WO2015046537A1 - Lithium ion secondary battery and method for manufacturing same - Google Patents

Lithium ion secondary battery and method for manufacturing same Download PDF

Info

Publication number
WO2015046537A1
WO2015046537A1 PCT/JP2014/075957 JP2014075957W WO2015046537A1 WO 2015046537 A1 WO2015046537 A1 WO 2015046537A1 JP 2014075957 W JP2014075957 W JP 2014075957W WO 2015046537 A1 WO2015046537 A1 WO 2015046537A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium ion
secondary battery
ion secondary
negative electrode
Prior art date
Application number
PCT/JP2014/075957
Other languages
French (fr)
Japanese (ja)
Inventor
志村 健一
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015539439A priority Critical patent/JPWO2015046537A1/en
Publication of WO2015046537A1 publication Critical patent/WO2015046537A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery with little decomposition of an electrolytic solution and a manufacturing method thereof.
  • lithium ion secondary batteries have a higher energy density because they have a higher operating voltage and a larger current capacity than nickel / cadmium batteries and nickel / hydrogen batteries.
  • An aluminum alloy foil obtained by adding an additive element to aluminum is used for a positive electrode current collector foil of a lithium ion secondary battery.
  • a natural oxide film (aluminum oxide film) covering the surface of the aluminum foil can prevent corrosion in the electrolytic solution.
  • the surface of the aluminum foil reacts with PF 6 ⁇ and BF 4 — in the electrolytic solution to form an aluminum fluoride AlF 3 coating having higher corrosion resistance than aluminum oxide.
  • aluminum oxide is an insulator, it should be insulated between the aluminum foil and the active material layer applied on its surface.
  • sufficient electrical conductivity exists between the aluminum foil and the active material layer, as shown by the fact that the aluminum foil is used as a positive electrode current collector foil of a lithium ion battery. It is considered that a defect exists in the natural oxide film as a reason for showing electrical conductivity while being covered with the natural oxide film. Further, since the natural oxide film of aluminum is as thin as several nanometers, it is considered that a tunnel current flows.
  • the non-aqueous solvent has a wider potential window indicating the range in which no oxidation-reduction reaction occurs with the electrode than the aqueous electrolyte solution.
  • oxidation or reduction reaction on the positive and negative electrode surfaces cannot be ignored.
  • problems such as increase in the internal resistance of the battery due to changes in the composition of the solvent and accumulation of decomposition products on the electrode surface and inhibition of Li ion conduction in the electrode stack due to the generated gas occur.
  • an additive that decomposes during the charging process to form a film on the active material surface of the positive electrode or the negative electrode is effective.
  • this film allows Li ions to pass through, it does not have electronic conductivity, so that the decomposition of the electrolyte solution on the surface of the electrode active material can be suppressed.
  • thiophene is an additive that forms a film on the surface of the positive electrode active material.
  • Thiophene is oxidized and polymerized on the surface of the positive electrode active material to form a film.
  • vinylene carbonate is known as an additive for forming a film on the surface of the negative electrode active material.
  • Patent Document 1 Japanese Patent Laid-Open No. 2011-216360 discloses a technique for suppressing the decomposition of the electrolytic solution in the exposed metal portion electrically connected to the electrode. Holding the separator by increasing the Gurley-type air permeability of the separator at the portion located between the positive electrode core exposed portion and the negative electrode plate of the spiral electrode body in which the positive electrode plate and the negative electrode plate are wound via the separator. The amount of the electrolytic solution to be reduced is reduced, and the decomposition of the electrolytic solution due to the potential applied to the exposed portion of the positive electrode core is suppressed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-216360
  • the contact between the electrolytic solution and the exposed metal portion is greatly increased. It is difficult to suppress.
  • the electrolytic solution continues to be supplied through the separator to the contact portion with the exposed metal portion, there is a problem that the electrolytic solution continues to be decomposed.
  • Patent Document 2 Japanese Patent Laid-Open No. 11-007962 describes a technique for preventing corrosion of aluminum by forming a film mainly composed of a fluorine compound on the surface of aluminum electrically connected to the positive electrode. ing. For example, after heating the aluminum foil in fluorine gas and fluorinating the surface, the positive electrode active material is applied. However, if there is no electrical conductivity between the current collector foil and the active material, it will not function as a battery, so the aluminum fluoride disclosed in Patent Document 2 has electronic conductivity. Therefore, even if the aluminum fluoride disclosed in Patent Document 2 is formed in the extending portion of the aluminum current collector foil, electrons are transferred and oxidative decomposition of the electrolytic solution cannot be prevented.
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-084993 describes a technique for forming an oxide film on the surface of a tab for taking out current from the inside of the battery to the outside.
  • Patent Document 4 Japanese Patent No. 4298883 describes a method for producing aluminum hydrate on the surface of an aluminum tab by boiling in hot water or using hot steam.
  • Patent Document 3 and Patent Document 4 form an oxide film or aluminum hydrate at a place where the tab is sandwiched and sealed between the laminate films, and prevents the surface of the tab from being corroded by the electrolytic solution. This is intended to maintain the adhesion between the tab and the laminate. Since the oxide film and the aluminum hydrate are insulative, decomposition of the electrolyte solution can be prevented. However, in the techniques of Patent Document 3 and Patent Document 4, an oxide film or Since aluminum hydrate is not formed, decomposition of the electrolyte in this region cannot be prevented.
  • Patent Document 5 Japanese Patent Laid-Open No. 62-612678
  • Patent Document 6 Japanese Patent Laid-Open No. 2013-012468
  • a portion of a terminal material or tab that is sealed with a laminate outer package is covered with a resin. . These are for increasing the adhesion between the terminal material or tab and the laminate outer package. Since the portion of the terminal material or tab covered with the resin is insulated from the electrolytic solution, the electrolytic solution does not electrolyze. However, since the metal is exposed or only a very thin oxide film on the order of nanometers exists in a portion not covered with resin, electrolysis of the electrolytic solution cannot be prevented.
  • Patent Document 5 also describes a case where the resin covering the terminal material extends in the battery internal direction. This is to prevent the terminals from coming into contact with electrode plates having different polarities, and does not completely prevent the conductor of the terminal material from coming into contact with the electrolytic solution. Further, in Patent Document 5, the surface of the electrode plate opposite to the surface on which the positive electrode mixture is applied is exposed with metal, and there is a risk of oxidative decomposition of the electrolytic solution.
  • JP 2011-216360 A JP-A-11-007962 JP2001 / 084993A No. 4298883 JP 62-61268 A JP2013-012468
  • Patent Documents 1 to 6 can sufficiently electrically insulate the metal surfaces of the electrodes and tabs of the lithium ion battery (particularly, the positive electrode current collector foil and the positive electrode tab) from the electrolytic solution.
  • an object of the present invention is to suppress the decomposition of the electrolyte solution of the lithium ion secondary battery, and to reduce the gas generation inside the battery and the composition deviation of the electrolyte solvent, and to provide a long-life lithium ion secondary battery and a manufacturing method thereof Is to provide.
  • the lithium ion secondary battery of the present invention is electrolyzed by subjecting the exposed portion of the positive electrode inside the battery and the surface of the metal electrically connected to the positive electrode to oxidation treatment or coating with an insulating material or an insulating film. It electrically insulates from the liquid and suppresses oxidative decomposition of the electrolytic solution.
  • the exposed portion of the negative electrode and the surface of the metal electrically connected to the negative electrode are electrically insulated from the electrolytic solution by oxidation treatment or coating with an insulating material or insulating film. Inhibits reductive decomposition.
  • a lithium ion secondary battery according to an embodiment of the present invention.
  • a plurality of positive electrodes and negative electrodes which are electrodes, are stacked via a separator, and are connected to the plurality of positive electrodes and drawn to the outside of the battery, and are electrically connected to the plurality of negative electrodes and drawn to the outside of the battery.
  • a lithium ion secondary battery having a negative electrode tab The positive electrode has an exposed portion of a current collector foil not coated with an active material, At least a part of the exposed portion is covered with an insulating material, and a portion of the positive electrode tab that is disposed inside the battery is covered with an insulating material.
  • the phrase “covered with an insulating material” is not necessarily limited to a form in which the entire member is completely covered, but as described later with reference to FIG. Includes a mode in which only the main surface (front surface and back surface) is covered without being insulated. This is because the end surface has a relatively small influence on the oxidative decomposition of the electrolytic solution even if the end surface has a small exposed area with respect to the main surface and is not insulated.
  • the present invention it is possible to prevent electrolysis of the electrolytic solution on the surface of the metal member electrically connected to the electrode in the lithium ion secondary battery and the accompanying gas generation, so that the lithium ion secondary battery Can improve long-term reliability.
  • FIG. 1 is an exploded perspective view schematically showing a lithium ion secondary battery according to an embodiment of the present invention. It is a top view which shows typically the structure of the electrode laminated body in one form of this invention.
  • A It is a schematic diagram of the negative electrode in one form of this invention.
  • B It is a schematic diagram of the positive electrode in one form of this invention. It is an example of the other shape of an electrode. It is a top view which shows typically the lithium ion secondary battery of other embodiment of this invention. It is a perspective view which shows the shape of an electrode extending
  • the structure of the electrode body of the lithium ion secondary battery is roughly classified into a wound type and a laminated type.
  • the present invention can be applied to both, but is preferably applied to a laminated type.
  • a laminated laminate type in which the electrode laminate is housed in an exterior body made of a laminate film of a resin film and a metal film is suitable.
  • the current collector foils of the positive electrode and the negative electrode have “stretched portions” (FIG. 3, details will be described later), and the stretched portions are “exposed portions” where no active material is applied.
  • the active material may be applied to a part of the stretched part, or conversely, the active material may be applied to a part of the area other than the stretched part. Also good. That is, in the present invention, it is only necessary that the “exposed portion” to which the active material is applied is covered with an insulating material. More specifically, it is sufficient that at least a part of the exposed portion is covered with an insulating material.
  • the lithium ion secondary battery 1 of the present embodiment includes an electrode stack 10, and a positive electrode tab 63 and a negative electrode tab 53 (hereinafter, positive electrode and negative electrode are not distinguished from each other). And an electrode stack 10 and an exterior body that houses part of the electrode tab together with the electrolyte.
  • the electrode laminate 10 is obtained by laminating a plurality of positive electrodes and a plurality of negative electrodes with a separator interposed therebetween.
  • the electrode laminated body 10 may be a flat rectangular parallelepiped shape whose outline is a rectangle (rectangle) in a plan view as viewed from above.
  • the negative electrode 21 is formed in a rectangular shape in a plan view, and a region 22 (active material application surface) on which an active material is applied, and a negative electrode current collector foil extending from the peripheral portion thereof Part 23 (the negative electrode active material is not applied).
  • the extending portion 23 of the negative electrode is provided at a position on the left side in the left-right direction in FIG.
  • the positive electrode 31 is formed in a substantially symmetrical shape with the negative electrode 21 as an example. That is, the positive electrode 31 is also formed in a rectangular shape in a plan view, and an active material application surface 32 (active material application surface) 32 and a positive electrode current collector foil extending portion 33 extending from the peripheral portion (the negative electrode active material is applied). Not).
  • the positive electrode extending portion 33 is formed on the opposite side to the negative electrode extending portion 23 (a position on the right side in the left-right direction in FIG. 1B) so as not to overlap the negative electrode extending portion 23 when the positive electrode and the negative electrode are laminated. ing.
  • the negative electrode active material application surface 22 has a larger area than the positive electrode active material application surface 32, and therefore the positive electrode active material application surface 32 is relative to the separator 25 (see FIG. 2). It is good also as a structure accommodated inside the negative electrode active material application surface 22 to do.
  • the electrode tab is electrically connected to a part of the extended portion collected in this way.
  • the electrode tabs 53 and 63 may be connected to the lower surface side of the plurality of extending portions 23 and 33.
  • Ultrasonic welding may be used for connection between the electrode tab and the extended portion.
  • Part of the electrode tabs 53 and 63 is configured to protrude from the exterior body.
  • a heat sealing resin 15 (see FIG. 1) may be provided at a portion of the electrode tabs 53 and 63 sandwiched between the laminate outer bodies.
  • the laminate outer package may be surrounded by two outer packaging materials 11 and 12 from both sides in the thickness direction.
  • the exterior materials 11 and 12 may be a laminate film having flexibility, and an electrolytic solution is also included in the exterior body formed by the exterior material.
  • the contour shape of the electrode laminate 10 and the active material application surfaces 22 and 32 of each electrode may be any shape such as a square or a polygon other than a rectangle.
  • Various changes can be made to the extending direction of the extending portions 23 and 33 (the extending direction of the electrode tab). In the example of FIG. 1, both electrode tabs are drawn out in the rearward direction of the drawing, but one electrode tab and the other electrode tab may be reversed.
  • the negative electrode active material in the present embodiment is not particularly limited.
  • the carbon material (a) that can occlude and release lithium ions, the metal (b) that can be alloyed with lithium, and the lithium ions are occluded and released.
  • the metal oxide (c) etc. which can be mentioned.
  • Examples of the carbon material (a) include graphite, amorphous carbon, carbon nanotube, or a composite thereof.
  • carbon with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • metal (b) examples include Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or alloys of two or more thereof. It is done. Moreover, you may use these metals or alloys in mixture of 2 or more types. These metals or alloys may contain one or more non-metallic elements.
  • the metal oxide (c) examples include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof.
  • tin oxide or silicon oxide is included as a negative electrode active material, and it is more preferable that silicon oxide is included. This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds.
  • one or more elements selected from nitrogen, boron, and sulfur may be added to the metal oxide (c), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (c) can be improved.
  • the negative electrode current collector is preferably aluminum, nickel, stainless steel, chromium, copper, silver, or an alloy thereof in view of electrochemical stability.
  • Examples of the shape include foil, flat plate, and mesh.
  • the negative electrode extension 23 (see FIGS. 1 to 3) is preferably covered with an insulating material.
  • FIG. 2 a state in which the extending portion 23 of the negative electrode is covered with the insulating material 16 is illustrated.
  • thermoplastic resin such as polyethylene and polypropylene
  • -Application and drying / curing of resin material dissolved in solvent, -It can be done in one or a combination of resin film or tape sticking.
  • the insulating material is preferably formed on the front surface 5a, the back surface 5b, and the cut surfaces (end surfaces) 5c, 5d, and 5e of the negative electrode extending portion.
  • the areas of the front surface 5a and the back surface 5b are larger than the areas of the cut surfaces 5c to 5e, only these both surfaces may be covered. The same applies to the case where an insulating material is formed on the extending portion of the positive electrode and each electrode tab described later.
  • the insulating material is covered
  • the insulating material is applied only to the front surface 5a and the back surface 5b of the extending portion or the electrode tab.
  • the state in which is formed is also included.
  • the material of the positive electrode current collector may be aluminum or an alloy containing aluminum as a main component, and examples thereof include a foil shape, a flat plate shape, and a mesh shape.
  • the positive electrode 31 may be one that has been cut into a predetermined dimension as shown in FIG. This is because an oxide film (see reference numeral 26 in FIG. 2) is formed on the surface of the extending portion 33, thereby providing insulation.
  • the oxidation treatment may be performed before producing the electrode laminate.
  • the extending portion of the negative electrode described above it is preferably formed on the front surface 5a, the back surface 5b, and the respective cut surfaces (end surfaces) 5c, 5d, and 5e (see FIG. 6).
  • an oxide film is formed by oxidation treatment on aluminum exposed on the cut surface (end surface) of the positive electrode.
  • oxidation by dry process with oxygen or ozone is preferable to oxidation with hot water or hot steam.
  • the positive electrode active material has a layered structure such as LiMnO 2 , LixMn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2).
  • Lithium transition metal oxides whose specific transition metals are less than half, those in which these lithium transition metal oxides have an excess of Li over the stoichiometric composition, those having an olivine structure such as LiFePO 4 , etc. It is done.
  • metal oxides were partially substituted with Al, Fe, P, Ti, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, etc. Materials can also be used.
  • a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
  • radical materials or the like can be used as the positive electrode active material.
  • a conductive auxiliary material may be added to the coating layer of the positive electrode active material for the purpose of reducing impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as carbon black and acetylene black.
  • the shape of the negative electrode or the positive electrode is not limited to that shown in FIG. 3.
  • the extending portions 23 and 33 are disposed in the vicinity of the side edge in the example of FIG. 3, the extending portion may be disposed at a position slightly shifted inward from the side edge.
  • the shape of the extending part of the positive electrode and the extending part of the negative electrode may be different.
  • the configuration shown in FIG. 4 can be taken.
  • the positive electrode and the negative electrode are laminated via separators so that one current collecting foil extending portion 42 is alternately opposite to the other current collecting foil extending portion 42 without overlapping.
  • the separator has a role of insulating the positive electrode plate and the negative electrode plate and holding lithium electrolyte and conducting lithium ions between the positive electrode and the negative electrode.
  • a polyolefin-based microporous film having a thickness of about 15 ⁇ m to 25 ⁇ m is used.
  • a cellulose nonwoven fabric and a synthetic fiber nonwoven fabric are used.
  • any separator that is used in a normal lithium ion secondary battery can be used without any particular limitation.
  • a non-aqueous electrolytic solution including a lithium salt and a non-aqueous solvent that dissolves the lithium salt can be used.
  • an aprotic organic solvent such as carbonate ester (chain or cyclic carbonate), carboxylic acid ester (chain or cyclic carboxylic acid ester), and phosphate ester can be used. Or what substituted some hydrogen atoms of these compounds by the fluorine atom is mentioned.
  • carbonate solvents examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. (EMC), chain carbonates such as dipropyl carbonate (DPC); and propylene carbonate derivatives.
  • PC propylene carbonate
  • EC ethylene carbonate
  • BC butylene carbonate
  • VVC vinylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • propylene carbonate derivatives examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate
  • carboxylic acid ester solvent examples include aliphatic carboxylic acid esters such as methyl formate, methyl acetate, and ethyl propionate; and lactones such as ⁇ -butyrolactone.
  • phosphate ester examples include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, trioctyl phosphate, triphenyl phosphate, and the like.
  • solvents that can be contained in the non-aqueous electrolyte include, for example, ethylene sulfite (ES), propane sultone (PS), butane sultone (BS), dioxathilane-2,2-dioxide (DD), and sulfolene.
  • ES ethylene sulfite
  • PS propane sultone
  • BS butane sultone
  • DD dioxathilane-2,2-dioxide
  • sulfolene sulfolene
  • LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN ( CF 3 SO 2) 2 normal lithium salt which can be used in lithium ion batteries or the like can be used.
  • the supporting salt can be used alone or in combination of two or more.
  • ⁇ Tab> (Positive electrode tab)
  • aluminum or an alloy containing aluminum as a main component can be used.
  • An oxide film is formed on the surface of at least the portion of the positive electrode tab 63 disposed inside the battery. This oxide film may be, for example, a film formed by oxidizing the surface of aluminum.
  • the oxidation treatment may be performed before the positive electrode tab is connected to the laminate.
  • positioned outside the exterior body of a positive electrode tab does not contact electrolyte solution, it is not necessary to perform an oxidation process.
  • the positive electrode tab 63 can be connected to the positive electrode extension portion 33 by ultrasonic welding, but the oxide film on the surface of the positive electrode current collector foil extension portion 33 and the oxide film on the surface of the positive electrode tab 63 are destroyed during ultrasonic welding. Therefore, both members are electrically connected.
  • the coating with insulating material is: -Melt application of thermoplastic resin such as polyethylene and polypropylene, -Application and drying / curing of resin material dissolved in solvent, -Pasting sheet-like members such as resin films and tapes Can be done in one or a combination.
  • such a sheet-like member may be cut to a size that can be applied to one surface of the extending portion of the current collector foil or one surface of the electrode tab. Good.
  • a tape-like member may be wound (or sandwiched) around the welded portion.
  • the sheet may be sandwiched from above and below by two sheet-like members.
  • the negative electrode tab may be made of copper or nickel.
  • the negative electrode tab is not oxidized, but the portion of the metal exposed portion of the negative electrode tab that is disposed inside the battery is covered with an insulating material.
  • coating with an insulating material is performed by applying a thermoplastic resin such as polyethylene or polypropylene, applying and drying / curing a resin material dissolved in a solvent, a sheet such as a resin film or a tape. It can be carried out by one or a combination of pasting of the shaped members.
  • the covering of the insulating material on the positive electrode tab and the negative electrode tab is also formed on the front surface 5a, the back surface 5b, and the cut surfaces (end surfaces) 5c, 5d, and 5e of the tab, as in the case of the above-described extending portion.
  • the form which covers only the front surface 5a and the back surface 5b may be sufficient.
  • the exterior body can be appropriately selected as long as it is stable to the electrolytic solution and has a sufficient water vapor barrier property.
  • a laminate film made of aluminum and resin for the exterior body.
  • An exterior body may be comprised with a single member and may be comprised combining several members.
  • the oxidation of the positive electrode and the oxidation treatment of the positive electrode tab performed in the first embodiment are not performed.
  • the other positive electrode and negative electrode materials, electrolytic solution, separator, and outer package are the same as those in the first embodiment.
  • FIG. 5 shows a schematic diagram of the laminate, the negative electrode tab, and the positive electrode tab in the second embodiment.
  • the electrode laminate 10 is produced basically in the same manner as in the first embodiment except that the positive electrode and the positive electrode tab are not oxidized. However, since the oxide film is not formed, the extending portion is entirely covered with the insulating material 16.
  • the ultrasonic welded positive electrode current collector foil extending portion and the exposed metal portion of the positive electrode tab 63 disposed inside the battery are covered with an insulating material. Insulating the exposed metal part of the positive electrode from the electrolytic solution suppresses oxidative decomposition of the electrolytic solution.
  • the negative electrode current collector foil extending portion and the exposed metal portion of the negative electrode tab 53 disposed inside the battery are also covered with an insulating material. Insulating the metal exposed portion of the negative electrode from the electrolytic solution suppresses reductive decomposition of the electrolytic solution.
  • the insulating material heat, for example, melt coating of plastic polyethylene or polypropylene resin is used.
  • an insulating and electrolyte-resistant resin can be used.
  • At least a part of the exposed metal portion such as the positive electrode extension portion, the positive electrode tab, the negative electrode extension portion, and the negative electrode tab is an insulating material. Since it is covered, the contact of the metal and electrolyte solution in the part is substantially prevented, As a result, decomposition
  • the electrolytic solution is compared with a configuration in which the exposed portion is not insulated at all.
  • Such an arrangement is also preferable as one embodiment of the present invention.
  • the area of the exposed portion when both surfaces of the foil are exposed, the total exposed area of both surfaces.
  • the area of the end surface of the foil is not included).
  • 10) or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more is preferably covered.
  • both surfaces of the foil are exposed, at least one exposed portion may be entirely covered.
  • the negative electrode extension portion and the portion of the negative electrode tab that are disposed inside the battery are covered with an insulating coating.
  • the nonaqueous electrolyte is strong in reducing resistance and does not undergo reductive decomposition, the negative electrode There is no need for side insulation.
  • the extending portions 23 and 33 have been described as exposed portions where the active material is not applied, but as described above, the shape of the exposed metal portion does not necessarily match the shape of the extending portion.
  • a plurality of positive electrodes and negative electrodes which are electrodes, are stacked via a separator, and are connected to the plurality of positive electrodes and drawn to the outside of the battery, and are electrically connected to the plurality of negative electrodes and drawn to the outside of the battery.
  • a lithium ion secondary battery having a negative electrode tab The positive electrode has an exposed portion of a current collector foil not coated with an active material, A lithium ion secondary battery in which at least a part of the exposed portion is covered with an insulating material, and a portion of the positive electrode tab disposed inside the battery is covered with an insulating material.
  • the negative electrode has an exposed portion of the current collector foil to which no active material is applied, At least a part of the exposed portion of the negative electrode is covered with an insulating material, and a portion of the negative electrode tab that is disposed inside the battery is covered with an insulating material.
  • the insulating material covering the exposed portion of the positive electrode includes an oxide film of the positive electrode material
  • the insulating material covering the positive electrode tab includes an oxide film of the material of the tab;
  • a method for producing a lithium ion secondary battery having a negative electrode tab (A) applying an active material to a part of the positive electrode; (B) Thereafter, before the step of laminating the electrode and the separator, the positive electrode is exposed to an oxidizing atmosphere to oxidize the exposed portion of the positive electrode where the active material is not applied, and at least a portion thereof is an oxide film. Forming a step; (C) connecting the exposed portion of the positive electrode and the positive electrode tab; A method for producing a lithium ion secondary battery.
  • step (c) the exposed portion and the positive electrode tab are connected by ultrasonic welding
  • step (D) The method for producing a lithium ion secondary battery according to the above, which includes a step of coating with an insulating material so as to cover a trace formed by the ultrasonic welding.
  • the secondary battery according to one embodiment of the present invention can be used for a power storage system.
  • the scale of the power storage system is not limited in any way, but includes a power supply unit having at least one secondary battery, a control device for monitoring and controlling the charge / discharge, and the like.
  • a power storage system for example, a backup power source may be used, and various types such as for large facilities, offices, and homes can be used.
  • a secondary battery can be used for an electric vehicle.
  • the electric vehicle includes a power supply unit having at least one secondary battery, a control device that performs monitoring / control of charge / discharge, and the like.
  • ⁇ Example 1> ⁇ Production of battery> (Preparation of positive electrode)
  • a positive electrode active material 93% by mass of LiNi 0.5 Mn 1.5 O 4 powder, which is a spinel-type metal composite oxide and operates at a potential exceeding 4.5 V with respect to metallic lithium, carbon as a conductive assistant 3% by mass of black and 4% by mass of polyvinylidene fluoride as a binder were mixed and dispersed in N-methylpyrrolidone (NMP) to form a slurry. Then, it apply
  • NMP N-methylpyrrolidone
  • the electrode After applying the active material on both sides of the current collector, the electrode was pressed to produce a thickness of 80 ⁇ m after the treatment. Further, this was punched into a shape in which the stretched portion protruded.
  • the active material application portion had a width of 46 mm and a length of 50 mm.
  • the extending part was 20 mm long and 8 mm wide along the long side direction of the active material application part.
  • the positive electrode was oxidized to form an oxide film on the surface of the stretched portion (including the cut surface).
  • the punched positive electrodes were arranged on an alumina sintered plate so that the positive electrode current collector foil extending portion did not overlap with other electrodes, and this was put in a vacuum chamber and the pressure was reduced to 1 hPa.
  • oxygen gas was introduced into the vacuum chamber up to 500 hPa and held for 30 minutes.
  • the sheet resistance was 5 m ⁇ / sq. Below, the resistance of the surface oxide film could not be estimated.
  • the resistance in the film thickness direction of the surface oxide film is estimated to be 1 ⁇ 10 ⁇ 3 ⁇ cm 2 as a product of the resistance and the area, and the resistance on the surface There was a layer.
  • the “oxide film” formed on the current collector or the electrode tab refers to one having a resistance value of about 1 ⁇ 10 ⁇ 3 ⁇ cm 2 or more.
  • the resistance value of the natural oxide film is generally about 1 ⁇ 10 ⁇ 5 ⁇ cm 2 or less.
  • the tab of the positive electrode was made of aluminum, and the surface was oxidized under the same conditions as the oxidation of the positive electrode. Further, a heat seal resin made of polypropylene was provided near the center of the positive electrode tab, and the exterior body was sealed so as to sandwich the heat seal resin.
  • a negative electrode active material 95% by mass of artificial graphite powder and 5% by mass of polyvinylidene fluoride as a binder are mixed and dispersed in NMP to form a slurry, which is then applied to a copper foil having a thickness of 10 ⁇ m as a negative electrode current collector. And heat dried.
  • the slurry is not apply
  • the electrode was pressed to produce a thickness of 65 ⁇ m after the treatment. Further, this was punched into a shape in which the stretched portion protruded.
  • the active material application portion had a width of 50 mm and a length of 54 mm.
  • the stretched part was formed with a length of 20 mm and a width of 8 mm along the long side direction of the active material application part.
  • Nitative electrode tab A nickel tab was used for the negative electrode tab.
  • the negative electrode tab was provided with a heat sealing resin made of polypropylene.
  • Separator As the separator, a microporous film made of polypropylene having a thickness of 25 ⁇ m was cut into a width of 54 mm and a length of 58 mm.
  • a positive electrode tab and a negative electrode tab were joined to the extended portion of the positive electrode and the negative electrode of the electrode laminate by ultrasonic welding, respectively.
  • the traces of the horn and anvil of the ultrasonic welder when the positive electrode extension and the positive electrode tab were ultrasonically welded were covered with polypropylene tape.
  • the used polypropylene tape does not swell or peel off even when immersed in the electrolyte.
  • the extending portion of the negative electrode and the portion of the negative electrode tab disposed inside the battery were also covered with the polypropylene tape.
  • two sheets of a laminate film made of aluminum and resin cut into 80 mm ⁇ 90 mm were prepared. These two laminate films were overlapped with the electrode laminate interposed therebetween. At this time, an electrode laminated body is arrange
  • the stacked laminate films were thermally welded with a width of 5 mm on the remaining three sides, leaving one of the long sides. The heat welding was performed so as to sandwich the heat sealing resin provided on the tab.
  • the electrolyte solution was injected into the exterior body of the laminate film using the long side not thermally welded as the injection port. After injecting the electrolytic solution, the injection port was sealed by heat welding in an atmosphere reduced to 2 kPa, thereby completing the battery.
  • the electrolyte used was a mixture of ethylene carbonate and dimethyl carbonate in a volume ratio of 3: 7, with 1 mol of LiPF 6 dissolved per liter of solvent.
  • the manufactured battery was charged at a constant current up to 4.8 V at a current corresponding to a 5-hour rate (0.2 ItA), and then charged at a constant voltage of 4.8 V for a total of 10 hours. Next, it was discharged to 3.0 V with a current of 0.2 ItA.
  • the above charging and discharging were performed in an environment of 25 ° C. After the discharge, the battery volume at 25 ° C. was obtained by the Archimedes method from the difference in weight between air and water, and was defined as the volume before the soot discharge test.
  • the charge / discharge test was performed 100 cycles at an environmental temperature of 45 ° C., an upper limit voltage of 4.8 V, a lower limit voltage of 3.0 V, and a charge / discharge rate of 1 ItA. After the test, the volume at 25 ° C. was measured as before the test. An exterior body made of a laminate film sealed under reduced pressure swells when the pressure inside the battery increases due to the gas generated by the decomposition of the electrolyte. Therefore, the degree of decomposition of the electrolyte can be compared from the change in volume of the battery.
  • Example 2 (Production of battery)
  • a battery was manufactured without oxidizing the positive electrode and the positive electrode tab.
  • the positive electrode current collector foil extending portion and the portion disposed inside the battery of the positive electrode tab After joining the positive electrode tab and the negative electrode tab to the extending portion of the positive electrode and the negative electrode of the electrode laminate by ultrasonic welding, respectively, the positive electrode current collector foil extending portion and the portion disposed inside the battery of the positive electrode tab, The negative electrode current collector foil extending portion and the portion of the negative electrode tab disposed inside the battery were each coated with polypropylene tape. At this time, the polypropylene tape was affixed so that there was no gap with the heat sealing resin of each of the positive electrode tab and the negative electrode tab, and it did not cover the portion sandwiched by heat sealing. Otherwise, an electrode laminate was produced in the same manner as in Example 1.
  • Example 3 (Production of battery) A battery was fabricated in the same manner as in Example 1 except that the negative electrode current collector foil stretched portion and the negative electrode tab were not covered with polypropylene tape.
  • Example 2 (Production of battery) As in Example 2, an electrode laminate was produced without oxidizing the positive electrode and the positive electrode tab. The positive electrode current collector foil extension and the positive electrode tab were ultrasonically welded to the negative electrode current collector foil extension and the negative electrode tab, respectively. Further, without covering the positive electrode side and the negative electrode side, the metal part is exposed, and in the same manner as in Example 1, it is housed in an exterior body made of a laminate film and injected with electrolyte and Sealing was performed.
  • Table 1 shows the increase in battery volume in Examples 1 to 3 and Comparative Example 1 by the charge / discharge test.
  • the volume increase amount is an amount obtained by subtracting “battery volume before cycle test” from “battery volume after cycle test”.
  • the increase in volume due to the cycle test is small compared to Comparative Example 1, and it can be seen that gas generation due to decomposition of the electrolytic solution is reduced.
  • the present invention can be used in all industrial fields that require a power source and industrial fields related to the transport, storage and supply of electrical energy.
  • power supplies for mobile devices such as mobile phones and laptop computers, electric vehicles such as electric cars, hybrid cars, electric bikes, electric assist bicycles, power supplies for mobile and transport media such as trains, satellites, and submarines, UPS It can be used for backup power sources such as, power storage facilities that store power generated by solar power generation, wind power generation, etc.

Abstract

A lithium ion secondary battery (19), wherein a plurality of positive electrodes (31) and a plurality of negative electrodes (21) are laminated with separators being interposed therebetween, comprises a positive electrode tab (63) which is electrically connected to the plurality of positive electrodes (31) and is led out to the outside of the battery and a negative electrode tab (53) which is electrically connected to the plurality of negative electrodes (21) and is led out to the outside of the battery. The positive electrode (31) has a collector foil exposed portion (33) that is not coated with an active material. The exposed portion (33) is covered with an insulating material, and a portion of the positive electrode tab (63) arranged within the battery is covered with an insulating material.

Description

リチウムイオン二次電池およびその製造方法Lithium ion secondary battery and manufacturing method thereof
 本発明は、電解液の分解が少ないリチウムイオン二次電池およびその製造方法に関する。 The present invention relates to a lithium ion secondary battery with little decomposition of an electrolytic solution and a manufacturing method thereof.
 ノート型パソコン、携帯電話、ハイブリッド自動車などの急速な市場拡大に伴い、キャパシタやリチウムイオン二次電池などの蓄電デバイスが盛んに研究されている。中でもリチウムイオン二次電池は、ニッケル・カドミウム電池、ニッケル・水素電池などと比べて、動作電圧が高く電流容量も大きいので高いエネルギー密度を持つ。 With the rapid market expansion of notebook computers, mobile phones, hybrid cars, etc., energy storage devices such as capacitors and lithium ion secondary batteries are being actively researched. In particular, lithium ion secondary batteries have a higher energy density because they have a higher operating voltage and a larger current capacity than nickel / cadmium batteries and nickel / hydrogen batteries.
 リチウムイオン二次電池は動作電圧が高いため、水を溶媒とした電解液は、電気分解が起きてしまうため使用できない。そのため、誘電率の高い環状炭酸エステルと粘度の低い鎖状炭酸エステルを混合した非水溶媒にLiPFやLiBFなどを溶解させたものが、電解液として使用されている。 Since a lithium ion secondary battery has a high operating voltage, an electrolytic solution using water as a solvent cannot be used because electrolysis occurs. Therefore, those obtained by dissolving like LiPF 6 and LiBF 4 in a non-aqueous solvent obtained by mixing a low chain carbonate having a high dielectric constant cyclic carbonate and the viscosity have been used as an electrolyte.
 リチウムイオン二次電池の正極集電箔には、アルミニウムに添加元素を加えたアルミニウム合金の箔が使われている。以降は、単にアルミニウム箔とも記す。アルミニウム箔の表面を覆う自然酸化膜(酸化アルミニウム膜)は電解液中での腐食を防止しうる。さらに、初回の充電時に、アルミニウム箔の表面が電解液中のPF やBF と反応して、酸化アルミニウムよりも耐食性が高いフッ化アルミニウムAlF被膜が形成される。 An aluminum alloy foil obtained by adding an additive element to aluminum is used for a positive electrode current collector foil of a lithium ion secondary battery. Hereinafter, it is also simply referred to as an aluminum foil. A natural oxide film (aluminum oxide film) covering the surface of the aluminum foil can prevent corrosion in the electrolytic solution. Furthermore, during the first charge, the surface of the aluminum foil reacts with PF 6 and BF 4 in the electrolytic solution to form an aluminum fluoride AlF 3 coating having higher corrosion resistance than aluminum oxide.
 酸化アルミニウムは絶縁体であるので、アルミニウム箔と、その表面に塗布した活物質層の間は絶縁されているはずである。しかし実際には、アルミニウム箔がリチウムイオン電池の正極集電箔として用いられていることが示すように、アルミニウム箔と活物質層の間は十分な電気伝導性が存在する。自然酸化膜に覆われていながら電気伝導性を示す理由として、自然酸化膜に欠陥が存在することが考えられる。また、アルミニウムの自然酸化膜は数nm程度と薄いので、トンネル電流が流れていることも考えられる。 Since aluminum oxide is an insulator, it should be insulated between the aluminum foil and the active material layer applied on its surface. However, in practice, sufficient electrical conductivity exists between the aluminum foil and the active material layer, as shown by the fact that the aluminum foil is used as a positive electrode current collector foil of a lithium ion battery. It is considered that a defect exists in the natural oxide film as a reason for showing electrical conductivity while being covered with the natural oxide film. Further, since the natural oxide film of aluminum is as thin as several nanometers, it is considered that a tunnel current flows.
 また、酸化アルミニウムの上に、アルミニウムと支持塩の反応でフッ化アルミニウム被膜が形成された場合も、被膜中の欠陥を導電経路とした電流が流れていることが考えられる。 Also, when an aluminum fluoride film is formed on the aluminum oxide by a reaction between aluminum and a supporting salt, it is considered that a current flows using defects in the film as a conductive path.
 非水溶媒は、電極と酸化還元反応をしない範囲を示す電位窓が、水系電解液よりも広いが、電圧が4Vを超えるリチウムイオン電池では、正極、負極表面での酸化または還元反応を無視できない。溶媒が分解すると、溶媒の組成の変化や分解生成物が電極表面に堆積することによる、電池の内部抵抗の増加や、発生したガスによる電極積層体内でのLiイオンの伝導阻害などの問題が生じる。電極表面での電解液の分解を防止するためには、充電過程で分解して正極または負極の活物質表面に被膜を形成する添加剤が有効である。この被膜はLiイオンを通すが、電子伝導性を持たないので、電極活物質表面での電解液の分解を抑制することができる。たとえば、正極活物質表面に被膜を形成する添加剤にチオフェンがある。チオフェンは、正極活物質表面で酸化重合して被膜を形成する。また、負極活物質表面に被膜を形成する添加剤として、ビニレンカーボネートが知られている。 The non-aqueous solvent has a wider potential window indicating the range in which no oxidation-reduction reaction occurs with the electrode than the aqueous electrolyte solution. However, in a lithium ion battery having a voltage exceeding 4 V, oxidation or reduction reaction on the positive and negative electrode surfaces cannot be ignored. . When the solvent decomposes, problems such as increase in the internal resistance of the battery due to changes in the composition of the solvent and accumulation of decomposition products on the electrode surface and inhibition of Li ion conduction in the electrode stack due to the generated gas occur. . In order to prevent decomposition of the electrolytic solution on the electrode surface, an additive that decomposes during the charging process to form a film on the active material surface of the positive electrode or the negative electrode is effective. Although this film allows Li ions to pass through, it does not have electronic conductivity, so that the decomposition of the electrolyte solution on the surface of the electrode active material can be suppressed. For example, thiophene is an additive that forms a film on the surface of the positive electrode active material. Thiophene is oxidized and polymerized on the surface of the positive electrode active material to form a film. In addition, vinylene carbonate is known as an additive for forming a film on the surface of the negative electrode active material.
 しかし、電池内部には、電極活物質表面以外にも電位が加わる部分が存在する。たとえば、電極から電流を取り出すための集電箔延伸部や電流を電池外部に取り出すタブの表面である。そのため、添加剤によって電極活物質表面に被膜を形成した場合にも、電解液の分解が生じる恐れがある。 However, there are portions where potential is applied inside the battery in addition to the surface of the electrode active material. For example, it is the surface of the current collector foil extending portion for taking out current from the electrode or the surface of a tab for taking out current from the battery. Therefore, even when a film is formed on the surface of the electrode active material by the additive, the electrolytic solution may be decomposed.
 特許文献1(特開2011-216360号公報)には、電極と電気的につながっている金属露出部における電解液の分解を抑制する技術が、開示されている。正極板と負極板がセパレータを介して巻回された渦巻電極体の、正極芯体露出部と負極板との間に位置する部分でセパレータのガーレー式透気度を大きくすることでセパレータの保持する電解液の量を減らし、正極芯体露出部に加わる電位による電解液の分解を抑制している。 Patent Document 1 (Japanese Patent Laid-Open No. 2011-216360) discloses a technique for suppressing the decomposition of the electrolytic solution in the exposed metal portion electrically connected to the electrode. Holding the separator by increasing the Gurley-type air permeability of the separator at the portion located between the positive electrode core exposed portion and the negative electrode plate of the spiral electrode body in which the positive electrode plate and the negative electrode plate are wound via the separator. The amount of the electrolytic solution to be reduced is reduced, and the decomposition of the electrolytic solution due to the potential applied to the exposed portion of the positive electrode core is suppressed.
 しかし、特許文献1(特開2011-216360号公報)の方法は電池内の他の場所と比べて相対的に電解液の量を減らすものであるので、電解液と金属露出部の接触を大きく抑えることが難しい。また、電解液は金属露出部との接触箇所にセパレータを通じて供給され続けるので、電解液の分解が続く問題がある。 However, since the method of Patent Document 1 (Japanese Patent Application Laid-Open No. 2011-216360) reduces the amount of the electrolytic solution relative to other places in the battery, the contact between the electrolytic solution and the exposed metal portion is greatly increased. It is difficult to suppress. In addition, since the electrolytic solution continues to be supplied through the separator to the contact portion with the exposed metal portion, there is a problem that the electrolytic solution continues to be decomposed.
 特許文献2(特開平11-007962号公報)には、正極と電気的に接続されたアルミニウムの表面にフッ素化合物を主体とする被膜を形成することで、アルミニウムの腐食を防ぐ技術が、記載されている。例えばアルミニウム箔をフッ素ガス中で加熱して表面をフッ化した後に、正極活物質を塗布する。しかし、集電箔と活物質の間は導電性が無ければ電池として機能しないので、特許文献2のフッ化アルミは電子導電性をもつ。そのため、アルミニウム集電箔の延伸部に特許文献2のフッ化アルミニウムを形成しても電子の授受が生じ、電解液の酸化分解は防止できない。 Patent Document 2 (Japanese Patent Laid-Open No. 11-007962) describes a technique for preventing corrosion of aluminum by forming a film mainly composed of a fluorine compound on the surface of aluminum electrically connected to the positive electrode. ing. For example, after heating the aluminum foil in fluorine gas and fluorinating the surface, the positive electrode active material is applied. However, if there is no electrical conductivity between the current collector foil and the active material, it will not function as a battery, so the aluminum fluoride disclosed in Patent Document 2 has electronic conductivity. Therefore, even if the aluminum fluoride disclosed in Patent Document 2 is formed in the extending portion of the aluminum current collector foil, electrons are transferred and oxidative decomposition of the electrolytic solution cannot be prevented.
 特許文献3(特開2001-084993)には、電池の内部から外部に電流を取り出すためのタブの表面に酸化被膜を形成する技術が記載されている。また、特許文献4(特許第4298883号公報)には、アルミニウムタブの表面にアルミニウム水和物を熱水煮沸または熱蒸気によってつくる方法が記載されている。 Patent Document 3 (Japanese Patent Laid-Open No. 2001-084993) describes a technique for forming an oxide film on the surface of a tab for taking out current from the inside of the battery to the outside. Patent Document 4 (Japanese Patent No. 4298883) describes a method for producing aluminum hydrate on the surface of an aluminum tab by boiling in hot water or using hot steam.
 特許文献3と特許文献4の技術は、タブがラミネートフィルムに挟まれて封止される箇所に酸化膜やアルミニウム水和物を形成して、タブの表面が電解液で腐食するのを防止することで、タブとラミネートの密着性を保つことを目的としている。酸化膜やアルミニウム水和物は絶縁性なので電解液の分解を防止できるが、特許文献3と特許文献4の技術では、集電箔の延伸部や電池内部に配置されるタブには酸化膜やアルミニウム水和物が形成されないので、この領域での電解液の分解を防止できない。 The techniques of Patent Document 3 and Patent Document 4 form an oxide film or aluminum hydrate at a place where the tab is sandwiched and sealed between the laminate films, and prevents the surface of the tab from being corroded by the electrolytic solution. This is intended to maintain the adhesion between the tab and the laminate. Since the oxide film and the aluminum hydrate are insulative, decomposition of the electrolyte solution can be prevented. However, in the techniques of Patent Document 3 and Patent Document 4, an oxide film or Since aluminum hydrate is not formed, decomposition of the electrolyte in this region cannot be prevented.
 特許文献5(特開昭62-61268)と特許文献6(特開2013-012468)には、端子材料またはタブの、ラミネート外装体で封止される箇所を樹脂で覆うことが記載されている。これらは、端子材料またはタブとラミネート外装体の接着性を上げるためのものである。端子材料またはタブの、樹脂で被覆された箇所は電解液に対して絶縁されるので、電解液の電気分解は起きない。しかし、樹脂で被覆されていない部分では金属が露出している、あるいはナノメートルオーダーのきわめて薄い酸化膜が存在するだけなので、電解液の電気分解を防止できない。 Patent Document 5 (Japanese Patent Laid-Open No. 62-61268) and Patent Document 6 (Japanese Patent Laid-Open No. 2013-012468) describe that a portion of a terminal material or tab that is sealed with a laminate outer package is covered with a resin. . These are for increasing the adhesion between the terminal material or tab and the laminate outer package. Since the portion of the terminal material or tab covered with the resin is insulated from the electrolytic solution, the electrolytic solution does not electrolyze. However, since the metal is exposed or only a very thin oxide film on the order of nanometers exists in a portion not covered with resin, electrolysis of the electrolytic solution cannot be prevented.
 特許文献5には、端子材料を覆う樹脂が電池内部方向に延伸した場合も記載されている。これは、端子が異なる極性の電極板と接触することを防ぐためであり、端子材料の導電体が電解液と接触するのを完全に防止するものではない。また、特許文献5では、電極板の正極合剤を塗布した面と反対側の面は金属が露出しており、電解液の酸化分解が生じる恐れがある。 Patent Document 5 also describes a case where the resin covering the terminal material extends in the battery internal direction. This is to prevent the terminals from coming into contact with electrode plates having different polarities, and does not completely prevent the conductor of the terminal material from coming into contact with the electrolytic solution. Further, in Patent Document 5, the surface of the electrode plate opposite to the surface on which the positive electrode mixture is applied is exposed with metal, and there is a risk of oxidative decomposition of the electrolytic solution.
特開2011-216360号公報JP 2011-216360 A 特開平11-007962号公報JP-A-11-007962 特開2001-084993JP2001 / 084993A 第4298883号公報No. 4298883 特開昭62-61268JP 62-61268 A 特開2013-012468JP2013-012468
 以上のように、特許文献1~6のいずれも、リチウムイオン電池の電極およびタブの金属表面(特には、正極集電箔および正極タブ)を電解液から電気的に十分絶縁することができない。 As described above, none of Patent Documents 1 to 6 can sufficiently electrically insulate the metal surfaces of the electrodes and tabs of the lithium ion battery (particularly, the positive electrode current collector foil and the positive electrode tab) from the electrolytic solution.
 そこで本発明の目的は、リチウムイオン二次電池の電解液の分解を抑制して、電池内部でのガス発生と電解液溶媒の組成ずれが少ない、長寿命のリチウムイオン二次電池およびその製造方法を提供することである。 Accordingly, an object of the present invention is to suppress the decomposition of the electrolyte solution of the lithium ion secondary battery, and to reduce the gas generation inside the battery and the composition deviation of the electrolyte solvent, and to provide a long-life lithium ion secondary battery and a manufacturing method thereof Is to provide.
 本発明のリチウムイオン二次電池は、電池内部の、正極の露出部、および、正極と電気的に接続された金属の表面を、酸化処理、あるいは絶縁材料や絶縁フィルムによる被覆を行うことで電解液から電気的に絶縁して電解液の酸化分解を抑制する。また、負極の露出部、および、負極と電気的に接続された金属の表面を、酸化処理、あるいは絶縁材料や絶縁フィルムによる被覆を行うことで電解液から電気的に絶縁して、電解液の還元分解を抑制する。 The lithium ion secondary battery of the present invention is electrolyzed by subjecting the exposed portion of the positive electrode inside the battery and the surface of the metal electrically connected to the positive electrode to oxidation treatment or coating with an insulating material or an insulating film. It electrically insulates from the liquid and suppresses oxidative decomposition of the electrolytic solution. In addition, the exposed portion of the negative electrode and the surface of the metal electrically connected to the negative electrode are electrically insulated from the electrolytic solution by oxidation treatment or coating with an insulating material or insulating film. Inhibits reductive decomposition.
 上記課題を達成するための本発明の一形態のリチウムイオン二次電池は、
 電極である複数の正極および負極がセパレータを介して積層され、前記複数の正極に電気的に接続され電池外部に引き出される正極タブと、前記複数の負極に電気的に接続され電池外部に引き出される負極タブとを有するリチウムイオン二次電池であって、
 前記正極は、活物質が塗布されていない集電箔の露出部を有し、
 前記露出部の少なくとも一部が絶縁性材料で覆われ、かつ、前記正極タブのうち電池内部に配置される部分が絶縁性材料で覆われている。
In order to achieve the above object, a lithium ion secondary battery according to an embodiment of the present invention is provided.
A plurality of positive electrodes and negative electrodes, which are electrodes, are stacked via a separator, and are connected to the plurality of positive electrodes and drawn to the outside of the battery, and are electrically connected to the plurality of negative electrodes and drawn to the outside of the battery. A lithium ion secondary battery having a negative electrode tab,
The positive electrode has an exposed portion of a current collector foil not coated with an active material,
At least a part of the exposed portion is covered with an insulating material, and a portion of the positive electrode tab that is disposed inside the battery is covered with an insulating material.
 なお、本明細書において「絶縁性材料で覆われている」と言った場合には、必ずしも部材全体が完全に覆われている形態に限らず、図6を参照して後述するように、端面は絶縁されておらず主面(表面および裏面)のみが覆われている態様をも含むものとする。端面は、主面に対して露出面積が小さく仮に絶縁されていなくても、電解液の酸化分解への影響は相対的に小さいためである。 In the present specification, the phrase “covered with an insulating material” is not necessarily limited to a form in which the entire member is completely covered, but as described later with reference to FIG. Includes a mode in which only the main surface (front surface and back surface) is covered without being insulated. This is because the end surface has a relatively small influence on the oxidative decomposition of the electrolytic solution even if the end surface has a small exposed area with respect to the main surface and is not insulated.
 本発明によれば、リチウムイオン二次電池内の電極と電気的に接続された金属部材の表面における電解液の電気分解と、それに伴うガス発生を防止することができるので、リチウムイオン二次電池の長期信頼性を向上させることができる。 According to the present invention, it is possible to prevent electrolysis of the electrolytic solution on the surface of the metal member electrically connected to the electrode in the lithium ion secondary battery and the accompanying gas generation, so that the lithium ion secondary battery Can improve long-term reliability.
本発明の一形態によるリチウムイオン二次電池を模式的に表す分解斜視図である。1 is an exploded perspective view schematically showing a lithium ion secondary battery according to an embodiment of the present invention. 本発明の一形態における電極積層体の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the electrode laminated body in one form of this invention. (a)本発明の一形態における負極の模式図である。(b)本発明の一形態における正極の模式図である。(A) It is a schematic diagram of the negative electrode in one form of this invention. (B) It is a schematic diagram of the positive electrode in one form of this invention. 電極の他の形状の例である。It is an example of the other shape of an electrode. 本発明の他の実施形態のリチウムイオン二次電池を模式的に示す平面図である。It is a top view which shows typically the lithium ion secondary battery of other embodiment of this invention. 電極延伸部または電極タブの形状を模式的に示す斜視図である。It is a perspective view which shows the shape of an electrode extending | stretching part or an electrode tab typically.
〔第一の実施形態〕
<リチウムイオン二次電池の基本的構成>
 リチウムイオン二次電池の電極体の構造には、大別して、捲回型と積層型がある。本発明はいずれにも適用されるが、積層型に好適に適用される。本発明を適用できるリチウムイオン二次電池の形態としては、電極積層体を、樹脂フィルムと金属フィルムのラミネートフィルムによる外装体に収めた積層ラミネート型が好適である。
[First embodiment]
<Basic configuration of lithium ion secondary battery>
The structure of the electrode body of the lithium ion secondary battery is roughly classified into a wound type and a laminated type. The present invention can be applied to both, but is preferably applied to a laminated type. As a form of the lithium ion secondary battery to which the present invention can be applied, a laminated laminate type in which the electrode laminate is housed in an exterior body made of a laminate film of a resin film and a metal film is suitable.
 以下、積層ラミネート型の二次電池を例に挙げて説明する。まず初めに、図1~図4を参照しつつ本実施形態のリチウムイオン二次電池の全体的な構成を説明し、次いで、各部の詳細な説明を行うものとする。 Hereinafter, a laminated laminate type secondary battery will be described as an example. First, the overall configuration of the lithium ion secondary battery of the present embodiment will be described with reference to FIGS. 1 to 4, and then each part will be described in detail.
 なお、以下の説明では、正極および負極の集電箔が「延伸部」を有し(図3、詳細後述)、その延伸部が、活物質が塗布されていない「露出部」となっている態様について説明するが、本発明は必ずしもこれに限定されるものでない。例えば、延伸部の一部にも活物質が塗布される態様であってもよいし、あるいは逆に、延伸部以外の領域の一部にも活物質が塗布されない領域が存在する態様であってもよい。すなわち、本発明においては、活物質が塗布されている「露出部」が絶縁性材料によって被覆されていればよい。より具体的には、露出部の少なくとも一部が絶縁性材料によって被覆されていればよい。 In the following description, the current collector foils of the positive electrode and the negative electrode have “stretched portions” (FIG. 3, details will be described later), and the stretched portions are “exposed portions” where no active material is applied. Although an aspect is demonstrated, this invention is not necessarily limited to this. For example, the active material may be applied to a part of the stretched part, or conversely, the active material may be applied to a part of the area other than the stretched part. Also good. That is, in the present invention, it is only necessary that the “exposed portion” to which the active material is applied is covered with an insulating material. More specifically, it is sufficient that at least a part of the exposed portion is covered with an insulating material.
 図1に例示するように、本実施形態のリチウムイオン二次電池1は、電極積層体10と、そこから引き出された正極タブ63および負極タブ53(以下、正極、負極を区別せずに単に「電極タブ」ということもある)と、電極積層体10および電極タブの一部を電解液とともに収容する外装体とを備えている。 As illustrated in FIG. 1, the lithium ion secondary battery 1 of the present embodiment includes an electrode stack 10, and a positive electrode tab 63 and a negative electrode tab 53 (hereinafter, positive electrode and negative electrode are not distinguished from each other). And an electrode stack 10 and an exterior body that houses part of the electrode tab together with the electrolyte.
 電極積層体10は、複数の正極および複数の負極がセパレータを介して積層されたものである。限定されるものではないが、電極積層体10は、一例で、上方から見た平面視でその輪郭が長方形(矩形)の平たい直方体形状を有するものであってもよい。 The electrode laminate 10 is obtained by laminating a plurality of positive electrodes and a plurality of negative electrodes with a separator interposed therebetween. Although not limited, the electrode laminated body 10 may be a flat rectangular parallelepiped shape whose outline is a rectangle (rectangle) in a plan view as viewed from above.
 図3(a)に示すように、負極21は、平面視で長方形型に形成され活物質が塗布される領域(活物質塗布面)22と、その周縁部から伸び出した負極集電箔延伸部23(負極活物質は塗布されない)とを有している。この例では、負極の延伸部23は、図1の左右方向における左寄りの位置に設けられている。 As shown in FIG. 3A, the negative electrode 21 is formed in a rectangular shape in a plan view, and a region 22 (active material application surface) on which an active material is applied, and a negative electrode current collector foil extending from the peripheral portion thereof Part 23 (the negative electrode active material is not applied). In this example, the extending portion 23 of the negative electrode is provided at a position on the left side in the left-right direction in FIG.
 図3(b)に示すように、正極31は、一例で負極21とほぼ対称形状に形成されている。すなわち、正極31も、平面視で長方形状に形成され活物質が塗布される領域(活物質塗布面)32と、その周縁部から伸び出した正極集電箔延伸部33(負極活物質は塗布されない)とを有している。 As shown in FIG. 3B, the positive electrode 31 is formed in a substantially symmetrical shape with the negative electrode 21 as an example. That is, the positive electrode 31 is also formed in a rectangular shape in a plan view, and an active material application surface 32 (active material application surface) 32 and a positive electrode current collector foil extending portion 33 extending from the peripheral portion (the negative electrode active material is applied). Not).
 正極の延伸部33は、正極および負極を積層した際に、負極の延伸部23と重ならないように、負極の延伸部23とは反対側(図1Bの左右方向における右寄りの位置)に形成されている。 The positive electrode extending portion 33 is formed on the opposite side to the negative electrode extending portion 23 (a position on the right side in the left-right direction in FIG. 1B) so as not to overlap the negative electrode extending portion 23 when the positive electrode and the negative electrode are laminated. ing.
 正極および負極の積層構造に関し、負極活物質塗布面22が、正極活物質塗布面32よりも面積が広く、したがって、正極活物質塗布面32は、セパレータ25(図2参照)を介して、相対する負極活物質塗布面22の内側に収まっている構成としてもよい。 Regarding the laminated structure of the positive electrode and the negative electrode, the negative electrode active material application surface 22 has a larger area than the positive electrode active material application surface 32, and therefore the positive electrode active material application surface 32 is relative to the separator 25 (see FIG. 2). It is good also as a structure accommodated inside the negative electrode active material application surface 22 to do.
 なお、図面では詳細な図示を省略しているが、各集電体から伸び出した複数の正極延伸部および複数の負極延伸部が、従来公知の方式で、それぞれ一つに集められていてもよい。こうして集められた延伸部の一部に対して、電極タブが電気的に接続される。一例で、図1の状態で、複数の延伸部23、33の下面側に、電極タブ53、63が接続されるようになっていてもよい。 In addition, although detailed illustration is abbreviate | omitted in drawing, even if the several positive electrode extending | stretching part and several negative electrode extending | stretching part which extended from each electrical power collector were each gathered together by the conventionally well-known system, respectively. Good. The electrode tab is electrically connected to a part of the extended portion collected in this way. For example, in the state of FIG. 1, the electrode tabs 53 and 63 may be connected to the lower surface side of the plurality of extending portions 23 and 33.
 電極タブと延伸部との接続には、超音波溶接を用いてもよい。電極タブ53、63の一部は外装体から突出するように構成されている。電極タブ53、63のラミネート外装体に挟みこまれる部分には、熱シール用樹脂15(図1参照)が設けられていてもよい。 Ultrasonic welding may be used for connection between the electrode tab and the extended portion. Part of the electrode tabs 53 and 63 is configured to protrude from the exterior body. A heat sealing resin 15 (see FIG. 1) may be provided at a portion of the electrode tabs 53 and 63 sandwiched between the laminate outer bodies.
 ラミネート外装体としては、図1に示すように、2枚の外装材11、12によってその厚み方向両側から包囲されるものであってもよい。外装材11、12は、可撓性を有するラミネートフィルムであってもよく、外装材によって形成される外装体内には電解液も内包される。 As shown in FIG. 1, the laminate outer package may be surrounded by two outer packaging materials 11 and 12 from both sides in the thickness direction. The exterior materials 11 and 12 may be a laminate film having flexibility, and an electrolytic solution is also included in the exterior body formed by the exterior material.
 なお、当然ながら、電極積層体10や、各電極の活物質塗布面22、32の輪郭形状は、長方形以外にも、正方形や多角形など、任意の形状とすることができる。延伸部23、33の引出し方向(電極タブの引出し方向)についても、種々変更可能である。図1の例では、図の後方向に両電極タブが引き出されているが、一方の電極タブと他方の電極タブとを逆向きとしてもよい。 Of course, the contour shape of the electrode laminate 10 and the active material application surfaces 22 and 32 of each electrode may be any shape such as a square or a polygon other than a rectangle. Various changes can be made to the extending direction of the extending portions 23 and 33 (the extending direction of the electrode tab). In the example of FIG. 1, both electrode tabs are drawn out in the rearward direction of the drawing, but one electrode tab and the other electrode tab may be reversed.
<負極>
 本実施形態における負極活物質は、特に制限されるものではなく、例えば、リチウムイオンを吸蔵、放出し得る炭素材料(a)、リチウムと合金可能な金属(b)、およびリチウムイオンを吸蔵、放出し得る金属酸化物(c)等が挙げられる。
<Negative electrode>
The negative electrode active material in the present embodiment is not particularly limited. For example, the carbon material (a) that can occlude and release lithium ions, the metal (b) that can be alloyed with lithium, and the lithium ions are occluded and released. The metal oxide (c) etc. which can be mentioned.
 炭素材料(a)としては、例えば、黒鉛、非晶質炭素、カーボンナノチューブ、またはこれらの複合物等が挙げられる。ここで、結晶性の高い炭素は、電気伝導性が高く、銅などの金属からなる負極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。 Examples of the carbon material (a) include graphite, amorphous carbon, carbon nanotube, or a composite thereof. Here, carbon with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper. On the other hand, since amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
 金属(b)としては、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらの2種以上の合金等が挙げられる。また、これらの金属又は合金は2種以上混合して用いてもよい。また、これらの金属又は合金は1種以上の非金属元素を含んでもよい。 Examples of the metal (b) include Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or alloys of two or more thereof. It is done. Moreover, you may use these metals or alloys in mixture of 2 or more types. These metals or alloys may contain one or more non-metallic elements.
 金属酸化物(c)としては、例えば、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物等が挙げられる。本実施形態では、負極活物質として酸化スズ若しくは酸化シリコンを含むことが好ましく、酸化シリコンを含むことがより好ましい。これは、酸化シリコンは、比較的安定で他の化合物との反応を引き起こしにくいからである。また、金属酸化物(c)に、窒素、ホウ素およびイオウの中から選ばれる一種または二種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物(c)の電気伝導性を向上させることができる。 Examples of the metal oxide (c) include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof. In this embodiment, it is preferable that tin oxide or silicon oxide is included as a negative electrode active material, and it is more preferable that silicon oxide is included. This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds. In addition, one or more elements selected from nitrogen, boron, and sulfur may be added to the metal oxide (c), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (c) can be improved.
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、ステンレス、クロム、銅、銀、またはそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。 The negative electrode current collector is preferably aluminum, nickel, stainless steel, chromium, copper, silver, or an alloy thereof in view of electrochemical stability. Examples of the shape include foil, flat plate, and mesh.
(負極延伸部の絶縁について)
 本実施形態において、負極の延伸部23(図1~図3参照)は絶縁材料で覆われていることが好ましい。図2では、負極の延伸部23が絶縁性材料16で被覆された様子が描かれている。
(Insulation of the negative electrode extension)
In the present embodiment, the negative electrode extension 23 (see FIGS. 1 to 3) is preferably covered with an insulating material. In FIG. 2, a state in which the extending portion 23 of the negative electrode is covered with the insulating material 16 is illustrated.
 絶縁性材料によるこのような被覆としては、
-ポリエチレンやポリプロピレンなど熱可塑性樹脂の溶融塗布、
-溶剤に溶解させた樹脂材料の塗布と乾燥・硬化、
-樹脂フィルムやテープの貼り付け等のうち1つまたは組合せで行うことができる。
As such a coating with an insulating material,
-Melt application of thermoplastic resin such as polyethylene and polypropylene,
-Application and drying / curing of resin material dissolved in solvent,
-It can be done in one or a combination of resin film or tape sticking.
 絶縁性材料は、図6に例示するように、負極延伸部のおもて面5a、裏面5b、および各切断面(端面)5c、5d、5eに形成されることが好ましい。ただし、切断面5c~5eの面積に比較して、おもて面5aおよび裏面5bの面積が大きいことからこれらの両面のみを被覆するようにしてもよい。このような事項は、後述する正極の延伸部、各電極タブに絶縁性材料を形成する場合も同様である。 As illustrated in FIG. 6, the insulating material is preferably formed on the front surface 5a, the back surface 5b, and the cut surfaces (end surfaces) 5c, 5d, and 5e of the negative electrode extending portion. However, since the areas of the front surface 5a and the back surface 5b are larger than the areas of the cut surfaces 5c to 5e, only these both surfaces may be covered. The same applies to the case where an insulating material is formed on the extending portion of the positive electrode and each electrode tab described later.
 本明細書において、延伸部/電極タブが「絶縁性材料が覆われている」と言った場合には、このように延伸部や電極タブのおもて面5aおよび裏面5bのみに絶縁性材料を形成した状態も含まれるものとする。 In this specification, when the extending portion / electrode tab says “the insulating material is covered”, the insulating material is applied only to the front surface 5a and the back surface 5b of the extending portion or the electrode tab. The state in which is formed is also included.
(正極延伸部の絶縁について) (Insulation of the positive electrode extension)
 正極集電体の材質は、アルミニウムまたはアルミニウムを主成分とする合金であってもよく、その形態としては、箔状、平板状、またはメッシュ状が挙げられる。 The material of the positive electrode current collector may be aluminum or an alloy containing aluminum as a main component, and examples thereof include a foil shape, a flat plate shape, and a mesh shape.
 正極31は、図3(b)のような所定の寸法に切り出された後、酸化処理されたものであってもよい。これにより、延伸部33の表面に酸化被膜(図2の符号26参照)が形成され、絶縁性がもたらされるためである。酸化処理は、電極積層体を作製する前に実施されればよい。上記した負極の延伸部の場合と同様、延伸部のおもて面5a、裏面5b、および各切断面(端面)5c、5d、5eに形成されることが好ましい(図6参照)。具体的には、正極の切断面(端面)に露出したアルミニウムに対しても、酸化処理によって酸化被膜が形成されることがより好ましい。ただし、おもて面5aおよび裏面5bのみを被覆するようにしてもよい。 The positive electrode 31 may be one that has been cut into a predetermined dimension as shown in FIG. This is because an oxide film (see reference numeral 26 in FIG. 2) is formed on the surface of the extending portion 33, thereby providing insulation. The oxidation treatment may be performed before producing the electrode laminate. As in the case of the extending portion of the negative electrode described above, it is preferably formed on the front surface 5a, the back surface 5b, and the respective cut surfaces (end surfaces) 5c, 5d, and 5e (see FIG. 6). Specifically, it is more preferable that an oxide film is formed by oxidation treatment on aluminum exposed on the cut surface (end surface) of the positive electrode. However, you may make it coat | cover only the front surface 5a and the back surface 5b.
 正極活物質が水分を吸収するのを防ぐため、熱水や熱水蒸気による酸化よりも、酸素やオゾンなどによるドライプロセスによる酸化が望ましい。 In order to prevent the positive electrode active material from absorbing moisture, oxidation by dry process with oxygen or ozone is preferable to oxidation with hot water or hot steam.
 正極活物質としては、LiMnO、LixMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造を持つマンガン酸リチウムまたはスピネル構造を有するマンガン酸リチウム、LiCoO、LiNiOまたはこれらの遷移金属の一部を他の金属で置き換えたもの、LiNi1/3Co1/3Mn1/3などの特定の遷移金属が半数を超えないリチウム遷移金属酸化物、これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの、LiFePOなどのオリビン構造を有するもの、等が挙げられる。また、これらの金属酸化物に、Al、Fe,P,Ti,Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等により一部置換した材料も使用することができる。正極活物質は、一種を単独で、または二種以上を組み合わせて使用することができる。 The positive electrode active material has a layered structure such as LiMnO 2 , LixMn 2 O 4 (0 <x <2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 <x <2). Lithium manganate or lithium manganate having a spinel structure, LiCoO 2 , LiNiO 2 or a part of these transition metals replaced with other metals, LiNi 1/3 Co 1/3 Mn 1/3 O 2, etc. Lithium transition metal oxides whose specific transition metals are less than half, those in which these lithium transition metal oxides have an excess of Li over the stoichiometric composition, those having an olivine structure such as LiFePO 4 , etc. It is done. Further, these metal oxides were partially substituted with Al, Fe, P, Ti, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, etc. Materials can also be used. A positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
 また、ラジカル材料等を正極活物質として用いることも可能である。正極活物質の塗布層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。 Also, radical materials or the like can be used as the positive electrode active material. A conductive auxiliary material may be added to the coating layer of the positive electrode active material for the purpose of reducing impedance. Examples of the conductive auxiliary material include carbonaceous fine particles such as carbon black and acetylene black.
 なお、負極や正極の形状は、図3に示すものに限定されず、一例として、集電箔の延伸部が存在すればよい。例えば、図3の例では延伸部23、33が側縁部付近に配置されているが、それ以外にも、延伸部が側縁部からやや内側にずれた位置に配置されていてもよい。また、正極の延伸部と負極の延伸部の形状が異なっていてもよい。 In addition, the shape of the negative electrode or the positive electrode is not limited to that shown in FIG. 3. For example, it is only necessary that the extending portion of the current collector foil exists. For example, although the extending portions 23 and 33 are disposed in the vicinity of the side edge in the example of FIG. 3, the extending portion may be disposed at a position slightly shifted inward from the side edge. Moreover, the shape of the extending part of the positive electrode and the extending part of the negative electrode may be different.
 また、図4のような構成をとることもできる。この構成の場合、正極と負極は、一方の集電箔延伸部42が他方の集電箔延伸部42と重なることなく交互に反対の方向になるように、セパレータを介して積層される。 Also, the configuration shown in FIG. 4 can be taken. In the case of this configuration, the positive electrode and the negative electrode are laminated via separators so that one current collecting foil extending portion 42 is alternately opposite to the other current collecting foil extending portion 42 without overlapping.
<セパレータ>
 セパレータは、正極板と負極板を絶縁し、かつ、電解液を保持して正極と負極の間にリチウムイオンを伝導させる役割を持つ。一般に、ポリオレフィン系の微多孔膜で、厚さが15μmから25μm程度のものが使用されている。他には、セルロースの不織布、合成繊維の不織布が使用されている。本実施形態のリチウムイオン二次電池では、通常のリチウムイオン二次電池に使用されるセパレータであれば特段の制約なしに用いることができる。
<Separator>
The separator has a role of insulating the positive electrode plate and the negative electrode plate and holding lithium electrolyte and conducting lithium ions between the positive electrode and the negative electrode. Generally, a polyolefin-based microporous film having a thickness of about 15 μm to 25 μm is used. In addition, a cellulose nonwoven fabric and a synthetic fiber nonwoven fabric are used. In the lithium ion secondary battery of the present embodiment, any separator that is used in a normal lithium ion secondary battery can be used without any particular limitation.
<電解液>
 本実施形態で用いる電解液は、リチウム塩と、このリチウム塩を溶解する非水溶媒を含む非水電解液を用いることができる。
<Electrolyte>
As the electrolytic solution used in the present embodiment, a non-aqueous electrolytic solution including a lithium salt and a non-aqueous solvent that dissolves the lithium salt can be used.
 非水溶媒としては、炭酸エステル(鎖状又は環状カーボネート)、カルボン酸エステル(鎖状又は環状カルボン酸エステル)、リン酸エステル等の非プロトン性有機溶媒を用いることができる。又は、これらの化合物の一部の水素原子がフッ素原子で置換されたものが挙げられる。 As the non-aqueous solvent, an aprotic organic solvent such as carbonate ester (chain or cyclic carbonate), carboxylic acid ester (chain or cyclic carboxylic acid ester), and phosphate ester can be used. Or what substituted some hydrogen atoms of these compounds by the fluorine atom is mentioned.
 炭酸エステル溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体が挙げられる。 Examples of carbonate solvents include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. (EMC), chain carbonates such as dipropyl carbonate (DPC); and propylene carbonate derivatives.
 カルボン酸エステル溶媒としては、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;γ-ブチロラクトン等のラクトン類が挙げられる。 Examples of the carboxylic acid ester solvent include aliphatic carboxylic acid esters such as methyl formate, methyl acetate, and ethyl propionate; and lactones such as γ-butyrolactone.
 これらの中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(MEC)、ジプロピルカーボネート(DPC)等の炭酸エステル(環状または鎖状カーボネート類)、これらの化合物の一部の水素原子がフッ素原子で置換されたものが好ましい。 Among these, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (MEC), dipropyl carbonate Carbonate esters (cyclic or chain carbonates) such as (DPC) and those in which some hydrogen atoms of these compounds are substituted with fluorine atoms are preferred.
 リン酸エステルとしては、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリオクチル、リン酸トリフェニル等が挙げられる。 Examples of the phosphate ester include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, trioctyl phosphate, triphenyl phosphate, and the like.
 また、非水電解液に含有できる溶媒としては、その他にも、例えば、エチレンサルファイト(ES)、プロパンサルトン(PS)、ブタンスルトン(BS)、Dioxathiolane-2,2-dioxide(DD)、スルホレン、3-メチルスルホレン、スルホラン(SL)、無水コハク酸(SUCAH)、無水プロピオン酸、無水酢酸、無水マレイン酸、ジアリルカーボネート(DAC)、2,5-ジオキサヘキサンニ酸ジメチル、2,5-ジオキサヘキサンニ酸ジメチル、フラン、2,5-ジメチルフラン、ジフェニルジサルファイド(DPS)、ジメトキシエタン(DME)、ジメトキシメタン(DMM)、ジエトキシエタン(DEE)、エトキシメトキシエタン、クロロエチレンカーボネート、ジメチルエーテル、メチルエチルエーテル、メチルプロピルエーテル、エチルプロピルエーテル、ジプロピルエーテル、メチルブチルエーテル、ジエチルエーテル、フェニルメチルエーテル、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-MeTHF)、テトラヒドロピラン(THP)、1,4-ジオキサン(DIOX)、1,3-ジオキソラン(DOL)、メチルアセテート、エチルアセテート、プロピルアセテート、イソプロピルアセテート、ブチルアセテート、メチルジフルオロアセテート、メチルプロピオネート、エチルプロピオネート、プロピルプロピオネート、メチルフォルメイト、エチルフォルメイト、エチルブチレート、イソプロピルブチレート、メチルイソブチレート、メチルシアノアセテート、ビニルアセテート、ジフェニルジスルフィド、ジメチルスルフィド、ジエチルスルフィド、アジポニトリル、バレロニトリル、グルタロニトリル、マロノニトリル、スクシノニトリル、ピメロニトリル、スベロニトリル、イソブチロニトリル、ビフェニル、チオフェン、メチルエチルケトン、フルオロベンゼン、ヘキサフルオロベンゼン、カーボネート電解液、グライム、エーテル、アセトニトリル、プロピオンニトリル、γ-ブチロラクトン、γ-バレロラクトン、ジメチルスルホキシド(DMSO)イオン液体、ホスファゼン、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、又は、これらの化合物の一部の水素原子がフッ素原子で置換されたものが挙げられる。 Other solvents that can be contained in the non-aqueous electrolyte include, for example, ethylene sulfite (ES), propane sultone (PS), butane sultone (BS), dioxathilane-2,2-dioxide (DD), and sulfolene. 3-methylsulfolene, sulfolane (SL), succinic anhydride (SUCAH), propionic anhydride, acetic anhydride, maleic anhydride, diallyl carbonate (DAC), dimethyl 2,5-dioxahexanoate, 2,5 Dimethyl hexane hexanoate, furan, 2,5-dimethylfuran, diphenyl disulfide (DPS), dimethoxyethane (DME), dimethoxymethane (DMM), diethoxyethane (DEE), ethoxymethoxyethane, chloroethylene carbonate , Dimethyl ether, methyl Tyl ether, methyl propyl ether, ethyl propyl ether, dipropyl ether, methyl butyl ether, diethyl ether, phenyl methyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), tetrahydropyran (THP), 1,4-dioxane (DIOX), 1,3-dioxolane (DOL), methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, methyl difluoroacetate, methyl propionate, ethyl propionate, propyl propionate, methyl formate , Ethyl formate, ethyl butyrate, isopropyl butyrate, methyl isobutyrate, methyl cyanoacetate, vinyl acetate, diphe Rudisulfide, dimethylsulfide, diethylsulfide, adiponitrile, valeronitrile, glutaronitrile, malononitrile, succinonitrile, pimonitrile, suberonitrile, isobutyronitrile, biphenyl, thiophene, methyl ethyl ketone, fluorobenzene, hexafluorobenzene, carbonate electrolyte, Glyme, ether, acetonitrile, propiononitrile, γ-butyrolactone, γ-valerolactone, dimethyl sulfoxide (DMSO) ionic liquid, aliphatic carboxylic acid esters such as phosphazene, methyl formate, methyl acetate, ethyl propionate, or the like A compound in which a part of hydrogen atoms of a compound is substituted with a fluorine atom.
 本実施形態における支持塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiN(CFSO等の通常のリチウムイオン電池に使用可能なリチウム塩を用いることができる。支持塩は、一種を単独で、または二種以上を組み合わせて使用することができる。 As the supporting salt in this embodiment, LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN ( CF 3 SO 2) 2 normal lithium salt which can be used in lithium ion batteries or the like can be used. The supporting salt can be used alone or in combination of two or more.
<タブ>
(正極タブ)
 正極タブ63には、アルミニウムまたはアルミニウムを主成分とする合金を利用できる。正極タブ63のうち、少なくとも電池内部に配置される部分の表面には酸化被膜が形成される。この酸化被膜は、例えば、アルミニウムの表面を酸化処理することによって形成される膜であってもよい。
<Tab>
(Positive electrode tab)
For the positive electrode tab 63, aluminum or an alloy containing aluminum as a main component can be used. An oxide film is formed on the surface of at least the portion of the positive electrode tab 63 disposed inside the battery. This oxide film may be, for example, a film formed by oxidizing the surface of aluminum.
 酸化処理は、正極タブが積層体と接続される前に行われてもよい。なお、正極タブの、外装体の外部に配置される領域は電解液と接触しないので、酸化処理を行わなくてもよい。 The oxidation treatment may be performed before the positive electrode tab is connected to the laminate. In addition, since the area | region arrange | positioned outside the exterior body of a positive electrode tab does not contact electrolyte solution, it is not necessary to perform an oxidation process.
 なお、正極タブ63は正極延伸部33と超音波溶接で接続されうるが、正極集電箔延伸部33の溶接部表面の酸化膜と正極タブ63表面の酸化被膜は、超音波溶接時に破壊されるので、両部材間は電気的に導通することとなる。 The positive electrode tab 63 can be connected to the positive electrode extension portion 33 by ultrasonic welding, but the oxide film on the surface of the positive electrode current collector foil extension portion 33 and the oxide film on the surface of the positive electrode tab 63 are destroyed during ultrasonic welding. Therefore, both members are electrically connected.
 一方、超音波溶接の場合、正極延伸部33および/または正極タブ63に超音波溶接機のホーンとアンビルの痕が残ることとなるが、少なくともこの痕部を覆うように絶縁性材料が設けられることも好ましい。この場合、絶縁性材料による被覆は:
-ポリエチレンやポリプロピレンなど熱可塑性樹脂の溶融塗布、
-溶剤に溶解させた樹脂材料の塗布と乾燥・硬化、
-樹脂フィルムやテープなどのシート状部材の貼付け等、
 の1つまたは組合せで行うことができる。
On the other hand, in the case of ultrasonic welding, traces of the horn and anvil of the ultrasonic welder remain on the positive electrode extending portion 33 and / or the positive electrode tab 63, but an insulating material is provided so as to cover at least the trace portion. It is also preferable. In this case, the coating with insulating material is:
-Melt application of thermoplastic resin such as polyethylene and polypropylene,
-Application and drying / curing of resin material dissolved in solvent,
-Pasting sheet-like members such as resin films and tapes
Can be done in one or a combination.
 樹脂フィルムやテープの貼付けに関し、そのようなシート状部材は、集電箔の延伸部の一方の面上または電極タブの一方の面上に貼られるようなサイズにカットされたものであってもよい。他の態様としては、テープ状の部材を溶着部に巻きつける(あるいは挟み込む)ようなものであってもよい。さらに他の態様としては、2枚のシート状の部材で上下から挟み込むようにしてもよい。 Regarding the application of the resin film or tape, such a sheet-like member may be cut to a size that can be applied to one surface of the extending portion of the current collector foil or one surface of the electrode tab. Good. As another aspect, a tape-like member may be wound (or sandwiched) around the welded portion. As still another aspect, the sheet may be sandwiched from above and below by two sheet-like members.
(負極タブ)
 負極タブは、銅やニッケルからなるものであってもよい。負極タブについては、本実施形態では、酸化処理は行わないが、負極タブの金属露出部のうち電池の内部に配置される部分が絶縁材料で覆われる。具体的には、この場合も上記同様、絶縁性材料による被覆は、ポリエチレンやポリプロピレンなど熱可塑性樹脂の溶融塗布、溶剤に溶解させた樹脂材料の塗布と乾燥・硬化、樹脂フィルムやテープなどのシート状部材の貼り付け等のうち1つまたは組合せで行うことができる。
(Negative electrode tab)
The negative electrode tab may be made of copper or nickel. In the present embodiment, the negative electrode tab is not oxidized, but the portion of the metal exposed portion of the negative electrode tab that is disposed inside the battery is covered with an insulating material. Specifically, in this case as well, as described above, coating with an insulating material is performed by applying a thermoplastic resin such as polyethylene or polypropylene, applying and drying / curing a resin material dissolved in a solvent, a sheet such as a resin film or a tape. It can be carried out by one or a combination of pasting of the shaped members.
 正極タブおよび負極タブに対する絶縁性材料の被覆に関しても、上記した延伸部の場合と同様、タブのおもて面5a、裏面5b、および各切断面(端面)5c、5d、5eに形成されることが好ましいが(図6参照)、その他にも、おもて面5aおよび裏面5bのみを被覆するような形態であってもよい。 The covering of the insulating material on the positive electrode tab and the negative electrode tab is also formed on the front surface 5a, the back surface 5b, and the cut surfaces (end surfaces) 5c, 5d, and 5e of the tab, as in the case of the above-described extending portion. Although it is preferable (refer FIG. 6), the form which covers only the front surface 5a and the back surface 5b may be sufficient.
<外装体>
 外装体としては、電解液に安定で、かつ十分な水蒸気バリア性を持つものであれば、適宜選択することができる。例えば、積層ラミネート型の二次電池の場合、外装体には、アルミニウムと樹脂によるラミネートフィルムを用いることが好ましい。外装体は、単一の部材で構成してもよいし、複数の部材を組み合わせて構成してもよい。
<Exterior body>
The exterior body can be appropriately selected as long as it is stable to the electrolytic solution and has a sufficient water vapor barrier property. For example, in the case of a laminated laminate type secondary battery, it is preferable to use a laminate film made of aluminum and resin for the exterior body. An exterior body may be comprised with a single member and may be comprised combining several members.
〔第二の実施形態〕
 本発明の第二の実施形態では、第一の実施形態で行った正極の酸化および正極タブの酸化処理を行わない。その他の、正極および負極の材料、電解液、セパレータ、外装体は第一の実施の形態と同じである。
[Second Embodiment]
In the second embodiment of the present invention, the oxidation of the positive electrode and the oxidation treatment of the positive electrode tab performed in the first embodiment are not performed. The other positive electrode and negative electrode materials, electrolytic solution, separator, and outer package are the same as those in the first embodiment.
 図5に、第二の実施形態における積層体と負極タブ、正極タブの模式図を示す。電極積層体10は、正極と正極タブの酸化処理を行わないことを除いて、第一の実施形態と基本的に同様に作製される。ただし、酸化被膜が形成されないことから、延伸部が全体的に絶縁性材料16によって覆われている。 FIG. 5 shows a schematic diagram of the laminate, the negative electrode tab, and the positive electrode tab in the second embodiment. The electrode laminate 10 is produced basically in the same manner as in the first embodiment except that the positive electrode and the positive electrode tab are not oxidized. However, since the oxide film is not formed, the extending portion is entirely covered with the insulating material 16.
 超音波溶接された正極集電箔延伸部と、正極タブ63の電池内部に配置される金属露出部が、絶縁性材料で覆われている。正極の金属露出部を電解液から絶縁することで、電解液の酸化分解が抑制される。 The ultrasonic welded positive electrode current collector foil extending portion and the exposed metal portion of the positive electrode tab 63 disposed inside the battery are covered with an insulating material. Insulating the exposed metal part of the positive electrode from the electrolytic solution suppresses oxidative decomposition of the electrolytic solution.
 負極集電箔延伸部と、負極タブ53の電池内部に配置される金属露出部も、同様に、絶縁性材料で覆われている。負極の金属露出部を電解液から絶縁することで、電解液の還元分解が抑制される。 Similarly, the negative electrode current collector foil extending portion and the exposed metal portion of the negative electrode tab 53 disposed inside the battery are also covered with an insulating material. Insulating the metal exposed portion of the negative electrode from the electrolytic solution suppresses reductive decomposition of the electrolytic solution.
 絶縁性材料としては熱、例えば、可塑性のポリエチレンやポリプロピレンの樹脂の溶融塗布が使用される。その他、絶縁性で耐電解液性を有する樹脂を使用することもできる。 As the insulating material, heat, for example, melt coating of plastic polyethylene or polypropylene resin is used. In addition, an insulating and electrolyte-resistant resin can be used.
 以上、2つの実施形態を通して説明したように、本発明の一形態によれば、正極の延伸部、正極タブ、負極の延伸部、および負極タブといった金属露出部分の少なくとも一部が絶縁性材料で覆われているので、その部分における金属と電解液との接触が実質的に防止され、その結果、電池内の電解液の分解が抑制される。 As described above through the two embodiments, according to one aspect of the present invention, at least a part of the exposed metal portion such as the positive electrode extension portion, the positive electrode tab, the negative electrode extension portion, and the negative electrode tab is an insulating material. Since it is covered, the contact of the metal and electrolyte solution in the part is substantially prevented, As a result, decomposition | disassembly of the electrolyte solution in a battery is suppressed.
 活物質が塗布されていない露出部(金属露出部)のうち絶縁性材料で覆われている部分が一部分のみであったとしても、当該露出部が全く絶縁されていない構成と比較して電解液の分解を抑制できるという効果は奏されるのであるから、こうした構成も本発明の一態様として好ましい。「露出部の少なくとも一部が覆われる」態様としては、一例として、露出部の面積(箔の両面が露出している場合は両面の総露出面積。また、箔の端面の面積は含まない。)の10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、または90%以上の領域が覆われていることが好ましい。箔の両面が露出している場合、少なくとも片面の露出部が全体的に覆われる構成としてもよい。 Even if only a part of the exposed portion (metal exposed portion) that is not coated with the active material is covered with an insulating material, the electrolytic solution is compared with a configuration in which the exposed portion is not insulated at all. Such an arrangement is also preferable as one embodiment of the present invention. As an example of the aspect “at least a part of the exposed portion is covered”, the area of the exposed portion (when both surfaces of the foil are exposed, the total exposed area of both surfaces. The area of the end surface of the foil is not included). 10) or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more is preferably covered. When both surfaces of the foil are exposed, at least one exposed portion may be entirely covered.
 上記の説明では、負極電極延伸部と負極タブの電池の内部に配置される部分を絶縁被覆で覆ったが、非水電解液の耐還元性が強くて還元分解が生じない場合には、負極側の絶縁被覆は必要ない。正極と電気的につながった金属露出部を被覆することで、電解液の酸化分解を抑えることができる。 In the above description, the negative electrode extension portion and the portion of the negative electrode tab that are disposed inside the battery are covered with an insulating coating. However, if the nonaqueous electrolyte is strong in reducing resistance and does not undergo reductive decomposition, the negative electrode There is no need for side insulation. By covering the exposed metal portion electrically connected to the positive electrode, oxidative decomposition of the electrolytic solution can be suppressed.
 上記説明では、延伸部23、33を、活物質が塗布されない露出部として説明したが、前述のとおり、金属露出部の形状が必ずしも延伸部形状に一致している必要はない。 In the above description, the extending portions 23 and 33 have been described as exposed portions where the active material is not applied, but as described above, the shape of the exposed metal portion does not necessarily match the shape of the extending portion.
 上述した各部についての説明は、本発明の内容を逸脱しない範囲において適宜見合わせることが可能である。 The description of each part described above can be made as appropriate as long as it does not depart from the content of the present invention.
(付記)
 本明細書は、以下の発明を開示する:
1.電極である複数の正極および負極がセパレータを介して積層され、前記複数の正極に電気的に接続され電池外部に引き出される正極タブと、前記複数の負極に電気的に接続され電池外部に引き出される負極タブとを有するリチウムイオン二次電池であって、
 前記正極は、活物質が塗布されていない集電箔の露出部を有し、
 前記露出部の少なくとも一部が絶縁性材料で覆われ、かつ、前記正極タブのうち電池内部に配置される部分が絶縁性材料で覆われている、リチウムイオン二次電池。
(Appendix)
This specification discloses the following invention:
1. A plurality of positive electrodes and negative electrodes, which are electrodes, are stacked via a separator, and are connected to the plurality of positive electrodes and drawn to the outside of the battery, and are electrically connected to the plurality of negative electrodes and drawn to the outside of the battery. A lithium ion secondary battery having a negative electrode tab,
The positive electrode has an exposed portion of a current collector foil not coated with an active material,
A lithium ion secondary battery in which at least a part of the exposed portion is covered with an insulating material, and a portion of the positive electrode tab disposed inside the battery is covered with an insulating material.
2.前記負極は、活物質が塗布されていない集電箔の露出部を有し、
 前記負極の露出部の少なくとも一部が絶縁性材料で覆われ、かつ、前記負極タブのうち電池内部に配置される部分が絶縁性材料で覆われている、
 上記記載のリチウムイオン二次電池。
2. The negative electrode has an exposed portion of the current collector foil to which no active material is applied,
At least a part of the exposed portion of the negative electrode is covered with an insulating material, and a portion of the negative electrode tab that is disposed inside the battery is covered with an insulating material.
The lithium ion secondary battery described above.
3.前記正極の露出部を覆う前記絶縁性材料が、当該正極の材料の酸化被膜を含み、
 前記正極タブを覆う前記絶縁性材料が、当該タブの材料の酸化被膜を含む、
 上記記載のリチウムイオン二次電池。
3. The insulating material covering the exposed portion of the positive electrode includes an oxide film of the positive electrode material,
The insulating material covering the positive electrode tab includes an oxide film of the material of the tab;
The lithium ion secondary battery described above.
4.前記正極の露出部を覆う前記絶縁性材料、
 前記正極タブを覆う前記絶縁性材料、
 前記負極の露出部を覆う前記絶縁性材料、および、
 前記負極タブを覆う前記絶縁性材料、
 の少なくとも一つが、絶縁性の有機高分子材料を含んでいる、請求項2に記載のリチウムイオン二次電池。
4). The insulating material covering the exposed portion of the positive electrode;
The insulating material covering the positive electrode tab;
The insulating material covering the exposed portion of the negative electrode; and
The insulating material covering the negative electrode tab;
The lithium ion secondary battery according to claim 2, wherein at least one of comprises an insulating organic polymer material.
5.前記有機高分子材料が、シート状の部材である、上記記載のリチウムイオン二次電池。 5. The lithium ion secondary battery as described above, wherein the organic polymer material is a sheet-like member.
6.前記露出部が、集電箔の延伸部である、上記記載のリチウムイオン二次電池。 6). The lithium ion secondary battery according to the above, wherein the exposed portion is a stretched portion of the current collector foil.
7.電極である複数の負極および正極がセパレータを介して積層され、前記複数の正極に電気的に接続され電池外部に引き出される正極タブと、前記複数の負極に電気的に接続され電池外部に引き出される負極タブとを有するリチウムイオン二次電池の製造方法であって、
(a)前記正極の一部に活物質を塗布する工程と、
(b)その後、電極とセパレータを積層する工程の前に、前記正極を酸化雰囲気に曝すことで、前記正極の活物質が塗布されていない露出部を酸化処理してその少なくとも一部に酸化被膜を形成する工程と、
(c)前記正極の露出部と、前記正極タブとを接続する工程と、
 を有する、リチウムイオン二次電池の製造方法。
7). A plurality of negative electrodes and positive electrodes, which are electrodes, are stacked via a separator, are positively connected to the plurality of positive electrodes and drawn out of the battery, and are electrically connected to the plurality of negative electrodes and drawn out of the battery. A method for producing a lithium ion secondary battery having a negative electrode tab,
(A) applying an active material to a part of the positive electrode;
(B) Thereafter, before the step of laminating the electrode and the separator, the positive electrode is exposed to an oxidizing atmosphere to oxidize the exposed portion of the positive electrode where the active material is not applied, and at least a portion thereof is an oxide film. Forming a step;
(C) connecting the exposed portion of the positive electrode and the positive electrode tab;
A method for producing a lithium ion secondary battery.
8.前記(c)工程では、超音波溶接によって前記露出部と前記正極タブとが接続され、
 さらに、
(d)前記超音波溶接により生じた痕部を覆うように絶縁性材料で被覆を行う工程を有する、上記記載のリチウムイオン二次電池の製造方法。
8). In the step (c), the exposed portion and the positive electrode tab are connected by ultrasonic welding,
further,
(D) The method for producing a lithium ion secondary battery according to the above, which includes a step of coating with an insulating material so as to cover a trace formed by the ultrasonic welding.
9.さらに、
(e)前記露出部と前記タブの接続後に、
 少なくとも前記露出部と、前記正極タブの電池内部に配置される部分とを絶縁性材料で覆う工程を有する、上記記載のリチウムイオン二次電池の製造方法。
9. further,
(E) After connecting the exposed portion and the tab,
The method for producing a lithium ion secondary battery as described above, further comprising a step of covering at least the exposed portion and a portion of the positive electrode tab disposed inside the battery with an insulating material.
 本発明の一形態に係る二次電池は蓄電システムに利用できる。蓄電システムとしては、その規模の大小は何ら限定されるものではないが、少なくとも1つの二次電池を有する電源部と、その充放電の監視・制御などを行う制御装置等とを備えている。このような蓄電システムとしては、例えばバックアップ電源であってもよく、大型施設用、事業所用、家庭用など種々のものとすることができる。別の態様としては、二次電池を電動車両に利用することもできる。電動車両としては、少なくとも1つの二次電池を有する電源部と、その充放電の監視・制御などを行う制御装置等とを備えている。 The secondary battery according to one embodiment of the present invention can be used for a power storage system. The scale of the power storage system is not limited in any way, but includes a power supply unit having at least one secondary battery, a control device for monitoring and controlling the charge / discharge, and the like. As such a power storage system, for example, a backup power source may be used, and various types such as for large facilities, offices, and homes can be used. As another aspect, a secondary battery can be used for an electric vehicle. The electric vehicle includes a power supply unit having at least one secondary battery, a control device that performs monitoring / control of charge / discharge, and the like.
 次に、本発明を実施例により具体的に説明する。 Next, the present invention will be specifically described with reference to examples.
<実施例1>
<電池の作製>
(正極の作製)
 正極活物質として、スピネル型の金属複合酸化物で、金属リチウムに対して4.5Vを超える電位で動作するLiNi0.5Mn1.5の粉末を93質量%、導電助剤としてカーボンブラックを3質量%、バインダとしてポリフッ化ビニリデンを4質量%とを混合し、これをN-メチルピロリドン(NMP)に分散させてスラリーとした。その後、正極集電体としてのアルミニウム箔(厚さ20μm)に塗布し、熱乾燥させた。なお、集電箔延伸部を形成する箇所にはスラリーを塗布していない。
<Example 1>
<Production of battery>
(Preparation of positive electrode)
As a positive electrode active material, 93% by mass of LiNi 0.5 Mn 1.5 O 4 powder, which is a spinel-type metal composite oxide and operates at a potential exceeding 4.5 V with respect to metallic lithium, carbon as a conductive assistant 3% by mass of black and 4% by mass of polyvinylidene fluoride as a binder were mixed and dispersed in N-methylpyrrolidone (NMP) to form a slurry. Then, it apply | coated to the aluminum foil (thickness 20 micrometers) as a positive electrode electrical power collector, and was heat-dried. In addition, the slurry is not apply | coated to the location which forms a collector foil extending part.
 集電体の両面に活物質を塗布した後、電極をプレス処理し、処理後の厚さが80μmになるように作製した。さらに、これを延伸部が突き出た形状に打ち抜いた。活物質塗布部分は幅46mm、長さ50mmとした。延伸部は、活物質塗布部の長辺方向に沿って長さ20mm、幅8mmとした。 After applying the active material on both sides of the current collector, the electrode was pressed to produce a thickness of 80 μm after the treatment. Further, this was punched into a shape in which the stretched portion protruded. The active material application portion had a width of 46 mm and a length of 50 mm. The extending part was 20 mm long and 8 mm wide along the long side direction of the active material application part.
 上記の形状に打ち抜いた後、正極に酸化処理を行い延伸部の表面(切断面を含む)に酸化被膜を形成した。具体的には、アルミナ焼結板の上に、正極集電箔延伸部が他の電極と重ならないように、打ち抜いた正極を並べ、これを真空チャンバに入れて1hPaまで減圧した。次に、真空チャンバ内に、酸素ガスを500hPaまで導入し、30分間保持した。 After punching into the above shape, the positive electrode was oxidized to form an oxide film on the surface of the stretched portion (including the cut surface). Specifically, the punched positive electrodes were arranged on an alumina sintered plate so that the positive electrode current collector foil extending portion did not overlap with other electrodes, and this was put in a vacuum chamber and the pressure was reduced to 1 hPa. Next, oxygen gas was introduced into the vacuum chamber up to 500 hPa and held for 30 minutes.
 酸化処理を行う前の正極集電箔延伸部の電気抵抗を、直流4端子法で箔の片側表面に端子を当てて測定したところ、面抵抗は5mΩ/sq.以下で、表面酸化膜の抵抗を見積もることはできなかった。 When the electrical resistance of the positive electrode current collector foil stretched part before the oxidation treatment was measured by applying a terminal to the surface of one side of the foil by the DC 4-terminal method, the sheet resistance was 5 mΩ / sq. Below, the resistance of the surface oxide film could not be estimated.
 これは、集電箔延伸部の表面に形成された酸化膜の電気抵抗が低いために、集電箔本体を電流が流れたためと思われる。酸化処理を行った後に正極集電箔の抵抗を測定した結果、表面酸化膜の膜厚方向の抵抗は、抵抗と面積の積で1×10-3Ωcm台と見積もられ、表面に抵抗層が存在した。 This is presumably because current flowed through the current collector foil body because the electric resistance of the oxide film formed on the surface of the current collector extending portion was low. As a result of measuring the resistance of the positive electrode current collector foil after the oxidation treatment, the resistance in the film thickness direction of the surface oxide film is estimated to be 1 × 10 −3 Ωcm 2 as a product of the resistance and the area, and the resistance on the surface There was a layer.
 なお、本願において集電体や電極タブに形成される「酸化被膜」とは、その抵抗値が1×10-3Ωcm以上程度のものをいう。一方、自然酸化膜の抵抗値は、一般に、1×10-5Ωcm以下程度である。 In the present application, the “oxide film” formed on the current collector or the electrode tab refers to one having a resistance value of about 1 × 10 −3 Ωcm 2 or more. On the other hand, the resistance value of the natural oxide film is generally about 1 × 10 −5 Ωcm 2 or less.
(正極タブ)
 正極のタブはアルミニウム製で、正極の酸化と同じ条件で表面を酸化した。また、正極タブの中央付近には、ポリプロピレンによる熱シール樹脂が設け、外装体の封止は熱シール樹脂を挟み込むように行った。
(Positive electrode tab)
The tab of the positive electrode was made of aluminum, and the surface was oxidized under the same conditions as the oxidation of the positive electrode. Further, a heat seal resin made of polypropylene was provided near the center of the positive electrode tab, and the exterior body was sealed so as to sandwich the heat seal resin.
(負極の作製)
 負極活物質として、人造黒鉛粉末を95質量%、バインダとしてポリフッ化ビニリデンを5質量%とを混合し、NMPに分散させてスラリーとした後、負極集電体として厚さ10μmの銅箔に塗布し、熱乾燥させた。
(Preparation of negative electrode)
As a negative electrode active material, 95% by mass of artificial graphite powder and 5% by mass of polyvinylidene fluoride as a binder are mixed and dispersed in NMP to form a slurry, which is then applied to a copper foil having a thickness of 10 μm as a negative electrode current collector. And heat dried.
 なお、集電箔延伸部を形成する箇所にはスラリーを塗布していない。集電体の両面に活物質を塗布した後、電極をプレス処理し、処理後の厚さが65μmになるように作製した。さらに、これを延伸部が突き出た形状に打ち抜いた。活物質塗布部分は幅50mm、長さ54mmとした。延伸部は、活物質塗布部の長辺方向に沿って長さ20mm、幅8mmで形成した。 In addition, the slurry is not apply | coated to the location which forms a collector foil extending part. After the active material was applied to both sides of the current collector, the electrode was pressed to produce a thickness of 65 μm after the treatment. Further, this was punched into a shape in which the stretched portion protruded. The active material application portion had a width of 50 mm and a length of 54 mm. The stretched part was formed with a length of 20 mm and a width of 8 mm along the long side direction of the active material application part.
(負極タブ)
 負極のタブには、ニッケル製のタブを用いた。負極タブには、ポリプロピレンによる熱シール樹脂を設けた。
(Negative electrode tab)
A nickel tab was used for the negative electrode tab. The negative electrode tab was provided with a heat sealing resin made of polypropylene.
(セパレータ)
 セパレータには、ポリプロピレン製の厚さ25μmの微多孔フィルムを幅54mm、長さ58mmに切断して用いた。
(Separator)
As the separator, a microporous film made of polypropylene having a thickness of 25 μm was cut into a width of 54 mm and a length of 58 mm.
(電極積層体の作製)
 負極、セパレータ、正極、セパレータ、負極、の順に、4枚の正極と5枚の負極を、セパレータを介して交互に積層した。積層体の最も外側の面となる負極は、その外側に対向する正極面が無いため、充放電には関わらない。
(Production of electrode laminate)
In the order of negative electrode, separator, positive electrode, separator, and negative electrode, four positive electrodes and five negative electrodes were alternately laminated via separators. Since the negative electrode which becomes the outermost surface of the laminate does not have a positive electrode surface facing the outer side, it is not involved in charge / discharge.
(電池の作製)
 電極積層体の正極の延伸部と負極の延伸部に、それぞれ正極タブと負極タブを超音波溶接により接合した。正極延伸部と正極タブを超音波溶接した際の、超音波溶接機のホーンとアンビルの痕は、ポリプロピレンテープを貼り付けて被覆した。
(Production of battery)
A positive electrode tab and a negative electrode tab were joined to the extended portion of the positive electrode and the negative electrode of the electrode laminate by ultrasonic welding, respectively. The traces of the horn and anvil of the ultrasonic welder when the positive electrode extension and the positive electrode tab were ultrasonically welded were covered with polypropylene tape.
 使用したポリプロピレンテープは、電解液中に浸漬しても、膨潤や剥離をしない。負極電極の延伸部と、負極タブの電池の内部に配置される箇所も、前記のポリプロピレンテープによって被覆した。 The used polypropylene tape does not swell or peel off even when immersed in the electrolyte. The extending portion of the negative electrode and the portion of the negative electrode tab disposed inside the battery were also covered with the polypropylene tape.
 外装材として、アルミニウムと樹脂からなるラミネートフィルムを80mm×90mmに切断したものを二枚用意した。これら二枚のラミネートフィルムを、電極積層体を間に挟んで重ね合わせた。このとき、電極積層体は、正極タブおよび負極タブがラミネートフィルムの短辺の一つから突出するように配置する。重ね合わせたラミネートフィルム同士を、長辺の一つを残して、残りの三辺を幅5mmで熱溶着した。熱溶着は、タブに設けた熱シール樹脂を挟み込むように行った。 As an exterior material, two sheets of a laminate film made of aluminum and resin cut into 80 mm × 90 mm were prepared. These two laminate films were overlapped with the electrode laminate interposed therebetween. At this time, an electrode laminated body is arrange | positioned so that a positive electrode tab and a negative electrode tab may protrude from one of the short sides of a laminate film. The stacked laminate films were thermally welded with a width of 5 mm on the remaining three sides, leaving one of the long sides. The heat welding was performed so as to sandwich the heat sealing resin provided on the tab.
 次に、熱溶着していない長辺を注液口として、ラミネートフィルムによる外装体内側へ電解液を注入した。電解液の注入後、2kPaまで減圧した雰囲気中で注液口を熱溶着により封止し、これにより電池を完成した。電解液は、エチレンカーボネートとジメチルカーボネートを体積比3:7で混合したものを溶媒とし、溶媒1リットルあたりLiPFを1モル溶解したものを用いた。 Next, the electrolyte solution was injected into the exterior body of the laminate film using the long side not thermally welded as the injection port. After injecting the electrolytic solution, the injection port was sealed by heat welding in an atmosphere reduced to 2 kPa, thereby completing the battery. The electrolyte used was a mixture of ethylene carbonate and dimethyl carbonate in a volume ratio of 3: 7, with 1 mol of LiPF 6 dissolved per liter of solvent.
(電池の評価)
 作製した電池は、5時間率に相当する電流(0.2ItA)で4.8Vまで定電流で充電したあと、合計で10時間の4.8V定電圧充電を行った。次に、0.2ItAの電流で3.0Vまで放電した。以上の充電と放電は25℃の環境下で行った。放電後、25℃での電池体積を空気中と水中の重量差からアルキメデス法で求めて、誦放電試験前の体積とした。充放電試験を、環境温度45℃、上限電圧4.8V、下限電圧3.0V、充放電レート1ItAで100サイクル行った。試験終了後、試験前と同様に25℃での体積を測定した。減圧下で封止されたラミネートフィルムによる外装体は、電解液の分解で発生したガスで電池内部の圧力が高くなると膨らむ。そのため、電池の体積変化から、電解液の分解の多寡を比較することができる。
(Battery evaluation)
The manufactured battery was charged at a constant current up to 4.8 V at a current corresponding to a 5-hour rate (0.2 ItA), and then charged at a constant voltage of 4.8 V for a total of 10 hours. Next, it was discharged to 3.0 V with a current of 0.2 ItA. The above charging and discharging were performed in an environment of 25 ° C. After the discharge, the battery volume at 25 ° C. was obtained by the Archimedes method from the difference in weight between air and water, and was defined as the volume before the soot discharge test. The charge / discharge test was performed 100 cycles at an environmental temperature of 45 ° C., an upper limit voltage of 4.8 V, a lower limit voltage of 3.0 V, and a charge / discharge rate of 1 ItA. After the test, the volume at 25 ° C. was measured as before the test. An exterior body made of a laminate film sealed under reduced pressure swells when the pressure inside the battery increases due to the gas generated by the decomposition of the electrolyte. Therefore, the degree of decomposition of the electrolyte can be compared from the change in volume of the battery.
<実施例2>
(電池の作製)
 実施例2では、正極と正極タブの酸化処理を行わずに電池を作製した。電極積層体の正極の延伸部と負極の延伸部に、それぞれ正極タブと負極タブを超音波溶接により接合したあと、正極集電箔延伸部と、正極タブの電池内部に配置される部分と、負極集電箔延伸部と、負極タブの電池内部に配置される部分を、それぞれポリプロピレンテープで被覆した。このとき、ポリプロピレンテープは、正極タブと負極タブそれぞれの熱シール樹脂と隙間が無く、かつ、熱封止で挟みこまれる箇所にかからないように貼り付けた。その他は、実施例1と同様に電極積層体を作製した。
<Example 2>
(Production of battery)
In Example 2, a battery was manufactured without oxidizing the positive electrode and the positive electrode tab. After joining the positive electrode tab and the negative electrode tab to the extending portion of the positive electrode and the negative electrode of the electrode laminate by ultrasonic welding, respectively, the positive electrode current collector foil extending portion and the portion disposed inside the battery of the positive electrode tab, The negative electrode current collector foil extending portion and the portion of the negative electrode tab disposed inside the battery were each coated with polypropylene tape. At this time, the polypropylene tape was affixed so that there was no gap with the heat sealing resin of each of the positive electrode tab and the negative electrode tab, and it did not cover the portion sandwiched by heat sealing. Otherwise, an electrode laminate was produced in the same manner as in Example 1.
(電池の評価)
 作製した電池は、実施例1と同じ条件で初回の充放電を行い、サイクル試験による体積変化を測定した。
(Battery evaluation)
The manufactured battery was charged and discharged for the first time under the same conditions as in Example 1, and the volume change due to the cycle test was measured.
<実施例3>
(電池の作製)
 ポリプロピレンテープによる負極集電箔延伸部と負極タブの被覆を行わない他は、実施例1と同様に電池を作製した。
<Example 3>
(Production of battery)
A battery was fabricated in the same manner as in Example 1 except that the negative electrode current collector foil stretched portion and the negative electrode tab were not covered with polypropylene tape.
(電池の評価)
  作製した電池は、実施例1と同じ条件で初回の充放電を行い、サイクル試験によるガス発生量の見積もりを行った。
(Battery evaluation)
The manufactured battery was charged and discharged for the first time under the same conditions as in Example 1, and the gas generation amount was estimated by a cycle test.
<比較例1>
(電池の作製)
 実施例2と同じく、正極と正極タブの酸化処理を行わずに、電極積層体を作製した。正極の集電箔延伸部と正極タブを、負極の集電箔延伸部と負極タブを、それぞれ超音波溶接した。さらに、正極側、負極側のいずれにも絶縁性の被覆をせずに、金属部が露出した状態で、実施例1と同様にラミネートフィルムによる外装体に収めて電解液の注入と外装体の封止を行った。
<Comparative Example 1>
(Production of battery)
As in Example 2, an electrode laminate was produced without oxidizing the positive electrode and the positive electrode tab. The positive electrode current collector foil extension and the positive electrode tab were ultrasonically welded to the negative electrode current collector foil extension and the negative electrode tab, respectively. Further, without covering the positive electrode side and the negative electrode side, the metal part is exposed, and in the same manner as in Example 1, it is housed in an exterior body made of a laminate film and injected with electrolyte and Sealing was performed.
(電池の評価)
 作製した電池は、実施例1と同じ条件で初回の充放電を行い、サイクル試験による体積変化を測定した。
(Battery evaluation)
The manufactured battery was charged and discharged for the first time under the same conditions as in Example 1, and the volume change due to the cycle test was measured.
(実施例と比較例の比較)
 表1に、実施例1~3と比較例1の、充放電試験による電池体積の増加量を示す。ここで、体積増加量は、「サイクル試験後の電池体積」から「サイクル試験前の電池体積」を引いた量である。実施例1~3では、サイクル試験による体積の増加が比較例1と比べて少なく、電解液の分解によるガス発生が低減されていることが分かる。
(Comparison of Example and Comparative Example)
Table 1 shows the increase in battery volume in Examples 1 to 3 and Comparative Example 1 by the charge / discharge test. Here, the volume increase amount is an amount obtained by subtracting “battery volume before cycle test” from “battery volume after cycle test”. In Examples 1 to 3, the increase in volume due to the cycle test is small compared to Comparative Example 1, and it can be seen that gas generation due to decomposition of the electrolytic solution is reduced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明は、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野にて利用することができる。具体的には、携帯電話、ノートパソコンなどのモバイル機器の電源、電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車などの電動車両、電車や衛星や潜水艦などの移動・輸送用媒体の電源、UPSなどのバックアップ電源、太陽光発電、風力発電などで発電した電力を貯める蓄電設備、などに利用することができる。 The present invention can be used in all industrial fields that require a power source and industrial fields related to the transport, storage and supply of electrical energy. Specifically, power supplies for mobile devices such as mobile phones and laptop computers, electric vehicles such as electric cars, hybrid cars, electric bikes, electric assist bicycles, power supplies for mobile and transport media such as trains, satellites, and submarines, UPS It can be used for backup power sources such as, power storage facilities that store power generated by solar power generation, wind power generation, etc.
 1 リチウムイオン二次電池
 10 電極積層体
 11 外装材
 12 外装材
 15 熱シール樹脂
 16 絶縁性材料
 21 負極
 22 負極活物質塗布面
 23 負極集電箔の延伸部
 26 酸化被膜
 31 正極
 32 正極活物質塗布面
 33 正極集電箔の延伸部
 41 電極活物質塗布面
 42 電極延伸部
 53 負極タブ
 63 正極タブ
 
DESCRIPTION OF SYMBOLS 1 Lithium ion secondary battery 10 Electrode laminated body 11 Exterior material 12 Exterior material 15 Heat sealing resin 16 Insulating material 21 Negative electrode 22 Negative electrode active material application surface 23 Extension part of negative electrode current collection foil 26 Oxide film 31 Positive electrode 32 Positive electrode active material application Surface 33 Extension part of positive electrode current collector foil 41 Electrode active material application surface 42 Electrode extension part 53 Negative electrode tab 63 Positive electrode tab

Claims (9)

  1.  電極である複数の正極および負極がセパレータを介して積層され、前記複数の正極に電気的に接続され電池外部に引き出される正極タブと、前記複数の負極に電気的に接続され電池外部に引き出される負極タブとを有するリチウムイオン二次電池であって、
     前記正極は、活物質が塗布されていない集電箔の露出部を有し、
     前記露出部の少なくとも一部が絶縁性材料で覆われ、かつ、前記正極タブのうち電池内部に配置される部分が絶縁性材料で覆われている、リチウムイオン二次電池。
    A plurality of positive electrodes and negative electrodes, which are electrodes, are stacked via a separator, and are connected to the plurality of positive electrodes and drawn to the outside of the battery, and are electrically connected to the plurality of negative electrodes and drawn to the outside of the battery. A lithium ion secondary battery having a negative electrode tab,
    The positive electrode has an exposed portion of a current collector foil not coated with an active material,
    A lithium ion secondary battery in which at least a part of the exposed portion is covered with an insulating material, and a portion of the positive electrode tab disposed inside the battery is covered with an insulating material.
  2.  前記負極は、活物質が塗布されていない集電箔の露出部を有し、
     前記負極の露出部の少なくとも一部が絶縁性材料で覆われ、かつ、前記負極タブのうち電池内部に配置される部分が絶縁性材料で覆われている、
     請求項1に記載のリチウムイオン二次電池。
    The negative electrode has an exposed portion of the current collector foil to which no active material is applied,
    At least a part of the exposed portion of the negative electrode is covered with an insulating material, and a portion of the negative electrode tab that is disposed inside the battery is covered with an insulating material.
    The lithium ion secondary battery according to claim 1.
  3.  前記正極の露出部を覆う前記絶縁性材料が、当該正極の材料の酸化被膜を含み、
     前記正極タブを覆う前記絶縁性材料が、当該タブの材料の酸化被膜を含む、
     請求項1または2に記載のリチウムイオン二次電池。
    The insulating material covering the exposed portion of the positive electrode includes an oxide film of the positive electrode material,
    The insulating material covering the positive electrode tab includes an oxide film of the material of the tab;
    The lithium ion secondary battery according to claim 1 or 2.
  4.  前記正極の露出部を覆う前記絶縁性材料、
     前記正極タブを覆う前記絶縁性材料、
     前記負極の露出部を覆う前記絶縁性材料、および、
     前記負極タブを覆う前記絶縁性材料、
     の少なくとも一つが、絶縁性の有機高分子材料を含んでいる、請求項2に記載のリチウムイオン二次電池。
    The insulating material covering the exposed portion of the positive electrode;
    The insulating material covering the positive electrode tab;
    The insulating material covering the exposed portion of the negative electrode; and
    The insulating material covering the negative electrode tab;
    The lithium ion secondary battery according to claim 2, wherein at least one of comprises an insulating organic polymer material.
  5.  前記有機高分子材料が、シート状の部材である、請求項4記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 4, wherein the organic polymer material is a sheet-like member.
  6.  前記露出部が、集電箔の延伸部である、請求項1~5のいずれか一項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 5, wherein the exposed portion is a stretched portion of a current collector foil.
  7.  電極である複数の負極および正極がセパレータを介して積層され、前記複数の正極に電気的に接続され電池外部に引き出される正極タブと、前記複数の負極に電気的に接続され電池外部に引き出される負極タブとを有するリチウムイオン二次電池の製造方法であって、
    (a)前記正極の一部に活物質を塗布する工程と、
    (b)その後、電極とセパレータを積層する工程の前に、前記正極を酸化雰囲気に曝すことで、前記正極の活物質が塗布されていない露出部を酸化処理してその少なくとも一部に酸化被膜を形成する工程と、
    (c)前記正極の露出部と、前記正極タブとを接続する工程と、
     を有する、リチウムイオン二次電池の製造方法。
    A plurality of negative electrodes and positive electrodes, which are electrodes, are stacked via a separator, are positively connected to the plurality of positive electrodes and drawn out of the battery, and are electrically connected to the plurality of negative electrodes and drawn out of the battery. A method for producing a lithium ion secondary battery having a negative electrode tab,
    (A) applying an active material to a part of the positive electrode;
    (B) Thereafter, before the step of laminating the electrode and the separator, the positive electrode is exposed to an oxidizing atmosphere to oxidize the exposed portion of the positive electrode where the active material is not applied, and at least a portion thereof is an oxide film. Forming a step;
    (C) connecting the exposed portion of the positive electrode and the positive electrode tab;
    A method for producing a lithium ion secondary battery.
  8.  前記(c)工程では、超音波溶接によって前記露出部と前記正極タブとが接続され、
     さらに、
    (d)前記超音波溶接により生じた痕部を覆うように絶縁性材料で被覆を行う工程を有する、請求項7に記載のリチウムイオン二次電池の製造方法。
    In the step (c), the exposed portion and the positive electrode tab are connected by ultrasonic welding,
    further,
    (D) The manufacturing method of the lithium ion secondary battery of Claim 7 which has the process of coat | covering with an insulating material so that the trace produced by the said ultrasonic welding may be covered.
  9.  さらに、
    (e)前記露出部と前記タブの接続後に、
     少なくとも前記露出部と、前記正極タブの電池内部に配置される部分とを絶縁性材料で覆う工程を有する、請求項7に記載のリチウムイオン二次電池の製造方法。
    further,
    (E) After connecting the exposed portion and the tab,
    The method for manufacturing a lithium ion secondary battery according to claim 7, further comprising a step of covering at least the exposed portion and a portion of the positive electrode tab disposed inside the battery with an insulating material.
PCT/JP2014/075957 2013-09-30 2014-09-29 Lithium ion secondary battery and method for manufacturing same WO2015046537A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015539439A JPWO2015046537A1 (en) 2013-09-30 2014-09-29 Lithium ion secondary battery and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013205686 2013-09-30
JP2013-205686 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015046537A1 true WO2015046537A1 (en) 2015-04-02

Family

ID=52743658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075957 WO2015046537A1 (en) 2013-09-30 2014-09-29 Lithium ion secondary battery and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2015046537A1 (en)
WO (1) WO2015046537A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017097999A (en) * 2015-11-19 2017-06-01 株式会社デンソー Power storage device, and method for manufacturing the same
JP2017183174A (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Metal foil, manufacturing method thereof, and current collector for power storage device
JP2017188371A (en) * 2016-04-08 2017-10-12 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG Power storage element
EP3376555A1 (en) * 2017-03-17 2018-09-19 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
JP2019053917A (en) * 2017-09-15 2019-04-04 マクセルホールディングス株式会社 Electrochemical element
WO2019108025A1 (en) * 2017-11-30 2019-06-06 주식회사 엘지화학 Cathode for lithium secondary battery and lithium secondary battery comprising same
CN109935745A (en) * 2019-03-12 2019-06-25 武汉昊诚能源科技有限公司 Lithium manganese slimline battery and preparation method thereof
JP2019139844A (en) * 2018-02-06 2019-08-22 トヨタ自動車株式会社 Laminate type battery
CN110199414A (en) * 2017-11-30 2019-09-03 株式会社Lg化学 Positive electrode for lithium secondary battery and lithium secondary battery comprising it
JPWO2019194181A1 (en) * 2018-04-06 2021-04-08 三洋電機株式会社 Non-aqueous electrolyte secondary battery
CN113348573A (en) * 2019-01-29 2021-09-03 三洋电机株式会社 Secondary battery and method for manufacturing same
CN114824293A (en) * 2021-01-29 2022-07-29 泰星能源解决方案有限公司 Electrode plate and secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310402A (en) * 2004-04-16 2005-11-04 Nissan Motor Co Ltd Bipolar battery, battery pack, and vehicle loading these
JP2012164470A (en) * 2011-02-04 2012-08-30 Sanyo Electric Co Ltd Laminate type battery and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310402A (en) * 2004-04-16 2005-11-04 Nissan Motor Co Ltd Bipolar battery, battery pack, and vehicle loading these
JP2012164470A (en) * 2011-02-04 2012-08-30 Sanyo Electric Co Ltd Laminate type battery and manufacturing method thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017097999A (en) * 2015-11-19 2017-06-01 株式会社デンソー Power storage device, and method for manufacturing the same
JP2017183174A (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Metal foil, manufacturing method thereof, and current collector for power storage device
JP7367742B2 (en) 2016-04-08 2023-10-24 株式会社Gsユアサ Energy storage element
JP2017188371A (en) * 2016-04-08 2017-10-12 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG Power storage element
JP2022023105A (en) * 2016-04-08 2022-02-07 株式会社Gsユアサ Power storage element
JP2022023106A (en) * 2016-04-08 2022-02-07 株式会社Gsユアサ Power storage element
JP7367741B2 (en) 2016-04-08 2023-10-24 株式会社Gsユアサ Energy storage element
CN108631008A (en) * 2017-03-17 2018-10-09 株式会社东芝 Secondary cell, battery pack and vehicle
US10347906B2 (en) 2017-03-17 2019-07-09 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
EP3376555A1 (en) * 2017-03-17 2018-09-19 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
JP2019053917A (en) * 2017-09-15 2019-04-04 マクセルホールディングス株式会社 Electrochemical element
CN110199414A (en) * 2017-11-30 2019-09-03 株式会社Lg化学 Positive electrode for lithium secondary battery and lithium secondary battery comprising it
EP3567657A4 (en) * 2017-11-30 2020-04-15 LG Chem, Ltd. Cathode for lithium secondary battery and lithium secondary battery comprising same
WO2019108025A1 (en) * 2017-11-30 2019-06-06 주식회사 엘지화학 Cathode for lithium secondary battery and lithium secondary battery comprising same
US11121374B2 (en) 2017-11-30 2021-09-14 Lg Chem, Ltd. Positive electrode for lithium secondary battery and lithium secondary battery including same
JP2019139844A (en) * 2018-02-06 2019-08-22 トヨタ自動車株式会社 Laminate type battery
JP7167447B2 (en) 2018-02-06 2022-11-09 トヨタ自動車株式会社 laminated battery
JPWO2019194181A1 (en) * 2018-04-06 2021-04-08 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP7343482B2 (en) 2018-04-06 2023-09-12 パナソニックエナジー株式会社 Non-aqueous electrolyte secondary battery
CN113348573A (en) * 2019-01-29 2021-09-03 三洋电机株式会社 Secondary battery and method for manufacturing same
CN109935745A (en) * 2019-03-12 2019-06-25 武汉昊诚能源科技有限公司 Lithium manganese slimline battery and preparation method thereof
CN109935745B (en) * 2019-03-12 2024-04-05 武汉昊诚锂电科技股份有限公司 Primary lithium manganese ultrathin battery and preparation method thereof
JP2022116967A (en) * 2021-01-29 2022-08-10 プライムプラネットエナジー&ソリューションズ株式会社 Electrode plate and secondary battery
CN114824293A (en) * 2021-01-29 2022-07-29 泰星能源解决方案有限公司 Electrode plate and secondary battery
JP7225277B2 (en) 2021-01-29 2023-02-20 プライムプラネットエナジー&ソリューションズ株式会社 Electrode plate and secondary battery
CN114824293B (en) * 2021-01-29 2024-02-02 泰星能源解决方案有限公司 Electrode plate and secondary battery

Also Published As

Publication number Publication date
JPWO2015046537A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015046537A1 (en) Lithium ion secondary battery and method for manufacturing same
JP6765683B2 (en) Electrode assembly for lithium secondary battery, lithium secondary battery and battery module including this
JP4649502B2 (en) Lithium ion secondary battery
EP3193396A1 (en) Non-aqueous electrolyte battery, method for manufacturing same, and non-aqueous electrolyte battery system
JP2010118175A (en) Secondary battery
JP4283598B2 (en) Non-aqueous electrolyte solution and lithium ion secondary battery
US20120202110A1 (en) Secondary battery cell and a battery pack
US20160036038A1 (en) Nonaqueous electrolyte battery and battery pack
KR20100114515A (en) Battery
WO2017204213A1 (en) Lithium ion secondary battery
KR20130116028A (en) The method for preparing electrodes and the electrodes prepared by using the same
JP2010097751A (en) Nonaqueous secondary battery
US20210230002A1 (en) Reduced graphene-based material
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP6398984B2 (en) New compounds, electrolytes and secondary batteries
JP5109441B2 (en) Lithium ion secondary battery manufacturing method and lithium ion secondary battery
JP2005011762A (en) Lithium ion secondary cell
JP6908073B2 (en) Non-aqueous electrolyte secondary battery
JP2014157748A (en) Method for manufacturing nonaqueous electrolyte secondary battery
KR101307772B1 (en) Method for Manufacturing Secondary Battery and Secondary Battery Manufactured thereby
EP3709398A1 (en) Positive electrode, nonaqueous electrolyte electricity storage element, method for producing positive electrode, and method for producing nonaqueous electrolyte electricity storage element
JP4109168B2 (en) Lithium ion secondary battery
JP6819571B2 (en) Separator, its manufacturing method, and lithium ion secondary battery using it
JP6128228B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP7350761B2 (en) Nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849856

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539439

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849856

Country of ref document: EP

Kind code of ref document: A1