WO2016140111A1 - Fuel cell unit - Google Patents

Fuel cell unit Download PDF

Info

Publication number
WO2016140111A1
WO2016140111A1 PCT/JP2016/055319 JP2016055319W WO2016140111A1 WO 2016140111 A1 WO2016140111 A1 WO 2016140111A1 JP 2016055319 W JP2016055319 W JP 2016055319W WO 2016140111 A1 WO2016140111 A1 WO 2016140111A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell unit
fuel
axis direction
conductive
Prior art date
Application number
PCT/JP2016/055319
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 朝重
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Publication of WO2016140111A1 publication Critical patent/WO2016140111A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell unit, and in particular, a solid oxide type (SOFC) comprising a plurality of fuel cell cells each having a surface electrode exposed on one main surface and the other main surface facing in the stacking direction.
  • SOFC solid oxide type
  • Type fuel cell unit.
  • the fuel cell stack includes a plurality of fuel cells each formed in a cylindrical shape, and a current collecting member that electrically connects these fuel cells.
  • a sheet layer made of conductive metal particles and a resin binder is sandwiched between the fuel cell and the current collecting member. Thereby, the fuel cell is connected to the current collecting member.
  • the fuel cell stack is configured by stacking a power generation cell, a fuel electrode current collector, an oxidant electrode current collector, and a separator in a predetermined order, and applying a tightening load between the separators at both ends in the stacking direction. Consists of.
  • the oxidant electrode current collector is fixed to the power generation cell by applying a predetermined contact load to the contact surface of the power generation cell while the fuel cell stack is heated in the heating furnace.
  • the single cell has an interconnector plate, a gas seal layer, an air electrode frame, a separator, and a fuel electrode frame stacked in a predetermined order, and bolts are inserted into the mounting holes of the members to fix the members. It is composed by doing.
  • the gas seal layer functions as a compression seal material.
  • a current collector made of a metal connecting plate and a mesh structure is used as one unit module, and is configured so that series and parallel connections between fuel cells can be freely constructed.
  • Ni is used as the conductive metal particles.
  • NiO is used as the conductive metal particles.
  • NiO is used as the conductive metal particles.
  • Patent Document 2 the fuel cell or the cell stack is deformed by repeating the heat cycle of the fuel cell or the power generation cycle by load following, and the problem of electrical continuity failure with the current collector is likely to occur. There is. In order to prevent this, a mechanism capable of applying a tightening load to the entire cell stack is necessary, which leads to an increase in cost and size.
  • Patent Document 3 Even in Patent Document 3, a compression mechanism such as a bolt is necessary, which leads to an increase in cost and size as in Patent Document 2.
  • Patent Document 4 there is no description regarding a conductive material for joining the current collector and the fuel battery cell, and it is considered that they are electrically connected by physical contact. However, this has a problem that the contact resistance is too high.
  • a main object of the present invention is to provide a fuel cell unit that can suppress a decrease in reliability of electrical connection due to thermal stress without providing a compression mechanism.
  • a fuel cell unit of the present invention is a solid oxide fuel cell unit comprising a plurality of fuel cells having surface electrodes provided on one main surface facing the stacking direction and the other main surface, viewed from the stacking direction.
  • a metal member that is provided between the fuel cells and that relieves thermal stress of the plurality of fuel cells, and a conductive bonding material that electrically connects the metal members to the surface electrode.
  • the thermal stress of the fuel battery cell with the metal member By relaxing the thermal stress of the fuel battery cell with the metal member, the concern of the fuel battery cell peeling off is reduced. Moreover, the resistance between the surface electrode and the metal member is reduced by electrically connecting the metal member and the surface electrode by the conductive bonding material. In this way, it is possible to suppress a decrease in reliability of electrical connection due to thermal stress without providing a compression mechanism.
  • the conductive bonding material is made of conductive ceramics
  • the metal member is electrically connected to the surface electrode by sintering of the conductive ceramics.
  • conductive ceramics stable and high conductivity is ensured under the operating environment of the fuel cell unit.
  • sintering the conductive ceramic it is possible to prevent an increase in resistance between the surface electrode and the metal member, and thus a decrease in power generation efficiency.
  • the conductive bonding material is made of LaSrCoO3, LaSrCoFeO3, MnCoO3, SmSrCoO3, LaCaMnO3, LaCaCoO3, LaCaCoFeO3, LaNiFeO3, or (LaSr) 2NiO4. These materials exhibit stable and high conductivity in the operating environment of the fuel cell unit. For this reason, the electrical resistance of a junction part can be made small and by extension, the fall of power generation efficiency can be prevented.
  • the conductive bonding material is composed of a plurality of types of powders having different particle sizes.
  • the neck formation during sintering is dominated by surface diffusion from powders having a small diameter, and powders having a large diameter do not move from the spot. That is, the shrinkage rate as the conductive bonding material can be suppressed, and the seizure property to the metal member and the fuel battery cell and the adhesion during the power generation operation are improved.
  • the conductive bonding material includes a pore former that disappears by sintering.
  • the shrinkage of the conductive bonding material during sintering is suppressed, and the seizure property to the metal member and the fuel battery cell and the adhesion during the power generation operation are further improved.
  • the metal member is a member produced by applying a meshing process, a punching process, an expanding process, or an embossing process to a metal plate material.
  • a meshing process a punching process, an expanding process, or an embossing process
  • the metal member is relieved, and peeling that leads to deterioration can be prevented.
  • the material of the metal member includes at least one of Pt, Pd, Ag, Au, Ru, Rh, Ni, Fe, and Cr. These materials have excellent heat resistance and are stable under the operating environment of the fuel cell unit. At the same time, since the material has a high conductivity, the electric resistance between the fuel cells can be reduced, and the power generation characteristics can be improved.
  • the metal member has an oxidation-resistant surface coated with a material containing an element constituting the conductive bonding material and an element that diffuses at the interface. This improves the bonding strength between the metal member and the conductive bonding material, and thus the reliability of the electrical connection between the fuel cells.
  • the coating material includes an alloy made of NiCo or MnCo or an oxide thereof. This improves the bonding strength between the metal member and the conductive bonding material, and thus the reliability of the electrical connection between the fuel cells.
  • the coating material matches the material of the conductive bonding material. This improves the bonding strength between the metal member and the conductive bonding material, and thus the reliability of the electrical connection between the fuel cells.
  • a soaking plate sandwiched between the fuel cells through the metal member so as to disperse the heat generated in the fuel cell.
  • the surface electrode is connected to the metal member via the conductive bonding material.
  • the thermal stress of the fuel cell is relaxed by the metal member, and the metal member and the surface electrode are electrically connected by the conductive bonding material, so that the thermal stress can be reduced without providing a compression mechanism. It is possible to suppress a decrease in reliability of the electrical connection caused.
  • FIG. 1 It is a perspective view which shows the external appearance of the fuel cell unit of this Example. It is a perspective view which shows an example of the state which looked at some disassembled fuel cell units from diagonally upward. It is a perspective view which shows an example of the state which looked at another part of the decomposed
  • FIG. 8 is a cross-sectional view showing an AA cross section of the soaking conductive layer shown in FIG. 7.
  • FIG. 8 is a cross-sectional view showing a BB cross section of the soaking conductive layer shown in FIG. 7.
  • the fuel cell unit 10 of the first embodiment is a solid oxide fuel cell unit, and includes two fuel cells 20a and 20b and a single conductive layer 22. .
  • the fuel cells 20a and 20b and the conductive layer 22 are deposited so that the side surfaces thereof are flush with each other, thereby forming the flat plate type fuel cell stack 12. Note that the side surfaces of the fuel cell stack 12 are not necessarily flush with each other.
  • Via conductors (surface electrodes) VHf, VHf,... Electrically connected to the anodes AN1 to AN4 are exposed on the upper surface (one main surface) of each of the fuel cells 20a and 20b (see FIG. 4). Via conductors (surface electrodes) VHa, VHa,... Electrically connected to the cathodes CT1 to CT4 are exposed on the lower surfaces (the other main surfaces) of the fuel cells 20a to 20d (see FIGS. 4 and 5). ).
  • the current generated based on the fuel electrode gas and the air electrode gas is taken out by the via conductors VHf, VHf,... On the anodes AN1 to AN4 side and the via conductors VHa, VHa,.
  • the X axis, the Y axis, and the Z axis are assigned to the width direction, the depth direction, and the height direction of the rectangular parallelepiped forming the fuel cell stack 12, respectively.
  • manifolds MFf1 and MFf2 for propagating the fuel electrode gas in the Z-axis direction are formed, and further, manifolds MFa1 and MFa2 for propagating the air electrode gas in the Z-axis direction are formed.
  • the manifolds MFf1 and MFf2 are formed on straight lines extending in the Y-axis direction from the center of the upper surface of each of the fuel cells 20a and 20b, and the manifolds MFa1 and MFa2 are each of the fuel cells 20a and 20b. Is formed on a straight line extending in the X-axis direction with the center of the upper surface of the substrate as the base point.
  • the manifold MFf1 is arranged on the positive side in the Y-axis direction from the center of the upper surface, and the manifold MFf2 is arranged on the negative side in the Y-axis direction from the center of the upper surface.
  • the manifold MFa1 is arranged on the positive side in the X-axis direction from the center of the upper surface, and the manifold MFa2 is arranged on the negative side in the X-axis direction from the center of the upper surface.
  • the via conductors VHf, VHf,... On the anode AN1 to AN4 side are divided into four parts based on the manifolds MFf1, MFf2, MFa1 and MFa2.
  • via conductors VHa, VHa,... On the cathodes CT1 to CT4 side are also divided into four parts based on the manifolds MFf1, MFf2, MFa1, and MFa2.
  • the fuel cell 20a includes an air electrode side conductor layer 121 having a separator SP1 as a base material, an air electrode layer 122 having a separator SP2 as a base material, an electrolyte layer 123 having an electrolyte EL as a base material, The fuel electrode layer 124 having the separator SP4 as a base material and the fuel electrode side conductor layer 125 having the separator SP5 as a base material are laminated in this order.
  • the separator SP2 is composed of partial separators SP21 to SP23, and the separator SP4 is composed of partial separators SP41 to SP43 (details will be described later).
  • the description regarding the structure of the fuel cell 20b is abbreviate
  • the separator SP1 that forms the air electrode side conductor layer 121 includes two through-holes that form the manifolds MFf1, MFf2, MFa1, and MFa2, each in the Y-axis direction.
  • Four air electrode gas flow paths GRa, GRa,... Extending and arranged in the X-axis direction are provided.
  • the total number of through holes is eight, and all of the through holes form a perfect circle when viewed from the Z-axis direction.
  • the four air electrode gas flow paths GRa, GRa,... are all formed on the upper surface of the separator SP1.
  • the two air electrode gas flow paths GRa and GRa respectively overlap with two through holes forming the manifold MFa1.
  • the remaining two air electrode gas flow paths GRa and GRa overlap with the two through holes forming the manifold MFa2, respectively.
  • Via conductors VHa, VHa,... are provided at positions that avoid these through holes and air electrode gas flow paths GRa, GRa,. Further, the via conductors VHa, VHa,... Extend in the Z-axis direction, and one end and the other end thereof are exposed on the upper surface and the lower surface of the separator SP1, respectively.
  • the separator SP5 that forms the fuel electrode side conductor layer 125 also has two through-holes that form the manifolds MFf1, MFf2, MFa1, and MFa2, each in the X-axis direction.
  • Four fuel electrode gas passages GRf, GRf,... Extending and arranged in the Y-axis direction are provided.
  • the total number of through holes is eight, and all the through holes form a perfect circle when viewed from the Z-axis direction.
  • all of the four fuel electrode gas flow paths GRf, GRf,... are formed on the lower surface of the separator SP5.
  • the two fuel electrode gas flow paths GRf and GRf respectively overlap the two through holes forming the manifold MFf1.
  • the remaining two fuel electrode gas flow paths GRf and GRf overlap with the two through holes forming the manifold MFf2, respectively.
  • Via conductors VHf, VHf,... are provided at positions that avoid these through holes and fuel electrode gas flow paths GRf, GRf,. Further, the via conductors VHf, VHf,... Extend in the Z-axis direction, and one end and the other end thereof are exposed on the upper surface and the lower surface of the separator SP5, respectively.
  • the partial separators SP21 to SP23 are formed in a stick shape having a common thickness.
  • the partial separator SP21 extends in the Y-axis direction at the position of the positive end in the X-axis direction
  • the partial separator SP22 extends in the Y-axis direction at the center in the X-axis direction
  • the partial separator SP23 is the negative end in the X-axis direction.
  • the position of the part extends in the Y-axis direction.
  • the width of the partial separator SP21 matches the width of the partial separator SP23, and the width of the partial separator SP22 is approximately twice the width of each of the partial separators SP21 and SP23.
  • the partial separator SP22 is formed with two through holes that form the manifolds MFf1 and MFf2. Each through-hole is rectangular when viewed from the Z-axis direction, and its long side extends in the Y-axis direction.
  • two plate-like cathodes CT1 and CT4 are provided side by side in the Y-axis direction. Further, two plate-like cathodes CT2 and CT3 are provided side by side in the Y-axis direction in a region sandwiched between the partial separators SP22 and SP23. At this time, the cathodes CT1 and CT2 are arranged on the positive side in the Y-axis direction, and the cathodes CT3 and CT4 are arranged on the negative side in the Y-axis direction.
  • All of the cathodes CT1 to CT4 have the same thickness as that of the partial separators SP21 to SP23 and are rectangular when viewed from the Z-axis direction.
  • Each side of the rectangle extends in the X-axis direction or the Y-axis direction, and the length of the side extending in the Y-axis direction is less than 1 ⁇ 2 of the length of each of the partial separators SP21 to SP23.
  • the side surface facing the positive side in the Y-axis direction is flush with the cathodes CT1, CT2 and the partial separators SP21 to SP23.
  • the side surface facing the negative side in the Y-axis direction is flush with the cathodes CT3, CT4 and the partial separators SP21 to SP23.
  • a rectangular through-hole is formed between the cathodes CT1 and CT4 as viewed from the Z-axis direction, and a rectangular through-hole is also formed between the cathodes CT2 and CT3 as viewed from the Z-axis direction.
  • the long side extends along the X axis and the short side extends along the Y axis.
  • the two through holes formed in this way form manifolds MFa1 and MFa2.
  • the partial separators SP41 to SP43 have a common thickness and are formed in a stick shape.
  • the partial separator SP41 extends in the X-axis direction at the position of the positive end in the Y-axis direction
  • the partial separator SP42 extends in the X-axis direction at the center in the Y-axis direction
  • the partial separator SP43 is the negative end in the Y-axis direction.
  • the position of the part extends in the X-axis direction.
  • the width of the partial separator SP41 matches the width of the partial separator SP43, and the width of the partial separator SP42 is approximately twice the width of each of the partial separators SP41 and SP43.
  • the partial separator SP42 is formed with two through holes that form the manifolds MFa1 and MFa2. Each through-hole is rectangular when viewed from the Z-axis direction, and its long side extends in the X-axis direction.
  • two plate-like anodes AN1 and AN2 are provided side by side in the X-axis direction. Further, two plate-like anodes AN3 and AN4 are provided side by side in the X-axis direction in a region sandwiched between the partial separators SP42 and SP43. At this time, the anodes AN1 and AN4 are arranged on the positive side in the X-axis direction, and the anodes AN2 and AN3 are arranged on the negative side in the X-axis direction.
  • All of the anodes AN1 to AN4 have the same thickness as that of the partial separators SP41 to SP43 and are rectangular when viewed from the Z-axis direction. Each side of the rectangle extends in the X-axis direction or the Y-axis direction, and the length of the side extending in the X-axis direction is less than 1 ⁇ 2 of the length of each of the partial separators SP41 to SP43. Further, the side surface facing the positive side in the X-axis direction is flush with the anodes AN1, AN4 and the partial separators SP41 to SP43. Similarly, the side surface facing the negative side in the X-axis direction is flush with the anodes AN3 and AN4 and the partial separators SP41 to SP43.
  • a rectangular through-hole is formed between the anodes AN1 and AN2 as viewed from the Z-axis direction, and a rectangular through-hole is also formed between the anodes AN3 and AN4 as viewed from the Z-axis direction.
  • the long side extends along the Y axis, and the short side extends along the X axis.
  • the two through holes formed in this way form manifolds MFf1 and MFf2.
  • the electrolyte layer 123 is formed by forming, in the electrolyte EL, four through holes that respectively form manifolds MFf1, MFf2, MFa1, and MFa2. All the through holes are rectangular when viewed from the Z-axis direction. However, the long side of the rectangle forming each of the manifolds MFf1 and MFf2 extends along the Y axis, while the long side of the rectangle forming each of the manifolds MFa1 and MFa2 extends along the X axis.
  • the upper surfaces of the cathodes CT1 to CT4 provided on the air electrode layer 122 are in contact with the lower surface of the electrolyte layer 123, and the lower surfaces of the anodes AN1 to AN4 provided on the fuel electrode layer 124 are in contact with the upper surface of the electrolyte layer 123.
  • the current collecting layer 16a is formed by four small current collecting plates 161a to 164a and a single spacer 18a.
  • Each of the small current collectors 161a to 164a is made of a metal that relaxes the thermal stress of the fuel cells 20a and 20b, and is formed by folding a strip-shaped metal member into a U shape.
  • the area of the upper surface or the lower surface of each of the small current collectors 161a to 164a is slightly less than 1 ⁇ 4 of the area of the upper surface or the lower surface of the fuel cell 20a. Further, the thicknesses of the small current collectors 161a to 164a coincide with each other.
  • the small current collecting plate 161a is arranged at a position on the X axis direction positive side and the Y axis direction positive side of the upper surface of the fuel cell 20a so that the lower surface thereof faces a part of the via conductors VHf, VHf,.
  • the small current collecting plate 162a is positioned at the X axis direction negative side and the Y axis direction positive side of the upper surface of the fuel cell 20a so that the lower surface of the small current collecting plate 162a faces another part of the via conductors VHf, VHf,. Arranged.
  • the small current collecting plate 163a is positioned at the X axis direction negative side and the Y axis direction negative side of the upper surface of the fuel cell 20a so that the lower surface of the small current collecting plate 163a faces the other part of the via conductors VHf, VHf,. Arranged.
  • the small current collector plate 164a is positioned on the X axis direction positive side and the Y axis direction negative side of the upper surface of the fuel cell 20a so that the lower surface of the small current collector plate 164a faces the other part of the via conductors VHf, VHf,. Arranged.
  • the small current collectors 161a to 164a are electrically connected to the via conductors VHf, VHf,.
  • the spacer 18a has the same thickness as the small current collecting plates 161a to 164a, and is disposed at a position where the small current collecting plates 161a to 164a are missing. Since the small current collectors 161a to 164a are arranged as described above, the upper surface or the lower surface of each spacer 18a forms a cross. Note that the thickness of the spacer 18a is not necessarily the same as the thickness of the small current collectors 161a to 164a. This is because the difference in thickness can be adjusted by a conductive material or a sealing material.
  • the current collecting layer 16b shown in FIG. 3 is formed by four small current collecting plates 161b to 164b and a single spacer 18b.
  • Each of the small current collecting plates 161b to 164b is made of a metal that relaxes the thermal stress of the fuel cells 20a and 20b, and a strip-shaped metal member is folded in a U shape.
  • the area of the upper surface or the lower surface of each of the small current collectors 161b to 164b is slightly less than 1 ⁇ 4 of the area of the upper surface or the lower surface of the fuel cell 20b.
  • the thicknesses of the small current collectors 161b to 164b coincide with each other.
  • the small current collecting plate 161b is arranged at a position on the X axis direction positive side and the Y axis direction positive side of the lower surface of the fuel cell 20b so that the upper surface thereof faces a part of the via conductors VHa, VHa,.
  • the small current collecting plate 162b is positioned at the X-axis direction negative side and the Y-axis direction positive side of the lower surface of the fuel cell 20b so that the upper surface of the small current collecting plate 162b faces the other part of the via conductors VHa, VHa,. Arranged.
  • the small current collecting plate 163b is positioned at the X axis direction negative side and the Y axis direction negative side of the lower surface of the fuel cell 20b so that the upper surface of the small current collecting plate 163b faces the other part of the via conductors VHa, VHa,. Arranged.
  • the small current collector plate 164b is positioned on the X axis direction positive side and the Y axis direction negative side of the lower surface of the fuel cell 20b so that the upper surface of the small current collector plate 164b faces the other part of the via conductors VHa, VHa,. Arranged.
  • the small current collectors 161b to 164b are electrically connected to the via conductors VHa, VHa,.
  • the spacer 18b has the same thickness as the small current collecting plates 161b to 164b, and is disposed at a position where the small current collecting plates 161b to 164b are missing. Since the small current collectors 161b to 164b are arranged as described above, the upper surface or the lower surface of each spacer 18b forms a cross.
  • each through hole is rectangular when viewed from the Z-axis direction.
  • the long side of the rectangle forming each of the manifolds MFf1 and MFf2 extends along the Y axis
  • the long side of the rectangle forming each of the manifolds MFa1 and MFa2 extends along the X axis.
  • the fixing plate 14a is disposed on the upper surface of the current collecting layer 16a so that a part of the lower surface thereof faces the upper surface of the current collecting layer 16a.
  • the fixing plate 14b is disposed on the lower surface of the current collecting layer 16b so that a part of the upper surface thereof faces the lower surface of the current collecting layer 16b.
  • the side surfaces of the fixing plates 14a and 14b are flush with the side surface of the fuel cell stack 12 (however, it is not essential that they be flush).
  • each of the manifolds MFf1, MFf2, MFa1 and MFa2 is provided for the fixing plate 14b.
  • the total number of through holes is eight, and all of the through holes form a perfect circle when viewed from the Z-axis direction.
  • the conductive layer 22 provided between the fuel cells 20a and 20b transmits the current extracted from the fuel cells 20a and 20b to the current collecting layers 16a and 16b.
  • the conductive layer 22 is also formed by four small conductive plates 221 to 224 and a single spacer 24.
  • Each of the small conductive plates 221 to 224 is made of a metal that relaxes the thermal stress of the fuel cells 20a and 20b, and a strip-shaped metal member is folded in a U shape.
  • the area of the upper surface or the lower surface of each of the small conductive plates 221 to 224 is slightly less than 1/4 of the area of the upper surface or the lower surface of the fuel cells 20a, 20b. Further, the thicknesses of the small conductive plates 221 to 224 coincide with each other.
  • the small conductive plate 221 has a top surface facing a part of the via conductors VHa, VHa,... And a bottom surface facing a part of the via conductors VHf, VHf,. Are arranged on the X axis direction positive side and the Y axis direction positive side.
  • the small conductive plate 222 has an upper surface facing another part of the via conductors VHa, VHa,... And a lower surface facing the other part of the via conductors VHf, VHf,. And 20b between the X axis direction negative side and the Y axis direction positive side.
  • the small conductive plate 223 has an upper surface facing the other part of the via conductors VHa, VHa,... And a lower surface facing the other part of the via conductors VHf, VHf,. And 20b between the X axis direction negative side and the Y axis direction negative side.
  • the small conductive plate 224 has a top surface facing another part of the via conductors VHa, VHa,... And a bottom surface facing another part of the via conductors VHf, VHf,. It is arranged at a position between the cells 20a and 20b on the X axis direction positive side and the Y axis direction negative side.
  • the spacer 24 has the same thickness as the small conductive plates 221 to 224, and is disposed at a position where the small conductive plates 221 to 224 are missing. Since the small conductive plates 221 to 224 are arranged as described above, the upper surface or the lower surface of each spacer 24 forms a cross.
  • the spacer 24 is also formed with four through holes that form the manifolds MFf1, MFf2, MFa1, and MFa2.
  • Each through hole is rectangular when viewed from the Z-axis direction.
  • the long side of the rectangle forming each of the manifolds MFf1 and MFf2 extends along the Y axis
  • the long side of the rectangle forming each of the manifolds MFa1 and MFa2 extends along the X axis.
  • a paste-like conductive bonding material 26 is disposed between the upper surface of the fuel cell 20a and the lower surfaces of the small current collectors 161a to 164a.
  • a paste-like conductive bonding material 26 is also disposed between the lower surface of the fuel cell 20b and the upper surfaces of the small current collectors 161b to 164b.
  • the minute gap generated between the fuel battery cell 20a and the small current collector plates 161a to 164a or the minute gap generated between the fuel battery cell 20b and the small current collector plates 161b to 164b is a conductive bonding material. 26.
  • a sealing material 28 made of crystallized glass is disposed between the upper surface of the fuel cell 20a and the lower surface of the spacer 18a, and between the upper surface of the spacer 18a and the lower surface of the fixing plate 14a.
  • the sealing material 28 is also disposed between the lower surface of the fuel battery cell 20b and the upper surface of the spacer 18b, and between the lower surface of the spacer 18b and the upper surface of the fixing plate 14b.
  • a paste-like conductive bonding material 26 is disposed between the lower surface of the fuel cell 20a and the upper surfaces of the small conductive plates 221 to 224.
  • a conductive bonding material 26 is also disposed between the upper surface of the fuel cell 20b and the lower surfaces of the small conductive plates 221 to 224.
  • a sealing material 28 is disposed between the lower surface of the fuel cell 20a and the upper surface of the spacer 24, and the sealing material 28 is also disposed between the upper surface of the fuel cell 20b and the lower surface of the spacer 24.
  • the air electrode gas flowing through the manifolds MFa1 and MFa2 is discharged to the outside of the fuel cell stack 12 through the air electrode gas flow paths GRa, GRa,. Further, the fuel electrode gas flowing through the manifolds MFf1 and MFf2 is discharged to the outside of the fuel cell stack 12 via the fuel electrode gas flow paths GRf, GRf,.
  • a part of the air electrode gas and the fuel electrode gas is discharged outside the fuel cells 20a and 20b without causing a chemical reaction.
  • the air electrode gas is discharged through the air electrode gas flow paths GRa, GRa,...,
  • the fuel electrode gas is discharged through the fuel electrode gas flow paths GRf, GRf,.
  • the discharged air electrode gas and fuel electrode gas react with each other to generate heat, thereby achieving heat independence.
  • LSM conductive ceramic
  • the material of the conductive pad (not shown) provided on the outermost surface of the cell is LSM, that the LSM is stable in high-temperature air to which the fuel cell unit 10 is exposed, and past adoption results. There are many cases.
  • the conductive bonding material 26 is a mixture of two types of powders having a large and small particle size distribution. In this way, in the neck formation during sintering, surface diffusion from the powder having a small diameter becomes dominant, and the powder having a large diameter does not move from the spot. That is, the shrinkage rate can be suppressed, and the seizure property to the small current collecting plates 161a to 164a, 161b to 164b, the small conductive plates 221 to 224 and the fuel cells 20a and 20b, and the adhesion during power generation operation are improved. .
  • the conductive bonding material 26 was further mixed with carbon as a pore former. By adding carbon, shrinkage of the LSM during sintering is suppressed, and the small current collectors 161a to 164a, 161b to 164b, the small conductive plates 221 to 224, the seizure to the fuel cells 20a and 20b, and the power generation operation The adhesion at the time is further improved.
  • Each of the small current collectors 161a to 164a, 161b to 164b, and the small conductive plates 221 to 224 is made of Crofer22APU (trade name) manufactured by VDM.
  • This material has a composition based on ferritic stainless steel having a thermal expansion coefficient close to that of the fuel cells 20a and 20b, and exhibits high oxidation resistance by adding a trace element.
  • a metal plate made of such a material is meshed to produce a mesh-like metal member, which is cut into a strip shape and folded into a U-shape, whereby the small current collector plates 161a to 164a, 161b to 164b, Each of the conductive plates 221 to 224 is obtained.
  • the size of the mesh is adjusted to a wire diameter of ⁇ 0.2 mm and 50 mesh.
  • NiCo plating becomes NiCo spinel by oxidation.
  • the paste-like conductive bonding material 26 is impregnated in the mesh by applying to such a surface.
  • interdiffusion of elements occurs between LSM and NiCo during sintering.
  • the bonding strength with the fuel cells 20a and 20b and thus the connection reliability is improved.
  • At least one of Pt, Pd, Ag, Au, Ru, Rh, Ni, Fe, and Cr having excellent heat resistance is contained in the materials of the small current collectors 161a to 164a, 161b to 164b, and the small conductive plates 221 to 224
  • the small current collecting plates 161a to 164a, 161b to 164b and the small conductive plates 221 to 224 are stabilized under the operating environment of the fuel cell unit 10.
  • these materials exhibit high electrical conductivity, the electrical resistance between the fuel cells 20a and 20b can be reduced, and the characteristics of the fuel cell stack 12 can be enhanced.
  • the soaking conductive layer 30 shown in FIGS. 7 to 9 instead of the conductive layer 22.
  • the reason is that cracks may occur in the fuel cell due to heat generation during power generation.
  • the soaking conductive layer 30 may be replaced with one of the five conductive layers 22, 22,.
  • the soaking conductive layer 30 is formed by four small conductive plates 301 to 304, four small soaking plates 321 to 324, and two spacers 34a to 34b.
  • Each of the small conductive plates 301 to 304 is made of a metal that relaxes the thermal stress of the two fuel cells sandwiching the soaking conductive layer 30, and a strip-shaped metal member is folded in a U shape.
  • the area of the upper surface or lower surface of each of the small conductive plates 301 to 304 is slightly less than 1 ⁇ 4 of the area of the upper surface or lower surface of each fuel cell.
  • the thicknesses of the small conductive plates 301 to 304 coincide with each other. However, this thickness exceeds the thickness of the small conductive plates 221 to 224.
  • the small conductive plate 301 is disposed at a position on the positive side in the X-axis direction and on the positive side in the Y-axis direction between the two fuel cells.
  • the small conductive plate 302 is disposed between the two fuel cells in the position on the X axis direction negative side and the Y axis direction positive side.
  • the small conductive plate 303 is disposed at a position on the negative side in the X-axis direction and on the negative side in the Y-axis direction between the two fuel cells.
  • the small conductive plate 304 is disposed between the two fuel cells in a position on the positive side in the X-axis direction and on the negative side in the Y-axis direction.
  • the upper surfaces of the small conductive plates 301 to 304 face the via conductors VHa, VHa,... Of the upper fuel cell, and the lower surfaces of the small conductive plates 301 to 304 have via conductors VHf, VHf,. Opposite.... Via conductors VHa, VHa,... Provided in the upper fuel cell are connected to via conductors VHf, VHf,... Provided in the lower fuel cell via the small conductive plates 301 to 304 thus arranged. Electrically connected.
  • Each of the small soaking plates 321 to 324 has a common area in a range slightly below the area of the upper surface or the lower surface of the small conductive plates 301 to 304.
  • the small heat soaking plate 321 is inserted into the space inside the small conductive plate 301 with the fold of the small conductive plate 301 as a valley.
  • the small uniform heat plate 322 is inserted into a space inside the small conductive plate 302 where the fold of the small conductive plate 302 is a valley.
  • the small uniform heat plate 323 is inserted into the space inside the small conductive plate 303 with the fold of the small conductive plate 303 as a valley.
  • the small soaking plate 324 is inserted into the space inside the small conductive plate 304 with the fold of the small conductive plate 304 as a valley.
  • Each of the spacers 34a and 34b has a thickness approximately half of the thickness of the small conductive plates 301 to 304, and is disposed at a position where the small conductive plates 301 to 304 are missing.
  • the spacer 34a is disposed at a positive position in the Z-axis direction
  • the spacer 34b is disposed at a negative position in the Z-axis direction. Since the small conductive plates 301 to 304 are arranged as described above, the upper surface or the lower surface of each of the spacers 34a and 34b forms a cross.
  • the thickness of each of the spacers 34a and 34b does not necessarily have to be approximately 1 ⁇ 2 of the thickness of the small conductive plates 301 to 304.
  • Each of the spacers 34a and 34b is also formed with four through holes that form manifolds MFf1, MFf2, MFa1 and MFa2, respectively.
  • Each through hole is rectangular when viewed from the Z-axis direction.
  • the long side of the rectangle forming each of the manifolds MFf1 and MFf2 extends along the Y axis
  • the long side of the rectangle forming each of the manifolds MFa1 and MFa2 extends along the X axis.
  • paste-like conductive bonding material 26 is disposed between the lower surface of air electrode side conductor layer 121 forming the upper fuel battery cell and the upper surfaces of small conductive plates 301-304.
  • the conductive bonding material 26 is also disposed between the upper surface of the fuel electrode side conductor layer 125 forming the lower fuel cell and the lower surfaces of the small conductive plates 301 to 304.
  • the via conductors VHf, VHf, ..., VHa, VHa, ... are bonded to the small conductive plates 301-304.
  • a minute gap generated between the small conductive plates 301 to 304 and each of the air electrode side conductor layer 121 and the fuel electrode side conductor layer 125 is filled with the conductive bonding material 26.
  • the fuel cell unit of the second embodiment is the same as the fuel cell unit 10 of the first embodiment except that the coating on each of the small current collector plate and the small conductive plate is omitted. A duplicate description of the configuration other than the small conductive plate is omitted.
  • Each of the small current collector plate and the small conductive plate is also made by mesh processing using Crofer22APU made by VDM, Germany.
  • the fuel cell and the fixing plate can be electrically connected without a compression mechanism. Furthermore, it is possible to follow the deformation of the fuel cell due to the heat cycle or the power generation cycle.
  • each of the small current collector plate and the small conductive plate is produced by subjecting ZMG232G10 manufactured by Hitachi Metals to expansion processing (network processing), and the small current collector plate and small conductive plate. Except for the point that coating of each of the plates is omitted, the fuel cell unit 10 is the same as the fuel cell unit 10 of the first embodiment.
  • the fuel cell and the fixing plate can be electrically connected without a compression mechanism. Furthermore, it is possible to follow the deformation of the fuel cell due to the heat cycle or the power generation cycle.
  • each of the small current collector plate and the small conductive plate is produced by subjecting Crofer22APU (plate thickness: 0.2 mm) manufactured by VDM to expand processing (network processing).
  • the surface of each of the small current collector plate and the small conductive plate is the same as that of the fuel cell unit 10 of the first embodiment except that the surface of each of the small current collector plate and the small conductive plate is coated with NiCo plating or MnCo spraying and is preheated.
  • a duplicate description of the configuration other than the current collector plate and the small conductive plate is omitted.
  • NiCo spinel or MnCo spinel is produced by performing coating and heat treatment by NiCo plating or MnCo spraying.
  • the paste-like conductive bonding material 26 is impregnated in the expanded metal by being applied to such a surface.
  • interdiffusion of elements occurs between LSM and MnCo or between LSM and NiCo during sintering.
  • the bonding strength with respect to the fuel cell and thus the connection reliability is improved.
  • each of the small current collector plate and the small conductive plate is produced by subjecting ZMG232G10 manufactured by Hitachi Metals to expansion processing (network processing). Since each surface of the conductive plate is the same as the fuel cell unit 10 of the first embodiment except that the surface of each of the conductive plates is coated with LSM spraying and heat-treated in advance, the configuration other than the small current collector plate and the small conductive plate The duplicate description about is omitted.
  • FIG. 11 shows the results of the tensile tests of the first to fifth examples.
  • the adhesion strength of the NiCo plated member in the fourth example was the highest, and the average was 40 N or more. Also, in the first example, an adhesion strength of 25 N or more was shown on average.
  • the adhesion strength of MnCo sprayed in the fourth example was weaker than the adhesion strength of NiCo plated in the fourth example, but an average adhesion strength of 20 N or more was confirmed. However, it is presumed that the adhesion strength required for the joint to withstand deformation caused by stress due to the difference in thermal expansion coefficient with the fuel cell / stack is 1 N or less. For this reason, it is considered that all of the first to fifth examples have sufficiently strong adhesion strength.
  • LSM is adopted as a material for the conductive bonding material.
  • the conductive bonding material may include LaSrCoO 3, LaSrCoFeO 3, MnCoO 3, SmSrCoO 3, LaCaMnO 3, LaCaCoO 3, LaCaCoFeO 3, LaNiFeO 3, or (LaSr) 2 NiO 4.
  • the metal member forming the small current collector plate and the small conductive plate is produced by applying mesh processing or expanding processing to a metal plate material.
  • mesh processing or expanding processing may be employed instead of meshing or expanding, and the metal member may be foamed or porous.
  • the coating material includes an alloy made of NiCo or MnCo or an oxide thereof, but a trace additive such as Fe may be added to NiCo or MnCo. Good.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Each of fuel cells 20a, 20b has a via conductor which is exposed in the upper surface and the lower surface, and the fuel cells 20a, 20b are laminated in the Z axis direction. A collector layer 16a is arranged between a fixing plate 14a and the fuel cell 20a; a conductive layer 22 is arranged between the fuel cell 20a and the fuel cell 20b; and a collector layer 16b is arranged between the fuel cell 20b and a fixing plate 14b. The thermal stresses of the fuel cells 20a, 20b are relaxed by the thus-arranged collector layers 16a, 16b and conductive layer 22. In addition, the collector layers 16a, 16b, the fuel cells 20a, 20b and the conductive layer 22 are bonded together by means of conductive bonding materials.

Description

燃料電池ユニットFuel cell unit
 この発明は、燃料電池ユニットに関し、特に、積層方向を向く一方主面および他方主面に露出した表面電極を各々が有して積層された複数の燃料電池セルを備える、固体酸化物形(SOFC形)の燃料電池ユニットに関する。 The present invention relates to a fuel cell unit, and in particular, a solid oxide type (SOFC) comprising a plurality of fuel cell cells each having a surface electrode exposed on one main surface and the other main surface facing in the stacking direction. Type) fuel cell unit.
 この種の燃料電池ユニットが、特許文献1ないし4に開示されている。特許文献1によれば、燃料電池スタックは、各々が筒状に形成された複数の燃料電池セルと、これらの燃料電池セルを電気的に接続する集電部材とを備える。燃料電池セルと集電部材との間には、導電性金属粒子および樹脂バインダからなるシート層が挟み込まれる。これによって、燃料電池セルが集電部材と接続される。 This type of fuel cell unit is disclosed in Patent Documents 1 to 4. According to Patent Literature 1, the fuel cell stack includes a plurality of fuel cells each formed in a cylindrical shape, and a current collecting member that electrically connects these fuel cells. A sheet layer made of conductive metal particles and a resin binder is sandwiched between the fuel cell and the current collecting member. Thereby, the fuel cell is connected to the current collecting member.
 特許文献2によれば、燃料電池スタックは、発電セル,燃料極集電体,酸化剤極集電体およびセパレータを所定の順序で積層して、積層方向両端のセパレータ間に締め付け荷重を加えることで構成される。酸化剤極集電体は、燃料電池スタックを加熱炉で加熱した状態で発電セルの接触面に所定の接触荷重を加えることで、発電セルに固着する。 According to Patent Document 2, the fuel cell stack is configured by stacking a power generation cell, a fuel electrode current collector, an oxidant electrode current collector, and a separator in a predetermined order, and applying a tightening load between the separators at both ends in the stacking direction. Consists of. The oxidant electrode current collector is fixed to the power generation cell by applying a predetermined contact load to the contact surface of the power generation cell while the fuel cell stack is heated in the heating furnace.
 特許文献3によれば、単セルは、インターコネクタ板,ガスシール層,空気極フレーム,セパレータおよび燃料極フレームを所定順序で積層し、各部材の取り付け孔にボルトを挿入して各部材を固定することで構成される。ボルトによって単セルを積層方向に押圧することで、ガスシール層はコンプレッションシール材として機能する。 According to Patent Document 3, the single cell has an interconnector plate, a gas seal layer, an air electrode frame, a separator, and a fuel electrode frame stacked in a predetermined order, and bolts are inserted into the mounting holes of the members to fix the members. It is composed by doing. By pressing the single cell in the stacking direction with a bolt, the gas seal layer functions as a compression seal material.
 特許文献4によれば、金属連結板とメッシュ構造体からなる集電体が一つの単位モジュールとされ、燃料電池セル間の直列および並列連結を自由に構築できるように構成される。 According to Patent Document 4, a current collector made of a metal connecting plate and a mesh structure is used as one unit module, and is configured so that series and parallel connections between fuel cells can be freely constructed.
特開2008-71676号公報JP 2008-71676 A 特開2009-245685号公報JP 2009-245485 A 特開2011-210423号公報JP 2011-210423 A 特開2013-134984号公報JP 2013-134984 A
 特許文献1では、導電性金属粒子としてNiが使用される。ただし、動作温度下に酸素が存在すると、NiはNiOとなって導電性を失う。このため、Niは、還元雰囲気でなければ使用できないという問題がある。 In Patent Document 1, Ni is used as the conductive metal particles. However, when oxygen is present at the operating temperature, Ni becomes NiO and loses conductivity. For this reason, Ni has a problem that it can be used only in a reducing atmosphere.
 特許文献2では、燃料電池の熱サイクルや負荷追従による発電サイクルが繰り返されることにより、燃料電池セルまたはセルスタックが変形し、集電体との間で電気的導通不良が発生し易くなるという問題がある。これを防止するために、セルスタック全体に締め付け荷重を加えられる機構が必要であるが、コストやサイズの増大につながる。 In Patent Document 2, the fuel cell or the cell stack is deformed by repeating the heat cycle of the fuel cell or the power generation cycle by load following, and the problem of electrical continuity failure with the current collector is likely to occur. There is. In order to prevent this, a mechanism capable of applying a tightening load to the entire cell stack is necessary, which leads to an increase in cost and size.
 特許文献3でも、ボルトのようなコンプレッション機構が必要であり、特許文献2と同様にコストやサイズの増大につながる。 Even in Patent Document 3, a compression mechanism such as a bolt is necessary, which leads to an increase in cost and size as in Patent Document 2.
 特許文献4では、集電体と燃料電池セルとを接合するための導電性材料に関する記載がなく、物理的な接触でもって電気的に接続すると考えられる。しかし、これでは接触抵抗が高すぎるという問題がある。 In Patent Document 4, there is no description regarding a conductive material for joining the current collector and the fuel battery cell, and it is considered that they are electrically connected by physical contact. However, this has a problem that the contact resistance is too high.
 それゆえに、この発明の主たる目的は、コンプレッション機構を設けることなく、熱応力に起因する電気的接続の信頼性の低下を抑制することができる、燃料電池ユニットを提供することである。 Therefore, a main object of the present invention is to provide a fuel cell unit that can suppress a decrease in reliability of electrical connection due to thermal stress without providing a compression mechanism.
 この発明の燃料電池ユニットは、積層方向を向く一方主面および他方主面に設けられた表面電極を有する複数の燃料電池セルを備える固体酸化物形の燃料電池ユニットであって、積層方向から眺めて表面電極と重なる位置であって、燃料電池セルの間に設けられ、複数の燃料電池セルの熱応力を緩和する金属部材、および金属部材を表面電極と電気的に接続する導電性接合材を備える。 A fuel cell unit of the present invention is a solid oxide fuel cell unit comprising a plurality of fuel cells having surface electrodes provided on one main surface facing the stacking direction and the other main surface, viewed from the stacking direction. A metal member that is provided between the fuel cells and that relieves thermal stress of the plurality of fuel cells, and a conductive bonding material that electrically connects the metal members to the surface electrode. Prepare.
 燃料電池セルの熱応力を金属部材によって緩和することで、燃料電池セルが剥離する懸念が軽減される。また、金属部材と表面電極とを導電性接合材によって電気的に接続することで、表面電極と金属部材との間の抵抗が低減される。こうして、コンプレッション機構を設けることなく、熱応力に起因する電気的接続の信頼性の低下を抑制することができる。 By relaxing the thermal stress of the fuel battery cell with the metal member, the concern of the fuel battery cell peeling off is reduced. Moreover, the resistance between the surface electrode and the metal member is reduced by electrically connecting the metal member and the surface electrode by the conductive bonding material. In this way, it is possible to suppress a decrease in reliability of electrical connection due to thermal stress without providing a compression mechanism.
 好ましくは、導電性接合材は導電性セラミックスを材料とし、金属部材は導電性セラミックスの焼結によって表面電極と電気的に接続される。導電性セラミックスを採用することで、燃料電池ユニットの動作環境下において、安定かつ高い導電性が確保される。また、導電性セラミックを焼結させることで、表面電極と金属部材との間の抵抗の増大ひいては発電効率の低下を防止することができる。 Preferably, the conductive bonding material is made of conductive ceramics, and the metal member is electrically connected to the surface electrode by sintering of the conductive ceramics. By employing conductive ceramics, stable and high conductivity is ensured under the operating environment of the fuel cell unit. Further, by sintering the conductive ceramic, it is possible to prevent an increase in resistance between the surface electrode and the metal member, and thus a decrease in power generation efficiency.
 好ましくは、導電性接合材は、LaSrCoO3、LaSrCoFeO3、MnCoO3、SmSrCoO3、LaCaMnO3、LaCaCoO3、LaCaCoFeO3、LaNiFeO3、または(LaSr)2NiO4を基本材料とする。これらの材料は燃料電池ユニットの動作環境下において、安定かつ高い導電性を示す。このため、接合部分の電気抵抗を小さくすることができ、ひいては発電効率の低下を防ぐことができる。 Preferably, the conductive bonding material is made of LaSrCoO3, LaSrCoFeO3, MnCoO3, SmSrCoO3, LaCaMnO3, LaCaCoO3, LaCaCoFeO3, LaNiFeO3, or (LaSr) 2NiO4. These materials exhibit stable and high conductivity in the operating environment of the fuel cell unit. For this reason, the electrical resistance of a junction part can be made small and by extension, the fall of power generation efficiency can be prevented.
 好ましくは、導電性接合材は粒径の異なる複数種類の粉末で構成される。粒径の異なる複数種類の粉末を混合することで、焼結時のネック形成は、小さい径をもつ粉体からの表面拡散が支配的となり、大きい径をもつ粉末はその場から動かない。つまり、導電接合材としての収縮率を抑えることができ、金属部材や燃料電池セルへの焼付性、ならびに発電動作時の密着性が向上する。 Preferably, the conductive bonding material is composed of a plurality of types of powders having different particle sizes. By mixing a plurality of types of powders having different particle diameters, the neck formation during sintering is dominated by surface diffusion from powders having a small diameter, and powders having a large diameter do not move from the spot. That is, the shrinkage rate as the conductive bonding material can be suppressed, and the seizure property to the metal member and the fuel battery cell and the adhesion during the power generation operation are improved.
 好ましくは、導電性接合材は焼結によって消失する造孔材を含む。これによって、焼結時の導電性接合材の収縮が抑制され、金属部材や燃料電池セルへの焼付性、ならびに発電動作時の密着性がさらに向上する。 Preferably, the conductive bonding material includes a pore former that disappears by sintering. Thereby, the shrinkage of the conductive bonding material during sintering is suppressed, and the seizure property to the metal member and the fuel battery cell and the adhesion during the power generation operation are further improved.
 好ましくは、金属部材は、金属製の板材にメッシュ加工、パンチング加工、エキスパンド加工、またはエンボス加工を施して作製された部材である。これによって、燃料電池セル、導電性接合材、金属部材の材料間に存在する熱膨張係数差による応力が緩和され、劣化につながる剥離を防止することができる。 Preferably, the metal member is a member produced by applying a meshing process, a punching process, an expanding process, or an embossing process to a metal plate material. As a result, stress due to the difference in thermal expansion coefficient existing between the material of the fuel cell, the conductive bonding material, and the metal member is relieved, and peeling that leads to deterioration can be prevented.
 好ましくは、金属部材の材料は、Pt、Pd、Ag、Au,Ru、Rh、Ni、Fe、Crの少なくとも1つを含む。これらの材料は、耐熱性に優れ、燃料電池ユニットの動作環境下で安定的である。同時に、導電率の高い材料であるため、燃料電池セル間の電気抵抗を小さくすることができ、発電特性を高めることができる。 Preferably, the material of the metal member includes at least one of Pt, Pd, Ag, Au, Ru, Rh, Ni, Fe, and Cr. These materials have excellent heat resistance and are stable under the operating environment of the fuel cell unit. At the same time, since the material has a high conductivity, the electric resistance between the fuel cells can be reduced, and the power generation characteristics can be improved.
 好ましくは、金属部材は、導電性接合材を構成する元素と界面で相互拡散する元素を含む材料によってコーティングを施された耐酸化性の表面を有する。これによって、金属部材と導電性接合材との接合強度ひいては燃料電池セル間の電気接続の信頼性が向上する。 Preferably, the metal member has an oxidation-resistant surface coated with a material containing an element constituting the conductive bonding material and an element that diffuses at the interface. This improves the bonding strength between the metal member and the conductive bonding material, and thus the reliability of the electrical connection between the fuel cells.
 好ましくは、コーティングの材料はNiCoまたはMnCoからなる合金またはその酸化物を含む。これによって、金属部材と導電性接合材との接合強度ひいては燃料電池セル間の電気接続の信頼性が向上する。 Preferably, the coating material includes an alloy made of NiCo or MnCo or an oxide thereof. This improves the bonding strength between the metal member and the conductive bonding material, and thus the reliability of the electrical connection between the fuel cells.
 さらに好ましくは、コーティングの材料は導電性接合材の材料と一致する。これによって、金属部材と導電性接合材との接合強度ひいては燃料電池セル間の電気接続の信頼性が向上する。 More preferably, the coating material matches the material of the conductive bonding material. This improves the bonding strength between the metal member and the conductive bonding material, and thus the reliability of the electrical connection between the fuel cells.
 好ましくは、燃料電池セル内に発生する熱を分散するべく金属部材を介して燃料電池間に挟持される均熱板がさらに備えられる。金属部材を介在させることで、表面電極は導電性接合材を介して金属部材と接続される。これによって、表面電極と金属部材との間の抵抗の増大ひいては発電効率の低下を防止することができる。 Preferably, there is further provided a soaking plate sandwiched between the fuel cells through the metal member so as to disperse the heat generated in the fuel cell. By interposing the metal member, the surface electrode is connected to the metal member via the conductive bonding material. Thereby, it is possible to prevent an increase in resistance between the surface electrode and the metal member and a decrease in power generation efficiency.
 この発明によれば、燃料電池セルの熱応力を金属部材によって緩和し、かつ金属部材と表面電極とを導電性接合材によって電気的に接続することで、コンプレッション機構を設けることなく、熱応力に起因する電気的接続の信頼性の低下を抑制することができる。 According to the present invention, the thermal stress of the fuel cell is relaxed by the metal member, and the metal member and the surface electrode are electrically connected by the conductive bonding material, so that the thermal stress can be reduced without providing a compression mechanism. It is possible to suppress a decrease in reliability of the electrical connection caused.
 この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。 The above object, other objects, features, and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
この実施例の燃料電池ユニットの外観を示す斜視図である。It is a perspective view which shows the external appearance of the fuel cell unit of this Example. 分解された燃料電池ユニットの一部を斜め上から眺めた状態の一例を示す斜視図である。It is a perspective view which shows an example of the state which looked at some disassembled fuel cell units from diagonally upward. 分解された燃料電池ユニットの他の一部を斜め上から眺めた状態の一例を示す斜視図である。It is a perspective view which shows an example of the state which looked at another part of the decomposed | disassembled fuel cell unit from diagonally upward. 分解された燃料電池セルを斜め上から眺めた状態の一例を示す斜視図である。It is a perspective view which shows an example of the state which looked at the decomposed | disassembled fuel battery cell from diagonally upward. 燃料電池セルを構成する燃料極側導体層を斜め下から眺めた状態の一例を示す斜視図である。It is a perspective view which shows an example of the state which looked at the fuel electrode side conductor layer which comprises a fuel battery cell from diagonally downward. 図1に示す燃料電池ユニットの側面を拡大して示す側面図である。It is a side view which expands and shows the side surface of the fuel cell unit shown in FIG. 燃料電池セルのスタック数が増大したときに所定数の燃料電池セルおきに挿入される均熱導電層を斜め上から眺めた状態を示す斜視図である。It is a perspective view which shows the state which looked at the soaking | uniform-heating conductive layer inserted every predetermined number of fuel battery cells from diagonally upward, when the number of stacks of a fuel battery cell increases. 図7に示す均熱導電層のA-A断面を示す断面図である。FIG. 8 is a cross-sectional view showing an AA cross section of the soaking conductive layer shown in FIG. 7. 図7に示す均熱導電層のB-B断面を示す断面図である。FIG. 8 is a cross-sectional view showing a BB cross section of the soaking conductive layer shown in FIG. 7. 均熱導電層が追加された燃料電池ユニットの側面の一部を拡大して示す側面図である。It is a side view which expands and shows a part of side surface of the fuel cell unit to which the heat equalization conductive layer was added. 引張試験の結果を示すグラフである。It is a graph which shows the result of a tension test.
[第1実施例]
 図1~図5を参照して、第1実施例の燃料電池ユニット10は、固体酸化物形の燃料電池ユニットであり、2つの燃料電池セル20a,20bと単一の導電層22とを含む。燃料電池セル20a,20bおよび導電層22は、各々の側面が面一となるように堆積され、これによって平板型の燃料電池スタック12が構成される。なお、燃料電池スタック12の側面は必ずしも面一でなくてもよい。
[First embodiment]
1 to 5, the fuel cell unit 10 of the first embodiment is a solid oxide fuel cell unit, and includes two fuel cells 20a and 20b and a single conductive layer 22. . The fuel cells 20a and 20b and the conductive layer 22 are deposited so that the side surfaces thereof are flush with each other, thereby forming the flat plate type fuel cell stack 12. Note that the side surfaces of the fuel cell stack 12 are not necessarily flush with each other.
 燃料電池セル20aおよび20bの各々の上面(一方主面)には、アノードAN1~AN4と電気的に接続されたビア導体(表面電極)VHf,VHf,…が露出する(図4参照)。燃料電池セル20a~20dの各々の下面(他方主面)には、カソードCT1~CT4と電気的に接続されたビア導体(表面電極)VHa,VHa,…が露出する(図4,図5参照)。燃料極ガスおよび空気極ガスに基づいて発生した電流は、アノードAN1~AN4側のビア導体VHf,VHf,…とカソードCT1~CT4側のビア導体VHa,VHa,…とによって外部に取り出される。 Via conductors (surface electrodes) VHf, VHf,... Electrically connected to the anodes AN1 to AN4 are exposed on the upper surface (one main surface) of each of the fuel cells 20a and 20b (see FIG. 4). Via conductors (surface electrodes) VHa, VHa,... Electrically connected to the cathodes CT1 to CT4 are exposed on the lower surfaces (the other main surfaces) of the fuel cells 20a to 20d (see FIGS. 4 and 5). ). The current generated based on the fuel electrode gas and the air electrode gas is taken out by the via conductors VHf, VHf,... On the anodes AN1 to AN4 side and the via conductors VHa, VHa,.
 なお、この実施例では、燃料電池スタック12をなす直方体の幅方向,奥行き方向および高さ方向に、X軸,Y軸およびZ軸をそれぞれ割り当てる。 In this embodiment, the X axis, the Y axis, and the Z axis are assigned to the width direction, the depth direction, and the height direction of the rectangular parallelepiped forming the fuel cell stack 12, respectively.
 燃料電池セル20aおよび20bの各々にはまた、Z軸方向に燃料極ガスを伝搬させるマニホールドMFf1およびMFf2が形成され、さらにZ軸方向に空気極ガスを伝搬させるマニホールドMFa1およびMFa2が形成される。 In each of the fuel cells 20a and 20b, manifolds MFf1 and MFf2 for propagating the fuel electrode gas in the Z-axis direction are formed, and further, manifolds MFa1 and MFa2 for propagating the air electrode gas in the Z-axis direction are formed.
 Z軸方向から眺めると、マニホールドMFf1およびMFf2は燃料電池セル20aおよび20bの各々の上面中央を基点としてY軸方向に延びる直線上に形成され、マニホールドMFa1およびMFa2は燃料電池セル20aおよび20bの各々の上面中央を基点としてX軸方向に延びる直線上に形成される。 When viewed from the Z-axis direction, the manifolds MFf1 and MFf2 are formed on straight lines extending in the Y-axis direction from the center of the upper surface of each of the fuel cells 20a and 20b, and the manifolds MFa1 and MFa2 are each of the fuel cells 20a and 20b. Is formed on a straight line extending in the X-axis direction with the center of the upper surface of the substrate as the base point.
 より詳しくは、マニホールドMFf1は上面中央よりもY軸方向の正側に配され、マニホールドMFf2は上面中央よりもY軸方向の負側に配される。また、マニホールドMFa1は上面中央よりもX軸方向の正側に配され、マニホールドMFa2は上面中央よりもX軸方向の負側に配される。 More specifically, the manifold MFf1 is arranged on the positive side in the Y-axis direction from the center of the upper surface, and the manifold MFf2 is arranged on the negative side in the Y-axis direction from the center of the upper surface. The manifold MFa1 is arranged on the positive side in the X-axis direction from the center of the upper surface, and the manifold MFa2 is arranged on the negative side in the X-axis direction from the center of the upper surface.
 したがって、アノードAN1~AN4側のビア導体VHf,VHf,…は、マニホールドMFf1,MFf2,MFa1およびMFa2を基準に4分割される。同様に、カソードCT1~CT4側のビア導体VHa,VHa,…も、マニホールドMFf1,MFf2,MFa1およびMFa2を基準に4分割される。 Therefore, the via conductors VHf, VHf,... On the anode AN1 to AN4 side are divided into four parts based on the manifolds MFf1, MFf2, MFa1 and MFa2. Similarly, via conductors VHa, VHa,... On the cathodes CT1 to CT4 side are also divided into four parts based on the manifolds MFf1, MFf2, MFa1, and MFa2.
 図4に示すように、燃料電池セル20aは、セパレータSP1を基材とする空気極側導体層121,セパレータSP2を基材とする空気極層122,電解質ELを基材とする電解質層123,セパレータSP4を基材とする燃料極層124,およびセパレータSP5を基材とする燃料極側導体層125がこの順で積層されてなる。 As shown in FIG. 4, the fuel cell 20a includes an air electrode side conductor layer 121 having a separator SP1 as a base material, an air electrode layer 122 having a separator SP2 as a base material, an electrolyte layer 123 having an electrolyte EL as a base material, The fuel electrode layer 124 having the separator SP4 as a base material and the fuel electrode side conductor layer 125 having the separator SP5 as a base material are laminated in this order.
 なお、セパレータSP2は部分セパレータSP21~SP23によって構成され、セパレータSP4は部分セパレータSP41~SP43によって構成される(詳細は後述)。また、燃料電池セル20aおよび20bは同じ構造を有するため、共通の部材に共通の参照符号を付すことで、燃料電池セル20bの構造に関する説明は省略する。 The separator SP2 is composed of partial separators SP21 to SP23, and the separator SP4 is composed of partial separators SP41 to SP43 (details will be described later). Moreover, since the fuel cells 20a and 20b have the same structure, the description regarding the structure of the fuel cell 20b is abbreviate | omitted by attaching | subjecting a common referential mark to a common member.
 空気極側導体層121をなすセパレータSP1には、上述したビア導体VHa,VHa,…の他に、マニホールドMFf1,MFf2,MFa1およびMFa2の各々をなす2つの貫通孔と、各々がY軸方向に延びてX軸方向に並ぶ4つの空気極ガス流路GRa,GRa,…とが設けられる。貫通孔の数は合計で8つであり、いずれも貫通孔もZ軸方向から眺めて真円をなす。 In addition to the above-described via conductors VHa, VHa,..., The separator SP1 that forms the air electrode side conductor layer 121 includes two through-holes that form the manifolds MFf1, MFf2, MFa1, and MFa2, each in the Y-axis direction. Four air electrode gas flow paths GRa, GRa,... Extending and arranged in the X-axis direction are provided. The total number of through holes is eight, and all of the through holes form a perfect circle when viewed from the Z-axis direction.
 また、4つの空気極ガス流路GRa,GRa,…はいずれも、セパレータSP1の上面に形成される。このうち2つの空気極ガス流路GRa,GRaは、マニホールドMFa1をなす2つの貫通孔とそれぞれ重なる。また、残りの2つの空気極ガス流路GRa,GRaは、マニホールドMFa2をなす2つの貫通孔とそれぞれ重なる。 Also, the four air electrode gas flow paths GRa, GRa,... Are all formed on the upper surface of the separator SP1. Of these, the two air electrode gas flow paths GRa and GRa respectively overlap with two through holes forming the manifold MFa1. The remaining two air electrode gas flow paths GRa and GRa overlap with the two through holes forming the manifold MFa2, respectively.
 ビア導体VHa,VHa,…は、Z軸方向から眺めてこれらの貫通孔および空気極ガス流路GRa,GRa,…を回避する位置に設けられる。また、ビア導体VHa,VHa,…はZ軸方向に延在し、その一方端および他方端はセパレータSP1の上面および下面にそれぞれ露出する。 Via conductors VHa, VHa,... Are provided at positions that avoid these through holes and air electrode gas flow paths GRa, GRa,. Further, the via conductors VHa, VHa,... Extend in the Z-axis direction, and one end and the other end thereof are exposed on the upper surface and the lower surface of the separator SP1, respectively.
 燃料極側導体層125をなすセパレータSP5にも、上述したビア導体VHf,VHf,…の他に、マニホールドMFf1,MFf2,MFa1およびMFa2の各々をなす2つの貫通孔と、各々がX軸方向に延びてY軸方向に並ぶ4つの燃料極ガス流路GRf,GRf,…とが設けられる。貫通孔の数は合計で8つであり、いずれの貫通孔もZ軸方向から眺めて真円をなす。 In addition to the above-described via conductors VHf, VHf,..., The separator SP5 that forms the fuel electrode side conductor layer 125 also has two through-holes that form the manifolds MFf1, MFf2, MFa1, and MFa2, each in the X-axis direction. Four fuel electrode gas passages GRf, GRf,... Extending and arranged in the Y-axis direction are provided. The total number of through holes is eight, and all the through holes form a perfect circle when viewed from the Z-axis direction.
 また、図5に示すように、4つの燃料極ガス流路GRf,GRf,…はいずれも、セパレータSP5の下面に形成される。このうち2つの燃料極ガス流路GRf,GRfは、マニホールドMFf1をなす2つの貫通孔とそれぞれ重なる。また、残りの2つの燃料極ガス流路GRf,GRfは、マニホールドMFf2をなす2つの貫通孔とそれぞれ重なる。 Further, as shown in FIG. 5, all of the four fuel electrode gas flow paths GRf, GRf,... Are formed on the lower surface of the separator SP5. Of these, the two fuel electrode gas flow paths GRf and GRf respectively overlap the two through holes forming the manifold MFf1. The remaining two fuel electrode gas flow paths GRf and GRf overlap with the two through holes forming the manifold MFf2, respectively.
 ビア導体VHf,VHf,…は、Z軸方向から眺めてこれらの貫通孔および燃料極ガス流路GRf,GRf,…を回避する位置に設けられる。また、ビア導体VHf,VHf,…はZ軸方向に延在し、その一方端および他方端はセパレータSP5の上面および下面にそれぞれ露出する。 Via conductors VHf, VHf,... Are provided at positions that avoid these through holes and fuel electrode gas flow paths GRf, GRf,. Further, the via conductors VHf, VHf,... Extend in the Z-axis direction, and one end and the other end thereof are exposed on the upper surface and the lower surface of the separator SP5, respectively.
 図4に示す空気極層122において、部分セパレータSP21~SP23は共通の厚みを有してスティック状に形成される。部分セパレータSP21はX軸方向における正側端部の位置をY軸方向に延び、部分セパレータSP22はX軸方向における中央の位置をY軸方向に延び、部分セパレータSP23はX軸方向における負側端部の位置をY軸方向に延びる。 In the air electrode layer 122 shown in FIG. 4, the partial separators SP21 to SP23 are formed in a stick shape having a common thickness. The partial separator SP21 extends in the Y-axis direction at the position of the positive end in the X-axis direction, the partial separator SP22 extends in the Y-axis direction at the center in the X-axis direction, and the partial separator SP23 is the negative end in the X-axis direction. The position of the part extends in the Y-axis direction.
 部分セパレータSP21の幅は部分セパレータSP23の幅と一致し、部分セパレータSP22の幅は部分セパレータSP21およびSP23の各々の幅のほぼ2倍である。部分セパレータSP22には、マニホールドMFf1およびMFf2をそれぞれなす2つの貫通孔が形成される。いずれの貫通孔もZ軸方向から眺めて長方形をなし、その長辺はY軸方向に延在する。 The width of the partial separator SP21 matches the width of the partial separator SP23, and the width of the partial separator SP22 is approximately twice the width of each of the partial separators SP21 and SP23. The partial separator SP22 is formed with two through holes that form the manifolds MFf1 and MFf2. Each through-hole is rectangular when viewed from the Z-axis direction, and its long side extends in the Y-axis direction.
 部分セパレータSP21およびSP22によって挟まれる領域には、板状の2つのカソードCT1およびCT4がY軸方向に並んで設けられる。また、部分セパレータSP22およびSP23によって挟まれる領域には、板状の2つのカソードCT2およびCT3がY軸方向に並んで設けられる。このとき、カソードCT1およびCT2はY軸方向における正側に配され、カソードCT3およびCT4はY軸方向における負側に配される。 In a region sandwiched between the partial separators SP21 and SP22, two plate-like cathodes CT1 and CT4 are provided side by side in the Y-axis direction. Further, two plate-like cathodes CT2 and CT3 are provided side by side in the Y-axis direction in a region sandwiched between the partial separators SP22 and SP23. At this time, the cathodes CT1 and CT2 are arranged on the positive side in the Y-axis direction, and the cathodes CT3 and CT4 are arranged on the negative side in the Y-axis direction.
 カソードCT1~CT4のいずれも、部分セパレータSP21~SP23の厚みと同じ厚みを有し、かつZ軸方向から眺めて矩形をなす。矩形の各辺はX軸方向またはY軸方向に延在し、Y軸方向に延びる辺の長さは部分セパレータSP21~SP23の各々の長さの1/2を下回る。また、Y軸方向の正側を向く側面は、カソードCT1,CT2,部分セパレータSP21~SP23の間で面一となる。同様に、Y軸方向の負側を向く側面は、カソードCT3,CT4,部分セパレータSP21~SP23の間で面一となる。 All of the cathodes CT1 to CT4 have the same thickness as that of the partial separators SP21 to SP23 and are rectangular when viewed from the Z-axis direction. Each side of the rectangle extends in the X-axis direction or the Y-axis direction, and the length of the side extending in the Y-axis direction is less than ½ of the length of each of the partial separators SP21 to SP23. Further, the side surface facing the positive side in the Y-axis direction is flush with the cathodes CT1, CT2 and the partial separators SP21 to SP23. Similarly, the side surface facing the negative side in the Y-axis direction is flush with the cathodes CT3, CT4 and the partial separators SP21 to SP23.
 したがって、カソードCT1およびCT4の間にはZ軸方向から眺めて長方形をなす貫通孔が形成され、カソードCT2およびCT3の間にもZ軸方向から眺めて長方形をなす貫通孔が形成される。いずれの長方形についても、長辺はX軸に沿って延び、短辺はY軸に沿って延びる。こうして形成された2つの貫通孔が、マニホールドMFa1およびMFa2をそれぞれなす。 Therefore, a rectangular through-hole is formed between the cathodes CT1 and CT4 as viewed from the Z-axis direction, and a rectangular through-hole is also formed between the cathodes CT2 and CT3 as viewed from the Z-axis direction. For any rectangle, the long side extends along the X axis and the short side extends along the Y axis. The two through holes formed in this way form manifolds MFa1 and MFa2.
 燃料極層124において、部分セパレータSP41~SP43は共通の厚みを有してスティック状に形成される。部分セパレータSP41はY軸方向における正側端部の位置をX軸方向に延び、部分セパレータSP42はY軸方向における中央の位置をX軸方向に延び、部分セパレータSP43はY軸方向における負側端部の位置をX軸方向に延びる。 In the fuel electrode layer 124, the partial separators SP41 to SP43 have a common thickness and are formed in a stick shape. The partial separator SP41 extends in the X-axis direction at the position of the positive end in the Y-axis direction, the partial separator SP42 extends in the X-axis direction at the center in the Y-axis direction, and the partial separator SP43 is the negative end in the Y-axis direction. The position of the part extends in the X-axis direction.
 部分セパレータSP41の幅は部分セパレータSP43の幅と一致し、部分セパレータSP42の幅は部分セパレータSP41およびSP43の各々の幅のほぼ2倍である。部分セパレータSP42には、マニホールドMFa1およびMFa2をそれぞれなす2つの貫通孔が形成される。いずれの貫通孔もZ軸方向から眺めて長方形をなし、その長辺はX軸方向に延在する。 The width of the partial separator SP41 matches the width of the partial separator SP43, and the width of the partial separator SP42 is approximately twice the width of each of the partial separators SP41 and SP43. The partial separator SP42 is formed with two through holes that form the manifolds MFa1 and MFa2. Each through-hole is rectangular when viewed from the Z-axis direction, and its long side extends in the X-axis direction.
 部分セパレータSP41およびSP42によって挟まれる領域には、板状の2つのアノードAN1およびAN2がX軸方向に並んで設けられる。また、部分セパレータSP42およびSP43によって挟まれる領域には、板状の2つのアノードAN3およびAN4がX軸方向に並んで設けられる。このとき、アノードAN1およびAN4はX軸方向における正側に配され、アノードAN2およびAN3はX軸方向における負側に配される。 In a region sandwiched between the partial separators SP41 and SP42, two plate-like anodes AN1 and AN2 are provided side by side in the X-axis direction. Further, two plate-like anodes AN3 and AN4 are provided side by side in the X-axis direction in a region sandwiched between the partial separators SP42 and SP43. At this time, the anodes AN1 and AN4 are arranged on the positive side in the X-axis direction, and the anodes AN2 and AN3 are arranged on the negative side in the X-axis direction.
 アノードAN1~AN4のいずれも、部分セパレータSP41~SP43の厚みと同じ厚みを有し、かつZ軸方向から眺めて矩形をなす。矩形の各辺はX軸方向またはY軸方向に延在し、X軸方向に延びる辺の長さは部分セパレータSP41~SP43の各々の長さの1/2を下回る。また、X軸方向の正側を向く側面は、アノードAN1,AN4,部分セパレータSP41~SP43の間で面一となる。同様に、X軸方向の負側を向く側面は、アノードAN3,AN4,部分セパレータSP41~SP43の間で面一となる。 All of the anodes AN1 to AN4 have the same thickness as that of the partial separators SP41 to SP43 and are rectangular when viewed from the Z-axis direction. Each side of the rectangle extends in the X-axis direction or the Y-axis direction, and the length of the side extending in the X-axis direction is less than ½ of the length of each of the partial separators SP41 to SP43. Further, the side surface facing the positive side in the X-axis direction is flush with the anodes AN1, AN4 and the partial separators SP41 to SP43. Similarly, the side surface facing the negative side in the X-axis direction is flush with the anodes AN3 and AN4 and the partial separators SP41 to SP43.
 したがって、アノードAN1およびAN2の間にはZ軸方向から眺めて長方形をなす貫通孔が形成され、アノードAN3およびAN4の間にもZ軸方向から眺めて長方形をなす貫通孔が形成される。いずれの長方形についても、長辺はY軸に沿って延び、短辺はX軸に沿って延びる。こうして形成された2つの貫通孔がマニホールドMFf1およびMFf2をそれぞれなす。 Therefore, a rectangular through-hole is formed between the anodes AN1 and AN2 as viewed from the Z-axis direction, and a rectangular through-hole is also formed between the anodes AN3 and AN4 as viewed from the Z-axis direction. In any rectangle, the long side extends along the Y axis, and the short side extends along the X axis. The two through holes formed in this way form manifolds MFf1 and MFf2.
 電解質層123は、マニホールドMFf1,MFf2,MFa1,MFa2をそれぞれなす4つの貫通孔を電解質ELに形成してなる。いずれの貫通孔も、Z軸方向から眺めて長方形をなす。ただし、マニホールドMFf1およびMFf2の各々をなす長方形の長辺はY軸に沿って延びる一方、マニホールドMFa1およびMFa2の各々をなす長方形の長辺はX軸に沿って延びる。空気極層122に設けられたカソードCT1~CT4の上面は電解質層123の下面に接し、燃料極層124に設けられたアノードAN1~AN4の下面は電解質層123の上面に接する。 The electrolyte layer 123 is formed by forming, in the electrolyte EL, four through holes that respectively form manifolds MFf1, MFf2, MFa1, and MFa2. All the through holes are rectangular when viewed from the Z-axis direction. However, the long side of the rectangle forming each of the manifolds MFf1 and MFf2 extends along the Y axis, while the long side of the rectangle forming each of the manifolds MFa1 and MFa2 extends along the X axis. The upper surfaces of the cathodes CT1 to CT4 provided on the air electrode layer 122 are in contact with the lower surface of the electrolyte layer 123, and the lower surfaces of the anodes AN1 to AN4 provided on the fuel electrode layer 124 are in contact with the upper surface of the electrolyte layer 123.
 図2に戻って、集電層16aは、4つの小集電板161a~164aと単一のスペーサ18aとによって形成される。小集電板161a~164aの各々は、燃料電池セル20aおよび20bの熱応力を緩和する金属を材料とし、短冊状の金属部材をU字状に折ってなる。U字状に折られた状態で、小集電板161a~164aの各々の上面または下面の面積は、燃料電池セル20aの上面または下面の面積の1/4をやや下回る。また、小集電板161a~164aの厚みは互いに一致する。 Referring back to FIG. 2, the current collecting layer 16a is formed by four small current collecting plates 161a to 164a and a single spacer 18a. Each of the small current collectors 161a to 164a is made of a metal that relaxes the thermal stress of the fuel cells 20a and 20b, and is formed by folding a strip-shaped metal member into a U shape. In the state of being folded in a U shape, the area of the upper surface or the lower surface of each of the small current collectors 161a to 164a is slightly less than ¼ of the area of the upper surface or the lower surface of the fuel cell 20a. Further, the thicknesses of the small current collectors 161a to 164a coincide with each other.
 小集電板161aは、その下面がビア導体VHf,VHf,…の一部と対向するように、燃料電池セル20aの上面のX軸方向正側でかつY軸方向正側の位置に配される。小集電板162aは、その下面がビア導体VHf,VHf,…の他の一部と対向するように、燃料電池セル20aの上面のX軸方向負側でかつY軸方向正側の位置に配される。 The small current collecting plate 161a is arranged at a position on the X axis direction positive side and the Y axis direction positive side of the upper surface of the fuel cell 20a so that the lower surface thereof faces a part of the via conductors VHf, VHf,. The The small current collecting plate 162a is positioned at the X axis direction negative side and the Y axis direction positive side of the upper surface of the fuel cell 20a so that the lower surface of the small current collecting plate 162a faces another part of the via conductors VHf, VHf,. Arranged.
 小集電板163aは、その下面がビア導体VHf,VHf,…のその他の一部と対向するように、燃料電池セル20aの上面のX軸方向負側でかつY軸方向負側の位置に配される。小集電板164aは、その下面がビア導体VHf,VHf,…のさらにその他の一部と対向するように、燃料電池セル20aの上面のX軸方向正側でかつY軸方向負側の位置に配される。 The small current collecting plate 163a is positioned at the X axis direction negative side and the Y axis direction negative side of the upper surface of the fuel cell 20a so that the lower surface of the small current collecting plate 163a faces the other part of the via conductors VHf, VHf,. Arranged. The small current collector plate 164a is positioned on the X axis direction positive side and the Y axis direction negative side of the upper surface of the fuel cell 20a so that the lower surface of the small current collector plate 164a faces the other part of the via conductors VHf, VHf,. Arranged.
 これによって、小集電板161a~164aはビア導体VHf,VHf,…と電気的に接続される。 Thus, the small current collectors 161a to 164a are electrically connected to the via conductors VHf, VHf,.
 スペーサ18aは、小集電板161a~164aの厚みと同じ厚みを有して、小集電板161a~164aが欠落する位置に配される。小集電板161a~164aが上述のように配されることから、スペーサ18aの各々の上面または下面は十字をなす。なお、スペーサ18aの厚みは、必ずしも小集電板161a~164aの厚みと同じでなくてもよい。厚みの相違は、導電性材料やシール材によって調整できるためである。 The spacer 18a has the same thickness as the small current collecting plates 161a to 164a, and is disposed at a position where the small current collecting plates 161a to 164a are missing. Since the small current collectors 161a to 164a are arranged as described above, the upper surface or the lower surface of each spacer 18a forms a cross. Note that the thickness of the spacer 18a is not necessarily the same as the thickness of the small current collectors 161a to 164a. This is because the difference in thickness can be adjusted by a conductive material or a sealing material.
 また、図3に示す集電層16bは、4つの小集電板161b~164bと単一のスペーサ18bとによって形成される。小集電板161b~164bの各々も、燃料電池セル20aおよび20bの熱応力を緩和する金属を材料とし、短冊状の金属部材をU字状に折ってなる。U字状に折られた状態で、小集電板161b~164bの各々の上面または下面の面積は、燃料電池セル20bの上面または下面の面積の1/4をやや下回る。また、小集電板161b~164bの厚みは互いに一致する。 Further, the current collecting layer 16b shown in FIG. 3 is formed by four small current collecting plates 161b to 164b and a single spacer 18b. Each of the small current collecting plates 161b to 164b is made of a metal that relaxes the thermal stress of the fuel cells 20a and 20b, and a strip-shaped metal member is folded in a U shape. In the state of being folded in a U shape, the area of the upper surface or the lower surface of each of the small current collectors 161b to 164b is slightly less than ¼ of the area of the upper surface or the lower surface of the fuel cell 20b. Further, the thicknesses of the small current collectors 161b to 164b coincide with each other.
 小集電板161bは、その上面がビア導体VHa,VHa,…の一部と対向するように、燃料電池セル20bの下面のX軸方向正側でかつY軸方向正側の位置に配される。小集電板162bは、その上面がビア導体VHa,VHa,…の他の一部と対向するように、燃料電池セル20bの下面のX軸方向負側でかつY軸方向正側の位置に配される。 The small current collecting plate 161b is arranged at a position on the X axis direction positive side and the Y axis direction positive side of the lower surface of the fuel cell 20b so that the upper surface thereof faces a part of the via conductors VHa, VHa,. The The small current collecting plate 162b is positioned at the X-axis direction negative side and the Y-axis direction positive side of the lower surface of the fuel cell 20b so that the upper surface of the small current collecting plate 162b faces the other part of the via conductors VHa, VHa,. Arranged.
 小集電板163bは、その上面がビア導体VHa,VHa,…のその他の一部と対向するように、燃料電池セル20bの下面のX軸方向負側でかつY軸方向負側の位置に配される。小集電板164bは、その上面がビア導体VHa,VHa,…のさらにその他の一部と対向するように、燃料電池セル20bの下面のX軸方向正側でかつY軸方向負側の位置に配される。 The small current collecting plate 163b is positioned at the X axis direction negative side and the Y axis direction negative side of the lower surface of the fuel cell 20b so that the upper surface of the small current collecting plate 163b faces the other part of the via conductors VHa, VHa,. Arranged. The small current collector plate 164b is positioned on the X axis direction positive side and the Y axis direction negative side of the lower surface of the fuel cell 20b so that the upper surface of the small current collector plate 164b faces the other part of the via conductors VHa, VHa,. Arranged.
 これによって、小集電板161b~164bはビア導体VHa,VHa,…と電気的に接続される。 Thus, the small current collectors 161b to 164b are electrically connected to the via conductors VHa, VHa,.
 スペーサ18bは、小集電板161b~164bの厚みと同じ厚みを有して、小集電板161b~164bが欠落する位置に配される。小集電板161b~164bが上述のように配されることから、スペーサ18bの各々の上面または下面は十字をなす。 The spacer 18b has the same thickness as the small current collecting plates 161b to 164b, and is disposed at a position where the small current collecting plates 161b to 164b are missing. Since the small current collectors 161b to 164b are arranged as described above, the upper surface or the lower surface of each spacer 18b forms a cross.
 また、スペーサ18bについては、マニホールドMFf1,MFf2,MFa1およびMFa2をそれぞれなす4つの貫通孔が形成される。いずれの貫通孔もZ軸方向から眺めて長方形をなす。ただし、マニホールドMFf1およびMFf2の各々をなす長方形の長辺はY軸に沿って延びる一方、マニホールドMFa1およびMFa2の各々をなす長方形の長辺はX軸に沿って延びる。 Further, with respect to the spacer 18b, four through holes that form the manifolds MFf1, MFf2, MFa1, and MFa2 are formed. Each through hole is rectangular when viewed from the Z-axis direction. However, the long side of the rectangle forming each of the manifolds MFf1 and MFf2 extends along the Y axis, while the long side of the rectangle forming each of the manifolds MFa1 and MFa2 extends along the X axis.
 図2に示す固定板14aの上面または下面は燃料電池スタック12の上面の面積とほぼ一致する面積を有し、図3に示す固定板14bの上面または下面は燃料電池スタック12の下面の面積とほぼ一致する面積を有する。 2 has an area that substantially matches the area of the upper surface of the fuel cell stack 12, and the upper surface or lower surface of the fixing plate 14b shown in FIG. 3 has an area of the lower surface of the fuel cell stack 12. It has almost the same area.
 固定板14aは、その下面の一部が集電層16aの上面と対向するように集電層16aの上面に配される。固定板14bは、その上面の一部が集電層16bの下面と対向するように集電層16bの下面に配される。ここで、固定板14aおよび14bの各々の側面は、燃料電池スタック12の側面に対して面一となる(ただし、面一であることは必須ではない)。 The fixing plate 14a is disposed on the upper surface of the current collecting layer 16a so that a part of the lower surface thereof faces the upper surface of the current collecting layer 16a. The fixing plate 14b is disposed on the lower surface of the current collecting layer 16b so that a part of the upper surface thereof faces the lower surface of the current collecting layer 16b. Here, the side surfaces of the fixing plates 14a and 14b are flush with the side surface of the fuel cell stack 12 (however, it is not essential that they be flush).
 また、固定板14bについては、マニホールドMFf1,MFf2,MFa1およびMFa2の各々をなす2つの貫通孔が設けられる。貫通孔の数は合計で8つであり、いずれも貫通孔もZ軸方向から眺めて真円をなす。 Further, two through holes forming each of the manifolds MFf1, MFf2, MFa1 and MFa2 are provided for the fixing plate 14b. The total number of through holes is eight, and all of the through holes form a perfect circle when viewed from the Z-axis direction.
 燃料電池セル20aおよび20bの間に設けられた導電層22は、燃料電池セル20aおよび20bから取り出された電流を集電層16aおよび16bに伝送する。 The conductive layer 22 provided between the fuel cells 20a and 20b transmits the current extracted from the fuel cells 20a and 20b to the current collecting layers 16a and 16b.
 導電層22もまた、4つの小導電板221~224と単一のスペーサ24とによって形成される。小導電板221~224の各々もまた、燃料電池セル20aおよび20bの熱応力を緩和する金属を材料とし、短冊状の金属部材をU字状に折ってなる。U字状に折られた状態で、小導電板221~224の各々の上面または下面の面積は、燃料電池セル20a,20bの上面または下面の面積の1/4をやや下回る。また、小導電板221~224の厚みは互いに一致する。 The conductive layer 22 is also formed by four small conductive plates 221 to 224 and a single spacer 24. Each of the small conductive plates 221 to 224 is made of a metal that relaxes the thermal stress of the fuel cells 20a and 20b, and a strip-shaped metal member is folded in a U shape. In the state of being folded in a U shape, the area of the upper surface or the lower surface of each of the small conductive plates 221 to 224 is slightly less than 1/4 of the area of the upper surface or the lower surface of the fuel cells 20a, 20b. Further, the thicknesses of the small conductive plates 221 to 224 coincide with each other.
 小導電板221は、その上面がビア導体VHa,VHa,…の一部と対向しかつその下面がビア導体VHf,VHf,…の一部と対向するように、燃料電池セル20aおよび20bの間のX軸方向正側でかつY軸方向正側の位置に配される。小導電板222は、その上面がビア導体VHa,VHa,…の他の一部と対向しかつその下面がビア導体VHf,VHf,…の他の一部と対向するように、燃料電池セル20aおよび20bの間のX軸方向負側でかつY軸方向正側の位置に配される。 The small conductive plate 221 has a top surface facing a part of the via conductors VHa, VHa,... And a bottom surface facing a part of the via conductors VHf, VHf,. Are arranged on the X axis direction positive side and the Y axis direction positive side. The small conductive plate 222 has an upper surface facing another part of the via conductors VHa, VHa,... And a lower surface facing the other part of the via conductors VHf, VHf,. And 20b between the X axis direction negative side and the Y axis direction positive side.
 小導電板223は、その上面がビア導体VHa,VHa,…のその他の一部と対向しかつその下面がビア導体VHf,VHf,…のその他の一部と対向するように、燃料電池セル20aおよび20bの間のX軸方向負側でかつY軸方向負側の位置に配される。小導電板224は、その上面がビア導体VHa,VHa,…のさらにその他の一部と対向しかつその下面がビア導体VHf,VHf,…のさらにその他の一部と対向するように、燃料電池セル20aおよび20bの間のX軸方向正側でかつY軸方向負側の位置に配される。 The small conductive plate 223 has an upper surface facing the other part of the via conductors VHa, VHa,... And a lower surface facing the other part of the via conductors VHf, VHf,. And 20b between the X axis direction negative side and the Y axis direction negative side. The small conductive plate 224 has a top surface facing another part of the via conductors VHa, VHa,... And a bottom surface facing another part of the via conductors VHf, VHf,. It is arranged at a position between the cells 20a and 20b on the X axis direction positive side and the Y axis direction negative side.
 燃料電池セル20aに設けられたビア導体VHa,VHa,…は、こうして配された小導電板221~224を介して、燃料電池セル20bに設けられたビア導体VHf,VHf,…と電気的に接続される。 Via conductors VHa, VHa,... Provided in the fuel cell 20a are electrically connected to via conductors VHf, VHf,... Provided in the fuel cell 20b via the small conductive plates 221 to 224 thus arranged. Connected.
 スペーサ24は、小導電板221~224の厚みと同じ厚みを有して、小導電板221~224が欠落する位置に配される。小導電板221~224が上述のように配されることから、スペーサ24の各々の上面または下面は十字をなす。 The spacer 24 has the same thickness as the small conductive plates 221 to 224, and is disposed at a position where the small conductive plates 221 to 224 are missing. Since the small conductive plates 221 to 224 are arranged as described above, the upper surface or the lower surface of each spacer 24 forms a cross.
 スペーサ24にはまた、マニホールドMFf1,MFf2,MFa1およびMFa2をそれぞれなす4つの貫通孔が形成される。いずれの貫通孔もZ軸方向から眺めて長方形をなす。ただし、マニホールドMFf1およびMFf2の各々をなす長方形の長辺はY軸に沿って延びる一方、マニホールドMFa1およびMFa2の各々をなす長方形の長辺はX軸に沿って延びる。 The spacer 24 is also formed with four through holes that form the manifolds MFf1, MFf2, MFa1, and MFa2. Each through hole is rectangular when viewed from the Z-axis direction. However, the long side of the rectangle forming each of the manifolds MFf1 and MFf2 extends along the Y axis, while the long side of the rectangle forming each of the manifolds MFa1 and MFa2 extends along the X axis.
 図6を参照して、燃料電池セル20aの上面と小集電板161a~164aの下面との間には、ペースト状の導電性接合材26が配される。燃料電池セル20bの下面と小集電板161b~164bの上面との間にも、ペースト状の導電性接合材26が配される。導電性接合材26を焼結すると、ビア導体VHa,VHa,…が小集電板161a~164aと接合され、ビア導体VHf,VHf,…が小集電板161b~164bと接合される。 Referring to FIG. 6, a paste-like conductive bonding material 26 is disposed between the upper surface of the fuel cell 20a and the lower surfaces of the small current collectors 161a to 164a. A paste-like conductive bonding material 26 is also disposed between the lower surface of the fuel cell 20b and the upper surfaces of the small current collectors 161b to 164b. When the conductive bonding material 26 is sintered, the via conductors VHa, VHa,... Are joined to the small current collectors 161a to 164a, and the via conductors VHf, VHf,... Are joined to the small current collectors 161b to 164b.
 燃料電池セル20aと小集電板161a~164aとの間に生じた微小な隙間、或いは燃料電池セル20bと小集電板161b~164bとの間に生じた微小な隙間は、導電性接合材26によって埋められる。 The minute gap generated between the fuel battery cell 20a and the small current collector plates 161a to 164a or the minute gap generated between the fuel battery cell 20b and the small current collector plates 161b to 164b is a conductive bonding material. 26.
 また、燃料電池セル20aの上面およびスペーサ18aの下面の間、ならびにスペーサ18aの上面および固定板14aの下面の間には、結晶化ガラス製のシール材28が配される。シール材28は、燃料電池セル20bの下面およびスペーサ18bの上面の間、ならびにスペーサ18bの下面および固定板14bの上面の間にも配される。この結果、固定板14aはスペーサ18aを介して燃料電池セル20aに固着され、固定板14bはスペーサ18bを介して燃料電池セル20bに固着される。 Also, a sealing material 28 made of crystallized glass is disposed between the upper surface of the fuel cell 20a and the lower surface of the spacer 18a, and between the upper surface of the spacer 18a and the lower surface of the fixing plate 14a. The sealing material 28 is also disposed between the lower surface of the fuel battery cell 20b and the upper surface of the spacer 18b, and between the lower surface of the spacer 18b and the upper surface of the fixing plate 14b. As a result, the fixing plate 14a is fixed to the fuel cell 20a via the spacer 18a, and the fixing plate 14b is fixed to the fuel cell 20b via the spacer 18b.
 さらに、燃料電池セル20aの下面と小導電板221~224の上面との間には、ペースト状の導電性接合材26が配される。燃料電池セル20bの上面と小導電板221~224の下面との間にも、導電性接合材26が配される。導電性接合材26を焼結すると、ビア導体VHf,VHf,…,VHa,VHa,…が小導電板221~224と接合される。小導電板221~224と燃料電池セル20aおよび20bの各々との間に生じた微小な隙間は、導電性接合材26によって埋められる。 Further, a paste-like conductive bonding material 26 is disposed between the lower surface of the fuel cell 20a and the upper surfaces of the small conductive plates 221 to 224. A conductive bonding material 26 is also disposed between the upper surface of the fuel cell 20b and the lower surfaces of the small conductive plates 221 to 224. When the conductive bonding material 26 is sintered, the via conductors VHf, VHf, ..., VHa, VHa, ... are bonded to the small conductive plates 221 to 224. Small gaps generated between the small conductive plates 221 to 224 and each of the fuel cells 20a and 20b are filled with the conductive bonding material 26.
 また、燃料電池セル20aの下面およびスペーサ24の上面の間にはシール材28が配され、燃料電池セル20bの上面およびスペーサ24の下面の間にもシール材28が配される。この結果、燃料電池セル20aおよび20bは、スペーサ24を介して互いに固着される。 Also, a sealing material 28 is disposed between the lower surface of the fuel cell 20a and the upper surface of the spacer 24, and the sealing material 28 is also disposed between the upper surface of the fuel cell 20b and the lower surface of the spacer 24. As a result, the fuel cells 20 a and 20 b are fixed to each other via the spacer 24.
 マニホールドMFa1およびMFa2を流れた空気極ガスは、空気極ガス流路GRa,GRa,…を経て燃料電池スタック12の外部に排出される。また、マニホールドMFf1およびMFf2を流れた燃料極ガスは、燃料極ガス流路GRf,GRf,…を経て燃料電池スタック12の外部に排出される。 The air electrode gas flowing through the manifolds MFa1 and MFa2 is discharged to the outside of the fuel cell stack 12 through the air electrode gas flow paths GRa, GRa,. Further, the fuel electrode gas flowing through the manifolds MFf1 and MFf2 is discharged to the outside of the fuel cell stack 12 via the fuel electrode gas flow paths GRf, GRf,.
 空気極ガスは、マニホールドMFa12,MFa22および空気極ガス流路GRa,GRa,…を流れるときに、カソードCT1~CT4と接触する。また、燃料極ガスは、マニホールドMFf14,MFf24および燃料極ガス流路GRf,GRf,…を流れるときに、アノードAN1~AN4と接触する。空気極ガスおよび燃料極ガスには化学式1および2に従う化学反応が生じ、この結果、プラス電圧およびマイナス電圧が電解質ELの両面に現れる。
[化1]
1/2O+2e→O2-
[化2]
+O2-→HO+2e
When the air electrode gas flows through the manifolds MFa12, MFa22 and the air electrode gas flow paths GRa, GRa,..., The air electrode gas contacts the cathodes CT1 to CT4. Further, the fuel electrode gas contacts the anodes AN1 to AN4 when flowing through the manifolds MFf14, MFf24 and the fuel electrode gas flow paths GRf, GRf,. The air electrode gas and the fuel electrode gas undergo a chemical reaction according to the chemical formulas 1 and 2, and as a result, a positive voltage and a negative voltage appear on both surfaces of the electrolyte EL.
[Chemical 1]
1 / 2O 2 + 2e → O 2−
[Chemical 2]
H 2 + O 2− → H 2 O + 2e
 空気極ガスおよび燃料極ガスの一部は、化学反応を起こすことなく、燃料電池セル20aおよび20bの外部に排出される。空気極ガスは空気極ガス流路GRa,GRa,…を経て排出され、燃料極ガスは燃料極ガス流路GRf,GRf,…を経て排出される。排出された空気極ガスおよび燃料極ガスは互いに反応して熱を発生し、これによって熱自立が図られる。 A part of the air electrode gas and the fuel electrode gas is discharged outside the fuel cells 20a and 20b without causing a chemical reaction. The air electrode gas is discharged through the air electrode gas flow paths GRa, GRa,..., And the fuel electrode gas is discharged through the fuel electrode gas flow paths GRf, GRf,. The discharged air electrode gas and fuel electrode gas react with each other to generate heat, thereby achieving heat independence.
 導電性接合材26としては、導電性セラミックスである(La0.8Sr0.2)0.95MnO3(以下、「LSM」と言う。)が採用される。採用理由としては、セル最表面に設けられる導電パッド(図示省略)の材料がLSMであること、燃料電池ユニット10が曝される高温の空気中でLSMが安定的であること、過去の採用実績が多いことなどが挙げられる。 As the conductive bonding material 26, conductive ceramic (La0.8Sr0.2) 0.95MnO3 (hereinafter referred to as "LSM") is employed. The reason for the adoption is that the material of the conductive pad (not shown) provided on the outermost surface of the cell is LSM, that the LSM is stable in high-temperature air to which the fuel cell unit 10 is exposed, and past adoption results. There are many cases.
 また、導電性接合材26は、粒度分布が大小2種類の粉末を混合したものとされる。こうすることで、焼結時のネック形成においては、小さい径をもつ粉体からの表面拡散が支配的となり、大きい径をもつ粉末はその場から動かない。つまり、収縮率を抑えることができ、小集電板161a~164a,161b~164b,小導電板221~224や燃料電池セル20a,20bへの焼付性、ならびに発電動作時の密着性が向上する。 Also, the conductive bonding material 26 is a mixture of two types of powders having a large and small particle size distribution. In this way, in the neck formation during sintering, surface diffusion from the powder having a small diameter becomes dominant, and the powder having a large diameter does not move from the spot. That is, the shrinkage rate can be suppressed, and the seizure property to the small current collecting plates 161a to 164a, 161b to 164b, the small conductive plates 221 to 224 and the fuel cells 20a and 20b, and the adhesion during power generation operation are improved. .
 導電性接合材26にはさらに、造孔材としてカーボンが混合された。カーボンを加えることで、焼結時のLSMの収縮が抑制され、小集電板161a~164a,161b~164b,小導電板221~224や燃料電池セル20a,20bへの焼付性、ならびに発電動作時の密着性がさらに向上する。 The conductive bonding material 26 was further mixed with carbon as a pore former. By adding carbon, shrinkage of the LSM during sintering is suppressed, and the small current collectors 161a to 164a, 161b to 164b, the small conductive plates 221 to 224, the seizure to the fuel cells 20a and 20b, and the power generation operation The adhesion at the time is further improved.
 小集電板161a~164a,161b~164b,小導電板221~224の各々は、独VDM社製のCrofer22APU(商品名)を材料とする。この材料は、燃料電池セル20a,20bと熱膨張係数が近いフェライト系ステンレスをベースとした組成を有し、さらに微量元素を添加することで高い耐酸化性を示す。 Each of the small current collectors 161a to 164a, 161b to 164b, and the small conductive plates 221 to 224 is made of Crofer22APU (trade name) manufactured by VDM. This material has a composition based on ferritic stainless steel having a thermal expansion coefficient close to that of the fuel cells 20a and 20b, and exhibits high oxidation resistance by adding a trace element.
 このような材料の金属板にメッシュ加工を施してメッシュ状の金属部材を作製し、これを短冊状に切り出してU字状に折ることで、小集電板161a~164a,161b~164b,小導電板221~224の各々が得られる。メッシュの寸法は、線径φ0.2mm,50meshに合わせられる。メッシュのように容易に変形可能な構造を採用することで、燃料電池セル20a,20b,固定板14a,14bをコンプレッション機構なしに電気的に接続することができる。さらに、ヒートサイクルや発電サイクルなどによる燃料電池セル20a,20bの変形にも追従することができる。 A metal plate made of such a material is meshed to produce a mesh-like metal member, which is cut into a strip shape and folded into a U-shape, whereby the small current collector plates 161a to 164a, 161b to 164b, Each of the conductive plates 221 to 224 is obtained. The size of the mesh is adjusted to a wire diameter of φ0.2 mm and 50 mesh. By adopting a structure that can be easily deformed like a mesh, the fuel cells 20a, 20b and the fixing plates 14a, 14b can be electrically connected without a compression mechanism. Furthermore, it is possible to follow the deformation of the fuel cells 20a and 20b due to a heat cycle or a power generation cycle.
 また、小集電板161a~164a,161b~164b,小導電板221~224の各々の表面はNiCoメッキによるコーティングを施され、かつ予め熱処理される。NiCoメッキは、酸化によってNiCoスピネルとなる。 Further, the surfaces of the small current collecting plates 161a to 164a, 161b to 164b, and the small conductive plates 221 to 224 are coated with NiCo plating and heat-treated in advance. NiCo plating becomes NiCo spinel by oxidation.
 ペースト状の導電性接合材26は、このような表面に塗布することでメッシュ内に含浸する。この状態で乾燥して焼成すると、焼結時にLSM-NiCo間で元素の相互拡散が起きる。これによって、燃料電池セル20a,20bとの接合強度ひいては接続信頼性が向上する。 The paste-like conductive bonding material 26 is impregnated in the mesh by applying to such a surface. When dried and fired in this state, interdiffusion of elements occurs between LSM and NiCo during sintering. As a result, the bonding strength with the fuel cells 20a and 20b and thus the connection reliability is improved.
 なお、耐熱性に優れるPt、Pd、Ag、Au,Ru、Rh、Ni、Fe、Crの少なくとも1つを小集電板161a~164a,161b~164b,小導電板221~224の材料に含有させるようにすれば、燃料電池ユニット10の動作環境下で小集電板161a~164a,161b~164b,小導電板221~224が安定する。同時に、これらの材料は高い導電率を示すため、燃料電池セル20a,20b間の電気抵抗を小さくすることができ、燃料電池スタック12の特性を高めることができる。 In addition, at least one of Pt, Pd, Ag, Au, Ru, Rh, Ni, Fe, and Cr having excellent heat resistance is contained in the materials of the small current collectors 161a to 164a, 161b to 164b, and the small conductive plates 221 to 224 By doing so, the small current collecting plates 161a to 164a, 161b to 164b and the small conductive plates 221 to 224 are stabilized under the operating environment of the fuel cell unit 10. At the same time, since these materials exhibit high electrical conductivity, the electrical resistance between the fuel cells 20a and 20b can be reduced, and the characteristics of the fuel cell stack 12 can be enhanced.
 なお、燃料電池セルのスタック数を増やす場合は、図7~図9に示す均熱導電層30を導電層22の代わりに挿入する必要がある。理由は、発電時の発熱に起因して燃料電池セルにクラックが生じる可能性があるからである。ただし、全ての導電層22,22,…を均熱導電層30に置換する必要はなく、たとえば5つの導電層22,22,…に1つの割合で均熱導電層30に置換すればよい。 When the number of fuel cell stacks is increased, it is necessary to insert the soaking conductive layer 30 shown in FIGS. 7 to 9 instead of the conductive layer 22. The reason is that cracks may occur in the fuel cell due to heat generation during power generation. However, it is not necessary to replace all the conductive layers 22, 22,... With the soaking conductive layer 30. For example, the soaking conductive layer 30 may be replaced with one of the five conductive layers 22, 22,.
 図7~図9を参照して、均熱導電層30は、4つの小導電板301~304と、4つの小均熱板321~324と、2つのスペーサ34a~34bとによって形成される。 7 to 9, the soaking conductive layer 30 is formed by four small conductive plates 301 to 304, four small soaking plates 321 to 324, and two spacers 34a to 34b.
 小導電板301~304の各々もまた、均熱導電層30を挟む2つの燃料電池セルの熱応力を緩和する金属を材料とし、短冊状の金属部材をU字状に折ってなる。U字状に折られた状態で、小導電板301~304の各々の上面または下面の面積は、各燃料電池セルの上面または下面の面積の1/4をやや下回る。また、小導電板301~304の厚みは互いに一致する。ただし、この厚みは、小導電板221~224の厚みを上回る。 Each of the small conductive plates 301 to 304 is made of a metal that relaxes the thermal stress of the two fuel cells sandwiching the soaking conductive layer 30, and a strip-shaped metal member is folded in a U shape. When folded in a U shape, the area of the upper surface or lower surface of each of the small conductive plates 301 to 304 is slightly less than ¼ of the area of the upper surface or lower surface of each fuel cell. Further, the thicknesses of the small conductive plates 301 to 304 coincide with each other. However, this thickness exceeds the thickness of the small conductive plates 221 to 224.
 小導電板301は、2つの燃料電池セルの間のX軸方向正側でかつY軸方向正側の位置に配される。小導電板302は、2つの燃料電池セルの間のX軸方向負側でかつY軸方向正側の位置に配される。小導電板303は、2つの燃料電池セルの間のX軸方向負側でかつY軸方向負側の位置に配される。小導電板304は、2つの燃料電池セルの間のX軸方向正側でかつY軸方向負側の位置に配される。 The small conductive plate 301 is disposed at a position on the positive side in the X-axis direction and on the positive side in the Y-axis direction between the two fuel cells. The small conductive plate 302 is disposed between the two fuel cells in the position on the X axis direction negative side and the Y axis direction positive side. The small conductive plate 303 is disposed at a position on the negative side in the X-axis direction and on the negative side in the Y-axis direction between the two fuel cells. The small conductive plate 304 is disposed between the two fuel cells in a position on the positive side in the X-axis direction and on the negative side in the Y-axis direction.
 小導電板301~304の上面は、上側の燃料電池セルのビア導体VHa,VHa,…と対向し、小導電板301~304の下面は、下側の燃料電池セルのビア導体VHf,VHf,…と対向する。上側の燃料電池セルに設けられたビア導体VHa,VHa,…は、こうして配された小導電板301~304を介して、下側の燃料電池セルに設けられたビア導体VHf,VHf,…と電気的に接続される。 The upper surfaces of the small conductive plates 301 to 304 face the via conductors VHa, VHa,... Of the upper fuel cell, and the lower surfaces of the small conductive plates 301 to 304 have via conductors VHf, VHf,. Opposite…. Via conductors VHa, VHa,... Provided in the upper fuel cell are connected to via conductors VHf, VHf,... Provided in the lower fuel cell via the small conductive plates 301 to 304 thus arranged. Electrically connected.
 小均熱板321~324の各々は、小導電板301~304の上面または下面の面積よりもやや下回る範囲で共通の面積を有する。小均熱板321は、小導電板301の折り目を谷とする小導電板301の内側の空間に挿入される。小均熱板322は、小導電板302の折り目を谷とする小導電板302の内側の空間に挿入される。小均熱板323は、小導電板303の折り目を谷とする小導電板303の内側の空間に挿入される。小均熱板324は、小導電板304の折り目を谷とする小導電板304の内側の空間に挿入される。 Each of the small soaking plates 321 to 324 has a common area in a range slightly below the area of the upper surface or the lower surface of the small conductive plates 301 to 304. The small heat soaking plate 321 is inserted into the space inside the small conductive plate 301 with the fold of the small conductive plate 301 as a valley. The small uniform heat plate 322 is inserted into a space inside the small conductive plate 302 where the fold of the small conductive plate 302 is a valley. The small uniform heat plate 323 is inserted into the space inside the small conductive plate 303 with the fold of the small conductive plate 303 as a valley. The small soaking plate 324 is inserted into the space inside the small conductive plate 304 with the fold of the small conductive plate 304 as a valley.
 スペーサ34aおよび34bの各々は、小導電板301~304の厚みのほぼ1/2の厚みを有して、小導電板301~304が欠落する位置に配される。スペーサ34aはZ軸方向における正側の位置に配され、スペーサ34bはZ軸方向における負側の位置に配される。小導電板301~304が上述のように配されることから、スペーサ34aおよび34bのいずれについても、その上面または下面は十字をなす。なお、スペーサ34aおよび34bの各々の厚みは、必ずしも小導電板301~304の厚みのほぼ1/2でなくてもよい。 Each of the spacers 34a and 34b has a thickness approximately half of the thickness of the small conductive plates 301 to 304, and is disposed at a position where the small conductive plates 301 to 304 are missing. The spacer 34a is disposed at a positive position in the Z-axis direction, and the spacer 34b is disposed at a negative position in the Z-axis direction. Since the small conductive plates 301 to 304 are arranged as described above, the upper surface or the lower surface of each of the spacers 34a and 34b forms a cross. The thickness of each of the spacers 34a and 34b does not necessarily have to be approximately ½ of the thickness of the small conductive plates 301 to 304.
 スペーサ34aおよび34bの各々にはまた、マニホールドMFf1,MFf2,MFa1およびMFa2をそれぞれなす4つの貫通孔が形成される。いずれの貫通孔もZ軸方向から眺めて長方形をなす。ただし、マニホールドMFf1およびMFf2の各々をなす長方形の長辺はY軸に沿って延びる一方、マニホールドMFa1およびMFa2の各々をなす長方形の長辺はX軸に沿って延びる。 Each of the spacers 34a and 34b is also formed with four through holes that form manifolds MFf1, MFf2, MFa1 and MFa2, respectively. Each through hole is rectangular when viewed from the Z-axis direction. However, the long side of the rectangle forming each of the manifolds MFf1 and MFf2 extends along the Y axis, while the long side of the rectangle forming each of the manifolds MFa1 and MFa2 extends along the X axis.
 図10を参照して、上側の燃料電池セルをなす空気極側導体層121の下面と小導電板301~304の上面との間には、ペースト状の導電性接合材26が配される。下側の燃料電池セルをなす燃料極側導体層125の上面と小導電板301~304の下面との間にも、導電性接合材26が配される。導電性接合材26を焼結すると、ビア導体VHf,VHf,…,VHa,VHa,…が小導電板301~304と接合される。小導電板301~304と空気極側導体層121および燃料極側導体層125の各々との間に生じた微小な隙間は、導電性接合材26によって埋められる。 Referring to FIG. 10, paste-like conductive bonding material 26 is disposed between the lower surface of air electrode side conductor layer 121 forming the upper fuel battery cell and the upper surfaces of small conductive plates 301-304. The conductive bonding material 26 is also disposed between the upper surface of the fuel electrode side conductor layer 125 forming the lower fuel cell and the lower surfaces of the small conductive plates 301 to 304. When the conductive bonding material 26 is sintered, the via conductors VHf, VHf, ..., VHa, VHa, ... are bonded to the small conductive plates 301-304. A minute gap generated between the small conductive plates 301 to 304 and each of the air electrode side conductor layer 121 and the fuel electrode side conductor layer 125 is filled with the conductive bonding material 26.
 また、空気極側導体層121の下面とスペーサ34aの上面との間、スペーサ34aの下面とスペーサ34bの上面との間、およびスペーサ34bの下面と空気極側導体層121の上面との間には、シール材28が配される。この結果、均熱導電層30を挟む2つの燃料電池セルは、スペーサ34aおよび34bを介して互いに固着される。 Further, between the lower surface of the air electrode side conductor layer 121 and the upper surface of the spacer 34a, between the lower surface of the spacer 34a and the upper surface of the spacer 34b, and between the lower surface of the spacer 34b and the upper surface of the air electrode side conductor layer 121. Is provided with a sealing material 28. As a result, the two fuel cells sandwiching the soaking conductive layer 30 are fixed to each other via the spacers 34a and 34b.
 小均熱板321~324の材料としては、日立金属株式会社製のZMG232G10が用いられる。これは、上述したCrofer22APUとほぼ同等の組成、性質を有する。
[第2実施例]
ZMG232G10 manufactured by Hitachi Metals, Ltd. is used as the material for the small heat plates 321 to 324. This has almost the same composition and properties as the above-mentioned Crofer22APU.
[Second Embodiment]
 第2実施例の燃料電池ユニットは、小集電板および小導電板の各々に対するコーティングが省略される点を除き、第1実施例の燃料電池ユニット10と同じであるため、小集電板および小導電板以外の構成に関する重複した説明は省略する。 The fuel cell unit of the second embodiment is the same as the fuel cell unit 10 of the first embodiment except that the coating on each of the small current collector plate and the small conductive plate is omitted. A duplicate description of the configuration other than the small conductive plate is omitted.
 小集電板および小導電板の各々も、独VDM社製のCrofer22APUを材料とし、メッシュ加工によって作製される。メッシュのように容易に変形可能な構造を採用することで、燃料電池セルおよび固定板をコンプレッション機構なしに電気的に接続することができる。さらに、ヒートサイクルや発電サイクルなどによる燃料電池セルの変形にも追従することができる。
[第3実施例]
Each of the small current collector plate and the small conductive plate is also made by mesh processing using Crofer22APU made by VDM, Germany. By adopting a structure that can be easily deformed, such as a mesh, the fuel cell and the fixing plate can be electrically connected without a compression mechanism. Furthermore, it is possible to follow the deformation of the fuel cell due to the heat cycle or the power generation cycle.
[Third embodiment]
 第3実施例の燃料電池ユニットは、小集電板および小導電板の各々が日立金属株式会社製のZMG232G10にエキスパンド加工(網加工)を施すことによって作製され、かつ小集電板および小導電板の各々に対するコーティングが省略される点を除き、第1実施例の燃料電池ユニット10と同じであるため、小集電板および小導電板以外の構成に関する重複した説明は省略する。 In the fuel cell unit of the third embodiment, each of the small current collector plate and the small conductive plate is produced by subjecting ZMG232G10 manufactured by Hitachi Metals to expansion processing (network processing), and the small current collector plate and small conductive plate. Except for the point that coating of each of the plates is omitted, the fuel cell unit 10 is the same as the fuel cell unit 10 of the first embodiment.
 エキスパンドメタルのように容易に変形可能な構造を採用することで、燃料電池セルおよび固定板をコンプレッション機構なしに電気的に接続することができる。さらに、ヒートサイクルや発電サイクルなどによる燃料電池セルの変形にも追従することができる。
[第4実施例]
By adopting an easily deformable structure such as expanded metal, the fuel cell and the fixing plate can be electrically connected without a compression mechanism. Furthermore, it is possible to follow the deformation of the fuel cell due to the heat cycle or the power generation cycle.
[Fourth embodiment]
 第4実施例の燃料電池ユニットは、小集電板および小導電板の各々が独VDM社製のCrofer22APU(板厚:0.2mm)にエキスパンド加工(網加工)を施すことによって作製されるとともに、小集電板および小導電板の各々の表面がNiCoメッキまたはMnCo溶射によるコーティングを施され、かつ予め熱処理される点を除き、第1実施例の燃料電池ユニット10と同じであるため、小集電板および小導電板以外の構成に関する重複した説明は省略する。 In the fuel cell unit of the fourth embodiment, each of the small current collector plate and the small conductive plate is produced by subjecting Crofer22APU (plate thickness: 0.2 mm) manufactured by VDM to expand processing (network processing). The surface of each of the small current collector plate and the small conductive plate is the same as that of the fuel cell unit 10 of the first embodiment except that the surface of each of the small current collector plate and the small conductive plate is coated with NiCo plating or MnCo spraying and is preheated. A duplicate description of the configuration other than the current collector plate and the small conductive plate is omitted.
 NiCoメッキまたはMnCo溶射によるコーティングと熱処理とを行うことで、NiCoスピネルまたはMnCoスピネルが生成される。ペースト状の導電性接合材26は、このような表面に塗布することでエキスパンドメタル内に含浸する。この状態で乾燥して焼成すると、焼結時にLSM-MnCo間またはLSM-NiCo間で元素の相互拡散が起きる。これによって、燃料電池セルとの接合強度ひいては接続信頼性が向上する。
[第5実施例]
NiCo spinel or MnCo spinel is produced by performing coating and heat treatment by NiCo plating or MnCo spraying. The paste-like conductive bonding material 26 is impregnated in the expanded metal by being applied to such a surface. When dried and fired in this state, interdiffusion of elements occurs between LSM and MnCo or between LSM and NiCo during sintering. As a result, the bonding strength with respect to the fuel cell and thus the connection reliability is improved.
[Fifth embodiment]
 第5実施例の燃料電池ユニットは、小集電板および小導電板の各々が日立金属株式会社製のZMG232G10にエキスパンド加工(網加工)を施すことによって作製されるとともに、小集電板および小導電板の各々の表面がLSM溶射によるコーティングを施され、かつ予め熱処理される点を除き、第1実施例の燃料電池ユニット10と同じであるため、小集電板および小導電板以外の構成に関する重複した説明は省略する。 In the fuel cell unit of the fifth embodiment, each of the small current collector plate and the small conductive plate is produced by subjecting ZMG232G10 manufactured by Hitachi Metals to expansion processing (network processing). Since each surface of the conductive plate is the same as the fuel cell unit 10 of the first embodiment except that the surface of each of the conductive plates is coated with LSM spraying and heat-treated in advance, the configuration other than the small current collector plate and the small conductive plate The duplicate description about is omitted.
 コーティングの材料を導電性接合材の材料に合わせることで、小集電板および小導電板の各々と導電性接合材との接合強度の向上が期待できる。
[第1実施例ないし第5実施例の引張試験結果]
By matching the material of the coating with the material of the conductive bonding material, an improvement in the bonding strength between each of the small current collector plate and the small conductive plate and the conductive bonding material can be expected.
[Tensile test results of first to fifth embodiments]
 参考までに、第1実施例ないし第5実施例の引張試験の結果を図11に示す。図11によれば、第4実施例のうちNiCoメッキを施したものの密着強度が最も大きく、平均で40N以上であった。また、第1実施例でも、平均で25N以上の密着強度を示した。 For reference, FIG. 11 shows the results of the tensile tests of the first to fifth examples. According to FIG. 11, the adhesion strength of the NiCo plated member in the fourth example was the highest, and the average was 40 N or more. Also, in the first example, an adhesion strength of 25 N or more was shown on average.
 第4実施例のうちMnCo溶射を施したものの密着強度は、第4実施例のうちNiCoメッキを施したものの密着強度よりも弱いが、平均で20N以上の密着強度を確認した。ただし、燃料電池セル/スタックとの熱膨張係数差による応力で発生する変形にこの接合部が耐えるために必要な密着強度は、1N以下であると推測される。このため、第1実施例ないし第5実施例のいずれも十分に強い密着強度を有すると考えられる。 The adhesion strength of MnCo sprayed in the fourth example was weaker than the adhesion strength of NiCo plated in the fourth example, but an average adhesion strength of 20 N or more was confirmed. However, it is presumed that the adhesion strength required for the joint to withstand deformation caused by stress due to the difference in thermal expansion coefficient with the fuel cell / stack is 1 N or less. For this reason, it is considered that all of the first to fifth examples have sufficiently strong adhesion strength.
 なお、上述した複数の実施例の構成は、矛盾しない範囲で適宜組み合わせることができることは言うまでもない。 Needless to say, the configurations of the above-described embodiments can be appropriately combined within a consistent range.
 また、上述の実施例では、導電性接合材の材料としてLSMが採用される。しかし、導電性接合材は、LaSrCoO3、LaSrCoFeO3、MnCoO3、SmSrCoO3、LaCaMnO3、LaCaCoO3、LaCaCoFeO3、LaNiFeO3、または(LaSr)2NiO4を基本材料としてもよい。 In the above-described embodiment, LSM is adopted as a material for the conductive bonding material. However, the conductive bonding material may include LaSrCoO 3, LaSrCoFeO 3, MnCoO 3, SmSrCoO 3, LaCaMnO 3, LaCaCoO 3, LaCaCoFeO 3, LaNiFeO 3, or (LaSr) 2 NiO 4.
 さらに、上述の実施例では、小集電板および小導電板をなす金属部材は、金属製の板材にメッシュ加工またはエキスパンド加工を施して作製される。しかし、メッシュ加工またはエキスパンド加工の代わりにパンチング加工またはエンボス加工を採用してもよく、さらには金属部材に発泡性や多孔質形状を持たせてもよい。 Furthermore, in the above-described embodiment, the metal member forming the small current collector plate and the small conductive plate is produced by applying mesh processing or expanding processing to a metal plate material. However, punching or embossing may be employed instead of meshing or expanding, and the metal member may be foamed or porous.
 また、上述の実施例では、コーティングの材料として、NiCoまたはMnCoからなる合金またはその酸化物を含むものを想定しているが、NiCoまたはMnCoにはFeなどの微量添加物を加えるようにしてもよい。 In the above-described embodiments, it is assumed that the coating material includes an alloy made of NiCo or MnCo or an oxide thereof, but a trace additive such as Fe may be added to NiCo or MnCo. Good.
 10 …燃料電池ユニット
 12 …燃料電池スタック
 16a,16b …集電層
 20a,20b …燃料電池セル
 22 …導電層
 26 …導電性接合材
 122 …空気極層
 123 …固電解質層
 124 …燃料極層
 VHf,VHa …ビア導体(表面電極)
 MFf1,MFf2,MFa1,MFa2 …マニホールド
DESCRIPTION OF SYMBOLS 10 ... Fuel cell unit 12 ... Fuel cell stack 16a, 16b ... Current collection layer 20a, 20b ... Fuel cell 22 ... Conductive layer 26 ... Conductive joining material 122 ... Air electrode layer 123 ... Solid electrolyte layer 124 ... Fuel electrode layer VHf , VHa ... Via conductor (surface electrode)
MFf1, MFf2, MFa1, MFa2 ... manifold

Claims (11)

  1.  積層方向を向く一方主面および他方主面に設けられた表面電極を有する複数の燃料電池セルを備える固体酸化物形の燃料電池ユニットであって、
     前記積層方向から眺めて前記表面電極と重なる位置であって、前記燃料電池セルの間に設けられ、前記複数の燃料電池セルの熱応力を緩和する金属部材、および
     前記金属部材を前記表面電極と電気的に接続する導電性接合材を備える、燃料電池ユニット。
    A solid oxide fuel cell unit comprising a plurality of fuel cells having surface electrodes provided on one main surface and the other main surface facing the stacking direction,
    A metal member that is positioned between the fuel cells as viewed from the stacking direction and that is provided between the fuel cells and that relieves thermal stress of the plurality of fuel cells, and the metal member as the surface electrode A fuel cell unit comprising a conductive bonding material for electrical connection.
  2.  前記導電性接合材は導電性セラミックスを材料とし、前記金属部材は前記導電性セラミックスの焼結によって前記表面電極と電気的に接続される、請求項1記載の燃料電池ユニット。 2. The fuel cell unit according to claim 1, wherein the conductive bonding material is made of conductive ceramics, and the metal member is electrically connected to the surface electrode by sintering the conductive ceramics.
  3.  前記導電性接合材は、LaSrCoO3、LaSrCoFeO3、MnCoO3、SmSrCoO3、LaCaMnO3、LaCaCoO3、LaCaCoFeO3、LaNiFeO3、または(LaSr)2NiO4を基本材料とする、請求項1または2記載の燃料電池ユニット。 3. The fuel cell unit according to claim 1, wherein the conductive bonding material is made of LaSrCoO3, LaSrCoFeO3, MnCoO3, SmSrCoO3, LaCaMnO3, LaCaCoO3, LaCaCoFeO3, LaNiFeO3, or (LaSr) 2NiO4.
  4.  前記導電性接合材は粒径の異なる複数種類の粉末で構成される、請求項1ないし3のいずれかに記載の燃料電池ユニット。 The fuel cell unit according to any one of claims 1 to 3, wherein the conductive bonding material is composed of a plurality of types of powders having different particle sizes.
  5.  前記導電性接合材は焼結によって消失する造孔材を含む、請求項1ないし4のいずれかに記載の燃料電池ユニット。 The fuel cell unit according to any one of claims 1 to 4, wherein the conductive bonding material includes a pore former that disappears by sintering.
  6.  前記金属部材は、金属製の板材にメッシュ加工、パンチング加工、エキスパンド加工、またはエンボス加工を施して作製された部材である、請求項1ないし5のいずれかに記載の燃料電池ユニット。 The fuel cell unit according to any one of claims 1 to 5, wherein the metal member is a member made by performing mesh processing, punching processing, expanding processing, or embossing processing on a metal plate material.
  7.  前記金属部材の材料は、Pt、Pd、Ag、Au,Ru、Rh、Ni、Fe、Crの少なくとも1つを含む、請求項1ないし6のいずれかに記載の燃料電池ユニット。 The fuel cell unit according to any one of claims 1 to 6, wherein a material of the metal member includes at least one of Pt, Pd, Ag, Au, Ru, Rh, Ni, Fe, and Cr.
  8.  前記金属部材は、前記導電性接合材を構成する元素と界面で相互拡散する元素を含む材料によってコーティングを施された耐酸化性の表面を有する、請求項1ないし7のいずれかに記載の燃料電池ユニット。 The fuel according to any one of claims 1 to 7, wherein the metal member has an oxidation-resistant surface coated with a material containing an element constituting the conductive bonding material and an element that interdiffuses at an interface. Battery unit.
  9.  前記コーティングの材料はNiCoまたはMnCoからなる合金またはその酸化物を含む、請求項8記載の燃料電池ユニット。 The fuel cell unit according to claim 8, wherein the coating material includes an alloy made of NiCo or MnCo or an oxide thereof.
  10.  前記コーティングの材料は前記導電性接合材の材料と一致する、請求項8記載の燃料電池ユニット。 The fuel cell unit according to claim 8, wherein a material of the coating matches a material of the conductive bonding material.
  11.  前記燃料電池セル内に発生する熱を分散するべく前記金属部材を介して前記燃料電池間に挟持される均熱板をさらに備える、請求項1ないし10のいずれかに記載の燃料電池ユニット。 The fuel cell unit according to any one of claims 1 to 10, further comprising a soaking plate sandwiched between the fuel cells through the metal member so as to disperse heat generated in the fuel cell.
PCT/JP2016/055319 2015-03-02 2016-02-24 Fuel cell unit WO2016140111A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015040077 2015-03-02
JP2015-040077 2015-03-02

Publications (1)

Publication Number Publication Date
WO2016140111A1 true WO2016140111A1 (en) 2016-09-09

Family

ID=56848121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055319 WO2016140111A1 (en) 2015-03-02 2016-02-24 Fuel cell unit

Country Status (1)

Country Link
WO (1) WO2016140111A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022471A (en) * 2019-07-26 2021-02-18 森村Sofcテクノロジー株式会社 Electrochemical reaction cell stack
JP2021026924A (en) * 2019-08-07 2021-02-22 マグネクス株式会社 Current collector made of uneven metal mesh

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012453A (en) * 2004-06-22 2006-01-12 Nissan Motor Co Ltd Solid oxide fuel cell stack and solid oxide fuel cell
WO2012086541A1 (en) * 2010-12-20 2012-06-28 日本碍子株式会社 Solid oxide fuel cell
JP2014146556A (en) * 2013-01-30 2014-08-14 Kyocera Corp Cell stack device and fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012453A (en) * 2004-06-22 2006-01-12 Nissan Motor Co Ltd Solid oxide fuel cell stack and solid oxide fuel cell
WO2012086541A1 (en) * 2010-12-20 2012-06-28 日本碍子株式会社 Solid oxide fuel cell
JP2014146556A (en) * 2013-01-30 2014-08-14 Kyocera Corp Cell stack device and fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022471A (en) * 2019-07-26 2021-02-18 森村Sofcテクノロジー株式会社 Electrochemical reaction cell stack
JP2021026924A (en) * 2019-08-07 2021-02-22 マグネクス株式会社 Current collector made of uneven metal mesh

Similar Documents

Publication Publication Date Title
JP4960593B2 (en) Electrochemical battery stack assembly
JP5072305B2 (en) Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell
JP5189405B2 (en) Method for producing solid oxide fuel cell
US8652709B2 (en) Method of sealing a bipolar plate supported solid oxide fuel cell with a sealed anode compartment
JP5093833B2 (en) Single cell for fuel cell
JP4146738B2 (en) Fuel cell, cell stack and fuel cell
JP4666279B2 (en) Solid oxide fuel cell stack and solid oxide fuel cell
WO2016140111A1 (en) Fuel cell unit
JP5026017B2 (en) Flat type solid oxide fuel cell separator
JP2012084508A (en) Fuel battery and method for manufacturing the same
JP2004273213A (en) Unit cell for fuel cells, its manufacturing method, and solid oxide fuel cell
KR102114627B1 (en) Fuel cell power generation unit and fuel cell stack
JP6756549B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP5177847B2 (en) Electrochemical equipment
JP6982582B2 (en) Electrochemical reaction cell stack
JP6867852B2 (en) Current collector-electrochemical reaction single cell complex and battery chemical reaction cell stack
JP2021044178A (en) Electrochemical reaction cell stack
JP2016039004A (en) Fuel battery
JP7104129B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP7288928B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP7465849B2 (en) Electrochemical reaction single cells and electrochemical reaction cell stacks
JP7073441B2 (en) Electrochemical reaction Single cell manufacturing method
JP6917398B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP4373365B2 (en) Flat type solid oxide fuel cell stack
JP2019029302A (en) Separator and fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16758805

Country of ref document: EP

Kind code of ref document: A1