WO2016136518A1 - Multilayer film and method for producing same - Google Patents

Multilayer film and method for producing same Download PDF

Info

Publication number
WO2016136518A1
WO2016136518A1 PCT/JP2016/054284 JP2016054284W WO2016136518A1 WO 2016136518 A1 WO2016136518 A1 WO 2016136518A1 JP 2016054284 W JP2016054284 W JP 2016054284W WO 2016136518 A1 WO2016136518 A1 WO 2016136518A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
laminated film
resin
oxide particles
metal oxide
Prior art date
Application number
PCT/JP2016/054284
Other languages
French (fr)
Japanese (ja)
Inventor
尾形雅美
佐藤幸平
高田育
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2016519409A priority Critical patent/JP6624054B2/en
Priority to CN201680012181.7A priority patent/CN107249886B/en
Publication of WO2016136518A1 publication Critical patent/WO2016136518A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/733Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the addition of non-magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate

Definitions

  • the present invention relates to a laminated film in which a resin layer is provided on at least one side of a polyester film and a method for producing the same.
  • Thermoplastic resin films especially biaxially stretched polyester films, have excellent properties such as mechanical properties, electrical properties, dimensional stability, transparency, and chemical resistance. Widely used in applications.
  • polyester films have been used in various optical films, particularly in display member applications such as touch panels, liquid crystal display panels (LCD), plasma display panels (PDP), and organic electroluminescence (organic EL).
  • LCD liquid crystal display panels
  • PDP plasma display panels
  • organic EL organic electroluminescence
  • a hard coat film in which a hard coat layer is laminated on a polyester film is used.
  • this hard coat film in order to improve the adhesion between the polyester film as a substrate and the hard coat layer, a coating layer having easy adhesion is often provided as the intermediate layer.
  • the polyester film since the polyester film is easily charged, dust is likely to adhere in the processing process of the hard coat layer, and foreign matter defects are often generated due to the dust adhesion, and the yield is often reduced. Therefore, an antistatic property is required for a film that is a base material of a hard coat film.
  • hard coat films are required to have adhesion to a substrate at room temperature, high temperature and high humidity, transparency, scratch resistance, antifouling properties, and the like. Moreover, since it is often used on the surface of a display or the like, the hard coat film is required to have visibility and design.
  • a hard coat layer is laminated on a polyester film that is a base material, if the refractive index of the hard coat layer and the polyester film that is the base material is different, interference spots due to interface reflection occur and visibility deteriorates. There is a need for reduction of interference spots.
  • Patent Document 6 a method of providing a polyaniline conductive layer on the surface of a polyester film by coating or the like (for example, see Patent Document 6) is known.
  • This method is an antistatic method using an electron conduction type antistatic agent.
  • Patent Document 7 Also known is a method of providing a layer of antimony-doped tin oxide conductive agent on the surface of a polyester film by coating or the like. This method is an antistatic method using an electron conduction type antistatic agent.
  • an antistatic property imparting by a polythiophene conductive agent has been proposed.
  • an antistatic method Patent Document 8 in which a coating liquid containing a polythiophene-based conductive agent and a latex polymer is applied is known.
  • an antistatic property imparting that achieves both transparency and antistatic property of a coating film by using an epoxy crosslinking agent in combination with a polythiophene-based conductive agent has been proposed (Patent Document 9).
  • JP 2001-71439 A Japanese Patent No. 4169548 Japanese Patent No. 3632044 JP-A-60-141525 JP 61-204240 A JP-A-7-101016 Japanese Patent Laid-Open No. 11-278582 JP-A-6-295016 Japanese Patent No. 3966171
  • Patent Document 1 when a hard coat layer has a refractive index of 1.60 or less, interference spots can be relatively suppressed, but when a hard coat layer having a refractive index of 1.60 or more and 1.65 or less is laminated. Although the adhesion was good, interference spots were conspicuous. Further, the method of Patent Document 2 is applicable only when the material of the film serving as the base material is polyethylene naphthalene dicarboxylate (refractive index of 1.7 or more) and lacks versatility.
  • Patent Document 3 proposes a method of adding a water-soluble metal chelate compound or a metal acylate compound to a water-soluble polyester resin, respectively.
  • water-soluble metal chelate compounds and metal acylate compounds often have high acidity, and aggregation occurs when other components are contained in the resin layer, resulting in a decrease in transparency or deterioration in interference plaque suppression. There was a problem to do.
  • the present invention eliminates the above-mentioned drawbacks, is excellent in transparency, interference spot suppression, adhesion to a substrate and a high refractive index hard coat layer, and also exhibits a high level of antistatic properties regardless of humidity. It is an object to provide a polyester film.
  • the laminated film of the present invention has the following constitution. That is, it is a laminated film in which a resin layer is provided on at least one side of a polyester film, the reflectance of the resin layer surface at a wavelength of 550 nm is 6.0% or more, and the surface specific resistance value of the resin layer surface is 10
  • the surface energy change ⁇ ( ⁇
  • ) before and after the boiling test of the resin layer surface is 12 ⁇ / ⁇ or less. It is a laminated film in which a resin layer is provided on at least one side of a polyester film of 5 mN / m or less.
  • the laminated film of the present invention is excellent in transparency, suppression of interference spots when a high refractive index hard coat layer is laminated, adhesiveness with a high refractive index hard coat layer, and has a high level of antistatic properties regardless of humidity. Can be expressed. Furthermore, in a film in which a high refractive index hard coat layer is laminated, antistatic properties can be exhibited even on the surface of the hard coat layer.
  • the laminated film of the present invention is a laminated film in which a resin layer is provided on at least one side of a polyester film, the reflectance of the resin layer surface at a wavelength of 550 nm is 6.0% or more, and the surface of the resin layer surface
  • the laminated film of the present invention requires that the resin layer has a reflectance of 6.0% or more at a wavelength of 550 nm.
  • the reflectance at a wavelength of 550 nm on the surface of the resin layer represents the refractive index of the resin layer.
  • the refractive index of the resin layer indicates that the refractive index is increased to a region close to the PET film, and when the high refractive index hard coat layer is laminated. It can have interference plaque suppression. More preferably, it is 6.0% or more and 6.5% or less.
  • a method of setting the reflectance at a wavelength of 550 nm on the surface of the resin layer to 6.0% or more there are a method of containing a metal oxide particle (A) described later in the resin layer and a method of containing a metal chelate compound.
  • the method using metal oxide particles (A) having a number average particle diameter of 3 nm or more and 50 nm or less is preferable from the viewpoint of excellent transparency and adhesiveness during wet heat treatment.
  • decomposition of the chelate bond by wet heat treatment proceeds, and there is a possibility that appearance deterioration with time and adhesion after wet heat treatment may occur.
  • the surface specific resistance value on the surface of the resin layer is required to be 10 12 ⁇ / ⁇ or less.
  • the surface specific resistance value on the surface of the resin layer is an index representing the antistatic property on the surface of the resin layer.
  • the surface specific resistance value on the surface of the resin layer is high, electricity hardly flows on the surface of the resin layer (easily charged), and when the surface specific resistance value is low, electricity easily flows (hardly charged).
  • the surface specific resistance value on the surface of the resin layer is more preferably 10 11 ⁇ / ⁇ or less. Furthermore, in the present invention, by setting the surface specific resistance value of the resin layer surface of the laminated film to 10 11 ⁇ / ⁇ or less, the laminated hard coat in the film in which the high refractive index hard coat layer is laminated on the laminated film of the present invention. Antistatic properties can also be exhibited on the surface of the layer. The reason for this is estimated as follows. A general hard coat layer having a high refractive index is often composed of an acrylic resin and has a polar functional group such as a carboxyl group. For this reason, the hard coat layer can polarize polar functional groups such as carboxylic acid.
  • the hard coat layer is not a perfect insulator but an electric conductor having a large resistance.
  • the surface specific resistance value of the laminated film is 10 11 ⁇ / ⁇ or less, even if charge is generated on the surface of the high refractive index hard coat layer (charges are accumulated), the charge is inside the high refractive index hard coat layer. Then, it flows to the resin layer of the laminated film below it, so that the charge can be efficiently flowed. As a result, it is estimated that in a film in which a high refractive index hard coat layer is laminated on a laminated film, the surface specific resistance of the high refractive index hard coat layer can be lowered (can be hardly charged).
  • the film in which the hard coat layer is laminated on the surface of the resin layer of the laminated film of the present invention the amount of charge at the time of unwinding the roll winding the film on which the hard coat layer is laminated is suppressed. It has been found that it has the effect.
  • This phenomenon is not only a so-called antistatic region where the surface specific resistance value on the surface of the hard coat layer is 10 12 ⁇ / ⁇ or less but also a hard region generally called an insulating region exceeding 10 13 ⁇ / ⁇ . It has also been confirmed on the surface of the coat layer. The reason for this is presumed that there is a small amount of charge flow that does not appear in the surface resistivity value. Therefore, the film obtained by laminating the hard coat layer on the resin layer surface of the laminated film of the present invention can prevent the adhesion of dust during film processing because the charge amount on the hard coat layer surface is suppressed.
  • Examples of the method for reducing the surface specific resistance value on the surface of the resin layer include a method in which the resin layer contains a conductive polymer or an ion conductive resin.
  • Examples of the method for setting the surface resistivity of the resin layer to 10 12 ⁇ / ⁇ or less include a method in which the resin layer contains a ⁇ -electron conjugated polymer compound (B) such as polythiophene or polyaniline, an ammonium salt, sulfone
  • B ⁇ -electron conjugated polymer compound
  • an ion conductive compound such as an acid salt.
  • the ⁇ -electron conjugated polymer compound (B) has antistatic properties. It is preferable from the viewpoint of compatibility between low interference and adhesiveness.
  • the lower limit of the surface specific resistance value on the surface of the resin layer is not particularly defined, but if the surface specific resistance is too small, the amount of the conductive polymer or ion conductive resin to be contained in the resin layer is small. Since it may increase and film forming property and transparency may decrease, it is preferably 10 5 ⁇ / ⁇ or more.
  • the surface energy change ⁇ before and after the boiling test on the surface of the resin layer is obtained by a method described later, and represents the change in the structure of the resin layer by the boiling test.
  • a large surface energy change ⁇ before and after the boiling test indicates a large change in the resin layer structure by the boiling test
  • a small surface energy change ⁇ before and after the boiling test indicates a small change in the resin layer structure by the boiling test. Represents that.
  • the surface energy change ⁇ before and after the boiling test is more preferably 3 mN / m or less.
  • the surface energy change ⁇ before and after the boiling test can be made 5 mN / m or less by reducing the change in the chemical bond of the resin layer even when immersed in boiling water.
  • the method of containing the epoxy compound (C) and the acrylic resin (D) in the resin layer is such that dense cross-linking is constructed in the resin layer, and the energy change ⁇ before and after the boiling test is 5 mN / m or less.
  • the reflectance and antistatic properties can be expressed, which is preferable.
  • the resin layer has a metal oxide particle (A) having a number average particle diameter of 3 nm to 50 nm, a ⁇ -electron conjugated polymer compound (B), and an epoxy compound (C).
  • Containing acrylic resin (D) is excellent in transparency, suppression of interference spots when a high refractive index hard coat layer is laminated, adhesiveness with high refractive index hard coat layer, and high level antistatic regardless of humidity It is preferable because it can exhibit sex.
  • the arithmetic average roughness (Ra) of the resin layer surface is preferably 20 nm or less.
  • the arithmetic average roughness (Ra) on the surface of the resin layer can be reduced by reducing the number average particle diameter of the particles contained in the resin layer.
  • the particles contained in the resin layer preferably have a number average particle size of 3 nm to 50 nm.
  • the arithmetic average of the resin layer surface Roughness (Ra) can be reduced.
  • the resin layer preferably contains metal oxide particles (A) having a number average particle diameter of 3 nm to 50 nm.
  • metal oxide particles (A) having a number average particle diameter of 3 nm to 50 nm.
  • the reflectance at a wavelength of 550 nm on the surface of the resin layer can be increased.
  • interference spots can be suppressed when a high refractive index hard coat layer is laminated on the resin layer of the laminated film of the present invention.
  • the number average particle diameter of the metal oxide particles (A) is sufficiently smaller than the wavelength of visible light, the transparency of the laminated film can be enhanced.
  • the metal oxide particles (A) in the present invention are excellent in malleability and ductility, are good electrical and thermal conductors, and have a metallic luster, that is, boron (B), silicon (Si), arsenic (in the periodic table) As), tellurium (Te), and astatine (At) refers to oxide fine particles of elements located to the left of the diagonal line. Further, oxide fine particles of an element located on the right side of the alkaline earth metal (Group 2) in the periodic table are preferable.
  • metal oxide fine particles those having high refractive index, preferably metal oxide particles having a refractive index of 1.6 or more are preferable from the viewpoint of interference interference suppression.
  • the high refractive index metal oxide particles include TiO 2 , ZrO 2 , ZnO, CeO 2 , SnO 2 , Sb 2 O 5 , indium-doped tin oxide (ITO), phosphorus-doped tin oxide (PTO), Y 2 O 5 , la 2 O 3, Al 2 O 3, and the like.
  • metal oxide particles may be used individually by 1 type, and may be used in combination of 2 or more type. From the viewpoint of dispersion stability and refractive index, titanium oxide particles (TiO 2 ) (A 1 ′) and / or zirconium oxide particles (ZrO 2 ) (A 2 ′) are particularly preferable.
  • the number average particle diameter of the metal oxide particles (A) will be described.
  • the number average particle diameter refers to the particle diameter determined by a transmission electron microscope (TEM). The magnification is 500,000 times, and the outer diameter of 10 particles existing on the screen is the number average particle diameter obtained by measuring a total of 100 particles for 10 fields of view.
  • the outer diameter means the maximum diameter of the particle (that is, the longest diameter of the particle and indicates the longest diameter in the particle).
  • the maximum diameter of the particle is also defined.
  • the metal oxide particles (A) preferably have a number average particle diameter of 3 nm or more and 50 nm or less from the viewpoint of transparency. Preferably they are 10 nm or more and 45 nm or less, More preferably, they are 15 nm or more and 40 nm or less.
  • the content of the metal oxide particles (A) in the resin layer is preferably 30% by weight or more and 90% by weight or less with respect to the entire resin layer. By setting it as this range, the reflectance at a wavelength of 550 nm on the surface of the resin layer can be 6.0% or more, and the interference unevenness suppression property when the hard coat layer is laminated is excellent.
  • the content of the metal oxide particles (A) in the resin layer is preferably 30% by weight to 80% by weight, and more preferably 30% by weight to 70% by weight.
  • the content in the resin layer represents the content in the solid content ([(weight of resin composition) ⁇ (weight of solvent)]) of the resin composition forming the resin layer.
  • the metal oxide particles (A) are more preferably particles (AD) having an acrylic resin (D) described later on part or all of the surface of the metal oxide particles (A).
  • the resin layer containing the particles (AD) naturally contains the metal oxide particles (A) and the acrylic resin (D)).
  • the oil layer contains such particles (AD)
  • the metal oxide particles (A) and particles (AD) are further aggregated in the drying process.
  • the surface roughness of the resin layer surface can be 20 nm or less.
  • the metal oxide particles (A) have the acrylic resin (D) on the surface thereof means that an acrylic resin (D) is present on a part or all of the surface of the metal oxide particles (A). ) Indicates adsorption / adhesion.
  • the method for producing the particles (AD) is not particularly limited, and examples thereof include a method of surface-treating the metal oxide particles (A) with an acrylic resin (D). Specifically, the following ( The methods i) to (iv) are exemplified.
  • the surface treatment refers to a treatment for adsorbing and adhering the acrylic resin (D) to all or part of the surface of the metal oxide particles (A).
  • a dispersion apparatus a dissolver, a high speed mixer, a homomixer, a mixer, a ball mill, a roll mill, a sand mill, a paint shaker, an SC mill, an annular mill, a pin mill, and the like can be used.
  • a dispersion method a method of rotating the rotating shaft at a peripheral speed of 5 to 15 m / s for 5 to 10 hours using the above apparatus can be mentioned.
  • the bead diameter is preferably 0.05 to 0.5 mm, more preferably 0.08 to 0.5 mm, and particularly preferably 0.08 to 0.2 mm.
  • the mixing and stirring can be performed by shaking the container by hand, using a magnetic stirrer or stirring blade, irradiating with ultrasonic waves, vibrating and dispersing.
  • the concentrated and dried precipitate is analyzed by X-ray photoelectron spectroscopy (XPS), and the presence or absence of the acrylic resin (D) on the surface of the metal oxide particles (A) is confirmed.
  • XPS X-ray photoelectron spectroscopy
  • the presence or absence of particles (AD) in the resin layer of the laminated film is determined by using XPS while etching from the resin layer side of the laminated film with argon ions at an etching rate of 1 nm / min (in terms of SiO 2 ). Can be confirmed. That is, when the presence of the acrylic resin (D) is confirmed on the surface of the metal oxide particles (A), it can be seen that the metal oxide particles (A) are particles (AD).
  • the acrylic resin (D) comprises a monomer unit (d1) represented by the formula (1), a monomer unit (d2) represented by the formula (2), and a monomer unit (d3) represented by the formula (3). It is preferable that it is the acrylic resin (D) which has.
  • R 1 group represents a hydrogen atom or a methyl group. Further, n represents an integer of 9 or more and 34 or less.
  • the R 2 group represents a hydrogen atom or a methyl group.
  • the R 4 group represents a group containing two or more saturated carbocycles.
  • the R 3 group represents a hydrogen atom or a methyl group.
  • the R 5 group represents a hydroxyl group, a carboxyl group, a tertiary amino group, a quaternary ammonium base, a sulfonic acid group, or phosphoric acid. Represents a group.
  • the acrylic resin (D) Since the acrylic resin (D) has the above monomer unit, the amount of energy change ⁇ on the surface of the resin layer before and after the boiling test can be reduced while maintaining transparency, and the adhesiveness to the hard coat layer is strong. It is preferable because it can be made small. It is particularly preferable to use an acrylic resin (D) having a monomer unit in which the R 3 group of formula (3) is a carboxyl group, because the adhesion can be further improved.
  • the content of is preferably 3 to 25 parts by weight with respect to 100 parts by weight of the metal oxide particles (A) contained in the resin layer. More preferably, they are 5 to 20 weight parts, More preferably, they are 7 to 15 weight parts.
  • the reflectance at a wavelength of 550 nm can be made 6.0% or more. As a result, the transparency of the resin layer is improved, and further, the interference spot suppression property at the time of laminating the hard coat layer is sufficient. It is preferable because it can be expressed in
  • the acrylic resin (D) in the present invention has the monomer unit (d1) represented by the formula (1), the dispersibility of the metal oxide particles (A) in the aqueous solvent is further improved and transparent. It is preferable because a laminated film having better properties can be obtained, and more preferable because interference spot suppression (visibility) when a high refractive index hard coat layer is laminated is further improved.
  • the acrylic resin (D) in the present invention has the monomer unit (d1) represented by the formula (1), the (meth) acrylate monomer (d1 ′) represented by the following formula (4): ) As a raw material, and polymerization is more preferable.
  • the (meth) acrylate monomer (d1 ′) is preferably a (meth) acrylate monomer represented by an integer of 9 or more and 34 or less, and more preferably 11 or more and 32 or less (meth) acrylate in the formula (4). Monomers, more preferably 13 to 30 (meth) acrylate monomers.
  • the (meth) acrylate monomer (d1 ′) is not particularly limited as long as n in the formula (4) is 9 or more and 34 or less, and specifically, decyl (meth) acrylate, dodecyl (meta) ) Acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, 1-methyltridecyl (meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) acrylate, eicosyl (meth) acrylate, docosyl (meth) acrylate, tetracosyl (Meth) acrylate, triacontyl (meth) acrylate, etc. are mentioned, and dodecyl (meth) acrylate and tridecyl (meth) acrylate are particularly preferable. These may be used alone or in a mixture of two or more.
  • the acrylic resin (D) in the present invention is preferably a resin having a monomer unit (d2) represented by the above formula (2).
  • the metal oxide particles (A) when used, it functions sufficiently as a steric hindrance so that the metal oxide particles (A) are aggregated in the resin composition.
  • sedimentation can be suppressed, the reflectance of the resin layer at a wavelength of 550 nm can be 6.0% or more, and low coherence when the hard coat layer is laminated can be improved, which is preferable.
  • aggregation of metal oxide particles (A) can be suppressed, coarse components in the resin layer can be reduced.
  • the conductive polymer (B) can also be uniformly present in the resin layer, the surface specific resistance value of the resin layer can be made less than the twelfth power, and excellent antistatic properties can be exhibited. it can. Moreover, since a coarse component can be reduced, the surface roughness of a resin layer can be 20 nm or less, and it is excellent in the workability of a laminated film.
  • the acrylic resin (D) in the present invention has the monomer unit (d2) represented by the formula (2)
  • the (meth) acrylate monomer (d2 ′) represented by the following formula (5) is used as a raw material. It is preferable to use and polymerize.
  • (meth) acrylate monomer (d2 ′) represented by the formula (5) as R 4 , a bridged condensed cyclic structure (a structure in which two or more rings each share two atoms and are bonded) ), Spirocyclic (having a structure in which two cyclic structures are shared by sharing one carbon atom), specifically, compounds having a bicyclo, tricyclo, tetracyclo group, etc.
  • (meth) acrylates containing a bicyclo group are particularly preferable from the viewpoint of compatibility with the binder.
  • Examples of the (meth) acrylate containing the bicyclo group include isobornyl (meth) acrylate, bornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, adamantyl (meth) acrylate, and dimethyladamantyl (Meth) acrylate etc. are mentioned, and isobornyl (meth) acrylate is particularly preferred.
  • the acrylic resin (D) in the present invention is preferably a resin having a monomer unit (d3) represented by the formula (3).
  • the acrylic resin (D) in the present invention has the monomer unit (d3) represented by the formula (3)
  • the (meth) acrylate monomer (d3 ′) represented by the following formula (6) is used as a raw material. It is necessary to use and polymerize.
  • Examples of the (meth) acrylate monomer (d3 ′) represented by the formula (6) include the following compounds.
  • Examples of the (meth) acrylate monomer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2,3-dihydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene
  • Examples include monoesterified products of polyhydric alcohols such as glycol mono (meth) acrylate and (meth) acrylic acid, or compounds obtained by ring-opening polymerization of ⁇ -caprolapton to the monoesterified product, and particularly 2-hydroxyethyl ( Preferred are (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
  • Examples of (meth) acrylate monomers having a carboxyl group include ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, or hydroxyalkyl (meth) acrylates and acid anhydrides.
  • a half esterified product of Acrylic acid and methacrylic acid are particularly preferable.
  • Tertiary amino group-containing monomers include N, N-, such as N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, and the like.
  • N, N-dialkylamino such as dialkylaminoalkyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylamide, N, N-diethylaminoethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide
  • Examples include alkyl (meth) acrylamide, and N, N-dimethylaminoethyl (meth) acrylate is particularly preferable.
  • quaternary ammonium group-containing monomer a monomer obtained by allowing a quaternizing agent such as epihalohydrin, benzyl halide or alkyl halide to act on the above-mentioned tertiary amino group-containing monomer is preferable.
  • 2- (methacryloyloxy ) (Meth) acryloyloxyalkyltrialkylammonium salts such as ethyl trimethylammonium chloride, 2- (methacryloyloxy) ethyltrimethylammonium bromide, 2- (methacryloyloxy) ethyltrimethylammonium dimethyl phosphate, methacryloylaminopropyltrimethylammonium chloride, methacryloyl (Meth) acryloylaminoalkyltrialkylammonium salts such as aminopropyltrimethylammonium bromide, tetrabutylammonium Tetra (meth) acrylates such as Moniumu (meth) acrylate, and tri-alkyl benzyl ammonium (meth 9 acrylates such as trimethylbenzylammonium (meth) acrylate.
  • sulfonic acid group-containing monomer examples include (meth) acrylamide-alkanesulfonic acid such as butyl acrylamide sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, or sulfoalkyl (meth) such as 2-sulfoethyl (meth) acrylate. Examples thereof include acrylate, and 2-sulfoethyl (meth) acrylate is particularly preferable.
  • Examples of the phosphoric acid group-containing acrylic monomer include acid phosphooxyethyl (meth) acrylate, and acid phosphooxyethyl (meth) acrylate is particularly preferable.
  • the amount ⁇ can be reduced.
  • the adhesiveness between the resin layer and the hard coat layer can be made stronger, which is preferable.
  • the reason is estimated that a stronger resin layer can be formed by the reaction of the carboxyl group with the epoxy compound.
  • the resin layer preferably contains a ⁇ -electron conjugated polymer compound (B).
  • a ⁇ -electron conjugated system means an alternating single bond and multiple bond, or a single bond and multiple bond, and an atom having an available p orbital such as oxygen or nitrogen delocalizes ⁇ electrons.
  • the polymer compound represents a compound having a number average molecular weight of 3000 or more.
  • the ⁇ -electron conjugated polymer compound (B) preferably has conductivity (surface specific resistance value is 10 ⁇ 10 or less).
  • the repeating unit is aniline and / or a derivative thereof, pyrrole and / or a derivative thereof, isothianaphthene and / or a derivative thereof, acetylene and / or a derivative thereof, Thiophene and / or its derivatives are preferred.
  • a ⁇ -electron conjugated polymer compound in which the repeating unit is thiophene and / or a derivative thereof is particularly preferable from the viewpoint of little coloring and high total light transmittance.
  • Examples of the ⁇ -electron conjugated polymer compound in which the repeating unit is thiophene and / or a derivative thereof include compounds having a structure in which the 3-position and 4-position of the thiophene ring are substituted. Those in which an oxygen atom is bonded to the 3rd and 4th carbon atoms are preferred. Some hydrogen atoms or carbon atoms bonded directly to carbon atoms have insufficient water solubility.
  • a preferable embodiment of the ⁇ -electron conjugated polymer compound in which the repeating unit is thiophene and / or a derivative thereof is one in which thiophene and / or the derivative thereof are polymerized in the presence of a polyanion.
  • the polyanion include polyacrylic acid, polymethacrylic acid, polymaleic acid, polystyrene sulfonic acid, and the like, and polystyrene sulfonic acid is preferable from the viewpoint of conductivity.
  • R 6 and R 7 are each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 12 carbon atoms, an alicyclic hydrocarbon group, or an aromatic hydrocarbon. Represents a group, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, cyclohexylene group, benzene group and the like.
  • P is an integer of 2 or more.
  • m is an integer of 1 to 4
  • q is an integer of 2 or more.
  • the ⁇ -electron conjugated polymer compound (B) is preferably a polythiophene and / or a polythiophene derivative having a repeating structural formula represented by the formula (8), for example, repeating the formula (5)
  • an ethylene group compound of m 2, that is, poly-3,4-ethylenedioxythiophene.
  • the above compound can be produced by the methods disclosed in, for example, JP-A No. 2000-6324, European Patent No. 602713, and US Pat. No. 5,391,472, but other methods may be used.
  • 3,4-ethylenedioxythiophene was obtained using 3,4-dihydroxythiophene-2,5, -dicarboxyester alkali metal salt as a starting material, and then potassium peroxodisulfate and sulfuric acid were added to a polystyrenesulfonic acid aqueous solution.
  • an acidic polymer such as polystyrene sulfonic acid is added to polythiophene such as poly (3,4-ethylenedioxythiophene).
  • a complexed composition can be obtained.
  • H.P. C As an aqueous coating composition containing poly-3,4-ethylenedioxythiophene and polystyrenesulfonic acid, H.P. C. A product sold as “Baytron” P from Starck (Germany) can be used.
  • the content of the ⁇ -electron conjugated polymer (B) contained in the resin layer is preferably in the range of 3 to 25 parts by weight, more preferably 100 parts by weight of the metal oxide particles (A).
  • a range of 5 to 20 parts by weight is more preferable.
  • the resin layer preferably contains an epoxy compound (C).
  • the resin layer contains the epoxy compound (C), thereby improving the fluidity when the resin layer is cured, and as a result, suppressing the aggregation of the metal oxide particles (A).
  • the transparency of the laminated film can be imparted.
  • the surface roughness of a resin layer can be made small by suppressing aggregation of metal oxide particle (A), the coating-film abrasion at the time of a process can be suppressed.
  • the resin layer contains an epoxy compound (C) means that it contains an epoxy compound or an epoxy compound derivative (such as a compound in which the epoxy compound is ring-opened).
  • an epoxy compound (C) and an acrylic resin (D) are contained in the resin layer of the laminated film of the present invention, a crosslinking reaction between the epoxy compound (C) and a carboxylic acid group contained in the acrylic resin (D) occurs. It progresses and the adhesiveness with the laminated body of a resin layer can be improved.
  • the molecular weight of the epoxy compound (C) used in the present invention is more preferably 1000 or less.
  • the above-described effect of improving the fluidity of the resin composition can be made more remarkable.
  • the molecular weight becomes too large (the molecular weight exceeds 1000), a phenomenon such as cracking of the coating film occurs during stretching after coating and drying, and the effect of improving transparency may not be sufficiently obtained. There is sex.
  • the epoxy compound (C) is preferably a water-soluble compound.
  • the water-soluble compound here refers to a compound having a water solubility of 80% or more.
  • Water solubility refers to the proportion of a compound dissolved when 10 parts by weight of the solid content of the compound is dissolved in 90 parts by weight of water at 23 ° C. That is, 80% water solubility means a state in which 80% by weight of 10 parts by weight of a compound is dissolved in 90 parts by weight of water and the remaining 20% by weight of the compound remains as an undissolved substance at 23 ° C. Indicates. Moreover, 100% of water content represents the state which 10 weight part compound is melt
  • the epoxy compound (C) preferably has a water content of 90% or more, and more preferably has a water content of 100%.
  • the water solubility is high, not only the coating liquid itself can be made water-soluble, but also excellent in transparency, antistatic properties, and interference spot suppression properties.
  • the method of adding and containing the epoxy compound (C) to the resin layer is preferable because it does not cause blocking and does not cause contamination inside the tenter that performs heat treatment or air pollution, compared to the method of adding and containing a high boiling point solvent. is there.
  • the type of the epoxy compound (C) is not particularly limited, and examples thereof include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, diglycerol polyglycidyl ether, and polyethylene glycol diglycidyl ether.
  • sorbitol polyglycidyl ether examples thereof include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, diglycerol polyglycidyl ether, and polyethylene glycol diglycidyl ether.
  • an epoxy compound “Denacol” manufactured by Nagase Chemtech Co., Ltd. (EX-611, EX-614B, EX-512, EX-521, EX-421, EX-313, EX-810, EX-830, EX-850, etc.
  • the epoxy compound (C) is preferably one having an epoxy equivalent weight (WPE) of 100 to 300 WPE from the viewpoint of reactivity, and the epoxy equivalent is more preferably 110 to 200 WPE.
  • WPE epoxy equivalent weight
  • the content of the epoxy compound (C) is preferably 20 parts by weight or more and 60 parts by weight or less, more preferably 30% by weight or more and 60% by weight or less, with respect to 100 parts by weight of the metal oxide particles (A). It is.
  • the epoxy compound (C) 20 wt% or more and 60 wt% or less with respect to 100 parts by weight of the metal oxide particles (A)
  • the dispersibility of the metal oxide particles (A) is improved and the transparency is improved.
  • the anti-interference spots, antistatic properties and anti-interference spots are improved.
  • the resin layer may contain an ion conductive compound (E) instead of the ⁇ electron conjugated polymer compound (B).
  • the ion conductive resin represents a resin having a property of conducting ions in the resin composition, and specifically includes a resin having a structure such as polystyrene sulfonate metal salt or ammonium metal salt.
  • the resin composition is preferably an aqueous composition that can be dissolved, emulsified, or suspended in an aqueous solvent in view of environmental pollution and explosion resistance.
  • Such resin compositions that can be dissolved, emulsified or suspended in water are copolymerized and reactive with monomers having a hydrophilic group (such as acrylic acid, methacrylic acid, acrylamide, vinyl sulfonic acid and salts thereof). It can be prepared by a method such as emulsion polymerization, suspension polymerization, soap-free polymerization using an emulsifier or a surfactant.
  • monomers having a hydrophilic group such as acrylic acid, methacrylic acid, acrylamide, vinyl sulfonic acid and salts thereof.
  • the polymerization initiator is not particularly limited, but is a general radical polymerization initiator, for example, a water-soluble peroxide such as potassium persulfate, ammonium persulfate, hydrogen peroxide, or benzoyl peroxide or t-butyl hydroper Oil-soluble peroxides such as oxides or azo compounds such as azodiisobutyronitrile can be used.
  • a general radical polymerization initiator for example, a water-soluble peroxide such as potassium persulfate, ammonium persulfate, hydrogen peroxide, or benzoyl peroxide or t-butyl hydroper Oil-soluble peroxides such as oxides or azo compounds such as azodiisobutyronitrile can be used.
  • polyester film used as the substrate film in the laminated film of the present invention will be described.
  • polyester is a general term for polymers having an ester bond in the main chain, and includes ethylene terephthalate, propylene terephthalate, ethylene-2,6-naphthalate, butylene terephthalate, propylene-2,6-naphthalate, ethylene- ⁇ , ⁇ .
  • Those having at least one component selected from -bis (2-chlorophenoxy) ethane-4,4'-dicarboxylate and the like can be preferably used.
  • the polyester film using the above polyester is preferably biaxially oriented.
  • a biaxially oriented polyester film is generally an unstretched polyester sheet or film that is stretched about 2.5 to 5 times in the longitudinal direction and in the width direction perpendicular to the longitudinal direction, and then subjected to heat treatment to produce crystalline The alignment is completed, and it indicates a biaxial alignment pattern by wide-angle X-ray diffraction.
  • thermal stability, particularly dimensional stability and mechanical strength are sufficient, and flatness is also good.
  • various additives such as antioxidants, heat stabilizers, weathering stabilizers, ultraviolet absorbers, organic lubricants, pigments, dyes, organic or inorganic fine particles, fillers, antistatic agents.
  • An agent, a nucleating agent, etc. may be added to such an extent that the properties are not deteriorated.
  • the thickness of the polyester film is not particularly limited and is appropriately selected depending on the use and type, but is preferably 10 to 500 ⁇ m, more preferably 15 to 250 ⁇ m, from the viewpoint of mechanical strength, handling properties, and the like. Most preferably, the thickness is 20 to 100 ⁇ m.
  • the polyester film may be a composite film obtained by coextrusion or a film obtained by bonding the obtained film by various methods.
  • the resin layer of the present invention contains the metal oxide particles (A), the ⁇ -electron conjugated polymer (B), the epoxy compound (C), and the acrylic resin (D), the reflectance at a wavelength of 550 nm. This is preferable because the amount of change in surface energy before and after the boiling test can be reduced.
  • (A) to (D) may each include a plurality of types. If necessary, other compounds than (B) to (D), for example, the above-described ion conductive compounds (E), carbodiimide compounds, oxazoline compounds, aziridine compounds, titanium chelates and other titanate couplings Agents, methylolated or alkylolated melamine compounds, acrylamide compounds, and the like.
  • other compounds than (B) to (D) for example, the above-described ion conductive compounds (E), carbodiimide compounds, oxazoline compounds, aziridine compounds, titanium chelates and other titanate couplings Agents, methylolated or alkylolated melamine compounds, acrylamide compounds, and the like.
  • additives such as organic lubricants, organic or inorganic fine particles, antistatic agents, etc. may be added to such an extent that the characteristics are not deteriorated.
  • a resin composition using an aqueous solvent is prepared by adding at least water-dispersed or water-soluble acrylic resin (D) and metal oxide particles (A) in the order of (A) and (D), and once dispersing, After the acrylic resin (D) is adsorbed on the surface of the oxide particles (A), the ⁇ -electron conjugated polymer (B) and the epoxy compound (C) are added, and the aqueous solvent is mixed in a desired weight ratio. It can be prepared by stirring. Next, various additives (easily lubricants, inorganic particles, organic particles, surfactants, antioxidants, etc.) can be prepared by mixing and stirring the resin composition in a desired weight ratio as necessary. it can.
  • various additives easily lubricants, inorganic particles, organic particles, surfactants, antioxidants, etc.
  • the resin layer of the present invention comprises a resin composition containing metal oxide particles (A), a ⁇ -electron conjugated polymer compound (B), an epoxy compound (C), and an acrylic resin (D) on a polyester film.
  • the resin composition contains a solvent
  • the resin layer can be formed on the polyester film by drying the solvent.
  • an aqueous solvent is preferably used as the solvent. This is because the use of the aqueous solvent can suppress the rapid evaporation of the solvent in the drying step and can form a uniform composition layer, and is excellent in terms of environmental load.
  • the aqueous solvent is soluble in water or water and alcohols such as methanol, ethanol, isopropyl alcohol and butanol, ketones such as acetone and methyl ethyl ketone, and glycols such as ethylene glycol, diethylene glycol and propylene glycol. Is an organic solvent mixed in an arbitrary ratio.
  • the method for applying the resin composition to the polyester film is preferably an in-line coating method.
  • the in-line coating method is a method of applying in the process of manufacturing a polyester film. Specifically, it refers to a method of coating at any stage from melt extrusion of a polyester resin to biaxial stretching followed by heat treatment and winding up, and is generally substantially non-obtainable after melt extrusion and rapid cooling. Crystalline unstretched (unoriented) polyester film (A film), then uniaxially stretched (uniaxially oriented) polyester film (B film) stretched in the longitudinal direction, or biaxially before heat treatment stretched further in the width direction It is applied to any one of stretched (biaxially oriented) polyester film (C film).
  • the resin composition is applied to the polyester film of any one of the A film and the B film before the crystal orientation is completed, and then the polyester film is stretched in a uniaxial direction or a biaxial direction. It is preferable to employ a method in which a heat treatment is performed at a temperature higher than the boiling point to complete the crystal orientation of the polyester film and a resin layer is provided. According to this method, the polyester film can be formed and the resin composition can be applied and dried (that is, the resin layer is formed) at the same time. Moreover, it is easy to make the thickness of the resin layer thinner in order to perform stretching after coating.
  • a method of applying a resin composition to a film (B film) uniaxially stretched in the longitudinal direction, then stretching in the width direction, and performing a heat treatment is excellent.
  • the stretching process is less than once compared to the method of biaxial stretching, so it is difficult to cause defects or cracks in the composition layer due to stretching, and a composition layer excellent in transparency and smoothness This is because it can be formed.
  • the resin layer is preferably provided by an inline coating method from the various advantages described above.
  • a method for applying the resin composition to the polyester film any known method such as a bar coating method, a reverse coating method, a gravure coating method, a die coating method, or a blade coating method can be used.
  • the best method for forming a resin layer in the present invention is a method in which a resin composition using an aqueous solvent is applied on a polyester film using an in-line coating method, dried and heat-treated. More preferably, the resin composition is in-line coated on the uniaxially stretched B film.
  • drying can be carried out in a temperature range of 80 to 130 ° C. in order to complete the removal of the solvent of the resin composition.
  • the heat treatment can be performed in a temperature range of 160 to 240 ° C. in order to complete the crystal orientation of the polyester film and complete the thermosetting of the resin composition to complete the formation of the resin layer.
  • the solid content concentration of the resin composition is preferably 10% by weight or less. By setting the solid content concentration to 10% by weight or less, a good coating property can be imparted to the resin composition, and a laminated film provided with a transparent and uniform composition layer can be produced.
  • PET film a polyethylene terephthalate (hereinafter referred to as PET) film is used as the polyester film, but is not limited thereto.
  • PET pellets are sufficiently vacuum-dried, then supplied to an extruder, melt extruded into a sheet at about 280 ° C., and cooled and solidified to produce an unstretched (unoriented) PET film (A film).
  • a film This film is stretched 2.5 to 5.0 times in the longitudinal direction with a roll heated to 80 to 120 ° C. to obtain a uniaxially oriented PET film (B film).
  • the resin composition of the present invention prepared at a predetermined concentration is applied to one side of the B film.
  • a surface treatment such as a corona discharge treatment may be performed on the coated surface of the PET film before coating.
  • surface treatment such as corona discharge treatment
  • the wettability of the resin composition to the PET film is improved, the resin composition is prevented from being repelled, and a resin layer having a uniform coating thickness can be formed.
  • the edge of the PET film is held with a clip and guided to a heat treatment zone (preheating zone) of 80 to 130 ° C., and the solvent of the resin composition is dried. After drying, the film is stretched 1.1 to 5.0 times in the width direction. Subsequently, it is guided to a heat treatment zone (heat setting zone) at 160 to 240 ° C., and heat treatment is performed for 1 to 30 seconds to complete crystal orientation.
  • heat treatment zone heat setting zone
  • the laminated film thus obtained is a laminated film that is transparent and has antistatic properties and excellent interference spot suppression (visibility) when a high refractive index hard coat layer is laminated.
  • the thickness of the resin layer in the present invention is preferably 10 nm or more and 80 nm or less. More preferably, they are 10 nm or more and 50 nm or less, More preferably, they are 10 nm or more and 40 nm or less. By setting the thickness of the resin layer to 10 nm or more and 80 nm or less, it is possible to sufficiently exhibit interference spot suppression and antistatic properties.
  • the characteristic measurement method and effect evaluation method in the present invention are as follows.
  • the direction in which the sample was set in the measuring instrument was adjusted to match the longitudinal direction of the sample in the front-rear direction toward the front of the measuring instrument.
  • an attached Al 2 O 3 plate was used as a standard reflecting plate.
  • the reflectance on the resin layer side at a wavelength of 550 nm was determined.
  • pieces was used for the measured value.
  • Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA) and photoinitiator (manufactured by Ciba Geigy Co., Ltd., Irgacure 184) are added to the above-mentioned dispersion of titanium dioxide fine particles and dipentaerythritol hexaacrylate is 100 weights. 5% by weight was added to the part and mixed to adjust the refractive index of the hard coat layer to 1.65.
  • the integrated irradiation intensity was set with a concentrating high-pressure mercury lamp (I03, H03-L31) having an irradiation intensity of 120 W / cm set at a height of 9 cm from the surface on which the UV curable resin layer was laminated.
  • the hard coat laminated polyester film in which the hard coat layer was laminated on the laminated polyester film was obtained by irradiating and curing ultraviolet rays so as to be 300 mJ / cm 2 .
  • an industrial UV checker manufactured by Nippon Batteries Co., Ltd., UVR-N1
  • UVR-N1 an industrial UV checker
  • the antistatic property was measured by the surface specific resistance value.
  • the measurement of the surface resistivity value was allowed to stand for 24 hours at a relative humidity of 23%, and in that atmosphere, a digital ultrahigh resistance / microammeter R8340A (manufactured by Advantest Co., Ltd.) was used. Measurements were made. The unit is ⁇ / ⁇ .
  • the resin laminated surface of the laminated sample was evaluated, and the average value measured 10 times in total was taken as the surface specific resistance value (R1) of the sample. 1 ⁇ 10 11 ⁇ / ⁇ or less is good, 1 ⁇ 10 12 ⁇ / ⁇ or less is practically level, 1 ⁇ 10 12 ⁇ / ⁇ when it exceeds was level with practical problems.
  • the number average particle diameter of the metal oxide particles (A) was determined by observing the cross-sectional structure of the laminated film with a transmission electron microscope (TEM). The magnification was set to 500,000, and the outer diameter of 10 particles existing in the screen was measured for a total of 100 particles for 10 fields of view, and the average particle size was determined. When 10 particles do not exist in the screen, observe another part under the same conditions, measure the outer diameter of the particles present in the screen, and measure the outer diameter of 100 particles in total. Averaged.
  • the outer diameter means the maximum diameter of the particle (that is, the longest diameter of the particle and indicates the longest diameter in the particle). Similarly, in the case of a particle having a cavity inside, the maximum diameter of the particle is also defined. To express.
  • (6) Film thickness of resin layer The thickness of the resin layer on a polyester film was measured by observing a cross section using a transmission electron microscope (TEM). As for the thickness of the resin layer, the thickness of the resin layer was read from an image taken with a TEM at a magnification of 200,000 times. A total of 20 resin layer thicknesses were measured and taken as an average value.
  • TEM transmission electron microscope
  • Boiling treatment test A laminated film sample was cut into a size of 10 cm x 10 cm to obtain a reflectance evaluation sample after the boiling treatment test. The sample was fixed to a clip and suspended, and then placed in boiling water (100 ° C.) made of pure water prepared in a beaker for 2 hours with the entire laminated film immersed. After that, the reflectance evaluation sample after the boiling treatment test was taken out, dried at an air volume of 1 m / min for 30 minutes, moisture was removed, dried in a normal state (23 ° C., relative humidity 65%) for 12 hours, and after the boiling treatment test. A sample for reflectance evaluation was obtained.
  • the surface free energy ( ⁇ ) of the solid which is proposed by Hata et al., Is expressed as a dispersion force component ( ⁇ S d ) and a polar force component ( ⁇ S p ).
  • ⁇ S d dispersion force component
  • ⁇ S p polar force component
  • ⁇ S h hydrogen bonding force component
  • ⁇ S h geometric mean method based on the formula (expanded Fowkes formula) obtained by extending the Fowkes formula
  • Equation (1) A specific calculation method is shown. The meaning of each symbol is described below.
  • ⁇ S L surface free energy of resin layer (X) and known solutions listed in Table 1
  • ⁇ S surface free energy of resin layer (X)
  • ⁇ L surface free energy of known solutions listed in Table 1
  • ⁇ S d Dispersion force component of surface free energy of resin layer (X)
  • ⁇ S p Polar force component of surface free energy of resin layer (X)
  • ⁇ S h Hydrogen bond strength of surface free energy of resin layer (X)
  • Component ⁇ L d Dispersion force component of the surface free energy of the known solution described in Table 1
  • ⁇ L p Polar force component of the surface free energy of the known solution described in Table 1
  • ⁇ L h As described in Table 1 Hydrogen bonding force component of the surface free energy of the known solution
  • ⁇ S L ⁇ S + ⁇ L -2 ( ⁇ S d ⁇ ⁇ L d ) 1/2 -2 ( ⁇ S p ⁇ ⁇ L p ) 1/2 -2 ( ⁇ S h ⁇ ⁇ L h ) 1/2
  • Equation (3) the surface free energy ( ⁇ ) of the solid, that is, the surface free energy of the surface of the resin layer (X) is calculated.
  • composition analysis of resin layer is performed on the surface of the laminated film by using an X-ray photoelectron spectrometer (ESCA), Fourier infrared spectrophotometer (FT-IR) ATR method, time-of-flight secondary An ion gravimetric analyzer (TOF-SIMS) was used.
  • the resin layer is dissolved and extracted with a solvent and separated by chromatography, and then proton nuclear magnetic resonance spectroscopy ( 1 H-NMR), carbon nuclear magnetic resonance spectroscopy ( 13 C-NMR), Fourier infrared spectroscopy.
  • the structure was analyzed with a photometer (FT-IR), and the composition of the resin layer was analyzed by pyrolysis gas chromatography gravimetric analysis (GC-MS).
  • FT-IR photometer
  • GC-MS pyrolysis gas chromatography gravimetric analysis
  • C 1 ⁇ 10 13 ⁇ / ⁇ or less
  • Reference Example 1 electron conjugated polymer compound (B-1) 7.
  • an aqueous solution containing 20.8 parts by weight of polystyrene sulfonic acid which is an acidic polymer compound 49 parts by weight of a 1% by weight iron (III) sulfate aqueous solution and 3,4-ethylenedioxythiophene which is a thiophene compound 8 parts by weight and 117 parts by weight of a 10.9% by weight aqueous peroxodisulfuric acid solution were added.
  • the mixture was stirred at 18 ° C. for 23 hours.
  • an aqueous dispersion of zirconium oxide particles (A) (zirconium oxide dispersion SZR-CW manufactured by Sakai Chemical Industry Co., Ltd., zirconium oxide number average particle diameter 20 nm) and an acrylic resin (D )
  • A) / (D) 100/20 (note that the weight ratio was And rounded to the first decimal place).
  • the obtained particles (AD) were centrifuged using a Hitachi tabletop ultracentrifuge (manufactured by Hitachi Koki Co., Ltd .: CS150NX) (rotation speed: 3,000 rpm, separation time: 30 minutes) to obtain metal oxide particles ( After A) (and the acrylic resin (D) adsorbed on the surface of the metal oxide particles (A)) was allowed to settle, the supernatant was removed and the precipitate was concentrated to dryness.
  • XPS X-ray photoelectron spectroscopy
  • the solution 1 was transferred to the reactor, and the solution 2 was continuously added dropwise to the solution 1 over 4 hours while maintaining the temperature of the solution in the reactor at 85 ° C. After completion of the dropwise addition, the mixture was further stirred for 3 hours and then cooled to 25 ° C. to obtain polystyrene sulfonate lithium salt (E-1).
  • Tables 1 to 4 show the characteristics of the laminated films obtained in the following examples and comparative examples.
  • the resin composition 1 was prepared as follows. ⁇ Resin composition> To the aqueous solvent, the above particles (A), acrylic resin (D), ⁇ -electron conjugated polymer compound (B) and epoxy compound (C) are added in this order, and mixed in the ratios shown in Table 1, to obtain a resin. A composition was obtained. ⁇ A mixture of particles (A) and acrylic resin (D) (AD) ⁇ ⁇ -electron conjugated polymer (B) Epoxy compound (C): Polyglycerol polyglycidyl ether type epoxy cross-linking agent (Nagase Chemtech Co., Ltd.
  • PET pellets (intrinsic viscosity 0.63 dl / g) substantially free of particles were sufficiently dried in vacuum, then supplied to an extruder, melted at 285 ° C., extruded into a sheet form from a T-shaped die, It was wound around a mirror-casting drum having a surface temperature of 25 ° C. using an electric application casting method and cooled and solidified. This unstretched film was heated to 90 ° C. and stretched 3.4 times in the longitudinal direction to obtain a uniaxially stretched film (B film).
  • B film uniaxially stretched film
  • the resin composition 1 was applied to the corona discharge-treated surface of the uniaxially stretched film with a coating thickness of about 6 ⁇ m using a bar coat.
  • the both ends in the width direction of the uniaxially stretched film coated with the resin composition are gripped with clips and guided to a preheating zone, and the ambient temperature is set to 75 ° C. Subsequently, the ambient temperature is set to 110 ° C using a radiation heater, and then the ambient temperature.
  • the resin composition was dried at 90 ° C. to form a resin layer.
  • the thickness of the PET film was 100 ⁇ m, and the thickness of the resin layer was about 0.02 ⁇ m.
  • Table 3 shows the characteristics and the like of the obtained laminated film. The haze was low, the reflectivity was high, the amount of surface energy change and the surface specific resistance value were small, and the transparency, interference spot suppression, adhesion, and antistatic properties were excellent.
  • Example 2 to 12 A laminated film was obtained in the same manner as in Example 1 except that the ratio of the resin composition in the coating liquid was changed as shown in Table 1. Table 1 shows the characteristics of the obtained laminated film.
  • Example 1 except that the number average particle size of the metal oxide particles (A) was changed to 3 nm (Example 13), 15 nm (Example 14), 30 nm (Example 15), and 50 nm (Example 16).
  • a laminated film was obtained in the same manner. Table 1 shows the characteristics of the obtained laminated film.
  • Example 17 Except for changing the metal oxide particles (A) to titanium oxide particles “NanoTek” (registered trademark) TiO 2 slurry (CI Chemical Co., Ltd., number average particle size 20 nm), the same method as in Example 1 was used. A laminated film was obtained. Table 1 shows the characteristics of the obtained laminated film.
  • the metal oxide particles (A) are zinc oxide particles FINEX-50 (manufactured by Sakai Chemical Industry Co., Ltd., number average particle diameter 20 nm) (Example 18), ITO slurry (manufactured by CII Kasei Co., Ltd., number average particles) 20 nm) (Example 19), except that it was changed to “NanoTek” (registered trademark) Y 2 O 3 slurry (Cai Kasei Co., Ltd., number average particle size 20 nm) (Example 20), which is yttrium oxide.
  • a laminated film was obtained in the same manner as in Example 1. Table 1 shows the characteristics of the obtained laminated film.
  • Example 21 A laminated film was obtained in the same manner as in Example 1 except that the thickness of the resin layer was changed to 10 nm (Example 21), 30 nm (Example 22), and 50 nm (Example 23). Table 1 shows the characteristics of the obtained laminated film.
  • Example 24 The (meth) acrylate monomer (d3 ′) was changed to N, N-dimethylaminoethyl methacrylate having a tertiary amino group (the R 3 group of the monomer unit represented by the formula (3) has no carboxyl group)
  • a laminated film was obtained in the same manner as in Example 1 except that the acrylic resin was used. Table 1 shows the characteristics of the obtained laminated film.
  • Example 25 The acrylic resin (D) was changed to an acrylic resin (manufactured by Nippon Carbide Corporation, RX7013ED) (a monomer unit represented by the formula (1) and an acrylic having no monomer unit represented by the formula (2).
  • a laminated film was obtained in the same manner as in Example 1 except that the resin was used. Table 1 shows the characteristics of the obtained laminated film.
  • Example 26 A laminated film was obtained in the same manner as in Example 1 except that zirconia chelate (Matsumoto Fine Chemical “Orgachix” (registered trademark) ZC300) was used instead of the metal oxide particles (A). Table 1 shows the characteristics of the obtained laminated film.
  • Example 27 A laminated film in the same manner as in Example 1 except that an ionic conductive compound (ammonium salt) (manufactured by ADEKA, Adeka Cioace PD50) was used instead of the ⁇ -electron conjugated polymer compound (B).
  • ionic conductive compound ammonium salt
  • ADEKA Adeka Cioace PD50
  • Table 1 shows the characteristics of the obtained laminated film.
  • Example 28 A laminated film was obtained in the same manner as in Example 1 except that the ion conductive compound (lithium styrene sulfonate) (E-1) was used instead of the ⁇ electron conjugated polymer compound (B). Table 1 shows the characteristics of the obtained laminated film.
  • Example 1 except that the metal oxide particles (A) in Example 1 were changed to “Snowtex” (registered trademark) CM (manufactured by Nissan Chemical Industries, Ltd., number average particle diameter 20 nm), which is silica particles.
  • a laminated film was obtained in the same manner. Table 1 shows the characteristics of the obtained laminated film.
  • Example 2 The metal oxide particles (A) in Example 1 are made of MgF 2 particles, “NanoTek” (registered trademark) MgF 2 slurry (manufactured by CI Kasei Co., Ltd., number average particle size 20 nm) (Comparative Example 2), hollow A laminated film was obtained in the same manner as in Example 1, except that the silica particles were changed to “Thruria” (registered trademark) TR112 (manufactured by JGC Catalysts & Chemicals Co., Ltd., number average particle diameter 20 nm) (Comparative Example 3). It was. Table 1 shows the characteristics of the obtained laminated film.
  • Example 4 A laminated film was obtained in the same manner as in Example 1 except that the ⁇ -electron conjugated polymer compound (B) in Example 1 was not used. Compared with Example 1, although the surface specific resistance value was high and showed the same transparency, visibility, and adhesion to the laminate, it was lacking in antistatic properties.
  • Example 5 A laminated film was obtained in the same manner as in Example 1 except that a polyester resin (manufactured by Takamatsu Yushi Co., Ltd., Pes Resin A110) was used instead of the epoxy compound (C) in Example 1. Compared with Example 1, by using a polyester resin, the change of the surface energy after a boiling process was large, and the wet heat adhesiveness was lacking.
  • a polyester resin manufactured by Takamatsu Yushi Co., Ltd., Pes Resin A110
  • Example 6 A laminated film was obtained in the same manner as in Example 1 except that the acrylic resin (D) in Example 1 was not used. Compared with Example 1, by not using an acrylic resin, the change of the surface energy after a boiling process was large, and the wet heat adhesiveness was lacking.
  • Example 7 A laminated film was obtained in the same manner as in Example 1 except that the thickness of the resin layer in Example 1 was 7 nm. Compared with Example 1, although the surface specific resistance value was high and showed the same transparency, visibility, and adhesion to the laminate, it was lacking in antistatic properties.
  • the present invention is a laminate having transparency, high interference refractive index suppression when laminating a high refractive index hard coat layer, excellent adhesion to the high refractive index hard coat layer, and high antistatic properties regardless of humidity.
  • the present invention relates to a film, and can be used as an optically easily adhesive film for display applications.

Abstract

A multilayer film which is obtained by providing at least one surface of a polyester film with a resin layer, and which is characterized in that: the reflectance of the surface of the resin layer at a wavelength of 550 nm is 6.0% or more; the surface resistivity of the surface of the resin layer is 1012 Ω/□ or less; and the amount of change ∆γ of the surface energy of the surface of the resin layer before and after a boiling test (namely, ∆γ = |(surface energy of resin layer after boiling test) - (surface energy of resin layer before boiling test)|) is 5 mN/m or less. Provided is a multilayer film which has excellent transparency, excellent interference spot suppression when a hard coat layer having high refractive index is laminated thereon, and excellent adhesion to a hard coat layer having high refractive index, and which exhibits high antistatic properties regardless of humidity.

Description

積層フィルムおよびその製造方法Laminated film and method for producing the same
 本発明は、ポリエステルフィルムの少なくとも片側に樹脂層が設けられた積層フィルムおよびその製造方法に関する。 The present invention relates to a laminated film in which a resin layer is provided on at least one side of a polyester film and a method for producing the same.
 熱可塑性樹脂フィルム、中でも二軸延伸ポリエステルフィルムは、機械的性質、電気的性質、寸法安定性、透明性、耐薬品性などに優れた性質を有するため、磁気記録材料、包装材料などの多くの用途において広く使用されている。 Thermoplastic resin films, especially biaxially stretched polyester films, have excellent properties such as mechanical properties, electrical properties, dimensional stability, transparency, and chemical resistance. Widely used in applications.
 ポリエステルフィルムは、特に近年、タッチパネル、液晶ディスプレイパネル(LCD)、プラズマディスプレイパネル(PDP)、有機エレクトロルミネッセンス(有機EL)、等の表示部材用途をはじめ、各種光学用フィルムに用いられている。 In recent years, polyester films have been used in various optical films, particularly in display member applications such as touch panels, liquid crystal display panels (LCD), plasma display panels (PDP), and organic electroluminescence (organic EL).
 特にこのような用途においては、ポリエステルフィルム上にハードコート層が積層されたハードコートフィルムが使用されている。このハードコートフィルムにおいては、基材であるポリエステルフィルムとハードコート層との接着性を向上させるために、これらの中間層として、易接着性を有する塗布層が設けられる場合が多い。また、ポリエステルフィルムは帯電しやすいため、ハードコート層の加工工程において、塵埃が付着しやすく、塵埃付着により異物欠点が発生したり、歩留まりが低下したりする場合が多い。そのため、ハードコートフィルムの基材となるフィルムには帯電防止性が求められている。 Especially in such applications, a hard coat film in which a hard coat layer is laminated on a polyester film is used. In this hard coat film, in order to improve the adhesion between the polyester film as a substrate and the hard coat layer, a coating layer having easy adhesion is often provided as the intermediate layer. In addition, since the polyester film is easily charged, dust is likely to adhere in the processing process of the hard coat layer, and foreign matter defects are often generated due to the dust adhesion, and the yield is often reduced. Therefore, an antistatic property is required for a film that is a base material of a hard coat film.
 さらに、ハードコートフィルムには、常温下、高温高湿下における基材との接着性、透明性、耐擦傷性、防汚性などが求められている。また、ディスプレイ等の表面に用いられることが多いため、ハードコートフィルムには視認性や意匠性が要求されている。基材であるポリエステルフィルム上にハードコート層を積層した場合、ハードコート層と基材であるポリエステルフィルムとの屈折率が異なる場合には界面反射による干渉斑が生じ、視認性が悪化することから、干渉斑の低減が求められている。 Furthermore, hard coat films are required to have adhesion to a substrate at room temperature, high temperature and high humidity, transparency, scratch resistance, antifouling properties, and the like. Moreover, since it is often used on the surface of a display or the like, the hard coat film is required to have visibility and design. When a hard coat layer is laminated on a polyester film that is a base material, if the refractive index of the hard coat layer and the polyester film that is the base material is different, interference spots due to interface reflection occur and visibility deteriorates. There is a need for reduction of interference spots.
 特に近年、さらなる大画面化、高精細化、高級化にともない、特に蛍光灯下での干渉斑の抑制、透明性、層間の接着性に対する要求レベルが高くなってきている。 Especially in recent years, with the further enlargement of screens, higher definition, and higher grades, the required level of interference spot suppression, transparency, and adhesion between layers, especially under fluorescent lamps, has increased.
 一方、ハードコート層表面に、高屈折率層/低屈折率層、から構成される屈折率調整層を積層する場合、ハードコート層を高屈折率化することにより、屈折率調整層から高屈折率層を省略することができる。その結果、フィルムの製造工程において、機能を損なうことなく、工程を省略することができ、歩留まりの向上、大幅なコスト低減が可能となる。近年の強い低コスト化要求のためにこの技術は注目されている。 On the other hand, when a refractive index adjustment layer composed of a high refractive index layer / low refractive index layer is laminated on the surface of the hard coat layer, by increasing the refractive index of the hard coat layer, high refractive index from the refractive index adjustment layer. The rate layer can be omitted. As a result, in the film manufacturing process, the process can be omitted without impairing the function, and the yield can be improved and the cost can be significantly reduced. This technology has attracted attention due to the recent strong demand for cost reduction.
 このような屈折率の高いハードコート層(例えば屈折率1.63)を基材のポリエステルフィルム上(例えば屈折率1.65)に設けた場合に、干渉斑を抑制する方法として、(a)易接着層を形成した後、基材フィルムにカレンダー処理を行い、基材フィルムの局所的な厚みのばらつきを小さくする方法が開示されている(特許文献1)。 When a hard coat layer having a high refractive index (for example, refractive index 1.63) is provided on a base polyester film (for example, refractive index 1.65), (a) After forming an easily bonding layer, the method of carrying out a calendar process to a base film and reducing the dispersion | variation in the local thickness of a base film is disclosed (patent document 1).
 また、(b)基材フィルムの表層に屈折率の低い層を設け、ハードコート層と基材フィルムの中間の屈折率を有する易接着層を設け、干渉の打消しを利用する方法が開示されている(特許文献2)。 In addition, a method is disclosed in which (b) a layer having a low refractive index is provided on the surface layer of the base film, an easy-adhesion layer having an intermediate refractive index between the hard coat layer and the base film is provided, and interference cancellation is utilized. (Patent Document 2).
 さらに、(c)ハードコート層と基材フィルムの間に、それらの中間の屈折率(1.63~1.66)を有する高屈折率の易接着層を設ける方法などが開示されている(特許文献3)。 Further, (c) a method of providing a high refractive index easy-adhesion layer having a refractive index intermediate between them (1.63 to 1.66) between the hard coat layer and the substrate film is disclosed ( Patent Document 3).
 また、ポリエステルフィルムに帯電防止性を付与する手法としては、ポリエステル樹脂に帯電防止を添加し塗布する方法(例えば特許文献4参照)、スチレンスルホン酸共重合体を塗布する方法(例えば特許文献5参照)が知られている。これらの方法は、イオン導電タイプの帯電防止剤を使った帯電防止方法である。 Moreover, as a method for imparting antistatic properties to the polyester film, a method of applying an antistatic agent to a polyester resin (for example, see Patent Document 4), a method of applying a styrene sulfonic acid copolymer (for example, see Patent Document 5). )It has been known. These methods are antistatic methods using an ion conductive type antistatic agent.
 また、ポリエステルフィルムの表面にポリアニリン系導電層を塗布などにより設ける方法(例えば、特許文献6参照)が知られている。この方法は、電子伝導タイプの帯電防止剤を使った帯電防止方法である。 Also, a method of providing a polyaniline conductive layer on the surface of a polyester film by coating or the like (for example, see Patent Document 6) is known. This method is an antistatic method using an electron conduction type antistatic agent.
 また、ポリエステルフィルムの表面にアンチモンドーピングした酸化スズ系導電剤の層を塗布などにより設ける方法(特許文献7)が知られている。この方法は、電子伝導タイプの帯電防止剤を使った帯電防止方法である。 Also known is a method of providing a layer of antimony-doped tin oxide conductive agent on the surface of a polyester film by coating or the like (Patent Document 7). This method is an antistatic method using an electron conduction type antistatic agent.
 また、他の電子伝導タイプの化合物を用いた帯電防止方法として、ポリチオフェン系導電剤による帯電防止性付与が提案されている。例えば、ポリチオフェン系導電剤とラテックス重合体を含む塗液を塗布した帯電防止方法(特許文献8)が知られている。また、ポリチオフェン系導電剤にエポキシ架橋剤を併用し、塗膜の透明性と帯電防止性を両立する帯電防止性付与が提案されている(特許文献9)。 In addition, as an antistatic method using other electron conduction type compounds, an antistatic property imparting by a polythiophene conductive agent has been proposed. For example, an antistatic method (Patent Document 8) in which a coating liquid containing a polythiophene-based conductive agent and a latex polymer is applied is known. In addition, an antistatic property imparting that achieves both transparency and antistatic property of a coating film by using an epoxy crosslinking agent in combination with a polythiophene-based conductive agent has been proposed (Patent Document 9).
特開2001-71439号公報JP 2001-71439 A 特許第4169548号公報Japanese Patent No. 4169548 特許第3632044号公報Japanese Patent No. 3632044 特開昭60-141525号公報JP-A-60-141525 特開昭61-204240号公報JP 61-204240 A 特開平7-101016号公報JP-A-7-101016 特開平11-278582号公報Japanese Patent Laid-Open No. 11-278582 特開平6-295016号公報JP-A-6-295016 特許第3966171号公報Japanese Patent No. 3966171
 特許文献1の方法では、ハードコート層の屈折率が1.60以下の場合には比較的干渉斑が抑制できるものの、屈折率が1.60以上1.65以下のハードコート層を積層した場合には、密着性は良好なものの、干渉斑が目立つものであった。また、特許文献2の方法では、基材となるフィルムの材料がポリエチレンナフタレンジカルボキシレート(屈折率1.7以上)の場合にしか適用できず汎用性に欠けるものであった。 In the method of Patent Document 1, when a hard coat layer has a refractive index of 1.60 or less, interference spots can be relatively suppressed, but when a hard coat layer having a refractive index of 1.60 or more and 1.65 or less is laminated. Although the adhesion was good, interference spots were conspicuous. Further, the method of Patent Document 2 is applicable only when the material of the film serving as the base material is polyethylene naphthalene dicarboxylate (refractive index of 1.7 or more) and lacks versatility.
 特許文献3には、それぞれ、水溶性ポリエステル樹脂に水溶性金属キレート化合物または金属アシレート化合物を添加する方法が提案されている。しかしながら、水溶性金属キレート化合物や金属アシレート化合物は、酸性度が高い場合が多く、樹脂層に他の成分を含有させた場合に凝集が生じ、透明性が低下したり、干渉斑抑制性が悪化するといった課題があった。 Patent Document 3 proposes a method of adding a water-soluble metal chelate compound or a metal acylate compound to a water-soluble polyester resin, respectively. However, water-soluble metal chelate compounds and metal acylate compounds often have high acidity, and aggregation occurs when other components are contained in the resin layer, resulting in a decrease in transparency or deterioration in interference plaque suppression. There was a problem to do.
 また、特許文献4、5のイオン導電タイプの帯電防止剤を用いる方法では帯電防止性が湿度に依存するため、湿度によっては帯電する問題があった。特許文献6~9の方法では、湿度に依存せず帯電防止性を発現することができるものの、高屈折率ハードコート層を積層した際に干渉斑が目立つものであり、さらには高屈折率ハードコート層との接着性も低下する問題があった。 Further, in the methods using the ion conductive type antistatic agent of Patent Documents 4 and 5, since the antistatic property depends on the humidity, there is a problem of charging depending on the humidity. In the methods of Patent Documents 6 to 9, although antistatic properties can be expressed without depending on humidity, interference spots are conspicuous when a high refractive index hard coat layer is laminated. There was a problem that the adhesiveness with the coat layer also deteriorated.
 そこで、本発明では上記の欠点を解消し、透明性、干渉斑抑制性、基材や高屈折率ハードコート層との接着性に優れ、さらに湿度によらず高いレベルの帯電防止性を示す積層ポリエステルフィルムを提供することを課題とする。 Therefore, the present invention eliminates the above-mentioned drawbacks, is excellent in transparency, interference spot suppression, adhesion to a substrate and a high refractive index hard coat layer, and also exhibits a high level of antistatic properties regardless of humidity. It is an object to provide a polyester film.
 上記課題を解決するため本発明の積層フィルムは次の構成を有する。すなわち、ポリエステルフィルムの少なくとも片側に樹脂層が設けられた積層フィルムであって、該樹脂層表面の波長550nmにおける反射率が6.0%以上であり、該樹脂層表面の表面比抵抗値が1012Ω/□以下であり、該樹脂層表面の煮沸試験前後の表面エネルギー変化量Δγ(Δγ=|煮沸処理試験後の樹脂層の表面エネルギー - 煮沸処理試験前の樹脂層の表面エネルギー|)が5mN/m以下であるポリエステルフィルムの少なくとも片側に樹脂層が設けられた積層フィルムである。 In order to solve the above problems, the laminated film of the present invention has the following constitution. That is, it is a laminated film in which a resin layer is provided on at least one side of a polyester film, the reflectance of the resin layer surface at a wavelength of 550 nm is 6.0% or more, and the surface specific resistance value of the resin layer surface is 10 The surface energy change Δγ (Δγ = | surface energy of the resin layer after the boiling treatment test−surface energy of the resin layer before the boiling treatment test |) before and after the boiling test of the resin layer surface is 12 Ω / □ or less. It is a laminated film in which a resin layer is provided on at least one side of a polyester film of 5 mN / m or less.
 本発明の積層フィルムは、透明性、高屈折率ハードコート層を積層した際の干渉斑抑制性、高屈折率ハードコート層との接着性に優れ、湿度によらず高いレベルの帯電防止性を発現することができる。さらには、高屈折率ハードコート層を積層したフィルムにおいて、ハードコート層表面でも帯電防止性を発現することができる。 The laminated film of the present invention is excellent in transparency, suppression of interference spots when a high refractive index hard coat layer is laminated, adhesiveness with a high refractive index hard coat layer, and has a high level of antistatic properties regardless of humidity. Can be expressed. Furthermore, in a film in which a high refractive index hard coat layer is laminated, antistatic properties can be exhibited even on the surface of the hard coat layer.
 以下、本発明の積層フィルムについて詳細に説明する。 Hereinafter, the laminated film of the present invention will be described in detail.
 本発明の積層フィルムは、ポリエステルフィルムの少なくとも片側に樹脂層が設けられた積層フィルムであって、該樹脂層表面の波長550nmにおける反射率が6.0%以上であり、該樹脂層表面の表面比抵抗値が1012Ω/□以下であり、該樹脂層表面の煮沸試験前後の表面エネルギー変化量Δγ(Δγ=|煮沸処理試験後の樹脂層の表面エネルギー - 煮沸処理試験前の樹脂層の表面エネルギー|)が5mN/m以下であることが必要である。 The laminated film of the present invention is a laminated film in which a resin layer is provided on at least one side of a polyester film, the reflectance of the resin layer surface at a wavelength of 550 nm is 6.0% or more, and the surface of the resin layer surface The specific resistance value is 10 12 Ω / □ or less, and the surface energy change Δγ before and after the boiling test on the surface of the resin layer (Δγ = | the surface energy of the resin layer after the boiling test—the resin layer before the boiling test It is necessary that the surface energy |) is 5 mN / m or less.
 本発明の積層フィルムは、前記樹脂層が波長550nmにおける反射率が6.0%以上であることが必要である。該樹脂層表面の波長550nmにおける反射率とは、該樹脂層の屈折率を表すものである。波長550nmにおける反射率が6.0%よりも高いと該樹脂層の屈折率が、PETフィルムに近い領域まで高屈折率化されていることを表し、高屈折率ハードコート層を積層した際の干渉斑抑制性を有することができる。より好ましくは、6.0%以上6.5%以下である。樹脂層表面の波長550nmにおける反射率を6.0%以上とする方法としては、樹脂層に後述する金属酸化物粒子(A)を含有させる方法や、金属キレート化合物を含有させる方法がある。この中でも数平均粒子径が3nm以上50nm以下の金属酸化物粒子(A)を用いる方法が、透明性、湿熱処理時の接着性に優れる点から好ましい。金属キレート化合物を含有させる方法は、湿熱処理によるキレート結合の分解が進行し、経時での外観悪化や湿熱処理後の接着性が生じる可能性がある。 The laminated film of the present invention requires that the resin layer has a reflectance of 6.0% or more at a wavelength of 550 nm. The reflectance at a wavelength of 550 nm on the surface of the resin layer represents the refractive index of the resin layer. When the reflectance at a wavelength of 550 nm is higher than 6.0%, the refractive index of the resin layer indicates that the refractive index is increased to a region close to the PET film, and when the high refractive index hard coat layer is laminated. It can have interference plaque suppression. More preferably, it is 6.0% or more and 6.5% or less. As a method of setting the reflectance at a wavelength of 550 nm on the surface of the resin layer to 6.0% or more, there are a method of containing a metal oxide particle (A) described later in the resin layer and a method of containing a metal chelate compound. Among these, the method using metal oxide particles (A) having a number average particle diameter of 3 nm or more and 50 nm or less is preferable from the viewpoint of excellent transparency and adhesiveness during wet heat treatment. In the method of containing a metal chelate compound, decomposition of the chelate bond by wet heat treatment proceeds, and there is a possibility that appearance deterioration with time and adhesion after wet heat treatment may occur.
 本発明の積層フィルムは、樹脂層表面の表面比抵抗値が1012Ω/□以下であることが必要である。樹脂層表面の表面比抵抗値とは、樹脂層表面の帯電防止性を表す指標である。樹脂層表面の表面比抵抗値が高いと樹脂層表面に電気が流れにくく(帯電しやすく)、表面比抵抗値が低いと電気が流れやすく(帯電しにくく)なる。樹脂層表面の表面比抵抗値を1012Ω/□以下とすることで高いレベルの帯電防止性を発現することが可能となり、その結果、加工時の粉塵付着を防止することができる。樹脂層表面の表面比抵抗値は、1011Ω/□以下であることがより好ましい。
更に本発明では、積層フィルムの樹脂層表面の表面比抵抗値を1011Ω/□以下とすることで、本発明の積層フィルムに高屈折率ハードコート層を積層したフィルムにおいて、積層したハードコート層の表面においても帯電防止性を発現することができる。この理由については、次のように推定している。一般的な高屈折率を有するハードコート層はアクリル樹脂で構成される場合が多く、カルボキシル基といった極性官能基を有する。そのため、ハードコート層は、カルボン酸をはじめとする極性官能基の分極が可能となるため、完全な絶縁体ではなく、大きな抵抗を有するものの通電体となる。積層フィルムの表面比抵抗値が1011Ω/□以下である場合、高屈折率ハードコート層の表面に帯電が発生した(電荷が溜まった)としても、電荷は高屈折率ハードコート層の内部へ流れ、さらにその下にある積層フィルムの樹脂層に流れるため、電荷を効率的に流すことができる。その結果、積層フィルムに高屈折率ハードコート層を積層したフィルムにおいて、高屈折率ハードコート層の表面比抵抗を低くできる(帯電しにくくできる)ものと推定している。
In the laminated film of the present invention, the surface specific resistance value on the surface of the resin layer is required to be 10 12 Ω / □ or less. The surface specific resistance value on the surface of the resin layer is an index representing the antistatic property on the surface of the resin layer. When the surface specific resistance value on the surface of the resin layer is high, electricity hardly flows on the surface of the resin layer (easily charged), and when the surface specific resistance value is low, electricity easily flows (hardly charged). By setting the surface specific resistance value on the surface of the resin layer to 10 12 Ω / □ or less, a high level of antistatic property can be exhibited, and as a result, dust adhesion during processing can be prevented. The surface specific resistance value on the surface of the resin layer is more preferably 10 11 Ω / □ or less.
Furthermore, in the present invention, by setting the surface specific resistance value of the resin layer surface of the laminated film to 10 11 Ω / □ or less, the laminated hard coat in the film in which the high refractive index hard coat layer is laminated on the laminated film of the present invention. Antistatic properties can also be exhibited on the surface of the layer. The reason for this is estimated as follows. A general hard coat layer having a high refractive index is often composed of an acrylic resin and has a polar functional group such as a carboxyl group. For this reason, the hard coat layer can polarize polar functional groups such as carboxylic acid. Therefore, the hard coat layer is not a perfect insulator but an electric conductor having a large resistance. When the surface specific resistance value of the laminated film is 10 11 Ω / □ or less, even if charge is generated on the surface of the high refractive index hard coat layer (charges are accumulated), the charge is inside the high refractive index hard coat layer. Then, it flows to the resin layer of the laminated film below it, so that the charge can be efficiently flowed. As a result, it is estimated that in a film in which a high refractive index hard coat layer is laminated on a laminated film, the surface specific resistance of the high refractive index hard coat layer can be lowered (can be hardly charged).
 また、更に興味深い事象として、本発明の積層フィルムの樹脂層表面にハードコート層を積層したフィルムにおいては、ハードコート層を積層したフィルムを巻き取ったロールを巻きだす際の帯電量が抑制されるという効果を有することを見出した。本事象はハードコート層表面の表面比抵抗値が1012Ω/□以下のような、いわゆる帯電防止領域だけでなく、1013Ω/□を超えるような、一般的には絶縁領域といわれるハードコート層表面においても、確認されている。この理由としては、表面比抵抗値には現れないような微量な電荷の流れが存在するものと推定している。そのため、本発明の積層フィルムの樹脂層表面にハードコート層を積層したフィルムは、ハードコート層表面の帯電量が抑制されるため、フィルム加工時の粉塵付着を防止することができる。 Further, as a more interesting phenomenon, in the film in which the hard coat layer is laminated on the surface of the resin layer of the laminated film of the present invention, the amount of charge at the time of unwinding the roll winding the film on which the hard coat layer is laminated is suppressed. It has been found that it has the effect. This phenomenon is not only a so-called antistatic region where the surface specific resistance value on the surface of the hard coat layer is 10 12 Ω / □ or less but also a hard region generally called an insulating region exceeding 10 13 Ω / □. It has also been confirmed on the surface of the coat layer. The reason for this is presumed that there is a small amount of charge flow that does not appear in the surface resistivity value. Therefore, the film obtained by laminating the hard coat layer on the resin layer surface of the laminated film of the present invention can prevent the adhesion of dust during film processing because the charge amount on the hard coat layer surface is suppressed.
 樹脂層表面の表面比抵抗値を低下させる方法としては、樹脂層に導電性高分子や、イオン導電性樹脂を含有させる方法が挙げられる。樹脂層表面の表面比抵抗値を1012Ω/□以下とする方法としては、樹脂層にポリチオフェンやポリアニリンなどのπ電子共役系高分子化合物(B)を含有させる方法や、アンモニウム塩や、スルホン酸塩などのイオン導電性化合物を含有させる方法がある。この中でも含有させる量が小量であっても樹脂層表面の表面比抵抗値が1012Ω/□以下を達成できることから、π電子共役系高分子化合物(B)を用いることが帯電防止性と低干渉性および接着性の両立の点から好ましい。なお、樹脂層表面の表面比抵抗値の下限は、特に定められるものではないが、表面比抵抗を小さくしようとしすぎると、樹脂層中に含有させる導電性高分子やイオン導電性樹脂の量が多くなり、製膜性、透明性が低下する場合があるため、10Ω/□以上であることが好ましい。 Examples of the method for reducing the surface specific resistance value on the surface of the resin layer include a method in which the resin layer contains a conductive polymer or an ion conductive resin. Examples of the method for setting the surface resistivity of the resin layer to 10 12 Ω / □ or less include a method in which the resin layer contains a π-electron conjugated polymer compound (B) such as polythiophene or polyaniline, an ammonium salt, sulfone There is a method of containing an ion conductive compound such as an acid salt. Among these, even if the amount contained is small, the surface specific resistance value on the surface of the resin layer can be 10 12 Ω / □ or less. Therefore, using the π-electron conjugated polymer compound (B) has antistatic properties. It is preferable from the viewpoint of compatibility between low interference and adhesiveness. The lower limit of the surface specific resistance value on the surface of the resin layer is not particularly defined, but if the surface specific resistance is too small, the amount of the conductive polymer or ion conductive resin to be contained in the resin layer is small. Since it may increase and film forming property and transparency may decrease, it is preferably 10 5 Ω / □ or more.
 また、樹脂層表面の煮沸試験前後の表面エネルギー変化量Δγとは、後述する方法により求められるものであり、煮沸試験による樹脂層の構造の変化を表すものである。煮沸試験前後の表面エネルギー変化量Δγが大きいと煮沸試験による樹脂層の構造の変化が大きいことを表し、煮沸試験前後の表面エネルギー変化量Δγが小さいと煮沸試験による樹脂層の構造の変化が小さいことを表す。煮沸試験前後の表面エネルギー変化量Δγを5mN/m以下とすることで、透明性に加え、煮沸処理後の高屈折率ハードコート層との優れた接着性や帯電防止性を維持することができる。煮沸試験前後の表面エネルギー変化量Δγは、3mN/m以下であることがより好ましい。煮沸試験前後の表面エネルギー変化量Δγは、煮沸水に浸した際にも樹脂層の化学結合の変化を少なくすることによって5mN/m以下とすることができる。煮沸試験前後の表面エネルギー変化量Δγを5mN/m以下とするには、樹脂層を構成する樹脂を高架橋化させる方法や、樹脂層を構成する樹脂を高Tg化させる方法や疎水化させる方法が挙げられる。この中でも、樹脂層にエポキシ化合物(C)とアクリル樹脂(D)を含有させる方法は、樹脂層に緻密な架橋が構築され、煮沸試験前後でのエネルギー変化量Δγを5mN/m以下にしつつ、反射率や、帯電防止性を発現できるため好ましい。 Further, the surface energy change Δγ before and after the boiling test on the surface of the resin layer is obtained by a method described later, and represents the change in the structure of the resin layer by the boiling test. A large surface energy change Δγ before and after the boiling test indicates a large change in the resin layer structure by the boiling test, and a small surface energy change Δγ before and after the boiling test indicates a small change in the resin layer structure by the boiling test. Represents that. By setting the surface energy change Δγ before and after the boiling test to 5 mN / m or less, in addition to transparency, it is possible to maintain excellent adhesion and antistatic properties with the high refractive index hard coat layer after the boiling treatment. . The surface energy change Δγ before and after the boiling test is more preferably 3 mN / m or less. The surface energy change Δγ before and after the boiling test can be made 5 mN / m or less by reducing the change in the chemical bond of the resin layer even when immersed in boiling water. In order to set the surface energy change Δγ before and after the boiling test to 5 mN / m or less, there are a method of highly crosslinking the resin constituting the resin layer, a method of increasing the Tg of the resin constituting the resin layer, and a method of hydrophobizing. Can be mentioned. Among these, the method of containing the epoxy compound (C) and the acrylic resin (D) in the resin layer is such that dense cross-linking is constructed in the resin layer, and the energy change Δγ before and after the boiling test is 5 mN / m or less. The reflectance and antistatic properties can be expressed, which is preferable.
 また、本発明の積層フィルムは、樹脂層が、数平均粒子径が3nm以上50nm以下の金属酸化物粒子(A)と、π電子共役系高分子化合物(B)と、エポキシ化合物(C)とアクリル樹脂(D)を含有すると、透明性、高屈折率ハードコート層を積層した際の干渉斑抑制性、高屈折率ハードコート層との接着性に優れ、湿度によらず高いレベルの帯電防止性を発現することができるため好ましい。 In the laminated film of the present invention, the resin layer has a metal oxide particle (A) having a number average particle diameter of 3 nm to 50 nm, a π-electron conjugated polymer compound (B), and an epoxy compound (C). Containing acrylic resin (D) is excellent in transparency, suppression of interference spots when a high refractive index hard coat layer is laminated, adhesiveness with high refractive index hard coat layer, and high level antistatic regardless of humidity It is preferable because it can exhibit sex.
 また、本発明の積層フィルムは、前記樹脂層表面の算術平均粗さ(Ra)が20nm以下であることが好ましい。前記樹脂層表面の算術平均粗さ(Ra)を20nm以下とすることで、加工時の塗膜削れを抑制することができ、加工後の透明性や帯電防止性、干渉斑抑制性に優れたものとすることができる。樹脂層表面の算術平均粗さ(Ra)は、樹脂層中に含有する粒子の数平均粒子径を小さくすることで、小さくすることができる。ただし、粒子径を小さくしすぎると、粒子同士のファンデルワールス力が大きくなるため凝集しやすくなり、凝集による粗大粒子が発生することによって算術平均粗さ(Ra)は大きくなる場合がある。そのため、樹脂層中に含有する粒子は、数平均粒子径を3nm以上50nm以下にすることが好ましい。また、樹脂層に含有する粒子として金属酸化物粒子(A)を用いる場合、樹脂層に金属酸化物粒子(A)の他に、エポキシ化合物(C)を含有させると、樹脂層表面の算術平均粗さ(Ra)を小さくすることができる。金属酸化物粒子(A)とともにエポキシ化合物(C)を含有させると樹脂層表面の算術平均粗さが小さくなる理由としては、エポキシ化合物(C)は、樹脂層の流動性を向上させることができるため、その結果金属酸化物粒子(A)の凝集を抑制する効果があると考えている。 In the laminated film of the present invention, the arithmetic average roughness (Ra) of the resin layer surface is preferably 20 nm or less. By setting the arithmetic average roughness (Ra) of the resin layer surface to 20 nm or less, it is possible to suppress coating film scraping during processing, and excellent post-processing transparency, antistatic properties, and interference spot suppression properties. Can be. The arithmetic average roughness (Ra) on the surface of the resin layer can be reduced by reducing the number average particle diameter of the particles contained in the resin layer. However, if the particle size is too small, the van der Waals force between the particles becomes large and the particles are easily aggregated, and the arithmetic average roughness (Ra) may increase due to the generation of coarse particles due to aggregation. Therefore, the particles contained in the resin layer preferably have a number average particle size of 3 nm to 50 nm. Moreover, when using a metal oxide particle (A) as a particle contained in a resin layer, when an epoxy compound (C) is contained in the resin layer in addition to the metal oxide particle (A), the arithmetic average of the resin layer surface Roughness (Ra) can be reduced. The reason why the arithmetic average roughness of the resin layer surface is reduced when the epoxy compound (C) is contained together with the metal oxide particles (A) is that the epoxy compound (C) can improve the fluidity of the resin layer. Therefore, as a result, it is thought that there exists an effect which suppresses aggregation of a metal oxide particle (A).
 [金属酸化物粒子(A)]
 本発明の積層フィルムにおいて、樹脂層は、数平均粒子径が3nm以上50nm以下の金属酸化物粒子(A)を含むことが好ましい。かかる金属酸化物粒子(A)を用いることで、樹脂層表面の波長550nmにおける反射率を高くすることができる。その結果、本発明の積層フィルムの樹脂層に高屈折率ハードコート層を積層した際の干渉斑の抑制が可能となる。また、該金属酸化物粒子(A)の数平均粒子径が可視光の波長より十分小さいため、積層フィルムの透明性を高めることが可能となる。
[Metal oxide particles (A)]
In the laminated film of the present invention, the resin layer preferably contains metal oxide particles (A) having a number average particle diameter of 3 nm to 50 nm. By using such metal oxide particles (A), the reflectance at a wavelength of 550 nm on the surface of the resin layer can be increased. As a result, interference spots can be suppressed when a high refractive index hard coat layer is laminated on the resin layer of the laminated film of the present invention. Moreover, since the number average particle diameter of the metal oxide particles (A) is sufficiently smaller than the wavelength of visible light, the transparency of the laminated film can be enhanced.
 本発明における金属酸化物粒子(A)とは、展性、延性に富み、電気および熱の良導体で、金属光沢をもつ元素、すなわち周期表において、ホウ素(B)、ケイ素(Si)、ヒ素(As)、テルル(Te)及びアスタチン(At)を結ぶ斜めの線より左に位置する元素の酸化物微粒子を指す。さらに、前記周期表にてアルカリ土類金属類(2族)よりも右に位置する元素の酸化物微粒子であることが好ましい。 The metal oxide particles (A) in the present invention are excellent in malleability and ductility, are good electrical and thermal conductors, and have a metallic luster, that is, boron (B), silicon (Si), arsenic (in the periodic table) As), tellurium (Te), and astatine (At) refers to oxide fine particles of elements located to the left of the diagonal line. Further, oxide fine particles of an element located on the right side of the alkaline earth metal (Group 2) in the periodic table are preferable.
 このような金属酸化物微粒子としては、干渉斑抑制性の観点から、高屈折率の金属酸化物粒子、このましくは屈折率1.6以上の金属酸化物粒子であるものが好適である。この高屈折率金属酸化物粒子としては、TiO、ZrO、ZnO、CeO、SnO、Sb、インジウムドープ酸化錫(ITO)、リンドープ酸化錫(PTO)、Y、La、Al、などが挙げられる。 As such metal oxide fine particles, those having high refractive index, preferably metal oxide particles having a refractive index of 1.6 or more are preferable from the viewpoint of interference interference suppression. Examples of the high refractive index metal oxide particles include TiO 2 , ZrO 2 , ZnO, CeO 2 , SnO 2 , Sb 2 O 5 , indium-doped tin oxide (ITO), phosphorus-doped tin oxide (PTO), Y 2 O 5 , la 2 O 3, Al 2 O 3, and the like.
 これらの金属酸化物粒子は1種を単独で用いても良く、2種以上を組合せて用いてもよい。分散安定性や屈折率の観点から、酸化チタン粒子(TiO)(A’)および/または酸化ジルコニウム粒子(ZrO)(A’)が特に好ましい。 These metal oxide particles may be used individually by 1 type, and may be used in combination of 2 or more type. From the viewpoint of dispersion stability and refractive index, titanium oxide particles (TiO 2 ) (A 1 ′) and / or zirconium oxide particles (ZrO 2 ) (A 2 ′) are particularly preferable.
 ここで、金属酸化物粒子(A)の数平均粒子径について説明する。ここで数平均粒子径とは、透過型電子顕微鏡(TEM)により求めた粒子径をいう。倍率は50万倍とし、その画面に存在する10個の粒子の外径を、10視野について合計100個の粒子を測定した数平均粒子径である。ここで外径とは、粒子の最大の径(つまり粒子の長径であり、粒子中の最も長い径を示す)を表し、内部に空洞を有する粒子の場合も同様に、粒子の最大の径を表す。 Here, the number average particle diameter of the metal oxide particles (A) will be described. Here, the number average particle diameter refers to the particle diameter determined by a transmission electron microscope (TEM). The magnification is 500,000 times, and the outer diameter of 10 particles existing on the screen is the number average particle diameter obtained by measuring a total of 100 particles for 10 fields of view. Here, the outer diameter means the maximum diameter of the particle (that is, the longest diameter of the particle and indicates the longest diameter in the particle). Similarly, in the case of a particle having a cavity inside, the maximum diameter of the particle is also defined. To express.
 金属酸化物粒子(A)の数平均粒子径が小さくなると、金属酸化物粒子同士のファンデルワールス力が非常に大きくなるため凝集しやすくなり、光が散乱する結果、透明性が低下することがある。一方、該金属酸化物粒子(A)の数平均粒子径が大きくなると、光が散乱する起点となりヘイズが上昇したり、反射率が低下したりすることがある。そのため、金属酸化物粒子(A)は、数平均粒子径が3nm以上50nm以下であると、透明性の観点から好ましい。好ましくは10nm以上45nm以下、より好ましくは15nm以上40nm以下である。 When the number average particle diameter of the metal oxide particles (A) is small, the van der Waals force between the metal oxide particles becomes very large, so that the metal oxide particles (A) are likely to aggregate and light is scattered, resulting in a decrease in transparency. is there. On the other hand, when the number average particle diameter of the metal oxide particles (A) is increased, it may become a starting point for scattering of light and haze may be increased or reflectance may be decreased. Therefore, the metal oxide particles (A) preferably have a number average particle diameter of 3 nm or more and 50 nm or less from the viewpoint of transparency. Preferably they are 10 nm or more and 45 nm or less, More preferably, they are 15 nm or more and 40 nm or less.
 本発明では、樹脂層中の金属酸化物粒子(A)の含有量は、樹脂層全体に対して30重量%以上90重量%以下であることが好ましい。この範囲とすることで樹脂層表面の波長550nmにおける反射率が6.0%以上とすることができ、ハードコート層を積層した際の干渉斑抑制性が優れる。なお、樹脂層中の金属酸化物粒子(A)の含有量は、30重量%以上80重量%以下が好ましく、より好ましくは30重量%以上70重量%以下である。なお、本発明において、樹脂層中の含有量とは、樹脂層を形成する樹脂組成物の固形分([(樹脂組成物の重量)-(溶媒の重量)])中の含有量を表す。 In the present invention, the content of the metal oxide particles (A) in the resin layer is preferably 30% by weight or more and 90% by weight or less with respect to the entire resin layer. By setting it as this range, the reflectance at a wavelength of 550 nm on the surface of the resin layer can be 6.0% or more, and the interference unevenness suppression property when the hard coat layer is laminated is excellent. The content of the metal oxide particles (A) in the resin layer is preferably 30% by weight to 80% by weight, and more preferably 30% by weight to 70% by weight. In the present invention, the content in the resin layer represents the content in the solid content ([(weight of resin composition) − (weight of solvent)]) of the resin composition forming the resin layer.
 また、本発明において、金属酸化物粒子(A)は、金属酸化物粒子(A)の表面の一部または全部に後述するアクリル樹脂(D)を有する粒子(AD)であることが、より好ましい(なお、粒子(AD)を含有する樹脂層は、金属酸化物粒子(A)とアクリル樹脂(D)を当然に含有することになる)。脂層が、かかる粒子(AD)を含有することにより、後述する樹脂組成物を用いて樹脂層を形成する際に、乾燥過程における金属酸化物粒子(A)や粒子(AD)の凝集を更に抑制し、その結果、樹脂層表面の表面粗さを20nm以下とすることができる。また、樹脂層を積層したポリステルフィルムの透明性を向上することが可能となる。 In the present invention, the metal oxide particles (A) are more preferably particles (AD) having an acrylic resin (D) described later on part or all of the surface of the metal oxide particles (A). (The resin layer containing the particles (AD) naturally contains the metal oxide particles (A) and the acrylic resin (D)). When the oil layer contains such particles (AD), when the resin layer is formed using the resin composition described later, the metal oxide particles (A) and particles (AD) are further aggregated in the drying process. As a result, the surface roughness of the resin layer surface can be 20 nm or less. Moreover, it becomes possible to improve the transparency of the polyester film in which the resin layers are laminated.
 ここで、本発明において、金属酸化物粒子(A)が、その表面に前記アクリル樹脂(D)を有する、とは、金属酸化物粒子(A)の表面の一部または全部にアクリル樹脂(D)が、吸着・付着していることをさす。 Here, in the present invention, that the metal oxide particles (A) have the acrylic resin (D) on the surface thereof means that an acrylic resin (D) is present on a part or all of the surface of the metal oxide particles (A). ) Indicates adsorption / adhesion.
 粒子(AD)の製造方法は特に限定されるものではないが、金属酸化物粒子(A)をアクリル樹脂(D)で表面処理する方法などを挙げることができ、具体的には、以下の(i)~(iv)の方法が例示される。なお、本発明において、表面処理とは、金属酸化物粒子(A)の表面の全部または一部にアクリル樹脂(D)を吸着・付着させる処理をいう。 The method for producing the particles (AD) is not particularly limited, and examples thereof include a method of surface-treating the metal oxide particles (A) with an acrylic resin (D). Specifically, the following ( The methods i) to (iv) are exemplified. In the present invention, the surface treatment refers to a treatment for adsorbing and adhering the acrylic resin (D) to all or part of the surface of the metal oxide particles (A).
 (i)金属酸化物粒子(A)とアクリル樹脂(D)をあらかじめ混合した混合物を溶媒中に添加した後、分散する方法。 (I) A method in which a mixture prepared by previously mixing metal oxide particles (A) and acrylic resin (D) is added to a solvent and then dispersed.
 (ii)溶媒中に、金属酸化物粒子(A)とアクリル樹脂(D)を順に添加して分散する方法。 (Ii) A method in which the metal oxide particles (A) and the acrylic resin (D) are sequentially added and dispersed in a solvent.
 (iii)溶媒中に、金属酸化物粒子(A)とアクリル樹脂(D)をあらかじめ分散し、得られた分散体を混合する方法。 (Iii) A method in which the metal oxide particles (A) and the acrylic resin (D) are previously dispersed in a solvent and the obtained dispersion is mixed.
 (iv)溶媒中に、金属酸化物粒子(A)を分散した後、得られた分散体に、アクリル樹脂(D)を添加する方法。 (Iv) A method of adding the acrylic resin (D) to the obtained dispersion after dispersing the metal oxide particles (A) in a solvent.
 また、分散を行う装置としては、ディゾルバー、ハイスピードミキサー、ホモミキサー、ミーダー、ボールミル、ロールミル、サンドミル、ペイントシェーカー、SCミル、アニュラー型ミル、ピン型ミル等が使用できる。 Further, as a dispersion apparatus, a dissolver, a high speed mixer, a homomixer, a mixer, a ball mill, a roll mill, a sand mill, a paint shaker, an SC mill, an annular mill, a pin mill, and the like can be used.
 また、分散方法としては、上記装置を用いて、回転軸を周速5~15m/sで、5~10時間回転させる方法が挙げられる。 Further, as a dispersion method, a method of rotating the rotating shaft at a peripheral speed of 5 to 15 m / s for 5 to 10 hours using the above apparatus can be mentioned.
 また、分散時に、ガラスビーズ等の分散ビーズを用いることが分散性を高める点でより好ましい。ビーズ径は、好ましくは0.05~0.5mm、より好ましくは0.08~0.5mm、特に好ましくは0.08~0.2mmである。 In addition, it is more preferable to use dispersed beads such as glass beads at the time of dispersion from the viewpoint of improving dispersibility. The bead diameter is preferably 0.05 to 0.5 mm, more preferably 0.08 to 0.5 mm, and particularly preferably 0.08 to 0.2 mm.
 混合、攪拌する方法は、容器を手で振って行ったり、マグネチックスターラーや攪拌羽根を用いたり、超音波照射、振動分散などを行うことができる。 The mixing and stirring can be performed by shaking the container by hand, using a magnetic stirrer or stirring blade, irradiating with ultrasonic waves, vibrating and dispersing.
 なお、金属酸化物粒子(A)の表面の全部または一部への、アクリル樹脂(D)の吸着・付着の有無は、次の分析方法により確認可能である。測定対象物(例えば、金属酸化物粒子(A)を含む樹脂組成物)を、日立卓上超遠心機(日立工機株式会社製:CS150NX)により遠心分離を行い(回転数3,0000rpm、分離時間30分)、金属酸化物粒子(A)(及び金属酸化物粒子(A)の表面に吸着したアクリル樹脂(D))を沈降させた後、上澄み液を除去し、沈降物を濃縮乾固する。濃縮乾固した沈降物をX線光電子分光法(XPS)により分析し、金属酸化物粒子(A)の表面におけるアクリル樹脂(D)の有無を確認する。金属酸化物粒子(A)の表面に、金属酸化物粒子(A)の合計100重量%に対して、アクリル樹脂(D)が1重量%以上存在することが確認された場合、金属酸化物粒子(A)の表面に、アクリル樹脂(D)が吸着・付着しているものとする。 It should be noted that whether or not the acrylic resin (D) is adsorbed or adhered to all or a part of the surface of the metal oxide particles (A) can be confirmed by the following analysis method. An object to be measured (for example, a resin composition containing metal oxide particles (A)) is centrifuged with a Hitachi tabletop ultracentrifuge (manufactured by Hitachi Koki Co., Ltd .: CS150NX) (rotation speed 3,0000 rpm, separation time). 30 minutes), after allowing the metal oxide particles (A) (and the acrylic resin (D) adsorbed on the surface of the metal oxide particles (A)) to settle, the supernatant is removed, and the precipitate is concentrated to dryness. . The concentrated and dried precipitate is analyzed by X-ray photoelectron spectroscopy (XPS), and the presence or absence of the acrylic resin (D) on the surface of the metal oxide particles (A) is confirmed. When it is confirmed that 1% by weight or more of the acrylic resin (D) is present on the surface of the metal oxide particles (A) with respect to the total of 100% by weight of the metal oxide particles (A), the metal oxide particles It is assumed that the acrylic resin (D) is adsorbed and adhered to the surface of (A).
 また、積層フィルムの樹脂層における、粒子(AD)の含有の有無は、積層フィルムの樹脂層側からアルゴンイオンにより1nm/minのエッチング速度(SiO換算)でエッチングしながらXPSを用いることにより、確認することができる。すなわち、金属酸化物粒子(A)の表面にアクリル樹脂(D)の存在が確認された場合、当該金属酸化物粒子(A)は粒子(AD)であることがわかる。 In addition, the presence or absence of particles (AD) in the resin layer of the laminated film is determined by using XPS while etching from the resin layer side of the laminated film with argon ions at an etching rate of 1 nm / min (in terms of SiO 2 ). Can be confirmed. That is, when the presence of the acrylic resin (D) is confirmed on the surface of the metal oxide particles (A), it can be seen that the metal oxide particles (A) are particles (AD).
 上記アクリル樹脂(D)は、式(1)で表されるモノマー単位(d1)と式(2)で表されるモノマー単位(d2)と式(3)で表されるモノマー単位(d3)を有するアクリル樹脂(D)であることが好ましい。 The acrylic resin (D) comprises a monomer unit (d1) represented by the formula (1), a monomer unit (d2) represented by the formula (2), and a monomer unit (d3) represented by the formula (3). It is preferable that it is the acrylic resin (D) which has.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(1)において、R基は、水素原子またはメチル基を表す。またnは、9以上34以下の整数を表す。) (In Formula (1), R 1 group represents a hydrogen atom or a methyl group. Further, n represents an integer of 9 or more and 34 or less.)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(2)において、R基は、水素原子またはメチル基を表す。また、R基は、飽和の炭素環を2つ以上含む基を表す。) (In the formula (2), the R 2 group represents a hydrogen atom or a methyl group. The R 4 group represents a group containing two or more saturated carbocycles.)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式(3)において、R基は、水素原子またはメチル基を表す。また、R基は、水酸基、カルボキシル基、3級アミノ基、4級アンモニウム塩基、スルホン酸基、または、リン酸基を表す。)
 アクリル樹脂(D)が上記モノマー単位を有することで、透明性を維持しつつ、煮沸試験前後での樹脂層表面のエネルギー変化量Δγを小さくすることができ、ハードコート層との接着性を強固なものにすることができるため好ましい。式(3)のR基をカルボキシル基としたモノマー単位を有するアクリル樹脂(D)を用いると、より接着性を向上させることができるため特に好ましい。
(In the formula (3), the R 3 group represents a hydrogen atom or a methyl group. The R 5 group represents a hydroxyl group, a carboxyl group, a tertiary amino group, a quaternary ammonium base, a sulfonic acid group, or phosphoric acid. Represents a group.)
Since the acrylic resin (D) has the above monomer unit, the amount of energy change Δγ on the surface of the resin layer before and after the boiling test can be reduced while maintaining transparency, and the adhesiveness to the hard coat layer is strong. It is preferable because it can be made small. It is particularly preferable to use an acrylic resin (D) having a monomer unit in which the R 3 group of formula (3) is a carboxyl group, because the adhesion can be further improved.
 また、式(1)で表されるモノマー単位(d1)と式(2)で表されるモノマー単位(d2)と式(3)で表されるモノマー単位(d3)を有するアクリル樹脂(D)の含有量は、樹脂層中に含有する金属酸化物粒子(A)の重量100重量部に対して、3重量部以上25重量部以下であることが好ましい。より好ましくは、5重量部以上20重量部以下、さらに好ましくは7重量部以上15重量部以下である。上記範囲とすることで、波長550nmにおける反射率が6.0%以上とすることができ、その結果、樹脂層の透明性の向上、更には、ハードコート層積層時の干渉斑抑制性を十分に発現させることが可能となるため好ましい。 An acrylic resin (D) having a monomer unit (d1) represented by formula (1), a monomer unit (d2) represented by formula (2), and a monomer unit (d3) represented by formula (3) The content of is preferably 3 to 25 parts by weight with respect to 100 parts by weight of the metal oxide particles (A) contained in the resin layer. More preferably, they are 5 to 20 weight parts, More preferably, they are 7 to 15 weight parts. By setting it as the above range, the reflectance at a wavelength of 550 nm can be made 6.0% or more. As a result, the transparency of the resin layer is improved, and further, the interference spot suppression property at the time of laminating the hard coat layer is sufficient. It is preferable because it can be expressed in
 ここで、本発明におけるアクリル樹脂(D)が、式(1)で表されるモノマー単位(d1)を有すると、水系溶媒中における金属酸化物粒子(A)の分散性がより向上し、透明性がより良好な積層フィルムを得ることができるため好ましく、さらに高屈折率ハードコート層を積層した際の干渉斑抑制性(視認性)がより良化するためより好ましい。 Here, when the acrylic resin (D) in the present invention has the monomer unit (d1) represented by the formula (1), the dispersibility of the metal oxide particles (A) in the aqueous solvent is further improved and transparent. It is preferable because a laminated film having better properties can be obtained, and more preferable because interference spot suppression (visibility) when a high refractive index hard coat layer is laminated is further improved.
 ここで、本発明におけるアクリル樹脂(D)が、式(1)で表されるモノマー単位(d1)を有するためには、次の式(4)で表される(メタ)アクリレートモノマー(d1’)を原料として用い、重合することがより好ましい。 Here, in order that the acrylic resin (D) in the present invention has the monomer unit (d1) represented by the formula (1), the (meth) acrylate monomer (d1 ′) represented by the following formula (4): ) As a raw material, and polymerization is more preferable.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 該(メタ)アクリレートモノマー(d1’)としては、式(4)におけるnが9以上34以下の整数で表される(メタ)アクリレートモノマーが好ましく、より好ましくは11以上32以下の(メタ)アクリレートモノマー、更に好ましくは13以上30以下の(メタ)アクリレートモノマーである。 The (meth) acrylate monomer (d1 ′) is preferably a (meth) acrylate monomer represented by an integer of 9 or more and 34 or less, and more preferably 11 or more and 32 or less (meth) acrylate in the formula (4). Monomers, more preferably 13 to 30 (meth) acrylate monomers.
 (メタ)アクリレートモノマー(d1’)は、式(4)におけるnが9以上34以下である(メタ)アクリレートモノマーであれば特に制限されないが、具体的にはデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、1-メチルトリデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、エイコシル(メタ)アクリレート、ドコシル(メタ)アクリレート、テトラコシル(メタ)アクリレート、トリアコンチル(メタ)アクリレート等が挙げられ、特にドデシル(メタ)アクリレート、トリデシル(メタ)アクリレートが好ましい。これらは1種で使用してもよく、2種以上の混合物を使用してもよい。 The (meth) acrylate monomer (d1 ′) is not particularly limited as long as n in the formula (4) is 9 or more and 34 or less, and specifically, decyl (meth) acrylate, dodecyl (meta) ) Acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, 1-methyltridecyl (meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) acrylate, eicosyl (meth) acrylate, docosyl (meth) acrylate, tetracosyl (Meth) acrylate, triacontyl (meth) acrylate, etc. are mentioned, and dodecyl (meth) acrylate and tridecyl (meth) acrylate are particularly preferable. These may be used alone or in a mixture of two or more.
 また、本発明におけるアクリル樹脂(D)は、前記式(2)で表されるモノマー単位(d2)を有する樹脂であることが好ましい。 Further, the acrylic resin (D) in the present invention is preferably a resin having a monomer unit (d2) represented by the above formula (2).
 式(2)において、飽和の炭素環を2つ以上含むモノマー単位を有するアクリル樹脂を用いると、立体障害としての十分に機能することにより、樹脂組成物中において金属酸化物粒子(A)の凝集または沈降を抑制することができ、樹脂層の波長550nmにおける反射率が6.0%以上とすることができ、ハードコート層を積層した際の低干渉性を向上することができるため好ましい。また金属酸化物粒子(A)の凝集を抑制することができるため、樹脂層中の粗大成分を減少させることができる。その結果、導電性高分子(B)も樹脂層中に均一に存在させることができ、樹脂層の表面比抵抗値を12乗未満とすることができ、優れた帯電防止性を発現することができる。また、粗大成分を減少させることができるため、樹脂層の表面粗さを20nm以下とすることができ、積層フィルムの加工性に優れる。 In the formula (2), when an acrylic resin having a monomer unit containing two or more saturated carbocycles is used, it functions sufficiently as a steric hindrance so that the metal oxide particles (A) are aggregated in the resin composition. Alternatively, sedimentation can be suppressed, the reflectance of the resin layer at a wavelength of 550 nm can be 6.0% or more, and low coherence when the hard coat layer is laminated can be improved, which is preferable. Moreover, since aggregation of metal oxide particles (A) can be suppressed, coarse components in the resin layer can be reduced. As a result, the conductive polymer (B) can also be uniformly present in the resin layer, the surface specific resistance value of the resin layer can be made less than the twelfth power, and excellent antistatic properties can be exhibited. it can. Moreover, since a coarse component can be reduced, the surface roughness of a resin layer can be 20 nm or less, and it is excellent in the workability of a laminated film.
 本発明におけるアクリル樹脂(D)が、式(2)で表されるモノマー単位(d2)を有するためには、次の式(5)で表される(メタ)アクリレートモノマー(d2’)を原料として用い、重合することが好ましい。 In order that the acrylic resin (D) in the present invention has the monomer unit (d2) represented by the formula (2), the (meth) acrylate monomer (d2 ′) represented by the following formula (5) is used as a raw material. It is preferable to use and polymerize.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(5)で表される(メタ)アクリレートモノマー(d2’)としては、Rとして、架橋縮合環式(2つまたはそれ以上の環がそれぞれ2個の原子を共有して、結合した構造を有する)、スピロ環式(1個の炭素原子を共有して、2つの環状構造が結合した構造を有する)などの各種環状構造、具体的には、ビシクロ、トリシクロ、テトラシクロ基などを有する化合物が例示でき、その中でも特にバインダーとの相溶性の観点から、ビシクロ基を含有する(メタ)アクリレートが好ましい。 As the (meth) acrylate monomer (d2 ′) represented by the formula (5), as R 4 , a bridged condensed cyclic structure (a structure in which two or more rings each share two atoms and are bonded) ), Spirocyclic (having a structure in which two cyclic structures are shared by sharing one carbon atom), specifically, compounds having a bicyclo, tricyclo, tetracyclo group, etc. Among them, (meth) acrylates containing a bicyclo group are particularly preferable from the viewpoint of compatibility with the binder.
 上記ビシクロ基を含有する(メタ)アクリレートとしては、イソボニル(メタ)アクリレート、ボルニル(メタ)アクリレート、ジシロクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジメチルアダマンチル(メタ)アクリレートなどが挙げられ、特にイソボニル(メタ)アクリレートが好ましい。 Examples of the (meth) acrylate containing the bicyclo group include isobornyl (meth) acrylate, bornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, adamantyl (meth) acrylate, and dimethyladamantyl (Meth) acrylate etc. are mentioned, and isobornyl (meth) acrylate is particularly preferred.
 さらに、本発明におけるアクリル樹脂(D)は、前記式(3)で表されるモノマー単位(d3)を有する樹脂であることが好ましい。 Furthermore, the acrylic resin (D) in the present invention is preferably a resin having a monomer unit (d3) represented by the formula (3).
 式(3)におけるR基が、水酸基、カルボキシル基、3級アミノ基、4級アンモニウム基、スルホン酸基、リン酸基、を有するモノマー単位を有するアクリル樹脂を用いると、金属酸化物粒子(A)を樹脂層中に均一に分散させることができることで、樹脂組成物中において金属酸化物粒子(A)の凝集または沈降を抑制することができるため、樹脂層の波長550nmにおける反射率が6.0%以上とすることができる。その結果、ハードコート層を積層した際の低干渉性を向上することができるため好ましい。 When an acrylic resin having a monomer unit in which R 5 group in Formula (3) has a hydroxyl group, a carboxyl group, a tertiary amino group, a quaternary ammonium group, a sulfonic acid group, or a phosphoric acid group is used, metal oxide particles ( Since A) can be uniformly dispersed in the resin layer, aggregation or sedimentation of the metal oxide particles (A) in the resin composition can be suppressed. Therefore, the reflectance of the resin layer at a wavelength of 550 nm is 6 0.0% or more. As a result, the low interference property when the hard coat layer is laminated can be improved, which is preferable.
 本発明におけるアクリル樹脂(D)が、式(3)で表されるモノマー単位(d3)を有するためには、次の式(6)で表される(メタ)アクリレートモノマー(d3’)を原料として用い、重合することが必要である。 In order that the acrylic resin (D) in the present invention has the monomer unit (d3) represented by the formula (3), the (meth) acrylate monomer (d3 ′) represented by the following formula (6) is used as a raw material. It is necessary to use and polymerize.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(6)で表される(メタ)アクリレートモノマー(d3’)として次の化合物が例示される。 Examples of the (meth) acrylate monomer (d3 ′) represented by the formula (6) include the following compounds.
 水酸基を有する(メタ)アクリレートモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2、3-ジヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレートなどの多価アルコールと(メタ)アクリル酸とのモノエステル化物、あるいは、該モノエステル化物にε-カプロラプトンを開環重合した化合物などが挙げられ、特に2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートが好ましい。 Examples of the (meth) acrylate monomer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2,3-dihydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene Examples include monoesterified products of polyhydric alcohols such as glycol mono (meth) acrylate and (meth) acrylic acid, or compounds obtained by ring-opening polymerization of ε-caprolapton to the monoesterified product, and particularly 2-hydroxyethyl ( Preferred are (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
 カルボキシル基を有する(メタ)アクリレートモノマーとしては、アクリル酸、メタクリル酸、イタコン酸、フマール酸、マレイン酸などのα、β-不飽和カルボン酸、あるいは、ヒドロキシアルキル(メタ)アクリレートと酸無水物とのハーフエステル化物などが挙げられ、特にアクリル酸、メタクリル酸が好ましい。 Examples of (meth) acrylate monomers having a carboxyl group include α, β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, or hydroxyalkyl (meth) acrylates and acid anhydrides. A half esterified product of Acrylic acid and methacrylic acid are particularly preferable.
 3級アミノ基含有モノマーとしては、N、N-ジメチルアミノエチル(メタ)アクリレート、N、N-ジエチルアミノエチル(メタ)アクリレート、N、N-ジメチルアミノプロピル(メタ)アクリレート、などのN、N-ジアルキルアミノアルキル(メタ)アクリレート、N、N-ジメチルアミノエチル(メタ)アクリルアミド、N、N-ジエチルアミノエチル(メタ)アクリルアミド、N、N-ジメチルアミノプロピル(メタ)アクリルアミドなどのN、N-ジアルキルアミノアルキル(メタ)アクリルアミドなどが挙げられ、特にN、N-ジメチルアミノエチル(メタ)アクリレートが好ましい。 Tertiary amino group-containing monomers include N, N-, such as N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, and the like. N, N-dialkylamino such as dialkylaminoalkyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylamide, N, N-diethylaminoethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide Examples include alkyl (meth) acrylamide, and N, N-dimethylaminoethyl (meth) acrylate is particularly preferable.
 4級アンモニウム塩基含有モノマーとしては、上記3級アミノ基含有モノマーにエピハロヒドリン、ハロゲン化ベンジル、ハロゲン化アルキルなどの4級化剤を作用させたものが好ましく、具体的には、2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライド、2-(メタクリロイルオキシ)エチルトリメチルアンモニウムブロマイド、2-(メタクリロイオキシ)エチルトリメチルアンモニウムジメチルホスフェートなどの(メタ)アクリロイルオキシアルキルトリアルキルアンモニウム塩、メタクリロイルアミノプロピルトリメチルアンモニウムクロライド、メタクリロイルアミノプロピルトリメチルアンモニウムブロマイドなどの(メタ)アクリロイルアミノアルキルトリアルキルアンモニウム塩、テトラブチルアンモニウム(メタ)アクリレートなどのテトラアルキル(メタ)アクリレート、トリメチルベンジルアンモニウム(メタ)アクリレートなどのトリアルキルベンジルアンモニウム(メタ9アクリレートなどが挙げられ、特に2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライドが好ましい。 As the quaternary ammonium group-containing monomer, a monomer obtained by allowing a quaternizing agent such as epihalohydrin, benzyl halide or alkyl halide to act on the above-mentioned tertiary amino group-containing monomer is preferable. Specifically, 2- (methacryloyloxy ) (Meth) acryloyloxyalkyltrialkylammonium salts such as ethyl trimethylammonium chloride, 2- (methacryloyloxy) ethyltrimethylammonium bromide, 2- (methacryloyloxy) ethyltrimethylammonium dimethyl phosphate, methacryloylaminopropyltrimethylammonium chloride, methacryloyl (Meth) acryloylaminoalkyltrialkylammonium salts such as aminopropyltrimethylammonium bromide, tetrabutylammonium Tetra (meth) acrylates such as Moniumu (meth) acrylate, and tri-alkyl benzyl ammonium (meth 9 acrylates such as trimethylbenzylammonium (meth) acrylate. In particular 2- (methacryloyloxy) ethyl trimethyl ammonium chloride are preferred.
 スルホン酸基含有モノマーとしては、ブチルアクリルアミドスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸などの(メタ)アクリルアミド-アルカンスルホン酸、あるいは、2-スルホエチル(メタ)アクリレートなどのスルホアルキル(メタ)アクリレートなどが挙げられ、特に2-スルホエチル(メタ)アクリレートが好ましい。 Examples of the sulfonic acid group-containing monomer include (meth) acrylamide-alkanesulfonic acid such as butyl acrylamide sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, or sulfoalkyl (meth) such as 2-sulfoethyl (meth) acrylate. Examples thereof include acrylate, and 2-sulfoethyl (meth) acrylate is particularly preferable.
 リン酸基含有アクリルモノマーとしては、アシッドホスホオキシエチル(メタ)アクリレートなどが挙げられ、特にアシッドホスホオキシエチル(メタ)アクリレートが好ましい。 Examples of the phosphoric acid group-containing acrylic monomer include acid phosphooxyethyl (meth) acrylate, and acid phosphooxyethyl (meth) acrylate is particularly preferable.
 特に、本発明では、式(6)で表される(メタ)アクリレートモノマー(d3’)として、カルボキシル基を有する(メタ)アクリレートモノマーを用いることで、煮沸試験前後での樹脂層表面のエネルギー変化量Δγを小さくすることができる。その結果、樹脂層とハードコート層との接着性をより強固なものにすることができるため好ましい。その理由としては、カルボキシル基がエポキシ化合物と反応することで、より強固な樹脂層を形成することができるためと推定している。 In particular, in the present invention, by using a (meth) acrylate monomer having a carboxyl group as the (meth) acrylate monomer (d3 ′) represented by the formula (6), the energy change of the resin layer surface before and after the boiling test. The amount Δγ can be reduced. As a result, the adhesiveness between the resin layer and the hard coat layer can be made stronger, which is preferable. The reason is estimated that a stronger resin layer can be formed by the reaction of the carboxyl group with the epoxy compound.
 [π電子共役系高分子化合物]
 本発明において、樹脂層は、π電子共役系高分子化合物(B)を含有することが好ましい。本発明において、π電子共役系とは、交互の単結合および多重結合、あるいは、単結合および多重結合と酸素や窒素など利用可能なp軌道を有している原子によってπ電子が非局在化していることを表す。本発明において、高分子化合物とは、数平均分子量が3000以上の化合物を表す。上記、π電子共役系高分子化合物(B)は、導電性を有する(表面比抵抗値が10×10乗以下である)ことが好ましい。本発明に用いられるπ電子共役系高分子化合物としては、その繰り返し単位が、アニリンおよび/またはその誘導体、ピロールおよび/またはその誘導体、イソチアナフテンおよび/またはその誘導体、アセチレンおよび/またはその誘導体、チオフェンおよび/またはその誘導体などであることが好ましい。それらの中でも着色が少なく、高い全光線透過率が得られる点から、繰り返し単位がチオフェンおよび/またはその誘導体であるπ電子共役系高分子化合物であることが特に好ましい。
[Π-electron conjugated polymer compound]
In the present invention, the resin layer preferably contains a π-electron conjugated polymer compound (B). In the present invention, a π-electron conjugated system means an alternating single bond and multiple bond, or a single bond and multiple bond, and an atom having an available p orbital such as oxygen or nitrogen delocalizes π electrons. Represents that In the present invention, the polymer compound represents a compound having a number average molecular weight of 3000 or more. The π-electron conjugated polymer compound (B) preferably has conductivity (surface specific resistance value is 10 × 10 or less). As the π-electron conjugated polymer compound used in the present invention, the repeating unit is aniline and / or a derivative thereof, pyrrole and / or a derivative thereof, isothianaphthene and / or a derivative thereof, acetylene and / or a derivative thereof, Thiophene and / or its derivatives are preferred. Among them, a π-electron conjugated polymer compound in which the repeating unit is thiophene and / or a derivative thereof is particularly preferable from the viewpoint of little coloring and high total light transmittance.
 前記繰り返し単位がチオフェンおよび/またはその誘導体であるπ電子共役系高分子化合物としては、チオフェン環の3位と4位の位置が置換された構造を有する化合物が挙げられる。上記、3位と4位の炭素原子に酸素原子が結合したものが好ましい。炭素原子に直接、水素原子や炭素原子が結合したものは、水溶性が不十分なものがある。 Examples of the π-electron conjugated polymer compound in which the repeating unit is thiophene and / or a derivative thereof include compounds having a structure in which the 3-position and 4-position of the thiophene ring are substituted. Those in which an oxygen atom is bonded to the 3rd and 4th carbon atoms are preferred. Some hydrogen atoms or carbon atoms bonded directly to carbon atoms have insufficient water solubility.
 また、前記繰り返し単位がチオフェンおよび/またはその誘導体であるπ電子共役系高分子化合物の好ましい様態として、チオフェンおよび/またはその誘導体をポリ陰イオンの存在下で重合されるものが挙げられる。ポリ陰イオンとしては、例えば、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸、ポリスチレンスルホン酸などが挙げられ、ポリスチレンスルホン酸が導電性の点から好ましい。 In addition, a preferable embodiment of the π-electron conjugated polymer compound in which the repeating unit is thiophene and / or a derivative thereof is one in which thiophene and / or the derivative thereof are polymerized in the presence of a polyanion. Examples of the polyanion include polyacrylic acid, polymethacrylic acid, polymaleic acid, polystyrene sulfonic acid, and the like, and polystyrene sulfonic acid is preferable from the viewpoint of conductivity.
 前記チオフェンおよび/またはその誘導体をポリ陰イオンの存在下で重合することによって、下記式(7)で表される繰り返し構造および/または、 By polymerizing the thiophene and / or derivative thereof in the presence of a polyanion, a repeating structure represented by the following formula (7) and / or
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
下記式(8)で表される繰り返し構造 Repetitive structure represented by the following formula (8)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
を有するπ電子共役系高分子化合物を得ることができる。式(7)で表される繰り返し構造において、R,Rは、それぞれ独立に、水素原子、炭素数1~12の脂肪族炭化水素基、脂環族炭化水素基、もしくは芳香族炭化水素基を表し、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、シクロへキシレン基、ベンゼン基などである。また、pは2以上の整数である。式(8)で表される繰り返し構造では、mは1~4の整数であり、qは2以上の整数である。 Can be obtained. In the repeating structure represented by the formula (7), R 6 and R 7 are each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 12 carbon atoms, an alicyclic hydrocarbon group, or an aromatic hydrocarbon. Represents a group, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, cyclohexylene group, benzene group and the like. P is an integer of 2 or more. In the repeating structure represented by the formula (8), m is an integer of 1 to 4, and q is an integer of 2 or more.
 本発明においてπ電子共役系高分子化合物(B)は、式(8)で表される繰り返し構造式からなるポリチオフェン、および/または、ポリチオフェン誘導体を用いることが好ましく、例えば、式(5)の繰り返し構造で、m=1(メチレン基)、m=2(エチレン基)、m=3(トリメチレン基)となっているものが好ましい。中でも特に好ましいのは、m=2のエチレン基の化合物、すなわち、ポリ-3,4-エチレンジオキシチオフェンである。 In the present invention, the π-electron conjugated polymer compound (B) is preferably a polythiophene and / or a polythiophene derivative having a repeating structural formula represented by the formula (8), for example, repeating the formula (5) A structure having m = 1 (methylene group), m = 2 (ethylene group), and m = 3 (trimethylene group) is preferable. Among them, particularly preferred is an ethylene group compound of m = 2, that is, poly-3,4-ethylenedioxythiophene.
 また、上記化合物は、例えば、特開2000-6324号公報、ヨーロッパ特許602713号、米国特許第5391472号に開示された方法により製造することができるが、これら以外の方法であってもよい。 The above compound can be produced by the methods disclosed in, for example, JP-A No. 2000-6324, European Patent No. 602713, and US Pat. No. 5,391,472, but other methods may be used.
 例えば、3,4-ジヒドロキシチオフェン-2,5、-ジカルボキシエステルのアルカリ金属塩を出発物質として、3,4-エチレンジオキシチオフェンを得た後、ポリスチレンスルホン酸水溶液にペルオキソ二硫酸カリウムと硫酸鉄と、先に得た3,4-エチレンジオキシチオフェンを導入し、反応させることによりって、ポリ(3,4-エチレンジオキシチオフェン)などのポリチオフェンに、ポリスチレンスルホン酸などの酸性ポリマーが複合体化した組成物を得ることができる。 For example, 3,4-ethylenedioxythiophene was obtained using 3,4-dihydroxythiophene-2,5, -dicarboxyester alkali metal salt as a starting material, and then potassium peroxodisulfate and sulfuric acid were added to a polystyrenesulfonic acid aqueous solution. By introducing iron and the 3,4-ethylenedioxythiophene obtained above and reacting them, an acidic polymer such as polystyrene sulfonic acid is added to polythiophene such as poly (3,4-ethylenedioxythiophene). A complexed composition can be obtained.
 またポリ-3,4-エチレンジオキシチオフェン及びポリスチレンスルホン酸を含む水性の塗料組成物として、H.C.Starck社(ドイツ国)から、“Baytron”Pとして販売されているものなど用いることができる。 As an aqueous coating composition containing poly-3,4-ethylenedioxythiophene and polystyrenesulfonic acid, H.P. C. A product sold as “Baytron” P from Starck (Germany) can be used.
 本発明において、樹脂層中に含有するπ電子共役系高分子(B)の含有量は、金属酸化物粒子(A)100重量部に対し、3~25重量部の範囲が好ましく、より好ましくは5~20重量部の範囲がより好ましい。上記範囲とすることで、干渉縞抑制性と帯電防止性を両立することができる。 In the present invention, the content of the π-electron conjugated polymer (B) contained in the resin layer is preferably in the range of 3 to 25 parts by weight, more preferably 100 parts by weight of the metal oxide particles (A). A range of 5 to 20 parts by weight is more preferable. By setting it as the said range, interference fringe suppression property and antistatic property can be made compatible.
 [エポキシ化合物(C)]
 本発明の積層フィルムは、樹脂層がエポキシ化合物(C)を含有することが好ましい。本発明の積層フィルムにおいて、樹脂層がエポキシ化合物(C)を含有することで、樹脂層の硬化時の流動性を向上させ、その結果、金属酸化物粒子(A)の凝集を抑制することができ、積層フィルムの透明性が付与することができる。また、金属酸化物粒子(A)の凝集を抑制することにより、樹脂層の表面粗さを小さくすることができるため、加工時の塗膜削れを抑制することができる。例えば、ハードコート層加工時のキズを抑制することができ、また、ハードコート層の上にさらに蒸着やスパッタなどを行う際の、加工欠点を抑制することができる。なお、本発明において、樹脂層がエポキシ化合物(C)を含むとは、エポキシ化合物またはエポキシ化合物誘導体(エポキシ化合物が開環した化合物など)を含むことを表す。
[Epoxy compound (C)]
In the laminated film of the present invention, the resin layer preferably contains an epoxy compound (C). In the laminated film of the present invention, the resin layer contains the epoxy compound (C), thereby improving the fluidity when the resin layer is cured, and as a result, suppressing the aggregation of the metal oxide particles (A). The transparency of the laminated film can be imparted. Moreover, since the surface roughness of a resin layer can be made small by suppressing aggregation of metal oxide particle (A), the coating-film abrasion at the time of a process can be suppressed. For example, scratches during processing of the hard coat layer can be suppressed, and processing defects when further vapor deposition or sputtering is performed on the hard coat layer can be suppressed. In the present invention, that the resin layer contains an epoxy compound (C) means that it contains an epoxy compound or an epoxy compound derivative (such as a compound in which the epoxy compound is ring-opened).
 また、本発明の積層フィルムの樹脂層にエポキシ化合物(C)とアクリル樹脂(D)が含まれると、エポキシ化合物(C)と、アクリル樹脂(D)に含まれるカルボン酸基との架橋反応が進行し、樹脂層の積層体との密着性を向上させることができる。 Moreover, when an epoxy compound (C) and an acrylic resin (D) are contained in the resin layer of the laminated film of the present invention, a crosslinking reaction between the epoxy compound (C) and a carboxylic acid group contained in the acrylic resin (D) occurs. It progresses and the adhesiveness with the laminated body of a resin layer can be improved.
 本発明に用いるエポキシ化合物(C)は、分子量が1000以下であることがより好ましい。エポキシ化合物(C)の分子量が1000以下であると、上述した樹脂組成物の流動性向上の効果をより顕著なものとすることができる。 The molecular weight of the epoxy compound (C) used in the present invention is more preferably 1000 or less. When the molecular weight of the epoxy compound (C) is 1000 or less, the above-described effect of improving the fluidity of the resin composition can be made more remarkable.
 一方、例えば、分子量が大きくなり過ぎる(分子量が1000を超える)と、塗布、乾燥後の延伸時に塗膜に亀裂が入るなどの現象が発生し、透明性を向上させる効果が十分得られない可能性がある。 On the other hand, for example, if the molecular weight becomes too large (the molecular weight exceeds 1000), a phenomenon such as cracking of the coating film occurs during stretching after coating and drying, and the effect of improving transparency may not be sufficiently obtained. There is sex.
 本発明において、エポキシ化合物(C)は、水溶性の化合物であることが好ましい。ここでいう水溶性の化合物とは、水溶率が80%以上の化合物をいう。また、「水溶率」とは、23℃で、化合物の固形分10重量部を90重量部の水に溶解した時、化合物が溶解している割合をいう。すなわち、水溶率が80%とは、23℃で、10重量部の化合物のうち80重量%が90重量部の水に溶解し、残りの20重量%の化合物が未溶解物として残っている状態を示す。また、水溶率100%とは、23℃で10重量部の化合物が90重量部の水に全て溶解している状態を表す。なお、本発明において、エポキシ化合物(C)は、水溶率が90%以上のものが好ましく、より好ましくは水溶率が100%である。水溶率が高いと塗液自体を水溶化できるだけでなく、透明性や帯電防止性、干渉斑抑制性の点でも優れたものとすることができる。 In the present invention, the epoxy compound (C) is preferably a water-soluble compound. The water-soluble compound here refers to a compound having a water solubility of 80% or more. “Water solubility” refers to the proportion of a compound dissolved when 10 parts by weight of the solid content of the compound is dissolved in 90 parts by weight of water at 23 ° C. That is, 80% water solubility means a state in which 80% by weight of 10 parts by weight of a compound is dissolved in 90 parts by weight of water and the remaining 20% by weight of the compound remains as an undissolved substance at 23 ° C. Indicates. Moreover, 100% of water content represents the state which 10 weight part compound is melt | dissolving in 90 weight part water all at 23 degreeC. In the present invention, the epoxy compound (C) preferably has a water content of 90% or more, and more preferably has a water content of 100%. When the water solubility is high, not only the coating liquid itself can be made water-soluble, but also excellent in transparency, antistatic properties, and interference spot suppression properties.
 また、樹脂層の硬化時の流動性を向上させる手法としては、樹脂層にエポキシ化合物(C)を添加・含有せしめることの他に、例えば、グリセリンなどの高沸点溶媒などを添加・含有せしめることが挙げられる。樹脂層にエポキシ化合物(C)を添加・含有せしめる方法は、高沸点溶媒を添加・含有せしめる方法に比べ、ブロッキングを起こさず、熱処理を行うテンター内部の汚染や、大気汚染がないので、好適である。 Moreover, as a method for improving the fluidity at the time of curing of the resin layer, in addition to adding / containing the epoxy compound (C) to the resin layer, for example, adding / containing a high boiling point solvent such as glycerin. Is mentioned. The method of adding and containing the epoxy compound (C) to the resin layer is preferable because it does not cause blocking and does not cause contamination inside the tenter that performs heat treatment or air pollution, compared to the method of adding and containing a high boiling point solvent. is there.
 本発明の積層フィルムにおいて、エポキシ化合物(C)の種類は特に限定されないが、例えば、ソルビトールポリグリシジルエーテル系、ポリグリセロールポリグリシジルエーテル系、ジグリセロールポリグリシジルエーテル系、ポリエチレングリコールジグリシジルエーテル系などを用いることができる。例えば、ナガセケムテック株式会社製エポキシ化合物“デナコール”(EX-611、EX-614B、EX-512、EX-521、EX-421、EX-313、EX-810、EX-830、EX-850など)、坂本薬品工業株式会社製のジエポキシ・ポリエポキシ化合物(SR-EG、SR-8EG、SR-GLGなど)、大日本インキ工業株式会社製エポキシ化合物“EPICLON”EM-85-75W、あるいはCR-5Lなどを好適に用いることができ、中でも、水溶性を有するものが好ましい。 In the laminated film of the present invention, the type of the epoxy compound (C) is not particularly limited, and examples thereof include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, diglycerol polyglycidyl ether, and polyethylene glycol diglycidyl ether. Can be used. For example, an epoxy compound “Denacol” manufactured by Nagase Chemtech Co., Ltd. (EX-611, EX-614B, EX-512, EX-521, EX-421, EX-313, EX-810, EX-830, EX-850, etc. ), Diepoxy / polyepoxy compounds (SR-EG, SR-8EG, SR-GLG, etc.) manufactured by Sakamoto Pharmaceutical Co., Ltd., epoxy compounds “EPICLON” EM-85-75W manufactured by Dainippon Ink Industries, Ltd., or CR- 5L or the like can be suitably used, and among them, those having water solubility are preferable.
 エポキシ化合物(C)は、エポキシ当量(weight per epoxy equivalent:WPE)が100~300WPEであるものが反応性の点で好ましく、エポキシ当量は、より好ましくは110~200WPEである。 The epoxy compound (C) is preferably one having an epoxy equivalent weight (WPE) of 100 to 300 WPE from the viewpoint of reactivity, and the epoxy equivalent is more preferably 110 to 200 WPE.
 ここでエポキシ化合物(C)の含有量は、金属酸化物粒子(A)の重量100重量部に対して、20重量部以上60重量部以下が好ましく、より好ましくは30重量%以上60重量%以下である。 Here, the content of the epoxy compound (C) is preferably 20 parts by weight or more and 60 parts by weight or less, more preferably 30% by weight or more and 60% by weight or less, with respect to 100 parts by weight of the metal oxide particles (A). It is.
 エポキシ化合物(C)を、金属酸化物粒子(A)の重量100重量部に対して20重量%以上60重量%以下とすることにより、金属酸化物粒子(A)の分散性が良化し透明性に優れるとともに、干渉斑抑制性、帯電防止性、干渉斑抑制性が良化する。 By making the epoxy compound (C) 20 wt% or more and 60 wt% or less with respect to 100 parts by weight of the metal oxide particles (A), the dispersibility of the metal oxide particles (A) is improved and the transparency is improved. In addition, the anti-interference spots, antistatic properties and anti-interference spots are improved.
 [イオン導電性化合物(E)]
 本発明の積層フィルムにおいて、帯電防止性を向上させる観点からは、樹脂層は、π電子共役系高分子化合物(B)に代えて、イオン導電性化合物(E)を含有してもよい。本発明において、イオン導電性樹脂とは、樹脂組成中にイオンを導電する特性を有する樹脂をあらわし、具体的には、ポリスチレンスルホン酸金属塩や、アンモニウム金属塩といった構造を有する樹脂が挙げられる。樹脂層中にイオン導電性化合物(E)を含有すると、イオン導電によって、電荷を移動させることができ、優れた帯電防止性を発現することができる。
[Ion conductive compound (E)]
In the laminated film of the present invention, from the viewpoint of improving the antistatic property, the resin layer may contain an ion conductive compound (E) instead of the π electron conjugated polymer compound (B). In the present invention, the ion conductive resin represents a resin having a property of conducting ions in the resin composition, and specifically includes a resin having a structure such as polystyrene sulfonate metal salt or ammonium metal salt. When the ion conductive compound (E) is contained in the resin layer, the charge can be transferred by ionic conduction, and excellent antistatic properties can be exhibited.
 本発明の積層フィルムを製造する際には、結晶配向が完了する前のポリエステルフィルムに、水系溶媒を含む樹脂組成物を塗布し、延伸、熱処理により結晶配向を完了させる方法が、好適に用いられる。高温での熱処理が可能であり、基材と樹脂層との接着力が向上することや、より均一で薄膜の樹脂層を設けることができるためである。この方法によって樹脂層を形成する場合には、樹脂組成物は水系溶媒に溶解、乳化、あるいは懸濁し得る水系のものが環境汚染や防爆性の点で好ましい。このような、水に溶解、乳化または懸濁が可能な樹脂組成物は、親水性基を有するモノマー(アクリル酸、メタクリル酸、アクリルアミド、ビニルスルホン酸およびその塩等)との共重合や反応性乳化剤や界面活性剤を用いた乳化重合、懸濁重合、ソープフリー重合等の方法によって作製することができる。 When producing the laminated film of the present invention, a method of applying a resin composition containing an aqueous solvent to a polyester film before completion of crystal orientation, and completing crystal orientation by stretching and heat treatment is suitably used. . This is because heat treatment at a high temperature is possible, the adhesive force between the base material and the resin layer is improved, and a more uniform and thin resin layer can be provided. When the resin layer is formed by this method, the resin composition is preferably an aqueous composition that can be dissolved, emulsified, or suspended in an aqueous solvent in view of environmental pollution and explosion resistance. Such resin compositions that can be dissolved, emulsified or suspended in water are copolymerized and reactive with monomers having a hydrophilic group (such as acrylic acid, methacrylic acid, acrylamide, vinyl sulfonic acid and salts thereof). It can be prepared by a method such as emulsion polymerization, suspension polymerization, soap-free polymerization using an emulsifier or a surfactant.
 重合開始剤としては特に限定されるものではないが一般的なラジカル重合開始剤、例えば過硫酸カリウム、過硫酸アンモニウム、過酸化水素等の水溶性過酸化物、または過酸化ベンゾイルやt-ブチルハイドロパーオキサイド等の油溶性過酸化物、あるいはアゾジイソブチロニトリル等のアゾ化合物が使用できる。 The polymerization initiator is not particularly limited, but is a general radical polymerization initiator, for example, a water-soluble peroxide such as potassium persulfate, ammonium persulfate, hydrogen peroxide, or benzoyl peroxide or t-butyl hydroper Oil-soluble peroxides such as oxides or azo compounds such as azodiisobutyronitrile can be used.
 [ポリエステルフィルム]
 本発明の積層フィルムにおいて、基材フィルムとして用いられるポリエステルフィルムについて述べる。まずポリエステルとは、エステル結合を主鎖に有する高分子の総称であって、エチレンテレフタレート、プロピレンテレフタレート、エチレン-2,6-ナフタレート、ブチレンテレフタレート、プロピレン-2,6-ナフタレート、エチレン-α,β-ビス(2-クロロフェノキシ)エタン-4,4’-ジカルボキシレートなどから選ばれた少なくとも1種の構成成分とするものを好ましく用いることができる。
[Polyester film]
The polyester film used as the substrate film in the laminated film of the present invention will be described. First, polyester is a general term for polymers having an ester bond in the main chain, and includes ethylene terephthalate, propylene terephthalate, ethylene-2,6-naphthalate, butylene terephthalate, propylene-2,6-naphthalate, ethylene-α, β. Those having at least one component selected from -bis (2-chlorophenoxy) ethane-4,4'-dicarboxylate and the like can be preferably used.
 上記ポリエステルを使用したポリエステルフィルムは、二軸配向されたものであるのが好ましい。二軸配向ポリエステルフィルムとは、一般に、未延伸状態のポリエステルシート又はフィルムを長手方向および長手方向に直行する幅方向に各々2.5~5倍程度延伸され、その後、熱処理を施されて、結晶配向が完了されたものであり、広角X線回折で二軸配向のパターンを示すものをいう。ポリエステルフィルムが二軸配向している場合には、熱安定性、特に寸法安定性や機械的強度が十分で、平面性も良好である。 The polyester film using the above polyester is preferably biaxially oriented. A biaxially oriented polyester film is generally an unstretched polyester sheet or film that is stretched about 2.5 to 5 times in the longitudinal direction and in the width direction perpendicular to the longitudinal direction, and then subjected to heat treatment to produce crystalline The alignment is completed, and it indicates a biaxial alignment pattern by wide-angle X-ray diffraction. When the polyester film is biaxially oriented, thermal stability, particularly dimensional stability and mechanical strength are sufficient, and flatness is also good.
 また、ポリエステルフィルム中には、各種添加剤、例えば、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、有機系易滑剤、顔料、染料、有機又は無機の微粒子、充填剤、帯電防止剤、核剤などがその特性を悪化させない程度に添加されていてもよい。 In the polyester film, various additives such as antioxidants, heat stabilizers, weathering stabilizers, ultraviolet absorbers, organic lubricants, pigments, dyes, organic or inorganic fine particles, fillers, antistatic agents. An agent, a nucleating agent, etc. may be added to such an extent that the properties are not deteriorated.
 ポリエステルフィルムの厚みは特に限定されるものではなく、用途や種類に応じて適宜選択されるが、機械的強度、ハンドリング性などの点から、通常は好ましくは10~500μm、より好ましくは15~250μm、最も好ましくは20~100μmである。また、ポリエステルフィルムは、共押出しによる複合フィルムであってもよいし、得られたフィルムを各種の方法で貼り合わせたフィルムであっても良い。 The thickness of the polyester film is not particularly limited and is appropriately selected depending on the use and type, but is preferably 10 to 500 μm, more preferably 15 to 250 μm, from the viewpoint of mechanical strength, handling properties, and the like. Most preferably, the thickness is 20 to 100 μm. The polyester film may be a composite film obtained by coextrusion or a film obtained by bonding the obtained film by various methods.
 [樹脂層の作製方法]
 本発明の積層フィルムの樹脂層の作製方法について以下に例を示すが、以下に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す例により限定的に解釈されるべきものではない。
[Production method of resin layer]
Examples of the method for producing the resin layer of the laminated film of the present invention are shown below, but the materials, amounts used, ratios, treatment details, treatment procedures, etc. shown below may be changed as appropriate without departing from the spirit of the present invention. it can. Therefore, the scope of the present invention should not be construed as being limited by the examples shown below.
 本発明の樹脂層は、前記金属酸化物粒子(A)と、前記π電子共役系高分子(B)と、エポキシ化合物(C)と、アクリル樹脂(D)を含有すると、波長550nmにおける反射率を高くすることができ、また、煮沸試験前後の表面エネルギーの変化量を小さくできるため好ましい。 When the resin layer of the present invention contains the metal oxide particles (A), the π-electron conjugated polymer (B), the epoxy compound (C), and the acrylic resin (D), the reflectance at a wavelength of 550 nm. This is preferable because the amount of change in surface energy before and after the boiling test can be reduced.
 樹脂層中に、(A)~(D)はそれぞれ複数種類含んでいても良い。また、必要に応じて、(B)~(D)以外の他の化合物、例えば、上述したイオン導電性化合物(E)や、カルボジイミド化合物、オキサゾリン化合物、アジリジン化合物、チタンキレートなどのチタネート系カップリング剤、メチロール化あるいはアルキロール化したメラミン化合物、アクリルアミド系化合物などを含んでいてもよい。 In the resin layer, (A) to (D) may each include a plurality of types. If necessary, other compounds than (B) to (D), for example, the above-described ion conductive compounds (E), carbodiimide compounds, oxazoline compounds, aziridine compounds, titanium chelates and other titanate couplings Agents, methylolated or alkylolated melamine compounds, acrylamide compounds, and the like.
 また、各種添加剤、例えば、有機系易滑剤、有機又は無機の微粒子、帯電防止剤などがその特性を悪化させない程度に添加されていてもよい。 Further, various additives such as organic lubricants, organic or inorganic fine particles, antistatic agents, etc. may be added to such an extent that the characteristics are not deteriorated.
 水系溶媒を用いた樹脂組成物は、少なくとも水分散化または水溶化したアクリル樹脂(D)、金属酸化物粒子(A)を、(A)、(D)の順に添加し一度分散を行い、金属酸化物粒子(A)の表面に、アクリル樹脂(D)を吸着させた後、π電子共役系高分子(B)と、エポキシ化合物(C)を添加し、水系溶媒を所望の重量比で混合、攪拌することで作製することができる。次いで、必要に応じて各種添加剤(易滑剤、無機粒子、有機粒子、界面活性剤、酸化防止剤など)を、上記樹脂組成物に所望の重量比で混合、攪拌することで作製することができる。 A resin composition using an aqueous solvent is prepared by adding at least water-dispersed or water-soluble acrylic resin (D) and metal oxide particles (A) in the order of (A) and (D), and once dispersing, After the acrylic resin (D) is adsorbed on the surface of the oxide particles (A), the π-electron conjugated polymer (B) and the epoxy compound (C) are added, and the aqueous solvent is mixed in a desired weight ratio. It can be prepared by stirring. Next, various additives (easily lubricants, inorganic particles, organic particles, surfactants, antioxidants, etc.) can be prepared by mixing and stirring the resin composition in a desired weight ratio as necessary. it can.
 [樹脂層の形成方法および積層フィルムの製造方法]
 本発明の積層フィルムの樹脂層の形成方法について以下に例を示して説明するが、以下に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す例により限定的に解釈されるべきものではない。
[Method for forming resin layer and method for producing laminated film]
The method for forming the resin layer of the laminated film of the present invention will be described below with reference to examples. However, the following materials, amounts used, ratios, processing details, processing procedures, and the like are appropriately changed without departing from the spirit of the present invention. can do. Therefore, the scope of the present invention should not be construed as being limited by the examples shown below.
 本発明の樹脂層は、金属酸化物粒子(A)と、π電子共役系高分子化合物(B)と、エポキシ化合物(C)と、アクリル樹脂(D)を含有する樹脂組成物をポリエステルフィルム上へ塗布し、樹脂組成物が溶媒を含む場合には、溶媒を乾燥させることによって、ポリエステルフィルム上に樹脂層を形成することができる。 The resin layer of the present invention comprises a resin composition containing metal oxide particles (A), a π-electron conjugated polymer compound (B), an epoxy compound (C), and an acrylic resin (D) on a polyester film. When the resin composition contains a solvent, the resin layer can be formed on the polyester film by drying the solvent.
 また本発明において、樹脂組成物に溶媒を含有せしめる場合は、溶媒として水系溶媒を用いることが好ましい。水系溶媒を用いることで、乾燥工程での溶媒の急激な蒸発を抑制でき、均一な組成物層を形成できるだけでなく、環境負荷の点で優れているためである。 In the present invention, when a solvent is included in the resin composition, an aqueous solvent is preferably used as the solvent. This is because the use of the aqueous solvent can suppress the rapid evaporation of the solvent in the drying step and can form a uniform composition layer, and is excellent in terms of environmental load.
 ここで、水系溶媒とは、水、または水とメタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール類、アセトン、メチルエチルケトンなどのケトン類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類など水に可溶である有機溶媒が任意の比率で混合させているものを指す。 Here, the aqueous solvent is soluble in water or water and alcohols such as methanol, ethanol, isopropyl alcohol and butanol, ketones such as acetone and methyl ethyl ketone, and glycols such as ethylene glycol, diethylene glycol and propylene glycol. Is an organic solvent mixed in an arbitrary ratio.
 樹脂組成物のポリエステルフィルムへの塗布方法はインラインコート法であることが好ましい。インラインコート法とは、ポリエステルフィルムの製造の工程内で塗布を行う方法である。具体的には、ポリエステル樹脂を溶融押し出ししてから二軸延伸後熱処理して巻き上げるまでの任意の段階で塗布を行う方法を指し、通常は、溶融押出し後・急冷して得られる実質的に非晶状態の未延伸(未配向)ポリエステルフィルム(Aフィルム)、その後に長手方向に延伸された一軸延伸(一軸配向)ポリエステルフィルム(Bフィルム)、またはさらに幅方向に延伸された熱処理前の二軸延伸(二軸配向)ポリエステルフィルム(Cフィルム)の何れかのフィルムに塗布する。 The method for applying the resin composition to the polyester film is preferably an in-line coating method. The in-line coating method is a method of applying in the process of manufacturing a polyester film. Specifically, it refers to a method of coating at any stage from melt extrusion of a polyester resin to biaxial stretching followed by heat treatment and winding up, and is generally substantially non-obtainable after melt extrusion and rapid cooling. Crystalline unstretched (unoriented) polyester film (A film), then uniaxially stretched (uniaxially oriented) polyester film (B film) stretched in the longitudinal direction, or biaxially before heat treatment stretched further in the width direction It is applied to any one of stretched (biaxially oriented) polyester film (C film).
 本発明では、結晶配向が完了する前の上記Aフィルム、Bフィルム、の何れかのポリエステルフィルムに、樹脂組成物を塗布し、その後、ポリエステルフィルムを一軸方向又は二軸方向に延伸し、溶媒の沸点より高い温度で熱処理を施しポリエステルフィルムの結晶配向を完了させるとともに樹脂層を設ける方法を採用することが好ましい。この方法によれば、ポリエステルフィルムの製膜と、樹脂組成物の塗布乾燥(すなわち、樹脂層の形成)を同時に行うことができるために製造コスト上のメリットがある。また、塗布後に延伸を行うために樹脂層の厚みをより薄くすることが容易である。 In the present invention, the resin composition is applied to the polyester film of any one of the A film and the B film before the crystal orientation is completed, and then the polyester film is stretched in a uniaxial direction or a biaxial direction. It is preferable to employ a method in which a heat treatment is performed at a temperature higher than the boiling point to complete the crystal orientation of the polyester film and a resin layer is provided. According to this method, the polyester film can be formed and the resin composition can be applied and dried (that is, the resin layer is formed) at the same time. Moreover, it is easy to make the thickness of the resin layer thinner in order to perform stretching after coating.
 中でも、長手方向に一軸延伸されたフィルム(Bフィルム)に、樹脂組成物を塗布し、その後、幅方向に延伸し、熱処理する方法が優れている。未延伸フィルムに塗布した後、二軸延伸する方法に比べ、延伸工程が1回少ないため、延伸による組成物層の欠陥や亀裂が発生しづらく、透明性や平滑性に優れた組成物層を形成できるためである。 Among them, a method of applying a resin composition to a film (B film) uniaxially stretched in the longitudinal direction, then stretching in the width direction, and performing a heat treatment is excellent. After applying to an unstretched film, the stretching process is less than once compared to the method of biaxial stretching, so it is difficult to cause defects or cracks in the composition layer due to stretching, and a composition layer excellent in transparency and smoothness This is because it can be formed.
 本発明において該樹脂層は、上述した種々の利点から、インラインコート法により設けられることが好ましい。ここで、ポリエステルフィルムへの樹脂組成物の塗布方式は、公知の塗布方式、例えばバーコート法、リバースコート法、グラビアコート法、ダイコート法、ブレードコート法等の任意の方式を用いることができる。 In the present invention, the resin layer is preferably provided by an inline coating method from the various advantages described above. Here, as a method for applying the resin composition to the polyester film, any known method such as a bar coating method, a reverse coating method, a gravure coating method, a die coating method, or a blade coating method can be used.
 したがって、本発明において最良の樹脂層の形成方法は、水系溶媒を用いた樹脂組成物を、ポリエステルフィルム上にインラインコート法を用いて塗布し、乾燥、熱処理することによって形成する方法である。またより好ましくは、一軸延伸後のBフィルムに樹脂組成物をインラインコートする方法である。本発明の積層フィルムの製造方法において、乾燥は樹脂組成物の溶媒の除去を完了させるために、80~130℃の温度範囲で実施することができる。また、熱処理はポリエステルフィルムの結晶配向を完了させるとともに樹脂組成物の熱硬化を完了させ樹脂層の形成を完了させるために、160~240℃の温度範囲で実施することができる。 Therefore, the best method for forming a resin layer in the present invention is a method in which a resin composition using an aqueous solvent is applied on a polyester film using an in-line coating method, dried and heat-treated. More preferably, the resin composition is in-line coated on the uniaxially stretched B film. In the method for producing a laminated film of the present invention, drying can be carried out in a temperature range of 80 to 130 ° C. in order to complete the removal of the solvent of the resin composition. Further, the heat treatment can be performed in a temperature range of 160 to 240 ° C. in order to complete the crystal orientation of the polyester film and complete the thermosetting of the resin composition to complete the formation of the resin layer.
 さらに樹脂組成物の固形分濃度は10重量%以下であることが好ましい。固形分濃度が10重量%以下とすることにより、樹脂組成物に良好な塗布性を付与でき、透明かつ均一な組成物層を設けた積層フィルムを製造することができる。 Further, the solid content concentration of the resin composition is preferably 10% by weight or less. By setting the solid content concentration to 10% by weight or less, a good coating property can be imparted to the resin composition, and a laminated film provided with a transparent and uniform composition layer can be produced.
 なお、固形分濃度とは、樹脂組成物の重量に対して、樹脂組成物の重量から溶媒の重量を除いた重量が占める割合を表す(すなわち、[固形分濃度]=[(樹脂組成物の重量)-(溶媒の重量)]/[樹脂組成物の重量]である)。 The solid content concentration represents the ratio of the weight of the resin composition minus the weight of the solvent to the weight of the resin composition (that is, [solid content concentration] = [(of the resin composition Weight) − (weight of solvent)] / [weight of resin composition]).
 次に、本発明の積層フィルムの製造方法について、ポリエステルフィルムとしてポリエチレンテレフタレート(以下、PET)フィルムを用いた場合を例にして説明するが、これに限定されるものではない。まず、PETのペレットを十分に真空乾燥した後、押出機に供給し、約280℃でシート状に溶融押し出し、冷却固化せしめて未延伸(未配向)PETフィルム(Aフィルム)を作製する。このフィルムを80~120℃に加熱したロールで長手方向に2.5~5.0倍延伸して一軸配向PETフィルム(Bフィルム)を得る。このBフィルムの片面に所定の濃度に調製した本発明の樹脂組成物を塗布する。 Next, the method for producing a laminated film of the present invention will be described by taking as an example the case where a polyethylene terephthalate (hereinafter referred to as PET) film is used as the polyester film, but is not limited thereto. First, PET pellets are sufficiently vacuum-dried, then supplied to an extruder, melt extruded into a sheet at about 280 ° C., and cooled and solidified to produce an unstretched (unoriented) PET film (A film). This film is stretched 2.5 to 5.0 times in the longitudinal direction with a roll heated to 80 to 120 ° C. to obtain a uniaxially oriented PET film (B film). The resin composition of the present invention prepared at a predetermined concentration is applied to one side of the B film.
 この時、塗布前にPETフィルムの塗布面にコロナ放電処理等の表面処理を行ってもよい。コロナ放電処理等の表面処理を行うことで、樹脂組成物のPETフィルムへの濡れ性が向上し、樹脂組成物のはじきを防止し、均一な塗布厚みの樹脂層を形成することができる。塗布後、PETフィルムの端部をクリップで把持して80~130℃の熱処理ゾーン(予熱ゾーン)へ導き、樹脂組成物の溶媒を乾燥させる。乾燥後幅方向に1.1~5.0倍延伸する。引き続き160~240℃の熱処理ゾーン(熱固定ゾーン)へ導き1~30秒間の熱処理を行い、結晶配向を完了させる。 At this time, a surface treatment such as a corona discharge treatment may be performed on the coated surface of the PET film before coating. By performing surface treatment such as corona discharge treatment, the wettability of the resin composition to the PET film is improved, the resin composition is prevented from being repelled, and a resin layer having a uniform coating thickness can be formed. After coating, the edge of the PET film is held with a clip and guided to a heat treatment zone (preheating zone) of 80 to 130 ° C., and the solvent of the resin composition is dried. After drying, the film is stretched 1.1 to 5.0 times in the width direction. Subsequently, it is guided to a heat treatment zone (heat setting zone) at 160 to 240 ° C., and heat treatment is performed for 1 to 30 seconds to complete crystal orientation.
 この熱処理工程(熱固定工程)で、必要に応じて幅方向、あるいは長手方向に3~15%の弛緩処理を施してもよい。かくして得られた積層フィルムは透明かつ帯電防止性、高屈折率ハードコート層を積層した際の干渉斑抑制性(視認性)に優れた積層フィルムとなる。 In this heat treatment step (heat setting step), a relaxation treatment of 3 to 15% may be performed in the width direction or the longitudinal direction as necessary. The laminated film thus obtained is a laminated film that is transparent and has antistatic properties and excellent interference spot suppression (visibility) when a high refractive index hard coat layer is laminated.
 本発明における該樹脂層の厚みとしては、10nm以上80nm以下であることが好ましい。より好ましくは、10nm以上50nm以下であり、さらに好ましくは10nm以上40nm以下である。該樹脂層の厚みを、10nm以上80nm以下とすることにより、干渉斑抑制性および帯電防止性を十分に発現させることが可能となる。 The thickness of the resin layer in the present invention is preferably 10 nm or more and 80 nm or less. More preferably, they are 10 nm or more and 50 nm or less, More preferably, they are 10 nm or more and 40 nm or less. By setting the thickness of the resin layer to 10 nm or more and 80 nm or less, it is possible to sufficiently exhibit interference spot suppression and antistatic properties.
 [特性の測定方法および効果の評価方法]
 本発明における特性の測定方法および効果の評価方法は次のとおりである。
[Characteristic measurement method and effect evaluation method]
The characteristic measurement method and effect evaluation method in the present invention are as follows.
 (1)ヘイズ、透明性
 ヘイズの測定は、常態(23℃、相対湿度50%)において、積層フィルムサンプルを40時間放置した後、日本電色工業(株)製濁度計「NDH5000」を用いて、JIS K 7136「透明材料のヘイズの求め方」(2000年版)に準ずる方式で行った。なお、サンプルの樹脂層が積層された面側から光を照射して測定した。サンプルは一辺50mmの正方形のものを10サンプル準備し、それぞれ1回ずつ、合計10回測定した平均値をサンプルのヘイズ値とした。
また、透明性はヘイズ値により、4段階評価を行った。Cは実用上問題のあるレベル、Bは実用レベルであり、AとSのものは良好とした。
S:0.6%以下
A:0.6%を超えて1.0%以下
B:1.0%を超えて1.5%以下
C:1.5%を超える。
(1) Haze, Transparency Haze is measured using a turbidimeter “NDH5000” manufactured by Nippon Denshoku Industries Co., Ltd. after standing for 40 hours in a normal state (23 ° C., relative humidity 50%). In accordance with JIS K 7136 “How to Determine Haze of Transparent Material” (2000 version). In addition, it measured by irradiating light from the surface side on which the resin layer of the sample was laminated. Ten samples each having a square with a side of 50 mm were prepared, and the average value obtained by measuring once each 10 times in total was used as the haze value of the sample.
Further, the transparency was evaluated by a four-step evaluation based on the haze value. C is a practically problematic level, B is a practical level, and A and S are good.
S: 0.6% or less A: Over 0.6% and 1.0% or less B: Over 1.0% and 1.5% or less C: Over 1.5%
 (2)反射率
 A4カットサイズに裁断したフィルムシートを縦横それぞれ3分割し、合計9点を測定サンプルとして用いた。長辺側を長手方向とした。分光反射率の測定は、測定面(該樹脂層)の裏面に50mm幅の黒色光沢テープ(ヤマト(株)製、ビニ-ルテープNo.200-50-21:黒)を、気泡を噛みこまないようにサンプルとテープの長手方向を合わせて貼り合わせた後、約4cm角のサンプル片に切り出し、分光光度計((株)島津製作所製、UV2450)に入射角5°での分光反射率を測定した。サンプルを測定器にセットする方向は、測定器の正面に向かって前後の方向にサンプルの長手方向を合わせた。なお反射率を基準化するため、標準反射板として付属のAl板を用いた。反射率は、波長550nmにおける樹脂層側の反射率を求めた。なお、測定値には、10点の平均値を用いた。
(2) Reflectance The film sheet cut into A4 cut size was divided into 3 parts each in length and width, and a total of 9 points were used as measurement samples. The long side was defined as the longitudinal direction. Spectral reflectance is measured with a 50 mm wide black glossy tape (manufactured by Yamato Co., Ltd., vinyl tape No. 200-50-21: black) on the back surface of the measurement surface (the resin layer), and does not bite the bubbles. After attaching the sample and the tape in the longitudinal direction, the sample was cut into about 4 cm square sample pieces, and the spectral reflectance at an incident angle of 5 ° was measured with a spectrophotometer (manufactured by Shimadzu Corporation, UV2450). did. The direction in which the sample was set in the measuring instrument was adjusted to match the longitudinal direction of the sample in the front-rear direction toward the front of the measuring instrument. In order to standardize the reflectance, an attached Al 2 O 3 plate was used as a standard reflecting plate. For the reflectance, the reflectance on the resin layer side at a wavelength of 550 nm was determined. In addition, the average value of 10 points | pieces was used for the measured value.
 (3)積層体との接着性
(3-1)初期接着性
 積層フィルムの樹脂層側に、下記の割合で混合したUV硬化型樹脂を、バーコーターを用いて硬化後の膜厚が2μmとなるように均一に塗布した。
<ハードコート剤の調整>
・二酸化チタン微粒子(石原産業(株)製、TTO-55B):30重量部
・カルボン酸基含有モノマー(東亜合成(株)製、アロニックスM-5300):4.5重量部
・シクロヘキサノン:65.5重量部
 上記混合物を、サンドグラインダーミルにより分散し、平均粒子径が55nmの二酸化チタン微粒子の分散液を調整した。
(3) Adhesiveness to the laminate (3-1) Initial adhesiveness The UV curable resin mixed at the following ratio on the resin layer side of the laminated film has a thickness of 2 μm after curing using a bar coater. It applied uniformly so that it might become.
<Adjustment of hard coating agent>
Titanium dioxide fine particles (Ishihara Sangyo Co., Ltd., TTO-55B): 30 parts by weightCarboxylic acid group-containing monomer (Toa Gosei Co., Ltd., Aronix M-5300): 4.5 parts by weightCyclohexanone: 65. 5 parts by weight The above mixture was dispersed by a sand grinder mill to prepare a dispersion of fine titanium dioxide particles having an average particle diameter of 55 nm.
 前記の二酸化チタン微粒子の分散液に、ジペンタエリスリトールヘキサアクリレート(日本化薬(株)製、DPHA)と、光開始剤(チバガイギー社製、イルガキュア184)をジペンタエリスリト-ルヘキサアクリレート100重量部に対し5重量%添加し、混合し、ハードコート層の屈折率が1.65になるように調整した。
次いで、UV硬化樹脂層を積層した面から9cmの高さにセットした120W/cmの照射強度を有する集光型高圧水銀灯(アイグラフィックス(株)製、H03-L31)で、積算照射強度が300mJ/cmとなるように紫外線を照射し、硬化させ、積層ポリエステルフィルム上にハードコート層が積層されたハードコート積層ポリエステルフィルムを得た。なお、紫外線の積算照射強度測定には工業用UVチェッカー(日本電池(株)製、UVR-N1)を用いた。得られたハードコート積層ポリエステルフィルムについて、得られたハードコート積層ポリエステルフィルムのハードコート積層面に、1mmのクロスカットを100個入れ、“セロテープ”(登録商標)(ニチバン(株)製、CT405AP)を貼り付け、ハンドローラーで1.5kg/cmの荷重で押しつけた後、ハードコート積層ポリエステルフィルムに対して90度方向に急速に剥離した。接着性は残存した格子の個数により、4段階評価を行った。評価は10回実施した平均の値で行った。Cは実用上問題のあるレベル、Bは実用レベルであり、AとSのものは良好とした。
S:90~100個残存
A:80~89個残存
B:50~79個残存
C:0~50個未満残存。
Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA) and photoinitiator (manufactured by Ciba Geigy Co., Ltd., Irgacure 184) are added to the above-mentioned dispersion of titanium dioxide fine particles and dipentaerythritol hexaacrylate is 100 weights. 5% by weight was added to the part and mixed to adjust the refractive index of the hard coat layer to 1.65.
Next, the integrated irradiation intensity was set with a concentrating high-pressure mercury lamp (I03, H03-L31) having an irradiation intensity of 120 W / cm set at a height of 9 cm from the surface on which the UV curable resin layer was laminated. The hard coat laminated polyester film in which the hard coat layer was laminated on the laminated polyester film was obtained by irradiating and curing ultraviolet rays so as to be 300 mJ / cm 2 . In addition, an industrial UV checker (manufactured by Nippon Batteries Co., Ltd., UVR-N1) was used for measuring the cumulative irradiation intensity of ultraviolet rays. About the obtained hard coat laminated polyester film, 100 crosscuts of 1 mm 2 were put on the hard coat laminated surface of the obtained hard coat laminated polyester film, and “Cello Tape” (registered trademark) (manufactured by Nichiban Co., Ltd., CT405AP). ) And pressed with a hand roller at a load of 1.5 kg / cm 2 , and then rapidly peeled in the direction of 90 degrees with respect to the hard coat laminated polyester film. Adhesiveness was evaluated in four stages according to the number of remaining lattices. The evaluation was performed using an average value obtained 10 times. C is a practically problematic level, B is a practical level, and A and S are good.
S: 90 to 100 remaining A: 80 to 89 remaining B: 50 to 79 remaining C: 0 to less than 50 remaining.
 (3-2)湿熱接着性
(3-1)初期接着性と同様にハードコート積層ポリエステルフィルムを得た後、高温高湿度環境下(温度85℃、相対湿度85%)で240時間保管し、湿熱処理後のハードコート積層ポリエステルフィルムを得た。この湿熱処理後のハードコート積層ポリエステルフィルムについて、ハードコート積層ポリエステルフィルムのハードコート積層面に、1mmのクロスカットを100個入れ、“セロテープ”(登録商標)(ニチバン(株)製、CT405AP)を貼り付け、ハンドローラーで1.5kg/cmの荷重で押しつけた後、ハードコート積層ポリエステルフィルムに対して90度方向に急速に剥離した。接着性は残存した格子の個数により、4段階評価を行った。評価は10回実施した平均の値で行った。Cは実用上問題のあるレベル、Bは実用レベルであり、AとSのものは良好とした。
S:90~100個残存
A:80~89個残存
B:50~79個残存
C:0~50個未満残存。
(3-2) Wet heat adhesiveness (3-1) After obtaining a hard-coated laminated polyester film in the same manner as the initial adhesiveness, it was stored in a high temperature and high humidity environment (temperature 85 ° C., relative humidity 85%) for 240 hours, A hard coat laminated polyester film after wet heat treatment was obtained. About the hard coat laminated polyester film after the wet heat treatment, 100 cross cuts of 1 mm 2 were put on the hard coat laminated surface of the hard coat laminated polyester film, and “Cello Tape” (registered trademark) (manufactured by Nichiban Co., Ltd., CT405AP) Was pressed with a load of 1.5 kg / cm 2 with a hand roller, and then rapidly peeled in the direction of 90 degrees with respect to the hard coat laminated polyester film. Adhesiveness was evaluated in four stages according to the number of remaining lattices. The evaluation was performed using an average value obtained 10 times. C is a practically problematic level, B is a practical level, and A and S are good.
S: 90 to 100 remaining A: 80 to 89 remaining B: 50 to 79 remaining C: 0 to less than 50 remaining.
 (4)帯電防止性(表面比抵抗値)
 帯電防止性は、表面比抵抗値により測定した。表面比抵抗値の測定は、相対湿度23%において24時間放置後、その雰囲気下でデジタル超高抵抗/微小電流計R8340A(アドバンテスト(株)製)を用い、印加電圧100V、10秒間印加後、測定を行った。単位は、Ω/□である。積層サンプルの樹脂積層面を評価し、合計10回測定した平均値をサンプルの表面比抵抗値(R1)とした。
1×1011Ω/□以下は良好であり、1×1012Ω/□以下は実用上レベル、1×1012Ω/□を超える場合は実用上問題あるレベルとした。
(4) Antistatic property (surface resistivity)
The antistatic property was measured by the surface specific resistance value. The measurement of the surface resistivity value was allowed to stand for 24 hours at a relative humidity of 23%, and in that atmosphere, a digital ultrahigh resistance / microammeter R8340A (manufactured by Advantest Co., Ltd.) was used. Measurements were made. The unit is Ω / □. The resin laminated surface of the laminated sample was evaluated, and the average value measured 10 times in total was taken as the surface specific resistance value (R1) of the sample.
1 × 10 11 Ω / □ or less is good, 1 × 10 12 Ω / □ or less is practically level, 1 × 10 12 Ω / □ when it exceeds was level with practical problems.
 (5)数平均粒子径
 金属酸化物粒子(A)の数平均粒子径は、透過型電子顕微鏡(TEM)により積層フィルムの断面構造を観察することにより求めた。倍率を50万倍とし、その画面内に存在する10個の粒子の外径を、10視野について合計100個の粒子を測定し、その平均粒子径を求めた。画面内に10個の粒子が存在しない場合は、同じ条件で別の箇所を観察し、その画面内に存在する粒子の外径を測定して、合計で100個の粒子の外径を測定して平均値とした。ここで外径とは、粒子の最大の径(つまり粒子の長径であり、粒子中の最も長い径を示す)を表し、内部に空洞を有する粒子の場合も同様に、粒子の最大の径を表す。
(5) Number average particle diameter The number average particle diameter of the metal oxide particles (A) was determined by observing the cross-sectional structure of the laminated film with a transmission electron microscope (TEM). The magnification was set to 500,000, and the outer diameter of 10 particles existing in the screen was measured for a total of 100 particles for 10 fields of view, and the average particle size was determined. When 10 particles do not exist in the screen, observe another part under the same conditions, measure the outer diameter of the particles present in the screen, and measure the outer diameter of 100 particles in total. Averaged. Here, the outer diameter means the maximum diameter of the particle (that is, the longest diameter of the particle and indicates the longest diameter in the particle). Similarly, in the case of a particle having a cavity inside, the maximum diameter of the particle is also defined. To express.
 (6)樹脂層の膜厚
 透過型電子顕微鏡(TEM)を用いて断面を観察することにより、ポリエステルフィルム上の樹脂層の厚みを測定した。樹脂層の厚みは、TEMにより20万倍の倍率で撮影した画像から樹脂層の厚みを読み取った。合計で20点の樹脂層厚みを測定して平均値とした。
(6) Film thickness of resin layer The thickness of the resin layer on a polyester film was measured by observing a cross section using a transmission electron microscope (TEM). As for the thickness of the resin layer, the thickness of the resin layer was read from an image taken with a TEM at a magnification of 200,000 times. A total of 20 resin layer thicknesses were measured and taken as an average value.
 (7)干渉斑抑制性
 (3)と同様の方法にて、積層ポリエステルフィルム上に厚み2μmのハードコート層(屈折率1.65)が積層されたハードコート積層ポリエステルフィルムを得た。
次いで、得られた光学用積層フィルムから、8cm(積層ポリエステルフィルム幅方向)×10cm(積層ポリエステルフィルム長手方向)の大きさのサンプルを切り出し、ハードコート層の反対面に黒色光沢テープ(ヤマト(株)製、ビニ-ルテープNo.200-50-21:黒)を、気泡を噛み込まないように貼り合わせた。
このサンプルを暗室にて3波長蛍光灯(パナソニック(株)製、3波長形昼白色(F・L 15EX-N 15W))の直下30cmに置き、視角を変えながら目視により干渉斑の程度を観察し、以下の評価を行った。A以上のものを良好とした。
S:干渉斑がほぼ見えない
A:干渉斑がわずかに見える
B:弱い干渉斑が見える。
C:干渉斑が強い。
(7) Interference unevenness suppression property By the method similar to (3), the hard-coat laminated polyester film by which the hard-coat layer (refractive index 1.65) of thickness 2 micrometers was laminated | stacked on the laminated polyester film was obtained.
Next, a sample having a size of 8 cm (laminated polyester film width direction) × 10 cm (laminated polyester film longitudinal direction) was cut out from the obtained optical laminated film, and a black glossy tape (Yamato Co., Ltd.) was formed on the opposite surface of the hard coat layer. ) And vinyl tape No. 200-50-21 (black) were bonded together so as not to bite the bubbles.
Place this sample in a dark room 30 cm directly under a 3-wavelength fluorescent lamp (manufactured by Panasonic Corporation, 3-wavelength daylight white (F · L 15EX-N 15W)), and visually observe the degree of interference spots while changing the viewing angle. The following evaluation was performed. A or higher was considered good.
S: Interference spots are almost invisible A: Interference spots are slightly visible B: Weak interference spots are visible
C: Interference spots are strong.
 (8)煮沸処理試験
 積層フィルムサンプルを10cm×10cmの大きさに切り出し煮沸処理試験後の反射率評価サンプルを得た。該サンプルをクリップに固定し吊り下げた状態にした後、ビーカーに準備した純水からなる沸騰した湯(100℃)の中に積層フィルム全面が浸漬する状態で2時間入れた。その後、煮沸処理試験後の反射率評価サンプルを取り出し、風量1m/分で30分乾燥させ、水分を除去し、常態(23℃、相対湿度65%)にて12時間乾燥させ、煮沸処理試験後の反射率評価用サンプルを得た。
(8) Boiling treatment test A laminated film sample was cut into a size of 10 cm x 10 cm to obtain a reflectance evaluation sample after the boiling treatment test. The sample was fixed to a clip and suspended, and then placed in boiling water (100 ° C.) made of pure water prepared in a beaker for 2 hours with the entire laminated film immersed. After that, the reflectance evaluation sample after the boiling treatment test was taken out, dried at an air volume of 1 m / min for 30 minutes, moisture was removed, dried in a normal state (23 ° C., relative humidity 65%) for 12 hours, and after the boiling treatment test. A sample for reflectance evaluation was obtained.
 (9)煮沸処理試験前後の樹脂層の表面エネルギー変化量Δγ
 (9-1)表面エネルギーの算出方法
 積層フィルムを室温23℃相対湿度65%の雰囲気中に24時間放置後した。その後、同雰囲気下で、積層フィルムの樹脂層(X)側表面に対して、純水、エチレングリコール、ホルムアミド、ジヨードメタンの4種の溶液のそれぞれの接触角を、接触角計CA-D型(協和界面科学(株)社製)により、それぞれ5点測定する。5点の測定値の最大値と最小値を除いた3点の測定値の平均値をそれぞれの溶液の接触角とする。
(9) Change amount of surface energy Δγ of resin layer before and after boiling test
(9-1) Method for calculating surface energy The laminated film was allowed to stand for 24 hours in an atmosphere having a room temperature of 23 ° C. and a relative humidity of 65%. Thereafter, the contact angle of each of the four types of solutions of pure water, ethylene glycol, formamide, and diiodomethane with respect to the resin layer (X) side surface of the laminated film under the same atmosphere is a contact angle meter CA-D type ( 5 points each by Kyowa Interface Science Co., Ltd. The average value of the three measured values excluding the maximum value and the minimum value of the five measured values is defined as the contact angle of each solution.
 次に、得られた4種類の溶液の接触角を用いて、畑らによって提案された「固体の表面自由エネルギー(γ)を分散力成分(γ )、極性力成分(γ )、および水素結合力成分(γ )の3成分に分離し、Fowkes式を拡張した式(拡張Fowkes式)」に基づく幾何平均法により、本発明の分散力、極性力、及び分散力と極性力の和である表面エネルギーを算出する。 Next, using the contact angles of the four types of solutions obtained, “the surface free energy (γ) of the solid, which is proposed by Hata et al., Is expressed as a dispersion force component (γ S d ) and a polar force component (γ S p ). , And the hydrogen bonding force component (γ S h ), and the geometric mean method based on the formula (expanded Fowkes formula) obtained by extending the Fowkes formula, The surface energy that is the sum of the polar forces is calculated.
 具体的な算出方法を示す。各記号の意味について下記する。γ は固体と液体の界面での張力である場合、数式(1)が成立する。 A specific calculation method is shown. The meaning of each symbol is described below. When γ S L is the tension at the interface between the solid and the liquid, Equation (1) is established.
  γ : 樹脂層(X)と表1に記載の既知の溶液の表面自由エネルギー
  γS : 樹脂層(X)の表面自由エネルギー
  γL : 表1に記載の既知の溶液の表面自由エネルギー
  γ : 樹脂層(X)の表面自由エネルギーの分散力成分
  γ : 樹脂層(X)の表面自由エネルギーの極性力成分
  γ : 樹脂層(X)の表面自由エネルギーの水素結合力成分
  γL d : 表1に記載の既知の溶液の表面自由エネルギーの分散力成分
  γL p : 表1に記載の既知の溶液の表面自由エネルギーの極性力成分
  γL : 表1に記載の既知の溶液の表面自由エネルギーの水素結合力成分
γ =γ+γ-2(γ ・γ )1/2-2(γ ・γ )1/2-2(γ ・γ )1/2 ・・・ 数式(1)。
γ S L : surface free energy of resin layer (X) and known solutions listed in Table 1 γ S : surface free energy of resin layer (X) γ L : surface free energy of known solutions listed in Table 1 γ S d : Dispersion force component of surface free energy of resin layer (X) γ S p : Polar force component of surface free energy of resin layer (X) γ S h : Hydrogen bond strength of surface free energy of resin layer (X) Component γ L d : Dispersion force component of the surface free energy of the known solution described in Table 1 γ L p : Polar force component of the surface free energy of the known solution described in Table 1 γ L h : As described in Table 1 Hydrogen bonding force component of the surface free energy of the known solution γ S L = γ S + γ L -2 (γ S d · γ L d ) 1/2 -2 (γ S p · γ L p ) 1/2 -2 (γ S h · γ L h ) 1/2 ··· equation (1).
 また、平滑な固体面と液滴が接触角(θ)で接しているときの状態は次式で表現される(Youngの式)。 Also, the state when the smooth solid surface is in contact with the liquid droplet at the contact angle (θ) is expressed by the following equation (Young's equation).
  γ=γ +γcosθ ・・・ 数式(2)。 γ S = γ S L + γ L cos θ (2)
 これら数式(1)、数式(2)を組み合わせると、次式が得られる。
・γ )1/2+(γ ・γ )1/2+(γ ・γ )1/2=γ(1+cosθ)/2 ・・・ 数式(3)。
When these mathematical formulas (1) and (2) are combined, the following formula is obtained.
(γ S d · γ L d ) 1/2 + (γ S p · γ L p) 1/2 + (γ S h · γ L h) 1/2 = γ L (1 + cosθ) / 2 ··· formula (3).
 実際には、水、エチレングリコール、ホルムアミド、及びジヨードメタンの4種類の溶液に接触角(θ)と、表1に記載の既知の溶液の表面張力の各成分(γL 、γL 、γL )を数式(3)に代入し、4つの連立方程式を解く。その結果、固体の表面自由エネルギー(γ)、すなわち樹脂層(X)表面の表面自由エネルギーが算出される。 Actually, the four components of water, ethylene glycol, formamide, and diiodomethane have contact angles (θ) and the components of the surface tension of known solutions listed in Table 1 (γ L d , γ L p , γ L h ) is substituted into Equation (3) to solve the four simultaneous equations. As a result, the surface free energy (γ) of the solid, that is, the surface free energy of the surface of the resin layer (X) is calculated.
 (9-2)煮沸処理前後の表面エネルギー変化量Δγ
 煮沸処理試験後の樹脂層の表面エネルギーから煮沸処理試験前の樹脂層の表面エネルギーを引いた値の絶対値(Δγ=|煮沸処理試験後の樹脂層の表面エネルギー - 煮沸処理試験前の樹脂層の表面エネルギー|)にて算出した。煮沸処理試験後の評価用サンプルは、(8)の方法に従って得たサンプルを用いた。A以上のものを良好とした。
S:3mN/m以下
A:3mN/mを超えて5mN/m以下
B:5mN/mを超えて7mN/m以下
C:7mN/mを超える。
(9-2) Surface energy change Δγ before and after boiling
Absolute value of the value obtained by subtracting the surface energy of the resin layer before the boiling treatment test from the surface energy of the resin layer after the boiling treatment test (Δγ = | surface energy of the resin layer after the boiling treatment test-resin layer before the boiling treatment test Surface energy |). The sample obtained according to the method of (8) was used as the sample for evaluation after the boiling treatment test. A or higher was considered good.
S: 3 mN / m or less A: Over 3 mN / m and 5 mN / m or less B: Over 5 mN / m and 7 mN / m or less C: Over 7 mN / m
 (10)表面粗さ(算術平均粗さ:Ra)
 BRUKER製原子間力顕微鏡「Dimension Icon ScanAsyst」のScanAsyst Airモードにて、積層フィルムの樹脂層側を測定範囲10μm×10μm、測定ライン数512本、測定レート1.0Hzで測定し、得られた表面情報から、JIS-B-0601-1994に定められた方法にて算術平均粗さ(Ra)を算出した。具体的には、ソフトウェアとして「NanoScope Analysis」を用い、「Flatten Order」の「3rd」を選択し、三次元でのうねり処理を行なう。その後「Roughness」を選択し、該画面の「Image Ra」に記載される数値を算術平均粗さとする。また、合計10回測定し、最大値と最小値を除いた計8個のデータの平均値をサンプルの算術平均粗さ(Ra)とした。
なお、算術平均粗さは、4段階評価を行った。Cは実用上問題のあるレベル、Bは実用レベルであり、AとSのものは良好とした。
S:10nm以下
A:10nmを超えて15nm以下
B:15nmを超えて20nm以下
C:20nmを超える。
(10) Surface roughness (arithmetic mean roughness: Ra)
The surface obtained by measuring the resin layer side of the laminated film with a measurement range of 10 μm × 10 μm, the number of measurement lines of 512, and the measurement rate of 1.0 Hz in the Scan Asist Air mode of the atomic force microscope “Dimension Icon Scan Asyst” manufactured by BRUKER From the information, the arithmetic average roughness (Ra) was calculated by the method defined in JIS-B-0601-1994. Specifically, “NanoScope Analysis” is used as software, “3rd” of “Flatten Order” is selected, and a three-dimensional swell process is performed. Thereafter, “Roughness” is selected, and the numerical value described in “Image Ra” on the screen is set as the arithmetic average roughness. In addition, measurement was made 10 times in total, and the average value of a total of 8 data excluding the maximum value and the minimum value was taken as the arithmetic average roughness (Ra) of the sample.
The arithmetic average roughness was evaluated in four stages. C is a practically problematic level, B is a practical level, and A and S are good.
S: 10 nm or less A: Over 10 nm and 15 nm or less B: Over 15 nm and 20 nm or less C: Over 20 nm
 (11)樹脂層の組成分析
 樹脂層の組成分析は、積層フィルムの表面について、X線光電子分光分析装置(ESCA)、フーリエ赤外分光光度計(FT-IR)ATR法、飛行時間型二次イオン重量分析装置(TOF-SIMS)により行った。また、樹脂層を溶剤にて溶解抽出し、クロマトグラフィーで分取した後、プロトン核磁気共鳴分光法(H-NMR)、カーボン核磁気共鳴分光法(13C-NMR)、フーリエ赤外分光光度計(FT-IR)により構造を解析し、熱分解ガスクロマトグラフィー重量分析(GC-MS)を行い樹脂層の組成分析を行った。上記方法により、樹脂層中における金属酸化物粒子(A)、π電子共役系高分子化合物(B)、エポキシ化合物(C)、アクリル樹脂(D)、イオン導電性化合物(E)の有無を確認した。樹脂層中に、上記化合物を含有する場合はA、含有しない場合はBとした。
(11) Composition analysis of resin layer The composition analysis of the resin layer is performed on the surface of the laminated film by using an X-ray photoelectron spectrometer (ESCA), Fourier infrared spectrophotometer (FT-IR) ATR method, time-of-flight secondary An ion gravimetric analyzer (TOF-SIMS) was used. The resin layer is dissolved and extracted with a solvent and separated by chromatography, and then proton nuclear magnetic resonance spectroscopy ( 1 H-NMR), carbon nuclear magnetic resonance spectroscopy ( 13 C-NMR), Fourier infrared spectroscopy. The structure was analyzed with a photometer (FT-IR), and the composition of the resin layer was analyzed by pyrolysis gas chromatography gravimetric analysis (GC-MS). By the above method, the presence or absence of metal oxide particles (A), π-electron conjugated polymer compound (B), epoxy compound (C), acrylic resin (D), and ion conductive compound (E) in the resin layer is confirmed. did. In the resin layer, when the said compound was contained, it was set to A, and when not containing, it was set to B.
 (12)高屈折率ハードコート積層後の帯電防止性(表面比抵抗値)
 (3)と同様の方法にて、積層ポリエステルフィルム上に厚み2μmのハードコート層(屈折率1.65)が積層されたハードコート積層ポリエステルフィルムを得た。該ハードコート積層ポリエステルフィルムのハードコート層表面の表面比抵抗値を測定した。なお、表面比抵抗値の測定は(4)に記載の方法で行い、合計5回測定した平均値をサンプルの表面比抵抗値とし、B以上のものを良好とした。
A:1×1012Ω/□以下
B:1×1012Ω/□を超えて、1×1013Ω/□以下
C:1×1013Ω/□を超える
Aは良好であり、Bは実用上レベル、Cは実用上問題あるレベルである。
(12) Antistatic property (surface specific resistance value) after laminating high refractive index hard coat
By the same method as (3), a hard coat laminated polyester film in which a hard coat layer (refractive index of 1.65) having a thickness of 2 μm was laminated on the laminated polyester film was obtained. The surface specific resistance value of the hard coat layer surface of the hard coat laminated polyester film was measured. The surface specific resistance value was measured by the method described in (4), and the average value measured five times in total was used as the surface specific resistance value of the sample, and B or higher was determined as good.
A: 1 × 10 12 Ω / □ or less B: 1 × 10 12 Ω / □ or less, 1 × 10 13 Ω / □ or less C: 1 × 10 13 Ω / □ or less A: Good, B P is a practical level, and C is a practically problematic level.
 (13)高屈折率ハードコート積層後の帯電防止性(帯電量)
 積層フィルムの樹脂層側に、(3-1)初期密着性で用いたものと同じUV硬化型樹脂を、硬化後の膜厚が2μmとなるようにバーコーターを用いて均一に塗布し、ロール形状に巻き取り、ハードコート積層フィルムを巻き取ったフィルムロールを得た。その後巻き取られたハードコート積層フィルムロールを巻きだした際の、巻きだし面から5cm離れた位置においてハードコート層表面の電位を測定した。なお、帯電量の測定はシシド電機製STATIRON TYPE-THを用いて測定し、合計5回測定した平均値をサンプルの帯電量とし、B以上のものを良好とした。
A:電位の絶対値が2kV以下
B:電位の絶対値が2kVを超えて、5kV以下
C:電位の絶対値が5kVを超える。
(13) Antistatic property (charge amount) after high refractive index hard coat lamination
The same UV curable resin as that used for (3-1) initial adhesion is uniformly applied to the resin layer side of the laminated film using a bar coater so that the film thickness after curing is 2 μm. The film roll which wound up in the shape and wound up the hard-coat laminated film was obtained. Then, the potential of the hard coat layer surface was measured at a position 5 cm away from the winding surface when the wound hard coat laminated film roll was wound. The charge amount was measured using STATIDON TYPE-TH manufactured by Sicid Electric Co., Ltd., and the average value measured five times in total was used as the charge amount of the sample.
A: Absolute value of potential is 2 kV or less B: Absolute value of potential exceeds 2 kV, and 5 kV or less C: Absolute value of potential exceeds 5 kV
 <参考例1>π電子共役系高分子化合物(B-1)
 酸性ポリマー化合物であるポリスチレンスルホン酸を20.8重量部含む1887重量部の水溶液中に、1重量%硫酸鉄(III)水溶液49重量部、チオフェン化合物である3,4-エチレンジオキシチオフェン8.8重量部、および10.9重量%のペルオキソ二硫酸水溶液117重量部を加えた。この混合物を18℃で、23時間攪拌した。ついで、この混合物に、154重量部の陽イオン交換樹脂および232重量部の陰イオン交換樹脂を加えて、2時間攪拌した後、イオン交換樹脂をろ別して、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸からなる混合物の水分散体(固形分濃度は1.3重量%)を得た。
Reference Example 1 π electron conjugated polymer compound (B-1)
7. In 1887 parts by weight of an aqueous solution containing 20.8 parts by weight of polystyrene sulfonic acid which is an acidic polymer compound, 49 parts by weight of a 1% by weight iron (III) sulfate aqueous solution and 3,4-ethylenedioxythiophene which is a thiophene compound 8 parts by weight and 117 parts by weight of a 10.9% by weight aqueous peroxodisulfuric acid solution were added. The mixture was stirred at 18 ° C. for 23 hours. Next, 154 parts by weight of a cation exchange resin and 232 parts by weight of an anion exchange resin were added to this mixture, and the mixture was stirred for 2 hours. Then, the ion exchange resin was filtered off to obtain poly (3,4-ethylenedioxythiophene). ) And polystyrene sulfonic acid in an aqueous dispersion (solid content concentration: 1.3% by weight).
 <参考例2>金属酸化物粒子(A)とアクリル樹脂(D)の混合体(AD)の調整
 攪拌機、温度計、還流冷却管の備わった通常のアクリル樹脂反応槽に、溶剤としてイソプロピルアルコール100部を仕込み、加熱攪拌して100℃に保持した。この中に、(メタ)アクリレート(d1’)として、n=19のノナデシルメタクリレート40部、(メタ)アクリレート(d2’)として、2個の環を有するイソボニルメタクリレート40部、カルボキシル基を有する(メタ)アクリレート(d3’)として、メタクリル酸20部からなる混合物を3時間かけて滴下した。そして、滴下終了後、100℃で1時間加熱し、次にt-ブチルパーオキシ2エチルヘキサエート1部からなる追加触媒混合液を仕込んだ。次いで、100℃で3時間加熱した後冷却し、アクリル樹脂(D)を得た。
Reference Example 2 Preparation of Mixture (AD) of Metal Oxide Particles (A) and Acrylic Resin (D) Isopropyl alcohol 100 as a solvent in a normal acrylic resin reaction vessel equipped with a stirrer, thermometer and reflux condenser. The parts were charged and heated to 100 ° C. with stirring. In this, 40 parts of nonadecyl methacrylate of n = 19 as (meth) acrylate (d1 ′), 40 parts of isobornyl methacrylate having two rings as (meth) acrylate (d2 ′), and a carboxyl group As (meth) acrylate (d3 ′), a mixture of 20 parts of methacrylic acid was added dropwise over 3 hours. Then, after completion of the dropwise addition, the mixture was heated at 100 ° C. for 1 hour, and then an additional catalyst mixture composed of 1 part of t-butylperoxy 2-ethylhexaate was charged. Next, the mixture was heated at 100 ° C. for 3 hours and then cooled to obtain an acrylic resin (D).
 次に、水系溶媒中に、酸化ジルコニウム粒子(A)の水分散液(堺化学工業(株)製酸化ジルコニウム分散液SZR-CW、酸化ジルコニウムの数平均粒子径20nm)と、上記アクリル樹脂(D)を順に添加し、以下の方法で分散せしめ、粒子(A)とアクリル樹脂(D)の混合体を得た。(前記(ii)の方法。)金属酸化物粒子(A)およびアクリル樹脂(D)の添加量比(重量比)は、(A)/(D)=100/20とした(なお重量比は、小数点第1位を四捨五入して求めた)。分散処理は、ホモミキサーを用いて行い、周速10m/sで5時間回転させることによって行った。また、最終的に得られた混合体における、粒子(A)とアクリル樹脂(D)の重量比は、(A)/(D)=100/20であった(なお、重量比は小数点第1位を四捨五入して求めた)。 Next, an aqueous dispersion of zirconium oxide particles (A) (zirconium oxide dispersion SZR-CW manufactured by Sakai Chemical Industry Co., Ltd., zirconium oxide number average particle diameter 20 nm) and an acrylic resin (D ) Were added in order and dispersed by the following method to obtain a mixture of particles (A) and acrylic resin (D). (Method (ii) above) The addition ratio (weight ratio) of the metal oxide particles (A) and the acrylic resin (D) was (A) / (D) = 100/20 (note that the weight ratio was And rounded to the first decimal place). The dispersion treatment was performed by using a homomixer and rotating at a peripheral speed of 10 m / s for 5 hours. Further, the weight ratio of the particles (A) to the acrylic resin (D) in the finally obtained mixture was (A) / (D) = 100/20 (note that the weight ratio is the first decimal place). Calculated by rounding off the decimal place).
 なお、得られた粒子(AD)を、日立卓上超遠心機(日立工機(株)製:CS150NX)により遠心分離を行い(回転数3,000rpm、分離時間30分)、金属酸化物粒子(A)(及び金属酸化物粒子(A)の表面に吸着したアクリル樹脂(D))を沈降させた後、上澄み液を除去し、沈降物を濃縮乾固させた。濃縮乾固した沈降物をX線光電子分光法(XPS)により分析した結果、金属酸化物粒子(A)の表面にアクリル樹脂(D)が存在することが確認された。つまり、金属酸化物粒子(A)の表面には、アクリル樹脂(D)が吸着・付着しており、得られた粒子(AD)が金属酸化物粒子(A)の表面にアクリル樹脂(D)を有する粒子に該当することが判明した。 The obtained particles (AD) were centrifuged using a Hitachi tabletop ultracentrifuge (manufactured by Hitachi Koki Co., Ltd .: CS150NX) (rotation speed: 3,000 rpm, separation time: 30 minutes) to obtain metal oxide particles ( After A) (and the acrylic resin (D) adsorbed on the surface of the metal oxide particles (A)) was allowed to settle, the supernatant was removed and the precipitate was concentrated to dryness. As a result of analyzing the concentrated and solidified sediment by X-ray photoelectron spectroscopy (XPS), it was confirmed that the acrylic resin (D) was present on the surface of the metal oxide particles (A). That is, the acrylic resin (D) is adsorbed and adhered to the surface of the metal oxide particles (A), and the obtained particles (AD) are adhered to the surface of the metal oxide particles (A). It was found to fall under the category of particles having
 <参考例3>イオン導電性化合物(ポリスチレンスルホン酸リチウム塩(E-1)の調整
 窒素ガス雰囲気下かつ常温(25℃)下で、容器1に、水200重量部、過硫酸アンモニウム1重量部を仕込み、これを85℃に昇温し、溶解させ、85℃の溶液1を得た。
Reference Example 3 Preparation of an ion conductive compound (polystyrene sulfonate lithium salt (E-1) In a nitrogen gas atmosphere and at room temperature (25 ° C.), 200 parts by weight of water and 1 part by weight of ammonium persulfate were placed in a container 1. The solution was heated to 85 ° C. and dissolved to obtain a solution 1 at 85 ° C.
  常温(25℃)下で、容器2に、スチレンスルホン酸リチウム塩100重量部、過硫酸アンモニウム3重量部、水100部添加し、溶液2を得た。 Under normal temperature (25 ° C.), 100 parts by weight of lithium styrenesulfonate, 3 parts by weight of ammonium persulfate and 100 parts of water were added to the container 2 to obtain a solution 2.
 窒素ガス雰囲気下で、溶液1を反応器に移し、反応器内の溶液の温度を85℃に保ちつつ、溶液2を溶液1に4時間かけて連続滴下せしめた。滴下終了後、更に3時間攪拌したのち、25度まで冷却し、ポリスチレンスルホン酸リチウム塩(E-1)を得た。 In a nitrogen gas atmosphere, the solution 1 was transferred to the reactor, and the solution 2 was continuously added dropwise to the solution 1 over 4 hours while maintaining the temperature of the solution in the reactor at 85 ° C. After completion of the dropwise addition, the mixture was further stirred for 3 hours and then cooled to 25 ° C. to obtain polystyrene sulfonate lithium salt (E-1).
 なお、以下の実施例や比較例にて得られた積層フィルムの特性等を、表1~表4に示した。 Tables 1 to 4 show the characteristics of the laminated films obtained in the following examples and comparative examples.
 <実施例1>
 はじめに、樹脂組成物1を次の通り調製した。
<樹脂組成物>
 水系溶媒に、上記の粒子(A)とアクリル樹脂(D)、π電子共役系高分子化合物(B)とエポキシ化合物(C)をこの順に添加し、表1に記載の比率で混合し、樹脂組成物を得た。
・粒子(A)とアクリル樹脂(D)の混合体(AD)
・π電子共役系高分子化合物(B)
・エポキシ化合物(C):ポリグリセロールポリグリシジルエーテル系エポキシ架橋剤(ナガセケムテック(株)性“デナコール(登録商標)”EX-512(分子量役630、エポキシ当量168、水溶率100%)
 <積層フィルム>
 次いで、実質的に粒子を含有しないPETペレット(極限粘度0.63dl/g)を充分に真空乾燥した後、押し出し機に供給し285℃で溶融し、T字型口金よりシート状に押し出し、静電印加キャスト法を用いて表面温度25℃の鏡面キャスティングドラムに巻き付けて冷却固化せしめた。この未延伸フィルムを90℃に加熱して長手方向に3.4倍延伸し、一軸延伸フィルム(Bフィルム)とした。
<Example 1>
First, the resin composition 1 was prepared as follows.
<Resin composition>
To the aqueous solvent, the above particles (A), acrylic resin (D), π-electron conjugated polymer compound (B) and epoxy compound (C) are added in this order, and mixed in the ratios shown in Table 1, to obtain a resin. A composition was obtained.
・ A mixture of particles (A) and acrylic resin (D) (AD)
・ Π-electron conjugated polymer (B)
Epoxy compound (C): Polyglycerol polyglycidyl ether type epoxy cross-linking agent (Nagase Chemtech Co., Ltd. "Denacol (registered trademark)" EX-512 (molecular weight 630, epoxy equivalent 168, water solubility 100%)
<Laminated film>
Next, PET pellets (intrinsic viscosity 0.63 dl / g) substantially free of particles were sufficiently dried in vacuum, then supplied to an extruder, melted at 285 ° C., extruded into a sheet form from a T-shaped die, It was wound around a mirror-casting drum having a surface temperature of 25 ° C. using an electric application casting method and cooled and solidified. This unstretched film was heated to 90 ° C. and stretched 3.4 times in the longitudinal direction to obtain a uniaxially stretched film (B film).
 次に樹脂組成物1を一軸延伸フィルムのコロナ放電処理面にバーコートを用いて塗布厚み約6μmで塗布した。樹脂組成物を塗布した一軸延伸フィルムの幅方向両端部をクリップで把持して予熱ゾーンに導き、雰囲気温度75℃とした後、引き続いてラジエーションヒーターを用いて雰囲気温度を110℃とし、次いで雰囲気温度を90℃として、樹脂組成物を乾燥させ、樹脂層を形成せしめた。引き続き連続的に120℃の加熱ゾーン(延伸ゾーン)で幅方向に3.5倍延伸し、続いて230℃の熱処理ゾーン(熱固定ゾーン)で20秒間熱処理を施し、結晶配向の完了した積層フィルムを得た。得られた積層フィルムにおいてPETフィルムの厚みは100μm、樹脂層の厚みは約0.02μmであった。
得られた積層フィルムの特性等を表3に示す。
ヘイズが低く、反射率が高く、表面エネルギー変化量、表面比抵抗値も小さく、透明性、干渉斑抑制性、接着性、さらには帯電防止性に優れるものであった。
Next, the resin composition 1 was applied to the corona discharge-treated surface of the uniaxially stretched film with a coating thickness of about 6 μm using a bar coat. The both ends in the width direction of the uniaxially stretched film coated with the resin composition are gripped with clips and guided to a preheating zone, and the ambient temperature is set to 75 ° C. Subsequently, the ambient temperature is set to 110 ° C using a radiation heater, and then the ambient temperature. The resin composition was dried at 90 ° C. to form a resin layer. Continuously stretched 3.5 times in the width direction in a heating zone (stretching zone) at 120 ° C, and then heat treated for 20 seconds in a heat treatment zone (heat setting zone) at 230 ° C to complete the crystal orientation. Got. In the obtained laminated film, the thickness of the PET film was 100 μm, and the thickness of the resin layer was about 0.02 μm.
Table 3 shows the characteristics and the like of the obtained laminated film.
The haze was low, the reflectivity was high, the amount of surface energy change and the surface specific resistance value were small, and the transparency, interference spot suppression, adhesion, and antistatic properties were excellent.
 <実施例2~12>
 塗液中の樹脂組成物の比率を表1の通り変更した以外は、実施例1と同様の方法で積層フィルムを得た。
得られた積層フィルムの特性などを表1に示す。
<Examples 2 to 12>
A laminated film was obtained in the same manner as in Example 1 except that the ratio of the resin composition in the coating liquid was changed as shown in Table 1.
Table 1 shows the characteristics of the obtained laminated film.
 <実施例13~16>
 金属酸化物粒子(A)の数平均粒子径を3nm(実施例13)、15nm(実施例14)、30nm(実施例15)、50nm(実施例16)に変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表1に示す。
<Examples 13 to 16>
Example 1 except that the number average particle size of the metal oxide particles (A) was changed to 3 nm (Example 13), 15 nm (Example 14), 30 nm (Example 15), and 50 nm (Example 16). A laminated film was obtained in the same manner. Table 1 shows the characteristics of the obtained laminated film.
 <実施例17>
 金属酸化物粒子(A)を酸化チタン粒子である“NanoTek”(登録商標)TiOスラリー(シーアイ化成(株)、数平均粒子径20nm)に変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表1に示す。
<Example 17>
Except for changing the metal oxide particles (A) to titanium oxide particles “NanoTek” (registered trademark) TiO 2 slurry (CI Chemical Co., Ltd., number average particle size 20 nm), the same method as in Example 1 was used. A laminated film was obtained. Table 1 shows the characteristics of the obtained laminated film.
 <実施例18~20>
 金属酸化物粒子(A)を酸化亜鉛粒子であるFINEX-50(堺化学工業(株)製、数平均粒子径20nm)(実施例18)、ITOスラリー(シーアイ化成(株)製、数平均粒子径20nm)(実施例19)、酸化イットリウムである“NanoTek” (登録商標)Yスラリー(シーアイ化成(株)製、数平均粒子径20nm)(実施例20)に変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表1に示す。
<Examples 18 to 20>
The metal oxide particles (A) are zinc oxide particles FINEX-50 (manufactured by Sakai Chemical Industry Co., Ltd., number average particle diameter 20 nm) (Example 18), ITO slurry (manufactured by CII Kasei Co., Ltd., number average particles) 20 nm) (Example 19), except that it was changed to “NanoTek” (registered trademark) Y 2 O 3 slurry (Cai Kasei Co., Ltd., number average particle size 20 nm) (Example 20), which is yttrium oxide. A laminated film was obtained in the same manner as in Example 1. Table 1 shows the characteristics of the obtained laminated film.
 <実施例21~23>
 樹脂層の膜厚を10nm(実施例21)、30nm(実施例22)、50nm(実施例23)に変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表1に示す。
<Examples 21 to 23>
A laminated film was obtained in the same manner as in Example 1 except that the thickness of the resin layer was changed to 10 nm (Example 21), 30 nm (Example 22), and 50 nm (Example 23). Table 1 shows the characteristics of the obtained laminated film.
 <実施例24>
(メタ)アクリレートモノマー(d3’)を、3級アミノ基を有するN、N-ジメチルアミノエチルメタクリレートに変更した(式(3)で表されるモノマー単位のR基をカルボキシル基を有さないアクリル樹脂とした)以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表1に示す。
<Example 24>
The (meth) acrylate monomer (d3 ′) was changed to N, N-dimethylaminoethyl methacrylate having a tertiary amino group (the R 3 group of the monomer unit represented by the formula (3) has no carboxyl group) A laminated film was obtained in the same manner as in Example 1 except that the acrylic resin was used. Table 1 shows the characteristics of the obtained laminated film.
 <実施例25>
アクリル樹脂(D)として、アクリル樹脂(日本カーバイド(株)製、RX7013ED)に変更した(式(1)で表されるモノマー単位、および式(2)で表されるモノマー単位を有さないアクリル樹脂とした)以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表1に示す。
<Example 25>
The acrylic resin (D) was changed to an acrylic resin (manufactured by Nippon Carbide Corporation, RX7013ED) (a monomer unit represented by the formula (1) and an acrylic having no monomer unit represented by the formula (2). A laminated film was obtained in the same manner as in Example 1 except that the resin was used. Table 1 shows the characteristics of the obtained laminated film.
 <実施例26>
金属酸化物粒子(A)に変えて、ジルコニアキレート(マツモトファインケミカル“オルガチックス”(登録商標)ZC300)を用いた以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表1に示す。
<Example 26>
A laminated film was obtained in the same manner as in Example 1 except that zirconia chelate (Matsumoto Fine Chemical “Orgachix” (registered trademark) ZC300) was used instead of the metal oxide particles (A). Table 1 shows the characteristics of the obtained laminated film.
 <実施例27>
π電子共役系高分子化合物(B)に変えて、イオン導電性化合物(アンモニウム塩)((株)ADEKA製、アデカカチオエース PD50)を用いた以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表1に示す。
<Example 27>
A laminated film in the same manner as in Example 1 except that an ionic conductive compound (ammonium salt) (manufactured by ADEKA, Adeka Cioace PD50) was used instead of the π-electron conjugated polymer compound (B). Got. Table 1 shows the characteristics of the obtained laminated film.
 <実施例28>
π電子共役系高分子化合物(B)に変えて、イオン導電性化合物(スチレンスルホン酸リチウム塩)(E-1)を用いた以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表1に示す。
<Example 28>
A laminated film was obtained in the same manner as in Example 1 except that the ion conductive compound (lithium styrene sulfonate) (E-1) was used instead of the π electron conjugated polymer compound (B). Table 1 shows the characteristics of the obtained laminated film.
 <比較例1>
 実施例1における金属酸化物粒子(A)を、シリカ粒子である“スノーテックス”(登録商標)CM(日産化学工業(株)製、数平均粒子径20nm)に変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表1に示す。
<Comparative Example 1>
Example 1 except that the metal oxide particles (A) in Example 1 were changed to “Snowtex” (registered trademark) CM (manufactured by Nissan Chemical Industries, Ltd., number average particle diameter 20 nm), which is silica particles. A laminated film was obtained in the same manner. Table 1 shows the characteristics of the obtained laminated film.
 <比較例2~3>
 実施例1における金属酸化物粒子(A)を、MgF粒子である“NanoTek”(登録商標)MgFスラリー(シーアイ化成(株)製、数平均粒子径20nm)(比較例2)、中空のシリカ粒子である“スルーリア”(登録商標)TR112(日揮触媒化成(株)製、数平均粒子径20nm)(比較例3)に変更した以外は、実施例1と同様の方法で積層フィルムを得た。得られた積層フィルムの特性などを表1に示す。
<Comparative Examples 2-3>
The metal oxide particles (A) in Example 1 are made of MgF 2 particles, “NanoTek” (registered trademark) MgF 2 slurry (manufactured by CI Kasei Co., Ltd., number average particle size 20 nm) (Comparative Example 2), hollow A laminated film was obtained in the same manner as in Example 1, except that the silica particles were changed to “Thruria” (registered trademark) TR112 (manufactured by JGC Catalysts & Chemicals Co., Ltd., number average particle diameter 20 nm) (Comparative Example 3). It was. Table 1 shows the characteristics of the obtained laminated film.
 <比較例4>
 実施例1におけるπ電子共役系高分子化合物(B)を用いない以外は、実施例1と同様の方法で、積層フィルムを得た。実施例1と比較して、表面比抵抗値が高く、同等の透明性、視認性、積層体との接着性を示したものの、帯電防止性に欠けるものであった。
<Comparative example 4>
A laminated film was obtained in the same manner as in Example 1 except that the π-electron conjugated polymer compound (B) in Example 1 was not used. Compared with Example 1, although the surface specific resistance value was high and showed the same transparency, visibility, and adhesion to the laminate, it was lacking in antistatic properties.
 <比較例5>
 実施例1におけるエポキシ化合物(C)にかえて、ポリエステル樹脂(高松油脂製、ペスレジンA110)を用いた以外は、実施例1と同様の方法で、積層フィルムを得た。実施例1と比較して、ポリエステル樹脂を用いたことで、煮沸処理後の表面エネルギーの変化が大きく、湿熱接着性に欠けるものであった。
<Comparative Example 5>
A laminated film was obtained in the same manner as in Example 1 except that a polyester resin (manufactured by Takamatsu Yushi Co., Ltd., Pes Resin A110) was used instead of the epoxy compound (C) in Example 1. Compared with Example 1, by using a polyester resin, the change of the surface energy after a boiling process was large, and the wet heat adhesiveness was lacking.
 <比較例6>
 実施例1におけるアクリル樹脂(D)を用いない以外は、実施例1と同様の方法で、積層フィルムを得た。実施例1と比較し、アクリル樹脂を用いないことで、煮沸処理後の表面エネルギーの変化が大きく、湿熱接着性に欠けるものであった。
<Comparative Example 6>
A laminated film was obtained in the same manner as in Example 1 except that the acrylic resin (D) in Example 1 was not used. Compared with Example 1, by not using an acrylic resin, the change of the surface energy after a boiling process was large, and the wet heat adhesiveness was lacking.
 <比較例7>
 実施例1における樹脂層の厚みを7nmとする以外は、実施例1と同様の方法で、積層フィルムを得た。実施例1と比較し、表面比抵抗値が高く、同等の透明性、視認性、積層体との接着性を示したものの、帯電防止性に欠けるものであった。
<Comparative Example 7>
A laminated film was obtained in the same manner as in Example 1 except that the thickness of the resin layer in Example 1 was 7 nm. Compared with Example 1, although the surface specific resistance value was high and showed the same transparency, visibility, and adhesion to the laminate, it was lacking in antistatic properties.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 本発明は、透明性、高屈折率ハードコート層を積層した際の干渉斑抑制性、高屈折率ハードコート層との接着性に優れ、さらに湿度によらず高いレベルの帯電防止性を示す積層フィルムに関するものであり、ディスプレイ用途の光学用易接着フィルムへ利用可能である。 The present invention is a laminate having transparency, high interference refractive index suppression when laminating a high refractive index hard coat layer, excellent adhesion to the high refractive index hard coat layer, and high antistatic properties regardless of humidity. The present invention relates to a film, and can be used as an optically easily adhesive film for display applications.

Claims (10)

  1. ポリエステルフィルムの少なくとも片側に樹脂層が設けられた積層フィルムであって、該樹脂層表面の波長550nmにおける反射率が6.0%以上であり、該樹脂層表面の表面比抵抗値が1012Ω/□以下であり、該樹脂層表面の煮沸試験前後の表面エネルギー変化量Δγ(Δγ=|煮沸処理試験後の樹脂層の表面エネルギー - 煮沸処理試験前の樹脂層の表面エネルギー|)が5mN/m以下であることを特徴とする積層フィルム。 A laminated film in which a resin layer is provided on at least one side of a polyester film, the reflectance of the resin layer surface at a wavelength of 550 nm is 6.0% or more, and the surface specific resistance value of the resin layer surface is 10 12 Ω. / □ or less, and the surface energy change Δγ before and after the boiling test on the surface of the resin layer (Δγ = | the surface energy of the resin layer after the boiling treatment test−the surface energy of the resin layer before the boiling treatment test |) is 5 mN / A laminated film characterized by being m or less.
  2. 前記樹脂層表面の算術平均粗さ(Ra)が20nm以下であることを特徴とする請求項1に記載の積層フィルム。 The arithmetic average roughness (Ra) of the surface of the resin layer is 20 nm or less, and the laminated film according to claim 1.
  3.  前記樹脂層が、数平均粒子径が3nm以上50nm以下の金属酸化物粒子(A)と、π電子共役系高分子化合物(B)と、エポキシ化合物(C)と、アクリル樹脂(D)を含有することを特徴とする請求項1または2に記載の積層フィルム。 The resin layer contains metal oxide particles (A) having a number average particle diameter of 3 nm or more and 50 nm or less, a π-electron conjugated polymer compound (B), an epoxy compound (C), and an acrylic resin (D). The laminated film according to claim 1 or 2, wherein:
  4. 前記樹脂層における金属酸化物粒子(A)の含有量が、樹脂層全体に対して30重量%以上90重量%以下であることを特徴とする請求項3に記載の積層フィルム。 4. The laminated film according to claim 3, wherein the content of the metal oxide particles (A) in the resin layer is 30% by weight or more and 90% by weight or less with respect to the entire resin layer.
  5. 前記樹脂層におけるエポキシ化合物(C)の含有量が、樹脂層中の金属酸化物粒子(A)の含有量を100重量部としたときに20~60重量部であることを特徴とする請求項3または4に記載の積層フィルム。 The content of the epoxy compound (C) in the resin layer is 20 to 60 parts by weight when the content of the metal oxide particles (A) in the resin layer is 100 parts by weight. The laminated film according to 3 or 4.
  6.  前記金属酸化物粒子(A)が、その表面に前記アクリル樹脂(D)を有する粒子であることを特徴とする請求項3~5のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 3 to 5, wherein the metal oxide particles (A) are particles having the acrylic resin (D) on a surface thereof.
  7.  前記金属酸化物粒子(A)が、酸化チタン粒子(A’)および/または酸化ジルコニウム粒子(A’)である請求項3~6のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 3 to 6, wherein the metal oxide particles (A) are titanium oxide particles (A 1 ') and / or zirconium oxide particles (A 2 ').
  8. 前記アクリル樹脂(D)が、式(1)で表されるモノマー単位(d1)と、式(2)で表されるモノマー単位(d2)と、式(3)で表されるモノマー単位(d3)を有する樹脂であることを特徴とする請求項3~7のいずれかに積層フィルム。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、R基は、水素原子またはメチル基を表す。またnは、9以上34以下の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)において、R基は、水素原子またはメチル基を表す。また、R基は、飽和の炭素環を2つ以上含む基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)において、R基は、水素原子またはメチル基を表す。また、R基は、水酸基、カルボキシル基、3級アミノ基、4級アンモニウム塩基、スルホン酸基、または、リン酸基を表す。)
    The acrylic resin (D) comprises a monomer unit (d1) represented by formula (1), a monomer unit (d2) represented by formula (2), and a monomer unit (d3 represented by formula (3)). The laminated film according to any one of claims 3 to 7, wherein the laminated film is a resin having).
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), R 1 group represents a hydrogen atom or a methyl group. Further, n represents an integer of 9 or more and 34 or less.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), the R 2 group represents a hydrogen atom or a methyl group. The R 4 group represents a group containing two or more saturated carbocycles.)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (3), the R 3 group represents a hydrogen atom or a methyl group. The R 5 group represents a hydroxyl group, a carboxyl group, a tertiary amino group, a quaternary ammonium base, a sulfonic acid group, or phosphoric acid. Represents a group.)
  9.  前記樹脂層の厚みが、10~80nmである請求項1~8のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 8, wherein the resin layer has a thickness of 10 to 80 nm.
  10. ポリエステルフィルムの少なくとも片側に樹脂層が設けられた積層フィルムの製造方法であって、
    前記樹脂層が、数平均粒子径が3nm以上50nm以下の金属酸化物粒子(A)と、π電子共役系高分子化合物(B)と、エポキシ化合物(C)と、アクリル樹脂(D)を含有する樹脂組成物をポリエステルフィルムの少なくとも片側に塗布した後、乾燥することにより形成される層であり、
    前記樹脂組成物中におけるエポキシ化合物(C)の含有量が、樹脂組成物中の金属酸化物粒子(A)の含有量を100重量部としたときに20~60重量部であることを特徴とする積層フィルムの製造方法。
    A method for producing a laminated film in which a resin layer is provided on at least one side of a polyester film,
    The resin layer contains metal oxide particles (A) having a number average particle diameter of 3 nm or more and 50 nm or less, a π-electron conjugated polymer compound (B), an epoxy compound (C), and an acrylic resin (D). After applying the resin composition to at least one side of the polyester film, it is a layer formed by drying,
    The content of the epoxy compound (C) in the resin composition is 20 to 60 parts by weight when the content of the metal oxide particles (A) in the resin composition is 100 parts by weight. A method for producing a laminated film.
PCT/JP2016/054284 2015-02-27 2016-02-15 Multilayer film and method for producing same WO2016136518A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016519409A JP6624054B2 (en) 2015-02-27 2016-02-15 Laminated film and method for producing the same
CN201680012181.7A CN107249886B (en) 2015-02-27 2016-02-15 Stack membrane and its manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015038117 2015-02-27
JP2015-038117 2015-02-27
JP2015-174369 2015-09-04
JP2015174369 2015-09-04

Publications (1)

Publication Number Publication Date
WO2016136518A1 true WO2016136518A1 (en) 2016-09-01

Family

ID=56788391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054284 WO2016136518A1 (en) 2015-02-27 2016-02-15 Multilayer film and method for producing same

Country Status (4)

Country Link
JP (1) JP6624054B2 (en)
CN (1) CN107249886B (en)
TW (1) TWI680874B (en)
WO (1) WO2016136518A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071022A1 (en) * 2018-10-05 2020-04-09 東レ株式会社 Resin film and method for manufacturing same
JP7078169B1 (en) 2021-12-10 2022-05-31 東洋インキScホールディングス株式会社 Transparent electrode film
KR20220138702A (en) * 2021-04-06 2022-10-13 에스케이씨 주식회사 Light reflective resin film and method of fabricating the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI774748B (en) * 2017-04-04 2022-08-21 日商日本精化股份有限公司 (meth)acrylamide compound containing anionic hydrophilic group, and coating composition comprising the same
CN111562857B (en) * 2020-04-20 2023-07-25 武汉华星光电技术有限公司 Composite high-resistance film, preparation method thereof and embedded touch screen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003291285A (en) * 2002-04-02 2003-10-14 Teijin Dupont Films Japan Ltd Optical easy-to-adhere polyester film
JP2004058648A (en) * 2001-12-06 2004-02-26 Toray Ind Inc Laminated film and manufacturing process thereof
JP2009069742A (en) * 2007-09-18 2009-04-02 Toray Ind Inc Optical sheet
JP2011227436A (en) * 2010-03-30 2011-11-10 Toray Ind Inc Optical polyester film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6070547B2 (en) * 2012-03-16 2017-02-01 東レ株式会社 Laminated film and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004058648A (en) * 2001-12-06 2004-02-26 Toray Ind Inc Laminated film and manufacturing process thereof
JP2003291285A (en) * 2002-04-02 2003-10-14 Teijin Dupont Films Japan Ltd Optical easy-to-adhere polyester film
JP2009069742A (en) * 2007-09-18 2009-04-02 Toray Ind Inc Optical sheet
JP2011227436A (en) * 2010-03-30 2011-11-10 Toray Ind Inc Optical polyester film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071022A1 (en) * 2018-10-05 2020-04-09 東レ株式会社 Resin film and method for manufacturing same
CN112739753A (en) * 2018-10-05 2021-04-30 东丽株式会社 Resin film and method for producing same
JPWO2020071022A1 (en) * 2018-10-05 2021-09-02 東レ株式会社 Resin film and its manufacturing method
CN112739753B (en) * 2018-10-05 2023-09-12 东丽株式会社 Resin film and method for producing same
JP7419817B2 (en) 2018-10-05 2024-01-23 東レ株式会社 Resin film and its manufacturing method
KR20220138702A (en) * 2021-04-06 2022-10-13 에스케이씨 주식회사 Light reflective resin film and method of fabricating the same
KR102611305B1 (en) * 2021-04-06 2023-12-07 에스케이마이크로웍스 주식회사 Light reflective resin film and method of fabricating the same
JP7078169B1 (en) 2021-12-10 2022-05-31 東洋インキScホールディングス株式会社 Transparent electrode film
JP2023086587A (en) * 2021-12-10 2023-06-22 東洋インキScホールディングス株式会社 transparent electrode film

Also Published As

Publication number Publication date
TWI680874B (en) 2020-01-01
CN107249886B (en) 2019-06-11
JP6624054B2 (en) 2019-12-25
CN107249886A (en) 2017-10-13
TW201637868A (en) 2016-11-01
JPWO2016136518A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
US9771491B2 (en) Laminated film and method for producing same
JP5732786B2 (en) Method for producing optical polyester film
US8877343B2 (en) Laminated polyester film
JP6624054B2 (en) Laminated film and method for producing the same
JP6384325B2 (en) Laminated film and method for producing the same
TWI445622B (en) Laminated polyester film and anti-reflectance film
JPWO2006035684A1 (en) Laminated film
JP5983158B2 (en) Optical laminated film
WO2011135994A1 (en) Laminated polyester film
JP2018154004A (en) Laminated film
JP2014198405A (en) Conductive optical member
JP2016078455A (en) Laminate film and method for producing the same
KR102537733B1 (en) Laminated film and manufacturing method thereof
JP6539954B2 (en) Laminated film
JP2005313450A (en) Reflection preventing film
JP6372197B2 (en) Laminated polyester film and method for producing the same
JP2019038247A (en) Laminated film and method for producing the same
WO2012169309A1 (en) Coated film
JP2016210039A (en) Hard coat film
JP2016210040A (en) Double-sided hard coat film
JP2015013417A (en) Laminated polyester film for optical use
JP2020040350A (en) Laminated film roll
JP2018079575A (en) Laminated film and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016519409

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755265

Country of ref document: EP

Kind code of ref document: A1