WO2016136973A1 - Sound insulation structure and method for manufacturing sound insulation structure - Google Patents

Sound insulation structure and method for manufacturing sound insulation structure Download PDF

Info

Publication number
WO2016136973A1
WO2016136973A1 PCT/JP2016/055904 JP2016055904W WO2016136973A1 WO 2016136973 A1 WO2016136973 A1 WO 2016136973A1 JP 2016055904 W JP2016055904 W JP 2016055904W WO 2016136973 A1 WO2016136973 A1 WO 2016136973A1
Authority
WO
WIPO (PCT)
Prior art keywords
soundproof
film
frame
cells
frequency
Prior art date
Application number
PCT/JP2016/055904
Other languages
French (fr)
Japanese (ja)
Inventor
真也 白田
昇吾 山添
達矢 吉弘
暁彦 大津
笠松 直史
納谷 昌之
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015121994A external-priority patent/JP6043407B2/en
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201680012324.4A priority Critical patent/CN107408378B/en
Priority to EP16755717.2A priority patent/EP3264412B1/en
Publication of WO2016136973A1 publication Critical patent/WO2016136973A1/en
Priority to US15/679,650 priority patent/US10099317B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/86Sound-absorbing elements slab-shaped
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials

Definitions

  • the present invention relates to a soundproof structure and a method of manufacturing the soundproof structure.
  • the soundproof cell includes a frame, a film fixed to the frame, and an opening made of one or more holes perforated in the film.
  • the present invention relates to a soundproof structure that selectively and strongly shields a target frequency sound, and a method of manufacturing a soundproof structure for manufacturing such a soundproof structure.
  • the sound insulation material shields sound better as the mass is heavier. Therefore, the sound insulation material itself becomes larger and heavier in order to obtain a good sound insulation effect.
  • most conventional soundproof structures have a drawback that they are large and heavy because sound is insulated by the mass of the structure, and it is difficult to shield at low frequencies. For this reason, a light and thin sound insulation structure is required as a sound insulation material corresponding to various scenes such as equipment, automobiles, and general homes.
  • patent document 1 it has the frame body in which the through-hole was formed, and the sound-absorbing material which covers one opening of this through-hole, and the 1st storage elastic modulus E1 of a sound-absorbing material is 9.7x10 6 or more.
  • a sound absorber having a second storage elastic modulus E2 of 346 or less (see summary, claim 1, paragraphs [0005] to [0007], [0034], etc.).
  • the storage elastic modulus of the sound absorbing material means a component stored inside the energy generated in the sound absorbing material due to sound absorption.
  • the peak value of the sound absorption coefficient is 0.5 to 1 without increasing the size of the sound absorber by using a sound absorbing material in which the blended material is resin or a mixture of resin and filler.
  • the peak frequency is 290 to 500 Hz, and a high sound absorption effect can be achieved in a low frequency region of 500 Hz or less.
  • Patent Document 2 discloses an acoustically transparent two-dimensional rigid frame divided into a plurality of individual cells, a sheet of flexible material fixed to the rigid frame, a plurality of weights, A plurality of individual cells are roughly two-dimensional cells, and each weight is fixed to a sheet of flexible material so that each cell is provided with a weight.
  • Patent Document 2 discloses that this acoustic attenuation panel has the following advantages as compared with the conventional art. (1) The acoustic panel can be made very thin.
  • the acoustic panel can be made very light (low density).
  • Panels can be laminated together to form a wide frequency local resonant acoustic material (LRSM) without obeying the mass law over a wide frequency range, and in particular this deviates from the mass law at frequencies below 500 Hz be able to.
  • LRSM local resonant acoustic material
  • the sound absorber disclosed in Patent Document 1 is lightweight, has a high sound absorption coefficient peak value as high as 0.5 or higher, and can achieve a high sound absorption effect in a low frequency region where the peak frequency is 500 Hz or less.
  • the selection range of the sound absorbing material was narrow and difficult.
  • the sound absorbing material of such a sound absorbing body completely covers the through hole of the frame body, the sound and the heat cannot easily pass through, and the heat tends to be stored. There was a problem that it was not suitable for sound insulation of cars.
  • the sound attenuation panel is very thin, lightweight and low in density, can be used at a frequency lower than 500 Hz, can be out of the law of mass density, and can be easily manufactured at low cost.
  • the lighter and thinner sound insulation structure required in equipment, automobiles and general households has the following problems.
  • the sound attenuating panel disclosed in Patent Document 2 since a weight is essential for the film, the structure is heavy, and it is difficult to use it in equipment, automobiles, general households, and the like. There is no easy means for placing the weight in each cell structure, and there is no suitability for manufacturing. Since the shielding frequency and size are strongly dependent on the weight of the weight and the position on the film, the robustness as a sound insulating material is low and there is no stability. Since the membrane is clearly designated as a non-breathable membrane, it has no ability to transmit wind and heat, and heat tends to be trapped, which is not particularly suitable for sound insulation of equipment and automobiles.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, lightweight and thin, and the sound insulation properties such as the shielding frequency and size do not depend on the position and shape of the hole, and the robustness as a sound insulation material is high.
  • Soundproof structure that is stable, breathable, can pass wind and heat, has no heat accumulation, is suitable for use in equipment, automobiles and general households, and has excellent manufacturability
  • Another object of the present invention is to provide a method of manufacturing a soundproof structure that can reliably and easily manufacture a soundproof structure.
  • the term “soundproof” includes both the meanings of “sound insulation” and “sound absorption” as acoustic characteristics.
  • “sound insulation” refers to “sound insulation”, and “sound insulation” “sounds out”. Including “does not transmit sound”, and therefore “reflects” sound (reflection of sound) and “absorbs” sound (absorption of sound) (Sanseido Ojirin (third edition) ), And http://www.onzai.or.jp/question/soundproof.html and http://www.onzai.or.jp/pdf/new/gijutsu201312_3.pdf ).
  • “reflection” and “absorption” are basically referred to as “sound insulation” and “shielding”, and the two are referred to as “reflection” and “absorption”. .
  • the soundproof structure of the present invention is a soundproof structure having one or more soundproof cells, each of the one or more soundproof cells being fixed to the frame and a frame each having a through hole.
  • a film and an opening made of one or more holes perforated in the film, both ends of the through-hole of the frame are not closed, and the soundproof structure is a film of one or more soundproof cells
  • the one or more soundproof cells are preferably a plurality of soundproof cells arranged two-dimensionally.
  • the first natural vibration frequency is determined by the geometric shape of the frame of the one or more soundproofing cells and the rigidity of the film of the one or more soundproofing cells, and the shielding peak frequency is the opening of the one or more soundproofing cells. It is preferable to be determined according to the area.
  • the first natural vibration frequency is determined by the shape and size of the frame of the one or more soundproof cells and the thickness and flexibility of the film of the one or more soundproof cells, and the shielding peak frequency is one or more of the soundproof cells. It is preferable to be determined according to the average area ratio of the openings.
  • the first natural vibration frequency is preferably included in the range of 10 Hz to 100,000 Hz.
  • the parameter A represented by 1) is 0.07000 or more and 759.1 or less.
  • A ⁇ (E1) * (t1 1.2 ) * (ln (r) ⁇ e) / (R1 2.8 ) (1)
  • e indicates the number of Napiers
  • ln (x) is the logarithm of x with e as the base.
  • the parameter B represented by 2) is preferably 15.47 or more and 23500 or less.
  • B t2 / R2 2 * ⁇ (E2 / d) (2)
  • the opening part of one or more soundproof cells is comprised by one hole. Moreover, it is preferable that the opening part of one or more soundproof cells is comprised by the several hole of the same size. Further, when one or more soundproof cells are a plurality of soundproof cells arranged two-dimensionally, it is preferable that 70% or more of the openings of the plurality of soundproof cells are configured by holes of the same size.
  • the size of the one or more holes in the opening of the one or more soundproof cells is preferably 2 ⁇ m or more. Moreover, it is preferable that the average size of the frame of one or more soundproof cells is below the wavelength size corresponding to a shielding peak frequency.
  • the one or more holes in the opening of the one or more soundproof cells are holes drilled by a processing method that absorbs energy, and the processing method that absorbs energy is laser processing.
  • the one or more holes in the opening of the one or more soundproofing cells are holes drilled by a machining method using physical contact, and the machining method is punching or needle processing. Is preferred.
  • the membrane is preferably impermeable to air. Moreover, it is preferable that one hole of the opening of the soundproof cell is provided at the center of the film.
  • the membrane is preferably made of a flexible elastic material. Further, when one or more soundproof cells are a plurality of soundproof cells arranged two-dimensionally, a plurality of frames of the plurality of soundproof cells are constituted by one frame body arranged so as to be two-dimensionally connected. It is preferred that Further, when the one or more soundproof cells are a plurality of soundproof cells arranged two-dimensionally, the plurality of films of the plurality of soundproof cells are in the form of a sheet covering a plurality of frames of the plurality of soundproof cells. It is preferable to be constituted by a film body.
  • the method for producing a soundproof structure according to the present invention when producing the soundproof structure, has one or more holes in the opening of one or more soundproof cells in the film of each soundproof cell. It is characterized by drilling by a machining method that absorbs energy or a machining method by physical contact. Moreover, it is preferable that the processing method which absorbs energy is laser processing, and the machining method is punching or needle processing.
  • the present invention it is lightweight and thin, and the sound insulation properties such as the frequency and size of the shielding do not depend on the position and shape of the hole, and the robustness as the sound insulation material is high and stable, and the air permeability is good. Therefore, it is possible to provide a soundproof structure suitable for use in equipment, automobiles, and general households, and having excellent manufacturability. Further, according to the present invention, such a soundproof structure can be reliably and easily manufactured.
  • any aimed frequency component can be shielded very strongly, that is, reflected and / or absorbed. .
  • a strong sound insulation structure can be realized simply by making a hole in the film.
  • a lighter sound insulation structure can be realized because the weight, which is a cause of increasing the mass, is not required for the acoustic attenuation panel and structure described in Patent Document 2.
  • a hole can be easily formed in a film at a high speed by laser processing and punch hole processing, and therefore, it has manufacturability.
  • since the sound insulation characteristics hardly depend on the position and shape of the hole, there is an advantage that the stability is high in manufacturing.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II of the soundproof structure shown in FIG. It is a top view which shows typically an example of the soundproof structure which concerns on other embodiment of this invention. It is a top view which shows typically an example of the soundproof structure which concerns on other embodiment of this invention. It is a top view which shows typically an example of the soundproof structure which concerns on other embodiment of this invention. It is a graph which shows the sound insulation characteristic represented by the transmission loss with respect to the frequency of the soundproof structure of Example 1 of this invention. 5 is a graph showing sound insulation characteristics of the soundproof structure of Comparative Example 1.
  • FIG. 1 is a plan view schematically showing an example of a soundproof structure according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view taken along line II-II of the soundproof structure shown in FIG. is there.
  • 3 to 5 are plan views schematically showing an example of a soundproof structure according to another embodiment of the present invention.
  • the soundproof structure 10 of the present invention shown in FIGS. 1 and 2 has a through-hole 12 and a plurality of two-dimensionally arranged frame bodies 16 that form 16 frames 14 in the illustrated example.
  • a plurality of, in the illustrated example, a sheet-like film body 20 forming 16 films 18 fixed to each frame 14 so as to cover the through holes 12 of the frames 14, and the films 18 in each frame 14 are penetrated.
  • one frame 14, a film 18 fixed to the frame 14, and an opening 24 provided in the film 18 constitute one soundproof cell 26.
  • the soundproof structure 10 of the present invention is constituted by a plurality of, in the illustrated example, 16 soundproof cells 26.
  • the soundproof structure 10 in the illustrated example is configured by a plurality of soundproof cells 26, but the present invention is not limited to this, and includes one frame 14, one film 18, and one opening 24. A single soundproof cell 26 may be used.
  • the frame 14 is formed so as to be annularly surrounded by a thick plate-like member 15, has a through hole 12 inside, and fixes the film 18 so as to cover the through hole 12 on at least one side. Thus, it becomes a node of membrane vibration of the membrane 18 fixed to the frame 14. Therefore, the frame 14 is higher in rigidity than the film 18. Specifically, both the mass and rigidity per unit area need to be high.
  • the shape of the frame 14 is preferably a closed continuous shape that can fix the membrane 18 so that the entire outer periphery of the membrane 18 can be suppressed, but the present invention is not limited to this, and the frame 14 As long as it becomes a node of the membrane vibration of the membrane 18 fixed to the substrate, a part thereof may be cut and discontinuous. That is, the role of the frame 14 is to control the membrane vibration by fixing the membrane 18, so that even if there is a small cut in the frame 14 or there is a part that is not very slightly bonded, it is effective. Demonstrate.
  • the geometric form of the through-hole 12 formed by the frame 14 is a planar shape and is a square in the example shown in FIG. 1, but is not particularly limited in the present invention, and is, for example, a rectangle or a rhombus. Or other quadrilaterals such as parallelograms, regular triangles, isosceles triangles, triangles such as right triangles, regular pentagons, regular polygons such as regular hexagons, circles as shown in FIG. 3, or It may be oval or the like, or may be indefinite.
  • the size of the frame 14 is the size in plan view and can be defined as the size of the through-hole 12. However, in the case of a regular polygon such as a square shown in FIGS.
  • the size of the frame 14 may be constant in all the frames 14, but may include frames of different sizes (including cases where the shapes are different). In this case, the average size of the frame 14 may be used as the size of the frame 14.
  • the size of the frame 14 is not particularly limited, and the soundproofing object to which the soundproofing structure 10 of the present invention is applied for soundproofing, for example, a copying machine, a blower, an air conditioner, a ventilation fan, pumps, a generator, and the like.
  • Ducts other kinds of industrial equipment such as coating machines, rotating machines, conveyors, etc. that produce sound, transportation equipment such as automobiles, trains, aircraft, refrigerators, washing machines, dryers, TVs What is necessary is just to set according to general household devices, such as John, a copier, a microwave oven, a game machine, an air conditioner, an electric fan, PC, a vacuum cleaner, an air cleaner.
  • the soundproof structure 10 itself can be used like a partition to be used for the purpose of blocking sounds from a plurality of noise sources.
  • the size of the frame 14 can be selected from the frequency of the target noise.
  • the size of the frame 14 is preferably 0.5 mm to 200 mm, more preferably 1 mm to 100 mm, and most preferably 2 mm to 30 mm. Note that the size of the frame 14 is preferably represented by an average size when different sizes are included in each frame 14.
  • the width and thickness of the frame 14 are not particularly limited as long as the film 18 can be fixed so as to surely suppress the film 18 and the film 18 can be reliably supported.
  • the width and thickness are set according to the size of the frame 14. be able to.
  • the width of the frame 14 is preferably 0.5 mm to 20 mm, more preferably 0.7 mm to 10 mm, and more preferably 1 mm to 5 mm when the size of the frame 14 is 0.5 mm to 50 mm. Most preferably. If the ratio of the width of the frame 14 to the size of the frame 14 becomes too large, the area ratio of the portion of the frame 14 that occupies the whole increases, and the device may become heavy. On the other hand, if the ratio is too small, it is difficult to strongly fix the film with an adhesive or the like at the frame 14 portion.
  • the width of the frame 14 is preferably 1 mm to 100 mm, more preferably 3 mm to 50 mm, and more preferably 5 mm to 20 mm when the size of the frame 14 is more than 50 mm and 200 mm or less. Most preferred.
  • the thickness of the frame 14 is preferably 0.5 mm to 200 mm, more preferably 0.7 mm to 100 mm, and most preferably 1 mm to 50 mm. Note that the width and thickness of the frame 14 are preferably represented by an average width and an average thickness, respectively, when different widths and thicknesses are included in each frame 14.
  • a plurality of, that is, two or more frames 14 are preferably configured as frame bodies 16 arranged so as to be two-dimensionally connected.
  • the number of the frames 14 of the soundproof structure 10 of the present invention that is, in the illustrated example, the number of the frames 14 constituting the frame body 16 is not particularly limited, and the above-described soundproof object of the soundproof structure 10 of the present invention is not limited. It may be set according to Alternatively, since the size of the frame 14 described above is set according to the above-described soundproof object, the number of the frames 14 may be set according to the size of the size of the frame 14.
  • the number of frames 14 is preferably 1 to 10000, more preferably 2 to 5000, and more preferably 4 to 1000 in the case of noise shielding (reflection and / or absorption) in equipment. Most preferred.
  • the size of a device is determined with respect to the size of a general device. Therefore, in order to make the size of one soundproof cell 26 suitable for the frequency of noise, a plurality of soundproof cells 26 are used. In many cases, it is necessary to shield, i.e., reflect and / or absorb the frame body 16 with a combination of the above, and on the other hand, if the number of the soundproof cells 26 is increased too much, the total weight of the frame 14 may increase. Because. On the other hand, in a structure like a partition with no restriction on the size, the number of frames 14 can be freely selected according to the required overall size. Since one soundproof cell 26 has one frame 14 as a structural unit, the number of frames 14 of the soundproof structure 10 of the present invention can also be referred to as the number of soundproof cells 26.
  • metal materials such as aluminum, titanium, magnesium, tungsten, iron, steel, chromium, chromium molybdenum, nichrome molybdenum, and alloys thereof, acrylic resin, polymethyl methacrylate, polycarbonate, polyamideid, Polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene sulfide, polysulfone, polyethylene terephthalate, polybutylene terephthalate, polyimide, resin material such as triacetylcellulose, carbon fiber reinforced plastic (CFRP), carbon fiber, glass Examples thereof include fiber reinforced plastic (GFRP). Further, a plurality of types of materials of these frames 14 may be used in combination.
  • CFRP carbon fiber reinforced plastic
  • GFRP fiber reinforced plastic
  • the film 18 is fixed to the frame 14 so as to cover the through-hole 12 inside the frame 14, and absorbs or reflects sound wave energy by vibrating the film in response to sound waves from the outside. And soundproofing. Therefore, the membrane 18 is preferably impermeable to air. By the way, since it is necessary for the membrane 18 to vibrate with the frame 14 as a node, the membrane 18 is fixed to the frame 14 so as to be surely suppressed, becomes an antinode of membrane vibration, and needs to absorb or reflect sound wave energy to prevent sound. There is. For this reason, the membrane 18 is preferably made of a flexible elastic material. For this reason, the shape of the film 18 is the shape of the through hole 12 of the frame 14, and the size of the film 18 is the size of the frame 14, more specifically, the size of the through hole 12 of the frame 14. Can do.
  • the film 18 fixed to the frame 14 of the soundproof cell 26 has a minimum transmission loss, for example, 0 dB as a resonance frequency which is the frequency of the lowest natural vibration mode.
  • the first natural vibration frequency is as follows.
  • the first natural vibration frequency is determined by the structure formed by the frame 14 and the membrane 18, and therefore, as shown in FIGS. 6 and 7, the hole 22 drilled in the membrane 18, and hence the opening 24. It has been found by the present inventors that the values are substantially the same regardless of the presence or absence.
  • 6 to 11 are graphs showing the sound insulation characteristics of the soundproof structures of Example 1, Comparative Example 1, and Examples 10, 21, 5, and 23 and 38 of the present invention, which will be described later, respectively.
  • the sound wave is the frequency where the sound wave shakes the film vibration most due to the resonance phenomenon. It is the frequency of the natural vibration mode that is greatly transmitted at.
  • the soundproof structure 10 of the present invention since the hole 18 constituting the opening portion 24 including the hole 22 is drilled in the film 18 as a through hole, the first A sound wave shielding peak in which transmission loss peaks (maximum) appears at a shielding peak frequency lower than the natural vibration frequency. In particular, an increase in sound absorption is observed due to the presence of the through-hole 22 on the low frequency side from the shielding peak caused by the through-hole 22. Therefore, since the soundproof structure 10 of the present invention has a peak (maximum) of shielding (transmission loss) at the shielding peak frequency, it is possible to selectively prevent sound in a certain frequency band centered on the shielding peak frequency. . In the present invention, first, sound shielding can be increased and the peak of the shielding can be controlled. In addition to this, sound (sound wave energy) is absorbed by the effect of the through-hole 22. Has a feature that appears on the lower frequency side.
  • the first natural vibration frequency is 2820 Hz in the audible range, and shows a shielding peak at which transmission loss has a peak value of 35 dB at a shielding peak frequency of 1412 Hz on the lower frequency side.
  • a certain frequency band centered at 1412 Hz in the audible range can be selectively insulated.
  • the transmission loss shows 40, 72, 29, 37, and 70 at the shielding peak frequency, which indicates that a certain frequency band centered on each shielding peak frequency can be selectively shielded.
  • the measuring method of the transmission loss (dB) in the soundproof structure of this invention is mentioned later.
  • the natural vibration mode is set as high as possible. It is important to obtain, especially in practical use.
  • the soundproof structure 10 of the present invention complies with the rigidity law, and since the sound wave is shielded at a frequency lower than the first natural vibration frequency of the film 18 fixed to the frame 14, the first natural vibration frequency of the film 18 is It is preferably 10 Hz to 100000 Hz corresponding to a human sound wave detection range, more preferably 20 Hz to 20000 Hz, which is a human sound wave audible range, still more preferably 40 Hz to 16000 Hz, and even more preferably 100 Hz to Most preferably, it is 12000 Hz.
  • the thickness of the film 18 is not particularly limited as long as the film can vibrate in order to absorb or reflect sound wave energy to prevent sound. However, the thickness of the film 18 is increased to obtain a natural vibration mode on the high frequency side. It is preferable.
  • the thickness of the film 18 can be set according to the size of the frame 14, that is, the size of the film.
  • the thickness of the film 18 is preferably 0.005 mm (5 ⁇ m) to 5 mm, and preferably 0.007 mm (7 ⁇ m) to 2 mm when the size of the frame 14 is 0.5 mm to 50 mm. More preferably, the thickness is 0.01 mm (10 ⁇ m) to 1 mm.
  • the thickness of the film 18 is preferably 0.01 mm (10 ⁇ m) to 20 mm, and preferably 0.02 mm (20 ⁇ m) to 10 mm when the size of the frame 14 is more than 50 mm and 200 mm or less. Is more preferable, and 0.05 mm (50 ⁇ m) to 5 mm is most preferable. Note that the thickness of the film 18 is preferably expressed as an average thickness when the thickness of one film 18 is different, or when the thickness of each film 18 is different.
  • the first natural vibration frequency of the film 18 in the structure composed of the frame 14 and the film 18 is the geometric form of the frame 14 of the plurality of soundproof cells 26, for example, the shape of the frame 14 and It can be determined by the size (size) and the rigidity of the membrane of the plurality of soundproof cells, for example, the thickness and flexibility of the membrane.
  • the first natural vibration mode has the same frequency, that is, the same first natural vibration frequency. That is, by setting the ratio [a 2 / t] to a constant value, the scaling rule is established, and an appropriate size can be selected.
  • the Young's modulus of the film 18 is not particularly limited as long as the film 18 has elasticity capable of vibrating the film in order to absorb or reflect sound wave energy to prevent sound. It is preferable to increase the size in order to obtain a higher frequency.
  • the Young's modulus of the film 18 can be set according to the size of the frame 14, that is, the size of the film.
  • the Young's modulus of the film 18 is preferably 1000 Pa to 3000 GPa, more preferably 10,000 Pa to 2000 GPa, and most preferably 1 MPa to 1000 GPa.
  • the density of the film 18 is not particularly limited as long as the film 18 can vibrate in order to absorb or reflect sound wave energy to prevent sound.
  • the density of the film 18 is 10 kg / m 3 to 30000 kg / m 3. is preferably, more preferably from 100kg / m 3 ⁇ 20000kg / m 3, most preferably 500kg / m 3 ⁇ 10000kg / m 3.
  • the film 18 When the material of the film 18 is a film-like material or a foil-like material, the film 18 has strength suitable for application to the above-described soundproofing object, and is resistant to the soundproofing environment of the soundproofing object. As long as the film can vibrate in order to absorb or reflect sound wave energy to prevent sound, it is not particularly limited and can be selected according to the soundproof object and its soundproof environment.
  • the material of the film 18 includes polyethylene terephthalate (PET), polyimide, polymethyl methacrylate, polycarbonate, acrylic (PMMA), polyamideide, polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene sulfide, polysulfone.
  • the film 18 may be individually fixed to each of the plurality of frames 14 of the frame body 16 of the soundproof structure 10 to constitute a sheet-like film body 20 as a whole.
  • a film 18 that covers each frame 14 may be formed by a single sheet-like film body 20 that is fixed so as to cover the frame.
  • a sheet-like film body is fixed to a part of the frames 14 so as to cover a part of the plurality of frames 14, and a film 18 that covers each frame 14 is formed.
  • You may comprise the sheet-like film body 20 which covers the whole some frame 14 (all the frames 14) using some bodies.
  • the film 18 is fixed to the frame 14 so as to cover the opening on at least one side of the through hole 12 of the frame 14. That is, the film 18 may be fixed to the frame 14 so as to cover the opening on one side, the other side, or both sides of the through hole 12 of the frame 14.
  • all the films 18 may be provided on the same side of the through holes 12 of the plurality of frames 14 of the soundproof structure 10, or some of the films 18 may be part of the through holes 12 of the plurality of frames 14.
  • a part of the film 18 may be provided on one side, and the other part of the remaining part of the through holes 12 of the plurality of frames 14 may be provided with the remaining film 18.
  • the films provided on one side, the other side, and both sides of the through-hole 12 may be mixed.
  • the method of fixing the film 18 to the frame 14 is not particularly limited, and any method may be used as long as the film 18 can be fixed to the frame 14 so as to be a node of film vibration.
  • a method using an adhesive or a physical And a method using a typical fixture.
  • the adhesive is applied on the surface surrounding the through hole 12 of the frame 14, the film 18 is placed thereon, and the film 18 is fixed to the frame 14 with the adhesive.
  • the adhesive include an epoxy adhesive (araldite, etc.), a cyanoacrylate adhesive (Aron Alpha, etc.), an acrylic adhesive, and the like.
  • a film 18 arranged so as to cover the through hole 12 of the frame 14 is sandwiched between the frame 14 and a fixing member such as a rod, and the fixing member is fixed with a screw or a screw.
  • the method of fixing to the frame 14 using a tool etc. can be mentioned.
  • the membrane 18, that is, the soundproof cell 26, has an opening 24 composed of one or more holes 22.
  • the soundproof structure 10 has an opening 24 composed of one or more holes 22 perforated in the film 18, whereby the film 18.
  • a transmission loss peak at which the shielding becomes a peak (maximum) on the lower frequency side than the first natural vibration frequency and the frequency at which this shielding (transmission loss) becomes a peak (maximum) is called a shielding peak frequency.
  • This shielding peak frequency appears due to the hole 22 of the opening 24 on the lower frequency side than the first natural vibration frequency that mainly depends on the film 18 of the soundproof cell 26 of the soundproof structure 10.
  • the shielding peak frequency is determined by the size of the opening 24 with respect to the size of the frame 14 (or the film 18), specifically, the total of the holes 22 with respect to the area of the through hole 12 (or the film 18 covering the through hole 12) of the frame 14. It is determined according to the opening ratio of the opening 24 which is the area ratio.
  • one or more holes 22 may be perforated in the film 18 covering the through-hole 12 of the soundproof cell 26.
  • the drilling position of the hole 22 may be in the middle of the soundproof cell 26 or the membrane 18 (hereinafter represented by the soundproof cell 26).
  • the soundproof cell 26 it is not necessary to be in the middle of the soundproof cell 26, and any position may be used. That is, simply changing the drilling position of the hole 22 does not change the sound insulation characteristic of the soundproof structure 10 of the present invention.
  • the number of the holes 22 constituting the opening 24 in the soundproof cell 26 may be one for one soundproof cell 26 as shown in FIGS. 1 to 3 and FIG.
  • the present invention is not limited to this, and may be two or more (ie, a plurality) as shown in FIG.
  • the opening 24 of each soundproof cell 26 is constituted by one hole 22 as shown in FIGS. 1 to 3 and FIG. Is preferred. The reason is that, when the aperture ratio is constant, the ease of passage of air as wind is greater when one hole is large and the viscosity at the boundary does not work greatly.
  • the sound insulation characteristic of the soundproof structure 10 of the present invention is the sound insulation characteristic corresponding to the total area of the plurality of holes 22, that is, the area of the opening 24, That is, the corresponding sound insulation peak is shown at the corresponding sound insulation peak frequency. Therefore, as shown in FIG. 4, the area of the opening 24, which is the total area of the plurality of holes 22 in one soundproof cell 26 (or film 18), is within the other soundproof cell 26 (or film 18). It is preferable to be equal to the area of the opening 24 which is the area of the hole 22 having only one, but the present invention is not limited to this.
  • the aperture ratio of the opening 24 in the soundproof cell 26 (the area ratio of the opening 24 to the area of the film 18 covering the through-hole 12 (the ratio of the total area of all the holes 22)) is the same. Since the same soundproof structure 10 is obtained with the single hole 22 and the plurality of holes 22, soundproof structures of various frequency bands can be produced even if the hole 22 is fixed to a certain size.
  • the aperture ratio (area ratio) of the opening 24 in the soundproof cell 26 is not particularly limited, and may be set according to the sound insulation frequency band to be selectively insulated, but is 0.000001%. It is preferably from ⁇ 70%, more preferably from 0.000005% to 50%, and preferably from 0.00001% to 30%. By setting the aperture ratio of the opening 24 within the above range, it is possible to determine the sound insulation peak frequency and the transmission loss of the sound insulation peak, which are the center of the sound insulation frequency band to be selectively insulated.
  • the soundproof structure 10 of the present invention preferably has a plurality of holes 22 of the same size in one soundproof cell 26 from the viewpoint of manufacturability.
  • the opening 24 of each soundproof cell 26 is preferably composed of a plurality of holes 22 of the same size.
  • the holes 22 constituting the openings 24 of all the soundproof cells 26 have the same size.
  • the hole 22 is preferably drilled by a processing method that absorbs energy, for example, laser processing, or by a machining method by physical contact, for example, punching or needle processing. For this reason, if a plurality of holes 22 in one soundproof cell 26 or one or a plurality of holes 22 in all soundproof cells 26 have the same size, holes are formed by laser processing, punching, or needle processing. In some cases, it is possible to continuously drill holes without changing the setting of the processing apparatus and the processing strength.
  • the size (size) of the hole 22 in the soundproof cell 26 (or film 18) is different for each soundproof cell 26 (or film 18). May be.
  • the sound insulation characteristic corresponding to the average area obtained by averaging the areas of the holes 22, that is, the corresponding sound insulation peak frequency corresponds. This shows the sound insulation peak.
  • 70% or more of the opening 24 of each soundproof cell 26 of the soundproof structure 10 of this invention is comprised with the hole of the same size.
  • the size of the hole 22 constituting the opening 24 is not particularly limited as long as it can be appropriately drilled by the above-described processing method.
  • the size of the hole 22 on the lower limit side is 2 ⁇ m from the viewpoint of manufacturing suitability such as laser processing accuracy such as laser aperture accuracy, processing accuracy such as punching processing or needle processing, and ease of processing.
  • it is preferably 5 ⁇ m or more, and most preferably 10 ⁇ m or more.
  • the size of the frame 14 is usually in the order of mm, and if the size of the hole 22 is set to the ⁇ m order, The upper limit value of the size of the hole 22 does not exceed the size of the frame 14, but if it exceeds, the upper limit value of the size of the hole 22 may be set to be equal to or smaller than the size of the frame 14.
  • the first natural vibration frequency is determined by the structure composed of the frame 14 and the film 18, and the shielding peak frequency at which the transmission loss peaks is a film having the structure composed of the frame 14 and the film 18. It depends on the opening made of the hole 22 perforated.
  • the inventors set R1 (mm) as the equivalent circle radius of the soundproof cell 26, that is, the frame 14, the thickness of the film 18 as t1 ( ⁇ m), and the Young's modulus of the film 18.
  • the parameter A represented by the following formula (1) and the shielding peak vibration frequency (Hz) of the soundproof structure 10 are the soundproof cell.
  • the equivalent circle radius R1 (mm) of 26 the thickness t1 ( ⁇ m) of the film 18, the Young's modulus E1 (GPa) of the film 18, and the equivalent circle radius r ( ⁇ m) of the opening 24 are changed, FIG. As shown, it has a substantially linear relationship, is represented by a substantially linear expression, and has been found to ride on a substantially identical straight line in two-dimensional coordinates. It was also found that the parameter A does not substantially depend on the film density and Poisson's ratio.
  • A ⁇ (E1) * (t1 1.2 ) * (ln (r) ⁇ e) / (R1 2.8 ) (1)
  • e indicates the number of Napiers
  • ln (x) is the logarithm of x with e as the base.
  • the circle equivalent radius r is obtained from the total area of the plurality of openings.
  • FIG. 12 is obtained from a simulation result in a design stage before an experiment of an example described later.
  • the shield peak vibration frequency is a main fraction less than or equal to the first natural vibration frequency, so the shield peak vibration frequency is from 10 Hz to 100,000 Hz.
  • Table 1 shows values of the parameter A corresponding to a plurality of values.
  • the parameter A corresponds to the first natural vibration frequency. Therefore, in the present invention, it is preferably 0.07000 or more and 759.1 or less, and is 0.1410 to 151.82. More preferably, it is more preferably 0.2820 to 121.5, and most preferably 0.7050 to 91.09.
  • the shielding peak frequency can be determined in the soundproof structure of the present invention, and the sound in a certain frequency band centered on the shielding peak frequency is selectively insulated. be able to.
  • this parameter A it is possible to set the soundproof structure of the present invention having a shielding peak frequency that is the center of a frequency band to be selectively sound-insulated.
  • the present inventors set the soundproof cell 26, that is, the frame 14 to have a circle equivalent radius R2 (m), the thickness of the film 18 t2 (m), and the Young's modulus of the film 18 E2. (Pa)
  • the parameter B ( ⁇ m) represented by the following formula (2) the frame 14 of the soundproof structure 10 and the film 18 are used.
  • the first natural vibration frequency (Hz) is a circle-equivalent radius R2 (m) of the soundproof cell 26, a thickness t2 (m) of the film 18, a Young's modulus E2 (Pa) of the film 18, and a density d (kg / kg) of the film 18. It was found that even when m 3 ) was changed, the relationship was approximately linear, and as shown in FIG. 13, it was expressed by the following expression (3).
  • y is the first natural vibration frequency (Hz)
  • x is the parameter B. Note that FIG. 13 is obtained from the result of simulation in the design stage before the experiment of an example described later.
  • the equivalent circle radius R2 (m) of the soundproof cell 26 is normalized by the parameter B ( ⁇ m)
  • the point representing the relationship between the parameter B and the first natural vibration frequency (Hz) of the soundproof structure 10 on the two-dimensional (xy) coordinates is It is expressed by the above formula (3) that can be regarded as a substantially linear expression, and it can be seen that all points are on substantially the same straight line.
  • the first natural vibration frequency that is the upper limit on the high frequency side of the shielding peak frequency in the soundproof structure of the present invention can be determined, and the frequency that should be selectively sound-insulated.
  • the shielding peak frequency that becomes the center of the band can be determined.
  • the through-hole 22 through which sound can be transmitted obtains a sound insulation peak in the same manner as when the sound is opened even when the sound is not covered by a membrane vibration but is covered with a member that can pass through as an acoustic wave transmitted through the air. be able to.
  • a member is generally a breathable member.
  • a screen door screen can be cited.
  • an amidology 30 mesh product manufactured by NBC Meshtec Co., Ltd. can be cited, but the present inventors have confirmed that the spectrum obtained by closing the through hole 22 does not change.
  • the net may have a lattice shape or a triangular lattice shape, and is not particularly limited or limited by the shape.
  • the size of the entire net may be larger or smaller than the size of the frame of the present invention. Further, the size of the net may be a size that covers the through holes 22 of the film 18 one by one.
  • network may be a net
  • the material may be a net made of synthetic resin, or a wire for crime prevention or radio wave shielding.
  • the air-permeable member described above is not limited to a screen door mesh, but besides a mesh, a non-woven material, a urethane material, cinsalate (manufactured by 3M), breath air (manufactured by Toyobo), dot air (Toray Industries, Inc.) Etc.).
  • a material having such air permeability it is possible to prevent insects and sand from entering from the hole, to ensure privacy such that the inside can be seen from the through hole 22, and to conceal. Sex can be imparted.
  • the soundproof structure of the present invention is basically configured as described above.
  • the soundproof structure of the present invention Since the soundproof structure of the present invention is configured as described above, it enables low-frequency shielding, which has been difficult in the conventional soundproof structure, and further adapts to noise of various frequencies from low frequencies to frequencies exceeding 1000 Hz. It also has the feature that it can design a structure that provides strong sound insulation. In addition, since the soundproof structure of the present invention is a sound insulation principle that does not depend on the mass (mass law) of the structure, it is possible to realize a very light and thin sound insulation structure compared to the conventional soundproof structure. Therefore, it can be applied to a soundproofing object for which sufficient sound insulation is difficult.
  • the soundproof structure of the present invention is a sound insulating structure that does not require a weight, is suitable for manufacturing only by providing a hole in the film, and has high robustness as a sound insulating material, as in the technique described in Patent Document 2.
  • the soundproof structure of the present invention has the following characteristics as compared with the technique described in Patent Document 2. 1. Since a weight that was a cause of increasing the mass is not necessary, a lighter sound insulation structure can be realized. 2. Since the film can be punched at high speed and easily by laser processing or punch holes, it has manufacturability. 3. Since the sound insulation characteristics hardly depend on the position and shape of the hole, stability in manufacturing is high. 4). The presence of the hole makes it possible to realize a structure in which the membrane has air permeability, that is, a sound is shielded while passing wind and heat.
  • the soundproof structure of the present invention is manufactured as follows. First, a plurality of, for example, a frame body 16 having 225 frames 14 and a sheet-like film body 20 that covers all the through holes 12 of all the frames 14 of the frame body 16 are prepared. Next, the sheet-like film body 20 is fixed to all the frames 14 of the frame body 16 with an adhesive, and the films 18 that respectively cover the through holes 12 of all the frames 14 are formed. A plurality of soundproof cells having the following structure are formed. Next, one or more holes 22 are respectively drilled in the individual films 18 of the plurality of soundproof cells by a processing method that absorbs energy such as laser processing, or a mechanical processing method that uses physical contact such as punching or needle processing. Thus, the opening 24 is formed in each soundproof cell 26. Thus, the soundproof structure 10 of the present invention can be manufactured.
  • the manufacturing method of the soundproof structure of the present invention is basically configured as described above.
  • the soundproof structure and the method of manufacturing the soundproof structure of the present invention will be specifically described based on examples.
  • the design of the soundproof structure will be described before the experiment of manufacturing the embodiment of the present invention and measuring the acoustic characteristics. Since this soundproof structure system is an interaction system between membrane vibration and sound waves in the air, analysis was performed using a coupled analysis of sound and vibration. Specifically, the design was performed using an acoustic module of COMSOL ver5.0 which is analysis software of the finite element method. First, the first natural vibration frequency was obtained by natural vibration analysis. Next, acoustic structure coupling analysis by frequency sweep was performed in the boundary of the periodic structure, and transmission loss at each frequency with respect to the sound wave incident from the front was obtained. Based on this design, the shape and material of the sample were determined. The shielding peak frequency in the experimental result agrees well with the prediction from the simulation.
  • the correspondence between the first natural vibration frequency and each physical property was obtained by taking advantage of the characteristics of the simulation that can freely change the material characteristics and the film thickness.
  • the thickness t2 (m) of the film 18 By changing the thickness t2 (m) of the film 18, the size (or radius) R2 (m) of the frame 14, the Young's modulus E2 (Pa) of the film, and the density d (kg / m 3 ) of the film as parameters B Asked.
  • the results are shown in FIG.
  • the manufacturing method of the soundproof structure of Example 1 which has the hole 22 of m) is shown.
  • a 50 ⁇ m PET film (Lumirror manufactured by Toray Industries, Inc.) was used as the film 18.
  • As the frame 14, an aluminum thickness of 3 mm ⁇ width of 3 mm was used, and the shape of the frame 14 was a square, and one processed through the square through-hole 12 having a side of 7.5 mm was used.
  • the through holes 12 of the frame structure have a total of 225 pieces of 15 ⁇ 15 pieces.
  • This frame structure was fixed to the PET film with an adhesive, and a frame / membrane structure composed of the frame 14 and the film 18 was produced.
  • the step of making the hole 22 in the film 18 having the frame / film structure was performed as follows. First, black dots were drawn on the film 18 for the purpose of light absorption using black ink. At this time, the size of the black spot was set as close as possible to the size of the hole to be opened. Next, the black spot portion of the film was irradiated with a green laser (300 mW) of a laser device (a laser diode manufactured by Nichia Corporation). Since the visible light absorptance of the PET film was sufficiently small, the laser was absorbed only in the black spot portion to generate heat of absorption, and finally a hole 22 was opened in the black spot portion. When the size of the hole 22 was measured using an optical microscope (Nikon Corporation ECLIPSE), a circular hole diameter of 200 ⁇ m could be obtained at the center of the frame 14. Thereby, the soundproof structure of Example 1 of this invention was able to be manufactured.
  • a green laser 300 mW
  • a laser device a laser diode manufactured by Nichi
  • the acoustic characteristics were measured by the transfer function method using four microphones in a self-made aluminum acoustic tube. This method conforms to “ASTM E2611-09: Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method”.
  • ASTM E2611-09 Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method.
  • As the acoustic tube for example, a tube having the same measurement principle as that of WinZac manufactured by Nittobo Acoustic Engineering Co., Ltd. was used. With this method, sound transmission loss can be measured in a wide spectral band.
  • the soundproof structure of Example 1 was placed at the measurement site of the acoustic tube, and sound transmission loss was measured in the range of 10 Hz to 40000 Hz.
  • This measurement range is measured by combining a plurality of acoustic tube diameters and distances between microphones.
  • the measurement noise at the low frequency becomes smaller.
  • the measurement becomes impossible in principle. Therefore, the measurement was performed a plurality of times while changing the distance between the microphones.
  • the acoustic tube is thick, it becomes impossible to measure due to the influence of the higher-order mode on the high frequency side. Therefore, the measurement was performed using a plurality of types of acoustic tube diameters.
  • the measurement result of the transmission loss is shown in FIG. As is clear from the results shown in FIG. 1, it was found that extremely strong shielding occurred in the vicinity of 1000 Hz.
  • the shape, size and material of the frame 14 of each of the soundproof structures of Examples 1 to 42 and Comparative Examples 1 and 2 manufactured, the type, thickness and first natural vibration frequency of the film 18, and the size, shape and number of the holes 22 Tables 3 to 5 show the maximum or maximum shielding peak frequency (hereinafter also simply referred to as shielding frequency), the transmission loss, and the values of parameters A and B of the spectra obtained in the examples and the comparative examples. Shown in
  • Example 1 The frame / membrane structure produced in Example 1 was measured using the same frame / membrane structure without making a hole. The results are shown in Table 3. Moreover, the measurement result of transmission loss is shown in FIG. Sound insulation by general mass law and rigidity law was obtained. It can be seen that this switching occurs near 2820 Hz, which matches the first natural vibration frequency of the membrane.
  • Comparative Example 2 With respect to the film
  • Examples 2 to 7 A frame / film structure was prepared in the same manner as in Example 1. Since it is known that the amount of heat generated can be changed by changing the laser irradiation time and the size of the hole 22 can be changed, the laser irradiation time / power is optimized so that 20 ⁇ m can be formed on the PET film. The desired hole 22 of up to 2000 ⁇ m could be obtained. Table 3 shows the results including the shielding frequency in the soundproof structure of each example obtained in this way. The sound insulation characteristics of Example 5 are indicated by dotted lines in FIG.
  • Example 8 In the same manner as in Example 1, after preparing the frame / membrane structure, instead of forming the hole 22 by laser irradiation, the hole 22 was physically formed by inserting a needle into the film. A hole 22 having a diameter of 200 ⁇ m could be obtained by adjusting the force. The shielding spectrum (transmission loss) of Example 8 obtained in this way was obtained without changing from Example 1. The results are shown in Table 3.
  • Example 9 The thickness of the PET film used in Example 1 was changed from a 50 ⁇ m product to a 20 ⁇ m, 100 ⁇ m, and 200 ⁇ m product, and a soundproof structure with a hole diameter of 200 ⁇ m was obtained using the same manufacturing method.
  • Table 3 shows the measurement results of the examples thus obtained.
  • the film thickness increases, the bending rigidity increases, and accordingly, the first vibration mode of the natural vibration shifts to a high frequency. Accordingly, the shielding frequency at the same hole diameter also shifted to a high frequency.
  • FIG. 8 shows the shielding spectrum of Example 10 having a thickness of 100 ⁇ m.
  • Example 12 to 17 A soundproof structure sample was produced under the same conditions as in Example 1 except that the frame size was changed. Processing was performed with one side of the square through-hole 12 being 15 mm.
  • the frame 14 itself is the same as thickness 3 mm ⁇ width 3 mm.
  • the through holes 12 of the frame 14 of the frame body 16 have a total of 64 of 8 ⁇ 8.
  • the holes 22 were processed with a laser, and the holes 22 having different hole sizes (20, 100, 200, 400, 1000, and 2000 ⁇ m) were obtained by adjusting the irradiation time and power.
  • the measurement results of Examples 12 to 15 thus obtained are shown in Table 3, and the measurement results of Examples 16 to 17 are shown in Table 4.
  • the absorption factor of the sound (energy of sound waves) of the soundproof structure sample of Example 16 was obtained.
  • the measurement method was the transfer function method using the same four microphones as in Example 1, and the absorptance was obtained from the measured transmittance and reflectance.
  • the absorption rate can be obtained from the following equation.
  • FIG. Absorptivity 1-Transmittance-Reflectance
  • the sound absorptivity of the reference soundproof structure sample without the hole 22 before the hole 22 in the middle of making the soundproof structure sample of Example 16 is drilled. was also measured. The result is shown in FIG.
  • the first natural vibration frequency is a frequency that is almost close when the ratio of the square of the thickness to the length of one side of the square is constant.
  • a soundproof structure sample was produced in the same manner as in Example 1 except that the PET film had a thickness of 200 ⁇ m.
  • the size of the hole 22 was adjusted so that Example 18 had a diameter of 200 ⁇ m and Example 19 had a diameter of 400 ⁇ m.
  • Table 4 shows the measurement results of each example thus obtained.
  • the first solid vibration frequency was obtained as 2820 Hz in the same manner as in Example 1, and a large shielding was obtained in the region of 1000 Hz or higher.
  • Example 20 Under the conditions of Example 1, the size of the frame 14 was changed to 30 mm, the thickness of the film 18 was changed to 200 ⁇ m, and the other conditions were the same including the hole size to produce a soundproof structure sample.
  • the measurement results of Example 20 thus obtained are shown in Table 4. Since the conditions of Example 20 are four times the thickness of the film 18 and twice the size of the frame 14 from the conditions of Example 14, the first vibration mode of the natural vibration is expected to be the same, and the measurement is performed. Was actually the same frequency.
  • Example 21 In Example 20, a soundproof structure sample was manufactured under the same conditions except that the film thickness was changed to 800 ⁇ m instead of 200 ⁇ m. The measurement results of Example 21 thus obtained are shown in Table 4. In Example 21, the film thickness was 16 times and the frame size was 4 times that in Example 1, and the first vibration mode of natural vibration was expected to be the same. When measured, a transmission peak (minimum) actually appeared at the same frequency of 2820 Hz. The transmission loss peak (maximum) showed a large peak at 708 Hz. This transmission loss spectrum is shown in FIG.
  • Example 22 A soundproof structure sample was prepared in the same manner as in Example 21 except that the hole diameter was changed from 200 ⁇ m to 1600 ⁇ m. The measurement results of Example 22 thus obtained are shown in Table 4. Even when the size of the frame 14 was large, 2000 Hz or more could be shielded.
  • Example 23 In Example 1, instead of making a single through hole in the center, four holes with a hole diameter of 200 ⁇ m were made in the center. Others produced a soundproof structure sample under the same conditions as in Example 1. The measurement results of Example 23 obtained in this way are shown in Table 4. The transmission loss spectra of Example 23 and Example 5 are shown in FIG. The shielding frequency was 2000 Hz in agreement with the single hole having a hole diameter of 400 ⁇ m in Example 5. That is, when the through holes 22 on the film 18 in the frame 14 have the same aperture ratio without changing other conditions, the shielding spectra in the case of the single hole 22 and the plurality of holes 22 almost coincided.
  • Example 1 In Example 1, instead of making a single through hole in the center, the position where the hole 22 having a hole diameter of 200 ⁇ m was made a position shifted on the diagonal line in the square frame. Others produced a soundproof structure sample under the same conditions as in Example 1. Table 4 shows the measurement results of each example thus obtained. The shielding frequency is not different from that in Example 1 with the hole 22 in the center, and this soundproofing system reveals that it is very robust with respect to the position of the hole 22 on the membrane 18.
  • Example 31 In Example 1, instead of making a single through hole, three holes having a hole diameter of 200 ⁇ m and four holes having a hole diameter of 100 ⁇ m were formed in the same soundproof cell 26. Others produced a soundproof structure sample under the same conditions as in Example 1. Table 5 shows the measurement results of Example 31 thus obtained.
  • the shielding frequency is 2000 Hz, which is the same shielding frequency as in the case of the single hole having a hole total of 400 ⁇ m in Example 5.
  • the total hole area in the cell in Example 5 and this example is the same.
  • Example 32 In Example 1, instead of using aluminum as a frame material, acrylic processed into a frame shape was used. Others produced a soundproof structure sample under the same conditions as in Example 1. The measurement results of Example 32 thus obtained are shown in Table 5. The same effect was obtained even if the material of the frame 14 was changed.
  • Example 33 In Example 1, a polyimide film was used in place of the PET film as the film material. Others produced a soundproof structure sample under the same conditions as in Example 1. The measurement results of Example 33 obtained in this way are shown in Table 5. As in the case of the PET film, the polyimide film has a soundproof structure including the frame 14, the film 18, and the holes 22, and the transmission loss has a large peak.
  • Example 34 In Example 1, instead of the aluminum frame processed into the frame shape of the square through hole 12, an aluminum frame processed into the frame shape of the circular through hole 12 was used. Others produced a soundproof structure sample under the same conditions as in Example 1. The measurement results of Example 34 thus obtained are shown in Table 5.
  • Example 35 In Example 1, the shape of the black ink drawn on the PET film was made to be a square. At this time, the length of one side was set to 200 [( ⁇ ) / 2] ( ⁇ m) so that the area of the hole 22 would be the same as in Example 1 (the circular equivalent diameter is defined as the diameter of a circle of the same area) ). At this time, the ink jet method was used for drawing. Irradiation was performed so that the laser diameter was reduced to about 20 ⁇ m and black spots were scanned. Square holes 22 could be obtained by adjusting the laser power. The measurement results of Example 35 obtained in this way are shown in Table 5. As for the shielding frequency, the same result as in Example 1 was obtained. This indicates that the shielding characteristic does not depend on the shape of the hole 22 in the same area.
  • Example 36 In Example 35, a rectangular black ink shape was used instead of the square black shape. The long side was 200 ⁇ ( ⁇ m) and the short side was 200 [( ⁇ ) / 4] ( ⁇ m) so as to have the same area. A rectangular hole was obtained in the same manner as in Example 35. The measurement results of Example 36 thus obtained are shown in Table 5.
  • Example 37 In Example 1, a soundproof structure sample was prepared in the same manner as in Example 1 except that an aluminum foil thickness of 20 ⁇ m was used as the film 18 instead of the PET film. The measurement results of Example 37 thus obtained are shown in Table 5. The through hole 22 was formed by a needle. At this time, both the film 18 and the frame 14 are made of aluminum and are made of the same material. Since aluminum has a larger Young's modulus / density than a general polymer film material, a peak appears on the high frequency side even if it is thinner than a PET film.
  • Example 38 In Example 1, instead of processing the same hole diameter in all the cells, a soundproof structure sample including soundproof cells 26 having holes 22 having a diameter of 200 ⁇ m and holes 22 having a diameter of 100 ⁇ m so as to be staggered was produced. The measurement results of Example 38 obtained in this way are shown in Table 5. Moreover, the transmission loss spectrum of Example 38 is shown in FIG. At this time, the maximum (peak) frequency of shielding was 1258 Hz. According to Example 1 and Example 4, since the shielding frequency of the single soundproof cell 26 having the respective holes 22 was 1412 Hz and 1000 Hz, shielding could be realized at a frequency intermediate between them.
  • Example 34 the diameter of the circular through-hole 12 of the frame 14 was changed from 7.5 mm to 4 mm, 2 mm, and 2 mm, respectively, and the diameter of the circular hole 22 was changed from 200 mm to 40 mm only in Example 41.
  • Table 5 shows the measurement results of the examples thus obtained. It can be seen that the first natural vibration frequency and the shielding frequency are both greatly shifted to the high frequency side by reducing the size of the frame.
  • Example 42 As the acoustic tube, an acoustic tube having an inner side length of 15 mm was prepared.
  • Example 18 instead of using the 15 ⁇ 15 frame 14 in Example 18 to prepare a soundproof structure sample, a single 15 mm frame 14 made of aluminum (Al) was prepared, and the other was the same as in Example 18, A 200 ⁇ m thick PET film as the film 18 was passed through a 200 ⁇ m diameter circular hole as a hole 22 to prepare a sample. At this time, since the acoustic tube and the sample frame 14 are exactly the same size, the acoustic tube is used for a soundproof structure consisting of only one cell structure by matching the sample frame 14 with the sample holder of the acoustic tube. The measurement was performed so that it could be measured. The results are shown in Table 5. The result was the same as the measurement result of Example 18.
  • the soundproof structures of Examples 1 to 42 of the present invention differ from Comparative Examples 1 and 2 in that the transmission is performed at the shielding peak frequency on the lower frequency side than the first natural vibration frequency. Since there is a shielding peak at which the loss becomes a peak, it is possible to selectively isolate a frequency band having a certain width around the shielding peak frequency. Further, as is clear from FIG. 16, in the reference soundproof structure sample in the absence of the hole 22 in the middle of preparation of the soundproof structure sample of Example 16, the sound caused by the large vibration of the membrane at the first natural vibration frequency of the system Only the absorption peak was large. On the other hand, as is clear from FIG.
  • the hole 22 was drilled, so that the absorption rate on the lower frequency side was increased overall, and the absorption performance was improved. I understand. It was found that, in the soundproof structure sample of Example 16, greater absorption occurred on the low frequency side than the shielding peak caused by the hole 22 in particular. From the above, it can be seen that the soundproof structure of the present invention has an excellent sound insulation characteristic that can shield a specific frequency component aimed at extremely strongly, and can further increase the absorption of the component on the lower frequency side. It was.

Abstract

A sound insulation structure having one or more sound insulation cells, wherein: each of the one or more sound insulation cells is provided with a frame having through holes, a film affixed to the frame, and an opening part formed from one or more holes penetrating the film; both end parts of the through holes in the frame are not closed; and the sound insulation structure has, on the low-frequency side of a first natural resonance frequency for the film of the one or more sound insulation cells, a masking peak frequency that is determined due to the opening parts of the one or more sound insulation cells and for which transmission loss is maximum, and selectively insulates sound of a fixed frequency band centered on the peak masking frequency. Thus, it is possible to provide a sound insulating structure that is lightweight and thin, is not dependent on the position and shape of holes, has high robustness as an acoustic insulator, has stability, has air permeability, does not retain heat, and has excellent manufacturing suitability, and a manufacturing method for the sound insulating structure.

Description

防音構造、及び防音構造の製造方法Soundproof structure and method for manufacturing soundproof structure
 本発明は、防音構造、及び防音構造の製造方法に係り、詳しくは、枠と、枠に固定された膜と、膜に穿孔された1以上の穴からなる開口部とを有する防音セルが1つ、又は2次元的に配置された複数からなり、ターゲットとなる周波数の音を選択的に強く遮蔽するための防音構造、及びこのような防音構造を製造するための防音構造の製造方法に関する。 The present invention relates to a soundproof structure and a method of manufacturing the soundproof structure. Specifically, the soundproof cell includes a frame, a film fixed to the frame, and an opening made of one or more holes perforated in the film. The present invention relates to a soundproof structure that selectively and strongly shields a target frequency sound, and a method of manufacturing a soundproof structure for manufacturing such a soundproof structure.
 一般的な遮音材は、質量が重ければ重いほど音を良く遮蔽するために、良好な遮音効果を得るために、遮音材自体が大きく重くなってしまう。一方、特に、低周波成分の音を遮蔽することは困難である。一般に、この領域は、質量則と呼ばれ周波数が2倍になると遮蔽が6dB大きくなることが知られている。
 このように、従来のほとんどの防音構造は、構造の質量で遮音を行っていたために大きく重くなりまた低周波の遮蔽が困難という欠点があった。
 このため、機器、自動車、及び一般家庭など様々な場面に対応する遮音材として軽くて薄い遮音構造が求められている。そこで、近年、薄く軽い膜構造に枠を取り付けて膜の振動を制御する遮音構造が注目されている(特許文献1及び2参照)。
 この構造の場合、遮音の原理が上記質量則と異なる剛性則となるため薄い構造でも低周波成分をより遮蔽できる。この領域は、剛性則と呼ばれ、枠部分で膜振動が固定されることによって膜が枠開口部と一致する有限サイズのときと同様の振る舞いとなる。
In general, the sound insulation material shields sound better as the mass is heavier. Therefore, the sound insulation material itself becomes larger and heavier in order to obtain a good sound insulation effect. On the other hand, it is particularly difficult to shield low frequency component sounds. In general, this region is called a mass law, and it is known that the shielding increases by 6 dB when the frequency is doubled.
As described above, most conventional soundproof structures have a drawback that they are large and heavy because sound is insulated by the mass of the structure, and it is difficult to shield at low frequencies.
For this reason, a light and thin sound insulation structure is required as a sound insulation material corresponding to various scenes such as equipment, automobiles, and general homes. Therefore, in recent years, attention has been paid to a sound insulation structure in which a frame is attached to a thin and light membrane structure to control the vibration of the membrane (see Patent Documents 1 and 2).
In the case of this structure, since the principle of sound insulation is a rigidity law different from the above mass law, the low frequency component can be further shielded even with a thin structure. This region is called a rigidity law and behaves the same as when the membrane has a finite size matching the frame opening by fixing the membrane vibration at the frame portion.
 特許文献1においては、貫通孔が形成された枠体と、該貫通孔の一方の開口を覆う吸音材を有し、吸音材の第1の貯蔵弾性率E1が9.7×10以上であり、第2の貯蔵弾性率E2が346以下である吸音体が開示されている(要約、請求項1、段落[0005]~[0007]、[0034]等参照)。なお、吸音材の貯蔵弾性率は、吸音により吸音材に生じたエネルギのうち内部に保存する成分を意味する。
 特許文献1では、実施例では、配合の材料を樹脂又は樹脂とフィラーの混合物とする吸音材を用いることにより、吸音体の大型化を招くことなく、吸音率のピーク値が0.5~1.0であり、ピーク周波数が290~500Hzであり、500Hz以下の低周波領域において高度な吸音効果を達成することができるとしている。
In patent document 1, it has the frame body in which the through-hole was formed, and the sound-absorbing material which covers one opening of this through-hole, and the 1st storage elastic modulus E1 of a sound-absorbing material is 9.7x10 6 or more. There is disclosed a sound absorber having a second storage elastic modulus E2 of 346 or less (see summary, claim 1, paragraphs [0005] to [0007], [0034], etc.). The storage elastic modulus of the sound absorbing material means a component stored inside the energy generated in the sound absorbing material due to sound absorption.
In Patent Document 1, in the examples, the peak value of the sound absorption coefficient is 0.5 to 1 without increasing the size of the sound absorber by using a sound absorbing material in which the blended material is resin or a mixture of resin and filler. 0.0, the peak frequency is 290 to 500 Hz, and a high sound absorption effect can be achieved in a low frequency region of 500 Hz or less.
 また、特許文献2には、複数の個々のセルに分割された、音響的に透過性のある2次元の剛性フレームと、剛性フレームに固定されたフレキシブルな材料のシートと、複数の錘と、を具備する音響減衰パネルであって、複数の個々のセルは、大体2次元セルであり、各錘は、各セルにそれぞれ錘が設けられるようにフレキシブルな材料のシートに固定され、音響減衰パネルの共鳴周波数は、個々の各セルの2次元形状、フレキシブルな材料の柔軟性、及びその上の各錘によって定義される音響減衰パネル、及び音響減衰構造が開示されている(請求項1、12、及び15、図4、第4欄等参照)。
 なお、特許文献2には、従来と比較して、この音響減衰パネルは以下の利点があることが開示されている。即ち、(1)音響パネルは非常に薄くできる。(2)音響パネルは非常に軽量(密度が低い)にできる。(3)パネルは広い周波数範囲にわたって質量則に従わないで広い周波数の局部的共振音響材料(LRSM)を形成するために一緒に積層でき、特に、これは500Hzよりも低い周波数で質量則から外れることができる。(4)パネルは容易に、廉価に製造できる(第5欄第65行~第6欄第5行参照)。
Patent Document 2 discloses an acoustically transparent two-dimensional rigid frame divided into a plurality of individual cells, a sheet of flexible material fixed to the rigid frame, a plurality of weights, A plurality of individual cells are roughly two-dimensional cells, and each weight is fixed to a sheet of flexible material so that each cell is provided with a weight. Are defined by the two-dimensional shape of each individual cell, the flexibility of the flexible material, and each weight thereon, and an acoustic attenuation structure (claims 1 and 12). , And 15, see FIG. 4, column 4, etc.).
Patent Document 2 discloses that this acoustic attenuation panel has the following advantages as compared with the conventional art. (1) The acoustic panel can be made very thin. (2) The acoustic panel can be made very light (low density). (3) Panels can be laminated together to form a wide frequency local resonant acoustic material (LRSM) without obeying the mass law over a wide frequency range, and in particular this deviates from the mass law at frequencies below 500 Hz be able to. (4) Panels can be manufactured easily and inexpensively (see column 5, line 65 to column 6, line 5).
特許第4832245号公報Japanese Patent No. 4832245 米国特許第7395898号公報(対応日本特許公開:          特開2005-250474号公報参照)US Pat. No. 7,395,898 (corresponding Japanese patent publication: see JP-A-2005-250474)
 ところで、特許文献1に開示の吸音体では、軽量で、吸音率のピーク値が0.5以上と高く、ピーク周波数が500Hz以下の低周波領域において高度な吸音効果を達成することができるが、吸音材の選択の幅が狭く、難しいという問題があった。
 また、このような吸音体の吸音材は、枠体の貫通孔を完全にふさぐものであるため、風、及び熱を通す能力がなく熱がこもりがちとなり、特許文献1に開示の特に機器及び自動車の遮音に向かないという問題があった。
 また、特許文献1に開示の吸音体の遮音性に関しては通常の剛性則もしくは質量則にしたがってなだらかに変化してしまうため、モータ音など特定の周波数成分がパルス的に強く発することの多い一般の機器や自動車において有効に用いることが困難であった。
Incidentally, the sound absorber disclosed in Patent Document 1 is lightweight, has a high sound absorption coefficient peak value as high as 0.5 or higher, and can achieve a high sound absorption effect in a low frequency region where the peak frequency is 500 Hz or less. There was a problem that the selection range of the sound absorbing material was narrow and difficult.
In addition, since the sound absorbing material of such a sound absorbing body completely covers the through hole of the frame body, the sound and the heat cannot easily pass through, and the heat tends to be stored. There was a problem that it was not suitable for sound insulation of cars.
In addition, the sound insulation of the sound absorber disclosed in Patent Document 1 changes gently according to a normal rigidity law or mass law, and therefore, a specific frequency component such as a motor sound often emits strongly in a pulsed manner. It has been difficult to use effectively in equipment and automobiles.
 また、特許文献2では、音響減衰パネルは、非常に薄く軽量で低密度にでき、500Hzよりも低い周波数で使用でき、質量密度の法則から外れることができ、容易に廉価に製造できるとしているが、機器、自動車、及び一般家庭などで求められている更に軽く薄い遮音構造としては、以下のような問題点があった。
 特許文献2に開示の音響減衰パネルでは、膜に錘が必須であるため、構造が重いものとなり機器、自動車、及び一般家庭などに用いることが難しい。
 錘を各セル構造に配置するための容易な手段がなく、製造適性がない。
 錘の重さ、及び膜上での位置に遮蔽の周波数・大きさが強く依存するため、遮音材としてのロバスト性が低く安定性がない。
 膜は非通気膜と明示してあるため、風及び熱を通す能力がなく熱がこもりがちとなり、特に機器及び自動車の遮音に向かない。
Further, in Patent Document 2, the sound attenuation panel is very thin, lightweight and low in density, can be used at a frequency lower than 500 Hz, can be out of the law of mass density, and can be easily manufactured at low cost. However, the lighter and thinner sound insulation structure required in equipment, automobiles and general households has the following problems.
In the sound attenuating panel disclosed in Patent Document 2, since a weight is essential for the film, the structure is heavy, and it is difficult to use it in equipment, automobiles, general households, and the like.
There is no easy means for placing the weight in each cell structure, and there is no suitability for manufacturing.
Since the shielding frequency and size are strongly dependent on the weight of the weight and the position on the film, the robustness as a sound insulating material is low and there is no stability.
Since the membrane is clearly designated as a non-breathable membrane, it has no ability to transmit wind and heat, and heat tends to be trapped, which is not particularly suitable for sound insulation of equipment and automobiles.
 本発明の目的は、上記従来技術の問題点を解消し、軽量で薄く、その穴の位置及び形状に遮蔽周波数及び大きさ等の遮音特性が依存することなく、遮音材としてのロバスト性が高く、かつ安定性があり、通気性があり、風及び熱を通すことができ、熱がこもることが無く、機器、自動車、及び一般家庭の用途に適し、製造適性に優れた防音構造、このような防音構造を確実、かつ容易に製造することができる防音構造の製造方法を提供することにある。
 なお、本発明において、「防音」とは、音響特性として、「遮音」と「吸音」の両方の意味を含むが、特に、「遮音」を言い、「遮音」は、「音を遮蔽する」こと、即ち「音を透過させない」こと、したがって、音を「反射」すること(音響の反射)、及び音を「吸収」すること(音響の吸収)を含めて言う(三省堂 大辞林(第三版)、及び日本音響材料学会のウェブページのhttp://www.onzai.or.jp/question/soundproof.html、並びにhttp://www.onzai.or.jp/pdf/new/gijutsu201312_3.pdf参照)。
 以下では、基本的に、「反射」と「吸収」とを区別せずに、両者を含めて「遮音」及び「遮蔽」と言い、両者を区別する時に、「反射」及び「吸収」と言う。
The object of the present invention is to solve the above-mentioned problems of the prior art, lightweight and thin, and the sound insulation properties such as the shielding frequency and size do not depend on the position and shape of the hole, and the robustness as a sound insulation material is high. Soundproof structure that is stable, breathable, can pass wind and heat, has no heat accumulation, is suitable for use in equipment, automobiles and general households, and has excellent manufacturability Another object of the present invention is to provide a method of manufacturing a soundproof structure that can reliably and easily manufacture a soundproof structure.
In the present invention, the term “soundproof” includes both the meanings of “sound insulation” and “sound absorption” as acoustic characteristics. In particular, “sound insulation” refers to “sound insulation”, and “sound insulation” “sounds out”. Including “does not transmit sound”, and therefore “reflects” sound (reflection of sound) and “absorbs” sound (absorption of sound) (Sanseido Ojirin (third edition) ), And http://www.onzai.or.jp/question/soundproof.html and http://www.onzai.or.jp/pdf/new/gijutsu201312_3.pdf ).
In the following, “reflection” and “absorption” are basically referred to as “sound insulation” and “shielding”, and the two are referred to as “reflection” and “absorption”. .
 上記目的を達成するために、本発明の防音構造は、1以上の防音セルを有する防音構造であって、1以上の防音セルの各々は、貫通孔をそれぞれ有する枠と、枠に固定された膜と、膜に穿孔された1以上の穴からなる開口部と、を備え、枠の貫通孔の両方の端部は、共に閉塞されておらず、防音構造は、1以上の防音セルの膜の第1固有振動周波数より低周波側に、1以上の防音セルの開口部に起因して定まり、かつ透過損失が極大となる遮蔽ピーク周波数を有し、遮蔽ピーク周波数を中心とする一定の周波数帯域の音を選択的に防音することを特徴とする。 In order to achieve the above object, the soundproof structure of the present invention is a soundproof structure having one or more soundproof cells, each of the one or more soundproof cells being fixed to the frame and a frame each having a through hole. A film and an opening made of one or more holes perforated in the film, both ends of the through-hole of the frame are not closed, and the soundproof structure is a film of one or more soundproof cells A constant frequency centered around the shielding peak frequency, having a shielding peak frequency that is determined due to the opening of one or more soundproofing cells on the lower frequency side than the first natural vibration frequency of the sound and has a maximum transmission loss It is characterized in that the sound of the band is selectively soundproofed.
 ここで、1以上の防音セルは、2次元的に配置された複数の防音セルであることが好ましい。
 また、第1固有振動周波数は、1以上の防音セルの枠の幾何学的形態と、1以上の防音セルの膜の剛性とによって定まり、遮蔽ピーク周波数は、1以上の防音セルの開口部の面積に応じて定まるものであることが好ましい。
 また、第1固有振動周波数は、1以上の防音セルの枠の形状及び寸法と、1以上の防音セルの膜の厚さ及び可撓性とによって定まり、遮蔽ピーク周波数は、1以上の防音セルの開口部の平均面積率に応じて定まるものであることが好ましい。
 また、第1固有振動周波数は、10Hz~100000Hzの範囲内に含まれることが好ましい。
Here, the one or more soundproof cells are preferably a plurality of soundproof cells arranged two-dimensionally.
The first natural vibration frequency is determined by the geometric shape of the frame of the one or more soundproofing cells and the rigidity of the film of the one or more soundproofing cells, and the shielding peak frequency is the opening of the one or more soundproofing cells. It is preferable to be determined according to the area.
The first natural vibration frequency is determined by the shape and size of the frame of the one or more soundproof cells and the thickness and flexibility of the film of the one or more soundproof cells, and the shielding peak frequency is one or more of the soundproof cells. It is preferable to be determined according to the average area ratio of the openings.
The first natural vibration frequency is preferably included in the range of 10 Hz to 100,000 Hz.
 また、枠の円相当半径をR1(mm)、膜の厚みをt1(μm)、膜のヤング率をE1(GPa)、開口部の円相当半径をr(μm)とする時、下記式(1)で表されるパラメータAが、0.07000以上759.1以下であることが好ましい。
   A=√(E1)*(t11.2)*(ln(r)-e)/(R12.8)…(1)
 ここで、eは、ネイピア数を示し、ln(x)は、eを底としたxの対数である。
 また、枠の円相当半径をR2(m)、膜の厚みをt2(m)、膜のヤング率をE2(Pa)、膜の密度をd(kg/m)とする時、下記式(2)で表されるパラメータBが、15.47以上23500以下であることが好ましい。
   B=t2/R2*√(E2/d)               …(2)
Further, when the radius corresponding to the circle of the frame is R1 (mm), the thickness of the film is t1 (μm), the Young's modulus of the film is E1 (GPa), and the radius of the circle is equivalent to r (μm), It is preferable that the parameter A represented by 1) is 0.07000 or more and 759.1 or less.
A = √ (E1) * (t1 1.2 ) * (ln (r) −e) / (R1 2.8 ) (1)
Here, e indicates the number of Napiers, and ln (x) is the logarithm of x with e as the base.
In addition, when the equivalent circle radius of the frame is R2 (m), the thickness of the film is t2 (m), the Young's modulus of the film is E2 (Pa), and the density of the film is d (kg / m 3 ), The parameter B represented by 2) is preferably 15.47 or more and 23500 or less.
B = t2 / R2 2 * √ (E2 / d) (2)
 また、1以上の防音セルの開口部は、1つの穴で構成されることが好ましい。
 また、1以上の防音セルの開口部は、同一サイズの複数の穴で構成されることが好ましい。
 また、1以上の防音セルが、2次元的に配置された複数の防音セルである時、複数の防音セルの開口部は、その70%以上が同一サイズの穴で構成されることが好ましい。
 また、1以上の防音セルの開口部の1以上の穴のサイズは、2μm以上であることが好ましい。
 また、1以上の防音セルの枠の平均サイズは、遮蔽ピーク周波数に対応する波長サイズ以下であることが好ましい。
Moreover, it is preferable that the opening part of one or more soundproof cells is comprised by one hole.
Moreover, it is preferable that the opening part of one or more soundproof cells is comprised by the several hole of the same size.
Further, when one or more soundproof cells are a plurality of soundproof cells arranged two-dimensionally, it is preferable that 70% or more of the openings of the plurality of soundproof cells are configured by holes of the same size.
In addition, the size of the one or more holes in the opening of the one or more soundproof cells is preferably 2 μm or more.
Moreover, it is preferable that the average size of the frame of one or more soundproof cells is below the wavelength size corresponding to a shielding peak frequency.
 また、1以上の防音セルの開口部の1以上の穴は、エネルギを吸収する加工方法によって穿孔された穴であることが好ましく、また、エネルギを吸収する加工方法は、レーザ加工であることが好ましい。
 また、1以上の防音セルの開口部の1以上の穴は、物理的接触による機械加工方法によって穿孔された穴であることが好ましく、また、機械加工方法は、パンチング、又は針加工であることが好ましい。
Moreover, it is preferable that the one or more holes in the opening of the one or more soundproof cells are holes drilled by a processing method that absorbs energy, and the processing method that absorbs energy is laser processing. preferable.
Moreover, it is preferable that the one or more holes in the opening of the one or more soundproofing cells are holes drilled by a machining method using physical contact, and the machining method is punching or needle processing. Is preferred.
 また、膜は、空気に対して不浸透性であることが好ましい。
 また、防音セルの開口部の1つの穴は、膜の中心に設けられていることが好ましい。
 また、膜は、可撓性のある弾性材料製であることが好ましい。
 また、1以上の防音セルが、2次元的に配置された複数の防音セルである時、複数の防音セルの複数の枠は、2次元的に繋がるように配置された1つの枠体によって構成されたものであることが好ましい。
 また、1以上の防音セルが、2次元的に配置された複数の防音セルである時、複数の防音セルの複数の膜は、複数の防音セルの複数の枠を覆う1枚のシート状の膜体によって構成されることが好ましい。
The membrane is preferably impermeable to air.
Moreover, it is preferable that one hole of the opening of the soundproof cell is provided at the center of the film.
The membrane is preferably made of a flexible elastic material.
Further, when one or more soundproof cells are a plurality of soundproof cells arranged two-dimensionally, a plurality of frames of the plurality of soundproof cells are constituted by one frame body arranged so as to be two-dimensionally connected. It is preferred that
Further, when the one or more soundproof cells are a plurality of soundproof cells arranged two-dimensionally, the plurality of films of the plurality of soundproof cells are in the form of a sheet covering a plurality of frames of the plurality of soundproof cells. It is preferable to be constituted by a film body.
 また、上記目的を達成するために、本発明の防音構造の製造方法は、上記防音構造を製造するに際し、1以上の防音セルの開口部の1以上の穴を、各防音セルの膜に、エネルギを吸収する加工方法、又は物理的接触による機械加工方法によって穿孔したことを特徴とする。
 また、エネルギを吸収する加工方法は、レーザ加工であり、機械加工方法は、パンチング、又は針加工であることが好ましい。
In order to achieve the above object, the method for producing a soundproof structure according to the present invention, when producing the soundproof structure, has one or more holes in the opening of one or more soundproof cells in the film of each soundproof cell. It is characterized by drilling by a machining method that absorbs energy or a machining method by physical contact.
Moreover, it is preferable that the processing method which absorbs energy is laser processing, and the machining method is punching or needle processing.
 本発明によれば、軽量で薄く、その穴の位置及び形状に遮蔽の周波数及び大きさ等の遮音特性が依存することなく、遮音材としてのロバスト性が高く、かつ安定性があり、通気性があり、風及び熱を通すことができ、熱がこもることが無く、機器、自動車、及び一般家庭の用途に適し、製造適性に優れた防音構造を提供することができる。
 また、本発明によれば、このような防音構造を確実、かつ容易に製造することができる。
 特に、本発明によれば、膜構造及び枠の剛性則遮蔽構造の膜部分にごく小さな穴を設けることで任意の狙った周波数成分を極めて強く遮蔽し、即ち反射かつ/又は吸収することができる。
 また、本発明によれば、質量則でも、剛性則でも、薄く軽い構造では遮蔽することが一般に困難であり、かつ人の耳に大きく聞こえる領域である1000Hz付近に関しても大きな遮音を行うことができる。
According to the present invention, it is lightweight and thin, and the sound insulation properties such as the frequency and size of the shielding do not depend on the position and shape of the hole, and the robustness as the sound insulation material is high and stable, and the air permeability is good. Therefore, it is possible to provide a soundproof structure suitable for use in equipment, automobiles, and general households, and having excellent manufacturability.
Further, according to the present invention, such a soundproof structure can be reliably and easily manufactured.
In particular, according to the present invention, by providing a very small hole in the film portion of the film structure and the rigidity law shielding structure of the frame, any aimed frequency component can be shielded very strongly, that is, reflected and / or absorbed. .
Further, according to the present invention, it is generally difficult to shield with a thin and light structure, whether it is a mass law or a rigidity law, and a large sound insulation can be performed even in the vicinity of 1000 Hz, which is a region that can be heard loudly by human ears. .
 また、本発明によれば、膜に穴をあけるだけで、強い遮音構造を実現することができる。
 また、本発明によれば、特許文献2に記載の音響減衰パネル及び構造に対して、質量を重くしてしまう要因であった錘が必要ないため、より軽い遮音構造を実現できる。
 また、本発明によれば、穴が存在することで膜が通気性をもち、すなわち風や熱を通しながら音を遮蔽し、即ち反射かつ/又は吸収する構造を実現できる。
 また、本発明によれば、レーザ加工、及びパンチ穴加工により、高速かつ容易に膜に穴をあけることができるために、製造適性を有する。
 また、本発明によれば、穴の位置や形状に遮音特性がほとんど依存しないため、製造において安定性が高いという利点がある。
In addition, according to the present invention, a strong sound insulation structure can be realized simply by making a hole in the film.
In addition, according to the present invention, a lighter sound insulation structure can be realized because the weight, which is a cause of increasing the mass, is not required for the acoustic attenuation panel and structure described in Patent Document 2.
In addition, according to the present invention, it is possible to realize a structure in which the film has air permeability due to the presence of the holes, that is, the sound is shielded, that is, reflected and / or absorbed while passing wind or heat.
In addition, according to the present invention, a hole can be easily formed in a film at a high speed by laser processing and punch hole processing, and therefore, it has manufacturability.
Further, according to the present invention, since the sound insulation characteristics hardly depend on the position and shape of the hole, there is an advantage that the stability is high in manufacturing.
本発明の一実施形態に係る防音構造の一例を模式的に示す平面図である。It is a top view showing typically an example of soundproof structure concerning one embodiment of the present invention. 図1に示す防音構造のII-II線で切断した模式的断面図である。FIG. 2 is a schematic cross-sectional view taken along line II-II of the soundproof structure shown in FIG. 本発明の他の実施形態に係る防音構造の一例を模式的に示す平面図である。It is a top view which shows typically an example of the soundproof structure which concerns on other embodiment of this invention. 本発明の他の実施形態に係る防音構造の一例を模式的に示す平面図である。It is a top view which shows typically an example of the soundproof structure which concerns on other embodiment of this invention. 本発明の他の実施形態に係る防音構造の一例を模式的に示す平面図である。It is a top view which shows typically an example of the soundproof structure which concerns on other embodiment of this invention. 本発明の実施例1の防音構造の周波数に対する透過損失で表される遮音特性を示すグラフである。It is a graph which shows the sound insulation characteristic represented by the transmission loss with respect to the frequency of the soundproof structure of Example 1 of this invention. 比較例1の防音構造の遮音特性を示すグラフである。5 is a graph showing sound insulation characteristics of the soundproof structure of Comparative Example 1. 本発明の実施例10の防音構造の遮音特性を示すグラフである。It is a graph which shows the sound insulation characteristic of the soundproof structure of Example 10 of this invention. 本発明の実施例21の防音構造の遮音特性を示すグラフである。It is a graph which shows the sound insulation characteristic of the soundproof structure of Example 21 of this invention. 本発明の実施例5及び23の防音構造の遮音特性を示すグラフである。It is a graph which shows the sound insulation characteristic of the soundproof structure of Example 5 and 23 of this invention. 本発明の実施例38の防音構造の遮音特性を示すグラフである。It is a graph which shows the sound insulation characteristic of the soundproof structure of Example 38 of this invention. 本発明の防音構造のパラメータAに対する遮蔽周波数を示すグラフである。It is a graph which shows the shielding frequency with respect to the parameter A of the soundproof structure of this invention. 本発明の防音構造のパラメータBに対する第1固有振動周波数を示すグラフである。It is a graph which shows the 1st natural vibration frequency with respect to parameter B of the soundproof structure of this invention. 比較例2の防音構造の遮音特性を示すグラフである。5 is a graph showing sound insulation characteristics of a soundproof structure of Comparative Example 2. 本発明の実施例16の防音構造の吸収特性を示すグラフである。It is a graph which shows the absorption characteristic of the soundproof structure of Example 16 of this invention. 実施例16の防音構造の穴を開ける前の参考防音構造の吸収特性を示すグラフである。It is a graph which shows the absorption characteristic of the reference soundproof structure before opening the hole of the soundproof structure of Example 16.
 以下に、本発明に係る防音構造、及び防音構造の製造方法を添付の図面に示す好適実施形態を参照して詳細に説明する。
 図1は、本発明の一実施形態に係る防音構造の一例を模式的に示す平面図であり、図2は、図1に示す防音構造のII-II線で切断した模式的な断面図である。図3~図5は、それぞれ本発明の他の実施形態に係る防音構造の一例を模式的に示す平面図である。
Hereinafter, a soundproof structure and a method for manufacturing the soundproof structure according to the present invention will be described in detail with reference to preferred embodiments shown in the accompanying drawings.
FIG. 1 is a plan view schematically showing an example of a soundproof structure according to an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view taken along line II-II of the soundproof structure shown in FIG. is there. 3 to 5 are plan views schematically showing an example of a soundproof structure according to another embodiment of the present invention.
 図1及び図2に示す本発明の防音構造10は、貫通孔12をそれぞれ有し、2次元的に配置された複数、図示例では16個の枠14を形成する枠体16と、それぞれの枠14の貫通孔12を覆うようにそれぞれの枠14に固定される、複数、図示例では16個の膜18を形成するシート状の膜体20と、それぞれの枠14内の膜18に貫通するように穿孔された1以上、図示例では1個の穴22からなる複数、図示例では16の開口部24とを有する。
 防音構造10において、1つの枠14と、この枠14に固定された膜18と、この膜18に設けられた開口部24とは、1つの防音セル26を構成する。このため、本発明の防音構造10は、複数、図示例では、16個の防音セル26によって構成される。
 図示例の防音構造10は、複数の防音セル26によって構成されるものであるが、本発明はこれに限定されず、1つの枠14と、1つの膜18と、1つの開口部24とからなる1つの防音セル26によって構成されるものであっても良い。
The soundproof structure 10 of the present invention shown in FIGS. 1 and 2 has a through-hole 12 and a plurality of two-dimensionally arranged frame bodies 16 that form 16 frames 14 in the illustrated example. A plurality of, in the illustrated example, a sheet-like film body 20 forming 16 films 18 fixed to each frame 14 so as to cover the through holes 12 of the frames 14, and the films 18 in each frame 14 are penetrated. In the illustrated example, there are a plurality of apertures 24 formed by one hole 22 and 16 openings 24 in the illustrated example.
In the soundproof structure 10, one frame 14, a film 18 fixed to the frame 14, and an opening 24 provided in the film 18 constitute one soundproof cell 26. For this reason, the soundproof structure 10 of the present invention is constituted by a plurality of, in the illustrated example, 16 soundproof cells 26.
The soundproof structure 10 in the illustrated example is configured by a plurality of soundproof cells 26, but the present invention is not limited to this, and includes one frame 14, one film 18, and one opening 24. A single soundproof cell 26 may be used.
 枠14は、厚みのある板状部材15で環状に囲むように形成され、内部に貫通孔12を有し、少なくともの一方の側において貫通孔12を覆うように膜18を固定するためのもので、この枠14に固定された膜18の膜振動の節となるものである。したがって、枠14は、膜18に比べて、剛性が高く、具体的には、単位面積当たりの質量及び剛性は、共に高い必要がある。
 枠14の形状は、膜18の全外周を抑えることができるように膜18を固定できる閉じた連続した形状であることが好ましいが、本発明は、これに限定されず、枠14が、これに固定された膜18の膜振動の節となるものであれば、一部が切断され、不連続な形状であっても良い。即ち、枠14の役割は、膜18を固定して膜振動を制御することにあるため、枠14に小さな切れ目が入っていても、極わずかに接着していない部位が存在していても効果を発揮する。
The frame 14 is formed so as to be annularly surrounded by a thick plate-like member 15, has a through hole 12 inside, and fixes the film 18 so as to cover the through hole 12 on at least one side. Thus, it becomes a node of membrane vibration of the membrane 18 fixed to the frame 14. Therefore, the frame 14 is higher in rigidity than the film 18. Specifically, both the mass and rigidity per unit area need to be high.
The shape of the frame 14 is preferably a closed continuous shape that can fix the membrane 18 so that the entire outer periphery of the membrane 18 can be suppressed, but the present invention is not limited to this, and the frame 14 As long as it becomes a node of the membrane vibration of the membrane 18 fixed to the substrate, a part thereof may be cut and discontinuous. That is, the role of the frame 14 is to control the membrane vibration by fixing the membrane 18, so that even if there is a small cut in the frame 14 or there is a part that is not very slightly bonded, it is effective. Demonstrate.
 また、枠14によって形成される貫通孔12の幾何学形態は、平面形状であって、図1に示す例では正方形であるが、本発明においては、特に制限的ではなく、例えば、長方形、ひし形、又は平行四辺形等の他の四角形、正三角形、2等辺三角形、又は直角三角形等の三角形、正五角形、又は正六角形等の正多角形を含む多角形、図3に示すような円形、若しくは楕円形等であっても良いし、不定形であっても良い。
 また、枠14のサイズは、平面視のサイズであり、その貫通孔12のサイズとして定義できるが、図1、図4及び図5に示す正方形のような正多角形、又は円の場合には、その中心を通る対向する辺間の距離、又は円相当直径と定義することができ、多角形、楕円又は不定形の場合には、円相当直径と定義することができる。本発明において、円相当直径及び半径とは、それぞれ面積の等しい円に換算した時の直径及び半径である。
 なお、本発明の防音構造10において、枠14のサイズは、全ての枠14において、一定であっても良いが、異なるサイズ(形状が異なる場合も含む)の枠が含まれていても良く、この場合には、枠14のサイズとして、枠14の平均サイズを用いればよい。
Further, the geometric form of the through-hole 12 formed by the frame 14 is a planar shape and is a square in the example shown in FIG. 1, but is not particularly limited in the present invention, and is, for example, a rectangle or a rhombus. Or other quadrilaterals such as parallelograms, regular triangles, isosceles triangles, triangles such as right triangles, regular pentagons, regular polygons such as regular hexagons, circles as shown in FIG. 3, or It may be oval or the like, or may be indefinite.
The size of the frame 14 is the size in plan view and can be defined as the size of the through-hole 12. However, in the case of a regular polygon such as a square shown in FIGS. 1, 4, and 5, or a circle, , The distance between opposing sides passing through its center, or the equivalent circle diameter, and in the case of a polygon, ellipse or indefinite shape, it can be defined as the equivalent circle diameter. In the present invention, the equivalent circle diameter and radius are the diameter and radius when converted into circles having the same area.
In the soundproof structure 10 of the present invention, the size of the frame 14 may be constant in all the frames 14, but may include frames of different sizes (including cases where the shapes are different). In this case, the average size of the frame 14 may be used as the size of the frame 14.
 このような枠14のサイズは、特に制限的ではなく、本発明の防音構造10が防音のために適用される防音対象物、例えば、複写機、送風機、空調機器、換気扇、ポンプ類、発電機、ダクト、その他にも塗布機や回転機、搬送機など音を発する様々な種類の製造機器等の産業用機器、自動車、電車、航空機等の輸送用機器、冷蔵庫、洗濯機、乾燥機、テレビジョン、コピー機、電子レンジ、ゲーム機、エアコン、扇風機、PC、掃除機、空気清浄機等の一般家庭用機器などに応じて設定すればよい。
 また、この防音構造10自体をパーティションのように用いて、複数の騒音源からの音を遮る用途に用いることもできる。この場合も、枠14のサイズは対象となる騒音の周波数から選択することができる。
The size of the frame 14 is not particularly limited, and the soundproofing object to which the soundproofing structure 10 of the present invention is applied for soundproofing, for example, a copying machine, a blower, an air conditioner, a ventilation fan, pumps, a generator, and the like. , Ducts, other kinds of industrial equipment such as coating machines, rotating machines, conveyors, etc. that produce sound, transportation equipment such as automobiles, trains, aircraft, refrigerators, washing machines, dryers, TVs What is necessary is just to set according to general household devices, such as John, a copier, a microwave oven, a game machine, an air conditioner, an electric fan, PC, a vacuum cleaner, an air cleaner.
Further, the soundproof structure 10 itself can be used like a partition to be used for the purpose of blocking sounds from a plurality of noise sources. Also in this case, the size of the frame 14 can be selected from the frequency of the target noise.
 なお、詳細は後述するが、枠14及び膜18からなる構造の固有振動モードを高周波側に得るために、枠14のサイズを小さくすることが好ましい。
 また、枠14の平均サイズは、詳細は後述するが、膜18に設けられる穴からなる開口部24による防音セル26の遮蔽ピークにおける回折による音の漏れを防止するために、後述する遮蔽ピーク周波数に対応する波長サイズ以下であることが好ましい。
 例えば、枠14のサイズは、0.5mm~200mmであることが好ましく、1mm~100mmであることがより好ましく、2mm~30mmであることが最も好ましい。
 なお、枠14のサイズは、各枠14で異なるサイズが含まれる場合などは、平均サイズで表すことが好ましい。
Although details will be described later, it is preferable to reduce the size of the frame 14 in order to obtain the natural vibration mode of the structure including the frame 14 and the film 18 on the high frequency side.
Although the details of the average size of the frame 14 will be described later, in order to prevent sound leakage due to diffraction at the shielding peak of the soundproof cell 26 by the opening 24 made of a hole provided in the film 18, a shielding peak frequency which will be described later. It is preferable that it is below the wavelength size corresponding to.
For example, the size of the frame 14 is preferably 0.5 mm to 200 mm, more preferably 1 mm to 100 mm, and most preferably 2 mm to 30 mm.
Note that the size of the frame 14 is preferably represented by an average size when different sizes are included in each frame 14.
 また、枠14の幅及び厚さも、膜18を確実に抑えるように固定することができ、膜18を確実に支持できれば、特に制限的ではないが、例えば、枠14のサイズに応じて設定することができる。
 例えば、枠14の幅は、枠14のサイズが、0.5mm~50mmの場合には、0.5mm~20mmであることが好ましく、0.7mm~10mmであることがより好ましく、1mm~5mmであることが最も好ましい。
 枠14の幅が、枠14のサイズに対して比率が大きくなりすぎると、全体に占める枠14の部分の面積率が大きくなり、デバイスが重くなる懸念がある。一方、上記比率が小さくなりすぎると、その枠14部分において接着剤などによって膜を強く固定することが難しくなってくる。
Further, the width and thickness of the frame 14 are not particularly limited as long as the film 18 can be fixed so as to surely suppress the film 18 and the film 18 can be reliably supported. For example, the width and thickness are set according to the size of the frame 14. be able to.
For example, the width of the frame 14 is preferably 0.5 mm to 20 mm, more preferably 0.7 mm to 10 mm, and more preferably 1 mm to 5 mm when the size of the frame 14 is 0.5 mm to 50 mm. Most preferably.
If the ratio of the width of the frame 14 to the size of the frame 14 becomes too large, the area ratio of the portion of the frame 14 that occupies the whole increases, and the device may become heavy. On the other hand, if the ratio is too small, it is difficult to strongly fix the film with an adhesive or the like at the frame 14 portion.
 また、枠14の幅は、枠14のサイズが、50mm超、200mm以下の場合には、1mm~100mmであることが好ましく、3mm~50mmであることがより好ましく、5mm~20mmであることが最も好ましい。
 また、枠14の厚さは、0.5mm~200mmであることが好ましく、0.7mm~100mmであることがより好ましく、1mm~50mmであることが最も好ましい。
 なお、枠14の幅及び厚さは、各枠14で異なる幅及び厚さが含まれる場合などは、それぞれ平均幅及び平均厚さで表すことが好ましい。
Further, the width of the frame 14 is preferably 1 mm to 100 mm, more preferably 3 mm to 50 mm, and more preferably 5 mm to 20 mm when the size of the frame 14 is more than 50 mm and 200 mm or less. Most preferred.
The thickness of the frame 14 is preferably 0.5 mm to 200 mm, more preferably 0.7 mm to 100 mm, and most preferably 1 mm to 50 mm.
Note that the width and thickness of the frame 14 are preferably represented by an average width and an average thickness, respectively, when different widths and thicknesses are included in each frame 14.
 なお、本発明においては、複数、即ち2以上の枠14は、2次元的に繋がるように配置された枠体16として構成されることが好ましい。
 ここで、本発明の防音構造10の枠14の数、即ち図示例では、枠体16を構成する枠14の数も、特に制限的ではなく、本発明の防音構造10の上述した防音対象物に応じて設定すればよい。もしくは、上述した枠14のサイズは、上述した防音対象物応じて設定されているので、枠14の数は、枠14のサイズのサイズに応じて設定すればよい。
 例えば、枠14の数は、機器内騒音遮蔽(反射及び/又は吸収)の場合には、1個~10000個であることが好ましく、2~5000であることがより好ましく、4~1000であることが最も好ましい。
In the present invention, a plurality of, that is, two or more frames 14 are preferably configured as frame bodies 16 arranged so as to be two-dimensionally connected.
Here, the number of the frames 14 of the soundproof structure 10 of the present invention, that is, in the illustrated example, the number of the frames 14 constituting the frame body 16 is not particularly limited, and the above-described soundproof object of the soundproof structure 10 of the present invention is not limited. It may be set according to Alternatively, since the size of the frame 14 described above is set according to the above-described soundproof object, the number of the frames 14 may be set according to the size of the size of the frame 14.
For example, the number of frames 14 is preferably 1 to 10000, more preferably 2 to 5000, and more preferably 4 to 1000 in the case of noise shielding (reflection and / or absorption) in equipment. Most preferred.
 これは、一般の機器の大きさに対しては、機器のサイズが決まっているために、1つの防音セル26のサイズを騒音の周波数に適したサイズとするためには、複数の防音セル26を組み合わせた枠体16で遮蔽する、即ち反射かつ/又は吸収する必要があることが多く、また、一方で防音セル26を増やしすぎることで、枠14の重量分全体重量が大きくなることがあるためである。一方で、大きさに制約のないパーティションのような構造では、必要とされる全体の大きさに合わせて枠14の個数を自由に選ぶことができる。
 なお、1つの防音セル26は、1つの枠14を構成単位とするので、本発明の防音構造10の枠14の数は、防音セル26の数ということもできる。
This is because the size of a device is determined with respect to the size of a general device. Therefore, in order to make the size of one soundproof cell 26 suitable for the frequency of noise, a plurality of soundproof cells 26 are used. In many cases, it is necessary to shield, i.e., reflect and / or absorb the frame body 16 with a combination of the above, and on the other hand, if the number of the soundproof cells 26 is increased too much, the total weight of the frame 14 may increase. Because. On the other hand, in a structure like a partition with no restriction on the size, the number of frames 14 can be freely selected according to the required overall size.
Since one soundproof cell 26 has one frame 14 as a structural unit, the number of frames 14 of the soundproof structure 10 of the present invention can also be referred to as the number of soundproof cells 26.
 枠14の材料、即ち枠体16の材料は、膜18を支持でき、上述した防音対象物に適用する際に適した強度を持ち、防音対象物の防音環境に対して耐性があれば、特に制限的ではなく、防音対象物及びその防音環境に応じて選択することができる。例えば、枠14の材料としては、アルミニウム、チタン、マグネシウム、タングステン、鉄、スチール、クロム、クロムモリブデン、ニクロムモリブデン、これらの合金等の金属材料、アクリル樹脂、ポリメタクリル酸メチル、ポリカーボネート、ポリアミドイド、ポリアリレート、ポリエーテルイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリサルフォン、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリイミド、トリアセチルセルロース等の樹脂材料、炭素繊維強化プラスチック(CFRP)、カーボンファイバ、ガラス繊維強化プラスチック(GFRP)等を挙げることができる。
 また、これらの枠14の材料の複数種を組み合わせて用いてもよい。
The material of the frame 14, that is, the material of the frame body 16, can support the film 18, has a strength suitable for application to the above-described soundproofing object, and is particularly resistant to the soundproofing environment of the soundproofing object. It is not restrictive and can be selected according to the soundproof object and its soundproof environment. For example, as the material of the frame 14, metal materials such as aluminum, titanium, magnesium, tungsten, iron, steel, chromium, chromium molybdenum, nichrome molybdenum, and alloys thereof, acrylic resin, polymethyl methacrylate, polycarbonate, polyamideid, Polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene sulfide, polysulfone, polyethylene terephthalate, polybutylene terephthalate, polyimide, resin material such as triacetylcellulose, carbon fiber reinforced plastic (CFRP), carbon fiber, glass Examples thereof include fiber reinforced plastic (GFRP).
Further, a plurality of types of materials of these frames 14 may be used in combination.
 膜18は、枠14の内部の貫通孔12を覆うように枠14に抑えられるように固定されるもので、外部からの音波に対応して膜振動することにより音波のエネルギを吸収、もしくは反射して防音するものである。そのため、膜18は、空気に対して不浸透性であることが好ましい。
 ところで、膜18は、枠14を節として膜振動する必要があるので、枠14に確実に抑えられるように固定され、膜振動の腹となり、音波のエネルギを吸収、もしくは反射して防音する必要がある。このため、膜18は、可撓性のある弾性材料製であることが好ましい。
 このため、膜18の形状は、枠14の貫通孔12の形状であり、また、膜18のサイズは、枠14のサイズ、より詳細には、枠14の貫通孔12のサイズであるということができる。
The film 18 is fixed to the frame 14 so as to cover the through-hole 12 inside the frame 14, and absorbs or reflects sound wave energy by vibrating the film in response to sound waves from the outside. And soundproofing. Therefore, the membrane 18 is preferably impermeable to air.
By the way, since it is necessary for the membrane 18 to vibrate with the frame 14 as a node, the membrane 18 is fixed to the frame 14 so as to be surely suppressed, becomes an antinode of membrane vibration, and needs to absorb or reflect sound wave energy to prevent sound. There is. For this reason, the membrane 18 is preferably made of a flexible elastic material.
For this reason, the shape of the film 18 is the shape of the through hole 12 of the frame 14, and the size of the film 18 is the size of the frame 14, more specifically, the size of the through hole 12 of the frame 14. Can do.
 ここで、図6~図11に示すように、防音セル26の枠14に固定された膜18は、最も低次の固有振動モードの周波数である共振周波数として、透過損失が最小、例えば0dBとなる第1固有振動周波数を持つものである。本発明においては、この第1固有振動周波数は、枠14及び膜18からなる構造によって決まるので、図6及び図7に示すように、膜18に穿孔される穴22、したがって、開口部24の有無にかかわらず、略同一の値となることが本発明者らによって見出されている。なお、図6~図11は、それぞれ後述する本発明の実施例1、比較例1、本発明の実施例10、21、5と23、及び38の防音構造の遮音特性を示すグラフであり、周波数に対する透過損失を表わす。
 ここで、枠14及び膜18からなる構造における、即ち枠14に抑えられるように固定された膜18の第1固有振動周波数は、共鳴現象により音波が膜振動を最も揺らすところで、音波はその周波数で大きく透過する固有振動モードの周波数である。
Here, as shown in FIGS. 6 to 11, the film 18 fixed to the frame 14 of the soundproof cell 26 has a minimum transmission loss, for example, 0 dB as a resonance frequency which is the frequency of the lowest natural vibration mode. The first natural vibration frequency is as follows. In the present invention, the first natural vibration frequency is determined by the structure formed by the frame 14 and the membrane 18, and therefore, as shown in FIGS. 6 and 7, the hole 22 drilled in the membrane 18, and hence the opening 24. It has been found by the present inventors that the values are substantially the same regardless of the presence or absence. 6 to 11 are graphs showing the sound insulation characteristics of the soundproof structures of Example 1, Comparative Example 1, and Examples 10, 21, 5, and 23 and 38 of the present invention, which will be described later, respectively. It represents the transmission loss with respect to frequency.
Here, in the structure composed of the frame 14 and the film 18, that is, the first natural vibration frequency of the film 18 fixed so as to be restrained by the frame 14, the sound wave is the frequency where the sound wave shakes the film vibration most due to the resonance phenomenon. It is the frequency of the natural vibration mode that is greatly transmitted at.
 なお、本発明者らの知見にしたがえば、本発明の防音構造10では、膜18には穴22からなる開口部24を構成する穴22が貫通穴として穿孔されていることから、第1固有振動周波数よりも低周波側の遮蔽ピーク周波数において透過損失がピーク(極大)となる音波の遮蔽のピークが現れる。また、特に、この貫通する穴22によって生じる遮蔽のピークより、低周波側に、この貫通穴22が存在することによる音の吸収の増大が見られる。
 したがって、本発明の防音構造10は、遮蔽ピーク周波数において遮蔽(透過損失)がピーク(極大)となるため、遮蔽ピーク周波数を中心とする一定の周波数帯域の音を選択的に防音することができる。
 本発明においては、第1に、音の遮蔽を大きくすることができ、かつ遮蔽のピークをコントロールできるが、更にこれらに加えて、貫通する穴22の効果により、音(音波のエネルギ)の吸収がより低周波側で現れるという特徴がある。
In addition, according to the knowledge of the present inventors, in the soundproof structure 10 of the present invention, since the hole 18 constituting the opening portion 24 including the hole 22 is drilled in the film 18 as a through hole, the first A sound wave shielding peak in which transmission loss peaks (maximum) appears at a shielding peak frequency lower than the natural vibration frequency. In particular, an increase in sound absorption is observed due to the presence of the through-hole 22 on the low frequency side from the shielding peak caused by the through-hole 22.
Therefore, since the soundproof structure 10 of the present invention has a peak (maximum) of shielding (transmission loss) at the shielding peak frequency, it is possible to selectively prevent sound in a certain frequency band centered on the shielding peak frequency. .
In the present invention, first, sound shielding can be increased and the peak of the shielding can be controlled. In addition to this, sound (sound wave energy) is absorbed by the effect of the through-hole 22. Has a feature that appears on the lower frequency side.
 例えば、図6に示す例では、第1固有振動周波数は、可聴域内の2820Hzであり、より低周波側の遮蔽ピーク周波数である1412Hzにおいて透過損失がピーク値35dBとなる遮蔽のピークを示すので、可聴域内の1412Hzを中心とする一定の周波数帯域を選択的に遮音することができる。
 図8~図11に示す各例においても、可聴域内の5620Hz、2818Hz、2820Hz、及び2820Hzの第1固有振動周波数に対して、それぞれ低周波側でかつ可聴域内の3162Hz、708Hz、2000Hz、及び1258Hzの遮蔽ピーク周波数で透過損失が40、72、29と37、及び70を示すので、各遮蔽ピーク周波数を中心とする一定の周波数帯域を選択的に遮音することができることを示している。
 なお、本発明の防音構造における透過損失(dB)の測定方法については、後述する。
For example, in the example shown in FIG. 6, the first natural vibration frequency is 2820 Hz in the audible range, and shows a shielding peak at which transmission loss has a peak value of 35 dB at a shielding peak frequency of 1412 Hz on the lower frequency side. A certain frequency band centered at 1412 Hz in the audible range can be selectively insulated.
In each example shown in FIGS. 8 to 11, 3162 Hz, 708 Hz, 2000 Hz, and 1258 Hz on the low frequency side and in the audible range with respect to the first natural vibration frequencies of 5620 Hz, 2818 Hz, 2820 Hz, and 2820 Hz in the audible range, respectively. The transmission loss shows 40, 72, 29, 37, and 70 at the shielding peak frequency, which indicates that a certain frequency band centered on each shielding peak frequency can be selectively shielded.
In addition, the measuring method of the transmission loss (dB) in the soundproof structure of this invention is mentioned later.
 このため、枠14及び膜18からなる構造において、1以上の穴22からなる開口部24に依存する遮蔽ピーク周波数を可聴域内の任意の周波数とするためには、できるだけ固有振動モードを高周波側に得ることが重要であり、特に、実用的には重要となる。そのために、膜18を厚くすることが好ましく、膜18の材質のヤング率を大きなものとすることが好ましく、さらに、上述のように、枠14のサイズ、したがって、膜18のサイズを小さくすることなどが好ましい。即ち、本発明においては、これらの好ましい条件が重要となる。 For this reason, in the structure composed of the frame 14 and the film 18, in order to set the shielding peak frequency depending on the opening 24 composed of one or more holes 22 to an arbitrary frequency within the audible range, the natural vibration mode is set as high as possible. It is important to obtain, especially in practical use. For this purpose, it is preferable to increase the thickness of the film 18, preferably to increase the Young's modulus of the material of the film 18, and to reduce the size of the frame 14, and thus the size of the film 18, as described above. Etc. are preferable. That is, in the present invention, these preferable conditions are important.
 そこで、本発明の防音構造10は剛性則に従うものであり、枠14に固定された膜18の第1固有振動周波数より小さい周波数で音波の遮蔽を起こすため、膜18の第1固有振動周波数は、人間の音波の感知域に相当する10Hz~100000Hzであることが好ましく、人間の音波の可聴域である20Hz~20000Hzであることがより好ましく、40Hz~16000Hzであることが更により好ましく、100Hz~12000Hzであることが最も好ましい。 Therefore, the soundproof structure 10 of the present invention complies with the rigidity law, and since the sound wave is shielded at a frequency lower than the first natural vibration frequency of the film 18 fixed to the frame 14, the first natural vibration frequency of the film 18 is It is preferably 10 Hz to 100000 Hz corresponding to a human sound wave detection range, more preferably 20 Hz to 20000 Hz, which is a human sound wave audible range, still more preferably 40 Hz to 16000 Hz, and even more preferably 100 Hz to Most preferably, it is 12000 Hz.
 また、膜18の厚さは、音波のエネルギを吸収、もしくは反射して防音するために膜振動することができれば、特に制限的ではないが、固有振動モードを高周波側に得るためには厚くすることが好ましい。例えば、膜18の厚さは、本発明では、枠14のサイズ、即ち膜のサイズに応じて設定することができる。
 例えば、膜18の厚さは、枠14のサイズが0.5mm~50mmの場合には、0.005mm(5μm)~5mmであることが好ましく、0.007mm(7μm)~2mmであることがより好ましく、0.01mm(10μm)~1mmであることが最も好ましい。
 また、膜18の厚さは、枠14のサイズが、50mm超、200mm以下の場合には、0.01mm(10μm)~20mmであることが好ましく、0.02mm(20μm)~10mmであることがより好ましく、0.05mm(50μm)~5mmであることが最も好ましい。
 なお、膜18の厚みは、1つの膜18で厚みが異なる場合、又は各膜18で異なる厚さが含まれる場合などは、平均厚さで表すことが好ましい。
The thickness of the film 18 is not particularly limited as long as the film can vibrate in order to absorb or reflect sound wave energy to prevent sound. However, the thickness of the film 18 is increased to obtain a natural vibration mode on the high frequency side. It is preferable. For example, in the present invention, the thickness of the film 18 can be set according to the size of the frame 14, that is, the size of the film.
For example, the thickness of the film 18 is preferably 0.005 mm (5 μm) to 5 mm, and preferably 0.007 mm (7 μm) to 2 mm when the size of the frame 14 is 0.5 mm to 50 mm. More preferably, the thickness is 0.01 mm (10 μm) to 1 mm.
Further, the thickness of the film 18 is preferably 0.01 mm (10 μm) to 20 mm, and preferably 0.02 mm (20 μm) to 10 mm when the size of the frame 14 is more than 50 mm and 200 mm or less. Is more preferable, and 0.05 mm (50 μm) to 5 mm is most preferable.
Note that the thickness of the film 18 is preferably expressed as an average thickness when the thickness of one film 18 is different, or when the thickness of each film 18 is different.
 ここで、本発明の防音構造10において、枠14及び膜18からなる構造における膜18の第1固有振動周波数は、複数の防音セル26の枠14の幾何学的形態、例えば枠14の形状及び寸法(サイズ)と、複数の防音セルの前記膜の剛性、例えば膜の厚さ及び可撓性とによって定めることができる。
 なお、膜18の第1固有振動モードを特徴づけるパラメータとしては、同種材料の膜18の場合は、膜18の厚み(t)と枠14のサイズ(a)の2乗との比、例えば、正四角形の場合には一辺の大きさとの比[a/t]を用いることができ、この比[a/t]が等しい場合、例えば、(t、a)が、(50μm、7.5mm)の場合と(200μm、15mm)の場合とは、上記第1固有振動モードが同じ周波数、即ち同じ第1固有振動周波数となる。即ち、比[a/t]を一定値にすることにより、スケール則が成立し、適切なサイズを選択することができる。
Here, in the soundproof structure 10 of the present invention, the first natural vibration frequency of the film 18 in the structure composed of the frame 14 and the film 18 is the geometric form of the frame 14 of the plurality of soundproof cells 26, for example, the shape of the frame 14 and It can be determined by the size (size) and the rigidity of the membrane of the plurality of soundproof cells, for example, the thickness and flexibility of the membrane.
As a parameter characterizing the first natural vibration mode of the film 18, in the case of the film 18 of the same material, a ratio of the thickness (t) of the film 18 and the square of the size (a) of the frame 14, for example, In the case of a regular square, a ratio [a 2 / t] to the size of one side can be used. When this ratio [a 2 / t] is equal, for example, (t, a) is (50 μm, 7. 5 mm) and (200 μm, 15 mm), the first natural vibration mode has the same frequency, that is, the same first natural vibration frequency. That is, by setting the ratio [a 2 / t] to a constant value, the scaling rule is established, and an appropriate size can be selected.
 また、膜18のヤング率は、膜18が音波のエネルギを吸収、もしくは反射して防音するために膜振動することができる弾性を有していれば、特に制限的ではないが、固有振動モードを高周波側に得るためには大きくすることが好ましい。例えば、膜18のヤング率は、本発明では、枠14のサイズ、即ち膜のサイズに応じて設定することができる。
 例えば、膜18のヤング率は、1000Pa~3000GPaであることが好ましく、10000Pa~2000GPaであることがより好ましく、1MPa~1000GPaであることが最も好ましい。
The Young's modulus of the film 18 is not particularly limited as long as the film 18 has elasticity capable of vibrating the film in order to absorb or reflect sound wave energy to prevent sound. It is preferable to increase the size in order to obtain a higher frequency. For example, in the present invention, the Young's modulus of the film 18 can be set according to the size of the frame 14, that is, the size of the film.
For example, the Young's modulus of the film 18 is preferably 1000 Pa to 3000 GPa, more preferably 10,000 Pa to 2000 GPa, and most preferably 1 MPa to 1000 GPa.
 また、膜18の密度も、音波のエネルギを吸収、もしくは反射して防音するために膜振動することができるものであれば、特に制限的ではなく、例えば、10kg/m~30000kg/mであることが好ましく、100kg/m~20000kg/mであることがより好ましく、500kg/m~10000kg/mであることが最も好ましい。 Further, the density of the film 18 is not particularly limited as long as the film 18 can vibrate in order to absorb or reflect sound wave energy to prevent sound. For example, the density of the film 18 is 10 kg / m 3 to 30000 kg / m 3. is preferably, more preferably from 100kg / m 3 ~ 20000kg / m 3, most preferably 500kg / m 3 ~ 10000kg / m 3.
 膜18の材料は、膜状材料、又は箔状材料にした際に、上述した防音対象物に適用する際に適した強度を持ち、防音対象物の防音環境に対して耐性があり、膜18が音波のエネルギを吸収、もしくは反射して防音するために膜振動することができるものであれば、特に制限的ではなく、防音対象物及びその防音環境などに応じて選択することができる。例えば、膜18の材料としては、ポリエチレンテレフタレート(PET)、ポリイミド、ポリメタクリル酸メチル、ポリカーボネート、アクリル(PMMA)、ポリアミドイド、ポリアリレート、ポリエーテルイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリサルフォン、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリイミド、トリアセチルセルロース、ポリ塩化ビニリデン、低密度ポリエチレン、高密度ポリエチレン、芳香族ポリアミド、シリコーン樹脂、エチレンエチルアクリレート、酢酸ビニル共重合体、ポリエチレン、塩素化ポリエチレン、ポリ塩化ビニル、ポリメチルペンテン、ポリブテン等の膜状にできる樹脂材料、アルミニウム、クロム、チタン、ステンレス、ニッケル、スズ、ニオブ、タンタル、モリブデン、ジルコニウム、金、銀、白金、パラジウム、鉄、銅、パーマロイ等の箔状にできる金属材料、紙、セルロースなどその他繊維状の膜になる材質、不織布、ナノサイズのファイバーを含むフィルム、薄く加工したウレタンやシンサレートなどのポーラス材料、薄膜構造に加工したカーボン材料など、薄い構造を形成できる材質または構造等を挙げることができる。 When the material of the film 18 is a film-like material or a foil-like material, the film 18 has strength suitable for application to the above-described soundproofing object, and is resistant to the soundproofing environment of the soundproofing object. As long as the film can vibrate in order to absorb or reflect sound wave energy to prevent sound, it is not particularly limited and can be selected according to the soundproof object and its soundproof environment. For example, the material of the film 18 includes polyethylene terephthalate (PET), polyimide, polymethyl methacrylate, polycarbonate, acrylic (PMMA), polyamideide, polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene sulfide, polysulfone. , Polyethylene terephthalate, polybutylene terephthalate, polyimide, triacetyl cellulose, polyvinylidene chloride, low density polyethylene, high density polyethylene, aromatic polyamide, silicone resin, ethylene ethyl acrylate, vinyl acetate copolymer, polyethylene, chlorinated polyethylene , Resin materials that can be made into a film such as polyvinyl chloride, polymethylpentene, polybutene, aluminum, chromium, titanium, stainless steel, Metal materials that can be made into foil, such as nickel, tin, niobium, tantalum, molybdenum, zirconium, gold, silver, platinum, palladium, iron, copper, permalloy, paper, cellulose, and other fibrous film materials, non-woven fabric, nano Examples include materials or structures capable of forming a thin structure, such as a film containing a size fiber, a porous material such as urethane and cinsalate processed thinly, and a carbon material processed into a thin film structure.
 膜18は、防音構造10の枠体16の複数の枠14のそれぞれに個々に固定されて全体としてシート状の膜体20を構成するものであっても良いし、逆に、全ての枠14を覆うように固定される1枚のシート状の膜体20によって各枠14を覆う膜18を形成しても良い。又は、これらの中間として、複数の枠14の一部を覆うようにシート状の膜体を一部の枠14に固定して各枠14を覆う膜18を形成すると共に、これらのシート状膜体をいくつか用いて複数の枠14の全体(全ての枠14)を覆うシート状の膜体20を構成しても良い。 The film 18 may be individually fixed to each of the plurality of frames 14 of the frame body 16 of the soundproof structure 10 to constitute a sheet-like film body 20 as a whole. A film 18 that covers each frame 14 may be formed by a single sheet-like film body 20 that is fixed so as to cover the frame. Alternatively, as an intermediate between them, a sheet-like film body is fixed to a part of the frames 14 so as to cover a part of the plurality of frames 14, and a film 18 that covers each frame 14 is formed. You may comprise the sheet-like film body 20 which covers the whole some frame 14 (all the frames 14) using some bodies.
 また、膜18は、枠14の貫通孔12の少なくとも一方の側の開口を覆うように枠14に固定される。即ち、膜18は、枠14の貫通孔12の一方の側、又は他方の側、もしくは両側の開口を覆うように枠14に固定されていても良い。
 ここで、防音構造10の複数の枠14の貫通孔12の同じ側に全ての膜18が設けられていても良いし、一部の膜18が、複数の枠14の一部の貫通孔12の一方の側に一部の膜18が設けられ、複数の枠14の残りの一部の貫通孔12の他方の側には残りの膜18が設けられていても良いし、更に、枠14の貫通孔12一方の側、他方の側、及び両側に設けられた膜が混在していても良い。
The film 18 is fixed to the frame 14 so as to cover the opening on at least one side of the through hole 12 of the frame 14. That is, the film 18 may be fixed to the frame 14 so as to cover the opening on one side, the other side, or both sides of the through hole 12 of the frame 14.
Here, all the films 18 may be provided on the same side of the through holes 12 of the plurality of frames 14 of the soundproof structure 10, or some of the films 18 may be part of the through holes 12 of the plurality of frames 14. A part of the film 18 may be provided on one side, and the other part of the remaining part of the through holes 12 of the plurality of frames 14 may be provided with the remaining film 18. The films provided on one side, the other side, and both sides of the through-hole 12 may be mixed.
 枠14への膜18の固定方法は、特に制限的ではなく、膜18を枠14に膜振動の節となるように固定できればどのようなものでも良く、例えば、接着剤を用いる方法、又は物理的な固定具を用いる方法などを挙げることができる。
 接着剤を用いる方法は、接着剤を枠14の貫通孔12を囲む表面上に接着剤を塗布し、その上に膜18載置し、膜18を接着剤で枠14に固定する。接着剤としては、例えば、エポキシ系接着剤(アラルダイト等)、シアノアクリレート系接着剤(アロンアルフアなど)、アクリル系接着剤等を挙げることができる。
 物理的な固定具を用いる方法としては、枠14の貫通孔12を覆うように配置された膜18を枠14と棒等の固定部材との間に挟み、固定部材をネジやビス等の固定具を用いて枠14に固定する方法等を挙げることができる。
The method of fixing the film 18 to the frame 14 is not particularly limited, and any method may be used as long as the film 18 can be fixed to the frame 14 so as to be a node of film vibration. For example, a method using an adhesive or a physical And a method using a typical fixture.
In the method using an adhesive, the adhesive is applied on the surface surrounding the through hole 12 of the frame 14, the film 18 is placed thereon, and the film 18 is fixed to the frame 14 with the adhesive. Examples of the adhesive include an epoxy adhesive (araldite, etc.), a cyanoacrylate adhesive (Aron Alpha, etc.), an acrylic adhesive, and the like.
As a method using a physical fixing tool, a film 18 arranged so as to cover the through hole 12 of the frame 14 is sandwiched between the frame 14 and a fixing member such as a rod, and the fixing member is fixed with a screw or a screw. The method of fixing to the frame 14 using a tool etc. can be mentioned.
 膜18には、即ち防音セル26には、1以上の穴22からなる開口部24を有する。
 ここで、本発明においては、図6、及び図8~図11に示すように、防音構造10は、膜18に穿孔された1以上の穴22からなる開口部24を有することにより、膜18の第1固有振動周波数より低周波側に遮蔽がピーク(極大)となる透過損失のピークを有し、この遮蔽(透過損失)がピーク(極大)となる周波数を遮蔽ピーク周波数と呼ぶ。
The membrane 18, that is, the soundproof cell 26, has an opening 24 composed of one or more holes 22.
Here, in the present invention, as shown in FIGS. 6 and 8 to 11, the soundproof structure 10 has an opening 24 composed of one or more holes 22 perforated in the film 18, whereby the film 18. There is a transmission loss peak at which the shielding becomes a peak (maximum) on the lower frequency side than the first natural vibration frequency, and the frequency at which this shielding (transmission loss) becomes a peak (maximum) is called a shielding peak frequency.
 この遮蔽ピーク周波数は、防音構造10の防音セル26の膜18に主として依存する第1固有振動周波数より低周波側に開口部24の穴22に起因して現れるものである。遮蔽ピーク周波数は、枠14(または膜18)の大きさに対する開口部24の大きさ、詳細には、枠14の貫通孔12(又は貫通孔12を覆う膜18)の面積に対する穴22の総面積の割合である開口部24の開口率に応じて決まるものである。 This shielding peak frequency appears due to the hole 22 of the opening 24 on the lower frequency side than the first natural vibration frequency that mainly depends on the film 18 of the soundproof cell 26 of the soundproof structure 10. The shielding peak frequency is determined by the size of the opening 24 with respect to the size of the frame 14 (or the film 18), specifically, the total of the holes 22 with respect to the area of the through hole 12 (or the film 18 covering the through hole 12) of the frame 14. It is determined according to the opening ratio of the opening 24 which is the area ratio.
 ここで、穴22は、図4に示すように、防音セル26の貫通孔12を覆う膜18内に1以上穿孔されていれば良い。また、穴22の穿孔位置は、図1~図3及び図5に示すように、防音セル26又は膜18(以下、防音セル26で代表する)内の真中であっても良いが、本発明はこれに限定されず、図4に示すように、防音セル26の真中である必要はなく、どの位置に穿孔されていても良い。
 即ち、単に、穴22の穿孔位置が変わっただけでは、本発明の防音構造10の遮音特性は変化しない。
Here, as shown in FIG. 4, one or more holes 22 may be perforated in the film 18 covering the through-hole 12 of the soundproof cell 26. Further, as shown in FIGS. 1 to 3 and 5, the drilling position of the hole 22 may be in the middle of the soundproof cell 26 or the membrane 18 (hereinafter represented by the soundproof cell 26). However, as shown in FIG. 4, it is not necessary to be in the middle of the soundproof cell 26, and any position may be used.
That is, simply changing the drilling position of the hole 22 does not change the sound insulation characteristic of the soundproof structure 10 of the present invention.
 また、防音セル26内の開口部24を構成する穴22の数は、図1~図3及び図5に示すように、1個の防音セル26に対して、1個であっても良いが、本発明はこれに限定されず、図4に示すように、2個以上(即ち複数)であっても良い。
 ここで、本発明の防音構造10は、通気性の点からは、図1~図3、及び図5に示すように、各防音セル26の開口部24は、1つの穴22で構成することが好ましい。その理由は、一定の開口率の場合、風としての空気の通り易さは、一つの穴が大きく境界での粘性が大きく働かない場合の方が大きいためである。
Further, the number of the holes 22 constituting the opening 24 in the soundproof cell 26 may be one for one soundproof cell 26 as shown in FIGS. 1 to 3 and FIG. The present invention is not limited to this, and may be two or more (ie, a plurality) as shown in FIG.
Here, in the soundproof structure 10 of the present invention, from the viewpoint of air permeability, the opening 24 of each soundproof cell 26 is constituted by one hole 22 as shown in FIGS. 1 to 3 and FIG. Is preferred. The reason is that, when the aperture ratio is constant, the ease of passage of air as wind is greater when one hole is large and the viscosity at the boundary does not work greatly.
 一方、1個の防音セル26内に複数の穴22がある時は、本発明の防音構造10の遮音特性は、複数の穴22の合計面積、即ち開口部24の面積に対応した遮音特性、即ち、対応する遮音ピーク周波数において対応する遮音ピークを示す。したがって、図4に示すように、1個の防音セル26(又は膜18)内にある複数の穴22の合計面積である開口部24の面積が、他の防音セル26(又は膜18)内に1個のみ有する穴22の面積である開口部24の面積に等しいことが好ましいが、本発明はこれに限定されない。
 なお、防音セル26内の開口部24の開口率(貫通孔12を覆う膜18の面積に対する開口部24の面積率(全ての穴22の合計面積の割合))が同一の場合には、単一穴22と複数穴22で同様の防音構造10が得られるため、ある穴22のサイズに固定しても様々な周波数帯の防音構造を作製することができる。
On the other hand, when there are a plurality of holes 22 in one soundproof cell 26, the sound insulation characteristic of the soundproof structure 10 of the present invention is the sound insulation characteristic corresponding to the total area of the plurality of holes 22, that is, the area of the opening 24, That is, the corresponding sound insulation peak is shown at the corresponding sound insulation peak frequency. Therefore, as shown in FIG. 4, the area of the opening 24, which is the total area of the plurality of holes 22 in one soundproof cell 26 (or film 18), is within the other soundproof cell 26 (or film 18). It is preferable to be equal to the area of the opening 24 which is the area of the hole 22 having only one, but the present invention is not limited to this.
If the aperture ratio of the opening 24 in the soundproof cell 26 (the area ratio of the opening 24 to the area of the film 18 covering the through-hole 12 (the ratio of the total area of all the holes 22)) is the same. Since the same soundproof structure 10 is obtained with the single hole 22 and the plurality of holes 22, soundproof structures of various frequency bands can be produced even if the hole 22 is fixed to a certain size.
 本発明においては、防音セル26内の開口部24の開口率(面積率)は、特に制限的ではなく、選択的に遮音するべき遮音周波数帯域に応じて設定すれば良いが、0.000001%~70%であるのが好ましく、0.000005%~50%であるのがより好ましく、0.00001%~30%であるのが好ましい。開口部24の開口率を上記範囲に設定することにより、選択的に遮音するべき遮音周波数帯域の中心となる遮音ピーク周波数及び遮音ピークの透過損失を決定することができる。 In the present invention, the aperture ratio (area ratio) of the opening 24 in the soundproof cell 26 is not particularly limited, and may be set according to the sound insulation frequency band to be selectively insulated, but is 0.000001%. It is preferably from ˜70%, more preferably from 0.000005% to 50%, and preferably from 0.00001% to 30%. By setting the aperture ratio of the opening 24 within the above range, it is possible to determine the sound insulation peak frequency and the transmission loss of the sound insulation peak, which are the center of the sound insulation frequency band to be selectively insulated.
 本発明の防音構造10は、製造適性の点からは、1つの防音セル26内には、同一サイズの穴22を複数個有することが好ましい。即ち、各防音セル26の開口部24は、同一サイズの複数の穴22で構成することが好ましい。
 更に、本発明の防音構造10は、全ての防音セル26の開口部24を構成する穴22を同一サイズの穴とすることが好ましい。
The soundproof structure 10 of the present invention preferably has a plurality of holes 22 of the same size in one soundproof cell 26 from the viewpoint of manufacturability. In other words, the opening 24 of each soundproof cell 26 is preferably composed of a plurality of holes 22 of the same size.
Furthermore, in the soundproof structure 10 according to the present invention, it is preferable that the holes 22 constituting the openings 24 of all the soundproof cells 26 have the same size.
 本発明においては、穴22は、エネルギを吸収する加工方法、例えばレーザ加工によって穿孔されることが好ましく、又は物理的接触による機械加工方法、例えばパンチング、又は針加工によって穿孔されることが好ましい。
 このため、1つの防音セル26内の複数の穴22、又は、全ての防音セル26内の1個又は複数個の穴22を同一サイズとすると、レーザ加工、パンチング、又は針加工で穴をあける場合に、加工装置の設定や加工強度を変えることなく連続して穴をあけることができる。
In the present invention, the hole 22 is preferably drilled by a processing method that absorbs energy, for example, laser processing, or by a machining method by physical contact, for example, punching or needle processing.
For this reason, if a plurality of holes 22 in one soundproof cell 26 or one or a plurality of holes 22 in all soundproof cells 26 have the same size, holes are formed by laser processing, punching, or needle processing. In some cases, it is possible to continuously drill holes without changing the setting of the processing apparatus and the processing strength.
 また、図5に示すように、本発明の防音構造10においては、防音セル26(又は膜18)内の穴22のサイズ(大きさ)は、各防音セル26(又は膜18)毎に異なっていても良い。このように防音セル26(又は膜18)毎にサイズの異なる穴22がある場合には、それらの穴22の面積を平均した平均面積に対応した遮音特性、即ち、対応する遮音ピーク周波数において対応する遮音ピークを示す。
 また、本発明の防音構造10の各防音セル26の開口部24は、70%以上が同一サイズの穴で構成されることが好ましい。
Further, as shown in FIG. 5, in the soundproof structure 10 of the present invention, the size (size) of the hole 22 in the soundproof cell 26 (or film 18) is different for each soundproof cell 26 (or film 18). May be. When there is a hole 22 having a different size for each soundproof cell 26 (or film 18) as described above, the sound insulation characteristic corresponding to the average area obtained by averaging the areas of the holes 22, that is, the corresponding sound insulation peak frequency corresponds. This shows the sound insulation peak.
Moreover, it is preferable that 70% or more of the opening 24 of each soundproof cell 26 of the soundproof structure 10 of this invention is comprised with the hole of the same size.
 開口部24を構成する穴22のサイズは、上述した加工方法で適切に穿孔できれば、どのようなサイズでも良く、特に限定されない。
 しかしながら、穴22のサイズは、その下限側では、レーザの絞りの精度等のレーザ加工の加工精度、又はパンチング加工もしくは針加工などの加工精度や加工の容易性などの製造適性の点から、2μm以上であることが好ましく、5μm以上であることがより好ましく、10μm以上であることが最も好ましい。
 なお、これらの穴22のサイズの上限値は、枠14のサイズより小さい必要があるので、通常、枠14のサイズはmmオーダであり、穴22のサイズをμmオーダに設定しておけば、穴22のサイズの上限値は、枠14のサイズを超えることはないが、もし、超えた場合には、穴22のサイズの上限値を枠14のサイズ以下に設定すればよい。
The size of the hole 22 constituting the opening 24 is not particularly limited as long as it can be appropriately drilled by the above-described processing method.
However, the size of the hole 22 on the lower limit side is 2 μm from the viewpoint of manufacturing suitability such as laser processing accuracy such as laser aperture accuracy, processing accuracy such as punching processing or needle processing, and ease of processing. Preferably, it is preferably 5 μm or more, and most preferably 10 μm or more.
In addition, since the upper limit value of the size of these holes 22 needs to be smaller than the size of the frame 14, the size of the frame 14 is usually in the order of mm, and if the size of the hole 22 is set to the μm order, The upper limit value of the size of the hole 22 does not exceed the size of the frame 14, but if it exceeds, the upper limit value of the size of the hole 22 may be set to be equal to or smaller than the size of the frame 14.
 ところで、本発明の防音構造10においては、第1固有振動周波数は、枠14及び膜18からなる構造によって定まり、透過損失がピークとなる遮蔽ピーク周波数は、枠14及び膜18からなる構造の膜に穿孔された穴22からなる開口部に依存して定まる。
 ここで、本発明者らは、本発明の防音構造10において、防音セル26、即ち枠14の円相当半径をR1(mm)、膜18の厚みをt1(μm)、膜18のヤング率をE1(GPa)、開口部24の円相当半径をr(μm)とする時、下記式(1)で表されるパラメータAと、防音構造10の遮蔽ピーク振動周波数(Hz)とは、防音セル26の円相当半径R1(mm)、膜18の厚みt1(μm)、膜18のヤング率E1(GPa)、開口部24の円相当半径r(μm)を変化させた時にも、図12に示すように、略線形な関係にあり、略一次式で表され、2次元座標上で、略同一直線上に乗ることを知見した。なお、パラメータAは、膜の密度やポアソン比には、略依存しないことも分かった。
   A=√(E1)*(t11.2)*(ln(r)-e)/(R12.8)…(1)
 ここで、eは、ネイピア数を示し、ln(x)は、eを底としたxの対数である。
 ここで、防音セル26内に複数個の開口部24が存在するとき、円相当半径rは複数個の開口部の合計面積から求めるものとする。
By the way, in the soundproof structure 10 of the present invention, the first natural vibration frequency is determined by the structure composed of the frame 14 and the film 18, and the shielding peak frequency at which the transmission loss peaks is a film having the structure composed of the frame 14 and the film 18. It depends on the opening made of the hole 22 perforated.
Here, in the soundproof structure 10 of the present invention, the inventors set R1 (mm) as the equivalent circle radius of the soundproof cell 26, that is, the frame 14, the thickness of the film 18 as t1 (μm), and the Young's modulus of the film 18. When E1 (GPa) and the equivalent circle radius of the opening 24 are r (μm), the parameter A represented by the following formula (1) and the shielding peak vibration frequency (Hz) of the soundproof structure 10 are the soundproof cell. When the equivalent circle radius R1 (mm) of 26, the thickness t1 (μm) of the film 18, the Young's modulus E1 (GPa) of the film 18, and the equivalent circle radius r (μm) of the opening 24 are changed, FIG. As shown, it has a substantially linear relationship, is represented by a substantially linear expression, and has been found to ride on a substantially identical straight line in two-dimensional coordinates. It was also found that the parameter A does not substantially depend on the film density and Poisson's ratio.
A = √ (E1) * (t1 1.2 ) * (ln (r) −e) / (R1 2.8 ) (1)
Here, e indicates the number of Napiers, and ln (x) is the logarithm of x with e as the base.
Here, when there are a plurality of openings 24 in the soundproof cell 26, the circle equivalent radius r is obtained from the total area of the plurality of openings.
 なお、図12は、後述する実施例の実験前の設計段階におけるシミュレーションの結果から得られたものである。
 本発明の防音構造10において、第1固有振動周波数を10Hz~100000Hzとする時、遮蔽ピーク振動周波数は、第1固有振動周波数以下の主端数となることから、遮蔽ピーク振動周波数を10Hzから100000Hzまでの間の複数の値に対応するパラメータAの値を表1に示す。
FIG. 12 is obtained from a simulation result in a design stage before an experiment of an example described later.
In the soundproof structure 10 of the present invention, when the first natural vibration frequency is 10 Hz to 100,000 Hz, the shield peak vibration frequency is a main fraction less than or equal to the first natural vibration frequency, so the shield peak vibration frequency is from 10 Hz to 100,000 Hz. Table 1 shows values of the parameter A corresponding to a plurality of values.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、パラメータAは、第1固有振動周波数に対応することから、本発明においては、0.07000以上759.1以下であることが好ましく、0.1410~151.82であることがより好ましく、0.2820~121.5であることが更により好ましく、0.7050~91.09であることが最も好ましい。
 以上のように規格化されたパラメータAを用いることにより、本発明の防音構造において遮蔽ピーク周波数を決定することができ、遮蔽ピーク周波数を中心とする一定の周波数帯域の音を選択的に遮音することができる。また、逆に、このパラメータAを用いることにより、選択的に遮音すべき周波数帯域の中心となる遮蔽ピーク周波数を持つ本発明の防音構造を設定することができる。
As is apparent from Table 1, the parameter A corresponds to the first natural vibration frequency. Therefore, in the present invention, it is preferably 0.07000 or more and 759.1 or less, and is 0.1410 to 151.82. More preferably, it is more preferably 0.2820 to 121.5, and most preferably 0.7050 to 91.09.
By using the parameter A normalized as described above, the shielding peak frequency can be determined in the soundproof structure of the present invention, and the sound in a certain frequency band centered on the shielding peak frequency is selectively insulated. be able to. Conversely, by using this parameter A, it is possible to set the soundproof structure of the present invention having a shielding peak frequency that is the center of a frequency band to be selectively sound-insulated.
 また、本発明者らは、本発明の防音構造10において、防音セル26、即ち枠14の円相当半径をR2(m)、膜18の厚みをt2(m)、膜18のヤング率をE2(Pa)、膜18の密度をd(kg/m)とする時、下記式(2)で表されるパラメータB(√m)と、防音構造10の枠14及び膜18からなる構造の第1固有振動周波数(Hz)とは、防音セル26の円相当半径R2(m)、膜18の厚みt2(m)、膜18のヤング率E2(Pa)、膜18の密度d(kg/m)を変化させた時にも略線形な関係にあり、図13に示すように、下記式(3)で表される式で表されることを知見した。
   B=t2/R2*√(E2/d)           …(2)
   y=0.7278x0.9566              …(3)
 ここで、yは、第1固有振動周波数(Hz)であり、xは、パラメータBである。
 なお、図13は、後述する実施例の実験前の設計段階におけるシミュレーションの結果から得られたものである。
In addition, in the soundproof structure 10 of the present invention, the present inventors set the soundproof cell 26, that is, the frame 14 to have a circle equivalent radius R2 (m), the thickness of the film 18 t2 (m), and the Young's modulus of the film 18 E2. (Pa) When the density of the film 18 is d (kg / m 3 ), the parameter B (√m) represented by the following formula (2), the frame 14 of the soundproof structure 10 and the film 18 are used. The first natural vibration frequency (Hz) is a circle-equivalent radius R2 (m) of the soundproof cell 26, a thickness t2 (m) of the film 18, a Young's modulus E2 (Pa) of the film 18, and a density d (kg / kg) of the film 18. It was found that even when m 3 ) was changed, the relationship was approximately linear, and as shown in FIG. 13, it was expressed by the following expression (3).
B = t2 / R2 2 * √ (E2 / d) (2)
y = 0.7278x 0.9566 (3)
Here, y is the first natural vibration frequency (Hz), and x is the parameter B.
Note that FIG. 13 is obtained from the result of simulation in the design stage before the experiment of an example described later.
 以上から、本発明の防音構造10においては、防音セル26の円相当半径R2(m)、膜18の厚みt2(m)、膜18のヤング率E2(Pa)、膜18の密度d(kg/m)をパラメータB(√m)で規格化することにより、2次元(xy)座標上において、パラメータBと防音構造10の第1固有振動周波数(Hz)との関係を表わす点は、略一次式と見做せる上記式(3)で表され、全ての点が略同一直線上にあること分かる。なお、R2とR1とは、共に防音セル26の円相当半径を表わすが、R2=10×R1の関係にある。また、t2とt1とは、共に膜18の厚みを表わすが、t2=10×t1の関係にある。また、E2とE1とは、共に膜18のヤング率を表わすが、E1=109×E2の関係にある。
 第1固有振動周波数を10Hzから100000Hzまでの間の複数の値に対するパラメータBの値を表2に示す。
From the above, in the soundproof structure 10 of the present invention, the equivalent circle radius R2 (m) of the soundproof cell 26, the thickness t2 (m) of the film 18, the Young's modulus E2 (Pa) of the film 18, and the density d (kg) of the film 18 / M 3 ) is normalized by the parameter B (√m), the point representing the relationship between the parameter B and the first natural vibration frequency (Hz) of the soundproof structure 10 on the two-dimensional (xy) coordinates is It is expressed by the above formula (3) that can be regarded as a substantially linear expression, and it can be seen that all points are on substantially the same straight line. Note that R2 and R1 both represent the circle-equivalent radius of the soundproof cell 26, but have a relationship of R2 = 10 3 × R1. Further, t2 and t1 both represent the thickness of the film 18, but have a relationship of t2 = 10 6 × t1. E2 and E1 both represent the Young's modulus of the film 18, but have a relationship of E1 = 10 9 × E2.
Table 2 shows parameter B values for a plurality of values of the first natural vibration frequency between 10 Hz and 100,000 Hz.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、パラメータBは、第1固有振動周波数に対応することから、本発明においては、1.547×10(=15.47)以上2.350×10(23500)以下であることが好ましく、3.194×10(=31.94)~4.369×10(43960)であることがより好ましく、6.592×10(=65.92)~3.460×10(34600)であることが更により好ましく、1.718×10(=171.8)~2.562×10(25620)であることが最も好ましい。
 以上のように規格化されたパラメータBを用いることにより、本発明の防音構造において遮蔽ピーク周波数の高周波側の上限となる第1固有振動周波数を決定することができ、選択的に遮音すべき周波数帯域の中心となる遮蔽ピーク周波数を決めることができる。また、逆に、このパラメータBを用いることにより、選択的に遮音すべき周波数帯域の中心となる遮蔽ピーク周波数を持つことができる第1固有振動周波数を有する本発明の防音構造を設定することができる。
As is apparent from Table 2, the parameter B corresponds to the first natural vibration frequency, and therefore, in the present invention, 1.547 × 10 (= 15.47) or more and 2.350 × 10 5 (23500) or less. It is preferably 3.194 × 10 (= 31.94) to 4.369 × 10 4 (43960), more preferably 6.592 × 10 (= 65.92) to 3.460 ×. preferably more than it is 10 4 (34600), and most preferably 1.718 × 10 2 (= 171.8) ~ 2.562 × 10 4 (25620).
By using the parameter B standardized as described above, the first natural vibration frequency that is the upper limit on the high frequency side of the shielding peak frequency in the soundproof structure of the present invention can be determined, and the frequency that should be selectively sound-insulated. The shielding peak frequency that becomes the center of the band can be determined. Conversely, by using this parameter B, it is possible to set the soundproof structure of the present invention having the first natural vibration frequency that can have the shielding peak frequency that is the center of the frequency band to be selectively sound-insulated. it can.
 なお、本発明の防音構造の防音においては、音が振動でなく音響波として透過できる貫通穴22と、膜振動として音が通過する膜18との両方が存在していることが重要となる。
 よって、音が透過できる貫通穴22は、音が膜振動ではなく、空気を伝わる音響波として通ることのできる部材で覆われている状態でも、開放されているときと同様に遮音のピークを得ることができる。このような部材は、一般に通気性のある部材となる。
 このような通気性のある代表的な部材としては網戸の網があげられる。一例として、NBCメッシュテック社製のアミドロジー30メッシュ品が挙げられるが、本発明者らは、これによって貫通穴22を塞いでも得られるスペクトルは変化しないことを確認している。
In the soundproofing of the soundproofing structure of the present invention, it is important that both the through hole 22 through which sound can be transmitted as an acoustic wave instead of vibration and the film 18 through which sound passes as membrane vibration are important.
Therefore, the through-hole 22 through which sound can be transmitted obtains a sound insulation peak in the same manner as when the sound is opened even when the sound is not covered by a membrane vibration but is covered with a member that can pass through as an acoustic wave transmitted through the air. be able to. Such a member is generally a breathable member.
As a representative member having such air permeability, a screen door screen can be cited. As an example, an amidology 30 mesh product manufactured by NBC Meshtec Co., Ltd. can be cited, but the present inventors have confirmed that the spectrum obtained by closing the through hole 22 does not change.
 網は、格子状であっても良いし、三角格子状であっても良く、特にその形状には依存しないし、制限されない。網全体のサイズは、本発明の枠体のサイズよりも大きくても良いし、小さくても良い。また、網のサイズは、膜18の貫通穴22を1つ1つ覆うサイズであっても良い。また、網は、その網目がいわゆる虫よけを目的とするサイズの網であっても良いし、もっと細かな砂の進入を防ぐ網でも良い。素材は、合成樹脂からなる網でも良いし、防犯用、電波遮蔽用の針金であっても良い。
 また、上述の通気性のある部材は、網戸の網に限定されず、網の他にも、不織布素材、ウレタン素材、シンサレート(3M社製)、ブレスエアー(東洋紡社製)、ドットエアー(東レ社製)などが挙げられる。本発明では、このような通気性を有する素材で覆うことで、虫や砂が孔から侵入することを防ぐこと、貫通穴22の部分から中が見える等のプライバシー性を確保すること、及び隠ぺい性を付与することなどができる。
 本発明の防音構造は、基本的に以上のように構成される。
The net may have a lattice shape or a triangular lattice shape, and is not particularly limited or limited by the shape. The size of the entire net may be larger or smaller than the size of the frame of the present invention. Further, the size of the net may be a size that covers the through holes 22 of the film 18 one by one. Moreover, the net | network may be a net | network of the size for the purpose of what is called an insect repellent, and the net | network which prevents a finer sand from approaching. The material may be a net made of synthetic resin, or a wire for crime prevention or radio wave shielding.
In addition, the air-permeable member described above is not limited to a screen door mesh, but besides a mesh, a non-woven material, a urethane material, cinsalate (manufactured by 3M), breath air (manufactured by Toyobo), dot air (Toray Industries, Inc.) Etc.). In the present invention, by covering with a material having such air permeability, it is possible to prevent insects and sand from entering from the hole, to ensure privacy such that the inside can be seen from the through hole 22, and to conceal. Sex can be imparted.
The soundproof structure of the present invention is basically configured as described above.
 本発明の防音構造は、以上のように構成されているため、従来の防音構造において困難であった低周波遮蔽を可能にし、さらに、低周波から1000Hzを超える周波数まで様々な周波数の騒音に合わせて強く遮音する構造を設計できるという特徴も有する。また、本発明の防音構造は、構造の質量(質量則)によらない遮音原理であるため、従来の防音構造と比較して非常に軽量かつ薄い遮音構造を実現できるために、従来の防音構造では十分な遮音が困難であった防音対象にも適用することができる。 Since the soundproof structure of the present invention is configured as described above, it enables low-frequency shielding, which has been difficult in the conventional soundproof structure, and further adapts to noise of various frequencies from low frequencies to frequencies exceeding 1000 Hz. It also has the feature that it can design a structure that provides strong sound insulation. In addition, since the soundproof structure of the present invention is a sound insulation principle that does not depend on the mass (mass law) of the structure, it is possible to realize a very light and thin sound insulation structure compared to the conventional soundproof structure. Therefore, it can be applied to a soundproofing object for which sufficient sound insulation is difficult.
 また、本発明の防音構造は、特許文献2に記載の技術のように、錘を必要とせず、膜に穴を設けるだけで製造適性があり遮音材としてロバスト性の高い遮音構造であるという特徴を有する。即ち、本発明の防音構造は、特許文献2に記載の技術に比較して、以下の特徴を有する。
 1.質量を重くしてしまう要因であった錘が必要ないため、より軽い遮音構造を実現できる。
 2.レーザ加工やパンチ穴により、高速かつ容易に膜に穴をあけることができるために、製造適性を有する。
 3.穴の位置や形状に遮音特性がほとんど依存しないため、製造において安定性が高い。
 4.穴が存在することで膜が通気性をもつ、すなわち風や熱を通しながら音を遮蔽する構造を実現できる。
In addition, the soundproof structure of the present invention is a sound insulating structure that does not require a weight, is suitable for manufacturing only by providing a hole in the film, and has high robustness as a sound insulating material, as in the technique described in Patent Document 2. Have That is, the soundproof structure of the present invention has the following characteristics as compared with the technique described in Patent Document 2.
1. Since a weight that was a cause of increasing the mass is not necessary, a lighter sound insulation structure can be realized.
2. Since the film can be punched at high speed and easily by laser processing or punch holes, it has manufacturability.
3. Since the sound insulation characteristics hardly depend on the position and shape of the hole, stability in manufacturing is high.
4). The presence of the hole makes it possible to realize a structure in which the membrane has air permeability, that is, a sound is shielded while passing wind and heat.
 本発明の防音構造は、以下のようにして製造される。
 まず、複数、例えば225の枠14を有する枠体16と、枠体16の全ての枠14の貫通孔12を全て覆うシート状の膜体20を準備する。
 次に、枠体16の全ての枠14にシート状の膜体20を接着剤によって固定し、全ての枠14の貫通孔12をそれぞれ覆う膜18を形成して、枠14と膜18とからなる構造を持つ複数の防音セルを構成する。
 次いで、複数の防音セルの個々の膜18に、レーザ加工などのエネルギを吸収する加工方法、もしくはパンチング、又は針加工などの物理的接触による機械加工方法によって1個以上の穴22をそれぞれ穿孔して、各防音セル26に開口部24を形成する。
 こうして、本発明の防音構造10を製造することができる。
 本発明の防音構造の製造方法は、基本的に以上のように構成される。
The soundproof structure of the present invention is manufactured as follows.
First, a plurality of, for example, a frame body 16 having 225 frames 14 and a sheet-like film body 20 that covers all the through holes 12 of all the frames 14 of the frame body 16 are prepared.
Next, the sheet-like film body 20 is fixed to all the frames 14 of the frame body 16 with an adhesive, and the films 18 that respectively cover the through holes 12 of all the frames 14 are formed. A plurality of soundproof cells having the following structure are formed.
Next, one or more holes 22 are respectively drilled in the individual films 18 of the plurality of soundproof cells by a processing method that absorbs energy such as laser processing, or a mechanical processing method that uses physical contact such as punching or needle processing. Thus, the opening 24 is formed in each soundproof cell 26.
Thus, the soundproof structure 10 of the present invention can be manufactured.
The manufacturing method of the soundproof structure of the present invention is basically configured as described above.
 本発明の防音構造及び防音構造の製造方法を実施例に基づいて具体的に説明する。
 本発明の実施例を製造して音響特性を測定する実験を行う前に防音構造の設計について示す。
 この防音構造の系は、膜振動と空気中の音波の相互作用系であるため、音響と振動の連成解析を用いて解析を行った。具体的には、有限要素法の解析ソフトウェアであるCOMSOLver5.0の音響モジュールを用いて設計を行った。まず、固有振動解析によって第1固有振動周波数を求めた。次に、周期構造境界中で周波数スイープによる音響構造連成解析を行って、正面から入射する音波に対する各周波数における透過損失を求めた。
 この設計に基づいて、サンプルの形状や材質を決定した。実験結果における遮蔽ピーク周波数とシミュレーションからの予測はよく一致した。
The soundproof structure and the method of manufacturing the soundproof structure of the present invention will be specifically described based on examples.
The design of the soundproof structure will be described before the experiment of manufacturing the embodiment of the present invention and measuring the acoustic characteristics.
Since this soundproof structure system is an interaction system between membrane vibration and sound waves in the air, analysis was performed using a coupled analysis of sound and vibration. Specifically, the design was performed using an acoustic module of COMSOL ver5.0 which is analysis software of the finite element method. First, the first natural vibration frequency was obtained by natural vibration analysis. Next, acoustic structure coupling analysis by frequency sweep was performed in the boundary of the periodic structure, and transmission loss at each frequency with respect to the sound wave incident from the front was obtained.
Based on this design, the shape and material of the sample were determined. The shielding peak frequency in the experimental result agrees well with the prediction from the simulation.
 また、音響構造連成解析シミュレーションを行い、遮蔽ピーク周波数と各物性の対応を求めた。パラメータAとして膜18の厚みt1(μm)、枠14のサイズ(又は半径)R1(mm)、膜のヤング率E1(GPa)、開口部の円相当半径r(μm)を変化させて音波に対する各周波数における透過損失を求め、遮蔽ピーク周波数を求めた。その結果を図12に示した。本発明者らは、この計算により遮蔽ピーク周波数が√(E1)*(t11.2)*(ln(r)-e)/(R12.8)に略比例することを見出した。したがって、パラメータA=√(E1)*(t11.2)*(ln(r)-e)/(R12.8)とおくことで遮蔽ピーク周波数が予測できることが分かった。 In addition, acoustic structure coupled analysis simulation was performed to determine the correspondence between the shielding peak frequency and each physical property. As parameters A, the thickness t1 (μm) of the film 18, the size (or radius) R1 (mm) of the frame 14, the Young's modulus E1 (GPa) of the film, and the equivalent circle radius r (μm) of the opening are changed. The transmission loss at each frequency was determined, and the shielding peak frequency was determined. The results are shown in FIG. The present inventors have found from this calculation that the shielding peak frequency is approximately proportional to √ (E1) * (t1 1.2 ) * (ln (r) −e) / (R1 2.8 ). Therefore, it was found that the shielding peak frequency can be predicted by setting the parameter A = √ (E1) * (t1 1.2 ) * (ln (r) −e) / (R1 2.8 ).
 また、材料特性や膜厚を自由に変化させることができるシミュレーションの特徴を活かして、第1固有振動周波数と各物性の対応を求めた。パラメータBとして膜18の厚みt2(m)、枠14のサイズ(又は半径)R2(m)、膜のヤング率E2(Pa)、膜の密度d(kg/m)を変化させて固有振動を求めた。その結果を図13に示した。本発明者らは、この計算により第1固有振動周波数f_resonanceがt2/R2*√(E2/d)に略比例することを見出した。したがって、パラメータB=t2/R2*√(E2/d)とおくことで固有振動が予測できることが分かった。 In addition, the correspondence between the first natural vibration frequency and each physical property was obtained by taking advantage of the characteristics of the simulation that can freely change the material characteristics and the film thickness. By changing the thickness t2 (m) of the film 18, the size (or radius) R2 (m) of the frame 14, the Young's modulus E2 (Pa) of the film, and the density d (kg / m 3 ) of the film as parameters B Asked. The results are shown in FIG. The present inventors have found that the first natural vibration frequency f_resonance is approximately proportional to t2 / R2 2 * √ (E2 / d) by this calculation. Therefore, it was found that the natural vibration can be predicted by setting the parameter B = t2 / R2 2 * √ (E2 / d).
(実施例1)
 以下に、膜18のPETフィルム厚さ50μm(=50×10-6m)、枠14のサイズ7.5mm(=7.5×10-3m)、サイズ直径200μm(=200×10-6m)の穴22を持つ実施例1の防音構造の製造方法を示す。
 PETフィルム(東レ株式会社製 ルミラー)50μm品を膜18として用いた。枠14としてはアルミニウム厚み3mm×幅3mmを用い、枠14の形状を正方形として、その正方形の貫通孔12の一辺を7.5mmとして加工を行ったものを用いた。枠構造の貫通孔12は15×15個の合計225個を有する。この枠構造をPETフィルムに対して接着剤で固定し、枠14と膜18とからなる枠・膜構造を作製した。
(Example 1)
Hereinafter, the PET film thickness of the film 18 is 50 μm (= 50 × 10 −6 m), the size of the frame 14 is 7.5 mm (= 7.5 × 10 −3 m), and the size diameter is 200 μm (= 200 × 10 −6). The manufacturing method of the soundproof structure of Example 1 which has the hole 22 of m) is shown.
A 50 μm PET film (Lumirror manufactured by Toray Industries, Inc.) was used as the film 18. As the frame 14, an aluminum thickness of 3 mm × width of 3 mm was used, and the shape of the frame 14 was a square, and one processed through the square through-hole 12 having a side of 7.5 mm was used. The through holes 12 of the frame structure have a total of 225 pieces of 15 × 15 pieces. This frame structure was fixed to the PET film with an adhesive, and a frame / membrane structure composed of the frame 14 and the film 18 was produced.
 この枠・膜構造の膜18に穴22をあける工程は、以下のように行った。
 まず、膜18に黒インクを用いて光吸収を目的とした黒点を描いた。このとき、黒点のサイズをできるだけ開けたい穴サイズに近付けるようにした。
 次に、レーザ装置(日亜化学社製レーザーダイオード)の緑色レーザ(300mW)をフィルム黒点部に対して照射を行った。
 PETフィルムの可視光吸収率は十分に小さいため、黒点部のみにレーザが吸収され吸収熱が発生し、最終的に黒点部に穴22が開いた。光学顕微鏡(ニコン社製ECLIPSE)を用いて穴22のサイズを測定したところ、円形穴直径200μmを枠14の中央部に得ることができた。これにより、本発明の実施例1の防音構造を製造することができた。
The step of making the hole 22 in the film 18 having the frame / film structure was performed as follows.
First, black dots were drawn on the film 18 for the purpose of light absorption using black ink. At this time, the size of the black spot was set as close as possible to the size of the hole to be opened.
Next, the black spot portion of the film was irradiated with a green laser (300 mW) of a laser device (a laser diode manufactured by Nichia Corporation).
Since the visible light absorptance of the PET film was sufficiently small, the laser was absorbed only in the black spot portion to generate heat of absorption, and finally a hole 22 was opened in the black spot portion. When the size of the hole 22 was measured using an optical microscope (Nikon Corporation ECLIPSE), a circular hole diameter of 200 μm could be obtained at the center of the frame 14. Thereby, the soundproof structure of Example 1 of this invention was able to be manufactured.
 音響特性は、自作のアルミニウム製音響管に4本のマイクを用いて伝達関数法による測定を行った。この手法は「ASTM E2611-09: Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method」に従うものである。音響管としては、例えば日東紡音響エンジニアリング株式会社製のWinZacと同一の測定原理であるものを用いた。この方法で広いスペクトル帯域において音響透過損失を測定することができる。実施例1の防音構造を音響管の測定部位に配置し、10Hz~40000Hzの範囲で音響透過損失測定を行った。この測定範囲は音響管の直径やマイク間距離を複数組み合わせて測定を行ったものである。
 一般にマイク間距離が大きいほど低周波は測定ノイズが小さくなり、一方で、高周波側で波長/2よりマイク間の間隔が長くなると原理上測定ができなくなる。よって、マイク間距離を変えながら複数回測定した。また、音響管が太いことで、高周波側で高次モードの影響で測定ができなくなるため、音響管の径も複数種類使用して測定を行った。
The acoustic characteristics were measured by the transfer function method using four microphones in a self-made aluminum acoustic tube. This method conforms to “ASTM E2611-09: Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method”. As the acoustic tube, for example, a tube having the same measurement principle as that of WinZac manufactured by Nittobo Acoustic Engineering Co., Ltd. was used. With this method, sound transmission loss can be measured in a wide spectral band. The soundproof structure of Example 1 was placed at the measurement site of the acoustic tube, and sound transmission loss was measured in the range of 10 Hz to 40000 Hz. This measurement range is measured by combining a plurality of acoustic tube diameters and distances between microphones.
In general, as the distance between the microphones increases, the measurement noise at the low frequency becomes smaller. On the other hand, if the distance between the microphones is longer than the wavelength / 2 on the high frequency side, the measurement becomes impossible in principle. Therefore, the measurement was performed a plurality of times while changing the distance between the microphones. In addition, since the acoustic tube is thick, it becomes impossible to measure due to the influence of the higher-order mode on the high frequency side. Therefore, the measurement was performed using a plurality of types of acoustic tube diameters.
 透過損失の測定結果を図6に示す。
 図1に示す結果から明らかなように、1000Hz付近で極めて強い遮蔽が生じていることが分かった。
 以下、全ての実施例2~42、及び比較例1~2において測定方法は同じであるため、各実施例及び各比較例のサンプルの作製方法を示した。
 製造された実施例1~42及び比較例1~2の各防音構造の枠14の形状、サイズ及び材質、膜18の種類、厚み及び第1固有振動周波数、並びに穴22のサイズ、形状及び個数と、各実施例及び各比較例で得られたスペクトルの最大又は極大の遮蔽ピーク周波数(以下、単に、遮蔽周波数ともいう)、その透過損失、パラメータA及びBの値とを表3~表5に示す。
The measurement result of the transmission loss is shown in FIG.
As is clear from the results shown in FIG. 1, it was found that extremely strong shielding occurred in the vicinity of 1000 Hz.
Hereinafter, since the measurement methods are the same in all of Examples 2 to 42 and Comparative Examples 1 and 2, methods for preparing samples of each Example and each Comparative Example are shown.
The shape, size and material of the frame 14 of each of the soundproof structures of Examples 1 to 42 and Comparative Examples 1 and 2 manufactured, the type, thickness and first natural vibration frequency of the film 18, and the size, shape and number of the holes 22 Tables 3 to 5 show the maximum or maximum shielding peak frequency (hereinafter also simply referred to as shielding frequency), the transmission loss, and the values of parameters A and B of the spectra obtained in the examples and the comparative examples. Shown in
(比較例1)
 実施例1で作製された枠・膜構造に対して穴をあけずにそのままの枠・膜構造を用いて測定を行った。その結果を表3に示す。また、透過損失の測定結果を図7に示す。一般的な質量則と剛性則による遮音が得られた。この切り替わりが2820Hz付近で起こっており、これは膜の第1固有振動周波数と一致していることが分かる。
(比較例2)
 実施例1で用いた膜(PETフィルム50μm)に対して、枠をつけることなく穴を7.5mm間隔であけた。穴の直径は実施例1に合わせて200μmとした。その結果を表3に示し、その透過損失の測定結果を図14に示す。一般的に板に穴があいただけの構造では低周波ほど通りやすく、高周波ほど通りにくい構造となり、本実験でもその特徴が得られている。このとき、第1固有振動周波数も遮蔽のピークもみられない。
 表中におけるパラメータA、Bの計算の際には、枠が存在しないため、枠の半径Rは無限大(R→∞)として計算を行った。
(Comparative Example 1)
The frame / membrane structure produced in Example 1 was measured using the same frame / membrane structure without making a hole. The results are shown in Table 3. Moreover, the measurement result of transmission loss is shown in FIG. Sound insulation by general mass law and rigidity law was obtained. It can be seen that this switching occurs near 2820 Hz, which matches the first natural vibration frequency of the membrane.
(Comparative Example 2)
With respect to the film | membrane (PET film 50 micrometers) used in Example 1, the hole was opened at 7.5 mm space | interval, without attaching a frame. The diameter of the hole was set to 200 μm in accordance with Example 1. The results are shown in Table 3, and the measurement results of the transmission loss are shown in FIG. In general, a structure with a hole in the plate is easier to pass at lower frequencies and more difficult to pass at higher frequencies, and this experiment has obtained its characteristics. At this time, neither the first natural vibration frequency nor the shielding peak is observed.
In the calculation of the parameters A and B in the table, since there is no frame, the radius R of the frame was calculated as infinite (R → ∞).
(実施例2~7)
 実施例1と同様にして、枠・膜構造を作製した。レーザ照射時間を変化させることで熱の発生量が変化して、穴22のサイズを変化させることができることが分かっているので、レーザ照射時間・パワーを最適化することで、PETフィルム上に20μm~2000μmまでの所望の穴22を得ることができた。こうして得られた各実施例の防音構造における遮蔽周波数を含む結果を表3に示す。なお、実施例5の遮音特性を図10に点線で示す。
(Examples 2 to 7)
A frame / film structure was prepared in the same manner as in Example 1. Since it is known that the amount of heat generated can be changed by changing the laser irradiation time and the size of the hole 22 can be changed, the laser irradiation time / power is optimized so that 20 μm can be formed on the PET film. The desired hole 22 of up to 2000 μm could be obtained. Table 3 shows the results including the shielding frequency in the soundproof structure of each example obtained in this way. The sound insulation characteristics of Example 5 are indicated by dotted lines in FIG.
(実施例8)
 実施例1と同様にして、枠・膜構造を作製した後に、レーザ照射によって穴22を形成する代わりに、針をフィルムに刺すことで物理的に穴22を形成した。力を調整することで直径200μmの穴22を得ることができた。こうして得られた実施例8の遮蔽スペクトル(透過損失)は、実施例1と変化なく得られた。その結果を表3に示す。
(Example 8)
In the same manner as in Example 1, after preparing the frame / membrane structure, instead of forming the hole 22 by laser irradiation, the hole 22 was physically formed by inserting a needle into the film. A hole 22 having a diameter of 200 μm could be obtained by adjusting the force. The shielding spectrum (transmission loss) of Example 8 obtained in this way was obtained without changing from Example 1. The results are shown in Table 3.
(実施例9~11)
 実施例1において用いたPETフィルムの厚みを50μm品から20μm、100μm、200μm品に変更して、その他は同じ作製手法を用いて穴径200μmの防音構造を得た。こうして得られた各実施例の測定結果を表3に示す。
 膜厚が増加することで曲げ剛性が増大し、それに伴い固有振動の第一振動モードが高周波にシフトする。それに従って同一穴径における遮蔽周波数も高周波にシフトした。図8に、厚み100μmの実施例10の遮蔽スペクトルを示した。
(Examples 9 to 11)
The thickness of the PET film used in Example 1 was changed from a 50 μm product to a 20 μm, 100 μm, and 200 μm product, and a soundproof structure with a hole diameter of 200 μm was obtained using the same manufacturing method. Table 3 shows the measurement results of the examples thus obtained.
As the film thickness increases, the bending rigidity increases, and accordingly, the first vibration mode of the natural vibration shifts to a high frequency. Accordingly, the shielding frequency at the same hole diameter also shifted to a high frequency. FIG. 8 shows the shielding spectrum of Example 10 having a thickness of 100 μm.
(実施例12~17)
 実施例1の条件で、枠のサイズを変更して、他は同じ条件で防音構造サンプルの作製を行った。正方形の貫通孔12の一辺を15mmとして加工を行った。枠14自体は、厚み3mm×幅3mmと同じである。この枠体16の枠14の貫通孔12は8×8の合計64個を有する。実施例1と同じく、レーザで穴22を加工し、その照射時間とパワーを調節することで異なる穴サイズ(20,100、200、400、1000、及び2000μm)の穴22を得た。こうして得られた実施例12~15の測定結果を表3に示し、実施例16~17の測定結果を表4に示す。
 なお、実施例16の防音構造サンプルの音響(音波のエネルギ)の吸収率を求めた。測定方法は実施例1と同じ4本マイクによる伝達関数法で行い、測定した透過率と反射率から吸収率を求めた。ここで、吸収率は、下記式から求めることができる。その結果を図15に示す。
     吸収率 = 1 - 透過率 - 反射率
 また、比較のため、実施例16の防音構造サンプルを作製する途中の穴22を穿孔する前の穴22の無い状態の参考防音構造サンプルの音響の吸収率も測定した。その結果を図16に示す。
(Examples 12 to 17)
A soundproof structure sample was produced under the same conditions as in Example 1 except that the frame size was changed. Processing was performed with one side of the square through-hole 12 being 15 mm. The frame 14 itself is the same as thickness 3 mm × width 3 mm. The through holes 12 of the frame 14 of the frame body 16 have a total of 64 of 8 × 8. Similarly to Example 1, the holes 22 were processed with a laser, and the holes 22 having different hole sizes (20, 100, 200, 400, 1000, and 2000 μm) were obtained by adjusting the irradiation time and power. The measurement results of Examples 12 to 15 thus obtained are shown in Table 3, and the measurement results of Examples 16 to 17 are shown in Table 4.
In addition, the absorption factor of the sound (energy of sound waves) of the soundproof structure sample of Example 16 was obtained. The measurement method was the transfer function method using the same four microphones as in Example 1, and the absorptance was obtained from the measured transmittance and reflectance. Here, the absorption rate can be obtained from the following equation. The result is shown in FIG.
Absorptivity = 1-Transmittance-Reflectance For comparison, the sound absorptivity of the reference soundproof structure sample without the hole 22 before the hole 22 in the middle of making the soundproof structure sample of Example 16 is drilled. Was also measured. The result is shown in FIG.
(実施例18~19)
 同一材料の場合の第1固有振動周波数は、厚みの2乗と正方形の1辺の長さの比が一定であるときにほぼ近い周波数となるので、実施例1と合わせるために枠サイズ15mm、PETフィルムの厚み200μmの条件で、他は実施例1と同様に防音構造サンプルを作製した。穴22のサイズは、実施例18が直径200μm、実施例19が直径400μmとなるように調整した。こうして得られた各実施例の測定結果を表4に示す。第1固体振動周波数は、いずれも実施例1と同じく2820Hzとして得られ、1000Hz以上の領域で大きな遮蔽を得ることができた。
(Examples 18 to 19)
In the case of the same material, the first natural vibration frequency is a frequency that is almost close when the ratio of the square of the thickness to the length of one side of the square is constant. A soundproof structure sample was produced in the same manner as in Example 1 except that the PET film had a thickness of 200 μm. The size of the hole 22 was adjusted so that Example 18 had a diameter of 200 μm and Example 19 had a diameter of 400 μm. Table 4 shows the measurement results of each example thus obtained. The first solid vibration frequency was obtained as 2820 Hz in the same manner as in Example 1, and a large shielding was obtained in the region of 1000 Hz or higher.
(実施例20)
 実施例1の条件で、枠14のサイズを30mm、膜18の厚みを200μmに変更して、他の条件は穴サイズも含めて同一にして防音構造サンプルを作製した。こうして得られた実施例20の測定結果を表4に示す。この実施例20の条件は、実施例14の条件から膜18の厚み4倍、枠14のサイズ2倍となっているため、固有振動の第1振動モードが同じであることが期待され、測定を行うと実際に同一の周波数であった。
(Example 20)
Under the conditions of Example 1, the size of the frame 14 was changed to 30 mm, the thickness of the film 18 was changed to 200 μm, and the other conditions were the same including the hole size to produce a soundproof structure sample. The measurement results of Example 20 thus obtained are shown in Table 4. Since the conditions of Example 20 are four times the thickness of the film 18 and twice the size of the frame 14 from the conditions of Example 14, the first vibration mode of the natural vibration is expected to be the same, and the measurement is performed. Was actually the same frequency.
(実施例21)
 実施例20において、膜厚を200μmでなく800μmに変更して、その他は同一の条件で防音構造サンプル作製を行った。こうして得られた実施例21の測定結果を表4に示す。実施例21は、実施例1から膜厚みが16倍、枠サイズが4倍となり固有振動の第一振動モードが同じであることが期待された。測定を行うと実際に同1周波数2820Hzに透過のピーク(極小)が現れた。透過損失のピーク(極大)は、708Hzに大きなピークが現れた。この透過損失スペクトルを図9に示す。
(Example 21)
In Example 20, a soundproof structure sample was manufactured under the same conditions except that the film thickness was changed to 800 μm instead of 200 μm. The measurement results of Example 21 thus obtained are shown in Table 4. In Example 21, the film thickness was 16 times and the frame size was 4 times that in Example 1, and the first vibration mode of natural vibration was expected to be the same. When measured, a transmission peak (minimum) actually appeared at the same frequency of 2820 Hz. The transmission loss peak (maximum) showed a large peak at 708 Hz. This transmission loss spectrum is shown in FIG.
(実施例22)
 実施例21において、穴径を200μmから1600μmに変更した以外は同様にして防音構造サンプル作製を行った。こうして得られた実施例22の測定結果を表4に示す。
 枠14のサイズが大きい場合においても2000Hz以上を遮蔽することができた。
(Example 22)
A soundproof structure sample was prepared in the same manner as in Example 21 except that the hole diameter was changed from 200 μm to 1600 μm. The measurement results of Example 22 thus obtained are shown in Table 4.
Even when the size of the frame 14 was large, 2000 Hz or more could be shielded.
(実施例23)
 実施例1において、中央部に単一の貫通穴をあけるかわりに穴径200μmの穴を4つ中心部にあけた。その他は実施例1と同一条件で防音構造サンプル作製を行った。こうして得られた実施例23の測定結果を表4に示す。実施例23と実施例5の透過損失スペクトルを図10に示す。遮蔽周波数は、実施例5の穴径400μmの単一穴のときと一致して2000Hzとなった。つまり、他の条件を変えずに枠14内の膜18上の貫通穴22が同一開口率をもつとき、単一穴22の場合と複数個の穴22の場合の遮蔽スペクトルはほぼ一致した。
(Example 23)
In Example 1, instead of making a single through hole in the center, four holes with a hole diameter of 200 μm were made in the center. Others produced a soundproof structure sample under the same conditions as in Example 1. The measurement results of Example 23 obtained in this way are shown in Table 4. The transmission loss spectra of Example 23 and Example 5 are shown in FIG. The shielding frequency was 2000 Hz in agreement with the single hole having a hole diameter of 400 μm in Example 5. That is, when the through holes 22 on the film 18 in the frame 14 have the same aperture ratio without changing other conditions, the shielding spectra in the case of the single hole 22 and the plurality of holes 22 almost coincided.
(実施例24~30)
 実施例1において、中央部に単一の貫通穴をあける代わりに、穴径200μmの穴22のあける位置を四角枠中対角線上でずらした位置とした。その他は実施例1と同一条件で防音構造サンプル作製を行った。こうして得られた各実施例の測定結果を表4に示す。遮蔽周波数は中央に穴22をあけた実施例1と変化がなく、この防音系は、膜18上の穴22の位置に対して非常にロバスト性が大きいということを明らかにしている。
(Examples 24 to 30)
In Example 1, instead of making a single through hole in the center, the position where the hole 22 having a hole diameter of 200 μm was made a position shifted on the diagonal line in the square frame. Others produced a soundproof structure sample under the same conditions as in Example 1. Table 4 shows the measurement results of each example thus obtained. The shielding frequency is not different from that in Example 1 with the hole 22 in the center, and this soundproofing system reveals that it is very robust with respect to the position of the hole 22 on the membrane 18.
(実施例31)
 実施例1において、単一の貫通穴をあける代わりに、穴径200μmの穴を3つ、穴径100μmの穴を4つ同一の防音セル26内に開けた。その他は実施例1と同一条件で防音構造サンプル作製を行った。こうして得られた実施例31の測定結果を表5に示す。遮蔽周波数は2000Hzとなり、これは実施例5の穴計400μmの単一穴のときと同一の遮蔽周波数である。実施例5と本実施例でのセル内の合計穴面積は同一である。
(Example 31)
In Example 1, instead of making a single through hole, three holes having a hole diameter of 200 μm and four holes having a hole diameter of 100 μm were formed in the same soundproof cell 26. Others produced a soundproof structure sample under the same conditions as in Example 1. Table 5 shows the measurement results of Example 31 thus obtained. The shielding frequency is 2000 Hz, which is the same shielding frequency as in the case of the single hole having a hole total of 400 μm in Example 5. The total hole area in the cell in Example 5 and this example is the same.
(実施例32)
 実施例1において、枠の素材としてアルミニウムを用いる代わりに枠状に加工したアクリルを用いた。その他は実施例1と同一条件で防音構造サンプル作製を行った。こうして得られた実施例32の測定結果を表5に示す。枠14の素材を変更しても同じ効果が得られた。
(Example 32)
In Example 1, instead of using aluminum as a frame material, acrylic processed into a frame shape was used. Others produced a soundproof structure sample under the same conditions as in Example 1. The measurement results of Example 32 thus obtained are shown in Table 5. The same effect was obtained even if the material of the frame 14 was changed.
(実施例33)
 実施例1において、膜の素材としてPETフィルムの代わりにポリイミド膜を用いた。
 その他は実施例1と同一条件で防音構造サンプル作製を行った。こうして得られた実施例33の測定結果を表5に示す。PETフィルムの場合と同様に、ポリイミド膜においても枠14、膜18および穴22からなる防音構造で透過損失が大きくピークを持つことを示した。
(実施例34)
 実施例1において、正方形の貫通孔12の枠形状に加工したアルミ枠の代わりに、円形の貫通孔12の枠形状に加工したアルミ枠を用いた。その他は実施例1と同一条件で防音構造サンプル作製を行った。こうして得られた実施例34の測定結果を表5に示す。
(Example 33)
In Example 1, a polyimide film was used in place of the PET film as the film material.
Others produced a soundproof structure sample under the same conditions as in Example 1. The measurement results of Example 33 obtained in this way are shown in Table 5. As in the case of the PET film, the polyimide film has a soundproof structure including the frame 14, the film 18, and the holes 22, and the transmission loss has a large peak.
(Example 34)
In Example 1, instead of the aluminum frame processed into the frame shape of the square through hole 12, an aluminum frame processed into the frame shape of the circular through hole 12 was used. Others produced a soundproof structure sample under the same conditions as in Example 1. The measurement results of Example 34 thus obtained are shown in Table 5.
(実施例35)
 実施例1において、PETフィルム上に描く黒インクの形状を正方形となるようにした。
 このとき、穴22の面積が実施例1と同じになるように、一辺の長さを200[(√π)/2](μm)とした(円相等径を同一面積の円の直径と定義する。)。この時、描画にはインクジェット法を用いた。レーザ径を20μm程度に絞り黒点状をスキャンするように照射した。レーザパワーを調整することで正方形状の穴22を得ることができた。こうして得られた実施例35の測定結果を表5に示す。遮蔽周波数は、実施例1と同じ結果が得られた。このことにより、同一面積では遮蔽特性が穴22の形状に依存しないことを示す。
(Example 35)
In Example 1, the shape of the black ink drawn on the PET film was made to be a square.
At this time, the length of one side was set to 200 [(√π) / 2] (μm) so that the area of the hole 22 would be the same as in Example 1 (the circular equivalent diameter is defined as the diameter of a circle of the same area) ). At this time, the ink jet method was used for drawing. Irradiation was performed so that the laser diameter was reduced to about 20 μm and black spots were scanned. Square holes 22 could be obtained by adjusting the laser power. The measurement results of Example 35 obtained in this way are shown in Table 5. As for the shielding frequency, the same result as in Example 1 was obtained. This indicates that the shielding characteristic does not depend on the shape of the hole 22 in the same area.
(実施例36)
 実施例35において、正方形状の黒形状とする代わりに、長方形状の黒インク形状とした。長辺を200√π(μm)、短辺を200[(√π)/4](μm)として同一面積になるようにした。実施例35と同様にして長方形状の穴を得ることができた。こうして得られた実施例36の測定結果を表5に示す。
(実施例37)
 実施例1において、膜18としてPETフィルムの代わりにアルミ箔厚さ20μmを用いて、他は実施例1と同様にして防音構造サンプル作製を行った。こうして得られた実施例37の測定結果を表5に示す。貫通穴22は針により形成した。このとき、膜18も枠14もアルミニウムであり同一材質となる。アルミニウムは、一般的な高分子フィルム材料と比べてヤング率/密度が大きいため、PETフィルムと比べて薄くても高周波数側にピークが現れる。
(Example 36)
In Example 35, a rectangular black ink shape was used instead of the square black shape. The long side was 200√π (μm) and the short side was 200 [(√π) / 4] (μm) so as to have the same area. A rectangular hole was obtained in the same manner as in Example 35. The measurement results of Example 36 thus obtained are shown in Table 5.
(Example 37)
In Example 1, a soundproof structure sample was prepared in the same manner as in Example 1 except that an aluminum foil thickness of 20 μm was used as the film 18 instead of the PET film. The measurement results of Example 37 thus obtained are shown in Table 5. The through hole 22 was formed by a needle. At this time, both the film 18 and the frame 14 are made of aluminum and are made of the same material. Since aluminum has a larger Young's modulus / density than a general polymer film material, a peak appears on the high frequency side even if it is thinner than a PET film.
(実施例38)
 実施例1において、全てのセルで同じ穴径加工をする代わりに、互い違いになるように直径200μmの穴22と直径100μmの穴22を持つ各防音セル26からなる防音構造サンプルを作製した。こうして得られた実施例38の測定結果を表5に示す。また、実施例38の透過損失スペクトルを図11に示す。この時、遮蔽の最大(ピーク)周波数は1258Hzとなった。実施例1と実施例4とにより、それぞれの穴22を持つ単独防音セル26の遮蔽周波数は1412Hzと1000Hzだったので、その中間である周波数で遮蔽を実現できた。
(Example 38)
In Example 1, instead of processing the same hole diameter in all the cells, a soundproof structure sample including soundproof cells 26 having holes 22 having a diameter of 200 μm and holes 22 having a diameter of 100 μm so as to be staggered was produced. The measurement results of Example 38 obtained in this way are shown in Table 5. Moreover, the transmission loss spectrum of Example 38 is shown in FIG. At this time, the maximum (peak) frequency of shielding was 1258 Hz. According to Example 1 and Example 4, since the shielding frequency of the single soundproof cell 26 having the respective holes 22 was 1412 Hz and 1000 Hz, shielding could be realized at a frequency intermediate between them.
(実施例39~41)
 実施例34において、枠14の円形の貫通孔12の直径を7.5mmからそれぞれ4mm、2mm、及び2mmに変更し、円形穴22の直径を実施例41のみ200mmから40mmに変更し、他は実施例34と同様にして各実施例の防音構造サンプルを作製した。
 こうして得られた各実施例測定結果を表5に示す。枠のサイズが小さくなったことで、第1固有振動周波数及び遮蔽周波数は共に高周波側に大きくシフトしたことが分かる。
(実施例42)
 音響管として、内側の一辺の長さが15mmである音響管を用意した。防音構造サンプル作成のために、実施例18で15×15の枠14を使用する代わりに、単一のアルミニウム(Al)製の15mm枠14を準備し、その他は、実施例18と同様にし、膜18として厚さ200μmのPETフィルムに穴22として200μm径の円形穴を貫通させてサンプルとした。このとき、音響管とサンプルの枠14は全く同一のサイズとなるため、サンプルの枠14を音響管のサンプルホルダと一致させて、一つのセル構造のみからなる防音構造を対象に音響管を用いて測定できるようにして測定を行った。
 その結果を表5に示す。結果は、実施例18の測定結果と同一となった。
(Examples 39 to 41)
In Example 34, the diameter of the circular through-hole 12 of the frame 14 was changed from 7.5 mm to 4 mm, 2 mm, and 2 mm, respectively, and the diameter of the circular hole 22 was changed from 200 mm to 40 mm only in Example 41. In the same manner as in Example 34, a soundproof structure sample of each example was produced.
Table 5 shows the measurement results of the examples thus obtained. It can be seen that the first natural vibration frequency and the shielding frequency are both greatly shifted to the high frequency side by reducing the size of the frame.
(Example 42)
As the acoustic tube, an acoustic tube having an inner side length of 15 mm was prepared. Instead of using the 15 × 15 frame 14 in Example 18 to prepare a soundproof structure sample, a single 15 mm frame 14 made of aluminum (Al) was prepared, and the other was the same as in Example 18, A 200 μm thick PET film as the film 18 was passed through a 200 μm diameter circular hole as a hole 22 to prepare a sample. At this time, since the acoustic tube and the sample frame 14 are exactly the same size, the acoustic tube is used for a soundproof structure consisting of only one cell structure by matching the sample frame 14 with the sample holder of the acoustic tube. The measurement was performed so that it could be measured.
The results are shown in Table 5. The result was the same as the measurement result of Example 18.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3~表5から明らかなように、本発明の防音構造である実施例1~42は、比較例1~2と異なり、第1固有振動周波数より低周波側にある遮蔽ピーク周波数において、透過損失がピークとなる遮蔽ピークが存在しているので、遮蔽ピーク周波数を中心とする一定の幅の周波数帯域を選択的に遮音することができる。
 また、図16から明らかなように、実施例16の防音構造サンプル作製途中の穴22の無い状態の参考防音構造サンプルでは、系の第1固有振動周波数での膜の大きな揺れに起因する音響の吸収のピークのみが大きくあった。これに対し、図15から明らかなように、実施例16の防音構造サンプルでは、穴22を穿孔したことで、それより低周波側の吸収率が全体的に大きくなり、吸収性能が向上したことが分かる。実施例16の防音構造サンプルでは、特に、穴22に起因する遮蔽ピークより低周波側でより大きな吸収が生じていることが分かった。
 以上から、本発明の防音構造は、狙った特定の周波数成分を極めて強く遮蔽することができるという優れた遮音特性を持ち、更に、より低周波側の成分の吸収を増大させることができることが分かった。
As is apparent from Tables 3 to 5, the soundproof structures of Examples 1 to 42 of the present invention differ from Comparative Examples 1 and 2 in that the transmission is performed at the shielding peak frequency on the lower frequency side than the first natural vibration frequency. Since there is a shielding peak at which the loss becomes a peak, it is possible to selectively isolate a frequency band having a certain width around the shielding peak frequency.
Further, as is clear from FIG. 16, in the reference soundproof structure sample in the absence of the hole 22 in the middle of preparation of the soundproof structure sample of Example 16, the sound caused by the large vibration of the membrane at the first natural vibration frequency of the system Only the absorption peak was large. On the other hand, as is clear from FIG. 15, in the soundproof structure sample of Example 16, the hole 22 was drilled, so that the absorption rate on the lower frequency side was increased overall, and the absorption performance was improved. I understand. It was found that, in the soundproof structure sample of Example 16, greater absorption occurred on the low frequency side than the shielding peak caused by the hole 22 in particular.
From the above, it can be seen that the soundproof structure of the present invention has an excellent sound insulation characteristic that can shield a specific frequency component aimed at extremely strongly, and can further increase the absorption of the component on the lower frequency side. It was.
 以上、本発明の防音構造の製造方法、及び防音構造の製造方法についての種々の実施形態及び実施例を挙げて詳細に説明したが、本発明は、これらの実施形態及び実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいのはもちろんである。 As mentioned above, although the various embodiment and the Example about the manufacturing method of the soundproof structure of this invention and the manufacturing method of a soundproof structure were mentioned and demonstrated in detail, this invention is not limited to these embodiment and an Example. Of course, various improvements or changes may be made without departing from the spirit of the present invention.
10 防音構造
12 貫通孔
14 枠
15 板状部材
16 枠体
18 膜
20 膜体
22 穴(貫通穴)
24 開口部
26 防音セル
DESCRIPTION OF SYMBOLS 10 Soundproof structure 12 Through-hole 14 Frame 15 Plate-like member 16 Frame 18 Film 20 Film body 22 Hole (through-hole)
24 opening 26 soundproof cell

Claims (23)

  1.  1以上の防音セルを有する防音構造であって、
     前記1以上の防音セルの各々は、
     貫通孔を有する枠と、
     前記枠に固定された膜と、
     前記膜に穿孔された1以上の穴からなる開口部と、を備え、
     前記枠の貫通孔の両方の端部は、共に閉塞されておらず、
     前記防音構造は、前記1以上の防音セルの前記膜の第1固有振動周波数より低周波側に、前記1以上の防音セルの前記開口部に起因して定まり、かつ透過損失が極大となる遮蔽ピーク周波数を有し、前記遮蔽ピーク周波数を中心とする一定の周波数帯域の音を選択的に防音することを特徴とする防音構造。
    A soundproof structure having one or more soundproof cells,
    Each of the one or more soundproof cells is
    A frame having a through hole;
    A membrane fixed to the frame;
    An opening made of one or more holes perforated in the membrane,
    Both ends of the through hole of the frame are not closed together,
    The soundproof structure is defined by the opening of the one or more soundproofing cells on the lower frequency side than the first natural vibration frequency of the film of the one or more soundproofing cells and has a maximum transmission loss. A soundproof structure having a peak frequency and selectively soundproofing a certain frequency band centered on the shielded peak frequency.
  2.  前記1以上の防音セルは、2次元的に配置された複数の防音セルである請求項1に記載の防音構造。 The soundproof structure according to claim 1, wherein the one or more soundproof cells are a plurality of soundproof cells arranged two-dimensionally.
  3.  前記第1固有振動周波数は、前記1以上の防音セルの前記枠の幾何学的形態と、前記1以上の防音セルの前記膜の剛性とによって定まり、
     前記遮蔽ピーク周波数は、前記1以上の防音セルの前記開口部の面積に応じて定まるものである請求項1又は2に記載の防音構造。
    The first natural vibration frequency is determined by the geometric shape of the frame of the one or more soundproof cells and the rigidity of the membrane of the one or more soundproof cells,
    The soundproof structure according to claim 1 or 2, wherein the shield peak frequency is determined according to an area of the opening of the one or more soundproof cells.
  4.  前記第1固有振動周波数は、前記1以上の防音セルの前記枠の形状及び寸法と、前記1以上の防音セルの前記膜の厚さ及び可撓性とによって定まり、
     前記遮蔽ピーク周波数は、前記1以上の防音セルの前記開口部の平均面積率に応じて定まるものである請求項1~3のいずれか1項に記載の防音構造。
    The first natural vibration frequency is determined by the shape and size of the frame of the one or more soundproof cells, and the thickness and flexibility of the film of the one or more soundproof cells,
    The soundproof structure according to any one of claims 1 to 3, wherein the shielding peak frequency is determined according to an average area ratio of the openings of the one or more soundproof cells.
  5.  前記第1固有振動周波数は、10Hz~100000Hzの範囲内に含まれる請求項1~4のいずれか1項に記載の防音構造。 The soundproof structure according to any one of claims 1 to 4, wherein the first natural vibration frequency is included in a range of 10 Hz to 100,000 Hz.
  6.  前記枠の円相当半径をR1(mm)、前記膜の厚みをt1(μm)、前記膜のヤング率をE1(GPa)、前記開口部の円相当半径をr(μm)とする時、下記式(1)で表されるパラメータAが、0.07000以上759.1以下である請求項1~5のいずれか1項に記載の防音構造。
       A=√(E1)*(t11.2)*(ln(r)-e)/(R12.8)…(1)
     ここで、eは、ネイピア数を示し、ln(x)は、eを底としたxの対数である。
    When the equivalent circle radius of the frame is R1 (mm), the thickness of the film is t1 (μm), the Young's modulus of the film is E1 (GPa), and the equivalent circle radius of the opening is r (μm), The soundproof structure according to any one of claims 1 to 5, wherein the parameter A represented by the formula (1) is not less than 0.07000 and not more than 759.1.
    A = √ (E1) * (t1 1.2 ) * (ln (r) −e) / (R1 2.8 ) (1)
    Here, e indicates the number of Napiers, and ln (x) is the logarithm of x with e as the base.
  7.  前記枠の円相当半径をR2(m)、前記膜の厚みをt2(m)、前記膜のヤング率をE2(Pa)、前記膜の密度をd(kg/m)とする時、下記式(2)で表されるパラメータBが、15.47以上235000以下である請求項1~6のいずれか1項に記載の防音構造。
       B=t2/R2*√(E2/d)           …(2)
    When the equivalent circle radius of the frame is R2 (m), the thickness of the film is t2 (m), the Young's modulus of the film is E2 (Pa), and the density of the film is d (kg / m 3 ), The soundproof structure according to any one of claims 1 to 6, wherein the parameter B represented by the formula (2) is 15.47 or more and 235000 or less.
    B = t2 / R2 2 * √ (E2 / d) (2)
  8.  前記1以上の防音セルの前記開口部は、1つの穴で構成される請求項1~7のいずれか1項に記載の防音構造。 The soundproof structure according to any one of claims 1 to 7, wherein the opening of the one or more soundproof cells is configured by a single hole.
  9.  前記1以上の防音セルの前記開口部は、同一サイズの複数の穴で構成される請求項1~7のいずれか1項に記載の防音構造。 The soundproof structure according to any one of claims 1 to 7, wherein the opening of the one or more soundproof cells is composed of a plurality of holes of the same size.
  10.  前記1以上の防音セルが、2次元的に配置された複数の防音セルである時、
     前記複数の防音セルの前記開口部は、その70%以上が同一サイズの穴で構成される請求項1~9のいずれか1項に記載の防音構造。
    When the one or more soundproof cells are a plurality of soundproof cells arranged two-dimensionally,
    The soundproof structure according to any one of claims 1 to 9, wherein 70% or more of the openings of the plurality of soundproof cells are configured by holes of the same size.
  11.  前記1以上の防音セルの前記開口部の前記1以上の穴のサイズは、2μm以上である請求項1~10のいずれか1項に記載の防音構造。 The soundproof structure according to any one of claims 1 to 10, wherein a size of the one or more holes in the opening of the one or more soundproof cells is 2 µm or more.
  12.  前記1以上の防音セルの前記枠のサイズは、前記遮蔽ピーク周波数に対応する波長サイズ以下である請求項1~11のいずれか1項に記載の防音構造。 The soundproof structure according to any one of claims 1 to 11, wherein a size of the frame of the one or more soundproof cells is equal to or smaller than a wavelength size corresponding to the shielding peak frequency.
  13.  前記1以上の防音セルの前記開口部の前記1以上の穴は、エネルギを吸収する加工方法によって穿孔された穴である請求項1~12のいずれか1項に記載の防音構造。 The soundproof structure according to any one of claims 1 to 12, wherein the one or more holes in the opening of the one or more soundproof cells are holes formed by a processing method that absorbs energy.
  14.  前記エネルギを吸収する加工方法は、レーザ加工である請求項13に記載の防音構造。 The soundproof structure according to claim 13, wherein the processing method for absorbing energy is laser processing.
  15.  前記1以上の防音セルの前記開口部の前記1以上の穴は、物理的接触による機械加工方法によって穿孔された穴である請求項1~12のいずれか1項に記載の防音構造。 The soundproof structure according to any one of claims 1 to 12, wherein the one or more holes in the opening of the one or more soundproof cells are holes formed by a machining method using physical contact.
  16.  前記機械加工方法は、パンチング、又は針加工である請求項15に記載の防音構造。 The soundproof structure according to claim 15, wherein the machining method is punching or needle processing.
  17.  前記膜は、空気に対して不浸透性である請求項1~16のいずれか1項に記載の防音構造。 The soundproof structure according to any one of claims 1 to 16, wherein the membrane is impermeable to air.
  18.  前記防音セルの前記開口部の1つの穴は、前記膜の中心に設けられている請求項1~17のいずれか1項に記載の防音構造。 The soundproof structure according to any one of claims 1 to 17, wherein one hole of the opening of the soundproof cell is provided at a center of the film.
  19.  前記膜は、可撓性のある弾性材料製である請求項1~18のいずれか1項に記載の防音構造。 The soundproof structure according to any one of claims 1 to 18, wherein the film is made of a flexible elastic material.
  20.  前記1以上の防音セルが、2次元的に配置された複数の防音セルである時、
     前記複数の防音セルの複数の前記枠は、2次元的に繋がるように配置された1つの枠体として構成される請求項1~19のいずれか1項に記載の防音構造。
    When the one or more soundproof cells are a plurality of soundproof cells arranged two-dimensionally,
    The soundproof structure according to any one of claims 1 to 19, wherein the plurality of frames of the plurality of soundproof cells are configured as one frame body arranged so as to be two-dimensionally connected.
  21.  前記1以上の防音セルが、2次元的に配置された複数の防音セルである時、
     前記複数の防音セルの複数の前記膜は、前記複数の防音セルの複数の前記枠を覆う1枚のシート状の膜体によって構成される請求項1~20のいずれか1項に記載の防音構造。
    When the one or more soundproof cells are a plurality of soundproof cells arranged two-dimensionally,
    The soundproofing device according to any one of claims 1 to 20, wherein the plurality of films of the plurality of soundproofing cells are configured by a single sheet-like film body covering the plurality of frames of the plurality of soundproofing cells. Construction.
  22.  請求項1~21のいずれか1項に記載の防音構造を製造するに際し、
     前記1以上の防音セルの前記開口部の前記1以上の穴を、各防音セルの前記膜に、エネルギを吸収する加工方法、又は物理的接触による機械加工方法によって穿孔したことを特徴とする防音構造の製造方法。
    In producing the soundproof structure according to any one of claims 1 to 21,
    The one or more holes in the opening of the one or more soundproofing cells are perforated in the film of each soundproofing cell by a processing method for absorbing energy or a mechanical processing method by physical contact. Structure manufacturing method.
  23.  前記エネルギを吸収する加工方法は、レーザ加工であり、
     前記機械加工方法は、パンチング、又は針加工である請求項22に記載の防音構造の製造方法。
    The processing method for absorbing the energy is laser processing,
    The method for manufacturing a soundproof structure according to claim 22, wherein the machining method is punching or needle processing.
PCT/JP2016/055904 2015-02-27 2016-02-26 Sound insulation structure and method for manufacturing sound insulation structure WO2016136973A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680012324.4A CN107408378B (en) 2015-02-27 2016-02-26 Sound-proof structure and manufacturing method thereof
EP16755717.2A EP3264412B1 (en) 2015-02-27 2016-02-26 Sound insulation structure and method for manufacturing sound insulation structure
US15/679,650 US10099317B2 (en) 2015-02-27 2017-08-17 Soundproof structure and soundproof structure manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-039513 2015-02-27
JP2015039513 2015-02-27
JP2015-121994 2015-06-17
JP2015121994A JP6043407B2 (en) 2015-02-27 2015-06-17 Soundproof structure and method for manufacturing soundproof structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/679,650 Continuation US10099317B2 (en) 2015-02-27 2017-08-17 Soundproof structure and soundproof structure manufacturing method

Publications (1)

Publication Number Publication Date
WO2016136973A1 true WO2016136973A1 (en) 2016-09-01

Family

ID=56789591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055904 WO2016136973A1 (en) 2015-02-27 2016-02-26 Sound insulation structure and method for manufacturing sound insulation structure

Country Status (1)

Country Link
WO (1) WO2016136973A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180002919A1 (en) * 2015-02-27 2018-01-04 Fujifilm Corporation Soundproof structure and soundproof structure manufacturing method
CN108731838A (en) * 2017-04-18 2018-11-02 黄礼范 A kind of acoustical material structure and its assemble method with acoustic radiation structure
CN110024024A (en) * 2016-11-29 2019-07-16 富士胶片株式会社 Noise reduction structure
CN110024023A (en) * 2016-11-29 2019-07-16 富士胶片株式会社 Noise reduction structure
CN110249382A (en) * 2017-02-16 2019-09-17 富士胶片株式会社 Sound-insulating structure
CN114495884A (en) * 2022-01-13 2022-05-13 四川大学 Acoustic metamaterial lightweight design method and train low-frequency noise reduction composite floor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326097A (en) * 1997-03-25 1998-12-08 Nok Megurasutikku Kk Sound absorber
JP2009139556A (en) * 2007-12-05 2009-06-25 Yamaha Corp Sound absorbing body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326097A (en) * 1997-03-25 1998-12-08 Nok Megurasutikku Kk Sound absorber
JP2009139556A (en) * 2007-12-05 2009-06-25 Yamaha Corp Sound absorbing body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3264412A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180002919A1 (en) * 2015-02-27 2018-01-04 Fujifilm Corporation Soundproof structure and soundproof structure manufacturing method
EP3550558A4 (en) * 2016-11-29 2019-12-18 Fujifilm Corporation Soundproofing structure
CN110024024A (en) * 2016-11-29 2019-07-16 富士胶片株式会社 Noise reduction structure
CN110024023A (en) * 2016-11-29 2019-07-16 富士胶片株式会社 Noise reduction structure
EP3550557A4 (en) * 2016-11-29 2019-12-18 Fujifilm Corporation Soundproof structure
CN110024023B (en) * 2016-11-29 2020-08-07 富士胶片株式会社 Sound-proof structure
US10878794B2 (en) 2016-11-29 2020-12-29 Fujifilm Corporation Soundproofing structure
US11049485B2 (en) 2016-11-29 2021-06-29 Fujifilm Corporation Soundproof structure
CN110249382A (en) * 2017-02-16 2019-09-17 富士胶片株式会社 Sound-insulating structure
CN110249382B (en) * 2017-02-16 2020-07-31 富士胶片株式会社 Sound insulation structure
US10902835B2 (en) 2017-02-16 2021-01-26 Fujifilm Corporation Soundproof structure
CN108731838A (en) * 2017-04-18 2018-11-02 黄礼范 A kind of acoustical material structure and its assemble method with acoustic radiation structure
CN114495884A (en) * 2022-01-13 2022-05-13 四川大学 Acoustic metamaterial lightweight design method and train low-frequency noise reduction composite floor
CN114495884B (en) * 2022-01-13 2023-06-27 四川大学 Lightweight design method for acoustic metamaterial and train low-frequency noise reduction composite floor

Similar Documents

Publication Publication Date Title
JP6043407B2 (en) Soundproof structure and method for manufacturing soundproof structure
WO2016136973A1 (en) Sound insulation structure and method for manufacturing sound insulation structure
US10431196B2 (en) Soundproof structure and adjustment method of soundproof structure
JP6450003B2 (en) Soundproof structure
US10704255B2 (en) Soundproof structure and soundproof structure manufacturing method
JP6434619B2 (en) Soundproof structure, louvers and partitions
JP6510653B2 (en) Soundproof structure
JP6570641B2 (en) Soundproof structure
JP6114325B2 (en) Soundproof structure and method for producing soundproof structure
CN110997486A (en) Protective cover
CN110024023A (en) Noise reduction structure
JP6959996B2 (en) Soundproof structure, soundproof enclosure, and soundproof box
JP6550523B1 (en) Soundproof construction, soundproof enclosure and soundproof box
WO2018147129A1 (en) Sound-proofing member
JP6673880B2 (en) Soundproofing unit and soundproofing structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755717

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016755717

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE