WO2019108025A1 - Cathode for lithium secondary battery and lithium secondary battery comprising same - Google Patents

Cathode for lithium secondary battery and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2019108025A1
WO2019108025A1 PCT/KR2018/015109 KR2018015109W WO2019108025A1 WO 2019108025 A1 WO2019108025 A1 WO 2019108025A1 KR 2018015109 W KR2018015109 W KR 2018015109W WO 2019108025 A1 WO2019108025 A1 WO 2019108025A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
lithium secondary
active material
cathode
Prior art date
Application number
PCT/KR2018/015109
Other languages
French (fr)
Korean (ko)
Other versions
WO2019108025A8 (en
Inventor
송주용
김인철
김현민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180151235A external-priority patent/KR102297246B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL18882604.4T priority Critical patent/PL3567657T3/en
Priority to EP18882604.4A priority patent/EP3567657B1/en
Priority to ES18882604T priority patent/ES2928451T3/en
Priority to CN201880007237.9A priority patent/CN110199414B/en
Priority to JP2019536145A priority patent/JP7034406B2/en
Priority to US16/481,006 priority patent/US11121374B2/en
Publication of WO2019108025A1 publication Critical patent/WO2019108025A1/en
Publication of WO2019108025A8 publication Critical patent/WO2019108025A8/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a lithium secondary battery and a lithium secondary battery including the same, and more particularly, to a positive electrode for a high-energy lithium secondary battery and a lithium secondary battery including the same .
  • lithium secondary batteries having high energy density and voltage, long cycle life and low self- It has been commercialized and widely used.
  • lithium-containing manganese oxide and lithium-containing nickel oxide (Nisse 0 2 ) are generally used.
  • a carbon-based material is mainly used as a negative electrode active material, and in recent years, the use of a silicon-based material or a silicon-oxide-based material having an effective capacity ten times or more higher than that of a carbon- .
  • a problem to be solved by the present invention is to solve the problem of mixing a high-volume irreversible additive with a cathode active material to solve the problem of using a cathode.
  • a cathode current collector only a non- A positive electrode for a lithium secondary battery and a lithium secondary battery comprising the same.
  • a lithium secondary battery comprising a positive electrode collector and a positive electrode active material layer coated on at least one surface of the positive electrode collector, wherein the positive electrode collector includes a non-
  • the anode for a rechargeable battery is characterized in that the anode for a secondary battery is coated with an irreversible material composed of tin oxide on the non-rechargeable battery.
  • the irreversible material may be annihilated after the first charge of the lithium secondary battery including the anode for the lithium secondary battery.
  • the irreversible substance may be Ni 2 O 2 , Ni 2 O, or a mixture thereof.
  • an electrode assembly including: an anode, a cathode, and a separator interposed between the anode and the cathode; A nonaqueous electrolytic solution for impregnating the electrode assembly; And a battery case containing the electrode assembly and the non-aqueous electrolyte, wherein the positive electrode is a positive electrode for a re-use secondary battery according to the present invention.
  • the negative electrode may be a negative active material including a silicon (or other) material.
  • the silicon-based material may be a composite of silicon and silicon oxide; A silicon alloy, or a composite of silicon oxide and a silicon alloy.
  • a battery module comprising the lithium secondary battery of the present invention as a unit cell, a battery pack including the same, 2019/108025 1 »(: 1 ⁇ ⁇ 2018/015109
  • a device that includes such a battery pack as a power source.
  • the device may be an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle or a system for power storage.
  • an irreversible material made of lithium oxide is coated on the non-coated portion of the positive electrode current collector, so that the energy density of the battery can be increased.
  • Figs. 13 and 113 are diagrams schematically showing a plan view and a side view of a conventional anode, respectively.
  • FIG. 23 and FIG. 23 are diagrams schematically showing a plan view and a side view of an anode according to an embodiment of the present invention, respectively.
  • FIG 3 is a schematic representation of a side view of an anode after filling according to one embodiment of the present invention.
  • Figure 13 and 11 3 are each a diagram schematically showing a plan view and a side view of a conventional anode.
  • a high-capacity irreversible additive is mixed in the positive electrode active material layer 12 formed on the positive electrode current collector 11, and a high-capacity non-reversible additive dispersed in the positive electrode active material layer 12 As the irreversible additive is decomposed, pores are formed in the place, thereby causing the density of the cathode active material layer 12 to be lowered, and ultimately the energy density of the battery is lowered.
  • FIG. 23 and 21 3 is a view schematically showing a plan view and a side view of a cathode according to an embodiment of the present invention, respectively, Figure 3 is a schematic view of the side of the positive electrode after charging in accordance with an embodiment of the present invention to be.
  • the positive electrode current collector 110 includes a positive electrode active material layer 120 formed on at least one surface of the positive electrode current collector 110, 110 is an anode 100 for a lithium secondary battery including an uncoated portion 130 protruded without coating the positive electrode active material layer 120.
  • An irreversible material 140 made of lithium oxide ) Is coated.
  • the irreversible material 140 formed of the lyrium oxide is coated only on the non-coated portion 130 and is not included in the positive active material layer 120, a process of mixing the positive active material and the irreversible material is not required. Particularly, since the irreversible material 140 composed of lithium oxide is extinguished after the first charge of the lithium secondary battery including the anode 100 for the lithium secondary battery, after the first charge, In the form of a non-existent. 2019/108025 1 »(: 1 ⁇ ⁇ 2018/015109
  • the irreversible material 140 made of lithium oxide can be decomposed into lithium ions and oxygen gas and can be destroyed.
  • the irreversible substance may be Ni 202 Ni 20 or a mixture thereof.
  • the irreversible material 140 may be coated on the non-coated portion 130 in a state dissolved in an organic solvent, and then dried.
  • the irreversible material may be coated to a thickness corresponding to the thickness of the cathode active material layer 120, for example, 10 to 300, or 50 to 250, and then dried to remove the organic solvent.
  • irreversible material 140 is coated and dried to such a thickness, irreversible capacity imbalance of the two electrodes can be effectively canceled even when a silicon-based material is used for the anode, and deterioration of characteristics of the anode can be reduced.
  • the cathode active material included in the cathode active material layer may include a lyotropic transition metal oxide expressed by the following general formula (1) or (2).
  • IV at least one selected from the group consisting of 0, 0, 1 , 0, 1, 1, 2, and 2 period transition metals;
  • the cathode active material layer may further include a binder and a conductive material.
  • the positive electrode is formed in a portion of the positive electrode current collector excluding the non- 2019/108025 1 »(: 1 ⁇ ⁇ 2018/015109
  • An electrode mixture which is a mixture of an active material, a conductive material and a binder is coated and dried. If necessary, a filler may be further added to the mixture.
  • the cathode current collector generally has a thickness of 3 to 500.
  • a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • Examples of the positive electrode current collector include stainless steel, aluminum, nickel, titanium, sintered carbon, aluminum or stainless steel A surface treated with carbon, nickel, titanium, silver or the like may be used.
  • the current collector may form fine irregularities on the surface of the current collector to increase the adhesive force of the cathode active material.
  • Various forms such as a film, a sheet, a foil, a net, a porous body, a foam,
  • the conductive material is usually added in an amount of 1 to 50% by weight based on the total weight of the mixture including the cathode active material.
  • a conductive material is not particularly limited as long as it has electrical conductivity without causing any chemical change in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black , Ketjen black , channel black, furnace black, lamp black , and summer black; conductive fibers such as carbon fiber and metal fiber; metal powders such as carbon fluoride, aluminum and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Titanium oxide 2019/108025 1 »(: 1 ⁇ ⁇ 2018/015109
  • Conductive metal oxides such as tin oxide
  • Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is added to the binder in an amount of 1 to 50% by weight, based on the total weight of the mixture containing the cathode active material, as a component that assists in bonding between the active material and the conductive material and bonding to the current collector.
  • binders examples include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose ( ⁇ 10), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, Polyethylene, polypropylene, ethylene-propylene-diene terpolymer, polyethylene terephthalate, Styrene butadiene rubber, styrene butadiene rubber, fluorine rubber, various copolymers and the like.
  • the filler is not particularly limited as long as it is a fibrous material that is selectively used as a component for suppressing the expansion of the positive electrode and does not cause chemical change in the battery.
  • the filler include an olefin polymer such as polyethylene and polypropylene ; Fiber materials such as glass fibers and carbon fibers are used.
  • the cathode active material layer may be prepared by coating an electrode mixture containing the above-described respective components in a slurry state on a current collector, followed by drying. More specifically, the active material layer may be formed by coating the mixture with a thickness of 10-300 or 50-250, followed by drying to remove the organic solvent, whereby the appropriate characteristics can be exhibited.
  • an electrode assembly comprising: a positive electrode; a negative electrode; and a separator interposed between the positive electrode and the negative electrode; A nonaqueous electrolytic solution for impregnating the electrode assembly; And a battery case containing the electrode assembly and the non-aqueous electrolyte, wherein the positive electrode is a positive electrode according to the present invention as described above.
  • the negative electrode may include a silicon (heli) -based material as an anode active material, and the silicon-based material may be a composite of silicon and silicon oxide and / or a silicon alloy. More specific examples of the silicon- And an alloy (11 110 0 > 0) selected from the group consisting of
  • One or more species can be mentioned.
  • the negative electrode active material may further include a carbon-based material, 2019/108025 1 »(: 1 ⁇ ⁇ 2018/015109
  • the material may be contained in an amount of 70 wt% or more to 99.9 wt% or less based on the total weight of the negative electrode active material.
  • the carbon-based material may include crystalline graphite, crystalline natural graphite, amorphous hard carbon, And may be at least one member selected from the group consisting of black, Ketjen black, super-graphene (meiamelia, and fibrous carbon, specifically, crystalline artificial graphite, and / or crystalline natural graphite.
  • the negative electrode active material may contain, in addition to the carbonaceous material and /
  • the negative electrode current collector constituting the negative electrode is generally made to have a thickness of 3 to 500 _.
  • Such an anode current collector is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and examples of the anode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, a surface of copper or stainless steel A surface treated with carbon, nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like can be used.
  • fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.
  • the separator is an insulating thin film interposed between the positive electrode and the negative electrode and having high ion permeability and mechanical strength.
  • the pore diameter of the separator is generally 0.01 to 10 and the thickness is generally 5 to 300 .
  • an olefin-based polymer such as polypropylene having chemical resistance and hydrophobicity;
  • a sheet or nonwoven fabric made of glass fiber, polyethylene or the like is used.
  • an electrolyte a solid such as a polymer 2019/108025 1 »(: 1 ⁇ ⁇ 2018/015109
  • the solid electrolyte may also serve as a separator.
  • the non-aqueous electrolyte is composed of a non-aqueous electrolyte and a lithium salt.
  • Non-aqueous organic solvents, organic solid electrolytes, and inorganic solid electrolytes are used as the non-aqueous electrolyte.
  • the non-aqueous electrolyte is not limited thereto.
  • non-aqueous organic solvent for example, Methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylolactone, 1,2-dimethoxyethane, tetra
  • hydroxypropyl (co) 2-methyltetrahydrofuran, dimethylsulfoxide, 1, 3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate
  • organic acids such as phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1, 3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, Methyl propionate and ethyl propionate may be used.
  • organic solid electrolyte examples include a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, a polyelectrolytic lysine (3 011), a polyester sulfide, a polyvinyl alcohol, a polyvinyl fluoride A polymerization initiator, a polymerization initiator, a polymerization initiator, a polymerization initiator, and a polymerization initiator.
  • the inorganic solid electrolyte is, for example, you 3 Ne I, needle 52, needle - Needle 1 Needle 0 ⁇ 1, Mannich 04, 1_ 04 - Needle 1 Needle 0 ⁇ , knee,! you 4 & 04, did Hebrews 4 0 4 - you got your 1 0 ⁇ , can be a nitride, halides, sulfates, etc. of you like you ⁇ John ⁇ use.
  • the lithium salt-containing nonaqueous electrolyte may contain, for the purpose of improving charge / discharge characteristics, flame retardancy, etc., for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, Triamides, nitrobenzene derivatives, sulfur, quinone imine dyes, 1 ⁇ 1- substituted oxazolidinones, Imidazolidine, ethylene glycol dialkyl ether, ammonium salts, pyrrole, 2-methoxyethanol, Aluminum trichloride may be added. In some cases, halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further added to impart nonflammability. In order to improve the high-temperature storage characteristics, carbon dioxide gas may be further added. FEC (Fluoro-Ethylene Carbonate, PRS (Propene sultone), and the like.
  • PRS Propene sultone
  • LiCI0 4l you BF 4, LiN (S0 2 CF 3)
  • a lithium salt of 2, and so on, highly dielectric solvent of cyclic carbonate of the EC or PC with a low-viscosity solvent, DEC, DMC, or T VIC can be added to the mixed solvent of linear carbonate to prepare a lithium salt-containing non-aqueous electrolyte.
  • a battery module including the lithium battery as a unit battery, a battery pack including the battery module, and a device including the battery pack as a power source.
  • Example 1 an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a power storage system.
  • BEST MODE FOR CARRYING OUT THE INVENTION the present invention will be described in detail with reference to examples. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the above-described embodiments. The embodiments of the present invention are provided so that those skilled in the art can explain the present invention more clearly and completely.
  • Example 1 Example 1
  • the positive active material ⁇ 10.8000. 02 : conductive material (carbon black, commercial name: 065, 11111031): binder 80: 8: 12, and the mixture was induced in a mortar and dry mixed to prepare a positive electrode mixture of Example 1.
  • NMP organic solvent
  • Example 1 Of ⁇ % 0 2 content of 80 ⁇ How%) was applied in a vacuum oven, and 120 d with a thickness of 200 / L were dried in vacuo 12 hours to give the positive electrode of Example 1. As a result, the.
  • NMP organic solvent
  • V? 9 having a thickness of 9? And a porosity of 42 V? /? E separator was charged into a battery container, an electrolyte was injected, and a lithium secondary battery was produced in the form of a 2032 full cell (No. 1111) according to a conventional manufacturing method.
  • the positive electrode active material ⁇ ( ⁇ 1 0.8000. ⁇ . 1) 02: Lyrium peroxide (1 ⁇ 02): the conductive material (carbon black, trade name I 065, 13 ⁇ 4 10 ⁇ ): Binder
  • the positive electrode of Comparative Example 1 was used in place of the positive electrode of Example 1,
  • Example 1 Discharge: 0.01 C, CC, 2.5 V, cut-off
  • the initial charging capacity of Example 1 was confirmed to be 904 mAh / g
  • the initial charging capacity of Comparative Example 1 was confirmed to be 254 mAh / g.
  • the irreversible additive capacity of the negative electrode can be compensated by commonly applying lyrium peroxide (Li 2 O 2 ) to the positive electrode.
  • ritupperoxide Li 2 O 2
  • Li 2 O 2 ritupperoxide
  • Example 1 the reduction decomposition reaction of the lithium peroxide (Li 2 O 2 ) was performed in an uncoated portion, so that the negative electrode active material layer was formed without affecting the positive electrode active material layer And the coating layer on the non-coated portion disappears.
  • the energy density of the whole battery may not be reduced or may be very small .
  • Comparative Example 1 the reduction decomposition reaction of lithium peroxide (1 run 0 2 ) occurs in the positive electrode active material layer, so that voids are formed in the positive electrode active material layer, and electrode density loss and energy density decrease may occur.
  • Example 1 compared with Comparative Example 1, irreversible capacity imbalance of the two electrodes was effectively canceled, and the initial charging capacity of the anode was high, the energy density loss of the anode was small, and excellent lifetime characteristics could be obtained.

Abstract

The present invention relates to a cathode for a lithium secondary battery and a lithium secondary battery comprising the same, the cathode for a lithium secondary battery comprising: a cathode current collector; and a cathode active material layer formed to be coated on at least one surface of the cathode current collector, wherein the cathode current collector comprises an uncoated portion which protrudes and is not coated with the cathode active material layer, and the uncoated portion has coated thereon a non-reversible material formed of a lithium oxide.

Description

2019/108025 1»(:1^1{2018/015109  2019/108025 1 »(: 1 ^ {2018/015109
【발명의 명칭】 Title of the Invention
리륨이차전지용양극및그를포함하는리툼이차전지  Lithium secondary battery anode and lithium secondary battery containing same
【기술분야】  TECHNICAL FIELD
관련출원(들)과의 상호인용  Cross-reference with related application (s)
본출원은 2017년 11월 30일자한국특허 출원 제 10-2017-0163156호 및 2018년 11월 29일자 한국 특허 출원 제 10-2018-0151235 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은본명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0163156 dated November 30, 2017, and Korean Patent Application No. 10-2018-0151235 dated November 29, 2018, The entire contents of which are incorporated herein by reference.
본 발명은 리튬 이차전지용 양극 및 그를 포함하는 리륨 이차전지에 관한 것으로, 더욱 상세하게는 고에너지 리튬 이차전지용 양극 및 그를 포함하는리튬이차전지에 관한것이다. The present invention relates to a positive electrode for a lithium secondary battery and a lithium secondary battery including the same, and more particularly, to a positive electrode for a high-energy lithium secondary battery and a lithium secondary battery including the same .
【배경기술】  BACKGROUND ART [0002]
다양한 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가급격히 증가하고 있고, 그러한 이차전지 중높은에너지 밀도와전압을가지고,사이클수명이 길며,자기방전율이 낮은 리튬이차전지가상용화되어 널리사용되고있다.  As technology development and demand for various devices have increased, the demand for secondary batteries as energy sources is rapidly increasing. Among such secondary batteries, lithium secondary batteries having high energy density and voltage, long cycle life and low self- It has been commercialized and widely used.
이러한 리튬 이차전지는 양극 활물질로서, 층상 결정구조의 리튬 함유 코발트산화물(니 0)02), 층상 결정구조의 니1\/||102, 스피넬 결정구조의 니1\此204 등의 리튬 함유 망간산화물과, 리튬 함유 니켈 산화물(니세02)을 일반적으로 사용한다. 또한, 음극 활물질로서 탄소계 물질이 주로 사용되며, 최근에는 고에너지 리튬 이차전지의 수요 증가로 탄소계 물질보다 10배 이상의 유효 용량을가지는규소계물질,규소산화계물질과의혼합사용이 고려되고있다. 한편, 최근 추세인 고에너지 리튬 이차전지 개발을 위해서는 실리콘계 물질을음극활물질로사용한음극의 사용이 필수적이라고할수있다.그런데, 실리콘계 물질이 적용된 음극은 비가역 용량이 크기 때문에 충/방전 효율이 낮다는문제점이 있다. As such a lithium secondary battery positive electrode active material, lithium-containing cobalt oxide in the layered crystal structure (Nishi 0) 0, 2), the layered crystal structure Needle 1 \ / || 10 2, of the spinel crystal structure Needle 1 \此2 0 4, etc. Of lithium-containing manganese oxide and lithium-containing nickel oxide (Nisse 0 2 ) are generally used. In addition, a carbon-based material is mainly used as a negative electrode active material, and in recent years, the use of a silicon-based material or a silicon-oxide-based material having an effective capacity ten times or more higher than that of a carbon- . Meanwhile, in order to develop a high-energy lithium secondary battery, which is a recent trend, it is necessary to use an anode using a silicon material as an anode active material. However, since a negative electrode having a silicon material has a large irreversible capacity, .
이러한문제점 해소를위해,니 202등과같은고용량의 비가역 첨가제가 혼합된 양극을적용하여 전지를제조하는방안이 모색되었다.그러나, 첫 번째 충전을 통해, 니 202가 분해되어 산소 가스를 배출하면서, 그 자리에 공극이 발생하게 되고, 이러한 공극 발생으로 인해 첫 번째 충전 후, 양극의 밀도가 2019/108025 1»(:1^1{2018/015109 In order to solve this problem, a method of manufacturing a battery by applying a high-capacity irreversible additive such as Ni 202 and the like has been sought. However, through the first charge, the Ni 202 decomposes and discharges oxygen gas, Voids are formed in the space, and after the first charging due to such pore generation, the density of the anode 2019/108025 1 »(: 1 ^ {2018/015109
낮아지게 되었으며, 이로 인해 전지의 에너지 밀도가 낮아지게 되는 등의 문제가있다. And thus the energy density of the battery is lowered.
【발명의 상세한설명】  DETAILED DESCRIPTION OF THE INVENTION
【기술적 과제】  [Technical Problem]
본 발명이 해결하고자 하는 과제는, 고용량의 비가역 첨가제를 양극 활물질과 혼합하여 양극을 사용한 경우의 문제점을 해소하기 위한 것으로, 양극 집전체에서 활물질층이 코팅되지 않고 돌출되어 형성된 무지부에만 고용량의 비가역 물질을코팅한것을특징으로하는리튬 이차전지용 양극및 그를포함하는리튬이차전지를제공하는것을목적으로한다.  A problem to be solved by the present invention is to solve the problem of mixing a high-volume irreversible additive with a cathode active material to solve the problem of using a cathode. In the cathode current collector, only a non- A positive electrode for a lithium secondary battery and a lithium secondary battery comprising the same.
【기술적 해결방법】  [Technical Solution]
본발명의 일측면에 따르면, 양극집전체 및상기 양극집전체의 적어도 일면에 코팅되어 형성된 양극활물질층을포함하고, 상기 양극 집전체는상기 양극 활물질층이 코팅되지 않고 돌출된 무지부를 포함하는 리륨 이차전지용 양극으로,상기 무지부상에, 리툼산화물로 이루어진 비가역 물질이 코팅되어 있는것을특징으로하는리툼이차전지용양극이 제공된다.  According to an aspect of the present invention, there is provided a lithium secondary battery comprising a positive electrode collector and a positive electrode active material layer coated on at least one surface of the positive electrode collector, wherein the positive electrode collector includes a non- The anode for a rechargeable battery is characterized in that the anode for a secondary battery is coated with an irreversible material composed of tin oxide on the non-rechargeable battery.
이때, 상기 비가역 물질은, 상기 리툼 이차전지용 양극을포함하는 리륨 이차전지의 첫 번째충전이후소멸되는것일수있다.  At this time, the irreversible material may be annihilated after the first charge of the lithium secondary battery including the anode for the lithium secondary battery.
그리고,상기 비가역 물질은,니 202,니 20또는이들의 혼합물일수있다. 한편, 본 발명의 다른 측면에 따르면, 양극, 음극 및 상기 양극과 상기 음극 사이에 개재된 세퍼레이터를 포함하는 전극조립체; 상기 전극조립체를 함침시키는 비수 전해액; 및 상기 전극조립체와상기 비수 전해액을내장하는 전지 케이스를포함하는리툼이차전지에 관한것으로,상기 양극은전술한본 발명에 따른 리툼 이차전지용 양극인 것을 특징으로 하는 리튬 이차전지가 제공된다. The irreversible substance may be Ni 2 O 2 , Ni 2 O, or a mixture thereof. According to another aspect of the present invention, there is provided an electrode assembly including: an anode, a cathode, and a separator interposed between the anode and the cathode; A nonaqueous electrolytic solution for impregnating the electrode assembly; And a battery case containing the electrode assembly and the non-aqueous electrolyte, wherein the positive electrode is a positive electrode for a re-use secondary battery according to the present invention.
여기서, 상기 음극은 음극 활물질로서, 실리콘(외)계 물질을 포함하는 것일수있다.  Here, the negative electrode may be a negative active material including a silicon (or other) material.
이때, 상기 실리콘계 물질은, 실리콘 및 실리콘산화물의 복합체; 실리콘 합금;또는실리콘산화물의 복합체 및실리콘합금일수있다.  The silicon-based material may be a composite of silicon and silicon oxide; A silicon alloy, or a composite of silicon oxide and a silicon alloy.
그리고, 본 발명에 따르면, 전술한 본원발명의 리튬 이차전지를 단위전지로포함하는 것을특징으로하는 전지모듈, 이를포함하는 전지팩 및 2019/108025 1»(:1^1{2018/015109 According to the present invention, there is provided a battery module comprising the lithium secondary battery of the present invention as a unit cell, a battery pack including the same, 2019/108025 1 »(: 1 ^ {2018/015109
이러한전지팩을전원으로포함하는것을특징으로하는디바이스가제공된다. 여기서, 상기 디바이스는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드전기자동차또는전력저장용시스템일수있다. A device is provided that includes such a battery pack as a power source. Here, the device may be an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle or a system for power storage.
【발명의 효과】  【Effects of the Invention】
본 발명에 따르면, 양극 집전체의 무지부 상에 리튬 산화물로 이루어진 비가역 물질이 코팅되어 있어,전지의 에너지 밀도를높일수있다.  According to the present invention, an irreversible material made of lithium oxide is coated on the non-coated portion of the positive electrode current collector, so that the energy density of the battery can be increased.
특히, 양극집전체의 무지부상에만비가역 물질이 코팅되어 있음으로써, 종래기술인 비가역 첨가제가 혼합된 양극에서 나타날 수 있는 공극 발생의 문제점 및그로인해 전지의 에너지 밀도가저하되는현상을해소할수있다. 【도면의 간단한설명】  In particular, since the irreversible material is coated only on the ignition point of the positive electrode current collector, the problem of pore generation that can occur in the positive electrode mixed with the irreversible additive of the prior art, and the phenomenon that the energy density of the battery is lowered, can be solved. BRIEF DESCRIPTION OF THE DRAWINGS
첨부된 도면은 발명의 바람직한 실시예를 예시하는 것이며, 상세한 설명과함께 본발명의 원리를설명하는것으로,발명의 범위가이에 국한되는 것은 아니다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는비율등은보다명확한설명을강조하기 위해서 과장될수있다.  BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. On the other hand, the shape, size, scale or ratio of the elements in the drawings incorporated in the specification can be exaggerated in order to emphasize a clearer explanation.
도 13 및 도 113는 종래 양극의 평면도 및 측면도를 각각 개략적으로 나타낸도면이다.  Figs. 13 and 113 are diagrams schematically showing a plan view and a side view of a conventional anode, respectively.
도 23 및 도 比는 본 발명의 일 실시예에 따른 양극의 평면도 및 측면도를각각개략적으로나타낸도면이다. FIG. 23 and FIG. 23 are diagrams schematically showing a plan view and a side view of an anode according to an embodiment of the present invention, respectively.
_ 도 3은 본 발명의 일 실시예에 따른 충전 후의 양극의 측면휼 개략적으로나타낸도면이다.  3 is a schematic representation of a side view of an anode after filling according to one embodiment of the present invention.
【발명의 실시를위한형태】  DETAILED DESCRIPTION OF THE INVENTION
본 명세서 및 특허청구범위에 사용된 용어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 도시된 구성은본 발명의 가장 바람직한 하나의 실시양태에 불과하고 본 발명의 기술적 사상을 모두 대변하는 것은아니므로, 본출원 시점에 있어서 이들을대체할수 있는 다양한균등물및 변형예가있을수있음을이해하여야한다. 2019/108025 1»(:1^1{2018/015109 The terms used in the specification and claims should not be construed as limited to ordinary or dictionary terms and the inventor may properly define the concept of a term to describe its invention in its best possible way And should be construed in accordance with the principles and meanings and concepts consistent with the technical idea of the present invention. Therefore, the configurations shown in the embodiments described in this specification are only the most preferable embodiments of the present invention and do not represent all the technical ideas of the present invention, so that various equivalents that can be substituted at the time of the present application and It should be understood that there may be variations. 2019/108025 1 »(: 1 ^ {2018/015109
당 업계의 요구에 따른 고에너지 리튬 이차전지 개발을 위해서는 실리콘계 물질을 음극 활물질로 적용한 음극의 사용이 요구되는데, 이러한 음극은 비가역 용량이 커서 충/방전 효율이 낮기 때문에, 이를 해결하기 위해 고용량의 비가역 첨가제가혼합된양극을사용해 왔다. In order to develop a high-energy lithium secondary battery according to the needs of the industry, it is required to use a cathode in which a silicon material is used as a negative electrode active material. In order to solve this problem, the negative electrode has a high irreversible capacity, A positive electrode mixed with an additive has been used.
도 13 및 도 113는 종래 양극의 평면도 및 측면도를 각각 개략적으로 나타낸 도면이다. 상기 도면들을 참고하면, 양극 집전체 (11)상에 형성된 양극 활물질층 (12)에 고용량의 비가역 첨가제가 혼합되어 있는데, 첫 번째 충전을 통해, 양극 활물질층 (12) 내부에 분산되어 있는 고용량의 비가역 첨가제가 분해되면서, 그자리에 공극이 발생하게 되고, 그로 인해 양극활물질층 (12)의 밀도가 낮아져, 궁극적으로 전지의 에너지 밀도가 낮아지게 되는 문제가 발생하였다. Figure 13 and 11 3 are each a diagram schematically showing a plan view and a side view of a conventional anode. Referring to the drawings, a high-capacity irreversible additive is mixed in the positive electrode active material layer 12 formed on the positive electrode current collector 11, and a high-capacity non-reversible additive dispersed in the positive electrode active material layer 12 As the irreversible additive is decomposed, pores are formed in the place, thereby causing the density of the cathode active material layer 12 to be lowered, and ultimately the energy density of the battery is lowered.
본발명에서는양극활물질과고용량의 비가역 첨가제를혼합하지 않고, 양극집전체의 무지부상에만비가역 물질을코팅함으로써 전술한종래기술의 문제점을해소할수있었다. 도 23 및 도 213는 본 발명의 일 실시예에 따른 양극의 평면도 및 측면도를 각각 개략적으로 나타낸 도면이며, 도 3은 본 발명의 일 실시예에 따른충전후의 양극의측면을개략적으로나타낸도면이다. In the present invention, the irreversible material is coated only on the unoccluded portion of the positive electrode current collector without mixing the positive electrode active material and the high-capacity irreversible additive, thereby solving the problems of the above-described conventional techniques. Figure 23 and 21 3 is a view schematically showing a plan view and a side view of a cathode according to an embodiment of the present invention, respectively, Figure 3 is a schematic view of the side of the positive electrode after charging in accordance with an embodiment of the present invention to be.
. 상기 도면들을참조하여 본원발명에 대해 더욱자세히 설명하면, 양극 집전체 (110)및 상기 양극집전체 (110)의 적어도 일면에 코팅되어 형성된 양극 활물질층 (120)을 포함하고, 상기 양극 집전체 (110)는 상기 양극 활물질층 (120)이 코팅되지 않고 돌출된 무지부 (130)를 포함하는 리륨 이차전지용 양극 (100)으로, 상기 무지부 (130) 상에, 리튬 산화물로 이루어진 비가역 물질 (140)이 코팅되어 있는것을특징으로한다.  . The positive electrode current collector 110 includes a positive electrode active material layer 120 formed on at least one surface of the positive electrode current collector 110, 110 is an anode 100 for a lithium secondary battery including an uncoated portion 130 protruded without coating the positive electrode active material layer 120. An irreversible material 140 made of lithium oxide ) Is coated.
상기 리륨 산화물로 이루어진 비가역 물질 (140)이 상기 무지부 (130) 상에만 코팅되어 있고, 양극 활물질층 (120)에는 포함되어 있지 않기 때문에, 양극 활물질과 상기 비가역 물질을 혼합하는 공정이 불필요하다. 특히, 상기 리튬 산화물로 이루어진 비가역 물질 (140)은, 상기 리튬 이차전지용 양극 (100)을포함하는리튬이차전지의 첫 번째충전이후소멸되기 때문에,첫 번째 충전 이후에는 무지부 (130) 상에 코팅층이 없는 형태로 존재하게 된다. 2019/108025 1»(:1^1{2018/015109 Since the irreversible material 140 formed of the lyrium oxide is coated only on the non-coated portion 130 and is not included in the positive active material layer 120, a process of mixing the positive active material and the irreversible material is not required. Particularly, since the irreversible material 140 composed of lithium oxide is extinguished after the first charge of the lithium secondary battery including the anode 100 for the lithium secondary battery, after the first charge, In the form of a non-existent. 2019/108025 1 »(: 1 ^ {2018/015109
이때, 상기 리튬 산화물로 이루어진 비가역 물질 (140)은 리튬 이온과 산소기체로분해되어 소멸될수있다. At this time, the irreversible material 140 made of lithium oxide can be decomposed into lithium ions and oxygen gas and can be destroyed.
이때,상기 비가역 물질은,니 202,20또는이들의 혼합물일수있다. 이러한 비가역 물질 (140)은 유기 용매에 용해된 상태로 상기 무지부 (130) 상에만 코팅된 후, 건조될 수 있다. 이러한 비가역 물질은 양극 활물질층 (120)에 상응하는 두께, 예를 들어, 10 내지 300 , 혹은 50 내지 250_의 두께로코팅된후, 건조되어 상기 유기 용매가제거될수있다. At this time, the irreversible substance may be Ni 202 Ni 20 or a mixture thereof. The irreversible material 140 may be coated on the non-coated portion 130 in a state dissolved in an organic solvent, and then dried. The irreversible material may be coated to a thickness corresponding to the thickness of the cathode active material layer 120, for example, 10 to 300, or 50 to 250, and then dried to remove the organic solvent.
상기 비가역 물질 (140)이 이러한두께로코팅 및 건조됨에 따라,음극에 실리콘계물질이 사용된경우에도두전극의 비가역 용량불균형을효과적으로 상쇄할수있으면서도,양극의 특성 저하등을줄일수았다.  As the irreversible material 140 is coated and dried to such a thickness, irreversible capacity imbalance of the two electrodes can be effectively canceled even when a silicon-based material is used for the anode, and deterioration of characteristics of the anode can be reduced.
한편, 상기 양극 활물질층이 포함하는 양극 활물질은 하기 화학식 1 또는 2로표현되는리륨전이금속산화물을포함할수있다.  Meanwhile, the cathode active material included in the cathode active material layer may include a lyotropic transition metal oxide expressed by the following general formula (1) or (2).
LixMyMn1.yO2.zAz (1) Li x M y Mn 1.y O 2.z A z (1)
상기 식에서, In this formula,
Figure imgf000006_0001
Figure imgf000006_0001
및리로이루어진군에서 선택되는하나이상의 원소이며; And at least one element selected from the group consisting of:
는 -1 또는 -2가의 하나이상의 음이온이고;  Is one or more anions of the -1 or -2 valency;
0.9 <)(< 1.2, 0 <1 , 0 <ᄍ0.2이다.  0.9 <) (<1.2, 0 <1, 0 <0.2.
. —
Figure imgf000006_0002
. -
Figure imgf000006_0002
1\/1’ 은 1\/네이고;  1 \ / 1 'is 1 \ / yes;
IV!은세,ᄁ, 00, /\1, 0니, 1\^, 0,갉, 및 2주기 전이금속들로 이루어진군에서 선택되는하나이상이며; IV, at least one selected from the group consisting of 0, 0, 1 , 0, 1, 1, 2, and 2 period transition metals;
는 P04, 603, 003, 및 1\103의 음이온으로이루어진군에서 선택되는 하나이상이고; Is at least one selected from the group consisting of P0 4 , 60 3, 00 3, and 1 103 anions;
0<>«1 , 0 < 0.02, 0</ < 0.02, 0.5 < 3 < 1.0, 0 < 13 <0.5, a + b = 1이다. 한편,상기 양극활물질층은바인더 및도전재를더 포함할수있다. 그리고, 상기 양극은 양극 집전체의 무지부를 제외한 부분에 양극 2019/108025 1»(:1^1{2018/015109 0 < 0 &lt; 1, 0 < Meanwhile, the cathode active material layer may further include a binder and a conductive material. In addition, the positive electrode is formed in a portion of the positive electrode current collector excluding the non- 2019/108025 1 »(: 1 ^ {2018/015109
활물질, 도전재 및 바인더의 혼합물인 전극 합제를 도포한 후 건조하여 제조되며,필요에 따라서는,상기 혼합물에 충진제를더 첨가하기도한다. An electrode mixture which is a mixture of an active material, a conductive material and a binder is coated and dried. If necessary, a filler may be further added to the mixture.
상기 양극활물질은, 상기 화학식 1 또는 2로표현되는 리튬 전이금속 산화물외에,리튬코발트산화물(니 302),리튬니켈산화물(니 02)등의 증상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 니 1+)<1\/ 2- 必4(여기서, X는 0내지 0.33임),니1\此03,니1\ 203,니1\/1(102등의 리튬망간 산화물;리륨동산화물(니 2이02);니 \/308,니「 어, \/205, 0』2\/207등의 바나듐 산화물;화학식 니 어(여기서, 1\/1 = 00, 1\/1 시, 0^ 1\的, 6또는 Ga이고, X = 0.01 내지 0.3 임)으로 표현되는 사이트형 리툼 니켈 산화물; 화학식
Figure imgf000007_0001
(여기서, IV! = 00, 0, 또는 13이고, X = 0.01 내지 0.1 임) 또는니 21\/1|131\/108(여기서, IV! = 00, 세, 0니또는 임)으로표현되는리륨 망간 복합 산화물; 니 ᄌ어로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 니 일부가 알칼리토금속 아온으로 치환된 니1\ 204; 디설파이드 화합물; 62( 0043등을 포함할수 있지만, 이들만으로 한정되는 것은아니다.
The positive electrode active material may further contain a lithium transition metal oxide represented by the chemical formula 1 or 2, a lithium compound such as lithium cobalt oxide (Ni 2 O 3 ), lithium nickel oxide (Ni 2 O 3 ), or a compound substituted with one or more transition metals compound; Needle formula 1+) <1 \ / 2 - 必4 ( wherein, X is 0 to 0.33), you 1 \此03, needle lithium manganese such as 1 \ 2 0 3, needle 1 \ / 1 (10 2 oxide; Lyrium garden cargo (Nishi 2 0 2); you \ / 3 0 8, you "word, \ / 2 0 5, 0" 2 \ / 2 0 7, vanadium oxide and the like; you formula word (where 1 1/00 = 1, 1, 0, 1, 6 or Ga and X = 0.01 to 0.3); The
Figure imgf000007_0001
(Where IV! = 00, 0, 13 or a, X = 0.01 to 0.1 Im) or you 2 1 \ / 1 | 1 3 1 \ / 10 8 ( where, IV! = 00, 3, 0, or N); Lithium manganese complex oxide of spinel structure expressed in nitrile; The Needle portion of formula is substituted with alkaline earth metal ahon Needle 1 \ 2 0 4; Disulfide compounds; 6 2 (00 4 ) 3 , and the like, but is not limited thereto.
상기 양극 집전체는 일반적으로 3 내지 500 _의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스스틸의 표면에 카본, 니켈, 티탄,은등으로표면처리한것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체,부직포체등다양한형태가가능하다  The cathode current collector generally has a thickness of 3 to 500. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. Examples of the positive electrode current collector include stainless steel, aluminum, nickel, titanium, sintered carbon, aluminum or stainless steel A surface treated with carbon, nickel, titanium, silver or the like may be used. The current collector may form fine irregularities on the surface of the current collector to increase the adhesive force of the cathode active material. Various forms such as a film, a sheet, a foil, a net, a porous body, a foam,
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50중량%로 첨가된다. 이러한도전재는당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙;탄소섬유나금속섬유등의 도전성 섬유;불화카본,알루미늄,니켈 분말등의 금속 분말; 산화아연, 티탄산칼륨 등의 도전성 위스키; 산화 티탄 2019/108025 1»(:1^1{2018/015109 The conductive material is usually added in an amount of 1 to 50% by weight based on the total weight of the mixture including the cathode active material. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing any chemical change in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black , Ketjen black , channel black, furnace black, lamp black , and summer black; conductive fibers such as carbon fiber and metal fiber; metal powders such as carbon fluoride, aluminum and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Titanium oxide 2019/108025 1 »(: 1 ^ {2018/015109
등의 도전성 금속산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수있다. Conductive metal oxides such as tin oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
그리고, 상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는성분으로서,통상적으로양극활물질을포함하는혼합물전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈( ^10), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필텐-디엔 테르 폴리머 ^ 01\/1), 술폰화
Figure imgf000008_0001
스티렌 브티렌 고무, 불소 고무, 다양한 공중합체등을들수있다.
The binder is added to the binder in an amount of 1 to 50% by weight, based on the total weight of the mixture containing the cathode active material, as a component that assists in bonding between the active material and the conductive material and bonding to the current collector. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (^ 10), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, Polyethylene, polypropylene, ethylene-propylene-diene terpolymer, polyethylene terephthalate,
Figure imgf000008_0001
Styrene butadiene rubber, styrene butadiene rubber, fluorine rubber, various copolymers and the like.
나아가,상기 충진제는 양극의 팽창을 억제하는성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계중합체;유리섬유,탄소섬유등의 섬유상물질이사용된다.  Further, the filler is not particularly limited as long as it is a fibrous material that is selectively used as a component for suppressing the expansion of the positive electrode and does not cause chemical change in the battery. Examples of the filler include an olefin polymer such as polyethylene and polypropylene ; Fiber materials such as glass fibers and carbon fibers are used.
상기 양극 활물질층은 상술한 각 성분을 포함한 전극 합제를 슬러리 상태로 집전에 상에 코팅한 후, 건조하여 제조될 수 있다. 보다 구체적으로, 이러한활물질층은상기 합제가 10내지 300_, 혹은 50내지 250,의 두께로 코팅된 후, 건조되어 상기 유기 용매가 제거됨으로서 형성될 수 있으며, 이로서 적절한특성을발현할수있다. - 한편, 본발명의 다른측면에 따르면, 양극, 음극 및 상기 양극과상기 음극 사이에 개재된 세퍼레이터를 포함하는 전극조립체; 상기 전극조립체를 함침시키는 비수 전해액; 및 상기 전극조립체와상기 비수 전해액을 내장하는 전지 케이스를포함하는리튬이차전지에 관한것으로,상기 양극은전술한본 발명에 따른양극인 것을특징으로하는리튬이차전지가제공된다.  The cathode active material layer may be prepared by coating an electrode mixture containing the above-described respective components in a slurry state on a current collector, followed by drying. More specifically, the active material layer may be formed by coating the mixture with a thickness of 10-300 or 50-250, followed by drying to remove the organic solvent, whereby the appropriate characteristics can be exhibited. According to another aspect of the present invention, there is provided an electrode assembly comprising: a positive electrode; a negative electrode; and a separator interposed between the positive electrode and the negative electrode; A nonaqueous electrolytic solution for impregnating the electrode assembly; And a battery case containing the electrode assembly and the non-aqueous electrolyte, wherein the positive electrode is a positive electrode according to the present invention as described above.
이때, 상기 음극은 음극 활물질로서, 실리콘(히)계 물질을 포함할 수 있고, 이러한 실리콘계 물질은 실리콘 및 실리콘 산화물의 복합체 및/또는 실리콘 합금일 수 있다. 상기 실리콘계 물질의 보다 구체적인 예로는,
Figure imgf000008_0002
및 와합금(¾ 110>0로 이루어진 군에서 선택되는
At this time, the negative electrode may include a silicon (heli) -based material as an anode active material, and the silicon-based material may be a composite of silicon and silicon oxide and / or a silicon alloy. More specific examples of the silicon-
Figure imgf000008_0002
And an alloy (11 110 0 &gt; 0) selected from the group consisting of
1종이상을들수있다. One or more species can be mentioned.
또한, 상기 음극 활물질은 탄소계 물질을 더 포함하고, 상기 탄소계 2019/108025 1»(:1^1{2018/015109 Further, the negative electrode active material may further include a carbon-based material, 2019/108025 1 »(: 1 ^ {2018/015109
물질은 음극 활물질 전체 중량을 기준으로 70중량% 이상 내지 99.9 중량% 이하로포함될수있는바,상기 탄소계물질은결정질 인조흑연,결정질천연 흑연, 비정질 하드카본, 저결정질 소프트카본, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 수퍼 ^ 그래핀 (먀므 에리, 및 섬유상 탄소로 이루어진 군으로부터 선택되는 하나 이상일 수 있으며 , 상세하게는, 결정질 인조 흑연, 및/또는 결정질천연흑연일수있다. The material may be contained in an amount of 70 wt% or more to 99.9 wt% or less based on the total weight of the negative electrode active material. The carbon-based material may include crystalline graphite, crystalline natural graphite, amorphous hard carbon, And may be at least one member selected from the group consisting of black, Ketjen black, super-graphene (meiamelia, and fibrous carbon, specifically, crystalline artificial graphite, and / or crystalline natural graphite.
한편, 상기 음극 활물질은, 상기 탄소계 물질, 의계 물질 이외에,
Figure imgf000009_0001
In addition, the negative electrode active material may contain, in addition to the carbonaceous material and /
Figure imgf000009_0001
1\細’ : 시, 己 히,주기율표의 1족, 2족, 3족원소, 할로겐; 0<><< 1 ; 1 £ £ 3;
Figure imgf000009_0002
금속복합산화물; 리륨금속; 리륨 합금; 규소계 합금; 주석계 합금;요(10, 02, 1¾0, )02, 1¾203, 304, ¾203,해204, 요 , 060,。 오, 리203, 데204, and 05등의 금속산화물;폴리아세틸렌 등의 도전성 고분자; 니- 0 - 계 재료;티타늄산화물; 리튬티타늄산화물등을포함할수 있지만, 이들만으로한정되는것은아니다.
1 \ fine ': poetry, self, 1, 2, and 3 elements of the periodic table, halogen; 0 <><<1; £ 1 £ 3;
Figure imgf000009_0002
Metal complex oxides; Lyrium metal; Lyrium alloy; Silicon-based alloys; Tin-based alloys; (10, 0 2, 1¾0, ) 0 2, 1¾ 2 0 3, 3 0 4, ¾ 2 0 3, 2 to 04, I, 060 ,. O, Li 2 0 3, having two 0 4 , and 0 5 ; conductive polymers such as polyacetylene; Ni-O-based materials; titanium oxides; Lithium titanium oxide, and the like, but are not limited thereto.
그리고, 음극을 구성하는 음극 집전체는 일반적으로 3 내지 500 _의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와마찬가지로, 표면에 미세한요철을형성하여 음극활물질의 결합력을강화시킬수도있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로사용될 수있다. 한편, 상기 세퍼레이터는 양극과 음극 사이에 개재되며, 높은 이온 투과도와기계적 강도를가지는절연성의 얇은박막이 사용된다.세퍼레이터의 기공직경은일반적으로 0.01 내지 10 _이고,두께는 일반적으로 5내지 300 이다. 이러한 세퍼레이터로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 2019/108025 1»(:1^1{2018/015109 The negative electrode current collector constituting the negative electrode is generally made to have a thickness of 3 to 500 _. Such an anode current collector is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and examples of the anode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, a surface of copper or stainless steel A surface treated with carbon, nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like can be used. In addition, like the positive electrode collector, fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics. On the other hand, the separator is an insulating thin film interposed between the positive electrode and the negative electrode and having high ion permeability and mechanical strength. The pore diameter of the separator is generally 0.01 to 10 and the thickness is generally 5 to 300 . As such a separator, for example, an olefin-based polymer such as polypropylene having chemical resistance and hydrophobicity; A sheet or nonwoven fabric made of glass fiber, polyethylene or the like is used. As an electrolyte, a solid such as a polymer 2019/108025 1 »(: 1 ^ {2018/015109
전해질이사용되는경우에는고체 전해질이 세퍼레이터를겸할수도있다. 그리고, 상기 비수 전해액은 비수 전해질과 리튬염으로 이루어져 있고, 비수 전해질로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만이들만으로한정되는것은아니다. When an electrolyte is used, the solid electrolyte may also serve as a separator. The non-aqueous electrolyte is composed of a non-aqueous electrolyte and a lithium salt. Non-aqueous organic solvents, organic solid electrolytes, and inorganic solid electrolytes are used as the non-aqueous electrolyte. However, the non-aqueous electrolyte is not limited thereto.
상기 비수계 유기용매로는, 예를 들어,
Figure imgf000010_0001
메틸- 2 -피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1 ,2 -디메톡시 에탄, 테트라히드록시 프랑(打크 ), 2 -메틸 테트라하이드로푸란, 디메틸술폭시드, 1 ,3- 디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산메틸,초산메틸, 인산트리에스테르,트리메톡시 메탄,디옥소런유도체, 설포란, 메틸 설포란, 1 ,3 -디메틸- 2 -이미다졸리디논, 프로필렌 카르보네이트 유도체,테트라하이드로푸란유도체,에테르,피로피온산메틸,프로피온산에틸 등의 비양자성 유기용매가사용될수있다.
As the non-aqueous organic solvent, for example,
Figure imgf000010_0001
Methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylolactone, 1,2-dimethoxyethane, tetra But are not limited to, hydroxypropyl (co), 2-methyltetrahydrofuran, dimethylsulfoxide, 1, 3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, There may be mentioned organic acids such as phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1, 3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, Methyl propionate and ethyl propionate may be used.
그리고, 상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(3 011 ), 폴리에스테르 술파이드, 폴리비닐 알코올,폴리 불화비닐리덴, 아온성 해리기를포함하는중합제 등이 사용될수있다.  Examples of the organic solid electrolyte include a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, a polyelectrolytic lysine (3 011), a polyester sulfide, a polyvinyl alcohol, a polyvinyl fluoride A polymerization initiator, a polymerization initiator, a polymerization initiator, a polymerization initiator, and a polymerization initiator.
또한,상기 무기 고체 전해질로는, 예를들어, 니 3 니 I, 니5 2, 니 -니 1- 니 0卜1,니히04, 1_ 04-니1-니0卜!,니 ,니 4&04,니 4히04-니1-니0卜!,니少요 名 등의 니의 질화물,할로겐화물,황산염 등이사용될수있다. Further, the inorganic solid electrolyte is, for example, you 3 Ne I, needle 52, needle - Needle 1 Needle 0卜1, Mannich 04, 1_ 04 - Needle 1 Needle 0卜, knee,! you 4 & 04, did Hebrews 4 0 4 - you got your 1 0卜, can be a nitride, halides, sulfates, etc. of you like you少John名use.
그리고, 상기 리륨염은상기 비수계 전해질에 용해되기 좋은물질로서, 예를들어,니아니 니1,니 004, 1_浪1=4, 1_恨1010,니 ,니 ^3303,니 0= 02, 니 므 , 니 , 1\^0\4, 0~133031」, (◦ 30221\1니, 클로로 보란 리튬, 저급 지방족카르본산리륨, 4페닐붕산리튬,이미드등이사용될수있다. In addition, the Li salt is a material that is readily soluble in the non-aqueous electrolyte, for example, did not you 1, needle 00 4, 1_浪1 = 4 , 1_恨10 to 10, you, you ^ 330 3, you 0 = 02, needle moire, Thessaloniki, 1 \ ^ 0 \ 4, 0 to 1 3 30 3 1 ", (◦ 30 2) 2 1 \ 1 Thessaloniki, chloroborane lithium, lower aliphatic carboxylic bonsanri volume, 4-phenylborate, imide, and the like can be used.
또한, 상기 리륨염 함유 비수 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, ^글라임(이 리, 핵사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, 1\1-치환 옥사졸리디논,
Figure imgf000010_0002
이미다졸리딘,에틸렌글리콜디알킬 에테르, 암모늄염,피롤, 2 -메톡시 에탄올, 삼염화알루미늄등이 첨가될수도 있다. 경우에 따라서는,불연성을부여하기 위하여,사염화탄소,삼불화에틸렌등의 할로겐 함유용매를더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone)등을더 포함시킬수있다.
The lithium salt-containing nonaqueous electrolyte may contain, for the purpose of improving charge / discharge characteristics, flame retardancy, etc., for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, Triamides, nitrobenzene derivatives, sulfur, quinone imine dyes, 1 \ 1- substituted oxazolidinones,
Figure imgf000010_0002
Imidazolidine, ethylene glycol dialkyl ether, ammonium salts, pyrrole, 2-methoxyethanol, Aluminum trichloride may be added. In some cases, halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further added to impart nonflammability. In order to improve the high-temperature storage characteristics, carbon dioxide gas may be further added. FEC (Fluoro-Ethylene Carbonate, PRS (Propene sultone), and the like.
하나의 구체적인 예에서, 니 PF6, LiCI04l 니 BF4, LiN(S02CF3)2 등의 리튬염을, 고유전성 용매인 EC또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 티 VIC의 선형 카보네이트의 혼합 용매에 첨가하여 리륨염 함유비수계 전해질을제조할수있다. In one specific example, you PF 6, LiCI0 4l you BF 4, LiN (S0 2 CF 3) A lithium salt of 2, and so on, highly dielectric solvent of cyclic carbonate of the EC or PC with a low-viscosity solvent, DEC, DMC, or T VIC can be added to the mixed solvent of linear carbonate to prepare a lithium salt-containing non-aqueous electrolyte.
한편,본발명의 다른측면에 따르면,상기 리륨이차전지를단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로포함하는디바이스를제공한다.  According to another aspect of the present invention, there is provided a battery module including the lithium battery as a unit battery, a battery pack including the battery module, and a device including the battery pack as a power source.
여기서, 상기 디바이스의 구체적인 예로는, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장용 시스템일 수 있으나,이에만한정되는것은아니다. 이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로한다. 그러나,본발명에 따른실시예들은여러 가지 다른형태로 변형될 수 있으며, 본 발명의 범위가아래에서 상술하는실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 명확하고 완전하게 설명하기 위해서 제공되는것이다. 실시예 1  Here, specific examples of the device may include, but not limited to, an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a power storage system. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to examples. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the above-described embodiments. The embodiments of the present invention are provided so that those skilled in the art can explain the present invention more clearly and completely. Example 1
(1)양극합제의 제조  (1) Preparation of positive electrode mixture
양극 활물질인 ^^10.8000.^^.1)02 : 도전재 (카본블랙, 상업명 매 065, 11111031社) :바인더
Figure imgf000011_0001
= 80 : 8 : 12의 중량비로배합하고,막자사발로유발하여 건식 혼합함으로써,실시예 1의 양극 합제를제조하였다.
The positive active material ^^ 10.8000. 02 : conductive material (carbon black, commercial name: 065, 11111031): binder
Figure imgf000011_0001
= 80: 8: 12, and the mixture was induced in a mortar and dry mixed to prepare a positive electrode mixture of Example 1.
(2)양극의 제조 2019/108025 1»(:1^1{2018/015109 (2) Production of positive electrode 2019/108025 1 »(: 1 ^ {2018/015109
실시예 1의 양극 합제에 유기 용매(NMP)를 첨가하여 슬러리 상을 형성한 후, 알루미늄 집전체 상에 200_의 두께로 도포하여 120 I〕의 진공 오븐에서 12시간진공건조하였다. An organic solvent (NMP) was added to the positive electrode mixture of Example 1 to form a slurry phase. The slurry was applied on the aluminum current collector in a thickness of 200 占 and vacuum-dried in a vacuum oven of 120 I for 12 hours.
이후, 상기 합제가 도포되지 않은 집전체 상의 무지부 상에 , 리튬 퍼옥사이드山202) 및 유기 용매(NMP)의 혼합 용액(혼합 용액 전체 중량 100Thereafter, a mixture solution of lithium peroxide ( 202 ) and an organic solvent (NMP) (total weight of the mixed solution: 100
\ % 중, 02 함량은 80\까%)을 200 /패의 두께로 도포하고, 120 ᄃ의 진공 오븐에서 12시간진공건조하였다.그결과로,실시예 1의 양극을수득하였다. Of \% 0 2 content of 80 \ How%) was applied in a vacuum oven, and 120 d with a thickness of 200 / L were dried in vacuo 12 hours to give the positive electrode of Example 1. As a result, the.
(3)리륨이차전지의 제조  (3) Preparation of lyrium secondary battery
실리콘계 활물질인 와0 및 인조 흑연을 15 : 85의 중량비로 혼합한 음극활물질혼합물 :도전재(카본블랙,상업명 예 065, 111X1031社) :바인더
Figure imgf000012_0001
94.2 : 2 :
A negative electrode active material mixture in which a phosphorus-based active material, 0, and artificial graphite were mixed in a weight ratio of 15:85 : conductive material (carbon black, trade name: 065, 11 1X1031 )
Figure imgf000012_0001
94.2: 2:
2.5 : 1.3의 중량비로배합하고,건식혼합하여,음극합제를제조하였다. 2.5: 1.3, and dry mixed to prepare a negative electrode mixture.
상기 음극합제에 유기 용매(NMP)를첨가하여 슬러리 상을형성한후, 구리 집전체 상에 도포하여 150 X:의 진공 오븐에서 12시간 진공 건조하여 음극을제조하였다.  An organic solvent (NMP) was added to the negative electrode mixture to form a slurry phase. The slurry was coated on a copper collector and vacuum dried in a 150 X: vacuum oven for 12 hours to prepare a negative electrode.
상기 각 제조된 음극 및 양극사이에, 두께 9_ 및 기공도 42 V이인 V? /? E 재질의 세퍼레이터를 전지 용기에 투입하고, 전해질을 주입하여, 통상적인 제조방법에 따라 2032 풀셀(如11 11)의 형태로 리툼 이차 전지를 제작하였다.  Between each of the prepared negative electrode and positive electrode, V? 9 having a thickness of 9? And a porosity of 42 V? /? E separator was charged into a battery container, an electrolyte was injected, and a lithium secondary battery was produced in the form of a 2032 full cell (No. 1111) according to a conventional manufacturing method.
상기 전해액으로는
Figure imgf000012_0002
부피비가 1 : 2 : 1인혼합용매에
As the electrolytic solution,
Figure imgf000012_0002
In a mixed solvent having a volume ratio of 1: 2: 1
1 M의 正凡)용액을용해시킨것(1M니 111 EC:DMC:DEC= 1 : 2 : 1沙八八))을 사용하였다. 비교예 1 (1M Ni 111 EC: DMC: DEC = 1: 2: 1) was used as the solvent. Comparative Example 1
(1)양극합제의 제조  (1) Preparation of positive electrode mixture
양극 활물질인 ^(^10.8000.^^.1)02 : 리륨 퍼옥사이드(1成02): 도전재 (카본블랙,상업명 요 065, 1¾10 社):바인더
Figure imgf000012_0003
The positive electrode active material ^ (^ 1 0.8000. ^^. 1) 02: Lyrium peroxide (1成02): the conductive material (carbon black, trade name I 065, 1¾ 10社): Binder
Figure imgf000012_0003
社) = 64 : 16 : 8 : 12의 중량비로 배합하고, 막자 사발로 유발하여 건식 혼합함으로써,비교예 1의 양극합제를제조하였다. Ltd.) in a weight ratio of 64: 16: 8: 12, followed by dry mixing with a mortar to prepare a positive electrode mix of Comparative Example 1.
( 양극의 제조 비교예 1의 양극 합제에 유기 용매 (NMP)를 첨가하여 슬러리 상을 형성한 후, 알루미늄 집전체 상에 도포하여 120 °C의 진공 오븐에서 12시간 진공건조하였다.그결과로,비교예 1의 양극을수득하였다. (Preparation of positive electrode An organic solvent (NMP) was added to the positive electrode mixture of Comparative Example 1 to form a slurry phase, which was then coated on an aluminum current collector and vacuum-dried in a vacuum oven at 120 ° C for 12 hours. As a result, A positive electrode was obtained.
(2)양극및리륨이차전지의 제조  (2) Preparation of a positive electrode and a lithium secondary battery
실시예 1의 양극 대신 비교예 1의 양극을사용하고, 나머지는실시예 The positive electrode of Comparative Example 1 was used in place of the positive electrode of Example 1,
1과동일하게하여,비교예 1의 양극및 리륨이차전지를제조하였다. 실험예 1:전지의초기충방전특성 평가 I 1 mixture, the positive electrode and the lyrium negative electrode of Comparative Example 1 were produced. Experimental Example 1: Evaluation of initial charging and discharging characteristics of a battery I
실시예 1 및 비교예 1의 각 전지에 대해, 상온에서 다음과 같은 조건으로초기 충방전특성을평가하였다.  The initial charge-discharge characteristics of each cell of Example 1 and Comparative Example 1 were evaluated at room temperature under the following conditions.
Charge: 0.01C, CC/CV, 4.6V, 5% cut-off  Charge: 0.01C, CC / CV, 4.6V, 5% cut-off
Discharge: 0.01C, CC, 2.5 V, cut-off 이러한평가결과,실시예 1의 초기 충전용량은 904mAh/g로확인되었고, 비교예 1의 초기 충전용량은 254mAh/g로확인되었다.  Discharge: 0.01 C, CC, 2.5 V, cut-off As a result of the evaluation, the initial charging capacity of Example 1 was confirmed to be 904 mAh / g, and the initial charging capacity of Comparative Example 1 was confirmed to be 254 mAh / g.
비교예 1과, 실시예 1은, 공통적으로 리륨 퍼옥사이드 (Li202)를 양극에 적용하여,음극의 비가역 첨가제용량을보상할수있다. In Comparative Example 1 and Example 1, the irreversible additive capacity of the negative electrode can be compensated by commonly applying lyrium peroxide (Li 2 O 2 ) to the positive electrode.
상기 리툼 퍼옥사이드 (Li202)는 이론 상 하기 반응식 1에 따라, 그 1 몰당, 1몰의 산소와 함께 2몰의 리륨 이온을 비가역적으로 방출할 수 있는 화합물이다. The above-mentioned ritupperoxide (Li 2 O 2 ) is a compound capable of irreversibly releasing 2 moles of lyrium ion together with 1 mole of oxygen per mole of the lithium ion according to Reaction Scheme 1 below.
[반응식 1] Li202 -> 2Li+ + 02 [Reaction Formula 1] Li 2 0 2 -> 2Li + + 0 2
다만,상기 초기 충전용량평가결과에 따르면, 예를들어, 4.3V이상의 고전압 영역에서, 상기 리튬 퍼옥사이드 (Li202)를 양극 활물질과 혼합 (blending)된 상태로 적용한 비교예 1에 대비하여, 상기 리튬 퍼옥사이드 (Li202)를 무지부에 코팅한 실시예 1의 전지의 양극 초기 충전 용량이 더 높음을확인할수있다. . However, according to the initial charging capacity evaluation result, in comparison with Comparative Example 1 in which the lithium peroxide (Li 2 O 2 ) was applied in a blended state with the cathode active material in a high voltage region of 4.3 V or more , It can be confirmed that the battery of Example 1 in which the lithium peroxide (Li 2 O 2 ) is coated on the non-coated portion has a higher initial charge capacity of the anode. .
실시예 1에서, 상기 리튬 퍼옥사이드 (Li202)의 환원분해 반응은, 무지부에서 이루어짐에 따라,상기 양극활물질층에 영향을미치지 않은채 (즉, 상기 양극 활물질층 내부에 공극을 형성하지 않은 채), 상기 무지부 상의 코팅층이 소멸됨으로써 종결된다.따라서, 양극활물질층의 전극밀도손실 및 2019/108025 1»(:1^1{2018/015109 In Example 1, the reduction decomposition reaction of the lithium peroxide (Li 2 O 2 ) was performed in an uncoated portion, so that the negative electrode active material layer was formed without affecting the positive electrode active material layer And the coating layer on the non-coated portion disappears. Thus, the electrode density loss of the positive electrode active material layer and 2019/108025 1 »(: 1 ^ {2018/015109
전지 전체의 에너지 밀도저하가없거나매우적을수있다. The energy density of the whole battery may not be reduced or may be very small .
이에 비해, 비교예 1은 상기 리튬 퍼옥사이드(1走02)의 환원분해 반응이 양극 활물질층 내에서 발생하므로, 양극 활물질층 내에 공극을 형성하고,전극밀도손실및에너지 밀도저하가나타날수있다. On the other hand, in Comparative Example 1, the reduction decomposition reaction of lithium peroxide (1 run 0 2 ) occurs in the positive electrode active material layer, so that voids are formed in the positive electrode active material layer, and electrode density loss and energy density decrease may occur.
그 결과, 실시예 1은 비교예 1에 대비하여 두 전극의 비가역 용량 불균형이 효과적으로 상쇄되되면서도, 양극의 초기 충전 용량이 높고, 양극의 에너지 밀도손실이 적어,우수한수명 특성을가질수있는것이다.  As a result, in Example 1, compared with Comparative Example 1, irreversible capacity imbalance of the two electrodes was effectively canceled, and the initial charging capacity of the anode was high, the energy density loss of the anode was small, and excellent lifetime characteristics could be obtained.
【부호의 설명】 DESCRIPTION OF REFERENCE NUMERALS
10, 100:리륨이차전지용양극  10, 100: anode for lyrium secondary battery
11 , 110:양극집전체  11, 110: Positive electrode collector
12, 120:양극활물질층  12, 120: cathode active material layer
13, 130:무지부  13, 130:
140:비가역 물질  140: Irreversible material

Claims

2019/108025 1»(:1^1{2018/015109 【청구의 범위】 2019/108025 1 »(: 1 ^ 1 {2018/015109 Claims)
【청구항 1 ]  [Claim 1]
양극 집전체 및 상기 양극 집전체의 적어도 일면에 코팅되어 형성된 양극 활물질층을 포함하고, 상기 양극 집전체는 상기 양극 활물질층이 코팅되지 않고돌출된무지부를포함하는리튬이차전지용양극으로,  A positive electrode for a lithium secondary battery, comprising a positive electrode collector and a positive electrode active material layer coated on at least one surface of the positive electrode collector, wherein the positive electrode collector includes an uncoated portion protruded without coating the positive electrode active material layer,
상기 무지부 상에, 리튬 산화물로 이루어진 비가역 물질이 코팅되어 있는것을특징으로하는리튬이차전지용양극.  And an irreversible material composed of lithium oxide is coated on the non-coated portion.
【청구항 2】  [Claim 2]
제 1항에 있어서,  The method according to claim 1,
상기 비가역 물질은, 상기 리륨 이차전지용 양극을 포함하는 리륨 이차전지의 첫 번째 충전 이후소멸되는것을특징으로하는리튬 이차전지용 양극.  Wherein the irreversible material is annihilated after the first charge of the lithium secondary battery including the positive electrode for the lithium secondary battery.
【청구항 3]  [3]
제 1항에 있어서,  The method according to claim 1,
상기 비가역 물질은, 니 202,20또는 이들의 혼합물인 것을 특징으로 하는리륨이차전지용양극. Wherein the irreversible material is Ni 202, Ni 20, or a mixture thereof.
【청구항 4]  [4]
제 1항에 있어서,  The method according to claim 1,
상기 비가역 물질은 상기 무지부 상에 10 내자 300_의 두께로 코팅되는리륨이차전지용양극.  Wherein the irreversible material is coated on the non-coated portion at a thickness of 10 &lt; RTI ID = 0.0 &gt; 300 &lt; / RTI &gt;
【청구항 5】  [Claim 5]
양극, 음극 및 상기 양극과 상기 음극 사이에 개재된 세퍼레이터를 포함하는전극조립체; .  An electrode assembly including an anode, a cathode, and a separator interposed between the anode and the cathode; .
상기 전극조립체를함침시키는비수전해액;및  A nonaqueous electrolyte solution for impregnating the electrode assembly;
상기 전극조립체와 상기 비수 전해액을 내장하는 전지 케이스를 포함하는리튬이차전지에 관한것으로, And a battery case containing the electrode assembly and the nonaqueous electrolyte solution ,
상기 양극은제 1항내지 제 4항중어느한항에 따른리튬 이차전지용 양극인 것을특징으로하는리륨이차전지.  The lithium secondary battery according to any one of claims 1 to 4, wherein the anode is a cathode for a lithium secondary battery.
【청구항 6]  [Claim 6]
제 5항에 있어서, 2019/108025 1»(:1^1{2018/015109 6. The method of claim 5, 2019/108025 1 »(: 1 ^ {2018/015109
상기 음극은 음극 활물질로서, 실리콘 (&)계 물질을 포함하는 것을 특징으로하는리튬이차전지. Wherein the negative electrode is a negative electrode active material, and comprises a silicon (&) -type material.
【청구항 7]  [7]
제 6항에 있어서,  The method according to claim 6,
상기 실리콘계 물질은, 실리콘 및 실리콘 산화물의 복합체; 실리콘 합금; 또는 실리콘 산화물의 복합체 및 실리콘 합금인 것을 특징으로 하는 리튬이차전지.  The silicon-based material may be a composite of silicon and silicon oxide; Silicon alloy; Or a composite of silicon oxide and a silicon alloy.
【청구항 8]  [8]
저 15항에 따른 리륨 이차전지를 단위전지로 포함하는 것을 특징으로 하는전지모듈.  A lithium secondary battery according to claim 15, comprising a unit cell.
【청구항 9】  [Claim 9]
제 8항에 따른전지모듈을포함하는것을특징으로하는전지팩.  A battery pack comprising the battery module according to claim 8.
【청구항 10】  Claim 10
제 9항에 따른 전지팩을 전원으로 포함하는 것을 특징으로 하는 디바이스.  A device comprising the battery pack according to claim 9 as a power source.
【청구항 1 1】  Claim 1
제 10항에 있어서,  11. The method of claim 10,
상기 디바이스는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 또는 전력저장용 시스템인 것을 특징으로 하는 디바이스.  Wherein the device is an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle or a system for power storage.
PCT/KR2018/015109 2017-11-30 2018-11-30 Cathode for lithium secondary battery and lithium secondary battery comprising same WO2019108025A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL18882604.4T PL3567657T3 (en) 2017-11-30 2018-11-30 Cathode for lithium secondary battery and lithium secondary battery comprising same
EP18882604.4A EP3567657B1 (en) 2017-11-30 2018-11-30 Cathode for lithium secondary battery and lithium secondary battery comprising same
ES18882604T ES2928451T3 (en) 2017-11-30 2018-11-30 Cathode for lithium secondary battery and lithium secondary battery comprising the same
CN201880007237.9A CN110199414B (en) 2017-11-30 2018-11-30 Positive electrode for lithium secondary battery and lithium secondary battery comprising same
JP2019536145A JP7034406B2 (en) 2017-11-30 2018-11-30 Positive electrode for lithium secondary battery and lithium secondary battery containing it
US16/481,006 US11121374B2 (en) 2017-11-30 2018-11-30 Positive electrode for lithium secondary battery and lithium secondary battery including same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170163156 2017-11-30
KR10-2017-0163156 2017-11-30
KR10-2018-0151235 2018-11-29
KR1020180151235A KR102297246B1 (en) 2017-11-30 2018-11-29 Positive electrode for lithium secondary battery and lithium secondary battery including the same

Publications (2)

Publication Number Publication Date
WO2019108025A1 true WO2019108025A1 (en) 2019-06-06
WO2019108025A8 WO2019108025A8 (en) 2019-07-04

Family

ID=66665124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015109 WO2019108025A1 (en) 2017-11-30 2018-11-30 Cathode for lithium secondary battery and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2019108025A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100868256B1 (en) * 2004-12-16 2008-11-11 주식회사 엘지화학 Pouch-typed Secondary Battery Containing Stacking-typed Electrode Assembly of Improved Stability
JP2011082039A (en) * 2009-10-07 2011-04-21 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery, and battery pack
KR101222345B1 (en) * 2006-03-03 2013-01-14 삼성에스디아이 주식회사 Electrode Assembly for lithium rechargeable battery and Lithium rechargeable battery using the same
WO2015046537A1 (en) * 2013-09-30 2015-04-02 日本電気株式会社 Lithium ion secondary battery and method for manufacturing same
KR101768195B1 (en) * 2015-01-26 2017-08-16 주식회사 엘지화학 Method for Preparing Positive Electrode Having Insulation Coating portion and Positive Electrode Prepared Thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100868256B1 (en) * 2004-12-16 2008-11-11 주식회사 엘지화학 Pouch-typed Secondary Battery Containing Stacking-typed Electrode Assembly of Improved Stability
KR101222345B1 (en) * 2006-03-03 2013-01-14 삼성에스디아이 주식회사 Electrode Assembly for lithium rechargeable battery and Lithium rechargeable battery using the same
JP2011082039A (en) * 2009-10-07 2011-04-21 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery, and battery pack
WO2015046537A1 (en) * 2013-09-30 2015-04-02 日本電気株式会社 Lithium ion secondary battery and method for manufacturing same
KR101768195B1 (en) * 2015-01-26 2017-08-16 주식회사 엘지화학 Method for Preparing Positive Electrode Having Insulation Coating portion and Positive Electrode Prepared Thereby

Also Published As

Publication number Publication date
WO2019108025A8 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
KR101761367B1 (en) Mixed positive-electrode active material, positive-electrode and secondary battery comprising the same
KR101056714B1 (en) Cathode active material with improved high voltage characteristics
KR101569056B1 (en) Secondary Battery Comprising Si-Based Compound
KR101293931B1 (en) Cathode Active Material and Lithium Secondary Battery Comprising the Same
CN105280906B (en) Electric storage element
KR20160087121A (en) Multi layered Anode Comprising Si-Based Material and Secondary Battery Comprising the Same
JP2012531025A (en) Lithium secondary battery containing water-dispersible binder, conductive material, and fluoroethylene carbonate
KR20170025874A (en) Lithium secondary battery and operating method thereof
KR101392800B1 (en) Positive Electrode Active Material for Secondary Battery Comprising Lithium Cobalt-based Oxide of Improved Performance and Lithium Secondary Battery Comprising the Same
KR101812269B1 (en) Mn-rich cathode active material with surface treatment for high-voltage and high-capacity lithium secondary battery and High-voltage and high-capacity lithium secondary battery comprising the same
KR20170034724A (en) Negative electrode for lithium secondary battery comprising active material-non-coated portion and lithium secondary battery comprising the same
KR20180091413A (en) Preparation method of long-life electrode for secondary battery
KR20130130357A (en) Cathode active material composition for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
KR20190062259A (en) Cathode and lithium recharegable battery including the same
KR20150050151A (en) Positive electrode material slurry for a lithium secondary battery comprise at least two conductive material and lithium secondary battery using same
KR101541366B1 (en) Anode Active Material for Secondary Battery
KR20160126840A (en) Cathode Active Material Particles Comprising One or More Coating Layer and Method for Preparation of the Same
KR20160094063A (en) 3 Components cathode active material with surface treatment for high capacity lithium secondary battery and High voltage lithium secondary battery comprising the same
KR20180028930A (en) Electrode Comprising Current Collector Having a 3Dimension Network Structure
WO2019103573A1 (en) Positive electrode and lithium secondary battery comprising same
KR20130050473A (en) Cathode having double coating structure for lithium secondary battery
KR101751009B1 (en) Mixture for Anode for Secondary Battery having irreversible Additives
KR101588252B1 (en) Secondary Battery Cell
KR20140132808A (en) The Method for Preparing Electrodes of Secondary battery
WO2019108025A1 (en) Cathode for lithium secondary battery and lithium secondary battery comprising same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019536145

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018882604

Country of ref document: EP

Effective date: 20190805

NENP Non-entry into the national phase

Ref country code: DE