定工程の一例である。階調が検出閾値以下の画素が無い電池10や、検出閾値以下の画素が連続していない電池10は、OK品であると判断して次工程に送る。 Furthermore, the computer 30 of the appearance inspection apparatus 100 of the present embodiment extracts pixels whose gradation is equal to or less than a predetermined detection threshold from the obtained image, and if there is an area in which the number of extracted pixels is equal to or greater than the threshold, , the battery 10 is determined to be an NG product. This step is an example of the determination step. Batteries 10 with no pixel whose gradation is equal to or less than the detection threshold, or batteries 10 whose gradation is not continuous with pixels whose gradation is equal to or less than the detection threshold are judged to be acceptable products and sent to the next step.

なお、電池10と照明31とカメラ32との位置関係は、図2の例に限らない。つまり、照明31は、電池10のうちの検査対象となる箇所に光を照射できる位置にあればよい。また、カメラ32は、照明31によって照射された箇所からの反射光を撮影できる位置にあればよい。例えば、電池10を覆い囲むようなドーム型照明を用いても良い。また、例えば、電池10を覆い囲むように複数の方向から複数の照明31にて照射しても良い。このようにすることで、照射箇所に陰影が発生し難く、特に、電池ケース11の形状によって発生しがちな陰影による誤判定が抑止される。 Note that the positional relationship among the battery 10, the illumination 31, and the camera 32 is not limited to the example shown in FIG. In other words, the illumination 31 may be positioned so as to irradiate light onto a portion of the battery 10 to be inspected. Moreover, the camera 32 may be located at a position where the reflected light from the portion illuminated by the illumination 31 can be photographed. For example, a dome-shaped illumination that surrounds the battery 10 may be used. Further, for example, a plurality of lights 31 may illuminate from a plurality of directions so as to cover the battery 10 . In this way, shadows are less likely to occur in the irradiated area, and in particular, erroneous determinations due to shadows that tend to occur depending on the shape of the battery case 11 are suppressed.

また、カメラ32の撮像階調は、8bitに限らず、例えば、さらに高階調のものを使用しても良い。例えば、10bitや12bitのカメラを使用すれば、上述の例よりもさらに詳細に検出閾値をコントロール可能である。 Further, the imaging gradation of the camera 32 is not limited to 8 bits, and for example, higher gradation may be used. For example, if a 10-bit or 12-bit camera is used, the detection threshold can be controlled in more detail than the above example.

以上詳細に説明したように、第1の形態の検査方法によれば、波長が1381~1460nmの範囲内の近赤外線、より好ましくは1426~1435nmの範囲内の近赤外線を照射して、電池10を撮影する。電解液13が付着している箇所があると、その箇所からの近赤外線の反射光量が小さいことから、画像解析によって容易に判定できる。さらに、本形態では、組立直後ではなく、エージングや自己放電等の工程後に外観検査工程を行うことで、組立工程後の工程における電解液漏れが発生した場合にも検出できる。また、組立工程から時間が経過して付着した電解液13が乾燥し、リチウム塩が析出している電池10も確実に検出できる。さらに、外観検査を自動化できることから、省人化に寄与することができる。 As described in detail above, according to the inspection method of the first embodiment, near-infrared rays with a wavelength in the range of 1381 to 1460 nm, more preferably near-infrared rays with a wavelength in the range of 1426 to 1435 nm are applied to the battery 10. to shoot. If there is a portion where the electrolytic solution 13 is adhered, it can be easily determined by image analysis because the amount of reflected near-infrared light from that portion is small. Furthermore, in the present embodiment, by performing the visual inspection process after the processes such as aging and self-discharge, instead of immediately after the assembly process, it is possible to detect even if electrolyte leakage occurs in the process after the assembly process. In addition, it is possible to reliably detect the battery 10 in which the electrolyte solution 13 adhered after the assembling process has dried up and the lithium salt is deposited. Furthermore, since the appearance inspection can be automated, it is possible to contribute to labor saving.

次に、本発明を具体化した第2の形態について説明する。本形態は、検査対象や検査方法は、第1の形態とほぼ同様であり、判定方法が第1の形態とは異なる。第1の形態と同様の構成については、同じ符号を付して説明を省略する。 Next, a second embodiment of the present invention will be described. This embodiment has substantially the same inspection object and inspection method as the first embodiment, but differs from the first embodiment in the determination method. Configurations similar to those of the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.

本形態では、第1の形態と同様に近赤外線を用いて電池10を撮影する前、または撮影後に、近赤外線に代えて、例えば、可視光を用いて、検査対象の同じ電池10を撮影する工程を追加する。つまり、照明31と同様に可視光の光源を配置し、カメラ32と同様に可視光を撮影できるカメラを配置して、同じ電池10の可視光による撮影画像を取得する。前述したように、電解液13のリチウム塩は可視光をほとんど吸収せず、可視光による撮影画像では、電解液13の付着による光強度差はほとんど発生しない。なお、可視光に限らず、電解液13による吸収率が小さい光源を用いればよい。 In the present embodiment, as in the first embodiment, before or after photographing the battery 10 using near-infrared light, the same battery 10 to be inspected is photographed using, for example, visible light instead of near-infrared light. Add a process. In other words, a visible light source is arranged in the same manner as the illumination 31, and a camera capable of photographing visible light is arranged in the same manner as the camera 32, and an image of the same battery 10 captured by visible light is acquired. As described above, the lithium salt of the electrolytic solution 13 hardly absorbs visible light, and in an image captured with visible light, the adhesion of the electrolytic solution 13 causes almost no difference in light intensity. It should be noted that a light source having a low absorption rate by the electrolytic solution 13 may be used instead of visible light.

そして、本形態の判定工程では、コンピュータ30にて、可視光による撮影画像と近赤外線による撮影画像とを比較し、近赤外線による撮影画像にのみ光強度差が大きく現れる箇所が有るか否かに基づいて、電解液13の付着の有無を判定する。コンピュータ30は、例えば、第1の形態と同様に、近赤外線による撮影画像中の光強度が小さい箇所、具体的には、階調が検出閾値以下の画素が所定の閾値個数以上集まっている箇所が有るか否かを判断し、有ると判断した場合、さらに、2枚の画像を、電池ケース11の端の輪郭などを基準に位置合わせする。そして、上記の光強度が小さいと判断された箇所およびその周辺の画素について、可視光による撮影画像中の光強度と近赤外線による撮影画像中の光強度との差を取得する。これら2枚の画像中の光強度の差が、上記の箇所では周辺の画素に比較して有意に大きい場合、例えば、有意に大きいと判断できる所定の閾値を超えている場合に、この箇所に電解液13が付着していると判定する。 Then, in the determination step of the present embodiment, the computer 30 compares the image captured by visible light and the image captured by near-infrared light, and determines whether or not there is a portion where the light intensity difference appears only in the image captured by near-infrared light. Based on this, it is determined whether or not the electrolytic solution 13 is adhered. For example, as in the first embodiment, the computer 30 detects a location where light intensity is low in an image captured by near-infrared light, specifically, a location where a predetermined threshold number or more of pixels whose gradations are equal to or lower than the detection threshold are gathered. It is determined whether or not there is, and if it is determined that there is, the two images are aligned with reference to the outline of the edge of the battery case 11 or the like. Then, the difference between the light intensity in the image captured by visible light and the light intensity in the image captured by near-infrared light is acquired for the location where the light intensity is determined to be low and the pixels around the location. If the difference in light intensity between these two images is significantly larger than the surrounding pixels at the above location, for example, if it exceeds a predetermined threshold that can be determined to be significantly greater, It is determined that the electrolytic solution 13 is adhered.

なお、周辺の画像とは、例えば、光強度が小さいと判断された箇所に隣接する画素、光強度が小さいと判断された箇所からの距離が数ピクセル以内の箇所である。また、差の取得方法としては、ピクセルごとの光強度値の差に限らず、周辺画素の光強度値の平均値、標準偏差値、中央値等の統計量などを用いても良い。また、統計量を求めるために、撮影画像に対して、フィルタ処理等の前処理を適宜用いても良い。また、判定では、例えば、所定面積以上の範囲で差が有意に大きい場合にNG判定とし、差が大きい範囲が所定面積に満たない場合はOK判定としても良い。 Note that the peripheral image is, for example, a pixel adjacent to the location where the light intensity is determined to be low, or a location within several pixels from the location where the light intensity is determined to be low. Moreover, the method of obtaining the difference is not limited to the difference in the light intensity value for each pixel, and may use statistics such as the average value, standard deviation value, median value, etc. of the light intensity values of the surrounding pixels. Moreover, in order to obtain the statistic, preprocessing such as filtering may be appropriately applied to the captured image. Also, in the determination, for example, if the difference is significantly large within a range of a predetermined area or more, the determination may be NG, and if the range where the difference is large is less than the predetermined area, the determination may be OK.

本形態の検査方法によっても、第1の形態と同様に、電池ケース11に付着した電解液13の有無を、画像解析によって容易に判定できる。さらに、本形態では、可視光による撮影画像に基づいて、近赤外線による撮影画像中の光強度差が、撮像構成や電池10の外形に起因するものか、電解液13の付着によるものか、を判別する。これにより、電池10の外形形状や撮像構成に起因して発生する光強度差の影響を抑制できることから、電解液13の付着による光強度差をより精密に抽出でき、さらに詳細な判定が可能となる。 According to the inspection method of this embodiment, the presence or absence of the electrolytic solution 13 adhering to the battery case 11 can be easily determined by image analysis, as in the first embodiment. Furthermore, in this embodiment, based on the image captured with visible light, it is determined whether the difference in light intensity in the image captured with near-infrared light is due to the imaging configuration and the external shape of the battery 10, or due to the adhesion of the electrolyte solution 13. discriminate. As a result, it is possible to suppress the influence of the light intensity difference that occurs due to the external shape of the battery 10 and the imaging configuration. Become.

なお、本形態は単なる例示にすぎず、本発明を何ら限定するものではない。従って、本発明は当然に、その要旨を逸脱しない範囲内で種々の改良、変形が可能である。例えば、検査対象の電池10は、扁平角形のものに限らず、どのような形状のものであっても良い。また、電極体12は、捲回型のものに限らず、積層型のものであっても良い。 It should be noted that this embodiment is merely an example and does not limit the present invention in any way. Therefore, the present invention can naturally be improved and modified in various ways without departing from the scope of the invention. For example, the battery 10 to be inspected is not limited to a flat rectangular shape, and may be of any shape. Moreover, the electrode body 12 is not limited to the wound type, and may be a laminated type.

また、コンピュータ30は、カメラ32にて撮影された画像データを取得できれば良く、照明31やカメラ32に接続されていなくても良い。 Further, the computer 30 only needs to be able to acquire image data captured by the camera 32 and does not have to be connected to the lighting 31 or the camera 32 .

また、本形態では、LiPF6を含む電解液13を使用するとしたが、他のリチウム塩を含む電解液であっても良い。また、電解液に含まれる溶媒は、どんなものでも良い。 Also, in the present embodiment, the electrolytic solution 13 containing LiPF 6 is used, but the electrolytic solution containing other lithium salts may be used. Any solvent may be used in the electrolytic solution.

10 電池
11 電池ケース
30 コンピュータ
31 照明
32 カメラ
100 外観検査装置
REFERENCE SIGNS LIST 10 battery 11 battery case 30 computer 31 lighting 32 camera 100 appearance inspection device

Claims (4)

LiPF を含む電解液を有するリチウムイオン電池の外観を検査する外観検査方法であって、
検査対象のリチウムイオン電池である被検体に波長1381~1460nmの範囲内の近赤外線を含む光を照射し、前記被検体を近赤外線を撮像可能なカメラで撮影する近赤外線による撮像工程と、
前記近赤外線による撮像工程にて撮影された前記被検体の近赤外線による撮影画像において、光強度が所定値以下である所定面積以上の領域が有る場合に、前記被検体に前記電解液が付着していると判定する判定工程と、
を含むことを特徴とするリチウムイオン電池の外観検査方法。
An appearance inspection method for inspecting the appearance of a lithium ion battery having an electrolyte containing LiPF 6 ,
A near-infrared imaging step of irradiating a subject, which is a lithium-ion battery to be inspected, with light containing near-infrared rays within a wavelength range of 1381 to 1460 nm, and photographing the subject with a camera capable of imaging near- infrared rays ;
In the near- infrared captured image of the subject captured in the near- infrared imaging step, when there is a region having a predetermined area or more where the light intensity is equal to or less than a predetermined value, the electrolyte solution is present in the subject. A determination step of determining that it is attached;
A method for visual inspection of a lithium ion battery, comprising:
LiPF を含む電解液を有するリチウムイオン電池の外観を検査するリチウムイオン電池の外観検査装置であって、
波長1381~1460nmの範囲内の近赤外線を含む光を照射する光源と、
波長1381~1460nmの範囲内の近赤外線を撮像可能なカメラと、
を備え、
検査対象のリチウムイオン電池である被検体に前記光源にて光を照射し、前記被検体を前記カメラで撮影した近赤外線による撮影画像において、光強度が所定値以下である所定面積以上の領域が有る場合に、前記被検体に前記電解液が付着していると判定するコンピュータを更に備える
リチウムイオン電池の外観検査装置。
A lithium-ion battery visual inspection apparatus for inspecting the appearance of a lithium-ion battery having an electrolyte containing LiPF 6 ,
A light source that irradiates light containing near-infrared rays with a wavelength in the range of 1381 to 1460 nm;
a camera capable of imaging near-infrared rays within a wavelength range of 1381 to 1460 nm;
with
A subject, which is a lithium-ion battery to be inspected, is irradiated with light from the light source, and in a near- infrared image of the subject photographed with the camera, the light intensity is less than or equal to a predetermined value, and an area of a predetermined area or more is obtained. Further comprising a computer that determines that the electrolyte is attached to the subject when there is a region
Appearance inspection equipment for lithium-ion batteries.
LiPF を含む電解液を有するリチウムイオン電池の外観を検査する外観検査方法であって、
検査対象のリチウムイオン電池である被検体に波長1381~1460nmの範囲内の近赤外線を含む光を照射し、前記被検体を近赤外線を撮像可能なカメラで撮影する近赤外線による撮像工程と、
可視光を用いて、前記被検体を可視光を撮像可能なカメラで撮影する可視光による撮像工程と、
前記近赤外線による撮像工程にて撮影された前記被検体の近赤外線による撮影画像において、光強度が所定値以下である所定面積以上の領域が有るか否かを判断する判断工程と、
上記判断工程で、前記所定面積以上の領域が有ると判断した場合に、可視光による撮影画像中の光強度と前記近赤外線による撮影画像中の光強度との差を取得する取得工程と、
前記光強度の差が、前記所定面積以上の領域で周辺の画素に比較して有意に大きい場合に、前記所定面積以上の領域に電解液が付着していると判定する判定工程と、を含む
リチウムイオン電池の外観検査方法。
An appearance inspection method for inspecting the appearance of a lithium ion battery having an electrolyte containing LiPF 6 ,
A near-infrared imaging step of irradiating a subject, which is a lithium-ion battery to be inspected, with light containing near-infrared rays within a wavelength range of 1381 to 1460 nm, and photographing the subject with a camera capable of imaging near- infrared rays ;
a visible light imaging step of imaging the subject using visible light with a camera capable of imaging visible light;
a determination step of determining whether or not there is a region of a predetermined area or more with a light intensity of a predetermined value or less in the near- infrared captured image of the subject captured in the near- infrared imaging step;
an acquiring step of acquiring the difference between the light intensity in the image captured by visible light and the light intensity in the image captured by near-infrared light when it is determined in the determination step that there is a region having a predetermined area or more;
a determination step of determining that the electrolyte is adhered to the area of the predetermined area or more when the difference in the light intensity is significantly larger than that of the surrounding pixels in the area of the predetermined area or more. Appearance inspection method for lithium-ion batteries.
LiPF を含む電解液を有するリチウムイオン電池の外観を検査するリチウムイオン電池の外観検査装置であって、
波長1381~1460nmの範囲内の近赤外線を含む光を照射する光源と、
波長1381~1460nmの範囲内の近赤外線を撮像可能なカメラと、
可視光を照射する光源と、
可視光を撮像可能なカメラと、
を備え、
検査対象のリチウムイオン電池である被検体に前記光源にて光を照射し、前記被検体を前記カメラで撮影した近赤外線による撮影画像において、光強度が所定値以下である所定面積以上の領域が有るか否かを判断し、
前記所定面積以上の領域が有ると判断した場合に、可視光による撮影画像中の光強度と近赤外線による撮影画像中の光強度との差を取得し、
前記光強度の差が、前記所定面積以上の領域で周辺の画素に比較して有意に大きい場合に、前記所定面積以上の領域に電解液が付着していると判定するコンピュータを更に備える
リチウムイオン電池の外観検査装置。
A lithium-ion battery visual inspection apparatus for inspecting the appearance of a lithium-ion battery having an electrolyte containing LiPF 6 ,
A light source that irradiates light containing near-infrared rays with a wavelength in the range of 1381 to 1460 nm;
a camera capable of imaging near-infrared rays within a wavelength range of 1381 to 1460 nm;
a light source that emits visible light;
a camera capable of imaging visible light;
with
A subject, which is a lithium-ion battery to be inspected, is irradiated with light from the light source, and in a near- infrared image of the subject photographed with the camera, the light intensity is less than or equal to a predetermined value, and an area of a predetermined area or more is obtained. Determine whether there is an area,
When it is determined that there is a region having a predetermined area or more, obtaining the difference between the light intensity in the image captured by visible light and the light intensity in the image captured by near-infrared light,
The computer further comprises a computer that determines that the electrolytic solution is attached to the area of the predetermined area or more when the difference in light intensity is significantly larger than that of the surrounding pixels in the area of the predetermined area or more.
Appearance inspection equipment for lithium-ion batteries.
JP2018238308A 2018-12-20 2018-12-20 Lithium-ion battery visual inspection method and lithium-ion battery visual inspection apparatus Active JP7125233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018238308A JP7125233B2 (en) 2018-12-20 2018-12-20 Lithium-ion battery visual inspection method and lithium-ion battery visual inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018238308A JP7125233B2 (en) 2018-12-20 2018-12-20 Lithium-ion battery visual inspection method and lithium-ion battery visual inspection apparatus

Publications (2)

Publication Number Publication Date
JP2020101392A JP2020101392A (en) 2020-07-02
JP7125233B2 true JP7125233B2 (en) 2022-08-24

Family

ID=71139460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018238308A Active JP7125233B2 (en) 2018-12-20 2018-12-20 Lithium-ion battery visual inspection method and lithium-ion battery visual inspection apparatus

Country Status (1)

Country Link
JP (1) JP7125233B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220015635A (en) * 2020-07-31 2022-02-08 주식회사 엘지에너지솔루션 Device for detecting foreign matter and method for detecting foreign matter
JP7213506B1 (en) 2021-10-11 2023-01-27 エバ・ジャパン 株式会社 BATTERY ELECTROLYTE LEAKAGE DETECTION SYSTEM AND BATTERY ELECTROLYTE LEAKAGE DETECTION METHOD

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135363A (en) 1999-11-01 2001-05-18 Sanyo Electric Co Ltd Equipment for checking leak of electrolyte solution in battery, and method for checking the same
JP2004200012A (en) 2002-12-19 2004-07-15 Matsushita Electric Ind Co Ltd Electrolyte leakage test method, test device, and battery
JP2013243127A (en) 2012-04-27 2013-12-05 Ricoh Co Ltd Nonaqueous electrolyte electricity storage element
JP2015197961A (en) 2014-03-31 2015-11-09 株式会社日産アーク Manufacturing system and manufacturing method of lithium ion secondary battery, and quality management system and quality management method of electrolyte of lithium ion secondary battery in manufacturing method
WO2016140311A1 (en) 2015-03-05 2016-09-09 日本電気株式会社 Separator, manufacturing method for said separator, and lithium ion secondary battery using said separator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341954A (en) * 1993-02-17 1994-12-13 Tomihiko Okayama Battery electric capacity measuring method and its device
JPH10239202A (en) * 1997-02-27 1998-09-11 Mitsubishi Electric Corp Method and device for leakage detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135363A (en) 1999-11-01 2001-05-18 Sanyo Electric Co Ltd Equipment for checking leak of electrolyte solution in battery, and method for checking the same
JP2004200012A (en) 2002-12-19 2004-07-15 Matsushita Electric Ind Co Ltd Electrolyte leakage test method, test device, and battery
JP2013243127A (en) 2012-04-27 2013-12-05 Ricoh Co Ltd Nonaqueous electrolyte electricity storage element
JP2015197961A (en) 2014-03-31 2015-11-09 株式会社日産アーク Manufacturing system and manufacturing method of lithium ion secondary battery, and quality management system and quality management method of electrolyte of lithium ion secondary battery in manufacturing method
WO2016140311A1 (en) 2015-03-05 2016-09-09 日本電気株式会社 Separator, manufacturing method for said separator, and lithium ion secondary battery using said separator

Also Published As

Publication number Publication date
JP2020101392A (en) 2020-07-02

Similar Documents

Publication Publication Date Title
US20160258880A1 (en) Inspection of sealing quality in blister packages
TWI571629B (en) Sheet inspection device
JP7125233B2 (en) Lithium-ion battery visual inspection method and lithium-ion battery visual inspection apparatus
KR20110018080A (en) Apperance inspecting apparatus of cylinder type rechargeable battery
JP2015170402A (en) Inspection method of tab lead and inspection apparatus of tab lead
JP2008224432A (en) Defect inspection device and method by photo luminescence of solar battery
JP2006179322A (en) Battery, manufacturing method of battery, and electrolyte leak inspection method
US20210265673A1 (en) Battery electrode inspection system
EP4106077A1 (en) Battery cell exterior inspection system
US11835468B2 (en) Device and method for inspecting air void at lead film of battery
CN115147370A (en) Battery top cover welding defect detection method and device, medium and electronic equipment
KR102443461B1 (en) Method for inspecting all-solid cell quality using thermal imaging inspection
KR101030450B1 (en) Metal inspecting apparatus of cylinder type rechargeable battery
JP2018084431A (en) Inspection device and inspection method
JP2004200012A (en) Electrolyte leakage test method, test device, and battery
CN114119497A (en) Method and device for detecting sealing welding quality of cylindrical battery cell, electronic equipment and storage medium
US20100259748A1 (en) Method for inspecting coating film defect in resin-coated film
KR20110018081A (en) Side surface inspection apparatus of cylinder type rechargeable battery
KR20120132804A (en) Apparatus and method for automatic inspecting wind blade
JP2022501594A (en) Systems, methods, and equipment for autonomous diagnostic verification of optical components of vision-based inspection systems
CN111999273A (en) Object defect detection method, system, device, equipment and storage medium
US20230112981A1 (en) Electrolyte leakage detection system for battery and electrolyte leakage detection method for battery
CN116468678A (en) Method, system and computer readable storage medium for detecting protective glue entering seal area
KR101030451B1 (en) Tube and washer inspecting apparatus of cylinder type rechargeable battery
JP2011133288A (en) Illumination method and lighting system for image inspection of cylindrical article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220811

R151 Written notification of patent or utility model registration

Ref document number: 7125233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151