JP7419817B2 - Resin film and its manufacturing method - Google Patents

Resin film and its manufacturing method Download PDF

Info

Publication number
JP7419817B2
JP7419817B2 JP2019547738A JP2019547738A JP7419817B2 JP 7419817 B2 JP7419817 B2 JP 7419817B2 JP 2019547738 A JP2019547738 A JP 2019547738A JP 2019547738 A JP2019547738 A JP 2019547738A JP 7419817 B2 JP7419817 B2 JP 7419817B2
Authority
JP
Japan
Prior art keywords
resin film
conductive
resin
phase
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019547738A
Other languages
Japanese (ja)
Other versions
JPWO2020071022A1 (en
Inventor
忠彦 岩谷
悠 阿部
翔 坪倉
佳南 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2020071022A1 publication Critical patent/JPWO2020071022A1/en
Application granted granted Critical
Publication of JP7419817B2 publication Critical patent/JP7419817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/14Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a face layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、樹脂フィルムおよびその製造方法に関する。 The present invention relates to a resin film and a method for manufacturing the same.

熱可塑性樹脂フィルム、中でも二軸配向ポリエステルフィルムは、機械的性質、電気的性質、寸法安定性、透明性、耐薬品性などに優れた性質を有するため、磁気記録材料、包装材料などの多くの用途において広く使用されている。特に近年では各種工業製品の加工工程におけるキャリアフィルムの他、タッチパネル、液晶ディスプレイパネル(LCD)、プラズマディスプレイパネル(PDP)、有機エレクトロルミネッセンス(有機EL)、等の表示部材用途をはじめとした各種光学用フィルムなど、ポリエステルフィルムに要求される品位は益々高まっている。このような背景の中でポリエステルフィルムの製造工程や加工工程におけるキズや異物の抑制を目的に「帯電防止性」と「耐スクラッチ性」の両立が求められている。 Thermoplastic resin films, especially biaxially oriented polyester films, have excellent properties such as mechanical properties, electrical properties, dimensional stability, transparency, and chemical resistance, so they are used in many applications such as magnetic recording materials and packaging materials. Widely used in various applications. Particularly in recent years, in addition to carrier films used in the processing of various industrial products, various optical applications including display materials such as touch panels, liquid crystal display panels (LCD), plasma display panels (PDP), and organic electroluminescence (organic EL) have been developed. The quality required of polyester films, such as those used in industrial applications, is increasing. Against this background, there is a demand for both "antistatic properties" and "scratch resistance" for the purpose of suppressing scratches and foreign substances in the manufacturing and processing processes of polyester films.

帯電防止性は、帯電による塵埃付着に起因する異物欠点を抑制する目的で付与される。例えば特許文献1にはポリエステル樹脂に帯電防止を添加し塗布する方法が、特許文献2にはスチレンスルホン酸共重合体を塗布する方法がそれぞれ記載されている。実用上の課題として、使用する際の湿度や温度、製造からの経過時間のような環境の変化により、その帯電防止性が変動することがしばしば問題となっている。 Antistatic property is imparted for the purpose of suppressing foreign matter defects caused by dust adhesion due to charging. For example, Patent Document 1 describes a method in which an antistatic agent is added to a polyester resin and applied thereto, and Patent Document 2 describes a method in which a styrene sulfonic acid copolymer is applied. As a practical issue, it is often a problem that the antistatic property changes due to changes in the environment such as humidity and temperature during use and the elapsed time from manufacture.

一方、耐スクラッチ性は加工時の搬送ロールへの接触やすべりによる表面の削れを抑制する目的で付与される。例えば紫外線(UV)硬化性樹脂からなる層(ハードコート層)を積層したハードコートフィルムが用いられているが、裁断や打ち抜きなどの際に、耐スクラッチ層にクラック(ひび割れ)が入らないよう、綺麗に打ち抜ける加工性が必要である。加工性が悪いと端部にクラックが生じ意匠性を損なう、または欠片が欠点に繋がるという不具合が生じる。 On the other hand, scratch resistance is provided for the purpose of suppressing surface abrasion due to contact with conveyor rolls during processing or slippage. For example, a hard coat film is used, which is a laminated layer (hard coat layer) made of ultraviolet (UV) curable resin. Processability that allows for clean punching is required. If workability is poor, cracks may occur at the edges, impairing the design, or fragments may lead to defects.

かかる要求に対して、特許文献3ではハードコート層に導電性材料を混合したフィルムが特許文献4では帯電防止層の上面を更にハードコート層で塗布する積層フィルムがそれぞれ提案されている。 In response to such demands, Patent Document 3 proposes a film in which a conductive material is mixed in a hard coat layer, and Patent Document 4 proposes a laminated film in which the upper surface of the antistatic layer is further coated with a hard coat layer.

特開昭61-204240号公報Japanese Unexamined Patent Publication No. 61-204240 特開平7-101016号公報Japanese Unexamined Patent Publication No. 7-101016 特開2011-033658号公報JP2011-033658A 特開2008-176317号公報JP2008-176317A

しかしながら、例えば特許文献1および2の帯電防止層を有する積層フィルムには加工工程でのキズを抑制する効果が不足する。一方、特許文献3および4に記載の技術であればキズを抑制することは可能となる。しかしながら特許文献3では耐スクラッチ性と帯電防止性を十分に両立することが出来ていない。また特許文献4の技術では帯電防止性能はハードコート加工後の工程では不十分となる。 However, for example, the laminated films having antistatic layers disclosed in Patent Documents 1 and 2 lack the effect of suppressing scratches during processing steps. On the other hand, the techniques described in Patent Documents 3 and 4 make it possible to suppress scratches. However, in Patent Document 3, it is not possible to sufficiently achieve both scratch resistance and antistatic property. Furthermore, in the technique of Patent Document 4, the antistatic performance is insufficient in the process after hard coating.

そこで、本発明では上記の欠点を解消し、帯電防止性と耐スクラッチ性の両立が可能な樹脂フィルムを、安定的に大量生産可能な技術を提供することを課題とする。 Therefore, it is an object of the present invention to provide a technology that can eliminate the above-mentioned drawbacks and stably mass-produce a resin film that can achieve both antistatic properties and scratch resistance.

上記課題を解決するため本発明の樹脂フィルムは次の構成を有する。
(1)少なくとも一方の表面が、AFM(Atomic Force Microscope(原子間力顕微鏡))の導電測定モード(コンダクティブAFM)により測定される絶縁相(A)と導電相(B)を有し、前記絶縁相(A)と導電相(B)を有する表面を表面αとしたとき、前記表面αにおける絶縁相(A)の占める面積が40%以上、80%以下であり、前記表面αの表面抵抗率が1010Ω/□以下である樹脂フィルム。
(2)前記表面αにおける絶縁相(A)の平均ドメイン径が50nm以上200nm以下である(1)に記載の樹脂フィルム。
(3)前記表面αにおける前記絶縁相(A)の導電性Iと前記導電相(B)の導電性Iの比I/Iが100以上、100000以下である(1)または(2)に記載の樹脂フィルム。
(4)前記表面αにおける擦過処理前後のヘイズ変化が3.0%以下である(1)から(3)のいずれかに記載の樹脂フィルム。
(5)前記表面αにおける、絶縁相(A)の弾性率(G)が2000MPa以上50000MPa以下である(1)から(4)のいずれかに記載の樹脂フィルム。
(6)前記表面αにおける、絶縁相(A)の弾性率(G)と導電相(B)の弾性率(G)の比、G/Gが4以上20以下である(1)から(5)のいずれかに記載の樹脂フィルム。
(7)支持基材とその表面の形成された層(X)を含む2層以上の積層体である(1)から(6)のいずれかに記載の樹脂フィルム。
(8)前記絶縁相(A)がSi、Al、Ti、Zr,Se、Feからなる群から選ばれる、少なくとも1種の金属元素を含む金属酸化物粒子(a)を含有する(1)から(7)のいずれかに記載の樹脂フィルム
(9)前記導電相(B)が、ポリチオフェン系導電性化合物(b)とエポキシ樹脂、メラミン樹脂、オキサゾリン化合物、カルボジイミド化合物、イソシアネート化合物から選ばれる少なくとも1種類の架橋剤(c)を含有する(1)から(8)のいずれかに記載の樹脂フィルム。
(10)(1)から(9)のいずれかに記載の樹脂フィルムの製造方法であって、結晶配向が完了する前のポリエステルフィルムの少なくとも片面に、塗料組成物(x)を塗布した後、少なくとも一方向に延伸処理及び熱処理を施す工程を含み、前記塗料組成物(x)が、金属酸化物粒子(a)、導電性成分(b)、エポキシ樹脂、メラミン樹脂、オキサゾリン化合物、カルボジイミド化合物、イソシアネート化合物から選ばれる少なくとも1種類の架橋剤(c)を含有する樹脂フィルムの製造方法。
In order to solve the above problems, the resin film of the present invention has the following configuration.
(1) At least one surface has an insulating phase (A) and a conductive phase (B) measured in a conductive measurement mode (conductive AFM) of an Atomic Force Microscope (AFM), and When a surface having a phase (A) and a conductive phase (B) is defined as a surface α, the area occupied by the insulating phase (A) on the surface α is 40% or more and 80% or less, and the surface resistivity of the surface α is is 10 10 Ω/□ or less.
(2) The resin film according to (1), wherein the average domain diameter of the insulating phase (A) on the surface α is 50 nm or more and 200 nm or less.
(3) The ratio I A /I B of the conductivity I A of the insulating phase (A) to the conductivity I B of the conductive phase ( B ) on the surface α is 100 or more and 100,000 or less (1) or ( 2) The resin film according to item 2).
(4) The resin film according to any one of (1) to (3), wherein the haze change before and after the abrasion treatment on the surface α is 3.0% or less.
(5) The resin film according to any one of (1) to (4), wherein the elastic modulus (G A ) of the insulating phase (A) on the surface α is 2000 MPa or more and 50000 MPa or less.
(6) The ratio of the elastic modulus (G A ) of the insulating phase ( A ) to the elastic modulus (G B ) of the conductive phase ( B ) on the surface α, G A /G B is 4 or more and 20 or less (1 ) to (5).
(7) The resin film according to any one of (1) to (6), which is a laminate of two or more layers including a supporting base material and a layer (X) formed on the surface thereof.
(8) From (1), wherein the insulating phase (A) contains metal oxide particles (a) containing at least one metal element selected from the group consisting of Si, Al, Ti, Zr, Se, and Fe. (9) The conductive phase (B) is a polythiophene-based conductive compound (b) and at least one selected from epoxy resins, melamine resins, oxazoline compounds, carbodiimide compounds, and isocyanate compounds. The resin film according to any one of (1) to (8), containing a type of crosslinking agent (c).
(10) The method for producing a resin film according to any one of (1) to (9), in which the coating composition (x) is applied to at least one side of the polyester film before crystal orientation is completed, and then The coating composition (x) includes a step of performing stretching treatment and heat treatment in at least one direction, and the coating composition (x) contains metal oxide particles (a), a conductive component (b), an epoxy resin, a melamine resin, an oxazoline compound, a carbodiimide compound, A method for producing a resin film containing at least one crosslinking agent (c) selected from isocyanate compounds.

本発明の樹脂フィルムは、帯電防止性と耐スクラッチ性を併せ持ち、帯電防止性の環境に応じた変化が少なく(すなわち安定性に優れ)、製造工程における工程数を短縮することで製造負荷を低減することが出来る。 The resin film of the present invention has both antistatic properties and scratch resistance, has little change in antistatic properties depending on the environment (that is, has excellent stability), and reduces the manufacturing burden by shortening the number of steps in the manufacturing process. You can.

本発明の樹脂フィルムの表面をAFM(Atomic Force Microscope(原子間力顕微鏡))の導電測定モード(コンダクティブAFM)測定にて得られる導電性の分布を示した模式図である。(なお、実際の測定では、1μm×1μmの導電性像を縦横それぞれ40分割し、25nm×25nmの1600個の領域に分けるが、模式図においては、1μm×1μmの導電性像を縦横それぞれ20分割したものを示している。)FIG. 2 is a schematic diagram showing the conductivity distribution obtained by measuring the surface of the resin film of the present invention in conductivity measurement mode (conductive AFM) of AFM (Atomic Force Microscope). (In actual measurements, a 1 μm x 1 μm conductive image is divided into 40 vertical and horizontal regions, and divided into 1600 regions of 25 nm x 25 nm. However, in the schematic diagram, a 1 μm x 1 μm conductive image is divided into 20 vertical and horizontal regions. (It shows the divided parts.)

以下、本発明の樹脂フィルムについて詳細に説明する。本発明の樹脂フィルムは、少なくとも一方の表面が、AFM(Atomic Force Microscope(原子間力顕微鏡))の導電測定モード(コンダクティブAFM)により測定される絶縁相(A)と導電相(B)を有し、前記絶縁相(A)と導電相(B)を有する表面を表面αとしたとき、前記表面αにおける絶縁相(A)の占める面積が40%以上、80%以下であり、前記積層フィルムの表面抵抗率が1×1010Ω/□以下であることが必要である。Hereinafter, the resin film of the present invention will be explained in detail. The resin film of the present invention has at least one surface having an insulating phase (A) and a conductive phase (B) measured by a conductive measurement mode (conductive AFM) of an Atomic Force Microscope (AFM). However, when the surface having the insulating phase (A) and the conductive phase (B) is defined as surface α, the area occupied by the insulating phase (A) on the surface α is 40% or more and 80% or less, and the laminated film It is necessary that the surface resistivity is 1×10 10 Ω/□ or less.

まず図1に、本発明の樹脂フィルムの表面をコンダクティブAFMにより測定される導電性の分布模式図を示す。図1に示すように本発明の樹脂フィルムは、少なくとも一方の表面に物性の異なる2つのドメインを有することが必要である。具体的にはコンダクティブAFM法によって表面を測定した際に、導電性が相対的に高いドメイン(以下導電相(B)と記載する)と導電性が相対的に低いドメイン(以下絶縁相(A)と記載する)が存在することが必要である。詳しくは後述するが、コンダクティブAFM測定にて得られた像を「ScionImage」で二値化(最大値:10nA、最小値:0pA、閾値180(黒を0、白を255とし、黒から白を256段階に表すグレースケールにおいて、10nA以上流れる領域を255(白)、0pAの領域を0(黒)になるように設定して導電性像を作成し、得られた導電性像においてグレースケール180以上の色味で表される電流値が高い部分を白、グレースケール180未満の色味で表される電流値が低い部分を黒と色分け))し、導電性像を得る。得られた導電性像1μm×1μmを縦横それぞれ40分割し、25nm×25nmの1600個の領域に分け、その1600個の領域において、1個の領域全てが黒一色のものを絶縁相(A)、白一色のものを導電相(B)とする。本発明の課題を解決するにあたり、発明者らが検討したところ、帯電防止性を付与するために使用される材料は、硬度の低いポリマーや低分子量の材料の集合として構成されることが多く、圧力や温度、湿度などの外界からの刺激に対してその特性が変化しやすいことを確認した。そして、これに対して帯電防止成分を実質的に含まないドメインである絶縁相(A)をフィルム表面に設けることにより、帯電防止性と耐スクラッチ性を両立すると共に、帯電防止性の安定化が達成できることを見出した。 First, FIG. 1 shows a schematic diagram of the conductivity distribution measured by conductive AFM on the surface of the resin film of the present invention. As shown in FIG. 1, the resin film of the present invention needs to have two domains with different physical properties on at least one surface. Specifically, when the surface is measured by the conductive AFM method, domains with relatively high conductivity (hereinafter referred to as conductive phase (B)) and domains with relatively low conductivity (hereinafter referred to as insulating phase (A)) are identified. ) must exist. The details will be described later, but the image obtained by conductive AFM measurement was binarized using "ScionImage" (maximum value: 10 nA, minimum value: 0 pA, threshold value 180 (black is 0, white is 255, black to white is A conductive image was created by setting the area where 10 nA or more flows as 255 (white) and the area of 0 pA as 0 (black) on a gray scale expressed in 256 steps, and in the obtained conductive image, the gray scale was 180. A conductive image is obtained by color-coding a portion with a high current value represented by the above color tones as white, and a portion having a low current value represented by a gray scale of less than 180 black. The resulting conductive image, 1 μm x 1 μm, is divided into 40 vertical and horizontal sections, and divided into 1,600 regions of 25 nm x 25 nm. Among the 1,600 regions, one region in which all black is solid is called the insulating phase (A). , the solid white one is the conductive phase (B). In solving the problems of the present invention, the inventors investigated and found that materials used to impart antistatic properties are often composed of a collection of polymers with low hardness or materials with low molecular weight. We confirmed that its properties change easily in response to external stimuli such as pressure, temperature, and humidity. In contrast, by providing an insulating phase (A), which is a domain that does not substantially contain an antistatic component, on the film surface, it is possible to achieve both antistatic properties and scratch resistance, and to stabilize the antistatic properties. I found out what I can achieve.

また前記表面αにおいて絶縁相(A)が表面α全体に占める面積には必要な割合が存在する。具体的には前記絶縁相(A)の占める面積が40%以上80%以下であることが必要である。表面α全体に占める面積が40%に満たない場合には帯電防止性能が不安定になったり、耐スクラッチ性が不十分な場合があり実用に耐えない。一方表面α全体に占める面積が80%を超える場合には、帯電防止性能が不足するため好ましくない。導電相(B)および絶縁相(A)の設計については、樹脂材料の相溶性の制御や塗布乾燥条件の調整、フィラー材料を使用する場合にはフィラー材料の配合量や粒子径などを用いて調整することが出来る。なお具体的な各領域の測定方法、および好ましい塗料組成物、製造方法についてはそれぞれ後述する。なお前記絶縁相(A)の表面α全体に占める面積の特に好ましい範囲は40%以上60%以下である。 Further, on the surface α, there is a necessary ratio of the area occupied by the insulating phase (A) to the entire surface α. Specifically, the area occupied by the insulating phase (A) needs to be 40% or more and 80% or less. If the area occupied by the entire surface α is less than 40%, the antistatic performance may become unstable or the scratch resistance may be insufficient, making it impractical. On the other hand, if the area occupied by the entire surface α exceeds 80%, it is not preferable because the antistatic performance is insufficient. Regarding the design of the conductive phase (B) and the insulating phase (A), control the compatibility of the resin material, adjust the coating drying conditions, and when using filler materials, adjust the blending amount and particle size of the filler materials. It can be adjusted. Note that specific methods for measuring each area, preferred coating compositions, and manufacturing methods will be described later. Note that a particularly preferable range of the area occupied by the entire surface α of the insulating phase (A) is 40% or more and 60% or less.

次に本発明の樹脂フィルムの表面αを擦過処理する前後のヘイズ変化について説明する。ここでヘイズとはJIS K 7136(2000)で規定される値を示し、フィルムのヘイズはフィルムの主にその透明度を表す指標として扱われる。フィルムは擦過処理により表面に傷が生じると透明度が低下する。従って、擦過処理前後のヘイズ値を比較することは、擦過処理により生じた表面の傷の量を評価することに相当する。 Next, a description will be given of changes in haze before and after subjecting the surface α of the resin film of the present invention to the abrasion treatment. Here, the haze refers to a value defined in JIS K 7136 (2000), and the haze of a film is treated as an index that mainly indicates the transparency of the film. When scratches occur on the surface of a film due to abrasion treatment, transparency decreases. Therefore, comparing the haze values before and after the scratching process corresponds to evaluating the amount of scratches on the surface caused by the scratching process.

本発明の樹脂フィルムの表面αは、後述する条件で擦過処理する前と後のヘイズ変化が3.0%以下であることが好ましい。3.0%を超える場合には、塗膜の硬度が不足する、もしくは十分な造膜性が得られていない、または後述する絶縁相(A)の形成が不十分であることに相当し、結果として単に耐スクラッチ性が不足するばかりでなく、帯電防止性が不安定となり、特に酸素暴露の条件で帯電防止性能が変動しやすくなり十分な安定性が得られない場合がある。なお具体的な擦過処理の方法およびヘイズの測定方法については後述する。より好ましくは2.5%以下であり、さらに好ましくは1.9%以下であることが好ましい。 The surface α of the resin film of the present invention preferably has a haze change of 3.0% or less before and after the abrasion treatment under the conditions described below. If it exceeds 3.0%, it corresponds to insufficient hardness of the coating film, insufficient film forming properties, or insufficient formation of the insulating phase (A) described below. As a result, not only the scratch resistance is insufficient, but also the antistatic property becomes unstable. In particular, the antistatic property tends to fluctuate under conditions of oxygen exposure, and sufficient stability may not be obtained. Note that a specific method of abrasion treatment and a method of measuring haze will be described later. It is more preferably 2.5% or less, and even more preferably 1.9% or less.

更に本発明の樹脂フィルムの表面αは、表面抵抗率が1×1010Ω/□以下であることが必要である。表面抵抗率は、後述する測定方法により求められる値であり、前述のAFMの導電測定モードによる測定に比べて、樹脂フィルム表面の、よりマクロな範囲の平均的な導電性を表す指標である。表面抵抗率が1×1010Ω/□を超える場合には、前述の絶縁相(A)の占める割合が多すぎたり、導電相(B)の性能が不足しているため、十分な帯電防止性能が得られない。表面抵抗率の測定方法については後述する。表面抵抗率としては1×10Ω/□以下が好ましく、1×10Ω/□以下が特に好ましい。一方、下限については特に限定されないが、造膜性やコストの観点から実用的な構成では、1×10Ω/□以上であることが好ましい。Further, the surface α of the resin film of the present invention needs to have a surface resistivity of 1×10 10 Ω/□ or less. The surface resistivity is a value determined by the measurement method described below, and is an index representing the average conductivity in a more macroscopic range of the resin film surface compared to the measurement by the conductivity measurement mode of the AFM described above. If the surface resistivity exceeds 1× 10 Ω/□, the ratio of the insulating phase (A) mentioned above may be too large, or the conductive phase (B) may not have sufficient antistatic properties. Performance cannot be obtained. A method for measuring surface resistivity will be described later. The surface resistivity is preferably 1×10 9 Ω/□ or less, particularly preferably 1×10 7 Ω/□ or less. On the other hand, the lower limit is not particularly limited, but is preferably 1×10 4 Ω/□ or more in a practical configuration from the viewpoint of film-forming properties and cost.

[樹脂フィルムおよび積層樹脂フィルム]
本発明における樹脂フィルムを構成する樹脂は、特に限られるものでは無く、例えば、公知のアクリル樹脂やポリエステル樹脂、ウレタン樹脂、メラミン樹脂、エポキシ樹脂などが挙げられる。本発明においては、後述する好ましい製造方法にて作成する場合の安定性の観点から、アクリル樹脂およびメラミン樹脂であることが好ましい。
[Resin film and laminated resin film]
The resin constituting the resin film in the present invention is not particularly limited, and examples thereof include known acrylic resins, polyester resins, urethane resins, melamine resins, and epoxy resins. In the present invention, acrylic resins and melamine resins are preferred from the viewpoint of stability when produced by the preferred manufacturing method described below.

本発明における樹脂フィルムは、少なくとも一方の表面に前述の条件を満たす表面αを有するものであればよく、単層フィルムであっても、積層フィルムであってもよい。支持基材の少なくとも一方の面、または両方の面に形成された層を有してもよい。 The resin film in the present invention may have a surface α that satisfies the above conditions on at least one surface, and may be a single layer film or a laminated film. It may have a layer formed on at least one surface or both surfaces of the supporting base material.

ここで本発明における「層」とは、前記積層体の表面から厚み方向に向かい、隣接する部位との構成元素の組成、粒子等の含有物の形状、厚み方向の物理特性が不連続な境界面を有することで区別される有限の厚みを有する部位を指す。より具体的には、前記積層体を表面から厚み方向に各種組成/元素分析装置(FT-IR、XPS、XRF、EDAX、SIMS、EPMA、EELS等)、電子顕微鏡(透過型、走査型)または光学顕微鏡にて断面観察した際、前記不連続な境界面により区別され、有限の厚みを有する部位を指す。 Here, the "layer" in the present invention refers to a boundary in which the composition of constituent elements, the shape of inclusions such as particles, and the physical properties in the thickness direction are discontinuous with respect to the adjacent parts in the thickness direction from the surface of the laminate. Refers to a region with a finite thickness that is distinguished by having a surface. More specifically, the laminate is examined in the thickness direction from the surface using various composition/element analyzers (FT-IR, XPS, XRF, EDAX, SIMS, EPMA, EELS, etc.), electron microscopes (transmission type, scanning type), or It refers to a region that is distinguished by the discontinuous boundary surface and has a finite thickness when a cross section is observed with an optical microscope.

[層(X)]
本発明の樹脂フィルムは、支持基材の少なくとも一方の面に、帯電防止性および耐スクラッチ性の観点から設計された、層(X)を有することが好ましく、また、層(X)が前記表面αを有することが好ましい。層(X)を構成する樹脂は、前述の樹脂フィルムを構成する樹脂として挙げられた樹脂を好ましく用いることができる。層(X)の形成方法は、前述の条件満たすことができれば特に限定されないが、塗料組成物により形成されていることが好ましい。支持基材の製膜途中で後述する塗料組成物を塗布したフィルムを作成してもよいし、支持基材の製膜後、塗料組成物を支持基材に塗布し、乾燥、巻き取りを行ってもよい。
[Layer (X)]
The resin film of the present invention preferably has a layer (X) designed from the viewpoint of antistatic properties and scratch resistance on at least one surface of the supporting base material, and the layer (X) preferably has a layer (X) on at least one surface of the supporting base material. It is preferable to have α. As the resin constituting the layer (X), the resins listed above as the resin constituting the resin film can be preferably used. The method for forming the layer (X) is not particularly limited as long as the above-mentioned conditions can be met, but it is preferably formed using a coating composition. A film may be created by applying the coating composition described below during the film formation of the support base material, or after the film formation of the support base material, the paint composition is applied to the support base material, dried, and rolled up. You can.

例えば層(X)を塗布により形成する場合、層(X)の厚み(乾燥後の塗布厚み)は、好ましくは、10~2000nm、より好ましくは40~1000nm、さらに好ましくは80~800nmである。厚みが10nm~2000nmであると、層(X)によって付与したい機能、即ち帯電防止性、耐スクラッチ性と塗膜品位を得ることができるため好ましい。 For example, when layer (X) is formed by coating, the thickness of layer (X) (coating thickness after drying) is preferably 10 to 2000 nm, more preferably 40 to 1000 nm, and still more preferably 80 to 800 nm. It is preferable that the thickness is from 10 nm to 2000 nm because the desired functions to be imparted by the layer (X), ie, antistatic properties, scratch resistance, and coating film quality, can be obtained.

[AFMを用いた導電性測定]
本発明の樹脂フィルムは、少なくとも一方の表面が、コンダクティブAFMにて測定した際に導電相(B)と絶縁相(A)が観察されるものである。ここで原子間力顕微鏡による導電性測定について概要を説明する。原子感力顕微鏡は原子レベルの鋭い先端を有するカンチレバーを用いて、表面の形状を走査することで凹凸形状を計測する手法であるが、この測定の際に導電性を有するカンチレバーを使用し、カンチレバー-試料間に電圧を印加することで、フィルム表面の微弱な電流の発生を検知、マッピングすることが出来る。このような測定を導電測定モードあるいはコンダクティブAFM(Conductive
AFM:c-AFM)を呼称される。コンダクティブAFMの測定では、絶縁性の空気層を超えて染み出す微細な電流(トンネル電流)を検知することが可能であり、カンチレバー直下の微小領域の僅かな導電性の違い(フィルム表面の導電性)を効率よく検出することが可能となる。詳細および測定方法については後述する。
[Conductivity measurement using AFM]
The resin film of the present invention has a conductive phase (B) and an insulating phase (A) observed on at least one surface when measured by conductive AFM. Here, we will provide an overview of conductivity measurement using an atomic force microscope. Atomic force microscopy is a method that uses a cantilever with an atomic-level sharp tip to measure irregularities by scanning the surface shape. - By applying a voltage between samples, it is possible to detect and map the generation of weak currents on the film surface. Such measurements can be performed in conductive measurement mode or conductive AFM (Conductive AFM).
AFM: called c-AFM). In conductive AFM measurements, it is possible to detect minute currents (tunnel currents) that seep beyond the insulating air layer, and it is possible to detect minute differences in conductivity in a minute area directly under the cantilever (conductivity on the film surface). ) can be detected efficiently. Details and measurement methods will be described later.

本発明の樹脂フィルムにおいて、表面αにおける絶縁相(A)のなすドメインの形状には好ましい範囲が存在する。具体的には表面αにおける絶縁相(A)の平均ドメイン径は50nm以上200nm以下であることが好ましく、50nm以上100nm以下が特に好ましい。絶縁相(A)の平均ドメイン径が50nmに満たない場合には耐スクラッチ性の低下や帯電防止性能が不安定化する場合がある。一方、絶縁相(A)の平均ドメイン径が200nmを超える場合は、導電パスの形成が阻害され、結果として十分な帯電防止性が得られない場合がある。平均ドメイン径を制御する方法としては、後述する好ましい塗料組成物の中で金属酸化物を絶縁相(A)の構成材料とする場合には、その粒子径を用いて制御することが出来る。 In the resin film of the present invention, there is a preferable range for the shape of the domains formed by the insulating phase (A) on the surface α. Specifically, the average domain diameter of the insulating phase (A) on the surface α is preferably 50 nm or more and 200 nm or less, particularly preferably 50 nm or more and 100 nm or less. If the average domain diameter of the insulating phase (A) is less than 50 nm, the scratch resistance may decrease and the antistatic performance may become unstable. On the other hand, if the average domain diameter of the insulating phase (A) exceeds 200 nm, the formation of conductive paths may be inhibited, and as a result, sufficient antistatic properties may not be obtained. As a method for controlling the average domain diameter, when a metal oxide is used as a constituent material of the insulating phase (A) in a preferred coating composition described below, the particle diameter can be used to control the average domain diameter.

[前記導電相(B)の導電性Iと前記絶縁相(A)の導電性I
本発明の樹脂フィルムをコンダクティブAFMにて測定した際に得られる電流値(導電性の指標)には好ましい数値範囲が存在する。具体的には導電相(B)の導電性Iと前記絶縁相(A)の導電性Iの比I/Iが100以上、100000以下であることが好ましく、3000以上100000以下が特に好ましい。導電性の比I/Iが100に満たない場合には、前述の絶縁相(A)と導電相(B)の分離構造の形成が不十分となり、耐スクラッチ性が不足する場合や帯電防止性能が不安定となる場合がある。一方上限については特に制限されないが、100000以下であることが好ましい。詳細および測定方法については後述する。
[Conductivity I B of the conductive phase ( B ) and conductivity I A of the insulating phase (A)]
There is a preferable numerical range for the current value (indicator of conductivity) obtained when the resin film of the present invention is measured by conductive AFM. Specifically, the ratio IB/ IA of the conductivity IB of the conductive phase (B) to the conductivity IB of the insulating phase ( A ) is preferably 100 or more and 100000 or less, and 3000 or more and 100000 or less. Particularly preferred. If the conductivity ratio I B /I A is less than 100, the separation structure between the insulating phase (A) and the conductive phase (B) described above will not be sufficiently formed, resulting in insufficient scratch resistance or charging. Prevention performance may become unstable. On the other hand, the upper limit is not particularly limited, but is preferably 100,000 or less. Details and measurement methods will be described later.

[AFMを用いた弾性率測定]
また、本発明の樹脂フィルムの表面αは、原子間力顕微鏡により測定される弾性率に好ましい数値範囲が存在する。具体的には絶縁相(A)の弾性率Gは2000MPa以上50000MPa以下が好ましく、5000MPa以上20000MPa以下が特に好ましい。2000MPaに満たない場合には前述の耐スクラッチ性が得られない場合や、帯電防止性能の安定性が得られない場合がある。一方で50000MPaを超える場合にはフィルムを加工する際に割れが発生しやすくなるなど、フィルムの加工性が低減する場合がある。
[Elastic modulus measurement using AFM]
In addition, the surface α of the resin film of the present invention has a preferable numerical range for the elastic modulus measured by an atomic force microscope. Specifically, the elastic modulus GA of the insulating phase (A) is preferably 2,000 MPa or more and 50,000 MPa or less, particularly preferably 5,000 MPa or more and 20,000 MPa or less. If it is less than 2000 MPa, the above-mentioned scratch resistance may not be obtained or the stability of antistatic performance may not be obtained. On the other hand, if it exceeds 50,000 MPa, the processability of the film may be reduced, such as cracks being more likely to occur during film processing.

また、本発明の樹脂フィルムの表面αは、絶縁相(A)の弾性率Gと導電相(B)の弾性率Gの比G/Gにも好ましい範囲が存在する。具体的にはG/Gが4以上20以下であることが好ましく、6以上16以下であることがより好ましく、8以上12以下であることが特に好ましい。G/Gが4に満たない場合および20を超える場合には、樹脂フィルムの硬さが柔軟側または硬質側に偏るため、耐スクラッチ性と加工性の両立が困難となる場合がある。Furthermore, the surface α of the resin film of the present invention has a preferable range for the ratio G A / GB of the elastic modulus G A of the insulating phase (A) to the elastic modulus G B of the conductive phase (B). Specifically, G A / GB is preferably 4 or more and 20 or less, more preferably 6 or more and 16 or less, and particularly preferably 8 or more and 12 or less. When G A /G B is less than 4 or more than 20, the hardness of the resin film is biased toward the flexible side or the hard side, and it may be difficult to achieve both scratch resistance and workability.

また、本発明の樹脂フィルムの表面αにおいては、導電相(B)の弾性率Gは500MPa以上2000MPa以下が好ましい。500MPa未満では樹脂フィルムの耐スクラッチ性が低下する場合があり、2000MPaを超えると加工性が低下する場合がある。Further, on the surface α of the resin film of the present invention, the elastic modulus G B of the conductive phase (B) is preferably 500 MPa or more and 2000 MPa or less. If it is less than 500 MPa, the scratch resistance of the resin film may decrease, and if it exceeds 2000 MPa, the processability may decrease.

ここで原子間力顕微鏡による弾性率測定は、極微小部分の探針による圧縮試験であり、押し付け力による変形度合いであるため、ばね定数が既知のカンチレバーを用いて、表面αの弾性率およびその空間分布が測定できる。具体的には前述の導電性測定の際に導電相(B)もしくは絶縁相(A)として検出された各領域にて後述するフォースカーブを測定することにより、各領域の弾性率情報を得ることが可能となる。詳細は実施例の項で記載するが、下記に示す原子間力顕微鏡を用い、カンチレバー先端の探針を、表面αに接触させ、55nNの押し付け力によりフォースカーブを測定して求めたカンチレバーの撓み量を測定することができる。またこの時、空間分解能については原子間力顕微鏡のスキャン範囲およびスキャンライン数に依存するが、現実的な測定条件では、概ね50nm程度が下限である。詳細および測定方法については後述する。 Here, elastic modulus measurement using an atomic force microscope is a compression test using a probe on an extremely small part, and the degree of deformation due to pressing force is measured. Therefore, a cantilever with a known spring constant is used to measure the elastic modulus of the surface α and its Spatial distribution can be measured. Specifically, elastic modulus information of each region is obtained by measuring a force curve described later in each region detected as a conductive phase (B) or an insulating phase (A) during the conductivity measurement described above. becomes possible. Although the details will be described in the Examples section, the deflection of the cantilever was determined by using the atomic force microscope shown below, bringing the probe at the tip of the cantilever into contact with the surface α, and measuring the force curve with a pressing force of 55 nN. Amounts can be measured. At this time, the spatial resolution depends on the scan range and number of scan lines of the atomic force microscope, but under realistic measurement conditions, the lower limit is approximately 50 nm. Details and measurement methods will be described later.

[支持基材、ポリエステルフィルム]
前述したとおり、本発明の樹脂フィルムは、単層フィルムであっても、積層フィルムであってもよいが、好ましい形態としては、支持基材とその少なくとも一方の表面に表面αを有する層(X)が積層された樹脂フィルムである。支持基材として用いられる樹脂は特に限られるものでは無いが、耐熱性およびコストの観点からは、ポリエステルが挙げられる。支持基材は、ポリエステルを主成分とする層であることが好ましい(以下支持基材として用いられるポリエステルを主成分とする層をポリエステルフィルムと呼ぶ場合がある)。なお、本発明において主成分とは、層を構成する樹脂全体に対して50重量%以上をしめる成分をあらわす。
[Supporting base material, polyester film]
As mentioned above, the resin film of the present invention may be a single layer film or a laminated film, but a preferred form is a support base material and a layer having a surface α on at least one surface thereof (X ) is a laminated resin film. The resin used as the supporting base material is not particularly limited, but from the viewpoint of heat resistance and cost, polyester may be used. The supporting base material is preferably a layer containing polyester as the main component (hereinafter, a layer containing polyester as the main component used as the supporting base material may be referred to as a polyester film). In the present invention, the main component refers to a component that accounts for 50% by weight or more based on the entire resin constituting the layer.

本発明において、支持基材は、粒子の含有量が、支持基材全体に対して、0.1重量%以下であることが好ましい。粒子の含有量を上記の範囲とすることで、内部へイズを0.2%以下とすることができ、透明性に優れた樹脂フィルムとすることができる。 In the present invention, the supporting base material preferably has a particle content of 0.1% by weight or less based on the entire supporting base material. By setting the content of particles within the above range, the internal haze can be reduced to 0.2% or less, and a resin film with excellent transparency can be obtained.

以下、本発明の樹脂フィルムの支持基材に用いられるポリエステルについて述べる。まずポリエステルとは、エステル結合を主鎖に有する高分子の総称であって、エチレンテレフタレート、プロピレンテレフタレート、エチレン-2,6-ナフタレート、ブチレンテレフタレート、プロピレン-2,6-ナフタレート、エチレン-α,β-ビス(2-クロロフェノキシ)エタン-4,4’-ジカルボキシレートなどから選ばれた少なくとも1種の構成成分とするものを好ましく用いることができる。 The polyester used for the support base material of the resin film of the present invention will be described below. First of all, polyester is a general term for polymers having ester bonds in the main chain, including ethylene terephthalate, propylene terephthalate, ethylene-2,6-naphthalate, butylene terephthalate, propylene-2,6-naphthalate, ethylene-α, β -Bis(2-chlorophenoxy)ethane-4,4'-dicarboxylate and the like can be preferably used.

上記ポリエステルを使用したポリエステルフィルムは、二軸配向されたものであるのが好ましい。二軸配向ポリエステルフィルムとは、一般に、未延伸状態のポリエステルシート又はフィルムを長手方向および長手方向に直交する幅方向に各々2.5~5倍程度延伸され、その後、熱処理を施されて、結晶配向が完了されたものであり、広角X線回折で二軸配向のパターンを示すものをいう。ポリエステルフィルムが二軸配向している場合には、熱安定性、特に寸法安定性や機械的強度が十分で、平面性も良好である。 The polyester film using the above polyester is preferably biaxially oriented. Biaxially oriented polyester film generally refers to an unstretched polyester sheet or film that is stretched approximately 2.5 to 5 times in the longitudinal direction and the width direction orthogonal to the longitudinal direction, and then heat-treated to produce crystallized It refers to a material whose orientation has been completed and which shows a biaxial orientation pattern in wide-angle X-ray diffraction. When the polyester film is biaxially oriented, it has sufficient thermal stability, particularly dimensional stability and mechanical strength, and has good flatness.

また、ポリエステルフィルム中には、各種添加剤、例えば、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、有機系易滑剤、顔料、染料、有機又は無機の微粒子、充填剤、帯電防止剤、核剤などがその特性を悪化させない程度に添加されていてもよい。 In addition, various additives such as antioxidants, heat stabilizers, weather stabilizers, ultraviolet absorbers, organic lubricants, pigments, dyes, organic or inorganic fine particles, fillers, and antistatic agents are added to the polyester film. A nucleating agent, a nucleating agent, etc. may be added to an extent that does not deteriorate the properties.

ポリエステルフィルムの厚みは特に限定されるものではなく、用途や種類に応じて適宜選択されるが、機械的強度、ハンドリング性などの点から、通常は好ましくは10~500μm、より好ましくは15~250μm、最も好ましくは20~200μmである。また、ポリエステルフィルムは、共押出しによる複合フィルムであってもよいし、得られたフィルムを各種の方法で貼り合わせたフィルムであっても良い。 The thickness of the polyester film is not particularly limited and is appropriately selected depending on the use and type, but from the viewpoint of mechanical strength, handling properties, etc., it is usually preferably 10 to 500 μm, more preferably 15 to 250 μm. , most preferably 20 to 200 μm. Further, the polyester film may be a composite film produced by coextrusion, or a film obtained by bonding obtained films together by various methods.

[樹脂フィルムの製造方法]
本発明の樹脂フィルムの製造方法について以下に例を示して説明するが、以下に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す例により限定的に解釈されるべきものではない。
[Method for manufacturing resin film]
The method for producing the resin film of the present invention will be explained below with reference to examples, but the materials, amounts used, proportions, processing details, processing procedures, etc. shown below may be changed as appropriate without departing from the spirit of the present invention. can. Therefore, the scope of the present invention should not be construed as being limited by the examples shown below.

本発明の樹脂フィルムは、金属酸化物粒子(a)とバインダー成分を含む塗料組成物をポリエステルフィルム上へ塗布し、塗料組成物が溶媒を含む場合には、溶媒を乾燥させることによって、ポリエステルフィルム上に層(X)を形成することによって得ることができる。 The resin film of the present invention can be produced by applying a coating composition containing metal oxide particles (a) and a binder component onto a polyester film, and when the coating composition contains a solvent, drying the solvent. It can be obtained by forming a layer (X) thereon.

また本発明において、塗料組成物に溶媒を含有せしめる場合は、溶媒として水系溶媒を用いること(水系塗剤とすること)が好ましい。溶媒として水系溶媒を用いると、乾燥工程での溶媒の急激な蒸発を抑制でき、均一な組成物層を形成できるだけでなく、環境負荷の点で優れている。 In the present invention, when the coating composition contains a solvent, it is preferable to use an aqueous solvent as the solvent (to form a water-based coating). When an aqueous solvent is used as the solvent, rapid evaporation of the solvent during the drying process can be suppressed, and a uniform composition layer can be formed, which is also excellent in terms of environmental load.

ここで、水系溶媒とは、水、または水とメタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール類、アセトン、メチルエチルケトンなどのケトン類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類など水に可溶である有機溶媒が任意の比率で混合させているものを指す。 Here, the aqueous solvent refers to water, or water and alcohols such as methanol, ethanol, isopropyl alcohol, and butanol, ketones such as acetone and methyl ethyl ketone, and glycols such as ethylene glycol, diethylene glycol, and propylene glycol that are soluble in water. Refers to a mixture of organic solvents in an arbitrary ratio.

なお、金属酸化物粒子(a)や、バインダー成分を水系塗剤化する方法としては、金属酸化物粒子(a)やバインダー成分にカルボン酸やスルホン酸といった親水基を含有せしめる方法や、乳化剤を用いてエマルジョン化する方法があげられる。 The metal oxide particles (a) and the binder component can be made into a water-based coating by including a hydrophilic group such as carboxylic acid or sulfonic acid in the metal oxide particles (a) or the binder component, or by adding an emulsifier. An example of this method is to make an emulsion using

塗料組成物(x)のポリエステルフィルムへの塗布方法はインラインコート法であることが好ましい。インラインコート法とは、ポリエステルフィルムの製造の工程内で塗布を行う方法である。具体的には、ポリエステル樹脂を溶融押し出ししてから二軸延伸後熱処理して巻き上げるまでの任意の段階で塗布を行う方法を指し、通常は、溶融押出し後・急冷して得られる実質的に非晶状態の未延伸(未配向)ポリエステルフィルム(Aフィルム)、その後に長手方向に延伸された一軸延伸(一軸配向)ポリエステルフィルム(Bフィルム)、またはさらに幅方向に延伸された熱処理前の二軸延伸(二軸配向)ポリエステルフィルム(Cフィルム)の何れかのフィルムに塗布する。 The coating composition (x) is preferably applied to the polyester film by an in-line coating method. The in-line coating method is a method in which coating is performed within the process of manufacturing a polyester film. Specifically, it refers to a method in which coating is performed at any stage from melt extrusion of polyester resin to biaxial stretching, heat treatment, and winding. An unstretched (unoriented) polyester film in a crystalline state (A film), a uniaxially stretched (uniaxially oriented) polyester film (B film) that is then stretched in the longitudinal direction, or a biaxially stretched polyester film that is further stretched in the width direction before heat treatment. It is applied to any stretched (biaxially oriented) polyester film (C film).

本発明では、結晶配向が完了する前の上記Aフィルム、Bフィルム、の何れかのポリエステルフィルムに、塗料組成物を塗布し、その後、ポリエステルフィルムを一軸方向又は二軸方向に延伸し、溶媒の沸点より高い温度で熱処理を施しポリエステルフィルムの結晶配向を完了させるとともに層(X)および表面αを設ける方法を採用することが好ましい。この方法によれば、ポリエステルフィルムの製膜と、塗料組成物の塗布乾燥(すなわち、層(X)の形成)を同時に行うことができるために製造コスト上のメリットがある。また、塗布後に延伸を行うことで層(X)中の金属酸化物粒子(a)の凝集状態を制御することが可能となり、絶縁相(A)の面積やドメイン径などを設計し耐スクラッチ性や帯電防止性を向上することが出来る。 In the present invention, a coating composition is applied to either the polyester film A or B before the crystal orientation is completed, and then the polyester film is stretched uniaxially or biaxially, and the solvent is removed. It is preferable to adopt a method in which heat treatment is performed at a temperature higher than the boiling point to complete the crystal orientation of the polyester film and at the same time provide the layer (X) and the surface α. According to this method, the production of the polyester film and the coating and drying of the coating composition (that is, the formation of the layer (X)) can be performed simultaneously, which is advantageous in terms of production costs. In addition, by stretching after coating, it is possible to control the agglomeration state of the metal oxide particles (a) in the layer (X), and the area and domain diameter of the insulating phase (A) can be designed to improve scratch resistance. and antistatic properties can be improved.

中でも、長手方向に一軸延伸されたフィルム(Bフィルム)に、塗料組成物を塗布し、その後、幅方向に延伸し、熱処理する方法が優れている。未延伸フィルムに塗布した後、二軸延伸する方法に比べ、延伸工程が1回少ないため、延伸による組成物層の欠陥や亀裂が発生しづらく、透明性や平滑性、帯電防止性に優れた組成物層を形成できるためである。 Among these, a method in which a coating composition is applied to a film uniaxially stretched in the longitudinal direction (B film), then stretched in the width direction, and heat-treated is excellent. Compared to the method of biaxially stretching after coating on an unstretched film, there is one less stretching step, so defects and cracks in the composition layer are less likely to occur due to stretching, and it has excellent transparency, smoothness, and antistatic properties. This is because a composition layer can be formed.

更に、インラインコート法で層(X)を設けることにより、塗料組成物を塗布した後に延伸処理が施されることによって、金属酸化物粒子(a)の表面配列が促進され、また、金属酸化物粒子(a)が異方性を持った凝集体とすることが促進され、その結果、層(X)の絶縁相(A)の形状最適化し、帯電防止性を発現すると共に、耐スクラッチ性、加工性および、経時変化や湿度変化における帯電防止性能の安定性を良好にすることができる。 Furthermore, by providing the layer (X) using an in-line coating method, the surface alignment of the metal oxide particles (a) is promoted by applying a stretching treatment after applying the coating composition. The particles (a) are promoted to form anisotropic aggregates, and as a result, the shape of the insulating phase (A) of the layer (X) is optimized, and antistatic properties are exhibited, as well as scratch resistance and Processability and stability of antistatic performance over time and humidity changes can be improved.

本発明において層(X)は、上述した種々の利点から、インラインコート法により設けられることが好ましい。ここで、ポリエステルフィルムへの塗料組成物の塗布方式は、公知の塗布方式、例えばバーコート法、リバースコート法、グラビアコート法、ダイコート法、ブレードコート法等の任意の方式を用いることができる。 In the present invention, layer (X) is preferably provided by an in-line coating method due to the various advantages mentioned above. Here, the coating composition can be applied to the polyester film by any known coating method, such as a bar coating method, a reverse coating method, a gravure coating method, a die coating method, a blade coating method, or the like.

本発明において最良の層(X)の形成方法は、水系溶媒を用いた塗料組成物を、ポリエステルフィルム上にインラインコート法を用いて塗布し、乾燥、熱処理することによって形成する方法である。またより好ましくは、一軸延伸後のBフィルムに塗料組成物をインラインコートする方法である。本発明の樹脂フィルムの製造方法において、乾燥は塗料組成物の溶媒の除去を完了させるために、80~130℃の温度範囲で実施することができる。また、熱処理はポリエステルフィルムの結晶配向を完了させるとともに塗料組成物の熱硬化を完了させ層(X)の形成を完了させるために、160~240℃の温度範囲で実施することができる。上記の高温熱処理の温度および時間を変更することで、絶縁相(A)や導電相(B)の好ましい弾性率を調整することが可能であり、耐スクラッチ性や加工性を良好にすることが出来る。 The best method for forming layer (X) in the present invention is to apply a coating composition using an aqueous solvent onto a polyester film using an in-line coating method, dry it, and heat-treat it. Even more preferred is a method of in-line coating the coating composition on the B film after uniaxial stretching. In the method for producing a resin film of the present invention, drying can be carried out at a temperature in the range of 80 to 130° C. in order to complete the removal of the solvent from the coating composition. Further, the heat treatment can be carried out at a temperature in the range of 160 to 240° C. in order to complete the crystal orientation of the polyester film and to complete the thermal curing of the coating composition to complete the formation of layer (X). By changing the temperature and time of the above-mentioned high-temperature heat treatment, it is possible to adjust the preferred elastic modulus of the insulating phase (A) and the conductive phase (B), and it is possible to improve the scratch resistance and workability. I can do it.

次に、本発明の樹脂フィルムの製造方法について、ポリエステルフィルムとしてポリエチレンテレフタレート(以下、PET)フィルムを用いた場合を例にして説明するが、これに限定されるものではない。まず、PETのペレットを十分に真空乾燥した後、押出機に供給し、約280℃でシート状に溶融押し出し、冷却固化せしめて未延伸(未配向)PETフィルム(Aフィルム)を作製する。このフィルムを80~120℃に加熱したロールで長手方向に2.5~5.0倍延伸して一軸配向PETフィルム(Bフィルム)を得る。このBフィルムの片面に所定の濃度に調製した本発明の塗料組成物を塗布する。 Next, the method for producing a resin film of the present invention will be described using an example in which a polyethylene terephthalate (hereinafter referred to as PET) film is used as the polyester film, but the method is not limited thereto. First, PET pellets are sufficiently vacuum-dried, then supplied to an extruder, melted and extruded at about 280° C. into a sheet, and solidified by cooling to produce an unstretched (unoriented) PET film (A film). This film is stretched 2.5 to 5.0 times in the longitudinal direction using rolls heated to 80 to 120°C to obtain a uniaxially oriented PET film (B film). The coating composition of the present invention adjusted to a predetermined concentration is applied to one side of this B film.

この時、塗布前にPETフィルムの塗布面にコロナ放電処理等の表面処理を行ってもよい。コロナ放電処理等の表面処理を行うことで、塗料組成物のPETフィルムへの濡れ性が向上し、塗料組成物のはじきを防止し、均一な塗布厚みの層(X)を形成することができる。塗布後、PETフィルムの端部をクリップで把持して80~130℃の熱処理ゾーン(予熱ゾーン)へ導き、塗料組成物の溶媒を乾燥させる。乾燥後幅方向に1.1~5.0倍延伸する。引き続き160~240℃の熱処理ゾーン(熱固定ゾーン)へ導き1~30秒間の熱処理を行い、結晶配向を完了させる。 At this time, the coated surface of the PET film may be subjected to surface treatment such as corona discharge treatment before coating. Surface treatment such as corona discharge treatment improves the wettability of the coating composition to the PET film, prevents the coating composition from being repelled, and makes it possible to form a layer (X) with a uniform coating thickness. . After coating, the ends of the PET film are held with clips and guided to a heat treatment zone (preheating zone) at 80 to 130° C. to dry the solvent of the coating composition. After drying, it is stretched 1.1 to 5.0 times in the width direction. Subsequently, it is guided to a heat treatment zone (heat fixing zone) at 160 to 240°C and heat treated for 1 to 30 seconds to complete crystal orientation.

この熱処理工程(熱固定工程)で、必要に応じて幅方向、あるいは長手方向に3~15%の弛緩処理を施してもよい。かくして得られた樹脂フィルムは透明性、耐スクラッチ性、帯電防止性に優れた樹脂フィルムとなる。 In this heat treatment step (heat setting step), a relaxation treatment of 3 to 15% in the width direction or longitudinal direction may be performed as necessary. The resin film thus obtained has excellent transparency, scratch resistance, and antistatic properties.

なお、本発明の樹脂フィルムは、層(X)と支持基材の間に中間層を設けても良いが、中間層を設ける場合は、中間層を積層したフィルムの巻き取り時や、その後の本発明の層(X)を設けるまでの工程において、フィルムにキズがつく場合がある。そのため、本発明では、層(X)と支持基材が直接積層されていることが好ましい。 In addition, in the resin film of the present invention, an intermediate layer may be provided between the layer (X) and the supporting base material, but when an intermediate layer is provided, the film on which the intermediate layer is laminated is wound up, or after In the process up to providing the layer (X) of the present invention, the film may be scratched. Therefore, in the present invention, it is preferable that the layer (X) and the supporting base material are directly laminated.

本発明の樹脂フィルムは、支持基材の構成に制限はなく、例えば、A層のみからなる単層構成や、A層/B層の積層構成すなわち2種2層積層構成、A層/B層/A層の積層構成すなわち2種3層積層構成、A層/B層/C層の積層構成すなわち3種3層積層構成等の構成を挙げることができる。 The resin film of the present invention is not limited to the structure of the supporting base material, and includes, for example, a single-layer structure consisting of only the A layer, a laminated structure of A layer/B layer, that is, a two-layer laminated structure of two types, A layer/B layer Examples include a laminated structure of /A layer, that is, a two-type three-layer laminated structure, and a laminated structure of A layer/B layer/C layer, that is, a three-type and three-layer laminated structure.

本発明の樹脂フィルムにおける支持基材の積層方法は制限されるものではなく、例えば、共押出法による積層方法、貼り合わせによる積層方法、これの組み合わせによる方法等を挙げることができるが、透明性と製造安定性の観点から、共押出法を採用することが好ましい。積層体とする場合、それぞれの層に異なる機能を付与すること目的として、異なる樹脂構成としても良い。例えば、A層/B層/A層の積層構成すなわち2種3層積層構成とする場合には、透明性の観点からB層をホモポリエチレンテレフタレートで構成し、A層には、易滑性付与のために、粒子を添加する等の方法を挙げることができる。 The method of laminating the supporting base material in the resin film of the present invention is not limited, and examples include a laminating method by coextrusion, a laminating method by laminating, a method by a combination of these, etc. From the viewpoint of manufacturing stability, it is preferable to employ a coextrusion method. In the case of forming a laminate, different resin compositions may be used for the purpose of imparting different functions to each layer. For example, in the case of a laminated structure of A layer/B layer/A layer, that is, a two-type, three-layer laminated structure, the B layer is made of homopolyethylene terephthalate from the viewpoint of transparency, and the A layer is made of homopolyethylene terephthalate. For this purpose, methods such as adding particles can be mentioned.

[塗料組成物]
本発明の樹脂フィルムにおける層(X)は、層(X)を構成する塗料組成物を支持基材の少なくとも片面に塗布した後、熱処理することで製造されることが好ましい。塗料組成物は、具体的には、金属酸化物粒子、アクリル樹脂、バインダー樹脂、導電性化合物を含むことができる。また前記の成分に加えて、各種添加剤を含んでも良い。以下、塗料組成物に含む成分の好ましい形態について詳細を記載する。
[Coating composition]
The layer (X) in the resin film of the present invention is preferably manufactured by applying a coating composition constituting the layer (X) to at least one side of a supporting substrate and then heat-treating the coating composition. Specifically, the coating composition can include metal oxide particles, an acrylic resin, a binder resin, and a conductive compound. Moreover, in addition to the above-mentioned components, various additives may be included. Preferred forms of the components contained in the coating composition will be described in detail below.

[金属酸化物粒子(a)]
本発明の樹脂フィルムでは、絶縁相(A)がSi、Al、Ti、Zr、Se、Feからなる群から選ばれる、少なくとも1種の金属元素を含む金属酸化物粒子(a)を含有することが好ましい。金属酸化物粒子(a)を含有することで、樹脂フィルム表層にナノ凹凸構造が形成され、滑り性が良化し、耐スクラッチ性に優れることができる。本発明の樹脂フィルムに用いられる金属酸化物粒子(a)としては、具体的には、二酸化珪素(シリカ)(SiO)、酸化アルミニウム(Al)、二酸化チタン(TiO)、二酸化ジルコニウム(ZrO)、二酸化セレン(SeO)、酸化鉄(Fe)粒子などが挙げられる。これらは1種類を単独で用いてもよく、2種類以上を併用しても良い。
[Metal oxide particles (a)]
In the resin film of the present invention, the insulating phase (A) contains metal oxide particles (a) containing at least one metal element selected from the group consisting of Si, Al, Ti, Zr, Se, and Fe. is preferred. By containing the metal oxide particles (a), a nano-rugged structure is formed on the surface layer of the resin film, improving slipperiness and providing excellent scratch resistance. Specifically, the metal oxide particles (a) used in the resin film of the present invention include silicon dioxide (silica) (SiO 2 ), aluminum oxide (Al 2 O 3 ), titanium dioxide (TiO 2 ), and Examples include zirconium (ZrO 2 ), selenium dioxide (SeO 2 ), iron oxide (Fe 2 O 3 ) particles, and the like. One type of these may be used alone, or two or more types may be used in combination.

特に、金属酸化物粒子(a)として、酸化チタン(TiO)粒子、酸化アルミニウム(Al)粒子、酸化ジルコニウム(ZrO)粒子を用いると、樹脂フィルムの干渉ムラを抑制しつつ、耐スクラッチ性を付与することができ、好ましい。In particular, when titanium oxide (TiO 2 ) particles, aluminum oxide (Al 2 O 3 ) particles, or zirconium oxide (ZrO 2 ) particles are used as the metal oxide particles (a), interference unevenness in the resin film can be suppressed while It is preferable because it can impart scratch resistance.

本発明の樹脂フィルムに用いられる金属酸化物粒子(a)は、粒子径が10~100nmであると、樹脂フィルムの表面により緻密なナノ凹凸構造が形成され、摩擦力が分散された結果、耐スクラッチ性に優れるため好ましい。なお、本発明における金属酸化物粒子(a)の粒子径とは、以下の方法によって走査型電子顕微鏡(SEM)により求められる粒子径をいう。 When the metal oxide particles (a) used in the resin film of the present invention have a particle size of 10 to 100 nm, a more dense nano-rough structure is formed on the surface of the resin film, and as a result of dispersing frictional force, the metal oxide particles (a) have a resistant It is preferable because it has excellent scratch resistance. Note that the particle size of metal oxide particles (a) in the present invention refers to a particle size determined by a scanning electron microscope (SEM) according to the following method.

(金属酸化物粒子(a)の粒子径の求め方)
ミクロトームを用いて、樹脂フィルムの表面に対して垂直方向に切削した小片を作成し、その断面を走査透過型電子顕微鏡(SEM)を用いて100000倍に拡大観察して撮影する。その断面写真よりフィルム中に存在する粒子の粒度分布を画像解析ソフトImage-Pro Plus(日本ローパー(株))を用いて求める。断面写真は異なる任意の測定視野から選び出し、断面写真中から任意に選び出した200個以上の粒子の直径(円相当径)を測定し、横軸を粒子径、縦軸を粒子の存在比率としてプロットした体積基準粒度分布を得る。前記、体積基準粒度分布において、横軸を担う粒子径は、0nmを初点とした10nm間隔毎の階級により、縦軸を担う粒子の存在比率は、計算式「存在比率=該当する粒子径を持つ検出粒子の合計体積/全検出粒子の合計体積」により表す。上記により得られた粒子の存在比率のチャートから、極大を示すピークトップの粒子径を読み取る。
(How to determine the particle size of metal oxide particles (a))
A small piece is cut perpendicularly to the surface of the resin film using a microtome, and its cross section is observed and photographed using a scanning transmission electron microscope (SEM) at a magnification of 100,000 times. From the cross-sectional photograph, the particle size distribution of particles present in the film is determined using image analysis software Image-Pro Plus (Nippon Roper Co., Ltd.). Cross-sectional photographs are selected from different arbitrary measurement fields, and the diameters (circular equivalent diameters) of 200 or more particles arbitrarily selected from the cross-sectional photographs are measured, and the horizontal axis is the particle diameter and the vertical axis is plotted as the particle abundance ratio. Obtain the volume-based particle size distribution. In the above-mentioned volume-based particle size distribution, the particle diameter on the horizontal axis is divided into classes at intervals of 10 nm with 0 nm as the starting point, and the abundance ratio of particles on the vertical axis is calculated using the formula ``abundance ratio = applicable particle size.'' Total volume of detected particles/total volume of all detected particles. From the chart of the abundance ratio of particles obtained above, the particle diameter at the top of the peak showing the maximum is read.

本発明の樹脂フィルムに用いられる金属酸化物粒子(a)は、更には、金属酸化物粒子(a)の表面の一部または全部に、アクリル樹脂(D)を有する組成物(AD)であることが好ましい。アクリル樹脂(D)を有する組成物(AD)とすることで、樹脂フィルム中の金属酸化物粒子(a)をナノ分散させることができ、樹脂フィルムに力が加わった際に該力を粒子へ分散させることができる。その結果、樹脂フィルムの耐スクラッチ性を向上させることが可能となる。また、樹脂フィルムの透明性も維持できるため好ましい。 The metal oxide particles (a) used in the resin film of the present invention are further a composition (AD) having an acrylic resin (D) on a part or all of the surface of the metal oxide particles (a). It is preferable. By using the composition (AD) containing the acrylic resin (D), the metal oxide particles (a) in the resin film can be nano-dispersed, and when force is applied to the resin film, the force is transferred to the particles. Can be dispersed. As a result, it becomes possible to improve the scratch resistance of the resin film. Further, it is preferable because the transparency of the resin film can also be maintained.

金属酸化物粒子(a)の表面の一部または全部に、アクリル樹脂(D)を有する組成物(AD)を得るためには、後述する金属酸化物粒子(a)をアクリル樹脂(D)で表面処理する方法などを挙げることができる。具体的には、以下の(i)~(iv)の方法が例示される。なお、本発明において、表面処理とは、特定の元素を有する金属酸化物(a)の表面の全部または一部にアクリル樹脂(D)を吸着・付着させる処理をいう。 In order to obtain a composition (AD) having an acrylic resin (D) on part or all of the surface of the metal oxide particles (a), the metal oxide particles (a) described below are coated with an acrylic resin (D). Examples include methods of surface treatment. Specifically, the following methods (i) to (iv) are exemplified. In the present invention, surface treatment refers to a treatment in which the acrylic resin (D) is adsorbed and adhered to all or part of the surface of the metal oxide (a) containing a specific element.

(i)金属酸化物粒子(a)とアクリル樹脂(D)をあらかじめ混合した混合物を溶媒中に添加した後、分散する方法。 (i) A method in which a mixture of metal oxide particles (a) and acrylic resin (D) is added to a solvent and then dispersed.

(ii)溶媒中に、金属酸化物粒子(a)とアクリル樹脂(D)を順に添加して分散する方法。 (ii) A method of sequentially adding and dispersing metal oxide particles (a) and acrylic resin (D) in a solvent.

(iii)溶媒中に、金属酸化物粒子(a)とアクリル樹脂(D)をあらかじめ分散し、得られた分散体を混合する方法。 (iii) A method in which metal oxide particles (a) and acrylic resin (D) are previously dispersed in a solvent, and the resulting dispersion is mixed.

(iv)溶媒中に、金属酸化物粒子(a)を分散した後、得られた分散体に、アクリル樹脂(d-2)を添加する方法。 (iv) A method in which the metal oxide particles (a) are dispersed in a solvent and then the acrylic resin (d-2) is added to the resulting dispersion.

これらのいずれの方法によっても目的とする効果を得ることができる。 Any of these methods can achieve the desired effect.

また、分散を行う装置としては、ディゾルバー、ハイスピードミキサー、ホモミキサー、ニーダー、ボールミル、ロールミル、サンドミル、ペイントシェーカー、SCミル、アニュラー型ミル、ピン型ミル等が使用できる。 Further, as an apparatus for dispersing, a dissolver, a high speed mixer, a homomixer, a kneader, a ball mill, a roll mill, a sand mill, a paint shaker, an SC mill, an annular type mill, a pin type mill, etc. can be used.

また、分散方法としては、上記装置を用いて、回転軸を周速5~15m/sで回転させる。回転時間は5~10時間である。 Further, as a dispersion method, using the above-mentioned apparatus, the rotating shaft is rotated at a circumferential speed of 5 to 15 m/s. The rotation time is 5 to 10 hours.

また、分散時に、ガラスビーズ等の分散ビーズを用いることが分散性を高める点でより好ましい。ビーズ径は、好ましくは0.05~0.5mm、より好ましくは0.08~0.5mm、特に好ましくは0.08~0.2mmである。 Moreover, it is more preferable to use dispersion beads such as glass beads during dispersion in terms of improving dispersibility. The diameter of the beads is preferably 0.05 to 0.5 mm, more preferably 0.08 to 0.5 mm, particularly preferably 0.08 to 0.2 mm.

混合、攪拌する方法は、容器を手で振って行ったり、マグネチックスターラーや攪拌羽根を用いたり、超音波照射、振動分散などを行うことができる。 Mixing and stirring can be carried out by shaking the container by hand, using a magnetic stirrer or stirring blade, ultrasonic irradiation, vibration dispersion, and the like.

なお、金属酸化物粒子(a)の表面の全部または一部への、アクリル樹脂(D)の吸着・付着の有無は、次の分析方法により確認可能である。測定対象物を、日立卓上超遠心機(日立工機株式会社製:CS150NX)により遠心分離を行い(回転数3,0000rpm、分離時間30分)、金属酸化物粒子(a)(及び金属酸化物粒子(a)の表面に吸着したアクリル樹脂(D))を沈降させた後、上澄み液を除去し、沈降物を濃縮乾固する。濃縮乾固した沈降物をX線光電子分光法(XPS)により分析し、金属酸化物粒子(a)の表面におけるアクリル樹脂(D)の有無を確認する。金属酸化物粒子(a)の表面に、金属酸化物粒子(a)の合計100重量%に対して、アクリル樹脂(D)が1重量%以上存在することが確認された場合、金属酸化物粒子(a)の表面に、アクリル樹脂(D)が吸着・付着しているものとする。 The presence or absence of adsorption and adhesion of the acrylic resin (D) to all or part of the surface of the metal oxide particles (a) can be confirmed by the following analysis method. The object to be measured was centrifuged using a Hitachi tabletop ultracentrifuge (CS150NX, manufactured by Hitachi Koki Co., Ltd.) (rotation speed 3,0000 rpm, separation time 30 minutes), and metal oxide particles (a) (and metal oxide After the acrylic resin (D) adsorbed on the surface of the particles (a) is precipitated, the supernatant liquid is removed and the precipitate is concentrated to dryness. The concentrated and dried sediment is analyzed by X-ray photoelectron spectroscopy (XPS) to confirm the presence or absence of the acrylic resin (D) on the surface of the metal oxide particles (a). If it is confirmed that the acrylic resin (D) is present on the surface of the metal oxide particles (a) at 1% by weight or more based on the total 100% by weight of the metal oxide particles (a), the metal oxide particles It is assumed that acrylic resin (D) is adsorbed and attached to the surface of (a).

[アクリル樹脂(D)]
前述したとおり、本発明の樹脂フィルムにおいて、絶縁相(A)に含有する金属酸化物粒子(a)が、その表面の一部または全部に、アクリル樹脂(D)を有する組成物(AD)であることが好ましい。アクリル樹脂(D)を有する組成物(AD)を用いることで、樹脂フィルム中の金属酸化物粒子(a)をナノ分散させることができ、樹脂フィルムの透明性を維持すると共に、樹脂フィルムに力が加わった際に該力を粒子へ分散させることができる。その結果、樹脂フィルムの耐スクラッチ性を向上させることが可能となる。
[Acrylic resin (D)]
As mentioned above, in the resin film of the present invention, the metal oxide particles (a) contained in the insulating phase (A) are composed of a composition (AD) having an acrylic resin (D) on a part or all of its surface. It is preferable that there be. By using the composition (AD) containing the acrylic resin (D), it is possible to nano-disperse the metal oxide particles (a) in the resin film, maintain the transparency of the resin film, and add force to the resin film. When force is applied, the force can be dispersed to the particles. As a result, it becomes possible to improve the scratch resistance of the resin film.

本発明におけるアクリル樹脂(D)とは、式(1)で表されるモノマー単位(d)と、式(2)で表されるモノマー単位(d)と、式(3)で表されるモノマー単位(d)を有する樹脂であることが好ましい。The acrylic resin (D) in the present invention includes a monomer unit (d 1 ) represented by formula (1), a monomer unit (d 2 ) represented by formula (2), and a monomer unit (d 2 ) represented by formula (3). It is preferable that the resin has a monomer unit (d 3 ).

Figure 0007419817000001
Figure 0007419817000001

(式(1)において、R基は、水素元素またはメチル基を表す。またnは、9以上34以下の整数を表す。)。(In formula (1), the R 1 group represents a hydrogen element or a methyl group. Also, n represents an integer of 9 or more and 34 or less.)

Figure 0007419817000002
Figure 0007419817000002

(式(2)において、R基は、水素元素またはメチル基を表す。また、R基は、飽和の炭素環を2つ以上含む基を表す。)。(In formula (2), the R 2 group represents a hydrogen element or a methyl group. Also, the R 4 group represents a group containing two or more saturated carbon rings.)

Figure 0007419817000003
Figure 0007419817000003

(式(3)において、R基は、水素元素またはメチル基を表す。また、R基は、水酸基、カルボキシル基、3級アミノ基、4級アンモニウム塩基、スルホン酸基、または、リン酸基を表す。)
ここで、本発明におけるアクリル樹脂(D)は、式(1)で表されるモノマー単位(d)を有する樹脂であることが好ましい。
(In formula (3), the R 3 group represents a hydrogen element or a methyl group. Also, the R 5 group represents a hydroxyl group, a carboxyl group, a tertiary amino group, a quaternary ammonium base, a sulfonic acid group, or a phosphoric acid group. (Represents a group.)
Here, the acrylic resin (D) in the present invention is preferably a resin having a monomer unit (d 1 ) represented by formula (1).

式(1)において、nが9未満のモノマー単位を有するアクリル樹脂を用いると、水系溶媒(水系溶媒の詳細については、後述する。)中における金属酸化物粒子(a)の分散性が不安定となる。式(1)におけるnが9未満のモノマー単位を有するアクリル樹脂を用いると、塗料組成物中において金属酸化物粒子(a)が激しく凝集し、場合によっては水系溶媒中で金属酸化物粒子(a)が沈降することがある。その結果、樹脂フィルムの透明性が損なわれる場合や、突起物となり欠点に繋がる場合がある。一方、式(1)におけるnが34を越えるモノマー単位を有するアクリル樹脂は、水系溶媒への溶解性が著しく低いので、水系溶媒中においてアクリル樹脂の凝集が起こりやすくなる。かかる凝集体は、可視光の波長より大きいため、透明性の良好な樹脂フィルムを得ることができなくなる場合や、本発明の積層フィルムの表層にさらに塗膜積層した際に干渉斑が不良となる場合がある。上記のような式(1)で表されるモノマー単位(d)を有する樹脂を用いることで、金属酸化物粒子(a)が適度な相互作用で水系溶媒中では分散する一方で、乾燥後は複数の金属酸化物粒子(a)が異方性を持って、樹脂フィルムでナノオーダーレベルに微細に凝集し、樹脂フィルムの表面に非円形状の絶縁性ドメインを形成するため、導電性材料の暴露を抑えることができ、帯電防止性の経時変化に対する耐性を向上することができる。In formula (1), if an acrylic resin having a monomer unit where n is less than 9 is used, the dispersibility of the metal oxide particles (a) in an aqueous solvent (details of the aqueous solvent will be described later) will be unstable. becomes. When an acrylic resin having a monomer unit in which n in formula (1) is less than 9 is used, the metal oxide particles (a) will violently aggregate in the coating composition, and in some cases, the metal oxide particles (a) may aggregate in the aqueous solvent. ) may settle. As a result, the transparency of the resin film may be impaired, or protrusions may form, leading to defects. On the other hand, acrylic resins having monomer units in which n in formula (1) exceeds 34 have extremely low solubility in aqueous solvents, and therefore agglomeration of the acrylic resins tends to occur in aqueous solvents. Since such aggregates are larger than the wavelength of visible light, it may become impossible to obtain a resin film with good transparency, or interference spots may occur when a coating film is further laminated on the surface layer of the laminated film of the present invention. There are cases. By using a resin having the monomer unit (d 1 ) represented by the formula (1) as described above, the metal oxide particles (a) are dispersed in an aqueous solvent by moderate interaction, while being dispersed after drying. is a conductive material because multiple metal oxide particles (a) have anisotropy and aggregate finely on the nano-order level in the resin film, forming non-circular insulating domains on the surface of the resin film. The antistatic property can be improved in its resistance to changes over time.

本発明におけるアクリル樹脂(D)が、式(1)で表されるモノマー単位(d)を有するためには、次の式(4)で表される(メタ)アクリレートモノマー(d’)を原料として用い、重合することが必要である。In order for the acrylic resin (D) in the present invention to have a monomer unit (d 1 ) represented by formula (1), the (meth)acrylate monomer (d 1 ') represented by the following formula ( 4 ) is required. It is necessary to use and polymerize as a raw material.

該(メタ)アクリレートモノマー(d’)としては、式(4)におけるnが9以上34以下の整数で表される(メタ)アクリレートモノマーが好ましく、より好ましくは11以上32以下の(メタ)アクリレートモノマー、更に好ましくは13以上30以下の(メタ)アクリレートモノマーである。The (meth)acrylate monomer ( d1 ') is preferably a (meth)acrylate monomer in which n in formula (4) is an integer of 9 or more and 34 or less, more preferably a (meth)acrylate monomer of 11 or more and 32 or less. Acrylate monomers, more preferably 13 to 30 (meth)acrylate monomers.

Figure 0007419817000004
Figure 0007419817000004

(メタ)アクリレートモノマー(d’)は、式(4)におけるnが9以上34以下である(メタ)アクリレートモノマーであれば特に制限されないが、具体的にはデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、1-メチルトリデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、エイコシル(メタ)アクリレート、ドコシル(メタ)アクリレート、テトラコシル(メタ)アクリレート、トリアコンチル(メタ)アクリレート等が挙げられ、特にドデシル(メタ)アクリレート、トリデシル(メタ)アクリレートが好ましい。これらは1種で使用してもよく、2種以上の混合物を使用してもよい。The (meth)acrylate monomer ( d1 ') is not particularly limited as long as n in formula (4) is 9 or more and 34 or less, but specifically, decyl (meth)acrylate, dodecyl ( meth)acrylate, tridecyl(meth)acrylate, tetradecyl(meth)acrylate, 1-methyltridecyl(meth)acrylate, hexadecyl(meth)acrylate, octadecyl(meth)acrylate, eicosyl(meth)acrylate, docosyl(meth)acrylate, Examples include tetracosyl (meth)acrylate, triacontyl (meth)acrylate, and the like, with dodecyl (meth)acrylate and tridecyl (meth)acrylate being particularly preferred. These may be used alone or in a mixture of two or more.

また、本発明におけるアクリル樹脂(D)は、前記式(2)で表されるモノマー単位(d)を有する樹脂であることが重要である。Moreover, it is important that the acrylic resin (D) in the present invention is a resin having a monomer unit (d 2 ) represented by the above formula (2).

式(2)において、飽和の炭素環を1つのみ含むモノマー単位を有するアクリル樹脂を用いると、立体障害としての機能が不十分となり、塗料組成物中において金属酸化物粒子(a)が凝集または沈降したり、場合によっては水系溶媒中で金属酸化物粒子(a)が沈降することがある。その結果、樹脂フィルムの透明性が損なわれる場合や、突起物となり欠点に繋がる場合ある。 In formula (2), if an acrylic resin having a monomer unit containing only one saturated carbon ring is used, the function as a steric hindrance will be insufficient, causing metal oxide particles (a) to aggregate or In some cases, metal oxide particles (a) may settle in an aqueous solvent. As a result, the transparency of the resin film may be impaired or protrusions may form, leading to defects.

かかる凝集体は、可視光の波長より大きいため、透明性の良好な樹脂フィルムを得ることができなくなる場合ある。本発明におけるアクリル樹脂(D)が、式(2)で表されるモノマー単位(d)を有するためには、次の式(5)で表される(メタ)アクリレートモノマー(d’)を原料として用い、重合することが必要である。Since such aggregates are larger than the wavelength of visible light, it may become impossible to obtain a resin film with good transparency. In order for the acrylic resin (D) in the present invention to have a monomer unit (d 2 ) represented by formula (2), a (meth)acrylate monomer (d 2 ') represented by the following formula ( 5 ) is required. It is necessary to use and polymerize as a raw material.

式(5)で表される(メタ)アクリレートモノマー(d’)としては、架橋縮合環式(2つまたはそれ以上の環がそれぞれ2個の元素を共有して、結合した構造を有する)、スピロ環式(1個の炭素元素を共有して、2つの環状構造が結合した構造を有する)などの各種環状構造、具体的には、ビシクロ、トリシクロ、テトラシクロ基などを有する化合物が例示でき、その中でも特にバインダーとの相溶性の観点から、ビシクロ基を含有する(メタ)アクリレートが好ましい。The (meth)acrylate monomer (d 2 ') represented by formula (5) is a bridged fused cyclic type (having a structure in which two or more rings each share two elements and are bonded). Examples include compounds having various cyclic structures such as , spirocyclic (having a structure in which two cyclic structures share one carbon element), specifically, bicyclo, tricyclo, and tetracyclo groups. Among these, (meth)acrylate containing a bicyclo group is particularly preferred from the viewpoint of compatibility with the binder.

Figure 0007419817000005
Figure 0007419817000005

上記ビシクロ基を含有する(メタ)アクリレートとしては、イソボニル(メタ)アクリレート、ボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジメチルアダマンチル(メタ)アクリレートなどが挙げられ、特にイソボニル(メタ)アクリレートが好ましい。 Examples of the (meth)acrylate containing a bicyclo group include isobornyl (meth)acrylate, bornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, adamantyl (meth)acrylate, and dimethyladamantyl. Examples include (meth)acrylate, and isobonyl (meth)acrylate is particularly preferred.

さらに、本発明におけるアクリル樹脂(D)は、前記式(3)で表されるモノマー単位(d)を有する樹脂であることが好ましい。Furthermore, the acrylic resin (D) in the present invention is preferably a resin having a monomer unit (d 3 ) represented by the above formula (3).

式(3)におけるR基が、水酸基、カルボキシル基、3級アミノ基、4級アンモニウム基、スルホン酸基、リン酸基、のいずれも有しないモノマー単位を有するアクリル樹脂を用いると、アクリル樹脂の水系溶媒中への相溶性が不十分となり、塗料組成物中において、アクリル樹脂が析出したり、それに伴い金属酸化物粒子(a)が凝集または沈降したり、乾燥工程において金属酸化物粒子(a)が凝集したりすることがある。When using an acrylic resin in which the R 5 group in formula (3) has a monomer unit that does not have any of a hydroxyl group, a carboxyl group, a tertiary amino group, a quaternary ammonium group, a sulfonic acid group, and a phosphoric acid group, the acrylic resin The compatibility of the metal oxide particles (a) in the aqueous solvent becomes insufficient, and the acrylic resin may precipitate in the coating composition, and the metal oxide particles (a) may coagulate or precipitate accordingly, and the metal oxide particles (a) may become unstable during the drying process. a) may aggregate.

かかる凝集体は、可視光の波長より大きいため、透明性の良好な樹脂フィルムを得ることができなくなる場合がある。本発明におけるアクリル樹脂(D)が、式(3)で表されるモノマー単位(d)を有するためには、式(6)で表される(メタ)アクリレートモノマ(d’)を原料として用い、重合することが必要である。Since such aggregates are larger than the wavelength of visible light, it may become impossible to obtain a resin film with good transparency. In order for the acrylic resin (D) in the present invention to have the monomer unit (d 3 ) represented by formula (3), the (meth)acrylate monomer (d 3 ') represented by formula ( 6 ) is used as a raw material. It is necessary to use it as a compound and polymerize it.

式(6)で表される(メタ)アクリレートモノマー(d’)として次の化合物が例示される。The following compounds are exemplified as the (meth)acrylate monomer (d 3 ') represented by formula (6).

Figure 0007419817000006
Figure 0007419817000006

水酸基を有する(メタ)アクリレートモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2、3-ジヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレートなどの多価アルコールと(メタ)アクリル酸とのモノエステル化物、あるいは、該モノエステル化物にε-カプロラクトンを開環重合した化合物などが挙げられ、特に2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートが好ましい。 Examples of (meth)acrylate monomers having a hydroxyl group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2,3-dihydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, and polyethylene Examples include monoesterified products of polyhydric alcohols such as glycol mono(meth)acrylate and (meth)acrylic acid, or compounds obtained by ring-opening polymerization of ε-caprolactone to the monoesterified products, and in particular, 2-hydroxyethyl ( Preferred are meth)acrylate and 2-hydroxypropyl(meth)acrylate.

カルボキシル基を有する(メタ)アクリレートモノマーとしては、アクリル酸、メタクリル酸、イタコン酸、フマール酸、マレイン酸などのα、β-不飽和カルボン酸、あるいは、ヒドロキシアルキル(メタ)アクリレートと酸無水物とのハーフエステル化物などが挙げられ、特にアクリル酸、メタクリル酸が好ましい。 Examples of (meth)acrylate monomers having a carboxyl group include α,β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, and maleic acid, or hydroxyalkyl (meth)acrylates and acid anhydrides. Among them, acrylic acid and methacrylic acid are particularly preferred.

3級アミノ基含有モノマーとしては、N、N-ジメチルアミノエチル(メタ)アクリレート、N、N-ジエチルアミノエチル(メタ)アクリレート、N、N-ジメチルアミノプロピル(メタ)アクリレート、などのN、N-ジアルキルアミノアルキル(メタ)アクリレート、N、N-ジメチルアミノエチル(メタ)アクリルアミド、N、N-ジエチルアミノエチル(メタ)アクリルアミド、N、N-ジメチルアミノプロピル(メタ)アクリルアミドなどのN、N-ジアルキルアミノアルキル(メタ)アクリルアミドなどが挙げられ、特にN、N-ジメチルアミノエチル(メタ)アクリレートが好ましい。 Examples of tertiary amino group-containing monomers include N,N- such as N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, and N,N-dimethylaminopropyl (meth)acrylate. N,N-dialkylamino such as dialkylaminoalkyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylamide, N,N-diethylaminoethyl (meth)acrylamide, N,N-dimethylaminopropyl (meth)acrylamide, etc. Examples include alkyl (meth)acrylamides, and N,N-dimethylaminoethyl (meth)acrylate is particularly preferred.

4級アンモニウム塩基含有モノマーとしては、上記3級アミノ基含有モノマーにエピハロヒドリン、ハロゲン化ベンジル、ハロゲン化アルキルなどの4級化剤を作用させたものが好ましく、具体的には、2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライド、2-(メタクリロイルオキシ)エチルトリメチルアンモニウムブロマイド、2-(メタクリロイルオキシ)エチルトリメチルアンモニウムジメチルホスフェートなどの(メタ)アクリロイルオキシアルキルトリアルキルアンモニウム塩、メタクリロイルアミノプロピルトリメチルアンモニウムクロライド、メタクリロイルアミノプロピルトリメチルアンモニウムブロマイドなどの(メタ)アクリロイルアミノアルキルトリアルキルアンモニウム塩、テトラブチルアンモニウム(メタ)アクリレートなどのテトラアルキル(メタ)アクリレート、トリメチルベンジルアンモニウム(メタ)アクリレートなどのトリアルキルベンジルアンモニウム(メタ)アクリレートなどが挙げられ、特に2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライドが好ましい。 As the quaternary ammonium base-containing monomer, it is preferable to use a quaternizing agent such as epihalohydrin, benzyl halide, or alkyl halide on the above-mentioned tertiary amino group-containing monomer. Specifically, 2-(methacryloyloxy) ) Ethyltrimethylammonium chloride, 2-(methacryloyloxy)ethyltrimethylammonium bromide, 2-(methacryloyloxy)ethyltrimethylammonium dimethyl phosphate, and other (meth)acryloyloxyalkyl trialkylammonium salts, methacryloylaminopropyltrimethylammonium chloride, methacryloylamino (meth)acryloylaminoalkyl trialkylammonium salts such as propyltrimethylammonium bromide, tetraalkyl (meth)acrylates such as tetrabutylammonium (meth)acrylate, trialkylbenzylammonium (meth)acrylates such as trimethylbenzylammonium (meth)acrylate Among them, 2-(methacryloyloxy)ethyltrimethylammonium chloride is particularly preferred.

スルホン酸基含有モノマーとしては、ブチルアクリルアミドスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸などの(メタ)アクリルアミド-アルカンスルホン酸、あるいは、2-スルホエチル(メタ)アクリレートなどのスルホアルキル(メタ)アクリレートなどが挙げられ、特に2-スルホエチル(メタ)アクリレートが好ましい。 Sulfonic acid group-containing monomers include (meth)acrylamide-alkanesulfonic acids such as butylacrylamide sulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid, or sulfoalkyl (meth)acrylates such as 2-sulfoethyl (meth)acrylate. Examples include acrylate, and 2-sulfoethyl (meth)acrylate is particularly preferred.

リン酸基含有アクリルモノマーとしては、アシッドホスホオキシエチル(メタ)アクリレートなどが挙げられ、特にアシッドホスホオキシエチル(メタ)アクリレートが好ましい。 Examples of the phosphoric acid group-containing acrylic monomer include acid phosphooxyethyl (meth)acrylate, and acid phosphooxyethyl (meth)acrylate is particularly preferred.

この中でも、特にアクリル樹脂(D)が、前記式(3)で表されるモノマー単位(d)を有する樹脂であり、式(3)におけるR基が、水酸基、カルボキシル基であることが、後述する金属酸化物粒子(a)と吸着力が高く、より強固な膜を形成できる点で好ましい。Among these, the acrylic resin (D) in particular is a resin having a monomer unit (d 3 ) represented by the above formula (3), and the R 5 group in formula (3) is a hydroxyl group or a carboxyl group. , is preferable because it has a high adsorption power with the metal oxide particles (a) described later and can form a stronger film.

本発明では、樹脂フィルム中のアクリル樹脂(D)の含有量は5~30重量%であることが好ましく、この範囲とすることで、金属酸化物粒子(a)とアクリル樹脂(D)の吸着が強固になり、樹脂フィルムの耐スクラッチ性を向上させることができる。 In the present invention, the content of the acrylic resin (D) in the resin film is preferably 5 to 30% by weight, and by setting it within this range, the adsorption of the metal oxide particles (a) and the acrylic resin (D) becomes stronger, and the scratch resistance of the resin film can be improved.

特に、アクリル樹脂(D)の含有量は、樹脂フィルム全体に対して5重量%以上30重量%以下であることがより好ましく、樹脂フィルム中のアクリル樹脂(D)の含有量は、10重量%以上30量%以下がより好ましい。なお、本発明において、樹脂フィルム中の含有量とは、樹脂フィルムを形成する塗料組成物の固形分([(塗料組成物の重量)-(溶媒の重量)])中の含有量を表す。 In particular, the content of the acrylic resin (D) is more preferably 5% by weight or more and 30% by weight or less based on the entire resin film, and the content of the acrylic resin (D) in the resin film is 10% by weight. The content is more preferably 30% by weight or less. In the present invention, the content in the resin film refers to the content in the solid content ([(weight of coating composition)−(weight of solvent)]) of the coating composition forming the resin film.

本発明の樹脂フィルムは、樹脂フィルムの金属酸化物粒子(a)含有量が、樹脂フィルム全体に対して、15~50重量%であると、樹脂フィルム中に金属酸化物粒子(a)が充填されることで、導電材料が樹脂フィルムの表面に露出することを防ぎ、帯電防止性能が安定化しやすくなる。また粒子成分の面積が増加することで、樹脂フィルム全体の硬度が向上し、耐スクラッチ性に優れるため好ましい。金属酸化物粒子(a)の含有率は、好ましくは20~50重量%、より好ましくは30~50重量%である。 In the resin film of the present invention, when the content of metal oxide particles (a) in the resin film is 15 to 50% by weight based on the entire resin film, the metal oxide particles (a) are filled in the resin film. By doing so, the conductive material is prevented from being exposed on the surface of the resin film, and the antistatic performance is easily stabilized. Further, by increasing the area of the particle component, the hardness of the entire resin film is improved and scratch resistance is excellent, which is preferable. The content of metal oxide particles (a) is preferably 20 to 50% by weight, more preferably 30 to 50% by weight.

[バインダー樹脂]
本発明の樹脂フィルムおよび層(X)では、成分として、バインダー樹脂を含有することが好ましい。バインダー樹脂とは、公知のアクリル樹脂やポリエステル樹脂、ウレタン樹脂、およびそれらの共重合体が含まれる。
[Binder resin]
The resin film and layer (X) of the present invention preferably contain a binder resin as a component. Binder resins include known acrylic resins, polyester resins, urethane resins, and copolymers thereof.

ウレタン樹脂としては、例えば、ポリイソシアネート化合物(I)由来の構成単位とポリオール(II)単位を有する樹脂を使用することができる。尚、ポリウレタン樹脂は、ポリイソシアネート化合物(I)単位及びポリオール(II)単位以外の他の単位(例えば、カルボン酸単位、アミン単位など)を有していてもよい。 As the urethane resin, for example, a resin having a structural unit derived from polyisocyanate compound (I) and a polyol (II) unit can be used. Note that the polyurethane resin may have other units (for example, carboxylic acid units, amine units, etc.) other than the polyisocyanate compound (I) units and polyol (II) units.

ポリウレタン樹脂としては、例えば、ポリアクリル系ポリウレタン樹脂、ポリエーテル系ポリウレタン樹脂、ポリエステル系ポリウレタン樹脂などである。ポリウレタン樹脂は、単独で用いても2種以上を併用してもよい。 Examples of the polyurethane resin include polyacrylic polyurethane resin, polyether polyurethane resin, and polyester polyurethane resin. The polyurethane resins may be used alone or in combination of two or more.

ポリイソシアネート化合物(I)としては、イソシアネート基を2個以上有するものであれば、特に限定されない。 The polyisocyanate compound (I) is not particularly limited as long as it has two or more isocyanate groups.

ポリイソシアネート化合物(I)としては、例えば、ポリイソシアネート(例えば、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、芳香脂肪族ポリイソシアネート、芳香族ポリイソシアネートなど)、ポリイソシアネートの変性体[又は誘導体、例えば、多量体(二量体、三量体など)、カルボジイミド体、ビウレット体、アロファネート体、ウレットジオン体、ポリアミン変性体など]などが挙げられる。ポリイソシアネート化合物(I)は、単独で用いても2種以上を併用してもよい。脂肪族ポリイソシアネートとしては、特に限定されないが、例えば、脂肪族ジイソシアネート[例えば、アルカンジイソシアネート(例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、リジンジイソシアネート、2-メチルペンタン-1,5-ジイソシアネート、3-メチルペンタン-1,5-ジイソシアネートなどのC2-20アルカンジイソシアネート、好ましくはC4-12アルカンジイソシアネートなど)]、3以上のイソシアネート基を有する脂肪族ポリイソシアネート(例えば、1,4,8-トリイソシアナトオクタンなどの脂肪族トリ乃至ヘキサイソシアネートなど)などが挙げられる。 Examples of the polyisocyanate compound (I) include polyisocyanates (e.g., aliphatic polyisocyanates, alicyclic polyisocyanates, araliphatic polyisocyanates, aromatic polyisocyanates, etc.), modified polyisocyanates [or derivatives, e.g. , multimers (dimers, trimers, etc.), carbodiimides, biurets, allophanates, uretdiones, modified polyamines, etc.]. The polyisocyanate compound (I) may be used alone or in combination of two or more. The aliphatic polyisocyanate is not particularly limited, but includes, for example, aliphatic diisocyanates [e.g., alkanediisocyanates (e.g., tetramethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, dodecamethylene diisocyanate, lysine diisocyanate). , 2-methylpentane-1,5-diisocyanate, 3-methylpentane-1,5-diisocyanate and other C2-20 alkaned diisocyanates, preferably C4-12 alkaned diisocyanates, etc.)], aliphatic having 3 or more isocyanate groups Examples include polyisocyanates (eg, aliphatic tri- to hexaisocyanates such as 1,4,8-triisocyanatooctane), and the like.

脂環族ポリイソシアネートとしては、特に限定されないが、例えば、脂環族ジイソシアネート{例えば、シクロアルカンジイソシアネート(例えば、メチル-2,4-又は2,6-シクロヘキサンジイソシアネートなどのC5-8シクロアルカンジイソシアネートなど)、イソシアナトアルキルシクロアルカンイソシアネート[例えば、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)などのイソシアナトC1-6アルキルC5-10シクロアルカンイソシアネートなど]、ジ(イソシアナトアルキル)シクロアルカン[例えば、水添キシリレンジイソシアネートなどのジ(イソシアナトC1-6アルキル)C5-10シクロアルカン]、ジ(イソシアナトシクロアルキル)アルカン[例えば、水添ジフェニルメタン-4,4’-ジイソシアネート(4,4’-メチレンビスシクロヘキシルイソシアネート)などのビス(イソシアナトC5-10シクロアルキル)C1-10アルカンなど]、ポリシクロアルカンジイソシアネート(ノルボルナンジイソシアネートなど)など}、3以上のイソシアネート基を有する脂環族ポリイソシアネート(例えば、1,3,5-トリイソシアナトシクロヘキサンなどの脂環族トリ乃至ヘキサイソシアネートなど)などが挙げられる。 The alicyclic polyisocyanate is not particularly limited, but includes, for example, alicyclic diisocyanate {for example, cycloalkane diisocyanate (for example, C5-8 cycloalkane diisocyanate such as methyl-2,4- or 2,6-cyclohexane diisocyanate) ), isocyanatoalkylcycloalkane isocyanates [e.g., isocyanato C1-6 alkyl C5-10 cycloalkane isocyanates such as 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI)], di( isocyanatoalkyl)cycloalkane [e.g., di(isocyanatoC1-6alkyl)C5-10 cycloalkane such as hydrogenated xylylene diisocyanate], di(isocyanatocycloalkyl)alkane [e.g., hydrogenated diphenylmethane-4,4' - bis(isocyanato C5-10 cycloalkyl) C1-10 alkanes such as diisocyanate (4,4'-methylenebiscyclohexyl isocyanate), etc.), polycycloalkane diisocyanate (norbornane diisocyanate, etc.)}, having 3 or more isocyanate groups Examples include alicyclic polyisocyanates (for example, alicyclic tri- to hexaisocyanates such as 1,3,5-triisocyanatocyclohexane).

芳香脂肪族ポリイソシアネートとしては、特に限定されないが、例えば、芳香脂肪族ジイソシアネート{例えば、ジ(イソシアナトアルキル)アレーン[例えば、キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)(1,3-又は1,4-ビス(1-イソシアナト-1-メチルエチル)ベンゼン)などのビス(イソシアナトC1-6アルキル)C6-12アレーンなど]}、3以上のイソシアネート基を有する芳香脂肪族ポリイソシアネート(例えば、芳香脂肪族トリ乃至ヘキサイソシアネートなど)などが挙げられる。 Examples of the araliphatic polyisocyanate include, but are not particularly limited to, araliphatic diisocyanates {for example, di(isocyanatoalkyl)arene [for example, xylylene diisocyanate (XDI), tetramethylxylylene diisocyanate (TMXDI) (1, bis(isocyanatoC1-6 alkyl)C6-12 arenes such as 3- or 1,4-bis(1-isocyanato-1-methylethyl)benzene), aromatic aliphatic polyisocyanates having 3 or more isocyanate groups (For example, aromatic aliphatic tri- to hexaisocyanates, etc.).

芳香族ポリイソシアネートとしては、特に限定されないが、例えば、芳香族ジイソシアネート{例えば、アレーンジイソシアネート[例えば、o-,m-又はp-フェニレンジイソシアネート、クロロフェニレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート(NDI)などのC6-12アレーンジイソシアネートなど]、ジ(イソシアナトアリール)アルカン[例えば、ジフェニルメタンジイソシアネート(MDI)(2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネートなど)、トリジンジイソシアネートなどのビス(イソシアナトC6-10アリール)C1-10アルカンなど]}、3以上のイソシアネート基を有する芳香族ポリイソシアネート(例えば、4,4’-ジフェニルメタン-2,2’,5,5’-テトライソシアネートなどの芳香族トリ乃至ヘキサイソシアネートなど)などが挙げられる。 Aromatic polyisocyanates include, but are not particularly limited to, aromatic diisocyanates {for example, arene diisocyanates [for example, o-, m- or p-phenylene diisocyanate, chlorophenylene diisocyanate, tolylene diisocyanate, naphthalene diisocyanate (NDI), etc. C6-12 arene diisocyanates, etc.], di(isocyanatoaryl)alkanes [e.g., diphenylmethane diisocyanate (MDI) (2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, etc.), bis(isocyanates such as toridine diisocyanate), C6-10 aryl) C1-10 alkane, etc.], aromatic polyisocyanates having three or more isocyanate groups (for example, aromatic polyisocyanates such as 4,4'-diphenylmethane-2,2',5,5'-tetraisocyanate) (tri- to hexaisocyanate, etc.).

本発明ではポリイソシアネート化合物(I)として、脂環族ポリイソシアネートを用いることが、耐クラック性の点で好ましい。 In the present invention, it is preferable to use an alicyclic polyisocyanate as the polyisocyanate compound (I) from the viewpoint of crack resistance.

ポリオール(II)としては、ヒドロキシル基を2個以上有するものであれば、特に限定されない。 Polyol (II) is not particularly limited as long as it has two or more hydroxyl groups.

ポリオール(II)としては、例えば、ポリアクリルポリオール、ポリエステルポリオール、ポリエーテルポリオール、ポリウレタンポリオールなどが挙げられる。ポリオール(II)は、単独で用いても2種以上を併用してもよい。 Examples of the polyol (II) include polyacrylic polyols, polyester polyols, polyether polyols, and polyurethane polyols. Polyol (II) may be used alone or in combination of two or more.

ポリアクリルポリオールとしては、例えば、(メタ)アクリル酸エステル単位とヒドロキシル基を有する成分由来の単位(ヒドロキシル基を有する成分単位)を有する共重合体などである。ポリアクリルポリオールは、(メタ)アクリル酸エステル単位とヒドロキシル基を有する成分単位以外の単位を有していてもよい。 Examples of polyacrylic polyols include copolymers having (meth)acrylic acid ester units and units derived from components having hydroxyl groups (component units having hydroxyl groups). The polyacrylic polyol may have units other than component units having (meth)acrylic acid ester units and hydroxyl groups.

ポリエステルポリオールとしては、例えば、多価カルボン酸成分単位とポリオール成分単位を有する共重合体などである。ポリエステルポリオールは、多価カルボン酸成分単位とポリオール成分単位以外の単位を有していてもよい。
ポリエーテルポリオールとしては、例えば、多価アルコールにアルキレンオキシドを付加させた共重合体などである。多価アルコールとしては、特に限定されず、例えば、上記した二価アルコールなどを使用することができる。多価アルコールは、単独で用いても2種以上を併用してもよい。
Examples of the polyester polyol include a copolymer having a polyhydric carboxylic acid component unit and a polyol component unit. The polyester polyol may have units other than the polyhydric carboxylic acid component unit and the polyol component unit.
Examples of polyether polyols include copolymers obtained by adding alkylene oxide to polyhydric alcohols. The polyhydric alcohol is not particularly limited, and for example, the dihydric alcohols mentioned above can be used. Polyhydric alcohols may be used alone or in combination of two or more.

また、アルキレンオキシドとしては、特に限定されず、例えば、エチレンオキシド、プロピレンオキシド、ブチレンオキシドなどの炭素数が2以上12以下のアルキレンオキシドなどが挙げられる。アルキレンオキシドは、単独で用いても2種以上を併用してもよい。ポリウレタン樹脂は、構成成分として、鎖延長剤を含んでいてもよい(又は、鎖延長剤由来の構成単位を有していてもよい)。 Further, the alkylene oxide is not particularly limited, and examples thereof include alkylene oxides having 2 to 12 carbon atoms, such as ethylene oxide, propylene oxide, and butylene oxide. Alkylene oxides may be used alone or in combination of two or more. The polyurethane resin may contain a chain extender as a constituent (or may have a constituent unit derived from a chain extender).

鎖延長剤としては、特に限定されず、例えば、グリコール類(例えば、エチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオールなどのC2-6アルカンジオール)、多価アルコール類(例えば、グリセリン、トリメチロールプロパン、ペンタエリスリトールなどのC2-6アルカントリ乃至ヘキサオール)、ジアミン類(例えば、エチレンジアミン、ヘキサメチレンジアミンなど)などの一般的な鎖延長剤を使用してよい。 Chain extenders are not particularly limited, and include, for example, glycols (e.g., C2-6 alkanediols such as ethylene glycol, 1,4-butanediol, neopentyl glycol, and 1,6-hexanediol), polyhydric alcohols, etc. Common chain extenders such as C2-6 alkanetri-hexaols such as glycerin, trimethylolpropane, pentaerythritol, etc., diamines (eg, ethylenediamine, hexamethylenediamine, etc.) may be used.

本発明の樹脂フィルムまたは層(X)は、エーテル成分を含有することが好ましい。エーテル成分を含有することで、ポリエーテル構造の高柔軟性ゆえ、加工時に発生する応力を緩和することができ、加工性を向上させることができる。 The resin film or layer (X) of the present invention preferably contains an ether component. By containing an ether component, stress generated during processing can be alleviated due to the high flexibility of the polyether structure, and processability can be improved.

さらに、本発明の樹脂フィルムは、エーテル成分とともにウレタン成分を含有することが好ましい。樹脂フィルムまたは層(X)にウレタン成分とエーテル成分を含有させると、相溶性が制御され、樹脂フィルムまたは層(X)に金属酸化物粒子(a)を含有せしめた際に、樹脂フィルムまたは層(X)表面に絶縁相(A)を形成せしめるのが容易となる。樹脂フィルムまたは層(X)にウレタン成分とエーテル成分を含有させる方法としては特に限られるものでは無いが、エーテル結合を有するウレタン樹脂成分を用いる方法が挙げられる。具体的には、ポリエーテルポリオール化合物とイソシアネート化合物を反応させて得られるウレタン樹脂であることが好ましい。なお、本発明において、エーテル成分を有するとはエーテル結合を有していることを表し、ウレタン成分を有するとはウレタン結合を有していることを表す。 Furthermore, it is preferable that the resin film of the present invention contains a urethane component together with an ether component. When the resin film or layer (X) contains the urethane component and the ether component, the compatibility is controlled, and when the resin film or layer (X) contains the metal oxide particles (a), the resin film or layer (X) It becomes easy to form the insulating phase (A) on the surface. The method for containing the urethane component and the ether component in the resin film or layer (X) is not particularly limited, but includes a method using a urethane resin component having an ether bond. Specifically, a urethane resin obtained by reacting a polyether polyol compound and an isocyanate compound is preferable. In the present invention, having an ether component means having an ether bond, and having a urethane component means having a urethane bond.

上記のようなウレタン樹脂成分を用いると、ウレタン樹脂成分の親水性が高くなる。そのため、金属酸化物粒子(a)や金属酸化物粒子(a)の表面の一部または全部にアクリル樹脂(D)を有する組成物(AD)と、ウレタン樹脂成分を含む塗料組成物(x)を支持基材となるポリエステルフィルムの少なくとも片面に塗布した後に加熱して層(X)を形成せしめる際に、親水性の高いウレタン樹脂成分は層(X)内において基材層であるポリエステルフィルム側に偏在し、比較的親水性の低い金属酸化物粒子(a)や金属酸化物粒子(a)の表面の一部または全部にアクリル樹脂(D)を有する組成物(AD)は層(X)の表面近傍に偏在するという相分離構造を形成することができる。層(X)の表面近傍に金属酸化物粒子(a)、層(X)の基材層との界面近傍にウレタン樹脂成分を偏在化させる相分離構造を有することで、層(X)の表面近傍に高い弾性率を有するドメイン(島成分)を形成させることができるために耐スクラッチ性を発現しつつ、層(X)の内層では柔軟なウレタン樹脂成分による応力緩和によって加工性を発現するため、耐スクラッチ性、加工性を高いレベルで両立することができるため好ましい。 When the urethane resin component as described above is used, the hydrophilicity of the urethane resin component becomes high. Therefore, a composition (AD) having an acrylic resin (D) on part or all of the surface of the metal oxide particles (a) or the metal oxide particles (a), and a coating composition (x) containing a urethane resin component. When the layer (X) is formed by applying the urethane resin component to at least one side of the polyester film that is the supporting base material and then heating it to form the layer (X), the highly hydrophilic urethane resin component is applied to the side of the polyester film that is the base layer in the layer (X). A composition (AD) having an acrylic resin (D) on a part or all of the metal oxide particles (a) and the surface of the metal oxide particles (a) which are unevenly distributed and have relatively low hydrophilicity is a layer (X). A phase-separated structure can be formed in which the phase separation structure is unevenly distributed near the surface. By having a phase separation structure that unevenly distributes the metal oxide particles (a) near the surface of the layer (X) and the urethane resin component near the interface with the base material layer of the layer (X), the surface of the layer (X) Because domains (island components) with high elastic modulus can be formed in the vicinity, scratch resistance is exhibited, while the inner layer of layer (X) exhibits workability due to stress relaxation by the flexible urethane resin component. , is preferable because it can achieve both high levels of scratch resistance and workability.

[導電性化合物(b)]
本発明の樹脂フィルムでは、導電相(B)の成分として、導電性化合物(b)を含有することが好ましい。導電性化合物(b)としては特に限定されず、例えばカーボンナノチューブ(Carbon nano-tube:CNT)のような炭素系材料、ポリチオフェン構造に代表される導電性構造を有する高分子材料、遊離酸状態の酸性高分子などを単体もしくは組み合わせて用いることが出来る。帯電防止性能の初期特性の観点から、ポリチオフェン構造を有する化合物と遊離酸状態の酸性高分子の混合成分とすることが特に好ましい。
[Conductive compound (b)]
The resin film of the present invention preferably contains a conductive compound (b) as a component of the conductive phase (B). The conductive compound (b) is not particularly limited, and includes, for example, carbon-based materials such as carbon nano-tubes (CNTs), polymeric materials having a conductive structure typified by polythiophene structure, and free acid state. Acidic polymers and the like can be used alone or in combination. From the viewpoint of the initial characteristics of antistatic performance, it is particularly preferable to use a mixed component of a compound having a polythiophene structure and an acidic polymer in a free acid state.

ポリチオフェン構造を有する化合物としては、例えば、チオフェン環の3位と4位の位置が置換された構造を有する化合物などを用いることができる。更にはチオフェン環の3位と4位の炭素原子に酸素原子が結合した化合物を好適に用いることができる。該炭素原子に直接、水素原子あるいは炭素原子が結合したものは、塗液の水性化が容易でない場合がある。上記化合物は、例えば、特開2000-6324号公報、ヨーロッパ特許602713号、米国特許第5391472号に開示された方法により製造することができるが、これら以外の方法であってもよい。 As the compound having a polythiophene structure, for example, a compound having a structure in which the 3- and 4-positions of the thiophene ring are substituted can be used. Furthermore, compounds in which oxygen atoms are bonded to the carbon atoms at the 3rd and 4th positions of the thiophene ring can be suitably used. If a hydrogen atom or a carbon atom is directly bonded to the carbon atom, it may not be easy to make the coating liquid water-based. The above compound can be produced, for example, by the methods disclosed in JP-A-2000-6324, European Patent No. 602713, and US Pat. No. 5,391,472, but methods other than these may also be used.

例えば、3,4-ジヒドロキシチオフェン-2,5、-ジカルボキシエステルのアルカリ金属塩を出発物質として、3,4-エチレンジオキシチオフェンを得た後、ポリスチレンスルホン酸水溶液にペルオキソ二硫酸カリウムと硫酸鉄と、先に得た3,4-エチレンジオキシチオフェンを導入し、反応させることによりって、ポリ(3,4-エチレンジオキシチオフェン)などのポリチオフェンに、ポリスチレンスルホン酸などの酸性ポリマーが複合体化した組成物を得ることができる。 For example, after obtaining 3,4-ethylenedioxythiophene using an alkali metal salt of 3,4-dihydroxythiophene-2,5,-dicarboxyester as a starting material, potassium peroxodisulfate and sulfuric acid are added to an aqueous polystyrene sulfonic acid solution. By introducing iron and the previously obtained 3,4-ethylenedioxythiophene and allowing them to react, acidic polymers such as polystyrene sulfonic acid are formed into polythiophenes such as poly(3,4-ethylenedioxythiophene). Complexed compositions can be obtained.

またポリ-3,4-エチレンジオキシチオフェン及びポリスチレンスルホン酸を含む水性の塗料組成物として、H.C.Starck社(ドイツ国)から、“Baytron”Pとして販売されているものなど用いることができる。 In addition, as an aqueous coating composition containing poly-3,4-ethylenedioxythiophene and polystyrene sulfonic acid, H. C. A product sold as "Baytron" P by Starck (Germany) can be used.

一方、遊離酸状態の酸性高分子としては、例えば高分子カルボン酸、あるいは、高分子スルホン酸、ポリビニルスルホン酸などが挙げられる。高分子カルボン酸としては、例えば、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸が例示される。また、高分子スルホン酸としては、例えば、ポリスチレンスルホン酸が例示され、特に、ポリスチレンスルホン酸が帯電防止性の点で最も好ましい。なお、遊離酸は、一部が中和された塩の形をとってもよい。また、共重合可能な他のモノマー、例えば、アクリル酸エステル、メタクリル酸エステル、スチレンなどと共重合した形で用いることもできる。高分子カルボン酸や高分子スルホン酸の分子量は特に限定されないが、塗剤の安定性や帯電防止性の点で、その重量平均分子量は1000以上1000000以下であることが好ましく、より好ましくは5000以上150000以下である。発明の特性を阻害しない範囲で、一部、リチウム塩やナトリウム塩などのアルカリ塩やアンモニウム塩などを含んでもよい。ポリ陰イオンが中和された塩の場合も、トーパントとして作用すると考えられる。これは、非常に強い酸として機能するポリスチレンスルホン酸とアンモニウム塩は、中和後の平衡反応の進行により、酸性サイドに平衡がずれるためである。 On the other hand, examples of acidic polymers in a free acid state include polymeric carboxylic acids, polymeric sulfonic acids, and polyvinylsulfonic acids. Examples of the polymeric carboxylic acid include polyacrylic acid, polymethacrylic acid, and polymaleic acid. Examples of the polymeric sulfonic acid include polystyrene sulfonic acid, and polystyrene sulfonic acid is particularly preferred from the viewpoint of antistatic properties. Note that the free acid may be in the form of a partially neutralized salt. Further, it can also be used in a form copolymerized with other copolymerizable monomers, such as acrylic esters, methacrylic esters, and styrene. The molecular weight of the polymeric carboxylic acid or polymeric sulfonic acid is not particularly limited, but in terms of stability and antistatic properties of the coating material, the weight average molecular weight is preferably 1000 or more and 1000000 or less, more preferably 5000 or more. 150,000 or less. Part of the composition may contain alkali salts such as lithium salts and sodium salts, ammonium salts, etc., within a range that does not impede the characteristics of the invention. Salts with neutralized polyanions are also considered to act as dopants. This is because polystyrene sulfonic acid and ammonium salt, which function as very strong acids, shift their equilibrium to the acidic side due to the progress of the equilibrium reaction after neutralization.

[その他成分]
本発明の樹脂フィルムにおいては、導電相(B)が、メラミン化合物、オキサゾリン化合物、カルボジイミド化合物、イソシアネート化合物、エポキシ化合物から選ばれる少なくとも1種の化合物を含有する塗料組成物により形成されると、樹脂フィルムが緻密架橋構造となるため、耐スクラッチ性および帯電防止性能の安定性に優れ好ましい。そのため、本発明の樹脂フィルムの導電相(B)は、メラミン化合物、オキサゾリン化合物、カルボジイミド化合物、イソシアネート化合物、エポキシ化合物に由来する成分を含むことが好ましい。
特に、その中でもメラミン化合物、オキサゾリン化合物、カルボジイミド化合物を含む塗料組成物(x)を用いると、樹脂フィルムに窒素含有官能基が導入されるため、極性力が向上し、次加工にて塗布層やスパッタ層、蒸着層など金属層との接着性が向上し、好ましい。
さらに導電性との両立の観点からは、メラミン化合物については一部導電性材料との共存下で抵抗値の上昇が見られる場合があるため、オキサゾリン化合物、カルボジイミド化合物、イソシアネート化合物から選ばれる少なくとも1種を含む塗料組成物(x)を用いることが好ましい。
[Other ingredients]
In the resin film of the present invention, when the conductive phase (B) is formed from a coating composition containing at least one compound selected from a melamine compound, an oxazoline compound, a carbodiimide compound, an isocyanate compound, and an epoxy compound, the resin Since the film has a dense crosslinked structure, it is preferred because it has excellent scratch resistance and stability in antistatic performance. Therefore, the conductive phase (B) of the resin film of the present invention preferably contains a component derived from a melamine compound, an oxazoline compound, a carbodiimide compound, an isocyanate compound, and an epoxy compound.
In particular, when a coating composition (x) containing a melamine compound, an oxazoline compound, or a carbodiimide compound is used, nitrogen-containing functional groups are introduced into the resin film, which improves polarity and improves the coating layer and Adhesion to metal layers such as sputtered layers and vapor deposited layers is improved, which is preferable.
Furthermore, from the viewpoint of compatibility with conductivity, as some melamine compounds may show an increase in resistance value when coexisting with conductive materials, at least one compound selected from oxazoline compounds, carbodiimide compounds, and isocyanate compounds should be used. Preferably, a coating composition (x) containing seeds is used.

一方、透明性などの光学特性との両立を必要とする場合には、メラミン化合物、オキサゾリン化合物、カルボジイミド化合物、イソシアネート化合物、エポキシ化合物などの架橋剤の中から2種類以上の材料を併用することが好ましい。2種類以上の架橋剤を併用することで導電性の安定性や耐キズ性の向上に必要な架橋性を維持しながら、個別の材料の添加量を低減することで樹脂成分との相溶性を付与することが容易となる。中でも、オキサゾリン化合物、カルボジイミド化合物、イソシアネート化合物から選ばれる少なくとも2種を含む塗料組成物(x)を用いることが好ましい。 On the other hand, if it is necessary to achieve both optical properties such as transparency, it is possible to use two or more types of crosslinking agents such as melamine compounds, oxazoline compounds, carbodiimide compounds, isocyanate compounds, and epoxy compounds. preferable. By using two or more types of crosslinking agents together, we maintain the crosslinking properties necessary to improve conductivity stability and scratch resistance, while reducing the amount of each individual material added to improve compatibility with the resin component. It becomes easy to attach. Among these, it is preferable to use a coating composition (x) containing at least two selected from oxazoline compounds, carbodiimide compounds, and isocyanate compounds.

メラミン系化合物としては、例えば、メラミン、メラミンとホルムアルデヒドを縮合して得られるメチロール化メラミン誘導体、メチロール化メラミンに低級アルコールを反応させて部分的あるいは完全にエーテル化した化合物、及びこれらの混合物などを用いることができる。具体的には、トリアジンとメチロール基を有する化合物が特に好ましい。本発明におけるメラミン化合物とは、次に述べるメラミン化合物が、ウレタン樹脂や、アクリル樹脂、オキサゾリン化合物、またはカルボジイミド化合物、イソシアネート化合物、エポキシ化合物などと架橋構造を形成する場合は、メラミン化合物に由来する成分を意味する。またメラミン系化合物としては単量体、2量体以上の多量体からなる縮合物のいずれでもよく、これらの混合物でもよい。エーテル化に用いられる低級アルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブタノール、イソブタノールなどを用いることができる。基としては、イミノ基、メチロール基、あるいはメトキシメチル基やブトキシメチル基等のアルコキシメチル基を1分子中に有するもので、イミノ基型メチル化メラミン樹脂、メチロール基型メラミン樹脂、メチロール基型メチル化メラミン樹脂、完全アルキル型メチル化メラミン樹脂などである。その中でもメチロール化メラミン樹脂が最も好ましい。更に、メラミン系化合物の熱硬化を促進するため、例えばp-トルエンスルホン酸などの酸性触媒を用いてもよい。 Examples of melamine compounds include melamine, methylolated melamine derivatives obtained by condensing melamine and formaldehyde, compounds obtained by reacting methylolated melamine with a lower alcohol to partially or completely etherify it, and mixtures thereof. Can be used. Specifically, compounds having a triazine and a methylol group are particularly preferred. The melamine compound in the present invention refers to a component derived from a melamine compound when the melamine compound described below forms a crosslinked structure with a urethane resin, an acrylic resin, an oxazoline compound, a carbodiimide compound, an isocyanate compound, an epoxy compound, etc. means. Further, the melamine compound may be a monomer, a condensate consisting of a dimer or more, or a mixture thereof. As the lower alcohol used for etherification, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol, etc. can be used. The group includes an imino group, a methylol group, or an alkoxymethyl group such as a methoxymethyl group or a butoxymethyl group in one molecule.Imino group type methylated melamine resin, methylol group type melamine resin, methylol group type methylated melamine resin, completely alkyl type methylated melamine resin, etc. Among them, methylolated melamine resin is most preferred. Further, in order to promote thermal curing of the melamine compound, an acidic catalyst such as p-toluenesulfonic acid may be used.

このようなメラミン系化合物用いると、メラミン系化合物の自己縮合による塗膜硬度アップによる耐スクラッチ性向上が見られるだけでなく、アクリル樹脂に含まれる水酸基やカルボン基とメラミン系化合物の反応が進行し、より強固な樹脂フィルムを得ることができ、耐スクラッチ性に優れるフィルムを得ることができる。 When such melamine compounds are used, not only does the self-condensation of the melamine compound increase the hardness of the coating and improve scratch resistance, but also the reaction between the hydroxyl groups and carboxyl groups contained in the acrylic resin and the melamine compound progresses. , a stronger resin film can be obtained, and a film with excellent scratch resistance can be obtained.

オキサゾリン化合物とは、次に述べるオキサゾリン化合物、もしくはオキサゾリン化合物がウレタン樹脂(d-2)や、アクリル樹脂(D)、メラミン化合物、イソシアネート化合物、またはカルボジイミド化合物などと架橋構造を形成する場合は、オキサゾリン化合物に由来する成分を意味する。オキサゾリン化合物としては、該化合物中に官能基としてオキサゾリン基を有するものであれば特に限定されるものではないが、オキサゾリン基を含有するモノマーを少なくとも1種以上含み、かつ、少なくとも1種の他のモノマーを共重合させて得られるオキサゾリン基含有共重合体からなるものが好ましい。 The oxazoline compound is the oxazoline compound described below, or when the oxazoline compound forms a crosslinked structure with urethane resin (d-2), acrylic resin (D), melamine compound, isocyanate compound, or carbodiimide compound, oxazoline compound is It means a component derived from a compound. The oxazoline compound is not particularly limited as long as it has an oxazoline group as a functional group, but it contains at least one monomer containing an oxazoline group and at least one other monomer. It is preferable to use an oxazoline group-containing copolymer obtained by copolymerizing monomers.

オキサゾリン基を含有するモノマーとしては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリンなどを用いることができ、これらの1種または2種以上の混合物を使用することもできる。中でも、2-イソプロペニル-2-オキサゾリンが工業的にも入手しやすく好適である。 Monomers containing an oxazoline group include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, etc. can be used, and one type or a mixture of two or more of these can also be used. Among them, 2-isopropenyl-2-oxazoline is suitable because it is industrially easily available.

オキサゾリン化合物において、オキサゾリン基を含有するモノマーに対して用いられる少なくとも1種の他のモノマーとしては、該オキサゾリン基を含有するモノマーと共重合可能なモノマーであれば、特に限定されないが、例えば、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸-2-エチルヘキシル、メタクリル酸-2-エチルヘキシルなどのアクリル酸エステルあるいはメタクリル酸エステル類、アクリル酸、メタクリル酸、イタコン酸、マレイン酸などの不飽和カルボン酸類、アクリロニトリル、メタクリロニトリルなどの不飽和ニトリル類、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミドなどの不飽和アミド類、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類、メチルビニルエーテル、エチルビニルエーテルなどのビニルエーテル類、エチレン、プロピレンなどのオレフィン類、塩化ビニル、塩化ビニリデン、フッ化ビニルなどの含ハロゲン-α,β-不飽和モノマー類、スチレン、α-メチルスチレンなどのα,β-不飽和芳香族モノマー類などを用いることができ、これらの1種または2種以上の混合物を使用することもできる。 In the oxazoline compound, at least one other monomer used for the monomer containing an oxazoline group is not particularly limited as long as it is a monomer copolymerizable with the monomer containing the oxazoline group, but for example, acrylic Acrylic acid esters or methacrylic esters such as methyl acid, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, acrylic acid, Unsaturated carboxylic acids such as methacrylic acid, itaconic acid, and maleic acid; unsaturated nitriles such as acrylonitrile and methacrylonitrile; unsaturated amides such as acrylamide, methacrylamide, N-methylolacrylamide, and N-methylolmethacrylamide; acetic acid. Vinyl, vinyl esters such as vinyl propionate, vinyl ethers such as methyl vinyl ether and ethyl vinyl ether, olefins such as ethylene and propylene, and halogen-containing α,β-unsaturated monomers such as vinyl chloride, vinylidene chloride, and vinyl fluoride. α,β-unsaturated aromatic monomers such as styrene, α-methylstyrene, etc. can be used, and one type or a mixture of two or more of these can also be used.

本発明におけるカルボジイミド化合物とは、次に述べるカルボジイミド化合物、もしくはカルボジイミド化合物がウレタン樹脂や、アクリル樹脂、メラミン化合物、イソシアネート化合物、またはオキサゾリン化合物などと架橋構造を形成する場合は、カルボジイミド化合物に由来する成分を意味する。カルボジイミド化合物とは、該化合物中に官能基としてカルボジイミド基、またはその互変異性の関係にあるシアナミド基を分子内に1個または2個以上有する化合物であれば特に限定されるものではない。 The carbodiimide compound in the present invention refers to the carbodiimide compound described below, or when the carbodiimide compound forms a crosslinked structure with a urethane resin, acrylic resin, melamine compound, isocyanate compound, or oxazoline compound, a component derived from the carbodiimide compound. means. The carbodiimide compound is not particularly limited as long as the compound has one or more carbodiimide groups or cyanamide groups having a tautomeric relationship as a functional group in the molecule.

カルボジイミド化合物の製造には公知の技術を適用することができ、一般的には、ジイソシアネート化合物を触媒存在下で重縮合することによりカルボジイミド化合物が得られる。該カルボジイミド化合物の出発原料であるジイソシアネート化合物としては、芳香族、脂肪族、脂環式ジイソシアネートなどを用いることができ、具体的にはトリレンジイソシアネート、キシレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルジイソシアネートなどを用いることができる。 Known techniques can be applied to the production of carbodiimide compounds, and generally, carbodiimide compounds are obtained by polycondensing diisocyanate compounds in the presence of a catalyst. As the diisocyanate compound that is the starting material for the carbodiimide compound, aromatic, aliphatic, alicyclic diisocyanates, etc. can be used, and specifically, tolylene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, and cyclohexane diisocyanate. , isophorone diisocyanate, dicyclohexyl diisocyanate, etc. can be used.

[特性の測定方法および効果の評価方法]
本発明における特性の測定方法および効果の評価方法は次のとおりである。なお、以下実施例6は参考例とする。
[Method of measuring characteristics and evaluating effectiveness]
The method of measuring the characteristics and the method of evaluating the effect in the present invention are as follows. Note that Example 6 below is a reference example.

(1)表面αの測定
(1-1)AFMによる表面αの導電性
層表面の導電性の測定は、AFM(Burker Corporation製 DimensionIcon)を用い、導電測定モード(コンダクティブAFM)を用いて解析を実施した。具体的には、コンダクティブAFMのマニュアルに従い、下記の条件にて測定を実施した。なおサンプルは以下の方法で固定し、層表面からサンプルステージへの導電性を確保した。まず樹脂フィルムを1cm×1cmのサイズに切り出した。続いてステンレス性の試料台上に樹脂フィルムを、導電性を測定する層表面が上に向くように配置した。更に樹脂フィルムの四辺を端部から3mm程度を覆う用に導電性テープ(日新EM株式会社製、SEM用カーボン両面テープ(アルミ基材、8mm幅))を用いて試料台に固定した。
測定装置 : Burker Corporation製原子間力顕微鏡(AFM)
測定モード : コンダクティブAFM(コンタクトモード)
カンチレバー: ブルカーAXS社製 SCM-PIC
(材質:Si、バネ定数K:0.2(N/m)、先端曲率半径R:20(nm))
測定雰囲気 : 23℃・大気中
測定範囲 : 1(μm)四方
分解能 : 512×512
カンチレバー移動速度: 10(μm/s)
最大押し込み荷重 : 10(nN)。
印加電圧 : 10 V
測定後「C-AFM Current」像を選択し、該画面に表示される像を「ScionImage」で二値化(最大値:10nA、最小値:0pA、閾値180(黒を0、白を255とし、黒から白を256段階に表すグレースケールにおいて、10nA以上流れる領域を255(白)、0pAの領域を0(黒)になるように設定して導電性像を作成し、得られた導電性像においてグレースケール180以上の色味で表される電流値が高い部分を白、グレースケール180未満の色味で表される電流値が低い部分を黒と色分け))し、表面αの導電性像とした。なお、上記の手順に従って二値化処理を施す操作は、電流値7.2nAを境界値として、画像を絶縁領域と導電領域に区分することに相当する。
(1) Measurement of surface α (1-1) Conductivity of surface α using AFM The conductivity of the layer surface was measured using AFM (Dimension Icon manufactured by Burker Corporation) and analyzed using conductive measurement mode (conductive AFM). carried out. Specifically, measurements were carried out under the following conditions according to the conductive AFM manual. The sample was fixed using the following method to ensure conductivity from the layer surface to the sample stage. First, a resin film was cut into a size of 1 cm x 1 cm. Subsequently, the resin film was placed on a stainless steel sample stand so that the surface of the layer whose conductivity was to be measured faced upward. Furthermore, the resin film was fixed to the sample stage using conductive tape (manufactured by Nissin EM Co., Ltd., carbon double-sided tape for SEM (aluminum base, 8 mm width)) to cover the four sides of the resin film approximately 3 mm from the end.
Measuring device: Atomic force microscope (AFM) manufactured by Barker Corporation
Measurement mode: Conductive AFM (contact mode)
Cantilever: Bruker AXS SCM-PIC
(Material: Si, Spring constant K: 0.2 (N/m), Tip radius of curvature R: 20 (nm))
Measurement atmosphere: 23℃/in the air Measurement range: 1 (μm) Square resolution: 512 x 512
Cantilever movement speed: 10 (μm/s)
Maximum pushing load: 10 (nN).
Applied voltage: 10V
After measurement, select the "C-AFM Current" image and binarize the image displayed on the screen with "ScionImage" (maximum value: 10 nA, minimum value: 0 pA, threshold value 180 (black = 0, white = 255). , in a gray scale representing black to white in 256 steps, a conductivity image was created by setting the area where 10 nA or more flows to 255 (white) and the area where 0 pA is 0 (black), and the obtained conductivity In the image, areas with high current values expressed in shades of gray scale 180 or higher are colored white, areas with low current values expressed in shades below gray scale 180 are colored black), and the conductivity of the surface α is It was made into a statue. Note that the operation of performing the binarization process according to the above procedure corresponds to dividing the image into an insulating region and a conductive region using a current value of 7.2 nA as a boundary value.

(1-2)絶縁相(A)および導電相(B)の有無
(1-1)で求めた1μm×1μmの導電性像を縦横それぞれ40分割し、25nm×25nmの1600個の領域に分ける。その1600個の領域において、1個の領域全てが黒一色のもの、白一色のもののいずれも有する場合、絶縁相(A)および導電相(B)を有することとした。すなわち、導電性に偏りがなく、絶縁相(A)のみからなる画像が得られる場合や導電層(B)のみからなる画像が得られる場合、またはいずれの相の大きさも25nm四方に満たない場合には、絶縁相(A)および導電相(B)の2つの相を有さないと判断した。
また、任意に測定範囲を選択して10回測定し、8回以上黒色部と白色部が見られたら絶縁相(A)および導電相(B)を有すると判断した。
(1-2) The conductive image of 1 μm x 1 μm obtained from the presence/absence of insulating phase (A) and conductive phase (B) (1-1) is divided vertically and horizontally into 40 sections, and divided into 1600 regions of 25 nm x 25 nm. . Among the 1,600 regions, if one region has either solid black or solid white, it is considered to have an insulating phase (A) and a conductive phase (B). That is, when there is no bias in conductivity and an image consisting only of the insulating phase (A) or an image consisting only of the conductive layer (B) is obtained, or when the size of any phase is less than 25 nm square. It was determined that the structure does not have two phases: an insulating phase (A) and a conductive phase (B).
Furthermore, the measurement range was arbitrarily selected and the measurement was carried out 10 times, and if a black part and a white part were observed 8 times or more, it was determined that the sample had an insulating phase (A) and a conductive phase (B).

(1-3)導電相(B)、絶縁相(A)の導電性
(1-1)で求めた導電性像における1600個の領域において、二値化した画像において領域全てが黒一色となる領域すべてについて、導電性データを抽出し、その平均値を絶縁相(A)の導電性(I)とした。同様に(1-1)で求めた導電性像における1600個の領域において、1個の領域全てが白一色のものすべてについて弾性率を測定し、その平均値を導電相(B)の導電性(I)とした。また、任意に測定範囲を選択して10回測定し、最大値と最小値を除いた合計8回の平均値を採用した。
(1-3) Conductivity of conductive phase (B) and insulating phase (A) In the 1600 regions in the conductive image determined in (1-1), all the regions are solid black in the binarized image. Conductivity data was extracted for all regions, and the average value was taken as the conductivity (I A ) of the insulating phase (A). Similarly, in the 1,600 regions in the conductive image obtained in (1-1), the elastic modulus of all the regions in which one region is solid white is measured, and the average value is calculated as the conductivity of the conductive phase (B). ( IB ). Further, the measurement range was arbitrarily selected and the measurement was performed 10 times, and the average value of the total of 8 times excluding the maximum value and minimum value was adopted.

(1-4)絶縁相(A)の面積比率
(1-1)で求めた導電性像について、黒い部分の面積比率をソフトウェア(画像処理ソフトImageJ/開発元:アメリカ国立衛生研究所(NIH))のAnalize Particles(粒子解析)機能により占有面積率の合計として算出し、絶縁相(A)の面積比率とした。
(1-4) Regarding the conductive image obtained using the area ratio (1-1) of the insulating phase (A), calculate the area ratio of the black part using software (image processing software ImageJ/Developer: National Institutes of Health (NIH)) ) was calculated as the sum of the occupied area ratios using the Analyze Particles function, and was taken as the area ratio of the insulating phase (A).

(1-5)絶縁相(A)の平均ドメイン径
(1-1)で求めた導電性像について、黒い部分の平均ドメイン径をソフトウェア(画像処理ソフトImageJ/開発元:アメリカ国立衛生研究所(NIH))のAnalize
Particles(粒子解析)機能により円近似を用いて算出される半径の値を平均ドメイン径として採用した。なお測定領域端部のデータの扱いについては、Analize Particles(粒子解析)のExclude on edgesを有効とすることで、測定から除外した。
(1-5) Regarding the conductivity image obtained using the average domain diameter (1-1) of the insulating phase (A), the average domain diameter of the black part was calculated using software (image processing software ImageJ/Developer: National Institutes of Health) NIH)) Analyze
The radius value calculated using circular approximation using the Particles (particle analysis) function was employed as the average domain diameter. Regarding the handling of data at the edges of the measurement area, Exclude on edges in Analyze Particles was enabled to exclude them from the measurement.

(1-6)絶縁相(A)の金属酸化物(a)含有有無
SEM(走査型電子顕微鏡)を用いて表面αの表面を10万倍の倍率で観察することにより、ポリエステルフィルム上の表面αの絶縁相(A)について、EDX(エネルギー分散型X線分光法)による元素分析を実施し、金属酸化物(a)の含有有無を判断した。
(1-6) Containment of metal oxide (a) in insulating phase (A) By observing the surface α at a magnification of 100,000 times using a SEM (scanning electron microscope), the surface of the polyester film The insulating phase (A) of α was subjected to elemental analysis by EDX (energy dispersive X-ray spectroscopy) to determine whether the metal oxide (a) was contained.

具体的には、日立ハイテクノロジーズ製電界放射型走査電子顕微鏡(型番S-4800)で観察される、表面αの絶縁相(A)について、BrukerAXS製QUANTAX
Flat QUAD System (型番 Xflash 5060FQ)で元素検出を測定し、Si、Al、Ti、Zr、Se、Feからなる群から選ばれる、少なくとも1種の金属元素が検出された場合、金属酸化物(a)を有すると判定した。
なお、表面αの絶縁相(A)のうち、50%以上の絶縁相(A)で金属酸化物(a)を有する場合、表面αの絶縁相(A)は金属酸化物(a)を含有すると判断した。
Specifically, regarding the insulating phase (A) on the surface α observed with a field emission scanning electron microscope (model number S-4800) manufactured by Hitachi High-Technologies, QUANTAX manufactured by BrukerAXS
When element detection is measured using the Flat QUAD System (model number Xflash 5060FQ) and at least one metal element selected from the group consisting of Si, Al, Ti, Zr, Se, and Fe is detected, metal oxide (a ).
In addition, when 50% or more of the insulating phase (A) on the surface α contains the metal oxide (a), the insulating phase (A) on the surface α contains the metal oxide (a). Then I decided.

(1-7)AFMによる表面αの弾性率
層表面の表面弾性率の測定は、AFM(Burker Corporation製 DimensionIcon)を用い、PeakForceQNMモードにて測定を実施し、得られたフォースカーブから付属の解析ソフト「NanoScopeAnalysis
V1.40」を用いて、JKR接触理論に基づいた解析を行い、表面弾性率を求めた。
(1-7) Elastic modulus of surface α by AFM The surface elastic modulus of the layer surface was measured using AFM (Dimension Icon manufactured by Burker Corporation) in PeakForceQNM mode, and the attached analysis was performed from the obtained force curve. Software “NanoScope Analysis
Analysis based on the JKR contact theory was performed using "V1.40" to determine the surface elastic modulus.

具体的にはまずPeakForceQNMモードのマニュアルに従い、カンチレバーの反り感度、バネ定数、先端曲率の構成を行った。なお、バネ定数および先端曲率は個々のカンチレバーによってバラつきを有するが、測定に影響しない範囲として、バネ定数0.1(N/m)以上0.4(N/m)以下、先端曲率半径25(nm)以下の条件を満たすカンチレバーを採用し、測定に使用した。測定条件は下記に示す。
測定装置 : Burker Corporation製原子間力顕微鏡(AFM)
測定モード : Rampモードにてフォースカーブを採取
カンチレバー: ブルカーAXS社製 SCM-PIC
(材質:Si、バネ定数K:0.2(N/m)、先端曲率半径R:20(nm))
測定雰囲気 : 23℃・大気中
測定回数 : 10点
カンチレバー移動速度: 10(μm/s)
最大押し込み荷重 : 10(nN)。
Specifically, first, the warpage sensitivity, spring constant, and tip curvature of the cantilever were configured according to the PeakForceQNM mode manual. Note that the spring constant and tip curvature vary depending on the individual cantilever, but as a range that does not affect the measurement, the spring constant is 0.1 (N/m) or more and 0.4 (N/m) or less, and the tip curvature radius is 25 ( nm) A cantilever satisfying the following conditions was adopted and used for measurement. The measurement conditions are shown below.
Measuring device: Atomic force microscope (AFM) manufactured by Barker Corporation
Measurement mode: Force curve was collected in Ramp mode Cantilever: Bruker AXS SCM-PIC
(Material: Si, Spring constant K: 0.2 (N/m), Tip radius of curvature R: 20 (nm))
Measurement atmosphere: 23°C, air Number of measurements: 10 points Cantilever movement speed: 10 (μm/s)
Maximum pushing load: 10 (nN).

測定にはRampモードを使用した。まずScanモードにて前述の導電性測定によって得られた導電相(B)および絶縁相(A)から測定を実施する場所を決定し、OFFSETにより、画像の中央となるように移動した。次いでRampモードに切り替え、フォースカーブの採取を実施した。 Ramp mode was used for the measurement. First, the location for measurement was determined from the conductive phase (B) and insulating phase (A) obtained by the conductivity measurement described above in Scan mode, and the location was moved to the center of the image using OFFSET. Next, the mode was switched to Ramp mode, and a force curve was collected.

次いで得られたフォースカーブを解析ソフト「NanoScopeAnalysis V1.40」にて解析し、表面弾性率を得た。同様の測定を導電相(B)および絶縁相(A)のそれぞれについて10回ずつ繰り返し、最大値と最小値を除いた合計8回の平均値を各相の弾性率GおよびGとして採用した。Next, the obtained force curve was analyzed using analysis software "NanoScope Analysis V1.40" to obtain the surface elastic modulus. Similar measurements were repeated 10 times for each of the conductive phase (B) and the insulating phase (A), and the average value of a total of 8 measurements excluding the maximum and minimum values was adopted as the elastic modulus G A and G B of each phase. did.

(2)耐スクラッチ性
以下の条件で擦過処理を実施した後の樹脂フィルムの表面における傷の発生の有無を目視で確認し、下記評価を実施した。
[擦過処理]樹脂フィルムの表面をスチールウール(ボンスター#0000、日本スチールウール(株)製)を荷重200g/cmで10往復擦過する。
S:傷なし
A:傷1~5本
B:傷6~10本
C:傷11~15本
D:傷16本以上。
(2) Scratch resistance The presence or absence of scratches on the surface of the resin film after performing the scratching treatment under the following conditions was visually confirmed, and the following evaluation was performed.
[Abrasion Treatment] The surface of the resin film is rubbed with steel wool (Bonstar #0000, manufactured by Nippon Steel Wool Co., Ltd.) 10 times at a load of 200 g/cm 2 .
S: No scratches A: 1 to 5 scratches B: 6 to 10 scratches C: 11 to 15 scratches D: 16 or more scratches.

(3-1)ヘイズ(透明性)
ヘイズの測定は、常態(23℃、相対湿度50%)において、樹脂フィルムサンプルを40時間放置した後、日本電色工業(株)製濁度計「NDH5000」を用いて、JIS
K 7136「透明材料のヘイズの求め方」(2000年版)に準ずる方式で行った。なお、サンプルの表面αが積層された面側から光を照射して測定した。サンプルは一辺50mmの正方形のものを10サンプル準備し、それぞれ1回ずつ、合計10回測定した平均値をサンプルのヘイズ値とした。
(3-1) Haze (transparency)
Haze was measured using a turbidity meter "NDH5000" manufactured by Nippon Denshoku Industries Co., Ltd. after leaving the resin film sample for 40 hours under normal conditions (23°C, relative humidity 50%).
The method was conducted in accordance with K 7136 "How to determine the haze of transparent materials" (2000 edition). Note that the measurement was performed by irradiating light from the side where the surface α of the sample was laminated. Ten square samples each having a side of 50 mm were prepared, and the average value of each measurement was taken once, a total of 10 times, and the haze value of the sample was taken as the haze value of the sample.

(3-2)擦過評価後のヘイズ
(2)と同様にして擦過処理を施したのち、上記の方法で再度ヘイズ測定を実施した。
(3-2) Haze after abrasion evaluation After abrasion treatment was performed in the same manner as in (2), haze measurement was performed again using the above method.

(4)干渉ムラ
樹脂フィルムの表面αの反対面に黒色光沢テープ(ヤマト(株)製、ビニ-ルテープNo.200-50-21:黒)を、気泡を噛み込まないように貼り合わせた。
(4) Interference unevenness A black glossy tape (manufactured by Yamato Co., Ltd., vinyl tape No. 200-50-21: black) was attached to the opposite side of the surface α of the resin film so as not to trap air bubbles.

このサンプルを暗室にて3波長蛍光灯(パナソニック(株)製、3波長形昼白色(F・L 15EX-N 15W))の直下30cmに置き、視角を変えながら目視により干渉ムラの程度を観察し、以下の評価を行った。B以上のものを良好とした。 Place this sample 30 cm directly under a 3-wavelength fluorescent lamp (manufactured by Panasonic Corporation, 3-wavelength daylight white (F・L 15EX-N 15W)) in a dark room, and visually observe the degree of interference unevenness while changing the viewing angle. The following evaluations were made. A score of B or higher was considered good.

A:干渉ムラがほぼ見えない
B:干渉ムラがわずかに見える
C:干渉ムラが強い。
A: The interference unevenness is almost invisible. B: The interference unevenness is slightly visible. C: The interference unevenness is strong.

(5)帯電防止性能
(5-1)初期の帯電防止性
帯電防止性は、表面抵抗率により測定した。表面抵抗率の測定は、測定する樹脂フィルムを、相対湿度23%、25℃において24時間放置し、その雰囲気下でデジタル超高抵抗/微小電流計R8340Aおよびレジスティビティ・チェンバ 12702A(アドバンテスト(株)製、主電極:Φ50mm、対抗電極:Φ103mm)を用い、印加電圧100V、10秒間印加後、測定を行った。単位は、Ω/□である。サンプルの表面αを評価し、合計10回測定した平均値をサンプルの表面抵抗率(R1)とした。
1×10Ω/□以下は良好であり、1×1010Ω/□以下は実用使用可能なレベル、1×1010Ω/□を超える場合は実用上問題あるレベルとした。
(5) Antistatic performance (5-1) Initial antistatic property Antistatic property was measured by surface resistivity. To measure surface resistivity, the resin film to be measured is left for 24 hours at 23% relative humidity and 25°C, and in this atmosphere, a digital ultra-high resistance/microcurrent meter R8340A and a resistivity chamber 12702A (Advantest Co., Ltd.) are used. (Main electrode: Φ50 mm, counter electrode: Φ103 mm), after applying an applied voltage of 100 V for 10 seconds, measurement was performed. The unit is Ω/□. The surface α of the sample was evaluated, and the average value of a total of 10 measurements was taken as the surface resistivity (R1) of the sample.
A value of 1×10 8 Ω/□ or less was considered good, a value of 1×10 10 Ω/□ or less was considered a practically usable level, and a value exceeding 1×10 10 Ω/□ was considered a practically problematic level.

(5-2)1か月後の帯電防止性
樹脂フィルムを作成後、相対湿度23%、25℃の条件にて、樹脂フィルムの帯電防止評価を行う面を上にした状態で30日間保管した後、(5-1)と同様の方法で評価を実施した。得られた値から経時変化率(初期の表面抵抗率(Ω/□)/1ヵ月後の表面抵抗率(Ω/□)を求め、経時変化率が3倍未満であると良好、10倍未満を実用可能レベルとした。
(5-2) Antistatic property after 1 month After creating the resin film, it was stored for 30 days at 23% relative humidity and 25°C with the side for antistatic evaluation of the resin film facing up. After that, evaluation was performed in the same manner as in (5-1). From the obtained value, calculate the rate of change over time (initial surface resistivity (Ω/□)/surface resistivity after one month (Ω/□). If the rate of change over time is less than 3 times, it is good; less than 10 times. was set at a practical level.

(5-3)乾燥時の帯電防止性
樹脂フィルムを作成後、105℃、相対湿度5%の条件で1時間静置した後、評価を行う以外は(5-1)と同様の方法で評価を実施した。(乾燥時の表面抵抗率(Ω/□)/初期の表面抵抗率(Ω/□))が1以下であることが好ましく、5倍未満を実用レベルとした。
(5-3) Antistatic properties during drying After the resin film was prepared, it was evaluated in the same manner as in (5-1) except that it was left to stand for 1 hour at 105°C and 5% relative humidity. was carried out. (Dry surface resistivity (Ω/□)/initial surface resistivity (Ω/□)) is preferably 1 or less, and less than 5 times is considered a practical level.

なお、以下の実施例や比較例にて得られた樹脂フィルムの特性等を、表に示す。 In addition, the characteristics of the resin films obtained in the following examples and comparative examples are shown in the table.

<参考例>
<参考例1>金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-1)
攪拌機、温度計、還流冷却管の備わった通常のアクリル樹脂反応槽に、溶剤としてイソプロピルアルコール100重量部を仕込み、加熱攪拌して100℃に保持した。
この中に、(メタ)アクリレート(d’-1)として、n=19のエイコシルメタクリレート40重量部、(メタ)アクリレート(d’-2)として、2個の環を有するイソボニルメタクリレート40重量部、その他水酸基を有する(メタ)アクリレート(d’-3)として、2-ヒドロキシエチルアクリレート20重量部からなる混合物を3時間かけて滴下した。そして、滴下終了後、100℃で1時間加熱し、次にt-ブチルパーオキシ2-エチルヘキサノエート1重量部からなる追加触媒混合液を仕込んだ。次いで、100℃で3時間加熱した後冷却し、アクリル樹脂(D-1)を得た。
<Reference example>
<Reference Example 1> Emulsion (EM-1) containing a composition (AD) having an acrylic resin (D) on the surface of metal oxide particles (a)
100 parts by weight of isopropyl alcohol as a solvent was charged into an ordinary acrylic resin reaction tank equipped with a stirrer, a thermometer, and a reflux condenser, and the mixture was heated and stirred to maintain the temperature at 100°C.
In this, as (meth)acrylate (d'-1), 40 parts by weight of eicosyl methacrylate with n=19, and as (meth)acrylate (d'-2), 40 parts by weight of isobornyl methacrylate having two rings. A mixture of 20 parts by weight of 2-hydroxyethyl acrylate was added dropwise over a period of 3 hours as a (meth)acrylate (d'-3) having a hydroxyl group. After the dropwise addition was completed, the mixture was heated at 100° C. for 1 hour, and then an additional catalyst mixture containing 1 part by weight of t-butylperoxy 2-ethylhexanoate was charged. Next, the mixture was heated at 100° C. for 3 hours and then cooled to obtain an acrylic resin (D-1).

金属酸化物粒子(a)としてAl元素を含む金属酸化物粒子“NanoTek”Alスラリー(シーアイ化成株式会社製 数平均粒子径60nm:A-1)を用い、水系溶媒中に、“NanoTek”Alスラリーと上記アクリル樹脂(D-1)を順に添加し、以下の方法で分散せしめ、金属酸化物粒子(a)とアクリル樹脂(D-1)の混合組成物(AD)含有するエマルジョン(EM-1)を得た。(前記(ii)の方法。)
金属酸化物粒子(a)およびアクリル樹脂(D-1)の添加量比(重量比)は、(A)/(D-1)=50/50とした(なお重量比は、小数点第1位を四捨五入して求めた)。分散処理は、ホモミキサーを用いて行い、周速10m/sで5時間回転させることによって行った。また、最終的に得られた組成物(BA)における、金属酸化物粒子(a)とアクリル樹脂(B)の重量比は、(A)/(D-1)=50/50であった(なお、重量比は小数点第1位を四捨五入して求めた)。
Using metal oxide particles "NanoTek" Al 2 O 3 slurry (manufactured by CI Kasei Co., Ltd., number average particle diameter 60 nm: A-1) containing Al element as metal oxide particles (a), "NanoTek" was added to an aqueous solvent. "Al 2 O 3 slurry and the above acrylic resin (D-1) were added in order and dispersed by the following method to form a mixed composition (AD) containing metal oxide particles (a) and acrylic resin (D-1). An emulsion (EM-1) was obtained. (Method (ii) above.)
The addition amount ratio (weight ratio) of the metal oxide particles (a) and the acrylic resin (D-1) was (A)/(D-1) = 50/50 (the weight ratio is calculated to the first decimal place). (calculated by rounding to the nearest whole number). The dispersion treatment was performed using a homomixer and rotated at a circumferential speed of 10 m/s for 5 hours. In addition, the weight ratio of the metal oxide particles (a) and the acrylic resin (B) in the finally obtained composition (BA) was (A)/(D-1) = 50/50 ( Note that the weight ratio was determined by rounding to the first decimal place).

なお、得られた組成物(AD)を、日立卓上超遠心機(日立工機株式会社製:CS150NX)により遠心分離を行い(回転数3000rpm、分離時間30分)、金属酸化物粒子(a)(及び金属酸化物粒子(a)の表面に吸着したアクリル樹脂(D))を沈降させた後、上澄み液を除去し、沈降物を濃縮乾固させた。濃縮乾固した沈降物をX線光電子分光法(XPS)により分析した結果、金属酸化物粒子(a)の表面にアクリル樹脂(D)が存在することが確認された。つまり、金属酸化物粒子(a)の表面には、アクリル樹脂(D)が吸着・付着しており、得られた組成物(AD)が金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する粒子に該当することが判明した。 The obtained composition (AD) was centrifuged using a Hitachi tabletop ultracentrifuge (CS150NX, manufactured by Hitachi Koki Co., Ltd.) (rotation speed 3000 rpm, separation time 30 minutes) to obtain metal oxide particles (a). After precipitating the acrylic resin (D) adsorbed on the surface of the metal oxide particles (a), the supernatant liquid was removed and the precipitate was concentrated to dryness. As a result of analyzing the concentrated and dried precipitate by X-ray photoelectron spectroscopy (XPS), it was confirmed that the acrylic resin (D) was present on the surface of the metal oxide particles (a). In other words, the acrylic resin (D) is adsorbed and adhered to the surface of the metal oxide particles (a), and the resulting composition (AD) is applied to the surface of the metal oxide particles (a). ) was found to correspond to particles with

<参考例2>
金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-2)
金属酸化物粒子(a)およびアクリル樹脂(D-1)の添加量比(重量比)を、(A)/(D-1)=60/40に変更した以外は、参考例1と同様にして、EM-2を得た。
<Reference example 2>
Emulsion (EM-2) containing a composition (AD) having an acrylic resin (D) on the surface of metal oxide particles (a)
The procedure was the same as in Reference Example 1, except that the ratio (weight ratio) of metal oxide particles (a) and acrylic resin (D-1) was changed to (A)/(D-1) = 60/40. EM-2 was obtained.

<参考例3>
金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-3)
金属酸化物粒子(a)およびアクリル樹脂(D-1)の添加量比(重量比)を、(A)/(D-1)=70/30に変更した以外は、参考例1と同様にして、EM-3を得た。
<Reference example 3>
Emulsion (EM-3) containing a composition (AD) having an acrylic resin (D) on the surface of metal oxide particles (a)
The procedure was the same as in Reference Example 1, except that the ratio (weight ratio) of metal oxide particles (a) and acrylic resin (D-1) was changed to (A)/(D-1) = 70/30. EM-3 was obtained.

<参考例4>
金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-4)
金属酸化物粒子(a)としてAl元素を含む金属酸化物粒子(“NanoTek”Alスラリー(シーアイ化成株式会社製 数平均粒子径50nm):A-2)を用いた以外は、参考例2と同様にして、EM-4を得た。
<Reference example 4>
Emulsion (EM-4) containing a composition (AD) having an acrylic resin (D) on the surface of metal oxide particles (a)
Reference example except that metal oxide particles containing Al element ("NanoTek" Al 2 O 3 slurry (manufactured by CI Kasei Co., Ltd., number average particle diameter 50 nm): A-2) were used as metal oxide particles (a). EM-4 was obtained in the same manner as in Example 2.

<参考例5>
金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-5)
金属酸化物粒子(a)としてAl元素を含む金属酸化物粒子(“NanoTek”Alスラリー(シーアイ化成株式会社製 数平均粒子径200nm):A-3)を用いた以外は、参考例2と同様にして、EM-5を得た。
<Reference example 5>
Emulsion (EM-5) containing a composition (AD) having an acrylic resin (D) on the surface of metal oxide particles (a)
Reference example except that metal oxide particles containing Al element (“NanoTek” Al 2 O 3 slurry (manufactured by CI Kasei Co., Ltd., number average particle diameter 200 nm): A-3) were used as metal oxide particles (a). EM-5 was obtained in the same manner as in Example 2.

<参考例6>
金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-6)
金属酸化物粒子(a)として、スズ-アンチモン系酸化物粒子(T-1シリーズ(三菱マテリアル電子化成株式会社製 数平均粒子径60nm):A-4)を用いた以外は、参考例2と同様にして、EM-6を得た。
<Reference example 6>
Emulsion (EM-6) containing a composition (AD) having an acrylic resin (D) on the surface of metal oxide particles (a)
Same as Reference Example 2 except that tin-antimony-based oxide particles (T-1 series (manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd., number average particle diameter 60 nm): A-4) were used as the metal oxide particles (a). EM-6 was obtained in the same manner.

<参考例7>
金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-7)
金属酸化物粒子(a)として、Zr元素を含む“ナノユース(登録商標)”ZR(日産化学工業株式会社製 数平均粒子径90nm):A-5を使用した以外は、参考例2と同様の方法で、EM―7を得た。
<Reference example 7>
Emulsion (EM-7) containing a composition (AD) having an acrylic resin (D) on the surface of metal oxide particles (a)
The same procedure as in Reference Example 2 was used, except that "Nano Youth (registered trademark)" ZR (manufactured by Nissan Chemical Industries, Ltd., number average particle diameter 90 nm): A-5 containing Zr element was used as the metal oxide particles (a). EM-7 was obtained by the method.

<参考例8>
金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-8)
金属酸化物粒子(a)として、Si元素を含む“スノーテックス(登録商標)”コロイダルシリカスラリー(日産化学工業株式会社製 数平均粒子径80nm):A-6を使用した以外は、参考例2と同様の方法で、EM-8を得た。
<Reference example 8>
Emulsion (EM-8) containing a composition (AD) having an acrylic resin (D) on the surface of metal oxide particles (a)
Reference Example 2 except that "Snowtex (registered trademark)" colloidal silica slurry containing Si element (manufactured by Nissan Chemical Industries, Ltd., number average particle diameter 80 nm): A-6 was used as the metal oxide particles (a). EM-8 was obtained in the same manner as above.

<参考例9>
金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-9)
攪拌機、温度計、還流冷却管の備わった通常のアクリル樹脂反応槽に、溶剤としてイソプロピルアルコール100重量部を仕込み、加熱攪拌して100℃に保持した。
この中に、(メタ)アクリレート(d’-1)として、n=19のエイコシルメタクリレート40重量部、(メタ)アクリレート(d’-2)として、2個の環を有するイソボニルメタクリレート40重量部、その他水酸基を有する(メタ)アクリレート(d’-3)として、2-ヒドロキシエチルアクリレート10重量部、2,2,2-トリフルオロエチルアクリレ-ト(d’-4)10重量部からなる混合物を3時間かけて滴下した。そして、滴下終了後、100℃で1時間加熱し、次にt-ブチルパーオキシ2-エチルヘキサノエート1重量部からなる追加触媒混合液を仕込んだ。次いで、100℃で3時間加熱した後冷却し、アクリル樹脂(D-2)を得た。
<Reference example 9>
Emulsion (EM-9) containing a composition (AD) having an acrylic resin (D) on the surface of metal oxide particles (a)
100 parts by weight of isopropyl alcohol as a solvent was charged into an ordinary acrylic resin reaction tank equipped with a stirrer, a thermometer, and a reflux condenser, and the mixture was heated and stirred to maintain the temperature at 100°C.
In this, as (meth)acrylate (d'-1), 40 parts by weight of eicosyl methacrylate with n=19, and as (meth)acrylate (d'-2), 40 parts by weight of isobornyl methacrylate having two rings. 10 parts by weight of 2-hydroxyethyl acrylate and 10 parts by weight of 2,2,2-trifluoroethyl acrylate (d'-4) as (meth)acrylate (d'-3) having other hydroxyl groups. The mixture was added dropwise over 3 hours. After the dropwise addition was completed, the mixture was heated at 100° C. for 1 hour, and then an additional catalyst mixture containing 1 part by weight of t-butylperoxy 2-ethylhexanoate was charged. Next, the mixture was heated at 100° C. for 3 hours and then cooled to obtain an acrylic resin (D-2).

アクリル樹脂としてアクリル樹脂(D-2)を使用した以外は、参考例2と同様の方法で、EM-9を得た。 EM-9 was obtained in the same manner as in Reference Example 2 except that acrylic resin (D-2) was used as the acrylic resin.

<参考例10> アクリル樹脂(D-3)の調整
窒素ガス雰囲気下かつ常温(25℃)下で、容器1に、水100重量部、ポリエチレングリコールモノメタクリレート(エチレンオキシドの繰り返し単位が16)1重量部および過硫酸アンモニウム0.5重量部を仕込み、これを70℃に昇温し、溶解させ、70℃の溶液1を得た。次に、常温(25℃)下で、容器2に、下記の原料を下記の比率で添加し、攪拌し、溶液2を得た。
・ポリエチレングリコールモノメタクリレート(エチレンオキシドの繰り返し単位が16)5モル部
・メタクリル酸メチル 62モル部
・アクリル酸エチル 30モル部
・アクリル酸 2モル部
・N-メチロールアクリルアミド 1モル部
その後、100重量部の溶液2に対し、水50重量部を添加し、溶液3を得た。窒素ガス雰囲気下で、溶液1を反応器に移し、反応器内の溶液の温度を70℃に保ちつつ、溶液3を溶液1に3時間かけて連続滴下せしめた。滴下終了後、更に85度で2時間攪拌したのち、25度まで冷却し、アンモニア水で中和して、アクリル樹脂(D-3)エマルジョンを得た。
<Reference Example 10> Preparation of acrylic resin (D-3) In a nitrogen gas atmosphere and at room temperature (25°C), 100 parts by weight of water and 1 weight of polyethylene glycol monomethacrylate (the repeating unit of ethylene oxide is 16) were placed in a container 1. 1 part and 0.5 part by weight of ammonium persulfate were charged, and the temperature was raised to 70°C to dissolve the solution to obtain a solution 1 at 70°C. Next, at room temperature (25° C.), the following raw materials were added to container 2 in the following ratios and stirred to obtain solution 2.
- 5 mole parts of polyethylene glycol monomethacrylate (16 repeating units of ethylene oxide) - 62 mole parts of methyl methacrylate - 30 mole parts of ethyl acrylate - 2 mole parts of acrylic acid - 1 mole part of N-methylol acrylamide, then 100 parts by weight 50 parts by weight of water was added to Solution 2 to obtain Solution 3. Solution 1 was transferred to a reactor under a nitrogen gas atmosphere, and solution 3 was continuously added dropwise to solution 1 over 3 hours while maintaining the temperature of the solution in the reactor at 70°C. After the addition was completed, the mixture was further stirred at 85 degrees for 2 hours, cooled to 25 degrees, and neutralized with aqueous ammonia to obtain an acrylic resin (D-3) emulsion.

<参考例11>
金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-10)
金属酸化物粒子(a)およびアクリル樹脂(D-1)の添加量比(重量比)を、(A)/(D-1)=20/80に変更した以外は、参考例1と同様にして、EM-10を得た。
<Reference example 11>
Emulsion (EM-10) containing a composition (AD) having an acrylic resin (D) on the surface of metal oxide particles (a)
The procedure was the same as in Reference Example 1, except that the ratio (weight ratio) of metal oxide particles (a) and acrylic resin (D-1) was changed to (A)/(D-1) = 20/80. EM-10 was obtained.

<参考例12>
金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-11)
金属酸化物粒子(a)およびアクリル樹脂(D-1)の添加量比(重量比)を、(A)/(D-1)=80/20に変更した以外は、参考例1と同様にして、EM-11を得た。
<Reference example 12>
Emulsion (EM-11) containing a composition (AD) having an acrylic resin (D) on the surface of metal oxide particles (a)
The procedure was the same as in Reference Example 1, except that the ratio (weight ratio) of metal oxide particles (a) and acrylic resin (D-1) was changed to (A)/(D-1) = 80/20. EM-11 was obtained.

<参考例13>
金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-12)
金属酸化物粒子(a)として、Zr元素を含む“ナノユース(登録商標)”ZR((日産化学工業株式会社製 数平均粒子径20nm):A-7)を使用した以外は、参考例2と同様の方法で、EM-12を得た。
<Reference example 13>
Emulsion (EM-12) containing a composition (AD) having an acrylic resin (D) on the surface of metal oxide particles (a)
The same procedure as Reference Example 2 was used, except that "Nano Youth (registered trademark)" ZR (manufactured by Nissan Chemical Industries, Ltd., number average particle diameter 20 nm): A-7 containing Zr element was used as the metal oxide particles (a). EM-12 was obtained in a similar manner.

<参考例14>導電性化合物B-1
酸性ポリマー化合物であるポリスチレンスルホン酸を20.8重量部含む1887重量部の水溶液中に、1重量%硫酸鉄(III)水溶液49重量部、チオフェン化合物である3,4-エチレンジオキシチオフェン8.8重量部、および10.9重量%のペルオキソ二硫酸水溶液117重量部を加えた。この混合物を18℃で、23時間攪拌した。ついで、この混合物に、154重量部の陽イオン交換樹脂および232重量部の陰イオン交換樹脂を加えて、2時間攪拌した後、イオン交換樹脂をろ別して、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸からなる混合物の水分散体B-1(固形分濃度は1.3重量%)を得た。
<Reference Example 14> Conductive compound B-1
In 1887 parts by weight of an aqueous solution containing 20.8 parts by weight of polystyrene sulfonic acid, an acidic polymer compound, 49 parts by weight of a 1% by weight iron(III) sulfate aqueous solution and 8.8 parts by weight of 3,4-ethylenedioxythiophene, a thiophene compound. 8 parts by weight and 117 parts by weight of a 10.9% by weight aqueous peroxodisulfuric acid solution were added. This mixture was stirred at 18°C for 23 hours. Next, 154 parts by weight of a cation exchange resin and 232 parts by weight of an anion exchange resin were added to this mixture, and after stirring for 2 hours, the ion exchange resin was filtered off to obtain poly(3,4-ethylenedioxythiophene). ) and polystyrene sulfonic acid, an aqueous dispersion B-1 (solid content concentration: 1.3% by weight) was obtained.

<参考例15>導電性化合物B-2
ポリスチレンスルホン酸アンモニウム塩(重量平均分子量:75,000)を水に希釈し、ポリスチレンスルホン酸アンモニウム塩の水溶液B-2(固形分濃度5重量%)を得た。
<Reference Example 15> Conductive compound B-2
Polystyrene sulfonate ammonium salt (weight average molecular weight: 75,000) was diluted with water to obtain polystyrene sulfonate ammonium salt aqueous solution B-2 (solid content concentration 5% by weight).

<実施例1>
はじめに、塗料組成物1を次の通り調製した。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物1を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-1):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):20重量部
・導電性化合物(B-1):25重量部(固形分重量)
<積層ポリエステルフィルム>
次いで、実質的に粒子を含有しないPETペレット(極限粘度0.63dl/g)を充分に真空乾燥した後、押し出し機に供給し285℃で溶融し、T字型口金よりシート状に押し出し、静電印加キャスト法を用いて表面温度25℃の鏡面キャスティングドラムに巻き付けて冷却固化せしめた。この未延伸フィルムを90℃に加熱して長手方向に3.4倍延伸し、一軸延伸フィルム(Bフィルム)とした。
<Example 1>
First, coating composition 1 was prepared as follows.
<Coating composition>
Coating composition 1 was obtained by mixing the following emulsion with an aqueous solvent at the ratio shown in the table.
- Emulsion (EM-1) containing a composition (AD) having an acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Melamine compound ("Beccamin" manufactured by DIC Corporation) (registered trademark) APM) (C-1): 20 parts by weight / Conductive compound (B-1): 25 parts by weight (solid content weight)
<Laminated polyester film>
Next, PET pellets containing substantially no particles (intrinsic viscosity 0.63 dl/g) were sufficiently vacuum-dried, then fed into an extruder, melted at 285°C, extruded into a sheet through a T-shaped nozzle, and allowed to stand still. It was wound around a mirror-finished casting drum with a surface temperature of 25° C. using an electric current casting method, and was cooled and solidified. This unstretched film was heated to 90° C. and stretched 3.4 times in the longitudinal direction to obtain a uniaxially stretched film (B film).

次に塗料組成物1を一軸延伸フィルムのコロナ放電処理面にバーコートを用いて塗布した。塗料組成物を塗布した一軸延伸フィルムの幅方向両端部をクリップで把持して予熱ゾーンに導き、雰囲気温度75℃とした後、引き続いてラジエーションヒーターを用いて雰囲気温度を110℃とし、次いで雰囲気温度を90℃として、塗料組成物を乾燥させ、層(X)を形成せしめた。引き続き連続的に120℃の加熱ゾーン(延伸ゾーン)で幅方向に3.5倍延伸し、続いて230℃の熱処理ゾーン(熱固定ゾーン)で20秒間熱処理を施し、結晶配向の完了した積層ポリエステルフィルムを得た。得られた積層ポリエステルフィルムにおいて透過型電子顕微鏡(TEM)を用いて断面を観察することにより測定したPETフィルムの厚みは50μm、層(X)の厚みは1000nmであった。得られた積層ポリエステルフィルムの特性等を表に示す。初期表面比抵抗、1ヶ月後の変化率、透明性、耐スクラッチ性、干渉ムラに優れるものであった。 Next, coating composition 1 was applied to the corona discharge treated surface of the uniaxially stretched film using a bar coater. Both ends in the width direction of the uniaxially stretched film coated with the coating composition were held with clips and led to the preheating zone to bring the ambient temperature to 75°C. Subsequently, a radiation heater was used to bring the ambient temperature to 110°C, and then the ambient temperature was lowered to 110°C. The coating composition was dried at 90° C. to form a layer (X). Subsequently, the laminated polyester was continuously stretched 3.5 times in the width direction in a 120°C heating zone (stretching zone), and then heat treated for 20 seconds in a 230°C heat treatment zone (heat setting zone) to complete crystal orientation. Got the film. The thickness of the PET film measured by observing the cross section of the obtained laminated polyester film using a transmission electron microscope (TEM) was 50 μm, and the thickness of layer (X) was 1000 nm. The properties of the obtained laminated polyester film are shown in the table. It was excellent in initial surface resistivity, rate of change after one month, transparency, scratch resistance, and interference unevenness.

<実施例2>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物2を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-2):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):20重量部
・導電性化合物(B-1):25重量部(固形分重量)
<実施例3>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物3を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-3):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):20重量部
・導電性化合物(B-1):25重量部(固形分重量)
<実施例4>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物4を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-4):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):20重量部
・導電性化合物(B-1):25重量部(固形分重量)
<実施例5>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物5を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-5):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):20重量部
・導電性化合物(B-1):25重量部(固形分重量)
<実施例6>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物6を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-6):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):20重量部
・導電性化合物(B-1):25重量部(固形分重量)
<実施例7>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物7を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-7):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):20重量部
・導電性化合物(B-1):25重量部(固形分重量)
<実施例8>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物8を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-8):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):20重量部
・導電性化合物(B-1):25重量部(固形分重量)
<実施例9>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物9を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-2):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):40重量部
・導電性化合物(B-1):25重量部(固形分重量)
<実施例10>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物10を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-2):100重量部
・イソシアネート化合物(C-2):第一工業製薬(株)製“エラストロン”(登録商標) E-37(固形分濃度28%、溶媒:水):20重量部
・導電性化合物(B-1):25重量部(固形分重量)
<実施例11>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物11を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-2):100重量部
・カルボジイミド系化合物(日清紡製“カルボジライド”(登録商標) V-04B)(C-3):20重量部
・導電性化合物(B-1):25重量部(固形分重量)
<実施例12>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物12を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-9):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM):20重量部
・導電性化合物(B-1):25重量部(固形分重量)
<実施例13>
層(X)の厚みを80nmに変更した以外は、実施例2と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<Example 2>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
The following emulsion was mixed with an aqueous solvent at the ratio shown in the table to obtain coating composition 2.
- Emulsion (EM-2) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Melamine compound ("Beccamin" manufactured by DIC Corporation) (registered trademark) APM) (C-1): 20 parts by weight / Conductive compound (B-1): 25 parts by weight (solid content weight)
<Example 3>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
The following emulsion was mixed with an aqueous solvent at the ratio shown in the table to obtain coating composition 3.
- Emulsion (EM-3) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Melamine compound ("Beccamin" manufactured by DIC Corporation) (registered trademark) APM) (C-1): 20 parts by weight / Conductive compound (B-1): 25 parts by weight (solid content weight)
<Example 4>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
Coating composition 4 was obtained by mixing the following emulsion in an aqueous solvent at the ratio shown in the table.
- Emulsion (EM-4) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Melamine compound ("Beccamin" manufactured by DIC Corporation) (registered trademark) APM) (C-1): 20 parts by weight / Conductive compound (B-1): 25 parts by weight (solid content weight)
<Example 5>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
The following emulsion was mixed with an aqueous solvent at the ratio shown in the table to obtain coating composition 5.
- Emulsion (EM-5) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Melamine compound (“Beccamin” manufactured by DIC Corporation) (registered trademark) APM) (C-1): 20 parts by weight / Conductive compound (B-1): 25 parts by weight (solid content weight)
<Example 6>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
The following emulsion was mixed with an aqueous solvent at the ratio shown in the table to obtain coating composition 6.
- Emulsion (EM-6) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Melamine compound (“Beccamin” manufactured by DIC Corporation) (registered trademark) APM) (C-1): 20 parts by weight / Conductive compound (B-1): 25 parts by weight (solid content weight)
<Example 7>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
The following emulsion was mixed with an aqueous solvent at the ratio shown in the table to obtain coating composition 7.
- Emulsion (EM-7) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Melamine compound ("Beccamin" manufactured by DIC Corporation) (registered trademark) APM) (C-1): 20 parts by weight / Conductive compound (B-1): 25 parts by weight (solid content weight)
<Example 8>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
Coating composition 8 was obtained by mixing the following emulsion with an aqueous solvent at the ratio shown in the table.
- Emulsion (EM-8) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Melamine compound ("Beccamin" manufactured by DIC Corporation) (registered trademark) APM) (C-1): 20 parts by weight / Conductive compound (B-1): 25 parts by weight (solid content weight)
<Example 9>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
Coating composition 9 was obtained by mixing the following emulsion in an aqueous solvent at the ratio shown in the table.
- Emulsion (EM-2) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Melamine compound ("Beccamin" manufactured by DIC Corporation) (registered trademark) APM) (C-1): 40 parts by weight / Conductive compound (B-1): 25 parts by weight (solid content weight)
<Example 10>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
The following emulsion was mixed with an aqueous solvent at the ratio shown in the table to obtain coating composition 10.
- Emulsion (EM-2) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Isocyanate compound (C-2): Daiichi Kogyo Seiyaku ( "Elastron" (registered trademark) E-37 (solid content concentration 28%, solvent: water): 20 parts by weight / Conductive compound (B-1): 25 parts by weight (solid content weight)
<Example 11>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
Coating composition 11 was obtained by mixing the following emulsion with an aqueous solvent at the ratio shown in the table.
- Emulsion (EM-2) containing a composition (AD) having an acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Carbodiimide compound ("Carbodilide" (registered trademark) manufactured by Nisshinbo) V-04B) (C-3): 20 parts by weight / Conductive compound (B-1): 25 parts by weight (solid weight)
<Example 12>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
Coating composition 12 was obtained by mixing the following emulsion in an aqueous solvent at the ratio shown in the table.
- Emulsion (EM-9) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Melamine compound ("Beccamin" manufactured by DIC Corporation) (registered trademark) APM): 20 parts by weight / Conductive compound (B-1): 25 parts by weight (solid content weight)
<Example 13>
A resin film was obtained in the same manner as in Example 2, except that the thickness of layer (X) was changed to 80 nm. The properties of the obtained resin film are shown in the table.

<実施例14>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物2を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-2):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):10重量部
・カルボジイミド系化合物(日清紡(株)製“カルボジライド”(登録商標) V-04B)(C-3):10重量部
・導電性化合物(B-1):25重量部(固形分重量)
<実施例15>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物2を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-2):100重量部
・イソシアネート化合物(C-2):第一工業製薬(株)製“エラストロン”(登録商標) E-37(固形分濃度28%、溶媒:水):10重量部
・カルボジイミド系化合物(日清紡(株)製“カルボジライド”(登録商標) V-04B)(C-3):10重量部
・導電性化合物(B-1):25重量部(固形分重量)
<実施例16>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物2を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-2):100重量部
・イソシアネート化合物(C-2):第一工業製薬(株)製“エラストロン”(登録商標) E-37(固形分濃度28%、溶媒:水):5重量部
・カルボジイミド系化合物(日清紡(株)製“カルボジライド”(登録商標) V-04B)(C-3):15重量部
・導電性化合物(B-1):25重量部(固形分重量)
<実施例17>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物2を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-2):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):20重量部
・導電性化合物(B-2):25重量部(固形分重量)
<実施例18>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物2を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-3):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):20重量部
・導電性化合物(B-2):25重量部(固形分重量)
<実施例19>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物2を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-1):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):20重量部
・導電性化合物(B-2):25重量部(固形分重量)
<比較例1>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物13を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-2):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):20重量部
<比較例2>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物14を得た。
・アクリル樹脂(D-3):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):20重量部
・導電性化合物(B-1):25重量部(固形分重量)
<比較例3>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物15を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-10):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):20重量部
・導電性化合物(B-1):25重量部(固形分重量)
<比較例4>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物16を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-11):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):20重量部
・導電性化合物(B-1):25重量部(固形分重量)
<比較例5>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物17を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-2):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):20重量部
・導電性化合物(B-1):10重量部(固形分重量)
<比較例6>
塗液中の塗料組成物を下記の通り変更した以外は、実施例1と同様の方法で樹脂フィルムを得た。得られた樹脂フィルムの特性などを表に示す。
<塗料組成物>
水系溶媒に、下記エマルジョンを表に記載の比率で混合し、塗料組成物18を得た。
・金属酸化物粒子(a)の表面にアクリル樹脂(D)を有する組成物(AD)を含有するエマルジョン(EM-12):100重量部
・メラミン系化合物(DIC(株)製“ベッカミン”(登録商標) APM)(C-1):20重量部
・導電性化合物(B-1):25重量部(固形分重量)
<Example 14>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
The following emulsion was mixed with an aqueous solvent at the ratio shown in the table to obtain coating composition 2.
・Emulsion (EM-2) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight ・Melamine compound (“Beccamin” manufactured by DIC Corporation) APM) (C-1): 10 parts by weight Carbodiimide compound (Nisshinbo Co., Ltd. "Carbodilide" (registered trademark) V-04B) (C-3): 10 parts by weight Conductive compound (B -1): 25 parts by weight (solid content weight)
<Example 15>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
The following emulsion was mixed with an aqueous solvent at the ratio shown in the table to obtain coating composition 2.
- Emulsion (EM-2) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Isocyanate compound (C-2): Daiichi Kogyo Seiyaku ( "Elastron" (registered trademark) E-37 (solid content concentration 28%, solvent: water): 10 parts by weight, carbodiimide compound ("Carbodilide" (registered trademark) V-04B, manufactured by Nisshinbo Co., Ltd.) ( C-3): 10 parts by weight / Conductive compound (B-1): 25 parts by weight (solid weight)
<Example 16>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
The following emulsion was mixed with an aqueous solvent at the ratio shown in the table to obtain coating composition 2.
- Emulsion (EM-2) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Isocyanate compound (C-2): Daiichi Kogyo Seiyaku ( "Elastron" (registered trademark) E-37 (solid content concentration 28%, solvent: water): 5 parts by weight, carbodiimide compound ("Carbodilide" (registered trademark) V-04B, manufactured by Nisshinbo Co., Ltd.) ( C-3): 15 parts by weight Conductive compound (B-1): 25 parts by weight (solid weight)
<Example 17>
The following emulsion was mixed with an aqueous solvent at the ratio shown in the table to obtain coating composition 2.
・Emulsion (EM-2) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight ・Melamine compound (“Beccamin” manufactured by DIC Corporation) (registered trademark) APM) (C-1): 20 parts by weight / Conductive compound (B-2): 25 parts by weight (solid content weight)
<Example 18>
The following emulsion was mixed with an aqueous solvent at the ratio shown in the table to obtain coating composition 2.
・Emulsion (EM-3) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight ・Melamine compound (“Beccamin” manufactured by DIC Corporation) (registered trademark) APM) (C-1): 20 parts by weight / Conductive compound (B-2): 25 parts by weight (solid content weight)
<Example 19>
The following emulsion was mixed with an aqueous solvent at the ratio shown in the table to obtain coating composition 2.
・Emulsion (EM-1) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight ・Melamine compound (“Beccamin” manufactured by DIC Corporation) (registered trademark) APM) (C-1): 20 parts by weight / Conductive compound (B-2): 25 parts by weight (solid content weight)
<Comparative example 1>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
Coating composition 13 was obtained by mixing the following emulsion with an aqueous solvent at the ratio shown in the table.
- Emulsion (EM-2) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Melamine compound ("Beccamin" manufactured by DIC Corporation) Registered Trademark) APM) (C-1): 20 parts by weight <Comparative Example 2>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
Coating composition 14 was obtained by mixing the following emulsion in an aqueous solvent at the ratio shown in the table.
- Acrylic resin (D-3): 100 parts by weight - Melamine compound (“Beccamin” (registered trademark) APM manufactured by DIC Corporation) (C-1): 20 parts by weight - Conductive compound (B-1): 25 parts by weight (solid weight)
<Comparative example 3>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
Coating composition 15 was obtained by mixing the following emulsion in an aqueous solvent at the ratio shown in the table.
- Emulsion (EM-10) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Melamine compound ("Beccamin" manufactured by DIC Corporation) (registered trademark) APM) (C-1): 20 parts by weight / Conductive compound (B-1): 25 parts by weight (solid content weight)
<Comparative example 4>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
The following emulsion was mixed with an aqueous solvent at the ratio shown in the table to obtain coating composition 16.
- Emulsion (EM-11) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Melamine compound (“Beccamin” manufactured by DIC Corporation) (registered trademark) APM) (C-1): 20 parts by weight / Conductive compound (B-1): 25 parts by weight (solid content weight)
<Comparative example 5>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
Coating composition 17 was obtained by mixing the following emulsion with an aqueous solvent at the ratio shown in the table.
- Emulsion (EM-2) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Melamine compound ("Beccamin" manufactured by DIC Corporation) (registered trademark) APM) (C-1): 20 parts by weight / Conductive compound (B-1): 10 parts by weight (solid content weight)
<Comparative example 6>
A resin film was obtained in the same manner as in Example 1, except that the coating composition in the coating liquid was changed as follows. The properties of the obtained resin film are shown in the table.
<Coating composition>
Coating composition 18 was obtained by mixing the following emulsion with an aqueous solvent at the ratio shown in the table.
- Emulsion (EM-12) containing a composition (AD) having acrylic resin (D) on the surface of metal oxide particles (a): 100 parts by weight - Melamine compound (“Beccamin” manufactured by DIC Corporation) (registered trademark) APM) (C-1): 20 parts by weight / Conductive compound (B-1): 25 parts by weight (solid content weight)

Figure 0007419817000007
Figure 0007419817000007

Figure 0007419817000008
Figure 0007419817000008

Figure 0007419817000009
Figure 0007419817000009

なお、表中、絶縁相(A)および導電相(B)の有無において、「Y」は「有り」、「N」は「無し」を表す。また、表中、Eは、指数表示を表し、例えば、「1.0E+07」は、「1.0×10」を表す。In addition, in the table, "Y" represents "presence" and "N" represents "absence" regarding the presence or absence of the insulating phase (A) and the conductive phase (B). Further, in the table, E represents an index display; for example, "1.0E+07" represents "1.0×10 7 ".

本発明は、帯電防止性と耐スクラッチ性を併せ持ち、帯電防止性の環境に応じた変化が少ない樹脂フィルムに関する。各種工業製品の加工に用いられるプラスチックフィルム、特にディスプレイ用途に用いられるハードコートフィルムや、成形加飾用途に用いられるハードコートフィルム、および金属積層用基材として好適に利用可能である。
The present invention relates to a resin film that has both antistatic properties and scratch resistance, and whose antistatic properties hardly change depending on the environment. It can be suitably used as a plastic film used in the processing of various industrial products, particularly a hard coat film used in display applications, a hard coat film used in molding and decoration applications, and a base material for metal lamination.

Claims (8)

少なくとも一方の表面が、AFM(Atomic Force Microscope(原子間力顕微鏡))の導電測定モード(コンダクティブAFM)により測定される絶縁相(A)と導電相(B)を有し、前記絶縁相(A)がSi、Al、Zrからなる群から選ばれる、少なくとも1種の金属元素を含む金属酸化物粒子(a)の表面の一部または全部にアクリル樹脂(D)を有する組成物(AD)を含有し、前記金属酸化物粒子(a)の数平均粒子径が50nm以上200nm以下であり、前記導電相(B)が、ポリチオフェン系導電性化合物(b)とエポキシ樹脂、メラミン樹脂、オキサゾリン化合物、カルボジイミド化合物、イソシアネート化合物から選ばれる少なくとも1種類の架橋剤(c)を含有し、前記絶縁相(A)と前記導電相(B)を有する表面を表面αとしたとき、前記表面αにおける前記絶縁相(A)の占める面積が40%以上80%以下であり、前記表面αの表面抵抗率が1.0×1010Ω/□以下である樹脂フィルム。
但し、前記絶縁相(A)と前記導電相(B)の特定は下記の手順により行う。
まず、下記の条件にてAFMによる層表面の導電性の測定を行う。
[条件]
測定装置 : Burker Corporation製原子間力顕微鏡(AFM)
測定モード : コンダクティブAFM(コンタクトモード)
カンチレバー: ブルカーAXS社製 SCM-PIC
(材質:Si、バネ定数K:0.2(N/m)、先端曲率半径R:20(nm))
測定雰囲気 : 23℃・大気中
測定範囲 : 1(μm)四方
分解能 : 512×512
カンチレバー移動速度: 10(μm/s)
最大押し込み荷重 : 10(nN)
印加電圧 : 10(V)
前記測定後「C-AFM Current」像を選択し、該画面に表示される像を「ScionImage」で電流値7.2nAを境界値として二値化(最大値:10nA、最小値:0pA、閾値180(黒を0、白を255とし、黒から白を256段階に表すグレースケールにおいて、10nA以上流れる領域を255(白)、0pAの領域を0(黒)になるように設定して導電性像を作成し、得られた導電性像においてグレースケール180以上の色味で表される電流値が高い部分を白、グレースケール180未満の色味で表される電流値が低い部分を黒と色分け))して表面の導電性像とし、前記導電性像において、黒色部を前記絶縁相(A)、白色部を前記導電相(B)とする。
At least one surface has an insulating phase (A) and a conductive phase (B) measured by a conductivity measurement mode (conductive AFM) of an AFM (Atomic Force Microscope), and the insulating phase (A ) is a composition (AD) having an acrylic resin (D) on part or all of the surface of metal oxide particles (a) containing at least one metal element selected from the group consisting of Si, Al , and Zr . The metal oxide particles (a) have a number average particle diameter of 50 nm or more and 200 nm or less, and the conductive phase (B) is a polythiophene-based conductive compound (b) and an epoxy resin, a melamine resin, an oxazoline compound, When the surface α contains at least one crosslinking agent (c) selected from a carbodiimide compound and an isocyanate compound and has the insulating phase (A) and the conductive phase (B), the insulation on the surface α A resin film in which the area occupied by the phase (A) is 40% or more and 80% or less, and the surface resistivity of the surface α is 1.0×10 10 Ω/□ or less.
However, the insulating phase (A) and the conductive phase (B) are specified by the following procedure.
First, the conductivity of the layer surface is measured by AFM under the following conditions.
[conditions]
Measuring device: Atomic force microscope (AFM) manufactured by Barker Corporation
Measurement mode: Conductive AFM (contact mode)
Cantilever: Bruker AXS SCM-PIC
(Material: Si, Spring constant K: 0.2 (N/m), Tip radius of curvature R: 20 (nm))
Measurement atmosphere: 23℃/in the air Measurement range: 1 (μm) Square resolution: 512 x 512
Cantilever movement speed: 10 (μm/s)
Maximum pushing load: 10 (nN)
Applied voltage: 10 (V)
After the measurement, select the "C-AFM Current" image and binarize the image displayed on the screen using "ScionImage" with a current value of 7.2 nA as the boundary value (maximum value: 10 nA, minimum value: 0 pA, threshold value 180 (black is 0, white is 255, and in a gray scale representing black to white in 256 steps, conductivity is set so that the area where 10 nA or more flows is 255 (white) and the area where 0 pA is 0 (black) An image is created, and in the resulting conductive image, areas with high current values represented by gray scale 180 or higher are white, and areas with low current values represented by gray scale less than 180 are black. Color-coded)) is used to form a conductive image on the surface, and in the conductive image, the black part is the insulating phase (A) and the white part is the conductive phase (B).
前記表面αにおける絶縁相(A)の平均ドメイン径が50nm以上200nm以下である請求項1に記載の樹脂フィルム。 The resin film according to claim 1, wherein the average domain diameter of the insulating phase (A) on the surface α is 50 nm or more and 200 nm or less. 前記表面αにおける前記絶縁相(A)の導電性Iと前記導電相(B)の導電性Iの比I/Iが100以上、100000以下である請求項1または2に記載の樹脂フィルム。
但し、前記Iと前記Iは以下の方法により定める。
前記条件によりAFMによる層表面の導電性の測定を行い、前記測定後に前記二値化により表面の導電性像を取得する。
前記導電性像を縦横それぞれ40分割し、25nm×25nmの1600個の領域に分け、二値化した画像において領域全てが黒一色となる領域すべてについて導電性データを抽出し、その平均値を絶縁相(A)の導電性Iとし、二値化した画像において領域全てが白一色となる領域すべてについて導電性データを抽出し、その平均値を導電相(B)の導電性Iとする。
3. The ratio IB /IA of the conductivity IA of the insulating phase ( A ) to the conductivity IB of the conductive phase (B) on the surface α is 100 or more and 100000 or less. resin film.
However, the above IA and the above IB are determined by the following method.
The conductivity of the layer surface is measured by AFM under the above conditions, and after the measurement, a conductivity image of the surface is obtained by the binarization.
The conductivity image is divided into 40 parts vertically and horizontally into 1600 regions of 25 nm x 25 nm, conductivity data is extracted for all areas where the entire area is solid black in the binarized image, and the average value is insulated. The conductivity of phase (A) is set as I A , and the conductivity data is extracted for all areas where the entire area is solid white in the binarized image, and the average value is set as the conductivity I of conductive phase (B). .
前記表面αにおける擦過処理前後のヘイズ変化が3.0%以下である請求項1から3のいずれかに記載の樹脂フィルム。
但し、前記擦過処理及び前記ヘイズの測定は下記の方法により行う。
[擦過処理]
#0000のスチールウールを荷重200g/cmで10往復させることにより、樹脂フィルムの表面を擦過する。
[ヘイズの測定]
JIS K 7136「透明材料のヘイズの求め方」(2000年版)に準ずる方式で行う。
The resin film according to any one of claims 1 to 3, wherein the haze change before and after the abrasion treatment on the surface α is 3.0% or less.
However, the abrasion treatment and the haze measurement are performed by the following method.
[Abrasion treatment]
The surface of the resin film is rubbed by moving #0000 steel wool back and forth 10 times at a load of 200 g/cm 2 .
[Haze measurement]
This is done in accordance with JIS K 7136 "How to determine the haze of transparent materials" (2000 edition).
前記表面αにおける、絶縁相(A)の弾性率(G)が2000MPa以上50000MPa以下である請求項1から4のいずれかに記載の樹脂フィルム。 The resin film according to any one of claims 1 to 4, wherein the elastic modulus (G A ) of the insulating phase (A) on the surface α is 2000 MPa or more and 50000 MPa or less. 前記表面αにおける、絶縁相(A)の弾性率(G)と導電相(B)の弾性率(G)の比、G/Gが4以上20以下である請求項1から5のいずれかに記載の樹脂フィルム。 Claims 1 to 5, wherein the ratio of the elastic modulus (G A ) of the insulating phase (A) to the elastic modulus (G B ) of the conductive phase (B), G A /G B , on the surface α is 4 or more and 20 or less. The resin film according to any one of. 支持基材とその表面の形成された層(X)を含む2層以上の積層体である請求項1から6のいずれかに記載の樹脂フィルム The resin film according to any one of claims 1 to 6, which is a laminate of two or more layers including a supporting base material and a layer (X) formed on the surface thereof . 請求項1からのいずれかに記載の樹脂フィルムの製造方法であって、結晶配向が完了する前のポリエステルフィルムの少なくとも片面に、塗料組成物(x)を塗布した後、少なくとも一方向に延伸処理及び熱処理を施す工程を含み、前記塗料組成物(x)が、金属酸化物粒子(a)の表面の一部または全部にアクリル樹脂(D)を有する組成物(AD)ポリチオフェン系導電性化合物(b)、エポキシ樹脂、メラミン樹脂、オキサゾリン化合物、カルボジイミド化合物、イソシアネート化合物から選ばれる少なくとも1種類の架橋剤(c)を含有する樹脂フィルムの製造方法。
8. The method for producing a resin film according to claim 1, wherein the coating composition (x) is applied to at least one side of the polyester film before crystal orientation is completed, and then stretched in at least one direction. A composition (AD) in which the coating composition (x) has an acrylic resin (D) on a part or all of the surface of the metal oxide particles (a), a polythiophene-based conductive material, A method for producing a resin film containing a compound (b) and at least one crosslinking agent (c) selected from an epoxy resin, a melamine resin, an oxazoline compound, a carbodiimide compound, and an isocyanate compound.
JP2019547738A 2018-10-05 2019-08-30 Resin film and its manufacturing method Active JP7419817B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2018189784 2018-10-05
JP2018189784 2018-10-05
JP2019017674 2019-02-04
JP2019017674 2019-02-04
PCT/JP2019/034084 WO2020071022A1 (en) 2018-10-05 2019-08-30 Resin film and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2020071022A1 JPWO2020071022A1 (en) 2021-09-02
JP7419817B2 true JP7419817B2 (en) 2024-01-23

Family

ID=70055792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019547738A Active JP7419817B2 (en) 2018-10-05 2019-08-30 Resin film and its manufacturing method

Country Status (5)

Country Link
JP (1) JP7419817B2 (en)
KR (1) KR20210069633A (en)
CN (1) CN112739753B (en)
TW (1) TWI848977B (en)
WO (1) WO2020071022A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079617A (en) 2000-07-07 2002-03-19 Teijin Ltd Antistatic laminated polyester film
JP2003292655A (en) 2002-04-04 2003-10-15 Teijin Dupont Films Japan Ltd Antistatic laminated polyester film
JP2011227436A (en) 2010-03-30 2011-11-10 Toray Ind Inc Optical polyester film
WO2016136518A1 (en) 2015-02-27 2016-09-01 東レ株式会社 Multilayer film and method for producing same
US20180072896A1 (en) 2015-05-25 2018-03-15 South China University Of Technology Method for in-site synthesis of transparent conductive coating of poly(3,4-ethylenedioxythiophene)/nano silver
JP2018086823A (en) 2016-11-30 2018-06-07 東レ株式会社 Laminated film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204240A (en) 1985-03-08 1986-09-10 Diafoil Co Ltd Biaxially oriented polyester film
JP3235694B2 (en) 1993-10-04 2001-12-04 東洋紡績株式会社 Laminated polyester film
KR100699624B1 (en) * 2005-11-16 2007-03-23 주식회사 에이스 디지텍 Method for Manufacturing Antistatic High-Resolution Anti-Glare Film and Antistatic High-Resolution Anti-Glare Film using thereof
JP5245391B2 (en) 2006-12-22 2013-07-24 大日本印刷株式会社 OPTICAL LAMINATE, PROCESS FOR PRODUCING THE SAME, AND COMPOSITION FOR ANTISTATIC LAYER
JP5359652B2 (en) 2009-07-29 2013-12-04 大日本印刷株式会社 Optical laminate, polarizing plate, and image display device
US9771491B2 (en) * 2012-03-16 2017-09-26 Toray Industries, Inc. Laminated film and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079617A (en) 2000-07-07 2002-03-19 Teijin Ltd Antistatic laminated polyester film
JP2003292655A (en) 2002-04-04 2003-10-15 Teijin Dupont Films Japan Ltd Antistatic laminated polyester film
JP2011227436A (en) 2010-03-30 2011-11-10 Toray Ind Inc Optical polyester film
WO2016136518A1 (en) 2015-02-27 2016-09-01 東レ株式会社 Multilayer film and method for producing same
US20180072896A1 (en) 2015-05-25 2018-03-15 South China University Of Technology Method for in-site synthesis of transparent conductive coating of poly(3,4-ethylenedioxythiophene)/nano silver
JP2018086823A (en) 2016-11-30 2018-06-07 東レ株式会社 Laminated film

Also Published As

Publication number Publication date
WO2020071022A1 (en) 2020-04-09
TWI848977B (en) 2024-07-21
JPWO2020071022A1 (en) 2021-09-02
CN112739753A (en) 2021-04-30
TW202028317A (en) 2020-08-01
KR20210069633A (en) 2021-06-11
CN112739753B (en) 2023-09-12

Similar Documents

Publication Publication Date Title
TWI360477B (en) Hard-coated film and optical functional film
TWI581970B (en) Laminate film and manufacturing method thereof
CN111918910B (en) Laminated polyester film and method for producing same
JP2007253513A (en) Laminated film
CN105555849A (en) Laminate film and manufacturing method thereof
JP7419817B2 (en) Resin film and its manufacturing method
WO2015046137A1 (en) Release film and substrate-less double-sided pressure-sensitive adhesive sheet
CN107709012B (en) Laminated film and method for producing same
JP2021138071A (en) Laminate film and method for producing the same
JP2009269172A (en) Substrate film with modified adhesiveness and hard coat film
JP2019048447A (en) Laminate film and manufacturing method therefor
JPWO2015159703A1 (en) Laminated film and touch panel using the same
JP2015016677A (en) Release polyester film
KR101693792B1 (en) Anti-static polyester film having excellent oligomer blocking property
JP2015027735A (en) Mold release polyester film
JP2022152150A (en) Base film for gas barrier films, method for producing base film for gas barrier films, gas barrier film, and method for producing gas barrier film
JP6787063B2 (en) Laminated film and its manufacturing method
JP2021160175A (en) Laminated film and method for manufacturing the same
TW202111028A (en) Multilayer polyester film and coating composition
JP2015062998A (en) Release polyester film
JP2015013449A (en) Mold-release polyester film
JP2018122548A (en) Laminated film and method for producing the same
JP2015063000A (en) Release polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231225

R151 Written notification of patent or utility model registration

Ref document number: 7419817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151