WO2016140224A1 - Rolling bearing for use in extremely low-temperature environment - Google Patents

Rolling bearing for use in extremely low-temperature environment Download PDF

Info

Publication number
WO2016140224A1
WO2016140224A1 PCT/JP2016/056264 JP2016056264W WO2016140224A1 WO 2016140224 A1 WO2016140224 A1 WO 2016140224A1 JP 2016056264 W JP2016056264 W JP 2016056264W WO 2016140224 A1 WO2016140224 A1 WO 2016140224A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling bearing
rolling
cage
cryogenic environment
cryogenic
Prior art date
Application number
PCT/JP2016/056264
Other languages
French (fr)
Japanese (ja)
Inventor
伸寛 田中
石田 昌幸
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to JP2017503663A priority Critical patent/JPWO2016140224A1/en
Publication of WO2016140224A1 publication Critical patent/WO2016140224A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/44Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/56Selection of substances

Definitions

  • the present invention relates to a rolling bearing for a cryogenic environment used at a cryogenic temperature, such as a bearing used in a submerged pump for transferring a liquefied gas in a cryogenic state such as liquefied natural gas.
  • a rolling bearing used in a normal temperature environment requires a rolling element to be rotatably held between an inner ring and an outer ring and requires liquid lubrication with a lubricating oil or the like.
  • liquid lubrication with a normal lubricating oil or the like cannot be expected.
  • rolling bearings for cryogenic environments are liable to deteriorate in strength and durability due to shrinkage and deformation of parts, and are required to withstand such severe use conditions.
  • liquefied natural gas which is a typical example of a cryogenic liquefied gas, has methane as a main component and has a physical property that does not liquefy unless it is below ⁇ 161.5 ° C. (about ⁇ 162 ° C.) under normal pressure.
  • examples of liquefied gas used in a liquefied state such as a refrigerant, a heat medium, and a filling gas include nitrogen and helium.
  • a dedicated pump When transporting or storing such a liquefied gas while maintaining a liquid state at a cryogenic temperature, it is necessary to use a dedicated pump at a cryogenic temperature.
  • a submerged pump As a type of such a pump, a submerged pump is used. Are known. Since this type of pump is used by immersing the entire pump device including the motor in liquefied gas, it does not require a mechanical seal to seal the main body from the outside air, and is excellent in that there is little loss due to dissipation of the vaporized gas. It is a thing.
  • the environmental temperature is not only in the above-mentioned environment where liquid gas exists, but also in a high altitude space beyond the stratosphere far from the surface of the earth, and in a far away space. Since the temperature is about 50 to ⁇ 270 ° C., similar characteristics are required for rolling bearings for cryogenic environments used in such artificial satellites and spacecraft.
  • an outer ring and an inner ring are made of martensitic stainless steel, a rolling element is made of ceramic, and a cage is made of a fluororesin. (Patent Document 1 below).
  • DLC diamond-like carbon
  • a rolling bearing is known in which the inner and outer rings, the rolling elements and the cage are formed of an iron-based base material or cemented carbide material, and the DLC film is formed on the raceway surface of the inner ring or the outer ring to improve wear resistance.
  • Patent Document 3 below, FIG. 1.
  • the problem of the present invention is to solve the above-mentioned problems, and in a rolling bearing for a cryogenic environment used in a cryogenic environment such as the presence of a liquefied gas or a space environment, the raceway surface and the rolling element are extremely worn. Extremely low durability, especially in extremely low temperature environments that are lubricated and cooled by liquefied gas such as LNG, and the inner and outer rings and rolling elements can withstand long-term use and wear resistance and lubricity do not deteriorate It is to make a rolling bearing for a low temperature environment.
  • a rolling bearing provided with a cage that rotatably holds a plurality of rolling elements between an inner ring and an outer ring made of martensitic stainless steel or high-speed tool steel
  • the rolling element is a ceramic rolling element
  • the cage is made of a resin material mainly composed of polytetrafluoroethylene, and diamond having a Vickers hardness (Hv) of 1000 to 4000 is formed on the surface of the base material of the inner ring and the outer ring.
  • Hv Vickers hardness
  • the rolling bearing for the cryogenic environment of the present invention configured as described above is a material in which an inner ring and an outer ring made of martensitic stainless steel or high-speed tool steel are unlikely to undergo aging change at extremely low temperatures,
  • a hard coating mainly composed of diamond-like carbon with a Vickers hardness (Hv) of 1000 to 4000 is provided on the surface of the base material of the inner ring and outer ring. It becomes difficult.
  • the rolling elements that are in frictional contact during rotation of the inner ring and the outer ring having a predetermined hard film are made of ceramics to which polytetrafluoroethylene is easily transferred, and are transferred from the cage at an appropriate frequency along with the rotation. Since tetrafluoroethylene stably exhibits excellent solid lubricity even at extremely low temperatures, when the hard coating on the inner and outer ring surfaces comes into contact with the rolling elements, the rolling elements are worn by solid lubrication. It functions stably in a state where is suppressed.
  • the rolling bearing is excellent in durability without deteriorating wear resistance and lubricity.
  • the hard coating is a hard coating provided on an intermediate layer whose hardness has been increased stepwise or continuously toward the surface, thereby improving the adhesion of the hard coating, that is, increasing the peel resistance of the layer. Therefore, it is preferable.
  • the ceramic rolling element is preferably a silicon nitride ceramic rolling element because of its high hardness and excellent wear resistance.
  • the rolling bearing for the cryogenic environment can be applied to a rolling bearing of a liquefied gas pump.
  • the liquefied natural gas submerged pump, which is a liquefied gas pump, is an application example that can increase the practical utility value of the rolling bearing of the present invention.
  • the present invention comprises a ceramic rolling element and a resin cage mainly composed of polytetrafluoroethylene, and a hard film mainly composed of diamond-like carbon having a predetermined hardness is formed on the inner ring and outer ring base material surfaces. Since the rolling bearing for the cryogenic environment is provided, the wear of the raceway surface and rolling elements is extremely small, and especially in a cryogenic environment such as LNG or a space environment that is lubricated and cooled by a liquefied gas such as LNG. There is an advantage that it becomes a rolling bearing for a cryogenic environment that can withstand long-term use even in an environment and does not deteriorate wear resistance and lubricity over time.
  • Sectional drawing of the principal part of the rolling bearing for cryogenic environments which shows 1st Embodiment
  • the expanded sectional view which shows the principal part of 1st Embodiment and demonstrates the layer structure of a hard film
  • Sectional drawing of the principal part of the rolling bearing which shows 2nd Embodiment
  • a perspective view of a spring washer used in the second embodiment Part disassembled perspective view for explaining the assembled state of the spring washer and the fastening pin by cutting out a part of the cage used in the second embodiment.
  • Sectional drawing of the principal part of a rolling bearing which shows 3rd Embodiment
  • a cage 4 that rotatably holds a ceramic rolling element (ball) 3 between an inner ring 1 and an outer ring 2 made of a predetermined base material of a rolling bearing A.
  • the retainer 4 is made of a resin material mainly composed of polytetrafluoroethylene, and has a hard film mainly composed of diamond-like carbon having a Vickers hardness (Hv) of 1000 to 4000 on the base material surfaces of the inner ring 1 and the outer ring 2.
  • 5 is a rolling bearing for a cryogenic environment provided through an intermediate layer 7 whose hardness is increased stepwise or continuously toward the surface of a base material 6 (see FIG. 2).
  • the base material 6 of the inner ring 1 and the outer ring 2 described above is martensitic stainless steel or high-speed tool steel, and these are steel materials that are hard and have excellent wear resistance.
  • martensitic stainless steel include SUS403, SUS420, and SUS440C.
  • high-speed tool steel include 50 high-speed steels according to the American Steel Association AISI standard and SKH4 of Japanese Industrial Standards.
  • the hard coating 5 mainly composed of diamond-like carbon (DLC) having a Vickers hardness (Hv) of 1000 to 4000 provided on the surface side of the substrate 6, at least on the raceway surface (or also referred to as a rolling surface), In order to improve the adhesiveness with the base material 6, it is preferably provided via the intermediate layer 7.
  • DLC diamond-like carbon
  • Hv Vickers hardness
  • DLC has an intermediate structure in which diamond and graphite are mixed, and can be formed to have a hardness equivalent to that of diamond.
  • a known film forming method such as a physical vapor deposition method such as sputtering or ion plating, a chemical vapor deposition method, or an unbalanced magnetron sputtering (UBMS) method can be employed.
  • UBMS unbalanced magnetron sputtering
  • the intermediate layer 7 has increased hardness stepwise or continuously toward the surface, and can be formed by, for example, an “intermediate layer forming method” described later.
  • the surface of the base material may be roughened to exert the anchor effect.
  • the roughening can be performed by a known Ar ion bombardment treatment or the like so that the surface roughness Ra is 0.5 ⁇ m or less, preferably Ra is 0.05 ⁇ m or less.
  • the intermediate layer 7 first forms a first intermediate layer 7 a mainly composed of a metal-based material on the substrate 6 in order to increase adhesion with the substrate 6. It is preferable that the second intermediate layer 7b having a composition gradient in which the composition ratio of carbon is increased as the surface side is overlapped with the second intermediate layer 7b.
  • the metal material of the first intermediate layer 7a is selected from Cr, Al, W, Ta, Mo, Nb, Si, and Ti, which are compatible with the iron-based material in order to increase the adhesion with the base material 6. It is preferable that the material contains one or more kinds of metals. More preferred are Cr and W. For example, it is preferable to form the first intermediate layer 7a mainly composed of Cr on the surface of the substrate 6, and to form the second intermediate layer 7b having a W-carbon composition gradient thereon.
  • the intermediate layer 7 may be composed of one layer or three or more layers as necessary.
  • the composition gradient of the second intermediate layer 7b can be formed by tilting the metal-carbon composition by adjusting the sputtering power applied to the target metal used for sputtering and graphite.
  • nitriding treatment it is preferable to perform nitriding treatment on the surface of the substrate 6 before the intermediate layer forming step.
  • nitriding treatment it is preferable to perform a plasma nitriding treatment in which an oxide layer that prevents adhesion is unlikely to be formed on the surface of the base material 6. Is preferable because it improves the adhesion to the intermediate layer 7.
  • the hard film 5 is a hard film mainly composed of diamond-like carbon (DLC) which is amorphous carbon.
  • DLC diamond-like carbon
  • UBMS unbalanced magnetron sputtering
  • the UBMS method is sputtering in which the plasma irradiation to the substrate is enhanced by intentionally making the magnetic field of the sputter cathode non-equilibrium, and a close cured film can be formed by the ion assist effect.
  • the UBMS method will be specifically described.
  • the degree of vacuum in the UBMS apparatus (Kobe Steel Works: UBMS202 / AIP combined apparatus) (inside the chamber) is 0.2 to 0.9 Pa, and the bias voltage applied to the substrate is Under the condition of 50 to 400 V, carbon atoms generated from a target serving as a carbon supply source are deposited on the intermediate layer 7 to form a hard film mainly composed of DLC.
  • the degree of vacuum in the UBMS apparatus is 0. More preferably, it is from 25 to 0.82 Pa.
  • the bias voltage applied to the substrate is preferably 50 to 400V.
  • the hard coating 5 is a layer mainly composed of DLC, a graphite target is used as a carbon supply source during film formation. Moreover, the adhesiveness with respect to an intermediate
  • the carbon-hydrogen gas methane gas, acetylene gas, benzene and the like are not particularly specified, but methane gas is preferable from the viewpoint of cost and handleability.
  • the ratio of the introduction amount of the hydrocarbon gas is 100 with respect to the introduction amount 100 of argon gas into the UBMS apparatus (in the film formation chamber). It is preferably 1 or more and 5 or less. Within this range, the hardness of the hard coating can be maintained while improving the adhesion, and the specific wear amount can be reduced.
  • the amount of Ar gas introduced as the sputtering gas is preferably 50 to 200 ml / min, for example.
  • the hard coating 5 gradually increases in hardness stepwise or continuously from the second intermediate layer 7b side to the outermost layer side so that the adhesion with the second intermediate layer 7b is improved. It is preferable to eliminate an abrupt hardness difference between the intermediate layer 7b and the hard coating 5 on the surface.
  • the DLC gradient layer is obtained by forming the hard coating 5 while increasing the bias voltage with respect to the substrate 6 continuously or stepwise using a graphite target in the UBMS method.
  • the hardness of the DLC gradient layer increases continuously or stepwise because the composition ratio of the graphite structure (sp2) and the diamond structure (sp3) in the DLC structure is biased toward the latter as the bias voltage increases. It is.
  • Such a hard coating 5 is formed with a hardness adjusted to a Vickers hardness (Hv) of 1000 to 4000.
  • the hardness of the hard film is more preferably (Hv) 1000 to 3000, and the hardness of the hard film is more preferably (Hv) 1000 to 1500 in terms of a low coefficient of friction.
  • the rolling elements used in the present invention are made of ceramics, and the type of ceramics is not particularly limited, but silicon nitride, zirconia, silicon carbide, and alumina ceramics can be prepared. However, for example, a rolling element made of silicon nitride ceramics is preferable because it is particularly hard and excellent in wear resistance.
  • the cage 4 used in the present invention is made of a resin material mainly composed of polytetrafluoroethylene (PTFE). This is because it is preferable for exhibiting good and stable solid lubricity by transferring a solid lubricant to the surface of the rolling element even at an extremely low temperature.
  • PTFE polytetrafluoroethylene
  • the type of the cage 4 is not particularly limited and may be a known type, for example, a crown type, or an annular type in which pocket holes are formed at equal intervals in a cylindrical circumferential direction. Further, any of the types that can be divided into two in the annular axial direction and can be integrated by crimping with a pin may be used.
  • the type (model) of the rolling bearing is not particularly limited, and may be a deep groove ball bearing or a cylindrical roller bearing for a cryogenic environment.
  • the specific use of the rolling bearing for the cryogenic environment according to the present invention may be a rolling bearing of a pump for a liquefied gas, or a rolling bearing used for supporting or driving a satellite antenna. good.
  • the rolling bearing When the application of the rolling bearing is a pump for liquefied gas, it may be a submerged pump for liquefied natural gas (LNG), but in that case, since the rolling bearing directly contacts the cryogenic LNG, the inner and outer rings and rolling elements of the present invention have a remarkable effect of becoming a rolling bearing for a cryogenic environment excellent in durability that withstands long-term use and does not deteriorate wear resistance and lubricity.
  • LNG liquefied natural gas
  • the submerged pump for liquefied natural gas exhibits airtightness in a pot (pressure vessel) 8 by immersing the entire pump in the liquid.
  • the pot 8 is opened with the LNG suction port 11 facing outward, and has a discharge port 12 leading to an external pipe (not shown).
  • the motor 13 mounted in the pot 8 supports the upper and lower sides of the motor shaft 10 rotated by an external power source with the ball bearing A of the embodiment shown in FIGS.
  • a multi-stage impeller (impeller) 14 is attached to the pump shaft 9 that rotates integrally.
  • the flow path in the illustrated apparatus of the pump is such that the LNG flowing from the suction port 11 into the pot 8 along the inner surface of the pot 8 by the impeller 14 that rotates integrally with the pump shaft 9 by the driven motor 13. It flows downward and flows into the discharge port 12 from the pipe 16 inside the cylindrical inner wall 15 arranged around the impeller 14, and is sucked in from the lowermost portion of the multistage impeller 14.
  • the other pipe 17 inside the cylindrical inner wall 15 flows in the motor 13 as a lubricating liquid, lubricates and cools the ball bearing A, joins the downward flow along the inner side surface of the pot 8, and again multistage. Is sucked from the tip of the impeller 14.
  • the ball bearing A used in this way holds ceramic balls with a PTFE cage, and a hard coating mainly composed of diamond-like carbon having a predetermined hardness is provided on the inner ring and outer ring base material surfaces. Therefore, it is used as a rolling bearing that can withstand long-term use in a cryogenic environment where it is lubricated and cooled by LNG, and wear resistance and lubricity do not deteriorate over time. Can withstand.
  • the structure of the cage in the above embodiment may be changed so that it can be divided in the annular axial direction.
  • the second embodiment shown in FIGS. 4 to 6 is a pocket that rotatably holds the rolling elements 3 composed of a plurality of spheres in the annular space between the inner ring 1 and the outer ring 2 at intervals in the annular circumferential direction.
  • a holder 19 having holes 18 formed at equal intervals is provided, and the holder 19 is a rolling for a cryogenic environment in which a pair of annular divided bodies 19a and 19b that can be divided in the annular axial direction are integrally coupled on a dividing surface 19c. Bearings are used.
  • a plurality of contact surfaces in a state where the pair of annular divided bodies 19a and 19b are abutted with each other are formed with through holes 20 penetrating in the axial direction of the annular divided bodies 19a and 19b, respectively.
  • the pair of annular divided bodies 19a and 19b are fastened together by the fastening pin 21 that has been made.
  • the fastening pin 21 is made of a material having a lower coefficient of thermal expansion than the cage 19, and at least one of the head 21a at the base end and the crimped head 21b at the tip is provided with a spring washer 22 that is an elastic washer.
  • the pair of annular divided bodies 19a and 19b are integrated by the elastic force of the spring washer 22 to form the cage 19 by being pressed against the end faces of the annular divided bodies 19a and 19b.
  • the above-described cage 19 is a well-known cylinder (ring) shape such as a cylindrical body whose size is entirely accommodated in the annular space between the inner ring 1 and the outer ring 2, and is a pair of rings divided into two in the annular axial direction.
  • the division surfaces 19c are brought into contact with each other so that the division bodies 19a and 19b are in a state before division.
  • the split surfaces 19c of the pair of annular divided bodies 19a, 19b are formed by projecting the inner peripheral side of one end face of the annular divided bodies 19a, 19b to be indented, and by recessing the other inner peripheral side.
  • the joint form is adopted.
  • a through hole 20 that penetrates in the axial direction of the retainer 19 is provided so as to penetrate such a split surface 19c, and a fastening pin 21 is inserted and fastened into the through hole 20 so as to integrate the pair of annular split bodies 19a and 19b. ing.
  • the formation position of the dividing surface 19c is in the middle of the cylindrical shape of the retainer 19, and forming the pocket hole 18 in a half position facilitates the workability of incorporating the rolling element 3 into the pocket hole 18. It is preferable for reasons such as good.
  • the annular divided bodies 19a and 19b constituting the retainer 19 those made of a resin material mainly composed of polytetrafluoroethylene resin (PTFE) are adopted as in the first embodiment.
  • the resin as an additive component other than PTFE include polyamide resins (for example, polyamide 46, polyamide 66, polyamide 9T, etc.), polycarbonate, polyether ketone resin, polyphenylene oxide (PPO), polyphenylene sulfide resin, and the like.
  • the through-hole 20 provided through the dividing surface is provided in a diameter and a shape through which the fastening pin 21 can be inserted, and is not particularly limited to a circular hole shape, and is a polygonal hole or other well-known hole. There may be.
  • the fastening pin 21 preferably has a head portion 21a having a diameter larger than the diameter of the through hole 20 at one end from the beginning before use, and the shape of the head portion 21a is a disc shape, a polygonal disc shape, or a hemispherical shape.
  • the shape is a frustum shape and is not limited to the illustrated shape.
  • the fastening pin 21 has an axial length that protrudes from the other end when inserted from one end of the through hole 20, and the portion protruding from the other end has a normal temperature or heating condition.
  • a head 21b crimped to the same large diameter as the above-described head 21a is formed.
  • the fastening pin 21 is made of a material such as stainless steel that can be plastically deformed by pressurization, other steel alloys, or a synthetic resin such as a thermoplastic resin so that a crimped head 21b can be formed.
  • a material having a thermal expansion coefficient lower than that of the cage 5 is employed.
  • the thermal expansion coefficient (linear expansion coefficient or volume expansion coefficient) of the fastening pin 21 is The one having a low thermal expansion coefficient equal to or lower than that of the cage 19 is employed.
  • a synthetic resin is used as the material of the cage 19 and a synthetic resin is also used as the material of the fastening pin 21, the coefficient of thermal expansion corresponding to the type of the synthetic resin is taken into account. It is preferable to selectively employ a brittle temperature at a low temperature of less than ⁇ 100 ° C. as shown in FIG.
  • PTFE is a material that can withstand low temperatures up to -267 ° C.
  • the retainer 19 presses one or both of the heads 21a, 21b provided at both ends of the fastening pin 21 to the annular divided body via an elastic washer.
  • the elastic washer is made of metal made of spring steel or the like, or made of synthetic resin such as fluororesin or a composite material thereof, and has elasticity in the annular axial direction, and particularly its kind
  • the spring washer also referred to as a spring washer
  • an elastic washer such as a wave washer or a disc spring
  • the spring washer has a spring action by cutting a part of the flat washer and twisting the cut portion.
  • the step of the cut portion is about 50% of the thickness of the cut portion (40 to 40%). 60%, preferably 45 to 55%) is preferable for obtaining moderate elasticity.
  • An elastic washer such as a spring washer can also be used in combination with a flat washer to protect the cage.
  • a disc spring, a spherical washer, and a wave washer can be used as an elastic washer having a higher spring constant than the spring washer.
  • the pair of annular divided bodies 19a and 19b constituting the cage 19 are integrated by the elastic force of the elastic washer, and the fastening pin 21 is the cage 19. Since the material has a low thermal expansion coefficient equal to or less than the thermal expansion coefficient, the annular divided bodies 19a and 19b, which are greatly heat-shrinked compared to the fastening pin 21 when the room temperature is changed to an extremely low temperature state, have the diameter of the through hole 20 reduced. It shrinks and contracts until it approaches or comes into contact with the outer peripheral surface of the fastening pin 21 to reduce the radial gap or closely contact to prevent the fastening pin 21 of the retainer 19 from vibrating in the radial direction and rattling.
  • the annular divided bodies 19 a and 19 b contracted greatly compared to the fastening pin 21 contract without being regulated in the axial direction of the fastening pin 21.
  • the fastening pins 21 are also elastic to the contracted annular divided bodies 19a and 19b.
  • the pressure contact force of the washer acts to maintain the elastically integrated state of the pair of annular divided bodies 19a, 19b in the retainer 19, and the pair of annular divided bodies 19a, 19b by the fastening pin 21 are kept at a cryogenic temperature.
  • the rolling element 3 is smoothly rotated and stabilized in a state where the bearing performance at a very low temperature is good.
  • the structure of the rolling bearing which abbreviate
  • the third embodiment shown in FIGS. 7 and 8 shows a configuration exactly the same except that the wave washer 23 is used instead of the spring washer in the second embodiment.
  • the wave washer 23 is formed by bending a flat washer made of spring steel into a corrugated shape, and exhibits elasticity in the axial direction by elastically deforming the corrugated shape.
  • heads 21a and 21b provided at both ends of the fastening pin 21 are integrated with elastic washers such as a spring washer 22 or a wave washer 23, and a pair of annular divided bodies 19a and 19b are integrated with the elastic force of the elastic washer. Therefore, the pressure contact force of the elastic washer acts on the annular divided bodies 19a and 19b contracted in a use state at an extremely low temperature, and the state where the pair of annular divided bodies 19a and 19b are elastically integrated is maintained. 21 does not cause looseness or gaps in the joint surfaces of the pair of annular divided bodies 19a and 19b in a use state at an extremely low temperature. As a result, the rolling element 3 is smoothly rotated and stabilized in a state where the bearing performance at a very low temperature is good.
  • elastic washers such as a spring washer 22 or a wave washer 23
  • a pair of annular divided bodies 19a and 19b are integrated with the elastic force of the elastic washer. Therefore, the pressure contact force of the elastic washer acts on the annular divided bodies 19a and 19b contracted
  • a pair of annular divided bodies 19a, 19b by a fastening pin 21 such as a steel rivet assembled at room temperature are abutting surfaces in a use state at a cryogenic temperature.
  • a rolling bearing for a cryogenic environment is obtained in which no looseness or gap is generated, and the rolling element 3 is smoothly rotated to stabilize the bearing performance in a good state.

Abstract

A rolling bearing (A), wherein: a cage (4) for rotatably holding a ceramic rolling body (3) is provided between an inner race (1) and an outer race (2) which constitute part of the rolling bearing (A) and comprise a martensitic stainless steel or high-speed tool steel; the cage (4) comprises a resin material having polytetrafluoroethylene as the principal component thereof; the substrate surface of the inner race (1) and the outer race (2) is provided with a hard anodic oxidation coating (5) having a diamond-like carbon with a Vickers hardness (Hv) of 1,000-4,000 as a principal component thereof; long-term use in an extremely low-temperature environment is possible; and there is no decrease in lubricity and wear resistance over time.

Description

極低温環境用転がり軸受Rolling bearing for cryogenic environment
 この発明は、液化天然ガスなどの極低温状態の液化ガスを移送するサブマージドポンプに用いられる軸受のように、極低温下で用いられる極低温環境用転がり軸受に関するものである。 The present invention relates to a rolling bearing for a cryogenic environment used at a cryogenic temperature, such as a bearing used in a submerged pump for transferring a liquefied gas in a cryogenic state such as liquefied natural gas.
 一般に、常温の環境で用いられる転がり軸受は、内輪と外輪の間に転動体を回転自在に保持し、潤滑油等による液体潤滑が必要であるが、例えば-100℃以下または-200℃以下のような極低温の液化ガス等が存在する環境や、これらを取り扱う環境下で用いられる転がり軸受には、通常の潤滑油等による液体潤滑を期待できない。また、極低温環境用転がり軸受には、部品の収縮変形に伴う強度や耐久性の低下などが起こりやすいこともあり、そのような厳しい使用条件に耐える特性が必要である。 In general, a rolling bearing used in a normal temperature environment requires a rolling element to be rotatably held between an inner ring and an outer ring and requires liquid lubrication with a lubricating oil or the like. In a rolling bearing used in an environment where such a cryogenic liquefied gas or the like exists, or in an environment where these gases are handled, liquid lubrication with a normal lubricating oil or the like cannot be expected. In addition, rolling bearings for cryogenic environments are liable to deteriorate in strength and durability due to shrinkage and deformation of parts, and are required to withstand such severe use conditions.
 因みに、極低温の液化ガスの代表例である液化天然ガス(LNG)は、メタンを主成分とし、常圧下では-161.5℃(約-162℃)以下でなければ液化しない物性である。LNGの他にも、例えば冷媒、熱媒体、充填用ガスなどに液化された状態で利用される液化ガスとして、窒素、ヘリウムなどがある。 Incidentally, liquefied natural gas (LNG), which is a typical example of a cryogenic liquefied gas, has methane as a main component and has a physical property that does not liquefy unless it is below −161.5 ° C. (about −162 ° C.) under normal pressure. In addition to LNG, examples of liquefied gas used in a liquefied state such as a refrigerant, a heat medium, and a filling gas include nitrogen and helium.
 このような液化ガスを極低温で液体の状態を維持して移送したり保管したりする場合、極低温下での専用ポンプを用いる必要があり、そのようなポンプの型式としてサブマージド型のポンプが知られている。
 この型式のポンプは、モータを含むポンプ装置の全体を液化ガス中に浸漬して用いるので、本体を外気から密封するためのメカニカルシールを必要とせず、気化ガスの散逸によるロスの少ない点でも優れたものである。
When transporting or storing such a liquefied gas while maintaining a liquid state at a cryogenic temperature, it is necessary to use a dedicated pump at a cryogenic temperature. As a type of such a pump, a submerged pump is used. Are known.
Since this type of pump is used by immersing the entire pump device including the motor in liquefied gas, it does not require a mechanical seal to seal the main body from the outside air, and is excellent in that there is little loss due to dissipation of the vaporized gas. It is a thing.
 しかしながら、このようなサブマージド型のポンプは、モータなども直接に液化ガスに触れる状態で用いられるので、モータ軸などを支持する転がり軸受についても極低温下で潤滑性に乏しいLNGで潤滑されながら、長期にわたって安定して良好な回転状態であることが求められる。 However, since such a submerged pump is used in a state where the motor etc. is also in direct contact with the liquefied gas, the rolling bearing supporting the motor shaft etc. is also lubricated with LNG having poor lubricity at extremely low temperatures, It is required that the rotation state is stable and good over a long period of time.
 また、極低温環境の他の例としては、上記した液体ガスの存在する環境ばかりではなく、地表から遠く離れた成層圏以上の高高度の宇宙空間や、さらに離れた宇宙空間でも、環境温度は-50~-270℃程度になることから、そのような人工衛星や宇宙船で用いられる極低温環境用転がり軸受にも同様な特性が求められる。 As another example of the cryogenic environment, the environmental temperature is not only in the above-mentioned environment where liquid gas exists, but also in a high altitude space beyond the stratosphere far from the surface of the earth, and in a far away space. Since the temperature is about 50 to −270 ° C., similar characteristics are required for rolling bearings for cryogenic environments used in such artificial satellites and spacecraft.
 このような極低温環境で用いられる転がり軸受の公知技術として、外輪および内輪がマルテンサイト系ステンレス鋼で形成され、かつ転動体がセラミックで形成され、保持器はフッ素樹脂で形成されたものが知られている(下記特許文献1)。 As a known technique of a rolling bearing used in such a cryogenic environment, an outer ring and an inner ring are made of martensitic stainless steel, a rolling element is made of ceramic, and a cage is made of a fluororesin. (Patent Document 1 below).
 また、軸受の摺動面などに用いられる耐摩耗性に優れた硬質皮膜を形成するダイヤモンドライクカーボン(以下、DLCと略称する)の皮膜処理が周知であり、基材との密着性を高めるために中間層を介して形成することが好ましいことが知られている(下記特許文献2)。 In addition, a film treatment of diamond-like carbon (hereinafter abbreviated as DLC) that forms a hard film with excellent wear resistance used for a sliding surface of a bearing is well known, and is intended to enhance adhesion to a substrate. It is known that it is preferably formed via an intermediate layer (Patent Document 2 below).
 さらにまた、内輪と外輪、転動体および保持器を鉄系基材や超硬材で形成し、DLC被膜を内輪または外輪の軌道面に形成して耐摩耗性を高めた転がり軸受が知られている(下記特許文献3、図1)。 Furthermore, a rolling bearing is known in which the inner and outer rings, the rolling elements and the cage are formed of an iron-based base material or cemented carbide material, and the DLC film is formed on the raceway surface of the inner ring or the outer ring to improve wear resistance. (Patent Document 3 below, FIG. 1).
特開2014-20490号公報JP 2014-20490 A 特開2011-68940号公報JP 2011-68940 A 国際公開第2013/042765号International Publication No. 2013/042765
 しかし、上記した特許文献1に記載されるような従来の極低温環境用転がり軸受は、セラミック製の転動体が内輪および外輪の摩耗を進行させるので、これらの部品に寸法変化が生じやすく、経時的に安定した回転状態を得ることが容易でないという問題点がある。 However, in the conventional rolling bearing for cryogenic environment as described in Patent Document 1 described above, since the ceramic rolling elements cause the inner ring and the outer ring to wear, dimensional changes are likely to occur in these parts, and There is a problem that it is not easy to obtain a stable rotational state.
 また、特許文献2、3に記載されるように、鉄系材料からなる内輪、外輪または転動体の各基材表面に、ダイヤモンドライクカーボン(DLC)のような硬質の皮膜を形成すると、これらが接触する相手材を摩耗させる可能性が高く、特に低温条件では摩耗もより起こりやすく、また潤滑性に乏しいLNGによって潤滑される場合の使用条件では、さらに起こりやすくなる。 Further, as described in Patent Documents 2 and 3, when a hard film such as diamond-like carbon (DLC) is formed on the surface of each base material of an inner ring, outer ring or rolling element made of an iron-based material, these are There is a high possibility that the contacted material will be worn, and wear is more likely to occur particularly at low temperatures, and even more likely to occur under conditions of use when lubricated by LNG having poor lubricity.
 そこで、この発明の課題は、上記した問題を解決して液化ガスの存在下や宇宙環境のような極低温環境下で用いられる極低温環境用転がり軸受において、軌道面および転動体の摩耗が極めて少ないものとし、特にLNG等の液化ガスによって潤滑されかつ冷却される極低温環境下でも内外輪と転動体が長期間の使用に耐えて耐摩耗性および潤滑性の低下しない耐久性に優れた極低温環境用転がり軸受とすることである。 Therefore, the problem of the present invention is to solve the above-mentioned problems, and in a rolling bearing for a cryogenic environment used in a cryogenic environment such as the presence of a liquefied gas or a space environment, the raceway surface and the rolling element are extremely worn. Extremely low durability, especially in extremely low temperature environments that are lubricated and cooled by liquefied gas such as LNG, and the inner and outer rings and rolling elements can withstand long-term use and wear resistance and lubricity do not deteriorate It is to make a rolling bearing for a low temperature environment.
 上記の課題を解決するため、この発明では、マルテンサイト系ステンレス鋼または高速度工具鋼からなる内輪と外輪の間に、複数の転動体を回転自在に保持する保持器を設けた転がり軸受において、前記転動体は、セラミックス製転動体であり、前記保持器はポリテトラフルオロエチレンを主成分とする樹脂素材からなり、前記内輪および外輪の基材表面に、ビッカース硬度(Hv)1000~4000のダイヤモンドライクカーボンを主体とする硬質皮膜を設けた極低温環境用転がり軸受としたのである。 In order to solve the above problems, in the present invention, in a rolling bearing provided with a cage that rotatably holds a plurality of rolling elements between an inner ring and an outer ring made of martensitic stainless steel or high-speed tool steel, The rolling element is a ceramic rolling element, and the cage is made of a resin material mainly composed of polytetrafluoroethylene, and diamond having a Vickers hardness (Hv) of 1000 to 4000 is formed on the surface of the base material of the inner ring and the outer ring. This is a rolling bearing for a cryogenic environment provided with a hard coating mainly composed of like carbon.
 上記したように構成されるこの発明の極低温環境用転がり軸受は、マルテンサイト系ステンレス鋼または高速度工具鋼からなる内輪と外輪が、極低温下で経年寸法変化の起こり難い素材であって、さらに内輪および外輪の基材表面に、ビッカース硬度(Hv)1000~4000のダイヤモンドライクカーボンを主体とする硬質皮膜が設けられているので、経年寸法変化の少ない内輪と外輪において使用時の摩耗が起こり難くなる。 The rolling bearing for the cryogenic environment of the present invention configured as described above is a material in which an inner ring and an outer ring made of martensitic stainless steel or high-speed tool steel are unlikely to undergo aging change at extremely low temperatures, In addition, a hard coating mainly composed of diamond-like carbon with a Vickers hardness (Hv) of 1000 to 4000 is provided on the surface of the base material of the inner ring and outer ring. It becomes difficult.
 また、所定の硬質皮膜を有する内輪と外輪の回転時に摩擦接触する転動体は、ポリテトラフルオロエチレンが移着しやすいセラミックス製であり、回転に伴って保持器から適当な頻度で移着するポリテトラフルオロエチレンが極低温下でも安定して優れた固体潤滑性を発揮するので、内輪と外輪の表面の硬質皮膜が転動体に接触するときに、転動体は、固体潤滑されていることで摩耗が抑制された状態で安定して機能する。 In addition, the rolling elements that are in frictional contact during rotation of the inner ring and the outer ring having a predetermined hard film are made of ceramics to which polytetrafluoroethylene is easily transferred, and are transferred from the cage at an appropriate frequency along with the rotation. Since tetrafluoroethylene stably exhibits excellent solid lubricity even at extremely low temperatures, when the hard coating on the inner and outer ring surfaces comes into contact with the rolling elements, the rolling elements are worn by solid lubrication. It functions stably in a state where is suppressed.
 そのため、転がり軸受を長期間使用するときにも軌道面および転動体の摩耗が極めて少なくなり、特にLNGによって潤滑されかつ冷却されるという極低温環境下での内外輪と転動体が長期使用に耐え、耐摩耗性および潤滑性が低下しないで耐久性に優れた転がり軸受となる。 For this reason, even when the rolling bearing is used for a long period of time, the wear of the raceway surface and the rolling element is extremely reduced, and the inner and outer rings and the rolling element in an extremely low temperature environment that is lubricated and cooled by LNG can withstand long-term use. In addition, the rolling bearing is excellent in durability without deteriorating wear resistance and lubricity.
 前記硬質皮膜は、表面へ向けて段階的または連続的に硬度を高めた中間層に重ねて設けられた硬質皮膜であることが、硬質皮膜の密着性を高め、すなわち層の耐剥離強度を高めるために好ましい。 The hard coating is a hard coating provided on an intermediate layer whose hardness has been increased stepwise or continuously toward the surface, thereby improving the adhesion of the hard coating, that is, increasing the peel resistance of the layer. Therefore, it is preferable.
 硬質皮膜の硬度が、ビッカース硬度(Hv)1000~4000の範囲である理由は、この数値範囲未満のより低い硬度では、内輪と外輪の硬質皮膜から転動体へ移着するカーボン量が多くなり過ぎて、耐久性が低下するので好ましくなく、前記数値範囲を超える高い硬度では、硬質皮膜が密着性が低くなり剥離しやすくなって好ましくないからである。 The reason why the hardness of the hard coating is in the range of Vickers hardness (Hv) 1000 to 4000 is that if the hardness is lower than this numerical range, the amount of carbon transferred from the hard coating of the inner ring and outer ring to the rolling element becomes too much. This is because it is not preferable because the durability is lowered, and a high hardness exceeding the above numerical range is not preferable because the hard film has low adhesion and is easily peeled off.
 上記セラミックス製の転動体は、窒化ケイ素系のセラミックス製転動体であることが高硬度で耐摩耗性に優れているので、好ましい。
 また、上記極低温環境用転がり軸受は、液化ガス用ポンプの転がり軸受に適用できる。液化ガス用ポンプである液化天然ガス用サブマージドポンプは、特にこの発明の転がり軸受の実用的利用価値を高めることが可能な適用例である。
The ceramic rolling element is preferably a silicon nitride ceramic rolling element because of its high hardness and excellent wear resistance.
The rolling bearing for the cryogenic environment can be applied to a rolling bearing of a liquefied gas pump. The liquefied natural gas submerged pump, which is a liquefied gas pump, is an application example that can increase the practical utility value of the rolling bearing of the present invention.
 この発明は、セラミックス製転動体と、ポリテトラフルオロエチレンを主成分とする樹脂製保持器とを具備し、内輪および外輪の基材表面に、所定硬度のダイヤモンドライクカーボンを主体とする硬質皮膜を設けた極低温環境用転がり軸受としたので、軌道面および転動体の摩耗が極めて少ないものとなり、特にLNG等の液化ガスによって潤滑されかつ冷却される極低温環境下や宇宙環境のような極低温環境下でも長期間の使用に耐えて経時的に耐摩耗性および潤滑性の低下しない極低温環境用転がり軸受となる利点がある。 The present invention comprises a ceramic rolling element and a resin cage mainly composed of polytetrafluoroethylene, and a hard film mainly composed of diamond-like carbon having a predetermined hardness is formed on the inner ring and outer ring base material surfaces. Since the rolling bearing for the cryogenic environment is provided, the wear of the raceway surface and rolling elements is extremely small, and especially in a cryogenic environment such as LNG or a space environment that is lubricated and cooled by a liquefied gas such as LNG. There is an advantage that it becomes a rolling bearing for a cryogenic environment that can withstand long-term use even in an environment and does not deteriorate wear resistance and lubricity over time.
第1実施形態を示す極低温環境用転がり軸受の要部断面図Sectional drawing of the principal part of the rolling bearing for cryogenic environments which shows 1st Embodiment 第1実施形態の要部を示し、硬質皮膜の層構成を説明する拡大断面図The expanded sectional view which shows the principal part of 1st Embodiment and demonstrates the layer structure of a hard film 第1実施形態の使用状態を説明し、液化天然ガス用サブマージドポンプの概略構成を示す断面図Sectional drawing explaining the use condition of 1st Embodiment and showing schematic structure of the submerged pump for liquefied natural gas 第2実施形態を示す転がり軸受の要部断面図Sectional drawing of the principal part of the rolling bearing which shows 2nd Embodiment 第2実施形態に用いたばね座金の斜視図A perspective view of a spring washer used in the second embodiment 第2実施形態に用いた保持器の一部を切り欠いてばね座金と締結ピンの組み付け状態を説明する部品分解斜視図Part disassembled perspective view for explaining the assembled state of the spring washer and the fastening pin by cutting out a part of the cage used in the second embodiment. 第3実施形態を示し、転がり軸受の要部断面図Sectional drawing of the principal part of a rolling bearing which shows 3rd Embodiment 第3実施形態に用いた波ワッシャの斜視図The perspective view of the wave washer used for 3rd Embodiment
 この発明の実施形態を以下に添付図面に基づいて説明する。
 図1、2に示すように第1実施形態は、転がり軸受Aの所定基材からなる内輪1および外輪2の間に、セラミックス製の転動体(玉)3を回転自在に保持する保持器4を設け、保持器4はポリテトラフルオロエチレンを主成分とする樹脂素材からなり、内輪1および外輪2の基材表面に、ビッカース硬度(Hv)1000~4000のダイヤモンドライクカーボンを主体とする硬質皮膜5を、基材6(図2参照)に対し表面へ向けて段階的または連続的に硬度を高めた中間層7を介して設けた極低温環境用転がり軸受である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
As shown in FIGS. 1 and 2, in the first embodiment, a cage 4 that rotatably holds a ceramic rolling element (ball) 3 between an inner ring 1 and an outer ring 2 made of a predetermined base material of a rolling bearing A. The retainer 4 is made of a resin material mainly composed of polytetrafluoroethylene, and has a hard film mainly composed of diamond-like carbon having a Vickers hardness (Hv) of 1000 to 4000 on the base material surfaces of the inner ring 1 and the outer ring 2. 5 is a rolling bearing for a cryogenic environment provided through an intermediate layer 7 whose hardness is increased stepwise or continuously toward the surface of a base material 6 (see FIG. 2).
 上記した内輪1および外輪2の基材6は、マルテンサイト系ステンレス鋼または高速度工具鋼であり、これらは硬質で耐摩耗性に優れた鋼材である。マルテンサイト系ステンレス鋼の例としては、SUS403、SUS420、SUS440Cなどが挙げられる。また、高速度工具鋼としては、米国鉄鋼協会AISI規格の高速度鋼も50、日本工業規格のSKH4等が挙げられる。 The base material 6 of the inner ring 1 and the outer ring 2 described above is martensitic stainless steel or high-speed tool steel, and these are steel materials that are hard and have excellent wear resistance. Examples of martensitic stainless steel include SUS403, SUS420, and SUS440C. Examples of the high-speed tool steel include 50 high-speed steels according to the American Steel Association AISI standard and SKH4 of Japanese Industrial Standards.
 このような基材6の表面側、少なくとも軌道面(または転走面とも別称される。)に設けるビッカース硬度(Hv)1000~4000のダイヤモンドライクカーボン(DLC)を主体とする硬質皮膜5は、基材6との密着性を高めるために中間層7を介して設けることが好ましい。 The hard coating 5 mainly composed of diamond-like carbon (DLC) having a Vickers hardness (Hv) of 1000 to 4000 provided on the surface side of the substrate 6, at least on the raceway surface (or also referred to as a rolling surface), In order to improve the adhesiveness with the base material 6, it is preferably provided via the intermediate layer 7.
 DLCは、ダイヤモンドとグラファイトが混ざり合った中間構造のものであり、ダイモンドと同等の硬度に形成できるものである。
 DLC皮膜の形成方法としては、スパッタリングやイオンプレーティングなどの物理的蒸着法、化学的蒸着法、アンバランスド・マグネトロン・スパッタリング(UBMS)法などの周知の皮膜形成法を採用することができる。
DLC has an intermediate structure in which diamond and graphite are mixed, and can be formed to have a hardness equivalent to that of diamond.
As a method for forming the DLC film, a known film forming method such as a physical vapor deposition method such as sputtering or ion plating, a chemical vapor deposition method, or an unbalanced magnetron sputtering (UBMS) method can be employed.
 中間層7は、表面へ向けて段階的または連続的に硬度を高めたものであり、例えば後述する「中間層の形成方法」によって形成することができる。
 密着性を改善するために追加できる補助的な方法としては、基材の表面を粗面化し、アンカー効果が発揮されるようにしても良い。粗面化は、表面粗さRaが0.5μm以下、好ましくはRaが0.05μm以下であるように、周知のArイオン衝撃処理などによって行なうことができる。
The intermediate layer 7 has increased hardness stepwise or continuously toward the surface, and can be formed by, for example, an “intermediate layer forming method” described later.
As an auxiliary method that can be added to improve the adhesion, the surface of the base material may be roughened to exert the anchor effect. The roughening can be performed by a known Ar ion bombardment treatment or the like so that the surface roughness Ra is 0.5 μm or less, preferably Ra is 0.05 μm or less.
 [中間層の形成]
 図2を参照して説明すると、中間層7は、先ず、基材6との密着性を増すために、基材6上に金属系材料を主体とする第1の中間層7aを形成し、その上に重ねて表面側近づくほど炭素の組成比を増加させた組成傾斜性の第2の中間層7bで構成することが好ましい。
[Formation of intermediate layer]
Referring to FIG. 2, the intermediate layer 7 first forms a first intermediate layer 7 a mainly composed of a metal-based material on the substrate 6 in order to increase adhesion with the substrate 6. It is preferable that the second intermediate layer 7b having a composition gradient in which the composition ratio of carbon is increased as the surface side is overlapped with the second intermediate layer 7b.
 第1の中間層7aの金属系材料としては、基材6との密着性を増すため、鉄系材料と相性のよい、Cr、Al、W、Ta、Mo、Nb、Si、Tiから選択される1種類以上の金属を含む材料であることが好ましい。より好ましいのはCrおよびWである。
 例えば、基材6の表面にCrを主体とする第1の中間層7aを形成し、その上にW-炭素の組成傾斜性の第2の中間層7bを形成することが好ましい。
The metal material of the first intermediate layer 7a is selected from Cr, Al, W, Ta, Mo, Nb, Si, and Ti, which are compatible with the iron-based material in order to increase the adhesion with the base material 6. It is preferable that the material contains one or more kinds of metals. More preferred are Cr and W.
For example, it is preferable to form the first intermediate layer 7a mainly composed of Cr on the surface of the substrate 6, and to form the second intermediate layer 7b having a W-carbon composition gradient thereon.
 図2では中間層7として2層構造の例を示したが、必要に応じて、1層または3層以上の数の層からなるものであってもよい。
 また、第2の中間層7bの組成傾斜は、スパッタリングに用いるターゲットである金属および黒鉛に印加するスパッタ電力を調整することで、金属-炭素の組成を傾斜させて形成することができる。
In FIG. 2, an example of a two-layer structure is shown as the intermediate layer 7, but the intermediate layer 7 may be composed of one layer or three or more layers as necessary.
The composition gradient of the second intermediate layer 7b can be formed by tilting the metal-carbon composition by adjusting the sputtering power applied to the target metal used for sputtering and graphite.
 基材6と中間層7との密着性を高めるために、中間層形成工程の前に基材6の表面に窒化処理を施すことが好ましい。
 窒化処理として、基材6の表面に密着性を妨げる酸化層が生じ難いプラズマ窒化処理を施すことが好ましく、表面に窒化層を形成された基材6は、ビッカース硬さでHv1000以上とすることが、中間層7との密着性を向上させるので好ましい。
In order to improve the adhesion between the substrate 6 and the intermediate layer 7, it is preferable to perform nitriding treatment on the surface of the substrate 6 before the intermediate layer forming step.
As the nitriding treatment, it is preferable to perform a plasma nitriding treatment in which an oxide layer that prevents adhesion is unlikely to be formed on the surface of the base material 6. Is preferable because it improves the adhesion to the intermediate layer 7.
[DLCを主体とする硬質皮膜の形成]
 硬質皮膜5は、アモルファスのカーボンであるダイヤモンドライクカーボン(DLC)を主体とする硬質の皮膜である。
 硬質皮膜5を形成するには、アンバランスドマグネトロンスパッタ(UBMS)法と称される周知技術を採用できる。UBMS法は、スパッタカソードの磁場を意図的に非平衡にすることで、基板へのプラズマ照射を強化したスパッタリングであり、イオンアシスト効果によって緊密な硬化膜を製膜することができる。
[Formation of hard film mainly composed of DLC]
The hard film 5 is a hard film mainly composed of diamond-like carbon (DLC) which is amorphous carbon.
In order to form the hard coating 5, a known technique called an unbalanced magnetron sputtering (UBMS) method can be employed. The UBMS method is sputtering in which the plasma irradiation to the substrate is enhanced by intentionally making the magnetic field of the sputter cathode non-equilibrium, and a close cured film can be formed by the ion assist effect.
 UBMS法を具体的に説明すると、UBMS装置(神戸製鋼所製:UBMS202/AIP複合装置)内(チャンバー内)の真空度が0.2~0.9Paであり、基材に印加するバイアス電圧が50~400Vである条件で、炭素供給源となるターゲットから生じる炭素原子を、中間層7上に堆積させてDLCを主体とする硬質皮膜を形成する。 The UBMS method will be specifically described. The degree of vacuum in the UBMS apparatus (Kobe Steel Works: UBMS202 / AIP combined apparatus) (inside the chamber) is 0.2 to 0.9 Pa, and the bias voltage applied to the substrate is Under the condition of 50 to 400 V, carbon atoms generated from a target serving as a carbon supply source are deposited on the intermediate layer 7 to form a hard film mainly composed of DLC.
 このときUBMS装置内の真空度と、基材に印加するバイアス電圧のいずれかが上記範囲外では、硬質皮膜に上述の物性を確実に得ることができないので、UBMS装置内の真空度は、0.25~0.82Paであることがより好ましい。また、基材に印加するバイアス電圧は50~400Vであることが好ましい。 At this time, if any of the degree of vacuum in the UBMS apparatus and the bias voltage applied to the substrate is out of the above range, the above physical properties cannot be obtained with certainty in the hard film, so the degree of vacuum in the UBMS apparatus is 0. More preferably, it is from 25 to 0.82 Pa. The bias voltage applied to the substrate is preferably 50 to 400V.
 硬質皮膜5は、DLCを主体とする層であるため、成膜時の炭素供給源として黒鉛ターゲットを使用する。また、炭素供給源として、上記黒鉛ターゲットと、炭化水素系ガスとを併用することによって、中間層に対する密着性を向上させることもできる。 Since the hard coating 5 is a layer mainly composed of DLC, a graphite target is used as a carbon supply source during film formation. Moreover, the adhesiveness with respect to an intermediate | middle layer can also be improved by using together the said graphite target and hydrocarbon gas as a carbon supply source.
 炭素水素系ガスとしては、メタンガス、アセチレンガス、ベンゼン等で特に指定されないが、コストおよび取り扱い性の点からメタンガスが好ましい。
 炭素供給源として、黒鉛ターゲットと炭素水素系ガスとを併用する場合、炭化水素系ガスの導入量の割合が、アルゴンガスのUBMS装置内(成膜チャンバー内)への導入量100に対して、1以上、5以下であることが好ましい。この範囲であれば、密着性を向上させつつ、硬質皮膜の硬さを維持でき、かつ比摩耗量の低減が可能となる。
 なお、スパッタリングガスであるArガスの導入量は、例えば、50~200ml/minであることが好ましい。
As the carbon-hydrogen gas, methane gas, acetylene gas, benzene and the like are not particularly specified, but methane gas is preferable from the viewpoint of cost and handleability.
When a graphite target and a carbon hydrogen gas are used in combination as a carbon supply source, the ratio of the introduction amount of the hydrocarbon gas is 100 with respect to the introduction amount 100 of argon gas into the UBMS apparatus (in the film formation chamber). It is preferably 1 or more and 5 or less. Within this range, the hardness of the hard coating can be maintained while improving the adhesion, and the specific wear amount can be reduced.
Note that the amount of Ar gas introduced as the sputtering gas is preferably 50 to 200 ml / min, for example.
 硬質皮膜5は、第2の中間層7bとの密着性が向上するように、第2の中間層7b側から最表層側へ徐々に硬度を段階的または連続的に上げていき、第2の中間層7bと表面の硬質皮膜5との急激な硬度差をなくすことが好ましい。
 具体的には、硬質皮膜5を、UBMS法において黒鉛ターゲットを用いて、基材6に対するバイアス電圧を連続的または段階的に上昇させながら成膜することで、DLC傾斜層が得られる。
The hard coating 5 gradually increases in hardness stepwise or continuously from the second intermediate layer 7b side to the outermost layer side so that the adhesion with the second intermediate layer 7b is improved. It is preferable to eliminate an abrupt hardness difference between the intermediate layer 7b and the hard coating 5 on the surface.
Specifically, the DLC gradient layer is obtained by forming the hard coating 5 while increasing the bias voltage with respect to the substrate 6 continuously or stepwise using a graphite target in the UBMS method.
 このDLC傾斜層の硬度が、連続的または段階的に上昇するのは、DLC構造におけるグラファイト構造(sp2)とダイヤモンド構造(sp3)との構成比率が、バイアス電圧の上昇により後者に偏っていくためである。
 このような硬質皮膜5は、ビッカース硬度(Hv)1000~4000に調整した硬さで形成する。
The hardness of the DLC gradient layer increases continuously or stepwise because the composition ratio of the graphite structure (sp2) and the diamond structure (sp3) in the DLC structure is biased toward the latter as the bias voltage increases. It is.
Such a hard coating 5 is formed with a hardness adjusted to a Vickers hardness (Hv) of 1000 to 4000.
 前述のように、バイアス電圧を上昇させることにより、上記数値範囲内でHV値を上げて硬度調整することができる。
 耐摩耗性について、より好ましい硬質皮膜の硬度は、(Hv)1000~3000であり、低い摩擦係数である点でより好ましい硬質皮膜の硬度は、(Hv)1000~1500である。
As described above, by increasing the bias voltage, the hardness can be adjusted by increasing the HV value within the above numerical range.
Regarding the wear resistance, the hardness of the hard film is more preferably (Hv) 1000 to 3000, and the hardness of the hard film is more preferably (Hv) 1000 to 1500 in terms of a low coefficient of friction.
 次に、この発明に用いる転動体は、セラミックス製であり、セラミックスの種類は、特に限定されないが、窒化ケイ素系、ジルコニア系、炭化ケイ素系、アルミナ系の各系のセラミックスを調製することができるが、例えば窒化ケイ素系セラミックス製の転動体は、特に硬質で耐摩耗性に優れているので好ましい。 Next, the rolling elements used in the present invention are made of ceramics, and the type of ceramics is not particularly limited, but silicon nitride, zirconia, silicon carbide, and alumina ceramics can be prepared. However, for example, a rolling element made of silicon nitride ceramics is preferable because it is particularly hard and excellent in wear resistance.
 この発明に用いる保持器4は、ポリテトラフルオロエチレン(PTFE)を主成分とする樹脂素材からなるものを採用する。極低温でも転動体の表面に固体潤滑材を移着させて良好かつ安定した固体潤滑性を発揮させるために好ましいからである。 The cage 4 used in the present invention is made of a resin material mainly composed of polytetrafluoroethylene (PTFE). This is because it is preferable for exhibiting good and stable solid lubricity by transferring a solid lubricant to the surface of the rolling element even at an extremely low temperature.
 保持器4の形式は、特に限定されるものではなく周知のタイプであってよく、例えば冠型タイプであっても良く、また円筒状の周方向にポケット穴を等間隔に形成した円環状タイプ、さらに環状の軸方向に二つ割り可能なもので、これらをピンで加締めて一体化可能なタイプのいずれであっても良い。 The type of the cage 4 is not particularly limited and may be a known type, for example, a crown type, or an annular type in which pocket holes are formed at equal intervals in a cylindrical circumferential direction. Further, any of the types that can be divided into two in the annular axial direction and can be integrated by crimping with a pin may be used.
 また、この発明においては、転がり軸受の種類(型式)は、特に限定されるものではなく、例えば、深溝玉軸受または円筒ころ軸受の極低温環境用転がり軸受であっても良い。 In the present invention, the type (model) of the rolling bearing is not particularly limited, and may be a deep groove ball bearing or a cylindrical roller bearing for a cryogenic environment.
 そして、この発明の極低温環境用転がり軸受は、その具体的な用途は、液化ガス用ポンプの転がり軸受であっても良く、また人工衛星アンテナの支持や駆動装置に用いる転がり軸受であっても良い。 The specific use of the rolling bearing for the cryogenic environment according to the present invention may be a rolling bearing of a pump for a liquefied gas, or a rolling bearing used for supporting or driving a satellite antenna. good.
 転がり軸受の用途が液化ガス用ポンプである場合は、液化天然ガス(LNG)用サブマージドポンプであってもよいが、その場合には、転がり軸受が直接に極低温のLNGに接触するため、この発明の内外輪と転動体が長期間の使用に耐えて耐摩耗性および潤滑性の低下しない耐久性に優れた極低温環境用転がり軸受となる効果が顕著に現れる。 When the application of the rolling bearing is a pump for liquefied gas, it may be a submerged pump for liquefied natural gas (LNG), but in that case, since the rolling bearing directly contacts the cryogenic LNG, The inner and outer rings and rolling elements of the present invention have a remarkable effect of becoming a rolling bearing for a cryogenic environment excellent in durability that withstands long-term use and does not deteriorate wear resistance and lubricity.
 図3に示すように、液化天然ガス(LNG)用サブマージドポンプは、ポンプ全体を液中に浸漬することにより、ポット(圧力容器)8内で気密性を発揮するものであり、ポンプ軸9は、モータ軸10と同軸上に一体に連結された構造である。 As shown in FIG. 3, the submerged pump for liquefied natural gas (LNG) exhibits airtightness in a pot (pressure vessel) 8 by immersing the entire pump in the liquid. Is a structure integrally connected to the motor shaft 10 coaxially.
 ポット8は、LNGの吸込口11を外側に向けて開口しており、また外部配管(図示せず。)に通じる吐出口12を有している。ポット8内に装着されたモータ13は、外部電源によって回転するモータ軸10の上側と下側を、図1、2に示される実施形態の玉軸受Aで支持しており、このモータ軸10と一体に回転するポンプ軸9には、複数段の羽根車(インペラー)14が取り付けられている。 The pot 8 is opened with the LNG suction port 11 facing outward, and has a discharge port 12 leading to an external pipe (not shown). The motor 13 mounted in the pot 8 supports the upper and lower sides of the motor shaft 10 rotated by an external power source with the ball bearing A of the embodiment shown in FIGS. A multi-stage impeller (impeller) 14 is attached to the pump shaft 9 that rotates integrally.
 このポンプの図示した装置内の流路は、駆動したモータ13によるポンプ軸9と一体に回転する羽根車14によって、ポット8内に吸込口11から流入したLNGが、ポット8の内側面に沿って下向きに流れ、多段の羽根車14の最下段部分から吸い込まれて、羽根車14の周囲に配置された筒状内壁15の内側の配管16から吐出口12に流れるが、LNGの一部は筒状内壁15の内側の他の配管17からモータ13内を潤滑液として流れて、玉軸受Aを潤滑および冷却し、ポット8の内側面に沿って下向きの流れに合流して、再度、多段の羽根車14の先端部分から吸い込まれる。 The flow path in the illustrated apparatus of the pump is such that the LNG flowing from the suction port 11 into the pot 8 along the inner surface of the pot 8 by the impeller 14 that rotates integrally with the pump shaft 9 by the driven motor 13. It flows downward and flows into the discharge port 12 from the pipe 16 inside the cylindrical inner wall 15 arranged around the impeller 14, and is sucked in from the lowermost portion of the multistage impeller 14. The other pipe 17 inside the cylindrical inner wall 15 flows in the motor 13 as a lubricating liquid, lubricates and cools the ball bearing A, joins the downward flow along the inner side surface of the pot 8, and again multistage. Is sucked from the tip of the impeller 14.
 このようにして使用される玉軸受Aは、セラミック製の玉をPTFE製保持器で保持し、内輪および外輪の基材表面には、所定硬度のダイヤモンドライクカーボンを主体とする硬質皮膜が設けられているので、軌道面および転動体の摩耗が極めて少なく、LNGによって潤滑されかつ冷却されるという極低温環境で長期間の使用に耐え経時的に耐摩耗性および潤滑性の低下しない転がり軸受として使用に耐えることができる。 The ball bearing A used in this way holds ceramic balls with a PTFE cage, and a hard coating mainly composed of diamond-like carbon having a predetermined hardness is provided on the inner ring and outer ring base material surfaces. Therefore, it is used as a rolling bearing that can withstand long-term use in a cryogenic environment where it is lubricated and cooled by LNG, and wear resistance and lubricity do not deteriorate over time. Can withstand.
 また、この発明の極低温環境用転がり軸受の第2実施形態として、上記実施形態における保持器の構造を変更し、環状の軸方向に分割可能なものとしても良い。
 すなわち、図4~6に示す第2実施形態は、内輪1と外輪2の間の環状空間に、環状の周方向に間隔を空けて複数の球からなる転動体3を回転自在に保持するポケット穴18を等間隔に形成した保持器19を設け、保持器19は、前記環状の軸方向に分割可能な一対の環状分割体19a、19bを分割面19cにおいて一体に結合した極低温環境用転がり軸受としている。
Further, as a second embodiment of the rolling bearing for the cryogenic environment according to the present invention, the structure of the cage in the above embodiment may be changed so that it can be divided in the annular axial direction.
That is, the second embodiment shown in FIGS. 4 to 6 is a pocket that rotatably holds the rolling elements 3 composed of a plurality of spheres in the annular space between the inner ring 1 and the outer ring 2 at intervals in the annular circumferential direction. A holder 19 having holes 18 formed at equal intervals is provided, and the holder 19 is a rolling for a cryogenic environment in which a pair of annular divided bodies 19a and 19b that can be divided in the annular axial direction are integrally coupled on a dividing surface 19c. Bearings are used.
 一対の環状分割体19a、19b同士が突き合された状態での複数の接触面には、それぞれ環状分割体19a、19bの軸方向に貫通する貫通孔20を形成し、この貫通孔20に挿通した締結ピン21で一対の環状分割体19a、19bを一体に締結している。 A plurality of contact surfaces in a state where the pair of annular divided bodies 19a and 19b are abutted with each other are formed with through holes 20 penetrating in the axial direction of the annular divided bodies 19a and 19b, respectively. The pair of annular divided bodies 19a and 19b are fastened together by the fastening pin 21 that has been made.
 締結ピン21は、保持器19より低い熱膨張率の素材で形成し、基端部の頭部21aと、先端部の加締めた頭部21bとの少なくとも一方を弾性ワッシャであるばね座金22を介して環状分割体19a、19bの端面に圧接することにより、一対の環状分割体19a、19bが、ばね座金22の弾性力で一体化されて保持器19となる。
 上記条件の熱膨張率は、線熱膨張率または体積熱膨張率(=線膨張率×3)のいずれであっても良い。
The fastening pin 21 is made of a material having a lower coefficient of thermal expansion than the cage 19, and at least one of the head 21a at the base end and the crimped head 21b at the tip is provided with a spring washer 22 that is an elastic washer. The pair of annular divided bodies 19a and 19b are integrated by the elastic force of the spring washer 22 to form the cage 19 by being pressed against the end faces of the annular divided bodies 19a and 19b.
The thermal expansion coefficient under the above conditions may be either a linear thermal expansion coefficient or a volume thermal expansion coefficient (= linear expansion coefficient × 3).
 上記した保持器19は、その全体が内輪1と外輪2の間の環状空間に収まる大きさの円筒体等の周知の筒(環)形であり、環状の軸方向に2分割した一対の環状分割体19a、19bを分割前の状態になるように分割面19cを突き合せて合体させている。 The above-described cage 19 is a well-known cylinder (ring) shape such as a cylindrical body whose size is entirely accommodated in the annular space between the inner ring 1 and the outer ring 2, and is a pair of rings divided into two in the annular axial direction. The division surfaces 19c are brought into contact with each other so that the division bodies 19a and 19b are in a state before division.
 一対の環状分割体19a、19bの分割面19cは、突き合わせる環状分割体19a、19bの一方の端面の内周側を突出させ、他方の内周側を凹ませて、いわゆる「印籠継ぎ」による継手形態を採用したものである。そのような分割面19cを貫通するように、保持器19の軸方向に貫通する貫通孔20を設け、これに締結ピン21を挿通して締結し、一対の環状分割体19a、19bを一体化している。 The split surfaces 19c of the pair of annular divided bodies 19a, 19b are formed by projecting the inner peripheral side of one end face of the annular divided bodies 19a, 19b to be indented, and by recessing the other inner peripheral side. The joint form is adopted. A through hole 20 that penetrates in the axial direction of the retainer 19 is provided so as to penetrate such a split surface 19c, and a fastening pin 21 is inserted and fastened into the through hole 20 so as to integrate the pair of annular split bodies 19a and 19b. ing.
 分割面19cの形成位置は、保持器19の筒形の軸方向の中程であって、ポケット穴18を半割する位置に形成することが、転動体3をポケット穴18に組み入れる作業性が良いなどの理由で好ましい。 The formation position of the dividing surface 19c is in the middle of the cylindrical shape of the retainer 19, and forming the pocket hole 18 in a half position facilitates the workability of incorporating the rolling element 3 into the pocket hole 18. It is preferable for reasons such as good.
 保持器19を構成する環状分割体19a、19bは、第1実施形態と同様にポリテトラフルオロエチレン樹脂(PTFE)を主成分とする樹脂素材からなるものを採用する。PTFE以外の添加成分の樹脂としては、ポリアミド樹脂(例えばポリアミド46、ポリアミド66、ポリアミド9T等)、ポリカーボネート、ポリエーテルケトン系樹脂、ポリフェニレンオキシド(PPO)、ポリフェニレンサルファイド樹脂などが挙げられる。 As the annular divided bodies 19a and 19b constituting the retainer 19, those made of a resin material mainly composed of polytetrafluoroethylene resin (PTFE) are adopted as in the first embodiment. Examples of the resin as an additive component other than PTFE include polyamide resins (for example, polyamide 46, polyamide 66, polyamide 9T, etc.), polycarbonate, polyether ketone resin, polyphenylene oxide (PPO), polyphenylene sulfide resin, and the like.
 分割面に貫通させて設ける貫通孔20は、締結ピン21が挿通可能な径と形状に設けたものであり、特に円穴形状に限定されず、多角形状の穴、その他の周知形状の穴であっても良い。
 締結ピン21は、一端に貫通孔20の径よりも大径の頭部21aが使用前当初から形成されているものが好ましく、頭部21aの形状は、円盤状、多角盤状、半球体状、錐台状などであり、図示した形状に限定されない。例えば、リベット用に周知の締結ピン21を用いると、組み付けやすく好ましい。
 また、締結ピン21は、貫通穴20の一端から挿し込まれた際、他端から突出する長さの軸長を有するものであり、他端から突出した部分には、常温または加熱する条件で加圧により塑性変形させることにより、前記した頭部21aと同様な大径に加締めた頭部21bを形成する。
The through-hole 20 provided through the dividing surface is provided in a diameter and a shape through which the fastening pin 21 can be inserted, and is not particularly limited to a circular hole shape, and is a polygonal hole or other well-known hole. There may be.
The fastening pin 21 preferably has a head portion 21a having a diameter larger than the diameter of the through hole 20 at one end from the beginning before use, and the shape of the head portion 21a is a disc shape, a polygonal disc shape, or a hemispherical shape. The shape is a frustum shape and is not limited to the illustrated shape. For example, it is preferable to use a well-known fastening pin 21 for rivets because it is easy to assemble.
Further, the fastening pin 21 has an axial length that protrudes from the other end when inserted from one end of the through hole 20, and the portion protruding from the other end has a normal temperature or heating condition. By causing plastic deformation by pressurization, a head 21b crimped to the same large diameter as the above-described head 21a is formed.
 締結ピン21は、加締めた頭部21bを形成可能であるように、加圧により塑性変形可能なステンレス鋼、その他の鋼合金などの金属、または熱可塑性樹脂等の合成樹脂を素材とし、少なくとも保持器5よりも低い熱膨張率の素材を採用する。
 例えば、保持器19の材質と締結ピン21の材質として、金属類または樹脂類のいずれか同類のものを採用する場合にも、締結ピン21の熱膨張率(線膨張率または体積膨張率)は、保持器19の熱膨張率と同一またはそれ以下の低い熱膨張率のものを採用する。
The fastening pin 21 is made of a material such as stainless steel that can be plastically deformed by pressurization, other steel alloys, or a synthetic resin such as a thermoplastic resin so that a crimped head 21b can be formed. A material having a thermal expansion coefficient lower than that of the cage 5 is employed.
For example, when the material of the retainer 19 and the material of the fastening pin 21 are either metal or resin, the thermal expansion coefficient (linear expansion coefficient or volume expansion coefficient) of the fastening pin 21 is The one having a low thermal expansion coefficient equal to or lower than that of the cage 19 is employed.
 また保持器19の材質として、合成樹脂を採用した場合には、締結ピン21としてステンレス鋼、その他の鋼合金を採用すれば、保持器19と同一、またはそれより低い熱膨張率の素材を採用した締結ピン21を採用したことになる。 When synthetic resin is used as the material of the cage 19, a material having the same or lower thermal expansion coefficient as that of the cage 19 is adopted if stainless steel or other steel alloy is used as the fastening pin 21. This means that the fastening pin 21 is used.
 さらにまた、保持器19の材質として、合成樹脂を採用し、かつ締結ピン21の材質も合成樹脂を採用する場合には、合成樹脂の種別に応じた熱膨張率を勘案し、例えば下記の表に示されるような低温での脆化温度-100℃未満のものを選択的に採用することが好ましい。特に、PTFEは、-267℃まで低温に耐える材質である。 Furthermore, when a synthetic resin is used as the material of the cage 19 and a synthetic resin is also used as the material of the fastening pin 21, the coefficient of thermal expansion corresponding to the type of the synthetic resin is taken into account. It is preferable to selectively employ a brittle temperature at a low temperature of less than −100 ° C. as shown in FIG. In particular, PTFE is a material that can withstand low temperatures up to -267 ° C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、前記した保持器19は、締結ピン21の両端に設けた頭部21a、21bの一方、または両方を弾性ワッシャを介して前記環状分割体に圧接する。
 弾性ワッシャは、ばね鋼などで形成された金属製もしくはフッ素樹脂等の合成樹脂製またはこれらの複合材料からなる環状のものであって、環状の軸方向に弾性を有するものであり、特にその種類や形態を限定することなく、図4~6に示したばね座金(スプリングワッシャとも別称される。)の他、波ワッシャまたは皿ばね等の弾性ワッシャを例示することができる。
Further, the retainer 19 presses one or both of the heads 21a, 21b provided at both ends of the fastening pin 21 to the annular divided body via an elastic washer.
The elastic washer is made of metal made of spring steel or the like, or made of synthetic resin such as fluororesin or a composite material thereof, and has elasticity in the annular axial direction, and particularly its kind Without limiting the form, the spring washer (also referred to as a spring washer) shown in FIGS. 4 to 6 and an elastic washer such as a wave washer or a disc spring can be exemplified.
 ばね座金は、平座金の一部を切断し、切り口部を捩じることによりばね作用を持たせたものであり、例えば、切り口部分の段差が、切り口の厚さの50%程度(40~60%、好ましくは45~55%)になるようにねじ込んで使用することが、適度の弾性を得るために好ましい。 The spring washer has a spring action by cutting a part of the flat washer and twisting the cut portion. For example, the step of the cut portion is about 50% of the thickness of the cut portion (40 to 40%). 60%, preferably 45 to 55%) is preferable for obtaining moderate elasticity.
 ばね座金等の弾性ワッシャは、保持器を保護するために、平座金と組み合わせて用いることもできる。また、ばね座金よりばね定数の高い弾性ワッシャとして、皿ばね、球面座金、波ワッシャを用いることもできる。 An elastic washer such as a spring washer can also be used in combination with a flat washer to protect the cage. In addition, a disc spring, a spherical washer, and a wave washer can be used as an elastic washer having a higher spring constant than the spring washer.
 上記したように構成される極低温環境用転がり軸受は、保持器19を構成する一対の環状分割体19a、19bが弾性ワッシャの弾性力で一体化されており、しかも締結ピン21が保持器19の熱膨張率以下の低熱膨張率の素材からなるので、常温の状態から極低温の状態になると、締結ピン21に比べて大きく熱収縮した環状分割体19a、19bは、貫通孔20の径を縮めて、締結ピン21の外周面に接近するかまたは接するまで収縮し、径方向の隙間を小さくするか、または密接して保持器19の締結ピン21の径方向の振動やガタツキを防止する。 In the rolling bearing for the cryogenic environment configured as described above, the pair of annular divided bodies 19a and 19b constituting the cage 19 are integrated by the elastic force of the elastic washer, and the fastening pin 21 is the cage 19. Since the material has a low thermal expansion coefficient equal to or less than the thermal expansion coefficient, the annular divided bodies 19a and 19b, which are greatly heat-shrinked compared to the fastening pin 21 when the room temperature is changed to an extremely low temperature state, have the diameter of the through hole 20 reduced. It shrinks and contracts until it approaches or comes into contact with the outer peripheral surface of the fastening pin 21 to reduce the radial gap or closely contact to prevent the fastening pin 21 of the retainer 19 from vibrating in the radial direction and rattling.
 また、常温の状態から極低温の状態になるときに、締結ピン21に比べて大きく収縮した環状分割体19a、19bは、締結ピン21の軸方向に規制されずに収縮する。このとき、締結ピン21は、その両端の頭部21a、21bのうち少なくとも一方が、弾性ワッシャで前記環状分割体19a、19bに圧接されているので、収縮した環状分割体19a、19bにも弾性ワッシャの圧接力が作用し、保持器19における一対の環状分割体19a、19bの弾性的に一体化した状態は維持され、締結ピン21による一対の環状分割体19a、19b同士の極低温下の使用状態での接合面に緩みや隙間が生じない。これにより転動体3は、円滑に回転して極低温下での軸受性能が良好な状態で安定する。
 なお、上記のような環状分割体についての技術的課題のみを解決するためには、図中の硬質皮膜5を省略した転がり軸受の構成を採用することもできる。
Further, when changing from the normal temperature state to the extremely low temperature state, the annular divided bodies 19 a and 19 b contracted greatly compared to the fastening pin 21 contract without being regulated in the axial direction of the fastening pin 21. At this time, since at least one of the heads 21a and 21b at both ends of the fastening pin 21 is pressed against the annular divided bodies 19a and 19b by elastic washers, the fastening pins 21 are also elastic to the contracted annular divided bodies 19a and 19b. The pressure contact force of the washer acts to maintain the elastically integrated state of the pair of annular divided bodies 19a, 19b in the retainer 19, and the pair of annular divided bodies 19a, 19b by the fastening pin 21 are kept at a cryogenic temperature. There will be no looseness or gaps in the joint surface in use. As a result, the rolling element 3 is smoothly rotated and stabilized in a state where the bearing performance at a very low temperature is good.
In addition, in order to solve only the technical problem about the above annular division bodies, the structure of the rolling bearing which abbreviate | omitted the hard film 5 in a figure is also employable.
 図7、8に示す第3実施形態は、第2実施形態におけるばね座金に代えて、波ワッシャ23を使用したこと以外は、全く同様に構成したものを示している。
 波ワッシャ23は、ばね鋼製の平座金を波型に曲げ成形したものであり、波型がつぶれるように弾性変形させることにより、軸方向に弾性を発揮するものである。
The third embodiment shown in FIGS. 7 and 8 shows a configuration exactly the same except that the wave washer 23 is used instead of the spring washer in the second embodiment.
The wave washer 23 is formed by bending a flat washer made of spring steel into a corrugated shape, and exhibits elasticity in the axial direction by elastically deforming the corrugated shape.
 保持器19は、締結ピン21の両端に設けた頭部21a、21bをばね座金22または波ワッシャ23などの弾性ワッシャを介し、一対の環状分割体19a、19bを弾性ワッシャの弾性力で一体化したので、極低温下の使用状態で収縮した環状分割体19a、19bに弾性ワッシャの圧接力が作用し、一対の環状分割体19a、19bが弾性的に一体化した状態が維持され、締結ピン21による一対の環状分割体19a、19b同士の極低温下の使用状態での接合面に緩みや隙間が生じない。これにより転動体3は、円滑に回転して極低温下での軸受性能が良好な状態で安定する。 In the retainer 19, heads 21a and 21b provided at both ends of the fastening pin 21 are integrated with elastic washers such as a spring washer 22 or a wave washer 23, and a pair of annular divided bodies 19a and 19b are integrated with the elastic force of the elastic washer. Therefore, the pressure contact force of the elastic washer acts on the annular divided bodies 19a and 19b contracted in a use state at an extremely low temperature, and the state where the pair of annular divided bodies 19a and 19b are elastically integrated is maintained. 21 does not cause looseness or gaps in the joint surfaces of the pair of annular divided bodies 19a and 19b in a use state at an extremely low temperature. As a result, the rolling element 3 is smoothly rotated and stabilized in a state where the bearing performance at a very low temperature is good.
 以上のように構成された第2及び第3実施形態では、常温で組み付けた鋼材のリベットなどの締結ピン21による一対の環状分割体19a、19b同士の極低温下の使用状態での突き合わせ面に、緩みや隙間が生じないようになり、転動体3を円滑に回転させて軸受性能が良好な状態で安定する極低温環境用転がり軸受になる。 In the second and third embodiments configured as described above, a pair of annular divided bodies 19a, 19b by a fastening pin 21 such as a steel rivet assembled at room temperature are abutting surfaces in a use state at a cryogenic temperature. Thus, a rolling bearing for a cryogenic environment is obtained in which no looseness or gap is generated, and the rolling element 3 is smoothly rotated to stabilize the bearing performance in a good state.
1 内輪
2 外輪
3 転動体
4 保持器
5 硬質皮膜
6 基材
7 中間層
7a 第1の中間層
7b 第2の中間層
8 ポット
9 ポンプ軸
10 モータ軸
11 吸込口
12 吐出口
13 モータ
14 羽根車
15 筒状内壁
16、17 配管
18 ポケット穴
19 保持器
19a、19b 環状分割体
19c 分割面
20 貫通孔
21 締結ピン
21a、21b 頭部
22 ばね座金
23 波ワッシャ
DESCRIPTION OF SYMBOLS 1 Inner ring 2 Outer ring 3 Rolling element 4 Cage 5 Hard film 6 Base material 7 Intermediate layer 7a First intermediate layer 7b Second intermediate layer 8 Pot 9 Pump shaft 10 Motor shaft 11 Suction port 12 Discharge port 13 Motor 14 Impeller 15 Tubular inner walls 16, 17 Piping 18 Pocket hole 19 Cage 19a, 19b Annular division 19c Dividing surface 20 Through hole 21 Fastening pins 21a, 21b Head 22 Spring washer 23 Wave washer

Claims (5)

  1.  マルテンサイト系ステンレス鋼または高速度工具鋼からなる内輪と外輪の間に、複数の転動体を回転自在に保持する保持器を設けた転がり軸受において、
     前記転動体は、セラミックス製転動体であり、前記保持器はポリテトラフルオロエチレンを主成分とする樹脂素材からなり、前記内輪および外輪の表面に、ビッカース硬度(Hv)1000~4000のダイヤモンドライクカーボンを主体とする硬質皮膜を設けたことを特徴とする極低温環境用転がり軸受。
    In a rolling bearing provided with a cage that rotatably holds a plurality of rolling elements between an inner ring and an outer ring made of martensitic stainless steel or high-speed tool steel,
    The rolling element is a ceramic rolling element, and the cage is made of a resin material mainly composed of polytetrafluoroethylene, and diamond-like carbon having a Vickers hardness (Hv) of 1000 to 4000 is formed on the surfaces of the inner ring and the outer ring. A rolling bearing for a cryogenic environment characterized by providing a hard film mainly composed of
  2.  上記硬質皮膜は、表面へ向けて段階的または連続的に硬度を高めた中間層を介して設けられた硬質皮膜である請求項1に記載の極低温環境用転がり軸受。 2. The rolling bearing for a cryogenic environment according to claim 1, wherein the hard coating is a hard coating provided via an intermediate layer whose hardness is increased stepwise or continuously toward the surface.
  3.  上記転動体が、窒化ケイ素系のセラミックス製転動体である請求項1または2に記載の極低温環境用転がり軸受。 The rolling bearing for a cryogenic environment according to claim 1 or 2, wherein the rolling element is a silicon nitride ceramic rolling element.
  4.  上記極低温環境用転がり軸受が、液化ガス用ポンプの転がり軸受である請求項1~3のいずれかに記載の極低温環境用ポンプの転がり軸受。 4. The cryogenic environment pump rolling bearing according to claim 1, wherein the cryogenic environment rolling bearing is a liquefied gas pump rolling bearing.
  5.  上記液化ガス用ポンプが、液化天然ガス用サブマージドポンプである請求項4に記載の極低温環境用転がり軸受。 The rolling bearing for a cryogenic environment according to claim 4, wherein the liquefied gas pump is a submerged pump for liquefied natural gas.
PCT/JP2016/056264 2015-03-03 2016-03-01 Rolling bearing for use in extremely low-temperature environment WO2016140224A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017503663A JPWO2016140224A1 (en) 2015-03-03 2016-03-01 Rolling bearing for cryogenic environment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-041415 2015-03-03
JP2015041415 2015-03-03
JP2015-052891 2015-03-17
JP2015052891 2015-03-17

Publications (1)

Publication Number Publication Date
WO2016140224A1 true WO2016140224A1 (en) 2016-09-09

Family

ID=56848186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056264 WO2016140224A1 (en) 2015-03-03 2016-03-01 Rolling bearing for use in extremely low-temperature environment

Country Status (2)

Country Link
JP (1) JPWO2016140224A1 (en)
WO (1) WO2016140224A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056575A (en) * 2001-08-15 2003-02-26 Nsk Ltd Rolling sliding member and rolling device
JP2006097871A (en) * 2004-09-30 2006-04-13 Nsk Ltd Rolling sliding member and rolling device
JP2008151264A (en) * 2006-12-18 2008-07-03 Nsk Ltd Cage for roller bearing
JP2009133408A (en) * 2007-11-30 2009-06-18 Nsk Ltd Rolling slide member, and rolling device and pulley device using this member
JP2013228010A (en) * 2012-04-24 2013-11-07 Nsk Ltd Roller bearing for paper manufacturing machine and method for manufacturing the same
JP2014020490A (en) * 2012-07-19 2014-02-03 Nsk Ltd Roller bearing and pump device for liquid gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056575A (en) * 2001-08-15 2003-02-26 Nsk Ltd Rolling sliding member and rolling device
JP2006097871A (en) * 2004-09-30 2006-04-13 Nsk Ltd Rolling sliding member and rolling device
JP2008151264A (en) * 2006-12-18 2008-07-03 Nsk Ltd Cage for roller bearing
JP2009133408A (en) * 2007-11-30 2009-06-18 Nsk Ltd Rolling slide member, and rolling device and pulley device using this member
JP2013228010A (en) * 2012-04-24 2013-11-07 Nsk Ltd Roller bearing for paper manufacturing machine and method for manufacturing the same
JP2014020490A (en) * 2012-07-19 2014-02-03 Nsk Ltd Roller bearing and pump device for liquid gas

Also Published As

Publication number Publication date
JPWO2016140224A1 (en) 2017-12-14

Similar Documents

Publication Publication Date Title
WO2016140225A1 (en) Rolling bearing for use in extremely low-temperature environment
US5961218A (en) Water lubricated machine component having contacting sliding surfaces
CN203009563U (en) Antifriction bearing and pumping unit for liquefied gas
WO2013042765A1 (en) Hard film, hard film formed body, and rolling bearing
US7832933B2 (en) Wear resistant foil bearing assembly
WO2017082249A1 (en) Rolling bearing for extremely low-temperature environment
JP5361047B2 (en) Rotary fluid machine and refrigeration cycle apparatus
TW202323707A (en) Seal, assembly, and methods of using the same
WO2017146047A1 (en) Roller bearing for extremely low-temperature environments
JP5993680B2 (en) Rolling bearing and manufacturing method thereof
JP2003214444A (en) Rolling sliding member and rolling device
JP2009133408A (en) Rolling slide member, and rolling device and pulley device using this member
WO2016140224A1 (en) Rolling bearing for use in extremely low-temperature environment
JP2007120613A (en) Rolling sliding member and rolling device
JP2007155022A (en) Rolling device
JP4838455B2 (en) Rolling sliding member and rolling device
JP2008169939A (en) Rolling bearing for vacuum pump and vacuum pump using it
WO2017082205A1 (en) Roller bearing for very low temperature environments
WO2017043445A1 (en) Rolling bearing for extremely low temperature environments
JP3761731B2 (en) Rolling bearing
US5176455A (en) Gradated hydrostatic bearing
WO2019022010A1 (en) Retainer for rolling bearings, and rolling bearing
JP2000205279A (en) Rolling bearing
JP2003222143A (en) Rolling sliding member
WO2017078151A1 (en) Rolling bearing for use in extremely low-temperature environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503663

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758917

Country of ref document: EP

Kind code of ref document: A1