WO2016139825A1 - 回転圧縮機 - Google Patents

回転圧縮機 Download PDF

Info

Publication number
WO2016139825A1
WO2016139825A1 PCT/JP2015/071272 JP2015071272W WO2016139825A1 WO 2016139825 A1 WO2016139825 A1 WO 2016139825A1 JP 2015071272 W JP2015071272 W JP 2015071272W WO 2016139825 A1 WO2016139825 A1 WO 2016139825A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankshaft
shaft
rotary compressor
oil supply
bearing
Prior art date
Application number
PCT/JP2015/071272
Other languages
English (en)
French (fr)
Inventor
佐藤 幸一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201510781657.0A priority Critical patent/CN105937493A/zh
Priority to CN201520907477.8U priority patent/CN205172942U/zh
Publication of WO2016139825A1 publication Critical patent/WO2016139825A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/603Shafts with internal channels for fluid distribution, e.g. hollow shaft

Definitions

  • the present invention relates to a rotary compressor that is used in a refrigeration cycle of a refrigerating and air-conditioning apparatus such as an air conditioner or a refrigerator and compresses refrigerant gas.
  • the value obtained by subtracting the eccentric amount of the eccentric part from the radius of the main shaft or the sub-shaft is the same as or larger than the radius of the eccentric part. Need to be. If the value obtained by subtracting the eccentric amount of the eccentric portion from the radius of the main shaft or sub shaft is smaller than the radius of the eccentric portion, pass the main shaft or sub shaft and fit the piston into the eccentric portion. When trying to insert, the outer diameter of the eccentric part and the inner diameter of the piston interfere and cannot be fitted.
  • the outer diameter of the sub-shaft needs to be reduced accordingly due to the restrictions when assembling the piston as described above. If the outer diameter of the countershaft with the oiling hole inside is reduced, the rigidity of the subshaft decreases and the amount of flexure of the subshaft increases due to the gas load when compressing the refrigerant gas in the compression chamber. The situation worsens, and the shaft and the bearing may seize during operation of the compressor, and the operation of the compressor may be stopped and cannot be restarted.
  • the cylinder height is lowered, and the height of the piston that seals the high pressure side and the low pressure side of the compression chamber is also lowered, so that the refrigerant gas on the high pressure side It is possible to prevent leakage to the low pressure side through the gap, and improve efficiency deterioration due to a decrease in the weight flow rate of the refrigerant gas to be sucked.
  • the present invention is for solving the above-mentioned problems, while maintaining the reliability that does not cause bearing seizure, increasing the displacement volume of the compressor or improving the efficiency of the compressor with the same displacement volume,
  • An object of the present invention is to provide a rotary compressor that can achieve high output and high efficiency.
  • the rotary compressor of the present invention includes an electric motor having a rotor, a crankshaft rotated by the rotor, and a compression mechanism unit driven by the crankshaft, and the crankshaft is attached to the rotor. It has a main shaft to be fixed and a sub shaft provided in the axial direction of the main shaft, and an oil supply hole for oil supply is formed inside the shaft, the outer diameter of the sub shaft is ⁇ D, and the diameter of the oil supply hole is ⁇ d In this case, ⁇ d / ⁇ D is set to 0.7 or less.
  • ⁇ d / ⁇ D is set to 0.7 or less, so that the rigidity of the auxiliary shaft is improved and compression is performed.
  • the amount of bending of the countershaft due to the gas load when the refrigerant gas is compressed in the chamber is reduced, and the lubrication condition of the bearing is not deteriorated and the shaft and the bearing are not seized during operation of the compressor. Therefore, it is possible to increase the displacement volume of the compressor or improve the efficiency of the compressor with the same displacement volume while maintaining the reliability that does not cause the seizure of the bearing, thereby achieving higher output and higher efficiency.
  • FIG. 1 is a schematic configuration diagram showing a rotary compressor 100 according to Embodiment 1 of the present invention.
  • a vertical rotary electric hermetic compressor is shown as an example.
  • the rotary compressor 100 is used in a refrigeration cycle such as an air conditioner.
  • a rotary compressor 100 has a compression mechanism portion 3 that compresses a refrigerant in a sealed container 1 in a high-pressure atmosphere at a lower portion, and an electric motor (motor portion) 2 that drives the compression mechanism portion 3 at an upper portion.
  • the electric motor 2 includes a stator 2a and a rotor 2b, and is configured to rotate a crankshaft 4 that is a rotating shaft fixed to the rotor 2b, and the compression mechanism unit 3 is driven by the crankshaft 4. Yes.
  • the crankshaft 4 includes a main shaft 4a fixed to the rotor 2b of the electric motor 2, a sub shaft 4b provided in the axial direction of the main shaft 4a, and an eccentric portion 4c formed between the main shaft 4a and the sub shaft 4b. Have. An oil supply hole 4 d is formed in the crankshaft 4. The refrigerating machine oil 13 stored in the lower part in the sealed container 1 is supplied to the oil supply hole 4d.
  • a compression chamber (not shown) of the compression mechanism 3 includes a rolling piston 8 and a vane 9 provided in the cylinder 7, a main bearing 5 that is a bearing on the upper end surface of the cylinder 7, and a secondary bearing that is a bearing on the lower end surface. It is formed by being sandwiched and closed by the bearing 6.
  • the cylinder 7 has a cylindrical inner space, and a rolling piston 8 that is rotatably fitted to the eccentric portion 4 c of the crankshaft 4 is disposed in the inner space, and is fixed to the inner peripheral portion of the sealed container 1.
  • the main bearing 5 has a bearing portion 5 a that supports the main shaft 4 a of the crankshaft 4 and an end plate portion 5 b that closes the end surface of the cylinder 7.
  • the bearing portion 5a of the main bearing 5 is fitted to the main shaft 4a of the crankshaft 4 with a clearance for sliding, and rotatably supports the main shaft 4a.
  • the auxiliary bearing 6 has a bearing portion 6 a that supports the auxiliary shaft 4 b of the crankshaft 4 and an end plate portion 6 b that closes the end surface on the opposite side of the cylinder 7.
  • the bearing portion 6a of the auxiliary bearing 6 is fitted to the auxiliary shaft 4b of the crankshaft 4 with a clearance for sliding, and rotatably supports the auxiliary shaft 4b.
  • an eccentric portion 4c provided on the crankshaft 4 is accommodated, and a rolling piston 8 is rotatably mounted on the eccentric portion 4c.
  • a vane 9 is provided to press the tip of the rolling piston 8 with a spring (not shown) or the like, and partitions the inside of the compression mechanism section 3 from the suction chamber (not shown) and the compression chamber.
  • the crankshaft 4 is rotated by the electric motor 2, the eccentric portion 4c rotates eccentrically in the cylinder 7, and the suction and compression of the refrigerant gas are repeated.
  • the compression stroke the low-pressure refrigerant gas sucked into the suction chamber of the compression mechanism unit 3 is compressed by gradually reducing the volume of the compression chamber as the rolling piston 8 rotates, and becomes high-pressure refrigerant gas. .
  • an accumulator 12 is provided adjacent to the sealed container 1.
  • the suction connection pipe 10 connects the cylinder 7 and the accumulator 12.
  • the refrigerant gas compressed by the rolling piston 8 and the vane 9 fitted into the eccentric portion 4c of the crankshaft 4 that rotates eccentrically by the rotation of the crankshaft 4 in the cylinder 7 is discharged to the hermetic container 1, and the discharge pipe 11 To the refrigeration cycle of the refrigeration air conditioner.
  • FIG. 2 is a side view showing the crankshaft 4 according to Embodiment 1 of the present invention.
  • the crankshaft 4 is an eccentric formed between a main shaft 4a fixed to the rotor 2b of the electric motor 2, a sub shaft 4b provided on the opposite side of the main shaft 4a in the axial direction, and the main shaft 4a and the sub shaft 4b. It has a portion 4 c and an oil supply hole 4 d formed in the crankshaft 4.
  • the oil supply hole 4d is formed as a concentric hollow interior in the sub shaft 4b so that the sub shaft 4b is cylindrical.
  • the oil supply hole 4d opens at the end surface of the sub shaft 4b.
  • the longitudinal elastic modulus of the material of the crankshaft 4 may be 15000 to 22000 N / mm 2 .
  • the main shaft is used to fit the piston in the eccentric portion.
  • the value obtained by subtracting the eccentric amount of the eccentric portion with respect to the radius of the sub shaft needs to be the same as or larger than the radius of the eccentric portion.
  • the value obtained by subtracting the eccentric amount of the eccentric part from the outer diameter of the auxiliary shaft with respect to the radius of the auxiliary shaft is the same as or larger than the radius of the eccentric part. The outer diameter had to be reduced, leading to a reduction in crankshaft rigidity.
  • the rigidity of the crankshaft 4 can be increased by setting the ratio ⁇ d / ⁇ D of the outer diameter ⁇ D of the auxiliary shaft 4b of the crankshaft 4 and the diameter ⁇ d of the oil supply hole 4d to 0.7 or less. it can.
  • FIG. 3 is a diagram showing ⁇ d / ⁇ D of the rotary compressor 100 according to Embodiment 1 of the present invention and the possibility of burn-in. As shown in FIG. 3, it was confirmed by experiment whether or not the value of ⁇ d / ⁇ D was changed and burn-in was reached. When ⁇ d / ⁇ D was greater than 0.7, surface roughness due to abrasion of the sliding surface, which was a sign of seizure, was observed. In the range where ⁇ d / ⁇ D was 0.7 or less, although wear was recognized, it was in a smooth wear state and did not cause seizure.
  • FIG. 4 is a cross-sectional view showing the oil supply hole 4d in the crankshaft 4 and the oil level during operation in the auxiliary shaft 4b of the crankshaft 4 according to Embodiment 1 of the present invention.
  • the oil supply hole 4d provided in the crankshaft 4 has a centrifugal structure, and a plate is fitted therein, and the refrigerating machine oil 13 is rotated together with the rotation of the crankshaft 4 so that a reverse parabolic shape is formed inside the crankshaft 4.
  • a (concave shape) oil surface shape is created, and the refrigerating machine oil 13 retained in the rotary compressor 100 is supplied to the compression mechanism unit 3 via an oil supply path provided in the crankshaft 4.
  • the refrigerant sucked and compressed by the rotary compressor 100 is a gas of a compressive fluid.
  • the rotary compressor 100 is started up or when it is operated at a low ambient temperature, the rotary compressor is operated from the refrigeration cycle side. In some cases, an incompressible fluid liquid refrigerant is drawn into the compressor.
  • the main shaft 4a and the sub shaft 4b have substantially the same outer shape.
  • the outer diameter ⁇ D of the sub shaft 4b is made thinner than the outer shape of the main shaft 4a, and the rolling piston 8 is connected to the sub shaft 4b. You may make it attach to the eccentric part 4c through the axis
  • ⁇ d / ⁇ D is 0.7 or less.
  • the rigidity of 4b is improved, the amount of bending of the auxiliary shaft 4b due to the gas load when compressing the refrigerant gas in the compression chamber is reduced, and the lubrication state of the main bearing 5 and the auxiliary bearing 6 is not deteriorated, and the crankshaft 4 and the main bearing 5 And the auxiliary bearing 6 is not seized during the compressor operation.
  • the displacement of the refrigerant of the rotary compressor 100 is increased, or the efficiency of the rotary compressor 100 is improved with the same displacement. High output and high efficiency can be achieved.
  • the diameter of the oil supply hole 4d is set to 8 mm or more, in addition to the above-described effect of not seizing, the diameter of the oil supply hole 4d is large and the rotational circumferential speed of the refrigerating machine oil 13 is increased, so that a sufficient reverse parabolic shape is obtained.
  • the oil level 50 can be lifted up to the height of the oil supply hole 4d, and the lubrication condition of the main bearing 5 and the sub bearing 6 is improved. Therefore, while maintaining the reliability that the seizure of the main bearing 5 and the sub bearing 6 does not occur, the displacement of the refrigerant of the rotary compressor 100 is increased, or the efficiency of the rotary compressor 100 is improved with the same displacement. High output and high efficiency can be achieved. Moreover, what can fully supply oil to the compression mechanism part 3 of the refrigerator oil 13 is obtained.
  • the rolling piston 8 can be easily mounted on the eccentric portion 4c, and the eccentric amount is increased.
  • the displacement volume of the refrigerant can be increased or the efficiency of the rotary compressor 100 can be improved while maintaining the same displacement volume, and higher output and higher efficiency can be achieved.
  • the rolling piston 8 since the rolling piston 8 is inserted into the eccentric portion 4c through the countershaft 4b of the crankshaft 4, the rolling piston 8 can be easily attached to the eccentric portion 4c, and the amount of eccentricity is increased. Further, the displacement of the refrigerant in the rotary compressor 100 can be increased or the efficiency of the rotary compressor 100 can be improved while maintaining the same displacement volume, thereby achieving higher output and higher efficiency.
  • the ratio ⁇ d / ⁇ D which is the ratio of the outer diameter ⁇ D of the auxiliary shaft 4b of the crankshaft 4 and the diameter ⁇ d of the oil supply hole 4d inside the crankshaft 4, is 0.7 or less.
  • the above-described non-burn-in effect is more effective when compressing a liquid refrigerant that is an incompressible fluid.
  • the longitudinal elastic modulus of the crankshaft 4 is 15000 to 22000 N / mm 2 , wear of the main bearing 5 and the auxiliary bearing 6 can be prevented.
  • FIG. FIG. 5 is a refrigerant circuit diagram showing an example of a refrigeration cycle apparatus 200 to which the rotary compressor 100 according to Embodiment 2 of the present invention is applied.
  • a refrigeration cycle apparatus 200 shown in FIG. 5 forms a refrigeration cycle circuit in which a rotary compressor 100, a condenser 201, an expansion valve 202, and an evaporator 203 are connected by refrigerant piping. Then, the refrigerant that has flowed out of the evaporator 203 is sucked into the rotary compressor 100 and compressed to become high temperature and high pressure. The refrigerant that has become high temperature and high pressure is condensed in the condenser 201 to become a liquid.
  • the refrigerant that has become liquid is decompressed and expanded by the expansion valve 202 to become a low-temperature and low-pressure gas-liquid two-phase, and the refrigerant in the gas-liquid two-phase state is heat-exchanged by the evaporator 203.
  • the rotary compressor 100 can be applied to the refrigeration cycle apparatus 200 as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 軸受の焼き付きが生じない信頼性を維持したまま、圧縮機の押しのけ容積を増大させあるいは同一押しのけ容積のまま圧縮機の効率を向上させ、高出力化、高効率化を可能とする回転圧縮機を提供する。回転子を有する電動機と、回転子により回転されるクランク軸と、クランク軸により駆動される圧縮機構部と、を備え、クランク軸は、回転子に固定される主軸と主軸の軸方向に設けられる副軸とを有し、軸内部に給油用の給油穴4dが形成されており、副軸の外径をφD、給油穴の直径をφdとしたときに、φd/φDを0.7以下とした。

Description

回転圧縮機
 本発明は、空気調和機や冷蔵庫などの冷凍空調装置の冷凍サイクルに用いられ、冷媒ガスの圧縮を行う回転圧縮機に関する。
 圧縮機を組み立てる際に、偏芯部にピストンを嵌めるためには主軸あるいは副軸の半径に対して偏芯部の偏芯量を減じた値が、偏芯部の半径と同じかあるいは大きくなっている必要がある。仮に主軸あるいは副軸の半径に対して偏芯部の偏芯量を減じた値が、偏芯部の半径よりも小さい場合には、主軸あるいは副軸をくぐらせて偏芯部にピストンを嵌め込もうとすると、偏芯部の外径とピストンの内径が干渉して嵌め込むことができない。
 圧縮機の能力拡大のために押しのけ容積を拡大しようとすると、ピストンの外径を小さくし、偏芯量を大きくする必要がある。しかし、前記のように偏芯部へのピストンの嵌め込み時における制約により、主軸あるいは副軸の半径に対して偏芯部の偏芯量を減じた値が、偏芯部の半径よりも小さくなるほど偏芯量を大きくできないという課題があった。
 この課題を解決するために従来、クランク軸の副軸の外径を主軸の外径よりも小さくし、副軸の半径に対して偏芯部の偏芯量を減じた値が、偏芯部の半径と同じかあるいは大きくなった回転圧縮機が開示されている(例えば、特許文献1参照)。
特開2011-127430号公報
 しかしながら、上記特許文献1記載の回転圧縮機は、押しのけ容積を拡大する、すなわちピストンの外径を小さくし偏芯部の偏芯量を大きくする際、クランク軸、主軸受、副軸受、シリンダ、ピストン、ベーンなどで形成される圧縮機構部への給油に必須となるクランク軸の内部に設けられた給油穴との関係について配慮されていなかった。
 押しのけ容積を大きくしようと、偏芯部の偏芯量を拡大させると前記のようにピストンを組み付ける際の制約から副軸の外径もそれに応じて小さくしていく必要がある。内部に給油穴を有する副軸の外径を小さくしていくと、副軸の剛性が低下し圧縮室で冷媒ガスを圧縮する際のガス荷重によって副軸の撓み量が大きくなり、軸受の潤滑状況が悪化し軸と軸受が圧縮機運転中に焼き付いて圧縮機の運転が停止して、再起動できないおそれがある。
 また圧縮機の効率を高めるためには、シリンダ高さを低くし、圧縮室の高圧側と低圧側をシールするピストンの高さも低くすることによって、高圧側の冷媒ガスがピストンとシリンダ内壁との隙間を介して低圧側へ漏れることを防止し、吸入する冷媒ガスの重量流量の低下による効率の悪化を改善することができる。しかし、同一押しのけ容積のままシリンダ高さを低くするためには、ピストンの外径を小さくし、クランク軸の偏芯部の偏芯量を大きくする必要がある。このために前記の通り内部に給油穴を有する副軸の外径を小さくしていくと、副軸の剛性が低下し圧縮室で冷媒ガスを圧縮する際のガス荷重によって副軸の撓み量が大きくなり、軸受の潤滑状況が悪化し軸と軸受が圧縮機運転中に焼き付いて圧縮機の運転が停止して、再起動できないおそれがある。
 本発明は、上記課題を解決するためのものであり、軸受の焼き付きが生じない信頼性を維持したまま、圧縮機の押しのけ容積を増大させあるいは同一押しのけ容積のまま圧縮機の効率を向上させ、高出力化、高効率化を可能とする回転圧縮機を提供することを目的とする。
 本発明の回転圧縮機は、回転子を有する電動機と、前記回転子により回転されるクランク軸と、前記クランク軸により駆動される圧縮機構部と、を備え、前記クランク軸は、前記回転子に固定される主軸と前記主軸の軸方向に設けられる副軸とを有し、軸内部に給油用の給油穴が形成されており、前記副軸の外径をφD、前記給油穴の直径をφdとしたときに、φd/φDを0.7以下としたものである。
 本発明に係る回転圧縮機によれば、副軸の外径をφD、給油穴の直径をφdとしたときに、φd/φDを0.7以下としたので、副軸の剛性が向上し圧縮室で冷媒ガスを圧縮する際のガス荷重による副軸の撓み量が小さくなり、軸受の潤滑状況が悪化せず軸と軸受が圧縮機運転中に焼き付かない。よって、軸受の焼き付きが生じない信頼性を維持したまま、圧縮機の押しのけ容積を増大させあるいは同一押しのけ容積のまま圧縮機の効率を向上させ、高出力化、高効率化を図ることができる。
本発明の実施の形態1に係る回転圧縮機を示す概略構成図である。 本発明の実施の形態1に係るクランク軸を示す側面図である。 本発明の実施の形態1に係る回転圧縮機のφd/φDと焼き付きに至る可能性とを示す図である。 本発明の実施の形態1に係るクランク軸の副軸におけるクランク軸内部の給油穴と運転中の油面状況を示す断面図である。 本発明の実施の形態2に係る回転圧縮機を適用した冷凍サイクル装置の一例を示す冷媒回路図である。
 以下に、本発明の実施の形態について説明する。なお、図面の形態は一例であり、本発明を限定するものではない。また、各図において同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
 図1は、本発明の実施の形態1に係る回転圧縮機100を示す概略構成図である。
 実施の形態1では、回転圧縮機100としては、一例として縦置形のロータリ式の密閉型電動圧縮機を示す。回転圧縮機100は、空気調和機などの冷凍サイクルに用いられる。
 図1に示すように、回転圧縮機100は、高圧雰囲気の密閉容器1内に冷媒を圧縮する圧縮機構部3を下部に配置し、圧縮機構部3を駆動する電動機(モータ部)2を上部に配置している。電動機2は、固定子2aと回転子2bとを有し、回転子2bに固定された回転軸であるクランク軸4を回転させ、クランク軸4により圧縮機構部3が駆動するように構成されている。
 クランク軸4は、電動機2の回転子2bに固定される主軸4aと、主軸4aの軸方向に設けられる副軸4bと、主軸4aと副軸4bとの間に形成される偏芯部4cと、を有する。クランク軸4の内部には、給油穴4dが形成される。給油穴4dには、密閉容器1内下部に貯留した冷凍機油13が供給される。
 圧縮機構部3の圧縮室(図示せず)は、シリンダ7内に設けられたローリングピストン8とベーン9とをシリンダ7の上側端面の軸受である主軸受5および下側端面の軸受である副軸受6とで挟み込んで閉塞することで形成されている。シリンダ7は、円筒状の内部空間を有し、この内部空間に、クランク軸4の偏芯部4cに回転自在に嵌合したローリングピストン8が配置され、密閉容器1の内周部に固定される。
 主軸受5は、クランク軸4の主軸4aを軸支する軸受部5aとシリンダ7の端面を閉塞する端板部5bとを有する。主軸受5の軸受部5aは、クランク軸4の主軸4aに摺動のためのクリアランスを持って嵌合され、回転自在に主軸4aを軸支する。
 副軸受6は、クランク軸4の副軸4bを軸支する軸受部6aとシリンダ7の反対側の端面を閉塞する端板部6bとを有している。副軸受6の軸受部6aは、クランク軸4の副軸4bに摺動のためのクリアランスを持って嵌合され、回転自在に副軸4bを軸支する。
 シリンダ7内には、クランク軸4に設けられた偏芯部4cが収納され、偏芯部4cには、ローリングピストン8が自転可能に装着されている。ローリングピストン8にスプリング(図示せず)などで先端を圧接するようにベーン9が設けられ、圧縮機構部3内を吸入室(図示せず)と圧縮室を仕切っている。
 そして、電動機2によりクランク軸4が回転し、偏芯部4cがシリンダ7内にて偏芯回転し、冷媒ガスの吸入・圧縮が繰り返される。圧縮行程においては、圧縮機構部3の吸入室に吸入された低圧の冷媒ガスが、ローリングピストン8の回転に伴って圧縮室の容積が徐々に縮小されることで圧縮され、高圧冷媒ガスになる。
 ここで、密閉容器1に隣接してアキュムレータ12が設けられる。吸入連結管10はシリンダ7とアキュムレータ12とを連結する。
 シリンダ7内でクランク軸4の回転により偏芯回転するクランク軸4の偏芯部4cに嵌合するローリングピストン8とベーン9により圧縮された冷媒ガスは、密閉容器1に吐出され、吐出管11から冷凍空調装置の冷凍サイクルへ送り出される。
 図2は、本発明の実施の形態1に係るクランク軸4を示す側面図である。
 クランク軸4は、電動機2の回転子2bに固定される主軸4aと、主軸4aの軸方向の反対側に設けられる副軸4bと、主軸4aと副軸4bとの間に形成される偏芯部4cと、クランク軸4の内部に形成される給油穴4dと、を有する。給油穴4dは、副軸4bの内部に、副軸4bを円筒状にするよう同心円の中空内部として形成される。給油穴4dは、副軸4bの端面に開口している。
 クランク軸の副軸4bの外径をφD、給油穴4dの直径をφdとしたときにφd/φDを0.7以下、かつ、給油穴4dの直径を8mm以上としている。
 また、一例であるが、クランク軸4の材料の縦弾性係数は15000~22000N/mmであるようにするとよい。
 上記のように構成したので、例えば回転圧縮機100の能力を増加するために押しのけ容積を拡大する場合、従来の圧縮機では圧縮機を組み立てる際に、偏芯部にピストンを嵌めるためには主軸あるいは副軸の半径に対して偏芯部の偏芯量を減じた値が、偏芯部の半径と同じかあるいは大きくなっている必要がある。一方、押しのけ容積の拡大には副軸の外径を副軸の半径に対して偏芯部の偏芯量を減じた値が、偏芯部の半径と同じかあるいは大きくなっている制約のため外径を小さくする必要があり、クランク軸の剛性低下を招いていた。しかし、実施の形態1によればクランク軸4の副軸4bの外径φDと給油穴4dの直径φdの比φd/φDを0.7以下とすることでクランク軸4の剛性を高めることができる。
 図3は、本発明の実施の形態1に係る回転圧縮機100のφd/φDと焼き付きに至る可能性とを示す図である。
 図3に示すように、φd/φDの値を変化させて、焼き付きに至るかを実験にて確認した。φd/φDが0.7より大きい場合に、焼き付きの兆候となる摺動面の摩耗による面の荒れが認められた。φd/φDが0.7以下の範囲では摩耗は認められるものの、滑らかな摩耗状態であり焼き付きに至らなかった。
 図4は、本発明の実施の形態1に係るクランク軸4の副軸4bにおけるクランク軸4内部の給油穴4dと運転中の油面状況を示す断面図である。
 クランク軸4内部に設けられた給油穴4dは、遠心式の構造となっており、内部に板を嵌め込み、クランク軸4の回転と共に冷凍機油13も回転させることでクランク軸4内部に逆放物線状(凹形状)の油面形状を作り出し、クランク軸4に設けた給油経路を経由して回転圧縮機100内部に停溜された冷凍機油13を圧縮機構部3に供給する。しかし、給油穴4dの直径が小さいと冷凍機油13の回転周方向速度も小さくなり充分な逆放物線状が得られず、給油穴4dの高さまで油面を持ち上げることができなくなり、主軸受5および副軸受6の潤滑状況が悪化してクランク軸4と主軸受5および副軸受6が圧縮機運転中に焼き付いて回転圧縮機100の運転が停止して、再起動できないおそれがある。
 図4に示すように、給油穴4dの内径が8mmを下回ると、クランク軸4と同期して回転する冷凍機油13の周速度が不足して充分な高さまで冷凍機油13が上がらず、圧縮機構部3への給油が充分ではない。しかし、給油穴4dの内径(直径)が8mm以上とすることで、クランク軸4と同期して回転する冷凍機油13の周速度が充足されて充分な高さまで油面50が給油穴4d内部に逆放物線状(凹形状)の油面形状を作り出して高くなり、圧縮機構部3への給油が充分に行える。
 上記実施の形態1では、ローリングピストン8とベーン9とが別体のものについて説明したが、次にローリングピストン8とベーン9が一体となった回転圧縮機100について説明する。
 通常の運転では回転圧縮機100が吸入して圧縮する冷媒は圧縮性流体の気体であるが、回転圧縮機100が起動する際や低周囲温度での運転時など、冷凍サイクル側から回転圧縮機100に非圧縮性流体の液体の冷媒が圧縮機に吸入される場合がある。
 非圧縮性流体である液体の冷媒を吸入して圧縮すると圧縮室内部の圧力は急速に上昇してしまい、それに伴い圧縮荷重を受ける主軸受5および副軸受6にも過剰な負荷がかかることになる。
 ローリングピストン8とベーン9とが別体の回転圧縮機100においては、このような急速な圧縮室内の圧力上昇時には、ベーン9にも圧力が加わることで圧縮室から外向きの力が働き、ローリングピストン8からベーン9が離れて、圧縮室の高圧側と低圧側が連通して圧力上昇を防止する働きがあり、主軸受5および副軸受6への軸受荷重を緩和することによって、軸受の損傷を防いでいる。
 しかしながら、ローリングピストン8とベーン9とが一体に形成されている回転圧縮機100においては、前記のような圧縮室内の急速な圧力上昇を防止することができず、軸受に過大な荷重がかかることで損傷にいたるおそれが強くなる。このため、実施の形態1で説明したクランク軸4の副軸4bの外径φDとクランク軸4内部の給油穴4dの直径φdの比であるφd/φDを0.7以下とすることによるクランク軸4の剛性を高める効果は非圧縮性流体である液体の冷媒を圧縮する際には更に効果的になる。
 また、上記の実施の形態1では、主軸4aと副軸4bとの外形がほぼ同じものを示したが、主軸4aの外形より副軸4bの外径φDを細くして、ローリングピストン8を副軸4b側から通して偏芯部4cに装着するようにしてもよい。副軸4bは主軸4aよりも軸の長さが短いためローリングピストン8の偏芯部4cに装着し易くできる効果がある。
 以上の実施の形態1によれば、副軸4bの外径をφD、軸内部に設けた給油穴4dの直径をφdとしたときに、φd/φDを0.7以下としたので、副軸4bの剛性が向上し圧縮室で冷媒ガスを圧縮する際のガス荷重による副軸4bの撓み量が小さくなり、主軸受5および副軸受6の潤滑状況が悪化せずクランク軸4と主軸受5および副軸受6が圧縮機運転中に焼き付かない。よって、主軸受5および副軸受6の焼き付きが生じない信頼性を維持したまま、回転圧縮機100の冷媒の押しのけ容積を増大させあるいは、同一押しのけ容積のまま回転圧縮機100の効率を向上させ、高出力化、高効率化を図ることができる。
 また、給油穴4dの径を8mm以上としたので、上記の焼き付かない効果に加えて、給油穴4dの直径が大きく冷凍機油13の回転周方向速度も大きくなり充分な逆放物線状が得られ、給油穴4dの高さまで油面50を持ち上げることができ、主軸受5および副軸受6の潤滑状況が良好となる。よって、主軸受5および副軸受6の焼き付きが生じない信頼性を維持したまま、回転圧縮機100の冷媒の押しのけ容積を増大させあるいは、同一押しのけ容積のまま回転圧縮機100の効率を向上させ、高出力化、高効率化を図ることができる。また、冷凍機油13の圧縮機構部3への給油も十分に行えるものが得られる。
 また、副軸4bの外径φDは、主軸4aの外径よりも小さく構成したので、ローリングピストン8を偏芯部4cに装着し易くでき、偏芯量を大きくして、回転圧縮機100の冷媒の押しのけ容積を増大しあるいは同一押しのけ容積のまま回転圧縮機100の効率を向上し、高出力化、高効率化を図ることができる。
 また、ローリングピストン8をクランク軸4の副軸4bをくぐらせて偏芯部4cに嵌め込むようにしたので、ローリングピストン8を偏芯部4cに装着し易くでき、偏芯量を大きくして、回転圧縮機100の冷媒の押しのけ容積を増大しあるいは同一押しのけ容積のまま回転圧縮機100の効率を向上し、高出力化、高効率化を図ることができる。
 また、ローリングピストン8とベーン9を一体に形成すると、クランク軸4の副軸4bの外径φDとクランク軸4内部の給油穴4dの直径φdの比であるφd/φDを0.7以下とすることによる上記の焼き付かない効果は非圧縮性流体である液体の冷媒を圧縮する際には更に効果的になる。
 また、クランク軸4の縦弾性係数は15000~22000N/mmであるようにしたので、主軸受5および副軸受6の摩耗が防止できる。
実施の形態2.
 図5は、本発明の実施の形態2に係る回転圧縮機100を適用した冷凍サイクル装置200の一例を示す冷媒回路図である。
 図5に示す冷凍サイクル装置200は、回転圧縮機100、凝縮器201、膨張弁202、蒸発器203を冷媒配管で接続した冷凍サイクル回路を形成している。そして、蒸発器203から流出した冷媒は、回転圧縮機100に吸入されて圧縮されて高温・高圧となる。高温・高圧となった冷媒は、凝縮器201にて凝縮され液体になる。液体となった冷媒は、膨張弁202で減圧・膨張されて低温・低圧の気液二相となり、気液二相状態の冷媒が蒸発器203にて熱交換される。
 回転圧縮機100は、上記のような冷凍サイクル装置200に適用することができる。
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 密閉容器、2 電動機、2a 固定子、2b 回転子、3 圧縮機構部、4 クランク軸、4a 主軸、4b 副軸、4c 偏芯部、4d 給油穴、5 主軸受、5a 軸受部、5b 端板部、6 副軸受、6a 軸受部、6b 端板部、7 シリンダ、8 ローリングピストン、9 ベーン、10 吸入連結管、11 吐出管、12 アキュムレータ、13 冷凍機油、50 油面、100 回転圧縮機、200 冷凍サイクル装置、201 凝縮器、202 膨張弁、203 蒸発器。

Claims (6)

  1.  回転子を有する電動機と、
     前記回転子により回転されるクランク軸と、
     前記クランク軸により駆動される圧縮機構部と、を備え、
     前記クランク軸は、
     前記回転子に固定される主軸と前記主軸の軸方向に設けられる副軸とを有し、軸内部に給油用の給油穴が形成されており、
     前記副軸の外径をφD、前記給油穴の直径をφdとしたときに、φd/φDを0.7以下とした回転圧縮機。
  2.  前記給油穴の直径を8mm以上とした請求項1に記載の回転圧縮機。
  3.  前記副軸の外径は、前記主軸の外径よりも小さいことを特徴とする請求項1または2に記載の回転圧縮機。
  4.  前記クランク軸は、
     前記主軸と前記副軸との間に形成される偏芯部を有し、
     前記圧縮機構部は、
     前記クランク軸の前記偏芯部に摺動自在に嵌合するピストンを備え、
     前記クランク軸の前記副軸をくぐらせて前記ピストンを前記偏芯部に嵌め込む構成とした請求項3に記載の回転圧縮機。
  5.  前記クランク軸は、
     前記主軸と前記副軸との間に形成される偏芯部を有し、
     前記圧縮機構部は、
     前記クランク軸の前記偏芯部に摺動自在に嵌合するピストンと、
     前記ピストンと一体に形成されたベーンと、
    を備えた請求項1~4のいずれか1項に記載の回転圧縮機。
  6.  前記クランク軸の縦弾性係数は15000~22000N/mmである請求項1~5のいずれか1項に記載の回転圧縮機。
PCT/JP2015/071272 2015-03-03 2015-07-27 回転圧縮機 WO2016139825A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510781657.0A CN105937493A (zh) 2015-03-03 2015-11-13 旋转压缩机
CN201520907477.8U CN205172942U (zh) 2015-03-03 2015-11-13 旋转压缩机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-041402 2015-03-03
JP2015041402A JP2016160856A (ja) 2015-03-03 2015-03-03 回転圧縮機

Publications (1)

Publication Number Publication Date
WO2016139825A1 true WO2016139825A1 (ja) 2016-09-09

Family

ID=56846424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071272 WO2016139825A1 (ja) 2015-03-03 2015-07-27 回転圧縮機

Country Status (4)

Country Link
JP (1) JP2016160856A (ja)
CN (1) CN105937493A (ja)
CZ (1) CZ308021B6 (ja)
WO (1) WO2016139825A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174182A (ja) * 1983-03-16 1983-10-13 Hitachi Ltd 密閉形圧縮機
JP2013096280A (ja) * 2011-10-31 2013-05-20 Mitsubishi Electric Corp 回転圧縮機
JP2013256923A (ja) * 2012-06-14 2013-12-26 Panasonic Corp 密閉型圧縮機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022337B (zh) * 2009-09-17 2012-07-18 广东美芝制冷设备有限公司 旋转压缩机的供油装置
JP5366884B2 (ja) * 2010-05-21 2013-12-11 三菱電機株式会社 ベーンロータリー型圧縮機
JP6015055B2 (ja) * 2012-03-27 2016-10-26 株式会社富士通ゼネラル ロータリ圧縮機
CN205172942U (zh) * 2015-03-03 2016-04-20 三菱电机株式会社 旋转压缩机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174182A (ja) * 1983-03-16 1983-10-13 Hitachi Ltd 密閉形圧縮機
JP2013096280A (ja) * 2011-10-31 2013-05-20 Mitsubishi Electric Corp 回転圧縮機
JP2013256923A (ja) * 2012-06-14 2013-12-26 Panasonic Corp 密閉型圧縮機

Also Published As

Publication number Publication date
CN105937493A (zh) 2016-09-14
CZ308021B6 (cs) 2019-10-30
CZ2017598A3 (cs) 2017-11-01
JP2016160856A (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
JP4875484B2 (ja) 多段圧縮機
JP4909597B2 (ja) 密閉型回転式圧縮機、及び冷凍サイクル装置
JP6156697B2 (ja) 2つのシリンダを持ったロータリ圧縮機
JP4864572B2 (ja) 回転式圧縮機及びこれを用いた冷凍サイクル装置
JP5441982B2 (ja) 回転圧縮機
US10233930B2 (en) Rotary compressor having two cylinders
EP1851437B1 (en) Capacity varying type rotary compressor
JP6664118B2 (ja) 2シリンダ型密閉圧縮機
JP7002033B2 (ja) 2シリンダ型密閉圧縮機
WO2013047063A1 (ja) 圧縮機
JP5449999B2 (ja) 密閉型圧縮機と冷凍サイクル装置
JP6134903B2 (ja) 容積型圧縮機
JP4172514B2 (ja) 圧縮機
WO2016139825A1 (ja) 回転圧縮機
JP2018059515A (ja) 回転圧縮機
CN205172942U (zh) 旋转压缩机
WO2016151769A1 (ja) 回転式密閉型圧縮機
JP6429987B2 (ja) ロータリ圧縮機
CN107131126B (zh) 双气缸型密闭压缩机
WO2022264792A1 (ja) スクロール圧縮機
JP5469612B2 (ja) ロータリ流体機械
JP6945128B2 (ja) 圧縮機
WO2019142315A1 (ja) ロータリ圧縮機
WO2018168344A1 (ja) ロータリー式圧縮機
JP3744526B2 (ja) 回転式圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: PV2017-598

Country of ref document: CZ

122 Ep: pct application non-entry in european phase

Ref document number: 15883991

Country of ref document: EP

Kind code of ref document: A1