WO2016136460A1 - Composite resin particle, and foamable particle, foamed particle and foamed molding thereof - Google Patents

Composite resin particle, and foamable particle, foamed particle and foamed molding thereof Download PDF

Info

Publication number
WO2016136460A1
WO2016136460A1 PCT/JP2016/053795 JP2016053795W WO2016136460A1 WO 2016136460 A1 WO2016136460 A1 WO 2016136460A1 JP 2016053795 W JP2016053795 W JP 2016053795W WO 2016136460 A1 WO2016136460 A1 WO 2016136460A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
mass
composite resin
resin
vinyl acetate
Prior art date
Application number
PCT/JP2016/053795
Other languages
French (fr)
Japanese (ja)
Inventor
慎悟 寺崎
直也 森島
誠一 森本
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to KR1020177023504A priority Critical patent/KR101996231B1/en
Priority to JP2017502046A priority patent/JP6453995B2/en
Priority to CN201680012358.3A priority patent/CN107250184B/en
Publication of WO2016136460A1 publication Critical patent/WO2016136460A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F263/00Macromolecular compounds obtained by polymerising monomers on to polymers of esters of unsaturated alcohols with saturated acids as defined in group C08F18/00
    • C08F263/02Macromolecular compounds obtained by polymerising monomers on to polymers of esters of unsaturated alcohols with saturated acids as defined in group C08F18/00 on to polymers of vinyl esters with monocarboxylic acids
    • C08F263/04Macromolecular compounds obtained by polymerising monomers on to polymers of esters of unsaturated alcohols with saturated acids as defined in group C08F18/00 on to polymers of vinyl esters with monocarboxylic acids on to polymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/22Halogen free composition

Definitions

  • the present invention relates to a polystyrene-based composite resin particle and its expandable particle, expanded particle, and expanded molded article.
  • a polystyrene-based composite resin particle capable of giving a foamed molded article excellent in impact resistance and slow flame retardancy without adding a flame retardant, and its foamable particles, foamed particles and foamed molded article. can do.
  • Foamed molded articles made of polystyrene resin are widely used as packaging materials and heat insulating materials because they have excellent buffering properties and heat insulating properties and are easy to mold.
  • the impact resistance and flexibility are insufficient, there is a problem that cracks and chips are likely to occur, and it is not suitable, for example, for packaging precision instrument products.
  • a foam-molded article made of polyolefin resin is excellent in impact resistance and flexibility, but requires a large facility for molding. Also, due to the nature of the resin, it must be transported from the raw material manufacturer to the molding processing manufacturer in the form of expanded particles. Therefore, bulky expanded particles are transported, and there is a problem that the manufacturing cost increases.
  • Patent Document 1 discloses a composite resin containing 20 to 50% by mass of an olefin resin (A) and 50 to 80% by mass of a styrene resin (B) (however, In the composite resin foamed particles including the olefin resin (A) and the styrene resin (B) as a base resin and containing a brominated flame retardant, the styrene resin (B)
  • the copolymer component includes one or more (meth) acrylic acid ester components (b1) selected from methacrylic acid alkyl ester components having 1 to 10 carbon atoms and acrylic acid alkyl esters components having 1 to 10 carbon atoms.
  • the content of the (meth) acrylic acid ester component (b1) in 100% by mass of the styrene resin (B) is 2 to 12% by mass, and the glass transition of the styrene resin (B).
  • Temperature (Tg) of a is 100 ⁇ 104 ° C.
  • the composite resin foamed particles is disclosed a 50% decomposition temperature of the brominated flame retardant is a 260 ⁇ 340 ° C.
  • the composite resin foamed particles have excellent mechanical properties without inhibiting the inherent heat resistance of the composite resin, while using the composite resin that is difficult to be flame retardant as the base resin. However, it is said that it can exhibit high flame retardancy.
  • Patent Document 2 JP-A-2014-237747 discloses a linear low-density polyethylene resin (A) and a polystyrene resin (B) obtained by impregnating and polymerizing the resin (A) with a styrene monomer.
  • the composite resin foam particles having a composite resin as a base resin contains 20 to 50% by mass of the resin (A) and 50 to 80% by mass of the resin (B) (provided that the resin (A) ) And the resin (B) are 100% by mass), the resin (A) forms a dispersed phase, and the resin (B) forms a continuous phase, the bulk density is 5 to 15 kg / m 3 , Composite resin foam particles having a closed cell ratio of 90% or more are disclosed.
  • Patent Document 1 describes that the composite resin foam particles preferably have an apparent density of 10 to 500 kg / m 3 , but in actuality, only the case where the expansion ratio is about 20 times is verified. It has only been done. Further, Patent Document 1 describes that the base resin of the composite resin contains 20 to 50% by mass of the olefin resin (A) and 50 to 80% by mass of the styrene resin (B). Actually, only when the mass ratio of resin (A) / resin (B) is 30/70 has been verified.
  • a foamed molded product of polyethylene resin particles obtained by modifying low density polyethylene resin (LDPE) with styrene is excellent in light weight, but has insufficient impact resistance and retarded flame retardancy, particularly retarded flame retardancy. Improvement of the property is desired. Therefore, the present invention provides a polystyrene-based composite resin particle capable of giving a foamed molded article excellent in impact resistance and retarding flame resistance without adding a flame retardant, and its foamable particles, foamed particles and foamed molded article. The task is to do.
  • LDPE low density polyethylene resin
  • LDPE low-density polyethylene resin
  • EVA ethylene-vinyl acetate copolymer
  • the polyethylene resin and the polystyrene resin are contained in a range of 50 to 20% by mass and 50 to 80% by mass, respectively, based on the total of these, and the polyethylene resin has a density of 910 to 930 kg. / M 3 low density polyethylene resin and ethylene-vinyl acetate copolymer having a vinyl acetate content of 10 to 30% by mass in the range of 45 to 85% by mass and 15 to 55% by mass, respectively.
  • a composite resin particle that contains and is substantially free of brominated flame retardants.
  • grains containing said composite resin particle and a volatile foaming agent are provided. Furthermore, according to the present invention, there are provided expanded particles obtained by pre-expanding the expandable particles. Moreover, according to this invention, the foaming molding obtained by carrying out foam molding of said foaming particle is provided.
  • a polystyrene-based composite resin particle capable of giving a foamed molded article excellent in impact resistance and slow flame retardancy without adding a flame retardant, and its foamable particles, foamed particles and foamed molded article. can do.
  • Composite resin particles obtained by modifying low density polyethylene resin with styrene tend to be less combustible due to the molecular structure of polyethylene than composite resin particles obtained by modifying linear low density polyethylene resin with styrene.
  • the composite resin particles can satisfy the slow flame retardancy without adding a brominated flame retardant, and moreover, the foamed molded article has a foaming ratio of less than 49 kg / m 3 and a foaming ratio exceeding 20.4 times. Is also possible.
  • the composite resin particles of the present invention are (1) The polyethylene resin contains 3 to 10% by mass of vinyl acetate. (2) When about 1 g of the composite resin particles is treated with 100 ml of toluene at a temperature of 130 ° C., the gel fraction insoluble in toluene is 15 to 35% by mass. (3) The composite resin particles have an average particle diameter of 1.0 to 2.0 mm. The above excellent effect is further exhibited when at least one of the above conditions is satisfied. Furthermore, when the foamed molded product of the present invention has a density of less than 49 kg / m 3 , the above excellent effect is further exhibited.
  • Composite resin particles comprise a polyethylene resin and a polystyrene resin in the range of 50 to 20% by mass and 50 to 80% by mass, respectively, based on the total of these, However, a low-density polyethylene resin having a density of 910 to 930 kg / m 3 and an ethylene-vinyl acetate copolymer having a vinyl acetate content of 10 to 30% by mass with respect to the total of 45 to 85% by mass and 15 to It is characterized by being contained in the range of 55% by mass and substantially not containing a brominated flame retardant.
  • substantially free of a brominated flame retardant means that no flame retardant, particularly a brominated flame retardant, is actively added in the production process of composite resin particles. However, flame retardant components derived from resin raw materials are excluded.
  • the conventional composite resin particles have a co-continuous structure region in which an amorphous polystyrene resin is dispersed in a polyethylene resin ( 1)
  • the composite resin particles of the present invention include a sea-island structure region in which polystyrene resin particles are dispersed in a polyethylene resin, and a co-continuous structure region in which amorphous polystyrene resin is dispersed in a polyethylene resin. Are mixed (see FIGS. 2 and 3).
  • the polystyrene resin constituting the composite resin particle of the present invention is not particularly limited as long as it is a resin mainly composed of a styrene monomer, and examples thereof include styrene or a styrene derivative alone or a copolymer.
  • examples of the styrene derivative include ⁇ -methylstyrene, vinyl toluene, chlorostyrene, ethyl styrene, isopropyl styrene, dimethyl styrene, bromostyrene, and the like. These styrenic monomers may be used alone or in combination.
  • the polystyrene resin may be a combination of a vinyl monomer copolymerizable with a styrene monomer.
  • the vinyl monomer include divinylbenzene such as o-divinylbenzene, m-divinylbenzene and p-divinylbenzene, alkylene glycol di (meth) acrylate such as ethylene glycol di (meth) acrylate and polyethylene glycol di (meth) acrylate.
  • polyfunctional monomers such as (meth) acrylate; (meth) acrylonitrile, methyl (meth) acrylate, butyl (meth) acrylate and the like.
  • polyfunctional monomers are preferable, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate having 4 to 16 ethylene units, and divinylbenzene are more preferable, and divinylbenzene, ethylene glycol di ( Particularly preferred is (meth) acrylate.
  • the content is set so that it may become the quantity (for example, 50 mass% or more) which a styrene-type monomer becomes a main component.
  • “(meth) acryl” means “acryl” or “methacryl”.
  • the low density polyethylene resin constituting the composite resin particle of the present invention is not particularly limited as long as it is a polyethylene resin having a density of 910 to 930 kg / m 3 , and specifically, a commercial product as used in the examples. Is mentioned.
  • the LDPE used in the present invention refers to a polyethylene-based resin defined by a high pressure method low density polyethylene, a branched low density polyethylene, a long chain branched low density polyethylene, a radical polymerization polyethylene, and an ethylene low density polymer.
  • the linear low density polyethylene (LLDPE) not used in the present invention is a medium-low pressure method low density polyethylene, a linear low density polyethylene, a short chain branched low density polyethylene, an ion polymerization method polyethylene, an ethylene / ⁇ -olefin copolymer. It refers to a polyethylene-based resin defined as a polymer.
  • the ethylene-vinyl acetate copolymer constituting the composite resin particle of the present invention is not particularly limited as long as it is a copolymer of ethylene and vinyl acetate having a vinyl acetate content of 10 to 30% by mass. Is a commercially available product as used in the examples.
  • the vinyl acetate content is less than 10% by mass, when the vinyl acetate content of the final polyethylene resin (seed particles) is constant, the proportion of the ethylene-vinyl acetate copolymer kneaded with the low density polyethylene resin is large. turn into.
  • the heat resistance of the obtained foamed molded product may be lowered.
  • the vinyl acetate content exceeds 30% by mass
  • the vinyl acetate content of the final polyethylene resin (seed particles) is constant
  • the ethylene-vinyl acetate copolymer kneaded with the low density polyethylene resin The ratio will decrease. For this reason, the dispersibility of vinyl acetate in the final polyethylene resin (seed particles) is low, and the slow flame retardancy may be lowered.
  • the vinyl acetate content (% by mass) is, for example, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30.
  • a preferable vinyl acetate content in the ethylene-vinyl acetate copolymer is 15 to 25% by mass.
  • the composite resin particles of the present invention contain a polyethylene resin and a polystyrene resin in the range of 50 to 20% by mass and 50 to 80% by mass, respectively, based on the total of these. If the polystyrene resin is less than 50% by mass in the mass ratio of the polyethylene resin and the polystyrene resin, foamability and moldability may be insufficient. On the other hand, if the polystyrene resin exceeds 80% by mass, the impact resistance and flexibility may be insufficient.
  • the mass ratio (mass%) of the polystyrene resin is, for example, 50, 55, 60, 62.5, 65, 67.5, 70, 72.5, 75, 80.
  • Preferred mass ratios of polyethylene resin and polystyrene resin are in the range of 40 to 25 mass% and 60 to 75 mass%.
  • the polyethylene resin of the composite resin particle of the present invention contains a low density polyethylene resin and an ethylene-vinyl acetate copolymer in a range of 45 to 85% by mass and 15 to 55% by mass, respectively, based on the total of these.
  • a low density polyethylene resin and an ethylene-vinyl acetate copolymer in a range of 45 to 85% by mass and 15 to 55% by mass, respectively, based on the total of these.
  • the mass ratio of the low density polyethylene resin and the ethylene-vinyl acetate copolymer when the ethylene-vinyl acetate copolymer is less than 15% by mass, the dispersibility of vinyl acetate in the final polyethylene resin (seed particles) is low, Delayed flammability may be reduced.
  • the mass ratio (% by mass) of the ethylene-vinyl acetate copolymer is, for example, 15, 20, 22.5, 25, 27.5, 30, 32.5, 35, 37.5, 40, 42.5, 45, 47.5, 50, and 55.
  • Preferred mass ratios of the low density polyethylene resin and the ethylene-vinyl acetate copolymer are in the range of 50 to 80% by mass and 20 to 50% by mass.
  • the polyethylene resin preferably has a vinyl acetate content of 3 to 10% by mass.
  • the vinyl acetate content is less than 3% by mass, the obtained foamed molded article may have insufficient impact resistance and slow flame retardancy.
  • the vinyl acetate content exceeds 10% by mass, the obtained foamed molded article may have insufficient heat resistance.
  • the vinyl acetate content (% by mass) is, for example, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5 and 10.
  • the preferable vinyl acetate content in the polyethylene resin is 4 to 8% by mass.
  • the composite resin particle of the present invention has a gel fraction insoluble in toluene boiling at 130 ° C. of 15 to 35% by mass. More specifically, about 1 g of the composite resin particle is added with 100 ml of 130 ° C. toluene. When treated, the gel fraction insoluble in toluene is preferably 15-35% by weight. Thereby, the impact resistance of the foaming molding shape
  • the gel fraction is, for example, 15, 16, 17, 18, 19, 20, 20.5, 21, 2, 1.5, 22, 22.5, 23, 23.5, 24, 24.5. 25, 25.5, 26, 26.5, 27, 27.5, 28, 28.5, 29, 29.5, 30, 31, 32, 33, 34, 35.
  • a more preferable gel fraction is in the range of 20 to 30% by mass, and further preferably in the range of 25 to 30% by mass. The method for measuring the gel fraction will be described in detail in Examples.
  • the composite resin particles of the present invention preferably have an average particle size of 1.0 to 2.0 mm. If the average particle diameter of the composite resin particles is less than 1.0 mm, high foamability may not be obtained. On the other hand, when the average particle diameter of the composite resin particles exceeds 2.0 mm, the filling property of the foamed particles during molding may be insufficient.
  • the average particle diameter (mm) of the composite resin particles is, for example, 1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2.0. More preferably, the average particle diameter of the composite resin particles is 1.2 to 1.6 mm.
  • the composite resin particles of the present invention have a Z average molecular weight: Mz of about 600,000 to 1,000,000.
  • the Z average molecular weight ( ⁇ 10 3 ) of the composite resin particles is, for example, 600, 650, 700, 750, 800, 850, 900, 950, 1000.
  • the composite resin particles of the present invention have a weight average molecular weight: Mw of about 250,000 to 450,000.
  • the weight average molecular weight ( ⁇ 10 3 ) of the composite resin particles is, for example, 250, 300, 350, 400, 450.
  • the composite resin particles of the present invention are not particularly limited, but can be produced, for example, by a seed polymerization method (seed polymerization).
  • seed polymerization the composite resin particles can be generally obtained by allowing the seed particles to absorb the monomer and polymerizing the monomer after or while absorbing the monomer.
  • the foamed particles can be obtained by impregnating the composite resin particles with a foaming agent after polymerization or while polymerizing.
  • seed particles composed of the above-mentioned polyethylene-based resin are allowed to absorb the styrene-based monomer, and after the absorption or absorption, the styrene-based monomer is polymerized.
  • the styrenic monomer does not need to be supplied to the aqueous medium at the same time, and all or part of the monomer may be supplied to the aqueous medium at different timings.
  • the additive may be added to the styrene monomer or the aqueous medium, or may be included in the seed particles. The amount of monomer and resin is almost the same.
  • the polymerization of the styrene monomer can be carried out, for example, by heating at 60 to 150 ° C. for 2 to 40 hours. In the polymerization step, it is preferable to hold at the polymerization temperature for a long time, that is, to anneal. In the previous steps up to the annealing step, the styrene monomer and polymerization initiator absorbed in the seed particles have not completely completed the reaction, and there are not a few unreacted substances in the composite resin particles. is doing.
  • the mechanical properties and heat resistance of the foamed molded product are degraded due to the influence of low molecular weight unreacted materials such as styrene monomers. And odor caused by volatile unreacted materials becomes a problem. Therefore, by introducing an annealing step, it is possible to secure a time for the unreacted material to undergo a polymerization reaction, and to remove the remaining unreacted material so as not to affect the physical properties of the foam molded article.
  • the styrenic monomer include those exemplified in the section of composite resin particles, and the amount used is in the range described in the section of composite resin particles.
  • the seed particles are the above-described polyethylene-based resins, and include a low-density polyethylene-based resin and an ethylene-vinyl acetate copolymer having a specific mass ratio. Seed particles can be obtained, for example, by a method of mixing and melting and kneading these resins, extruding them into strands, and cutting them with a desired particle diameter.
  • the particle diameter of the core resin particles can be appropriately adjusted according to the average particle diameter of the composite resin particles, and the preferable particle diameter is in the range of 0.2 to 1.5 mm, and the average mass is 10 to 100 mg / 100 particles. It is.
  • examples of the shape include a true spherical shape, an elliptical spherical shape (egg shape), a cylindrical shape, and a prismatic shape.
  • aqueous medium examples include water and a mixed medium of water and a water-soluble solvent (for example, a lower alcohol such as methyl alcohol or ethyl alcohol).
  • a water-soluble solvent for example, a lower alcohol such as methyl alcohol or ethyl alcohol.
  • a dispersant In the aqueous medium, a dispersant may be used in order to stabilize the dispersibility of the styrene monomer droplets and seed particles.
  • a dispersant include organic dispersants such as partially saponified polyvinyl alcohol, polyacrylate, polyvinyl pyrrolidone, carboxymethyl cellulose, and methyl cellulose; magnesium pyrophosphate, calcium pyrophosphate, calcium phosphate, calcium carbonate, magnesium phosphate, Examples thereof include inorganic dispersants such as magnesium carbonate and magnesium oxide. Among these, an inorganic dispersant is preferable because a more stable dispersion state may be maintained.
  • a surfactant in combination. Examples of such surfactants include sodium dodecylbenzene sulfonate and sodium ⁇ -olefin sulfonate.
  • Styrene monomers are usually polymerized in the presence of a polymerization initiator.
  • the polymerization initiator is usually impregnated into the seed particles simultaneously with the styrene monomer.
  • the polymerization initiator is not particularly limited as long as it is conventionally used for the polymerization of styrene monomers.
  • These polymerization initiators may be used alone or in combination of two or more.
  • the amount of the polymerization initiator used is, for example, in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the styrene monomer.
  • the polymerization initiator is suspended or emulsified and dispersed in advance in the aqueous medium when the polymerization initiator is added to the aqueous medium. It is preferable to add to the dispersion liquid above, or to add the polymerization initiator to the aqueous medium after previously dissolving it in the styrene monomer.
  • a preferable addition amount of the polymerization initiator is 0.1 to 0.9 parts by mass per 100 parts by mass of the styrene monomer.
  • the addition amount of the polymerization initiator is less than 0.1 part by mass, the molecular weight becomes too high and foamability may be lowered.
  • the addition amount of the polymerization initiator exceeds 0.9 parts by mass, the polymerization rate may become too fast, and the dispersion state of the polystyrene resin particles in the polyolefin resin may not be controlled.
  • a preferable addition amount of the polymerization initiator is 0.2 to 0.5 parts by mass.
  • the composite resin particles have a plasticizer, a binding inhibitor, a bubble regulator, a crosslinking agent, a filler, a lubricant, a colorant, a fusion accelerator, an antistatic agent, and a spreading agent as long as the physical properties are not impaired. Additives such as may be added.
  • the composite resin particles may contain a flame retardant other than bromine flame retardant and a flame retardant aid within a range where physical properties are not impaired.
  • the composite resin particles can contain a plasticizer having a boiling point exceeding 200 ° C. under 1 atm in order to maintain good foam moldability even when the pressure of water vapor used at the time of heat foaming is low.
  • the plasticizer include glycerin fatty acid esters such as phthalic acid ester, glycerin diacetomonolaurate, glycerin tristearate and glycerin diacetomonostearate, adipic acid esters such as diisobutyl adipate, and plasticizers such as coconut oil.
  • the content of the plasticizer in the composite resin particles is preferably 0.1 to 3.0% by mass.
  • binding inhibitor examples include calcium carbonate, silica, zinc stearate, aluminum hydroxide, ethylene bis stearamide, tricalcium phosphate, and dimethyl silicon.
  • air conditioner examples include ethylene bis stearamide and polyethylene wax.
  • crosslinking agent examples include 2,2-di-t-butylperoxybutane, 2,2-bis (t-butylperoxy) butane, dicumyl peroxide, 2,5-dimethyl-2,5-di-t. -Organic peroxides such as butylperoxyhexane.
  • the filler examples include synthetic or naturally produced silicon dioxide.
  • the lubricant examples include paraffin wax and zinc stearate.
  • Colorants include furnace black, ketjen black, channel black, thermal black, acetylene black, carbon black such as graphite and carbon fiber, chromate such as yellow lead, zinc yellow and barium yellow, and ferrocyanides such as bitumen Sulfides such as cadmium yellow and cadmium red, oxides such as iron black and red husk, silicates such as ultramarine blue, inorganic pigments such as titanium oxide, monoazo pigments, disazo pigments, azo lakes, condensed azo pigments, chelate azos Organic pigments such as azo pigments such as pigments, polycyclic pigments such as phthalocyanine, anthraquinone, perylene, perinone, thioindigo, quinacridone, dioxazine, isoindolinone, quinophthalone, and the like can be mentioned.
  • Examples of the fusion accelerator include stearic acid, stearic acid triglyceride, hydroxystearic acid triglyceride, sorbitan stearate, and polyethylene wax.
  • Examples of the antistatic agent include polyoxyethylene alkylphenol ether, stearic acid monoglyceride, polyethylene glycol and the like.
  • Examples of the spreading agent include polybutene, polyethylene glycol, and silicone oil.
  • Expandable particles include composite resin particles and a volatile foaming agent, and can be produced by impregnating composite resin particles with a volatile foaming agent by a known method.
  • the temperature at which the composite resin particles are impregnated with the volatile foaming agent is low, it takes time for the impregnation, and the production efficiency of the expandable particles may be reduced. Since it may occur in a large amount, it is preferably 50 to 130 ° C, more preferably 60 to 100 ° C.
  • the volatile foaming agent is not particularly limited as long as it is conventionally used for foaming polystyrene-based resins.
  • isobutane, n-butane, isopentane, n-pentane, neopentane and the like having 5 or less carbon atoms are used.
  • volatile foaming agents such as aliphatic hydrocarbons, and butane-based foaming agents and pentane-based foaming agents are particularly preferable.
  • Pentane can also be expected to act as a plasticizer.
  • the content of the volatile blowing agent in the expandable particles is usually in the range of 5 to 13% by mass, preferably in the range of 8 to 12% by mass, and particularly preferably in the range of 9 to 11% by mass.
  • the content of the volatile foaming agent is small, for example, less than 5% by mass, it may not be possible to obtain a low-density foam molded article from the foamable particles, and the effect of increasing the secondary foaming power during in-mold foam molding Cannot be obtained, the appearance of the foamed molded product may deteriorate.
  • the content of the volatile foaming agent is large and exceeds 13% by mass, for example, the time required for the cooling step in the production process of the foamed molded article using the foamable particles becomes long and the productivity may be lowered.
  • the foamable particles can contain a foaming aid together with the foaming agent.
  • the foaming aid is not particularly limited as long as it is conventionally used for foaming polystyrene resins.
  • aromatic organic compounds such as styrene, toluene, ethylbenzene, xylene, cyclohexane, methylcyclohexane, etc.
  • solvents having a boiling point of 200 ° C. or less under 1 atm such as cycloaliphatic hydrocarbons, ethyl acetate, and butyl acetate.
  • the content of the foaming aid in the foamable particles is usually in the range of 0.3 to 2.5% by mass, and preferably in the range of 0.5 to 2% by mass.
  • the content of the foaming aid is small, for example, less than 0.3% by mass, the plasticizing effect of the polystyrene resin may not be exhibited.
  • the content of the foaming aid is large and exceeds 2.5% by mass, the foamed molded product obtained by foaming the foamable particles may be shrunk or melted to deteriorate the appearance, or foamable.
  • the time required for the cooling step in the production process of the foamed molded article using the particles may be long.
  • Expanded particles also referred to as “pre-expanded particles”
  • the foamed particles are obtained by pre-foaming the foamable particles to a predetermined bulk density by a known method, and examples thereof include batch-type foaming in which steam is introduced, continuous foaming, and release foaming under pressure.
  • the expandable particles of the present invention preferably have a bulk density in the range of 20 to 200 kg / m 3 .
  • the bulk density of the expandable particles is less than 20 kg / m 3 , the foamed molded product tends to shrink and the appearance may be impaired.
  • the bulk density of the expandable particles exceeds 200 kg / m 3 , the advantage of weight reduction as a foamed molded product may be impaired.
  • the density (kg / m 3 ) of the expanded particles is, for example, 20, 22.5, 25, 27.5, 30, 32.5, 35, 37.5, 40, 42.5, 45, 48, 50, 75, 100, 125, 150, 175, 200.
  • a preferred bulk density of the expandable particles is in the range of 20 to 48 kg / m 3 .
  • air may be introduced simultaneously with steam when foaming as necessary.
  • the foam molded body is a known method, for example, the foam particles are filled in a mold of a foam molding machine and heated again to foam the foam particles, and the foam particles are thermally fused. Can be obtained.
  • the foamed molded article of the present invention preferably has a density in the range of 20 to 200 kg / m 3 . When the density of the foamed molded product is less than 20 kg / m 3 , the retarded flame resistance and impact resistance may not be sufficient. On the other hand, if the density of the foamed molded product exceeds 200 kg / m 3 , the weight mass of the foamed molded product increases and the transportation cost increases, which may not be preferable.
  • the density (kg / m 3 ) of the foamed molded product is, for example, 20, 22.5, 25, 27.5, 30, 32.5, 35, 37.5, 40, 42.5, 45, 48, 50. 75, 100, 125, 150, 175, 200.
  • the density of the preferred foamed molded product is in the range of 20 to 48 kg / m 3 .
  • ⁇ Vinyl acetate content of polyethylene resin particles (seed particles)> A 0.1-0.5 mg sample is precisely weighed and wrapped so as to be crimped to a ferromagnetic metal body (Pyrofoil: manufactured by Nippon Analytical Industrial Co., Ltd.) having a Curie point of 445 ° C., and Curie Point Pyrolyzer JPS-700 type (Japan) Acetic acid produced by decomposition in an analytical industry apparatus was measured using a gas chromatograph GC7820 (manufactured by Agilent Technologies) (detector: FID), and an absolute calibration curve prepared in advance using the peak area. calculate.
  • a gas chromatograph GC7820 manufactured by Agilent Technologies
  • the average particle diameter is a value expressed by D50.
  • sieve openings are 4.00 mm, 3.35 mm, 2.80 mm, 2.36 mm, 2.00 mm, 1.70 mm, 1.40 mm. 1.18mm, 1.00mm, 0.85mm, 0.71mm, 0.60mm, 0.50mm, 0.425mm, 0.355mm, 0.300mm, 0.250mm, 0.212mm and 0.180mm JIS About 25 g of the sample is classified for 10 minutes with a standard sieve (JIS Z8801-1: 2006), and the sample mass on the sieve mesh is measured. A cumulative mass distribution curve is created from the obtained results, and the particle diameter (median diameter) at which the cumulative mass is 50% is defined as the average particle diameter.
  • the Z-average molecular weight (Mz) and the weight-average molecular weight (Mw) of the polystyrene-based resin mean the average molecular weight in terms of polystyrene measured using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the various average molecular weights of the composite resin particles, the expandable particles and the pre-expanded particles are the same as those of the foamed molded product.
  • the foamed molded product is sliced into 0.3 mm in thickness, 100 mm in length, and 80 mm in width with a slicer (FK-4N manufactured by Fujishima Koki Co., Ltd.), and this is handled as a sample for molecular weight measurement.
  • the standard polystyrene samples for the calibration curve have a weight average molecular weight of 5,480,000, 3,840,000, 355,000, 102,000, 37,900, 9 manufactured by Tosoh Corporation and trade name “TSK standard POLYSTYRENE”. , 100, 2,630, 500, and those having a weight average molecular weight of 1,030,000, manufactured by Showa Denko KK and trade name “Shodex STANDARD” are used.
  • the standard polystyrene samples for the calibration curve were group A (1,030,000), group B (3,840,000, 102,000, 9,100, 500) and group C (5,480,000, 355,000).
  • Group A was weighed 5 mg and then dissolved in 20 mL of THF
  • Group B was also weighed 5 to 10 mg and then dissolved in 50 mL of THF
  • Group C was also weighed 1 mg to 5 mg and then THF 40 mL. Dissolved in.
  • the standard polystyrene calibration curve was prepared by injecting 50 ⁇ L each of the prepared A, B, and C solutions, and using the retention time obtained after measurement, a calibration curve (cubic equation) was obtained from the GPC workstation (EcoSEC-WS), a data analysis program dedicated to HLC-8320GPC. The average molecular weight is calculated using the calibration curve.
  • the number of test pieces is 3, and the symbol “23/50” (temperature 23 ° C., relative humidity 50%) of JIS K7100: 1999 “Plastics-Standard atmosphere for conditioning and testing”, under a standard atmosphere of grade 2 After adjusting the state for 16 hours, the measurement is performed under the same standard atmosphere.
  • ⁇ Bending strength and bending breaking point displacement of foam molded article The bending strength and the amount of displacement at the bending break point are measured by the method described in JIS K7221-1: 2006 “Hard foam plastic—Bending test—Part 1: Determination of flexural properties”. That is, using Tensilon universal testing machine UCT-10T (Orientec) and universal testing machine data processing software UTPS-237 (Softbrain), the test piece size is 25 x 130 x 20 mm in thickness. The test surface is 10 mm / min, the pressure wedge is 5R, and the support base is 5R, the distance between the fulcrums is 100 mm, and the surface of the test piece without skin is stretched and measured.
  • the number of specimens shall be five, and the symbol “23/50” (temperature 23 ° C., relative humidity 50%) of JIS K7100: 1999 “Plastic – Standard atmosphere for conditioning and testing”, under a second grade standard atmosphere After adjusting the state for 16 hours, the measurement is performed under the same standard atmosphere.
  • the bending strength (MPa) is calculated by the following formula.
  • R (1.5F R ⁇ L / bd 2 ) ⁇ 10 3
  • F Bending strength (MPa)
  • F R Maximum load (kN)
  • L Distance between supporting points (mm)
  • b Width of test piece (mm)
  • d Test piece thickness (mm)
  • the fracture detection sensitivity was set to 0.5%, and when the decrease exceeded the set value of 0.5% (deflection: 30 mm) compared to the previous load sampling point, the previous sampling point was Measured as the displacement at the bending break point (mm), and the average of 5 tests is obtained.
  • the obtained bending fracture point displacement is evaluated according to the following criteria. It shows that the flexibility of a foaming molding is so large that a bending fracture point displacement amount is large.
  • good: Bending rupture point displacement is 15 mm or more
  • possible: Bending rupture point displacement is in the range of 12 mm or more and less than 15 mm
  • not possible: Bending rupture point displacement is less than 12 mm
  • the falling ball impact strength is measured in accordance with the method described in JIS K7211: 1976 “General Rules for Hard Plastic Drop Weight Impact Test Method”.
  • the obtained foamed molded article is dried at a temperature of 50 ° C. for 1 day, and then a 40 mm ⁇ 215 mm ⁇ 20 mm (thickness) test piece (six surfaces are not covered) is cut out from the foamed molded article.
  • both ends of the test piece are fixed with clamps so that the distance between the fulcrums is 150 mm, and a hard ball having a weight of 321 g is dropped from a predetermined height onto the center of the test piece to check whether the test piece is broken or not. Observe.
  • test height the falling height of the hard sphere at 5 cm intervals from the lowest height at which all five specimens were destroyed to the highest height at which all were not destroyed
  • falling ball impact value cm
  • H50 Hi + d [ ⁇ (i ⁇ ni) /N ⁇ 0.5]
  • H50 50% fracture height (cm)
  • Hi Test height (cm) when the height level (i) is 0, and the height at which the test piece is expected to break
  • d Height interval (cm) when the test height is raised or lowered
  • ni Number of test pieces destroyed (or not destroyed) at each level, whichever data is used (in the case of the same number, either may be used)
  • ⁇ 0.5 Use a negative number when using destroyed data, and a positive number when using data that was not destroyed
  • the obtained falling ball impact value is evaluated according to the following criteria. The larger the falling ball impact value, the greater the impact resistance of the foamed molded product. ⁇ (Good): Falling ball impact value is 30 cm or more. ⁇ (possible): Falling ball impact value is a range of 20 cm or more and less than 30 cm. X (Not possible): Falling ball impact value is less than 20 cm.
  • S (L0-L1) / L0 ⁇ 100
  • S represents a heating dimensional change rate (%)
  • L1 represents an average dimension (mm) after heating
  • L0 represents an initial average dimension (mm).
  • the obtained heating dimensional change rate S is evaluated according to the following criteria. ⁇ : 0 ⁇ S ⁇ 1.5 (Dimensional change rate is low and dimensional stability is good) ⁇ : 1.5 ⁇ S ⁇ 3 (although a change in dimensions is observed, it can be used practically) ⁇ : S ⁇ 3 (dimensional change is noticeable and cannot be used practically)
  • ⁇ Burning rate of foamed molded article Evaluation of slow flammability>
  • the combustion rate is measured by a method in accordance with US automobile safety standard FMVSS302.
  • a 350 mm ⁇ 100 mm ⁇ 12 mm (thickness) test piece is cut out from a molded product of 300 ⁇ 400 ⁇ 30 mm (thickness), and skins are present on at least two sides of 350 mm ⁇ 100 mm.
  • the burning rate obtained is evaluated according to the following criteria. ⁇ : 80 mm / min or less ⁇ : 100 mm / min or less ⁇ : exceeding 100 mm / min
  • Example 1 (Production of composite resin particles) (Preparation of seed particles)
  • Low-density polyethylene resin (LDPE (1): density 923 kg / m 3 , melting point 112 ° C., MFR 0.3 g / 10 min, manufactured by Nippon Polyethylene Co., Ltd., product name: Novatec LD LF122) 100 parts by mass and ethylene-vinyl acetate copolymer 67 parts by mass (EVA (1): vinyl acetate content 15%, melting point 89 ° C., MFR 1.0 g / 10 min, manufactured by Nippon Polyethylene Co., Ltd., product name: Novatec EVA LV430) was put into a tumbler mixer for 10 minutes. Mixed.
  • LDPE (1) density 923 kg / m 3 , melting point 112 ° C., MFR 0.3 g / 10 min, manufactured by Nippon Polyethylene Co., Ltd., product name: Novatec LD LF122
  • EVA (1) vinyl acetate content 15%, melting
  • the obtained resin mixture was supplied to a single screw extruder (made by Hoshi Plastic Co., Ltd., model: CER40Y, 3.7 MB-SX, diameter 40 mm ⁇ , die plate: diameter 1.5 mm) at a temperature of 230 to 250 ° C. Melt-kneaded and cut into a cylindrical shape 0.40 to 0.60 mg / piece (average 0.5 mg / piece) with a fan cutter (made by Hoshi Plastic Co., Ltd., model: FCW-110B / SE1-N) by strand cutting Thus, 4000 g of seed particles made of a polyethylene resin were obtained. The vinyl acetate content of the seed particles was measured and shown in Table 1.
  • the seed particles were impregnated with styrene monomer by holding for 30 minutes. After impregnation, the temperature was raised to 130 ° C., and polymerization was carried out at this temperature for 1 hour and 40 minutes (first polymerization).
  • styrene monomer was added dropwise over 2 hours.
  • the total amount of styrene monomer was 233 parts by mass with respect to 100 parts by mass of seed particles.
  • 8.0 g of ethylene / bisstearic acid amide was added as a bubble adjusting agent, and the seed particles were impregnated with styrene monomer by maintaining at a temperature of 90 ° C. for 1 hour and 30 minutes. After impregnation, the temperature was raised to 143 ° C., and the temperature was maintained at this temperature for 2 hours for polymerization (second polymerization). As a result of this polymerization, 2000 g of composite resin particles could be obtained.
  • Example 2 In the same manner as in Example 1, seed particles, composite resin particles, expandable particles, and expanded particles were obtained, and their physical properties were measured and evaluated. In the production of the foam molded article, 0.07 MPa water vapor was introduced for 35 seconds and heated, and then cooled until the surface pressure of the foam molded article decreased to 0.01 MPa, as in Example 1. A foam molded article having a density of 20.0 kg / m 3 (50 times the expansion ratio) was obtained, and its physical properties were measured and evaluated. The obtained results are shown in Table 1.
  • Example 1 In preparation of seed particles, seed particles, composite resin particles, expandable particles, expanded particles, and expanded molded articles were obtained in the same manner as in Example 1 except that EVA (1) was not used, and their physical properties were measured. ⁇ evaluated. The obtained results are shown in Table 1.
  • Example 2 In preparation of seed particles, seed particles, composite resin particles, expandable particles, and expanded particles were obtained in the same manner as in Example 1 except that EVA (1) was not used, and their physical properties were measured and evaluated.
  • EVA (1) was not used, and their physical properties were measured and evaluated.
  • 0.09 MPa of water vapor was introduced for 35 seconds and heated, and then cooled until the surface pressure of the foam molded article decreased to 0.01 MPa, as in Example 1.
  • EVA (2) vinyl acetate content 19%, density 939 kg / m 3 , melting point 86 ° C., MFR 2.5 g / 10 minutes, Hanwha Chemical Co., Ltd.
  • seed particles, composite resin particles, expandable particles, expanded particles, and expanded molded articles were obtained, and their physical properties were measured and evaluated. The obtained
  • EVA (2) vinyl acetate content 19%, density 939 kg / m 3 , melting point 86 ° C., MFR 2.5 g / 10 minutes, Hanwa Chemical Co., Ltd., product name: EVA2319
  • polyethylene resin / ethylene-vinyl acetate copolymer 45/55
  • Example 10 In preparation of composite resin particles, seed particles and composite resin particles (gel fraction 14.2 mass) were obtained in the same manner as in Example 4 except that the amount of dicumyl peroxide added was reduced from 5.34 g to 3.76 g. ), Expandable particles, expanded particles, and foamed molded articles were obtained, and their physical properties were measured and evaluated. Table 4 shows the obtained results.
  • Example 11 In preparation of composite resin particles, seed particles and composite resin particles (gel fraction 36.8 mass) were obtained in the same manner as in Example 5 except that the amount of dicumyl peroxide added was increased from 5.34 g to 6.32 g. ), Expandable particles, expanded particles, and foamed molded articles were obtained, and their physical properties were measured and evaluated. Table 4 shows the obtained results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Composite resin particles, wherein: the particles comprise polyethylene resin and polystyrene resin in ranges of 50-20 mass% and 50-80 mass%, respectively, with respect to the total thereof; the polyethylene resin comprises a low density polyethylene resin of 910-930 kg/m3 density and an ethylene-vinyl acetate copolymer in which the vinyl acetate content is 10-30 mass% in ranges of 45-85 mass% and 15-55 mass%, respectively, with respect to the total thereof; and the particles comprise essentially no bromine flame retardant.

Description

複合樹脂粒子とその発泡性粒子、発泡粒子及び発泡成形体Composite resin particles and their expandable particles, expanded particles and expanded molded articles
 本発明は、ポリスチレン系複合樹脂粒子とその発泡性粒子、発泡粒子及び発泡成形体に関する。本発明によれば、難燃剤を添加することなしに、耐衝撃性及び遅燃性に優れた発泡成形体を与え得るポリスチレン系複合樹脂粒子とその発泡性粒子、発泡粒子及び発泡成形体を提供することができる。 The present invention relates to a polystyrene-based composite resin particle and its expandable particle, expanded particle, and expanded molded article. According to the present invention, there is provided a polystyrene-based composite resin particle capable of giving a foamed molded article excellent in impact resistance and slow flame retardancy without adding a flame retardant, and its foamable particles, foamed particles and foamed molded article. can do.
 ポリスチレン系樹脂からなる発泡成形体は、優れた緩衝性及び断熱性を有しかつ成形が容易であることから、包装材や断熱材として多用されている。しかしながら、耐衝撃性や柔軟性が不十分であるため、割れや欠けが発生し易く、例えば精密機器製品の包装等には適さないという問題がある。
 一方、ポリオレフィン系樹脂からなる発泡成形体は、耐衝撃性や柔軟性に優れているが、その成形時に大掛かりな設備を必要とする。また、樹脂の性質上、発泡粒子の形態で原料メーカーから成形加工メーカーに輸送しなければならない。そのため、嵩高い発泡粒子を輸送することになり、製造コストが上昇するという問題がある。
Foamed molded articles made of polystyrene resin are widely used as packaging materials and heat insulating materials because they have excellent buffering properties and heat insulating properties and are easy to mold. However, since the impact resistance and flexibility are insufficient, there is a problem that cracks and chips are likely to occur, and it is not suitable, for example, for packaging precision instrument products.
On the other hand, a foam-molded article made of polyolefin resin is excellent in impact resistance and flexibility, but requires a large facility for molding. Also, due to the nature of the resin, it must be transported from the raw material manufacturer to the molding processing manufacturer in the form of expanded particles. Therefore, bulky expanded particles are transported, and there is a problem that the manufacturing cost increases.
 そこで、上記2つの異なる樹脂の特長を併せもつ、様々なポリスチレン系複合樹脂粒子及びそれらを用いた発泡成形体が提案されている。 Therefore, various polystyrene-based composite resin particles having the characteristics of the above two different resins and foamed moldings using them have been proposed.
 例えば、特開2014-77078号公報(特許文献1)には、20~50質量%のオレフィン系樹脂(A)と、50~80質量%のスチレン系樹脂(B)とを含む複合樹脂(ただし、オレフィン系樹脂(A)とスチレン系樹脂(B)との合計が100質量%である)を基材樹脂とし、臭素系難燃剤を含む複合樹脂発泡粒子において、スチレン系樹脂(B)には、共重合成分として、メタクリル酸の炭素数1~10のアルキルエステル成分及びアクリル酸の炭素数1~10のアルキルエステル成分から選択される1以上の(メタ)アクリル酸エステル成分(b1)が含まれており、スチレン系樹脂(B)100質量%における上記(メタ)アクリル酸エステル成分(b1)の含有量が2~12質量%であり、スチレン系樹脂(B)のガラス転移温度(Tg)が100~104℃であり、臭素系難燃剤の50%分解温度が260~340℃である複合樹脂発泡粒子が開示されている。
 特許文献1によれば、この複合樹脂発泡粒子は、難燃化が難しいとされる複合樹脂を基材樹脂としながらも、複合樹脂本来の耐熱性を阻害せず、優れた機械特性を有しながら、高い難燃性を発揮できるとしている。
For example, Japanese Patent Application Laid-Open No. 2014-77078 (Patent Document 1) discloses a composite resin containing 20 to 50% by mass of an olefin resin (A) and 50 to 80% by mass of a styrene resin (B) (however, In the composite resin foamed particles including the olefin resin (A) and the styrene resin (B) as a base resin and containing a brominated flame retardant, the styrene resin (B) The copolymer component includes one or more (meth) acrylic acid ester components (b1) selected from methacrylic acid alkyl ester components having 1 to 10 carbon atoms and acrylic acid alkyl esters components having 1 to 10 carbon atoms. The content of the (meth) acrylic acid ester component (b1) in 100% by mass of the styrene resin (B) is 2 to 12% by mass, and the glass transition of the styrene resin (B). Temperature (Tg) of a is 100 ~ 104 ° C., the composite resin foamed particles is disclosed a 50% decomposition temperature of the brominated flame retardant is a 260 ~ 340 ° C..
According to Patent Document 1, the composite resin foamed particles have excellent mechanical properties without inhibiting the inherent heat resistance of the composite resin, while using the composite resin that is difficult to be flame retardant as the base resin. However, it is said that it can exhibit high flame retardancy.
 また、特開2014-237747号公報(特許文献2)には、直鎖状低密度ポリエチレン樹脂(A)と、該樹脂(A)にスチレン系モノマーを含浸重合してなるポリスチレン系樹脂(B)との複合樹脂を基材樹脂とする複合樹脂発泡粒子であって、複合樹脂は、樹脂(A)20~50質量%及び樹脂(B)50~80質量%を含有し(ただし、樹脂(A)及び樹脂(B)の合計が100質量%)、かつ樹脂(A)が分散相を形成し、樹脂(B)が連続相を形成するモルフォロジーを示し、嵩密度が5~15kg/m3、独立気泡率が90%以上である複合樹脂発泡粒子が開示されている。 JP-A-2014-237747 (Patent Document 2) discloses a linear low-density polyethylene resin (A) and a polystyrene resin (B) obtained by impregnating and polymerizing the resin (A) with a styrene monomer. The composite resin foam particles having a composite resin as a base resin, the composite resin contains 20 to 50% by mass of the resin (A) and 50 to 80% by mass of the resin (B) (provided that the resin (A) ) And the resin (B) are 100% by mass), the resin (A) forms a dispersed phase, and the resin (B) forms a continuous phase, the bulk density is 5 to 15 kg / m 3 , Composite resin foam particles having a closed cell ratio of 90% or more are disclosed.
特開2014-77078号公報JP 2014-77078 A 特開2014-237747号公報JP 2014-237747 A
 しかしながら、上記の先行技術に記載されているような、直鎖状低密度ポリエチレン系樹脂(LLDPE)とエチレン-酢酸ビニル共重合体(EVA)との組み合わせは、発泡成形体の良好な耐衝撃性を得る点では有利であるが、直鎖状低密度ポリエチレン系樹脂を基材樹脂とする発泡成形体は燃え易いという傾向があり、遅燃性を満足することが難しい。そこで、先行技術では、遅燃性を満足するために臭素系難燃剤の添加を必須としているが、発泡成形体として発泡倍数20.4倍(密度49kg/m3)を超えるような高倍化は困難になる。
 また、特許文献1には、複合樹脂発泡粒子の見掛け密度が10~500kg/m3であることが好ましいと記載されているが、実際には、発泡倍数が約20倍である場合のみが検証されているに過ぎない。
 さらに、特許文献1には、複合樹脂の基材樹脂が20~50質量%のオレフィン樹脂(A)と50~80質量%のスチレン系樹脂(B)とを含むことが記載されているが、実際には、樹脂(A)/樹脂(B)の質量比が30/70である場合のみが検証されているに過ぎない。
However, the combination of a linear low density polyethylene resin (LLDPE) and an ethylene-vinyl acetate copolymer (EVA) as described in the prior art described above has good impact resistance of the foamed molded article. However, it is difficult to satisfy the slow flammability because the foamed molded article using a linear low density polyethylene resin as a base resin tends to burn easily. Therefore, in the prior art, it is essential to add a brominated flame retardant in order to satisfy the slow flame retardancy. However, as a foamed molded article, a high multiplication factor exceeding 20.4 times the expansion ratio (density 49 kg / m 3 ) is not possible. It becomes difficult.
Patent Document 1 describes that the composite resin foam particles preferably have an apparent density of 10 to 500 kg / m 3 , but in actuality, only the case where the expansion ratio is about 20 times is verified. It has only been done.
Further, Patent Document 1 describes that the base resin of the composite resin contains 20 to 50% by mass of the olefin resin (A) and 50 to 80% by mass of the styrene resin (B). Actually, only when the mass ratio of resin (A) / resin (B) is 30/70 has been verified.
 一方、低密度ポリエチレン系樹脂(LDPE)をスチレンで改質したポリエチレン系樹脂粒子の発泡成形体は、軽量性に優れているものの、耐衝撃性及び遅燃性が不十分であり、特に遅燃性の向上が望まれている。
 そこで、本発明は、難燃剤を添加することなしに、耐衝撃性及び遅燃性に優れた発泡成形体を与え得るポリスチレン系複合樹脂粒子とその発泡性粒子、発泡粒子及び発泡成形体を提供することを課題とする。
On the other hand, a foamed molded product of polyethylene resin particles obtained by modifying low density polyethylene resin (LDPE) with styrene is excellent in light weight, but has insufficient impact resistance and retarded flame retardancy, particularly retarded flame retardancy. Improvement of the property is desired.
Therefore, the present invention provides a polystyrene-based composite resin particle capable of giving a foamed molded article excellent in impact resistance and retarding flame resistance without adding a flame retardant, and its foamable particles, foamed particles and foamed molded article. The task is to do.
 本発明の発明者らは、上記の課題を達成するために鋭意検討の結果、密度910~930kg/m3の低密度ポリエチレン系樹脂(LDPE)と、酢酸ビニルの含有率10~30質量%のエチレン-酢酸ビニル共重合体(EVA)とを特定の割合で含むポリエチレン系樹脂をスチレンで改質した複合樹脂粒子が、低密度ポリエチレン系樹脂をスチレンで改質した複合樹脂粒子よりも、耐衝撃性および遅燃性に優れることを見出し、本発明を完成するに至った。 The inventors of the present invention have intensively studied to achieve the above-mentioned problems. As a result, a low-density polyethylene resin (LDPE) having a density of 910 to 930 kg / m 3 and a vinyl acetate content of 10 to 30% by mass. Composite resin particles modified with styrene of a polyethylene resin containing ethylene-vinyl acetate copolymer (EVA) in a specific ratio are more resistant to impact than composite resin particles modified with styrene of a low-density polyethylene resin. The present invention has been completed by finding that it has excellent properties and slow flame retardancy.
 かくして、本発明によれば、ポリエチレン系樹脂とポリスチレン系樹脂とをこれらの合計に対してそれぞれ50~20質量%及び50~80質量%の範囲で含み、前記ポリエチレン系樹脂が、密度910~930kg/m3の低密度ポリエチレン系樹脂と酢酸ビニル含有率10~30質量%のエチレン-酢酸ビニル共重合体とをこれらの合計に対してそれぞれ45~85質量%及び15~55質量%の範囲で含み、かつ臭素系難燃剤を実質的に含まない複合樹脂粒子が提供される。 Thus, according to the present invention, the polyethylene resin and the polystyrene resin are contained in a range of 50 to 20% by mass and 50 to 80% by mass, respectively, based on the total of these, and the polyethylene resin has a density of 910 to 930 kg. / M 3 low density polyethylene resin and ethylene-vinyl acetate copolymer having a vinyl acetate content of 10 to 30% by mass in the range of 45 to 85% by mass and 15 to 55% by mass, respectively. Provided is a composite resin particle that contains and is substantially free of brominated flame retardants.
 また、本発明によれば、上記の複合樹脂粒子と揮発性発泡剤とを含む発泡性粒子が提供される。
 さらに、本発明によれば、上記の発泡性粒子を予備発泡させて得られた発泡粒子が提供される。
 また、本発明によれば、上記の発泡粒子を発泡成形させて得られた発泡成形体が提供される。
Moreover, according to this invention, the expandable particle | grains containing said composite resin particle and a volatile foaming agent are provided.
Furthermore, according to the present invention, there are provided expanded particles obtained by pre-expanding the expandable particles.
Moreover, according to this invention, the foaming molding obtained by carrying out foam molding of said foaming particle is provided.
 本発明によれば、難燃剤を添加することなしに、耐衝撃性及び遅燃性に優れた発泡成形体を与え得るポリスチレン系複合樹脂粒子とその発泡性粒子、発泡粒子及び発泡成形体を提供することができる。
 低密度ポリエチレン系樹脂をスチレンで改質した複合樹脂粒子は、直鎖状低密度ポリエチレン系樹脂をスチレンで改質した複合樹脂粒子より、ポリエチレンの分子構造上、燃焼し難い傾向があり、本発明の複合樹脂粒子は、臭素系難燃剤を添加することなしに遅燃性を満足することが可能であり、しかも発泡成形体において密度49kg/m3未満の発泡倍数20.4倍を超える高倍化も可能である。
According to the present invention, there is provided a polystyrene-based composite resin particle capable of giving a foamed molded article excellent in impact resistance and slow flame retardancy without adding a flame retardant, and its foamable particles, foamed particles and foamed molded article. can do.
Composite resin particles obtained by modifying low density polyethylene resin with styrene tend to be less combustible due to the molecular structure of polyethylene than composite resin particles obtained by modifying linear low density polyethylene resin with styrene. The composite resin particles can satisfy the slow flame retardancy without adding a brominated flame retardant, and moreover, the foamed molded article has a foaming ratio of less than 49 kg / m 3 and a foaming ratio exceeding 20.4 times. Is also possible.
 また、本発明の複合樹脂粒子は、
 (1)ポリエチレン系樹脂が、酢酸ビニルを3~10質量%含有する、
 (2)複合樹脂粒子が、その約1gを温度130℃のトルエン100mlで処理したときに、トルエンに不溶なゲル分率が15~35質量%である、
 (3)複合樹脂粒子が、1.0~2.0mmの平均粒子径を有する、
の少なくとも1つの条件を満足する場合に、上記の優れた効果を更に発揮する。
 さらに、本発明の発泡成形体は、49kg/m3未満の密度を有する場合に、上記の優れた効果を更に発揮する。
The composite resin particles of the present invention are
(1) The polyethylene resin contains 3 to 10% by mass of vinyl acetate.
(2) When about 1 g of the composite resin particles is treated with 100 ml of toluene at a temperature of 130 ° C., the gel fraction insoluble in toluene is 15 to 35% by mass.
(3) The composite resin particles have an average particle diameter of 1.0 to 2.0 mm.
The above excellent effect is further exhibited when at least one of the above conditions is satisfied.
Furthermore, when the foamed molded product of the present invention has a density of less than 49 kg / m 3 , the above excellent effect is further exhibited.
従来の複合樹脂粒子における(a)粒子表層部及び(b)粒子内部のTEM画像である。It is a TEM image in (a) particle | grain surface layer part and (b) particle | grain inside in the conventional composite resin particle. 本発明の複合樹脂粒子(実施例1)における(a)粒子表層部及び(b)粒子内部のTEM画像である。It is a TEM image of (a) particle | grain surface layer part and (b) particle | grain inside in the composite resin particle (Example 1) of this invention. 本発明の複合樹脂粒子(実施例3)における(a)粒子表層部及び(b)粒子内部のTEM画像である。It is a TEM image of (a) particle | grain surface-layer part and (b) particle | grain inside in the composite resin particle (Example 3) of this invention.
(1)複合樹脂粒子
 本発明の複合樹脂粒子は、ポリエチレン系樹脂とポリスチレン系樹脂とをこれらの合計に対してそれぞれ50~20質量%及び50~80質量%の範囲で含み、前記ポリエチレン系樹脂が、密度910~930kg/m3の低密度ポリエチレン系樹脂と酢酸ビニル含有率10~30質量%のエチレン-酢酸ビニル共重合体とをこれらの合計に対してそれぞれ45~85質量%及び15~55質量%の範囲で含み、かつ臭素系難燃剤を実質的に含まないことを特徴とする。
 本発明において、「臭素系難燃剤を実質的に含まない」とは、複合樹脂粒子の製造過程において積極的に難燃剤、特に臭素系難燃剤を添加しないことを意味する。但し、樹脂原料などに由来する難燃成分は除外する。
(1) Composite resin particles The composite resin particles of the present invention comprise a polyethylene resin and a polystyrene resin in the range of 50 to 20% by mass and 50 to 80% by mass, respectively, based on the total of these, However, a low-density polyethylene resin having a density of 910 to 930 kg / m 3 and an ethylene-vinyl acetate copolymer having a vinyl acetate content of 10 to 30% by mass with respect to the total of 45 to 85% by mass and 15 to It is characterized by being contained in the range of 55% by mass and substantially not containing a brominated flame retardant.
In the present invention, “substantially free of a brominated flame retardant” means that no flame retardant, particularly a brominated flame retardant, is actively added in the production process of composite resin particles. However, flame retardant components derived from resin raw materials are excluded.
 なお、本発明者らのTEM画像などの解析評価によれば、従来の複合樹脂粒子には、不定形のポリスチレン系樹脂がポリエチレン系樹脂中に分散した共連続構造領域が存在しているが(図1参照)、本発明の複合樹脂粒子には、ポリスチレン系樹脂の粒子がポリエチレン系樹脂中に分散した海島構造領域と、不定形のポリスチレン系樹脂がポリエチレン系樹脂中に分散した共連続構造領域とが混在している(図2および3参照)。 According to the analysis and evaluation of the present inventors such as a TEM image, the conventional composite resin particles have a co-continuous structure region in which an amorphous polystyrene resin is dispersed in a polyethylene resin ( 1), the composite resin particles of the present invention include a sea-island structure region in which polystyrene resin particles are dispersed in a polyethylene resin, and a co-continuous structure region in which amorphous polystyrene resin is dispersed in a polyethylene resin. Are mixed (see FIGS. 2 and 3).
(ポリスチレン系樹脂:PS)
 本発明の複合樹脂粒子を構成するポリスチレン系樹脂は、スチレン系単量体を主成分とする樹脂であれば特に限定されず、スチレン又はスチレン誘導体の単独又は共重合体が挙げられる。
 スチレン誘導体としては、α-メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、イソプロピルスチレン、ジメチルスチレン、ブロモスチレン等が挙げられる。これらのスチレン系単量体は、単独で用いられても、併用されてもよい。
(Polystyrene resin: PS)
The polystyrene resin constituting the composite resin particle of the present invention is not particularly limited as long as it is a resin mainly composed of a styrene monomer, and examples thereof include styrene or a styrene derivative alone or a copolymer.
Examples of the styrene derivative include α-methylstyrene, vinyl toluene, chlorostyrene, ethyl styrene, isopropyl styrene, dimethyl styrene, bromostyrene, and the like. These styrenic monomers may be used alone or in combination.
 ポリスチレン系樹脂は、スチレン系単量体と共重合可能なビニル系単量体を併用したものであってもよい。
 ビニル系単量体としては、例えば、o-ジビニルベンゼン、m-ジビニルベンゼン、p-ジビニルベンゼン等のジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート等の多官能性単量体;(メタ)アクリロニトリル、メチル(メタ)アクリレート、ブチル(メタ)アクリレート等が挙げられる。これらの中でも、多官能性単量体が好ましく、エチレングリコールジ(メタ)アクリレート、エチレン単位数が4~16のポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼンがより好ましく、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレートが特に好ましい。尚、単量体は、単独で又は2種以上を組み合わせて用いてもよい。
 また、単量体を併用する場合、その含有量は、スチレン系単量体が主成分となる量(例えば、50質量%以上)になるように設定されることが好ましい。
 本発明において「(メタ)アクリル」とは、「アクリル」又は「メタクリル」を意味する。
The polystyrene resin may be a combination of a vinyl monomer copolymerizable with a styrene monomer.
Examples of the vinyl monomer include divinylbenzene such as o-divinylbenzene, m-divinylbenzene and p-divinylbenzene, alkylene glycol di (meth) acrylate such as ethylene glycol di (meth) acrylate and polyethylene glycol di (meth) acrylate. And polyfunctional monomers such as (meth) acrylate; (meth) acrylonitrile, methyl (meth) acrylate, butyl (meth) acrylate and the like. Among these, polyfunctional monomers are preferable, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate having 4 to 16 ethylene units, and divinylbenzene are more preferable, and divinylbenzene, ethylene glycol di ( Particularly preferred is (meth) acrylate. In addition, you may use a monomer individually or in combination of 2 or more types.
Moreover, when using a monomer together, it is preferable that the content is set so that it may become the quantity (for example, 50 mass% or more) which a styrene-type monomer becomes a main component.
In the present invention, “(meth) acryl” means “acryl” or “methacryl”.
(低密度ポリエチレン系樹脂:LDPE)
 本発明の複合樹脂粒子を構成する低密度ポリエチレン系樹脂は、密度910~930kg/m3のポリエチレン系樹脂であれば特に限定されず、具体的には、実施例において用いているような市販品が挙げられる。
 本発明で使用するLDPEとは、高圧法低密度ポリエチレン、分岐状低密度ポリエチレン、長鎖分岐低密度ポリエチレン、ラジカル重合法ポリエチレン、エチレン低密度重合体で定義されたポリエチレン系樹脂のことを指す。一方、本発明で使用しない直鎖状低密度ポリエチレン(LLDPE)とは、中低圧法低密度ポリエチレン、直鎖状低密度ポリエチレン、短鎖分岐低密度ポリエチレン、イオン重合法ポリエチレン、エチレン・αオレフィン共重合体で定義されたポリエチレン系樹脂のことを指す。
(Low density polyethylene resin: LDPE)
The low density polyethylene resin constituting the composite resin particle of the present invention is not particularly limited as long as it is a polyethylene resin having a density of 910 to 930 kg / m 3 , and specifically, a commercial product as used in the examples. Is mentioned.
The LDPE used in the present invention refers to a polyethylene-based resin defined by a high pressure method low density polyethylene, a branched low density polyethylene, a long chain branched low density polyethylene, a radical polymerization polyethylene, and an ethylene low density polymer. On the other hand, the linear low density polyethylene (LLDPE) not used in the present invention is a medium-low pressure method low density polyethylene, a linear low density polyethylene, a short chain branched low density polyethylene, an ion polymerization method polyethylene, an ethylene / α-olefin copolymer. It refers to a polyethylene-based resin defined as a polymer.
(エチレン-酢酸ビニル共重合体:EVA)
 本発明の複合樹脂粒子を構成するエチレン-酢酸ビニル共重合体は、酢酸ビニル含有率が10~30質量%のエチレンと酢酸ビニルとの共重合体であれば、特に限定されず、具体的には、実施例において用いているような市販品が挙げられる。
 酢酸ビニル含有率が10質量%未満では、最終ポリエチレン系樹脂(種粒子)の酢酸ビニル含有量を一定量にする場合、低密度ポリエチレン系樹脂と混練するエチレン-酢酸ビニル共重合体の割合が多くなってしまう。エチレン-酢酸ビニル共重合体の方が低密度ポリエチレンよりも融点が低い傾向であるため、得られた発泡成形体の耐熱性が低下することがある。一方、酢酸ビニル含有率が30質量%を超えると、最終ポリエチレン系樹脂(種粒子)の酢酸ビニル含有量を一定量にする場合、低密度ポリエチレン系樹脂と混練するエチレン-酢酸ビニル共重合体の割合が少なくなってしまう。このため、最終ポリエチレン系樹脂(種粒子)における酢酸ビニルの分散性が低く、遅燃性が低下することがある。
 酢酸ビニル含有率(質量%)は、例えば、10、11、12、13、14,15、16、17、18、19、20、21、22、23、24,25、26、27、28、29、30である。
 エチレン-酢酸ビニル共重合体における好ましい酢酸ビニル含有率は、15~25質量%である。
(Ethylene-vinyl acetate copolymer: EVA)
The ethylene-vinyl acetate copolymer constituting the composite resin particle of the present invention is not particularly limited as long as it is a copolymer of ethylene and vinyl acetate having a vinyl acetate content of 10 to 30% by mass. Is a commercially available product as used in the examples.
When the vinyl acetate content is less than 10% by mass, when the vinyl acetate content of the final polyethylene resin (seed particles) is constant, the proportion of the ethylene-vinyl acetate copolymer kneaded with the low density polyethylene resin is large. turn into. Since the ethylene-vinyl acetate copolymer tends to have a lower melting point than low density polyethylene, the heat resistance of the obtained foamed molded product may be lowered. On the other hand, when the vinyl acetate content exceeds 30% by mass, when the vinyl acetate content of the final polyethylene resin (seed particles) is constant, the ethylene-vinyl acetate copolymer kneaded with the low density polyethylene resin The ratio will decrease. For this reason, the dispersibility of vinyl acetate in the final polyethylene resin (seed particles) is low, and the slow flame retardancy may be lowered.
The vinyl acetate content (% by mass) is, for example, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30.
A preferable vinyl acetate content in the ethylene-vinyl acetate copolymer is 15 to 25% by mass.
(樹脂成分の質量割合)
 本発明の複合樹脂粒子は、ポリエチレン系樹脂とポリスチレン系樹脂とをこれらの合計に対してそれぞれ50~20質量%及び50~80質量%の範囲で含む。
 ポリエチレン系樹脂とポリスチレン系樹脂の質量比のうち、ポリスチレン系樹脂が50質量%未満では、発泡性、成形加工性が不十分になることがある。一方、ポリスチレン系樹脂が80質量%を超えると、耐衝撃性や柔軟性が不十分になることがある。
 ポリスチレン系樹脂の質量割合(質量%)は、例えば、50、55、60、62.5、65、67.5、70、72.5、75、80である。
 好ましいポリエチレン系樹脂とポリスチレン系樹脂の質量比は、40~25質量%及び60~75質量%の範囲である。
(Mass ratio of resin component)
The composite resin particles of the present invention contain a polyethylene resin and a polystyrene resin in the range of 50 to 20% by mass and 50 to 80% by mass, respectively, based on the total of these.
If the polystyrene resin is less than 50% by mass in the mass ratio of the polyethylene resin and the polystyrene resin, foamability and moldability may be insufficient. On the other hand, if the polystyrene resin exceeds 80% by mass, the impact resistance and flexibility may be insufficient.
The mass ratio (mass%) of the polystyrene resin is, for example, 50, 55, 60, 62.5, 65, 67.5, 70, 72.5, 75, 80.
Preferred mass ratios of polyethylene resin and polystyrene resin are in the range of 40 to 25 mass% and 60 to 75 mass%.
 本発明の複合樹脂粒子のポリエチレン系樹脂は、低密度ポリエチレン系樹脂とエチレン-酢酸ビニル共重合体とをこれらの合計に対してそれぞれ45~85質量%及び15~55質量%の範囲で含む。
 低密度ポリエチレン系樹脂とエチレン-酢酸ビニル共重合体の質量比のうち、エチレン-酢酸ビニル共重合体が15質量%未満では、最終ポリエチレン系樹脂(種粒子)における酢酸ビニルの分散性が低く、遅燃性が低下することがある。一方、エチレン-酢酸ビニル共重合体が55質量%超えると、エチレン-酢酸ビニル共重合体の方が低密度ポリエチレンよりも融点が低い傾向であるため、得られた発泡成形体の耐熱性が低下することがある。
 エチレン-酢酸ビニル共重合体の質量割合(質量%)は、例えば、15、20、22.5、25、27.5、30、32.5、35、37.5、40、42.5、45、47.5、50、55である。
 好ましい低密度ポリエチレン系樹脂とエチレン-酢酸ビニル共重合体の質量比は、50~80質量%及び20~50質量%の範囲である。
The polyethylene resin of the composite resin particle of the present invention contains a low density polyethylene resin and an ethylene-vinyl acetate copolymer in a range of 45 to 85% by mass and 15 to 55% by mass, respectively, based on the total of these.
Of the mass ratio of the low density polyethylene resin and the ethylene-vinyl acetate copolymer, when the ethylene-vinyl acetate copolymer is less than 15% by mass, the dispersibility of vinyl acetate in the final polyethylene resin (seed particles) is low, Delayed flammability may be reduced. On the other hand, if the ethylene-vinyl acetate copolymer exceeds 55% by mass, the ethylene-vinyl acetate copolymer tends to have a lower melting point than low-density polyethylene, so the heat resistance of the resulting foamed molded product is reduced. There are things to do.
The mass ratio (% by mass) of the ethylene-vinyl acetate copolymer is, for example, 15, 20, 22.5, 25, 27.5, 30, 32.5, 35, 37.5, 40, 42.5, 45, 47.5, 50, and 55.
Preferred mass ratios of the low density polyethylene resin and the ethylene-vinyl acetate copolymer are in the range of 50 to 80% by mass and 20 to 50% by mass.
 また、ポリエチレン系樹脂は、3~10質量%の酢酸ビニル含有率を有するのが好ましい。
 酢酸ビニル含有率が3質量%未満では、得られた発泡成形体の耐衝撃性及び遅燃性が不十分であることがある。一方、酢酸ビニル含有率が10質量%を超えると、得られた発泡成形体の耐熱性が不十分であることがある。
 酢酸ビニル含有率(質量%)は、例えば、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10である。
 ポリエチレン系樹脂における好ましい酢酸ビニル含有率は、4~8質量%である。
The polyethylene resin preferably has a vinyl acetate content of 3 to 10% by mass.
When the vinyl acetate content is less than 3% by mass, the obtained foamed molded article may have insufficient impact resistance and slow flame retardancy. On the other hand, if the vinyl acetate content exceeds 10% by mass, the obtained foamed molded article may have insufficient heat resistance.
The vinyl acetate content (% by mass) is, for example, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5 and 10.
The preferable vinyl acetate content in the polyethylene resin is 4 to 8% by mass.
(ゲル分率)
 本発明の複合樹脂粒子は、130℃で沸騰したトルエンに対して不溶なゲル分率が15~35質量%である、より具体的には、複合樹脂粒子の約1gを130℃のトルエン100mlで処理したときに、トルエンに不溶なゲル分率が15~35質量%であるのが好ましい。
 これにより、複合樹脂粒子を用いて成形された発泡成形体の耐衝撃性が向上する。
 ゲル分率が15質量%未満では、発泡成形体の耐衝撃性が低くなり、緩衝材としての耐衝撃性が十分でないことがある。一方、ゲル分率が35質量%を超えると、発泡性、成形性等の加工性が低下し、高発泡の成形体や外観の良好な成形体が得られないことがある。
 ゲル分率(質量%)は、例えば、15、16、17、18、19、20、20.5、21、21.5、22、22.5、23、23.5、24,24.5、25、25.5、26、26.5、27、27.5、28、28.5、29、29.5、30、31、32、33、34、35である。
 より好ましいゲル分率は、20~30質量%の範囲であり、さらに好ましくは25~30質量%の範囲である。
 ゲル分率の測定方法については、実施例において詳述する。
(Gel fraction)
The composite resin particle of the present invention has a gel fraction insoluble in toluene boiling at 130 ° C. of 15 to 35% by mass. More specifically, about 1 g of the composite resin particle is added with 100 ml of 130 ° C. toluene. When treated, the gel fraction insoluble in toluene is preferably 15-35% by weight.
Thereby, the impact resistance of the foaming molding shape | molded using the composite resin particle improves.
When the gel fraction is less than 15% by mass, the impact resistance of the foamed molded product is lowered, and the impact resistance as a buffer material may not be sufficient. On the other hand, when the gel fraction exceeds 35% by mass, processability such as foamability and moldability is deteriorated, and a highly foamed molded article or a molded article having a good appearance may not be obtained.
The gel fraction (mass%) is, for example, 15, 16, 17, 18, 19, 20, 20.5, 21, 2, 1.5, 22, 22.5, 23, 23.5, 24, 24.5. 25, 25.5, 26, 26.5, 27, 27.5, 28, 28.5, 29, 29.5, 30, 31, 32, 33, 34, 35.
A more preferable gel fraction is in the range of 20 to 30% by mass, and further preferably in the range of 25 to 30% by mass.
The method for measuring the gel fraction will be described in detail in Examples.
(平均粒子径)
 本発明の複合樹脂粒子は、1.0~2.0mmの平均粒子径を有するのが好ましい。
 複合樹脂粒子の平均粒子径が1.0mm未満では、高い発泡性を得られないことがある。一方、複合樹脂粒子の平均粒子径が2.0mmを超えると、成形加工時の発泡粒子の充填性が不十分になることがある。
 複合樹脂粒子の平均粒子径(mm)は、例えば、1.0、1.05、1.1、1.15、1.2、1.25、1.3、1.35、1.4、1.45、1.5、1.55、1.6、1.65、1.7、1.75、1.8、1.85、1.9、1.95、2.0である。
 より好ましい複合樹脂粒子の平均粒子径は、1.2~1.6mmである。
(Average particle size)
The composite resin particles of the present invention preferably have an average particle size of 1.0 to 2.0 mm.
If the average particle diameter of the composite resin particles is less than 1.0 mm, high foamability may not be obtained. On the other hand, when the average particle diameter of the composite resin particles exceeds 2.0 mm, the filling property of the foamed particles during molding may be insufficient.
The average particle diameter (mm) of the composite resin particles is, for example, 1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2.0.
More preferably, the average particle diameter of the composite resin particles is 1.2 to 1.6 mm.
(Z平均分子量:Mz及び重量平均分子量:Mw)
 本発明の複合樹脂粒子のZ平均分子量:Mzは、600,000~1,000,000程度である。
 複合樹脂粒子のZ平均分子量(×103)は、例えば、600、650、700、750、800、850、900、950、1000である。
 また、本発明の複合樹脂粒子の重量平均分子量:Mwは、250,000~450,000程度である。
 複合樹脂粒子の重量平均分子量(×103)は、例えば、250、300、350、400、450である。
 これらの測定方法については、実施例において詳述する。
(Z average molecular weight: Mz and weight average molecular weight: Mw)
The composite resin particles of the present invention have a Z average molecular weight: Mz of about 600,000 to 1,000,000.
The Z average molecular weight (× 10 3 ) of the composite resin particles is, for example, 600, 650, 700, 750, 800, 850, 900, 950, 1000.
The composite resin particles of the present invention have a weight average molecular weight: Mw of about 250,000 to 450,000.
The weight average molecular weight (× 10 3 ) of the composite resin particles is, for example, 250, 300, 350, 400, 450.
These measurement methods will be described in detail in Examples.
(2)複合樹脂粒子の製造
 本発明の複合樹脂粒子は、特に限定されないが、例えば、シード重合法により製造することができる
 (シード重合)
 シード重合法は、一般に、種粒子に単量体を吸収させ、吸収させた後又は吸収させつつ単量体の重合を行うことにより複合樹脂粒子を得ることができる。また、重合させた後又は重合させつつ複合樹脂粒子に発泡剤を含浸させて発泡性粒子を得ることもできる。
(2) Production of composite resin particles The composite resin particles of the present invention are not particularly limited, but can be produced, for example, by a seed polymerization method (seed polymerization).
In the seed polymerization method, the composite resin particles can be generally obtained by allowing the seed particles to absorb the monomer and polymerizing the monomer after or while absorbing the monomer. Alternatively, the foamed particles can be obtained by impregnating the composite resin particles with a foaming agent after polymerization or while polymerizing.
 具体的には、まず、水性媒体中で、上記のポリエチレン系樹脂からなる種粒子に、スチレン系単量体を吸収させ、吸収させた後又は吸収させつつスチレン系単量体の重合を行うことで複合樹脂粒子を得る。
 スチレン系単量体は、これを構成する単量体を全て同時に水性媒体中に供給する必要はなく、単量体の全部あるいは一部を別々のタイミングで水性媒体中に供給してもよい。複合樹脂粒子中に添加剤を含有させる場合には、添加剤をスチレン系単量体や水性媒体中に添加しても、あるいは、種粒子中に含有させてもよい。
 なお、単量体と樹脂の量はほぼ同一である。
Specifically, first, in the aqueous medium, seed particles composed of the above-mentioned polyethylene-based resin are allowed to absorb the styrene-based monomer, and after the absorption or absorption, the styrene-based monomer is polymerized. To obtain composite resin particles.
The styrenic monomer does not need to be supplied to the aqueous medium at the same time, and all or part of the monomer may be supplied to the aqueous medium at different timings. When the additive is included in the composite resin particles, the additive may be added to the styrene monomer or the aqueous medium, or may be included in the seed particles.
The amount of monomer and resin is almost the same.
 スチレン系単量体の重合は、例えば、60~150℃で、2~40時間加熱することにより行うことができる。
 重合工程では、重合温度で長時間保持する、すなわちアニールするのが好ましい。
 アニール工程に至るそれまでの工程において、種粒子に吸収させたスチレン系単量体及び重合開始剤は完全には反応を完了しておらず、複合樹脂粒子内部には未反応物も少なからず存在している。そのため、アニールせずに得た複合樹脂粒子を用いて発泡成形体を得た場合、スチレン系単量体等低分子量の未反応物の影響により、発泡成形体の機械的物性や耐熱性の低下や揮発性の未反応物を原因とした臭気が問題となる。そこで、アニール工程を導入することによって未反応物が重合反応を起こす時間を確保し、発泡成形体の物性に影響しないように残存する未反応物を除去することができる。
 スチレン系単量体としては、複合樹脂粒子の項に例示のものが挙げられ、その使用量は、複合樹脂粒子の項に記載の範囲である。
The polymerization of the styrene monomer can be carried out, for example, by heating at 60 to 150 ° C. for 2 to 40 hours.
In the polymerization step, it is preferable to hold at the polymerization temperature for a long time, that is, to anneal.
In the previous steps up to the annealing step, the styrene monomer and polymerization initiator absorbed in the seed particles have not completely completed the reaction, and there are not a few unreacted substances in the composite resin particles. is doing. Therefore, when a foamed molded product is obtained using composite resin particles obtained without annealing, the mechanical properties and heat resistance of the foamed molded product are degraded due to the influence of low molecular weight unreacted materials such as styrene monomers. And odor caused by volatile unreacted materials becomes a problem. Therefore, by introducing an annealing step, it is possible to secure a time for the unreacted material to undergo a polymerization reaction, and to remove the remaining unreacted material so as not to affect the physical properties of the foam molded article.
Examples of the styrenic monomer include those exemplified in the section of composite resin particles, and the amount used is in the range described in the section of composite resin particles.
(種粒子)
 種粒子(「核樹脂粒子」ともいう)は、上記のポリエチレン系樹脂であり、特定の質量比率の低密度ポリエチレン系樹脂とエチレン-酢酸ビニル共重合体とを含む。
 種粒子は、例えば、これらの樹脂を混合・溶融混錬後、ストランド状に押し出し、所望の粒子径でカットする方法により得ることができる。
 核樹脂粒子の粒子径は、複合樹脂粒子の平均粒子径などに応じて適宜調整でき、好ましい粒子径は、0.2~1.5mmの範囲であり、その平均質量は10~100mg/100粒である。また、その形状は、真球状、楕円球状(卵状)、円柱状、角柱状などが挙げられる。
(Seed particles)
The seed particles (also referred to as “nuclear resin particles”) are the above-described polyethylene-based resins, and include a low-density polyethylene-based resin and an ethylene-vinyl acetate copolymer having a specific mass ratio.
Seed particles can be obtained, for example, by a method of mixing and melting and kneading these resins, extruding them into strands, and cutting them with a desired particle diameter.
The particle diameter of the core resin particles can be appropriately adjusted according to the average particle diameter of the composite resin particles, and the preferable particle diameter is in the range of 0.2 to 1.5 mm, and the average mass is 10 to 100 mg / 100 particles. It is. In addition, examples of the shape include a true spherical shape, an elliptical spherical shape (egg shape), a cylindrical shape, and a prismatic shape.
(水性媒体)
 水性媒体としては、水、水と水溶性溶媒(例えば、メチルアルコールやエチルアルコールなどの低級アルコール)との混合媒体が挙げられる。
(Aqueous medium)
Examples of the aqueous medium include water and a mixed medium of water and a water-soluble solvent (for example, a lower alcohol such as methyl alcohol or ethyl alcohol).
(分散剤)
 水性媒体には、スチレン系単量体の液滴及び種粒子の分散性を安定させるために分散剤を用いてもよい。このような分散剤としては、例えば、部分けん化ポリビニルアルコール、ポリアクリル酸塩、ポリビニルピロリドン、カルボキシメチルセルロース、メチルセルロースなどの有機系分散剤;ピロリン酸マグネシウム、ピロリン酸カルシウム、リン酸カルシウム、炭酸カルシウム、リン酸マグネシウム、炭酸マグネシウム、酸化マグネシウムなどの無機系分散剤が挙げられる。これらの中でも、より安定な分散状態を維持することができることがあるため、無機系分散剤が好ましい。
 無機系分散剤を用いる場合には、界面活性剤を併用することが好ましい。このような界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、α-オレフィンスルホン酸ナトリウムなどが挙げられる。
(Dispersant)
In the aqueous medium, a dispersant may be used in order to stabilize the dispersibility of the styrene monomer droplets and seed particles. Examples of such a dispersant include organic dispersants such as partially saponified polyvinyl alcohol, polyacrylate, polyvinyl pyrrolidone, carboxymethyl cellulose, and methyl cellulose; magnesium pyrophosphate, calcium pyrophosphate, calcium phosphate, calcium carbonate, magnesium phosphate, Examples thereof include inorganic dispersants such as magnesium carbonate and magnesium oxide. Among these, an inorganic dispersant is preferable because a more stable dispersion state may be maintained.
When an inorganic dispersant is used, it is preferable to use a surfactant in combination. Examples of such surfactants include sodium dodecylbenzene sulfonate and sodium α-olefin sulfonate.
(重合開始剤)
 スチレン系単量体は、通常重合開始剤の存在下で重合する。重合開始剤は、通常スチレン系単量体と同時に種粒子に含浸させる。
 重合開始剤としては、従来からスチレン系単量体の重合に用いられているものであれば、特に限定されない。例えば、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシピバレート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシアセテート、2,2-t-ブチルパーオキシブタン、t-ブチルパーオキシ-3,3,5-トリメチルヘキサノエート、ジ-t-ブチルパーオキシヘキサハイドロテレフタレート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、ジクミルパーオキサイドなどの有機過酸化物が挙げられる。これら重合開始剤は、単独で又は2種以上を組み合わせて用いてもよい。重合開始剤の使用量は、スチレン系単量体100質量部に対して、例えば0.1~5質量部の範囲である。
(Polymerization initiator)
Styrene monomers are usually polymerized in the presence of a polymerization initiator. The polymerization initiator is usually impregnated into the seed particles simultaneously with the styrene monomer.
The polymerization initiator is not particularly limited as long as it is conventionally used for the polymerization of styrene monomers. For example, benzoyl peroxide, t-butyl peroxybenzoate, t-butyl peroxypivalate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, 2, 2-t-butylperoxybutane, t-butylperoxy-3,3,5-trimethylhexanoate, di-t-butylperoxyhexahydroterephthalate, 2,5-dimethyl-2,5-bis (benzoyl) Organic peroxides such as peroxy) hexane and dicumyl peroxide. These polymerization initiators may be used alone or in combination of two or more. The amount of the polymerization initiator used is, for example, in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the styrene monomer.
 重合開始剤を種粒子又は種粒子から成長途上の粒子に均一に吸収させるために、重合開始剤を水性媒体中に添加するにあたって、重合開始剤を水性媒体中に予め懸濁又は乳化分散させた上で分散液中に添加するか、あるいは重合開始剤をスチレン系単量体に予め溶解させた上で水性媒体中に添加することが好ましい。 In order to uniformly absorb the polymerization initiator from the seed particles or the seed particles to the growing particles, the polymerization initiator is suspended or emulsified and dispersed in advance in the aqueous medium when the polymerization initiator is added to the aqueous medium. It is preferable to add to the dispersion liquid above, or to add the polymerization initiator to the aqueous medium after previously dissolving it in the styrene monomer.
 重合開始剤の好ましい添加量は、スチレン系単量体100質量部あたり0.1~0.9質量部である。
 重合開始剤の添加量が0.1質量部未満では、分子量が高くなりすぎて発泡性が低下することがある。一方、重合開始剤の添加量が0.9質量部を超えると、重合速度が速くなりすぎて、ポリスチレン系樹脂の粒子がポリオレフィン系樹脂中の分散状況を制御しきれないことがある。好ましい重合開始剤の添加量は、0.2~0.5質量部である。
A preferable addition amount of the polymerization initiator is 0.1 to 0.9 parts by mass per 100 parts by mass of the styrene monomer.
When the addition amount of the polymerization initiator is less than 0.1 part by mass, the molecular weight becomes too high and foamability may be lowered. On the other hand, when the addition amount of the polymerization initiator exceeds 0.9 parts by mass, the polymerization rate may become too fast, and the dispersion state of the polystyrene resin particles in the polyolefin resin may not be controlled. A preferable addition amount of the polymerization initiator is 0.2 to 0.5 parts by mass.
 (他の成分)
 なお、複合樹脂粒子には、物性を損なわない範囲内において、可塑剤、結合防止剤、気泡調整剤、架橋剤、充填剤、滑剤、着色剤、融着促進剤、帯電防止剤、展着剤等の添加剤を添加してもよい。
 また、複合樹脂粒子は、物性を損なわない範囲内において、臭素難燃剤以外の難燃剤及び難燃助剤を含んでいてもよい。
(Other ingredients)
The composite resin particles have a plasticizer, a binding inhibitor, a bubble regulator, a crosslinking agent, a filler, a lubricant, a colorant, a fusion accelerator, an antistatic agent, and a spreading agent as long as the physical properties are not impaired. Additives such as may be added.
In addition, the composite resin particles may contain a flame retardant other than bromine flame retardant and a flame retardant aid within a range where physical properties are not impaired.
 複合樹脂粒子には、加熱発泡時に用いられる水蒸気の圧力が低くても良好な発泡成形性を維持させるために、1気圧下における沸点が200℃を超える可塑剤を含有させることができる。
 可塑剤としては、例えば、フタル酸エステル、グリセリンジアセトモノラウレート、グリセリントリステアレート、グリセリンジアセトモノステアレート等のグリセリン脂肪酸エステル、ジイソブチルアジペート等のアジピン酸エステル、ヤシ油等の可塑剤が挙げられる。
 可塑剤の複合樹脂粒子中における含有量は、0.1~3.0質量%が好ましい。
The composite resin particles can contain a plasticizer having a boiling point exceeding 200 ° C. under 1 atm in order to maintain good foam moldability even when the pressure of water vapor used at the time of heat foaming is low.
Examples of the plasticizer include glycerin fatty acid esters such as phthalic acid ester, glycerin diacetomonolaurate, glycerin tristearate and glycerin diacetomonostearate, adipic acid esters such as diisobutyl adipate, and plasticizers such as coconut oil. .
The content of the plasticizer in the composite resin particles is preferably 0.1 to 3.0% by mass.
 結合防止剤としては、炭酸カルシウム、シリカ、ステアリン酸亜鉛、水酸化アルミニウム、エチレンビスステアリン酸アミド、第三リン酸カルシウム、ジメチルシリコンなどが挙げられる。
 気泡調整剤としては、エチレンビスステアリン酸アミド、ポリエチレンワックスなどが挙げられる。
 架橋剤としては、2,2-ジ-t-ブチルパーオキシブタン、2,2-ビス(t-ブチルパーオキシ)ブタン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ-t-ブチルパーオキシヘキサンなどの有機過酸化物などが挙げられる。
 充填剤としては、合成または天然に産出される二酸化ケイ素などが挙げられる。
 滑剤としては、パラフィンワックス、ステアリン酸亜鉛などが挙げられる。
Examples of the binding inhibitor include calcium carbonate, silica, zinc stearate, aluminum hydroxide, ethylene bis stearamide, tricalcium phosphate, and dimethyl silicon.
Examples of the air conditioner include ethylene bis stearamide and polyethylene wax.
Examples of the crosslinking agent include 2,2-di-t-butylperoxybutane, 2,2-bis (t-butylperoxy) butane, dicumyl peroxide, 2,5-dimethyl-2,5-di-t. -Organic peroxides such as butylperoxyhexane.
Examples of the filler include synthetic or naturally produced silicon dioxide.
Examples of the lubricant include paraffin wax and zinc stearate.
 着色剤としては、ファーネスブラック、ケッチェンブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、黒鉛、炭素繊維などのカーボンブラック、黄鉛、亜鉛黄、バリウム黄などのクロム酸塩、紺青などのフェロシアン化物、カドミウムイエロー、カドミウムレッドなどの硫化物、鉄黒、紅殻などの酸化物、群青のようなケイ酸塩、酸化チタンなどの無機系の顔料、モノアゾ顔料、ジスアゾ顔料、アゾレーキ、縮合アゾ顔料、キレートアゾ顔料などのアゾ顔料、フタロシアニン系、アントラキノン系、ペリレン系、ペリノン系、チオインジゴ系、キナクリドン系、ジオキサジン系、イソインドリノン系、キノフタロン系などの多環式顔料などの有機系の顔料が挙げられる。 Colorants include furnace black, ketjen black, channel black, thermal black, acetylene black, carbon black such as graphite and carbon fiber, chromate such as yellow lead, zinc yellow and barium yellow, and ferrocyanides such as bitumen Sulfides such as cadmium yellow and cadmium red, oxides such as iron black and red husk, silicates such as ultramarine blue, inorganic pigments such as titanium oxide, monoazo pigments, disazo pigments, azo lakes, condensed azo pigments, chelate azos Organic pigments such as azo pigments such as pigments, polycyclic pigments such as phthalocyanine, anthraquinone, perylene, perinone, thioindigo, quinacridone, dioxazine, isoindolinone, quinophthalone, and the like can be mentioned.
 融着促進剤としては、ステアリン酸、ステアリン酸トリグリセリド、ヒドロキシステアリン酸トリグリセリド、ステアリン酸ソルビタンエステル、ポリエチレンワックスなどが挙げられる。
 帯電防止剤としては、ポリオキシエチレンアルキルフェノールエーテル、ステアリン酸モノグリセリド、ポリエチレングリコールなどが挙げられる。
 展着剤としては、ポリブテン、ポリエチレングリコール、シリコンオイルなどが挙げられる。
Examples of the fusion accelerator include stearic acid, stearic acid triglyceride, hydroxystearic acid triglyceride, sorbitan stearate, and polyethylene wax.
Examples of the antistatic agent include polyoxyethylene alkylphenol ether, stearic acid monoglyceride, polyethylene glycol and the like.
Examples of the spreading agent include polybutene, polyethylene glycol, and silicone oil.
(3)発泡性粒子
 発泡性粒子は、複合樹脂粒子と、揮発性発泡剤とを含み、公知の方法により、複合樹脂粒子に揮発性発泡剤を含浸させることにより製造できる。
 複合樹脂粒子に揮発性発泡剤を含浸させる温度としては、低いと、含浸に時間を要し、発泡性粒子の製造効率が低下することがある一方、高いと、発泡性粒子同士の合着が多量に発生することがあるので、50~130℃が好ましく、60~100℃がより好ましい。
(3) Expandable particles Expandable particles include composite resin particles and a volatile foaming agent, and can be produced by impregnating composite resin particles with a volatile foaming agent by a known method.
When the temperature at which the composite resin particles are impregnated with the volatile foaming agent is low, it takes time for the impregnation, and the production efficiency of the expandable particles may be reduced. Since it may occur in a large amount, it is preferably 50 to 130 ° C, more preferably 60 to 100 ° C.
(発泡剤)
 揮発性発泡剤としては、従来からポリスチレン系樹脂の発泡に用いられているものであれば、特に限定されず、例えば、イソブタン、n-ブタン、イソペンタン、n-ペンタン、ネオペンタン等炭素数5以下の脂肪族炭化水素等の揮発性発泡剤が挙げられ、特にブタン系発泡剤、ペンタン系発泡剤が好ましい。尚、ペンタンは可塑剤としての作用も期待できる。
(Foaming agent)
The volatile foaming agent is not particularly limited as long as it is conventionally used for foaming polystyrene-based resins. For example, isobutane, n-butane, isopentane, n-pentane, neopentane and the like having 5 or less carbon atoms are used. Examples include volatile foaming agents such as aliphatic hydrocarbons, and butane-based foaming agents and pentane-based foaming agents are particularly preferable. Pentane can also be expected to act as a plasticizer.
 揮発性発泡剤の発泡性粒子中における含有量は、通常5~13質量%の範囲とされ、8~12質量%の範囲が好ましく、9~11質量%の範囲が特に好ましい。
 揮発性発泡剤の含有量が少なく、例えば5質量%未満では、発泡性粒子から低密度の発泡成形体を得ることができないことがあると共に、型内発泡成形時の二次発泡力を高める効果が得られないために、発泡成形体の外観が低下することがある。一方、揮発性発泡剤の含有量が多く、例えば13質量%を超えると、発泡性粒子を用いた発泡成形体の製造工程における冷却工程に要する時間が長くなり生産性が低下することがある。
The content of the volatile blowing agent in the expandable particles is usually in the range of 5 to 13% by mass, preferably in the range of 8 to 12% by mass, and particularly preferably in the range of 9 to 11% by mass.
When the content of the volatile foaming agent is small, for example, less than 5% by mass, it may not be possible to obtain a low-density foam molded article from the foamable particles, and the effect of increasing the secondary foaming power during in-mold foam molding Cannot be obtained, the appearance of the foamed molded product may deteriorate. On the other hand, if the content of the volatile foaming agent is large and exceeds 13% by mass, for example, the time required for the cooling step in the production process of the foamed molded article using the foamable particles becomes long and the productivity may be lowered.
(発泡助剤)
 発泡性粒子には、発泡剤と共に発泡助剤を含有させることができる。
 発泡助剤としては、従来からポリスチレン系樹脂の発泡に用いられているものであれば、特に限定されず、例えば、スチレン、トルエン、エチルベンゼン、キシレン等の芳香族有機化合物、シクロヘキサン、メチルシクロヘキサン等の環式脂肪族炭化水素、酢酸エチル、酢酸ブチル等の1気圧下における沸点が200℃以下の溶剤が挙げられる。
(Foaming aid)
The foamable particles can contain a foaming aid together with the foaming agent.
The foaming aid is not particularly limited as long as it is conventionally used for foaming polystyrene resins. For example, aromatic organic compounds such as styrene, toluene, ethylbenzene, xylene, cyclohexane, methylcyclohexane, etc. Examples thereof include solvents having a boiling point of 200 ° C. or less under 1 atm, such as cycloaliphatic hydrocarbons, ethyl acetate, and butyl acetate.
 発泡助剤の発泡性粒子中における含有量は、通常0.3~2.5質量%の範囲とされ、0.5~2質量%の範囲が好ましい。
 発泡助剤の含有量が少なく、例えば0.3質量%未満では、ポリスチレン系樹脂の可塑化効果が発現しないことがある。一方、また、発泡助剤の含有量が多く、2.5質量%を超えると、発泡性粒子を発泡させて得られる発泡成形体に収縮や融けが発生して外観が低下する、あるいは発泡性粒子を用いた発泡成形体の製造工程における冷却工程に要する時間が長くなることがある。
The content of the foaming aid in the foamable particles is usually in the range of 0.3 to 2.5% by mass, and preferably in the range of 0.5 to 2% by mass.
When the content of the foaming aid is small, for example, less than 0.3% by mass, the plasticizing effect of the polystyrene resin may not be exhibited. On the other hand, if the content of the foaming aid is large and exceeds 2.5% by mass, the foamed molded product obtained by foaming the foamable particles may be shrunk or melted to deteriorate the appearance, or foamable. The time required for the cooling step in the production process of the foamed molded article using the particles may be long.
(4)発泡粒子(「予備発泡粒子」ともいう)
 発泡粒子は、公知の方法により、発泡性粒子を所定の嵩密度に予備発泡させることにより得られ、蒸気を導入するバッチ式発泡や連続発泡、加圧下からの放出発泡が挙げられる。
 本発明の発泡性粒子は、20~200kg/m3の範囲の嵩密度を有するのが好ましい。
 発泡性粒子の嵩密度が20kg/m3未満では、発泡成形体が収縮しやすく外観を損なうことがある。一方、発泡性粒子の嵩密度が200kg/m3を超えると、発泡成形体として軽量化のメリットが損なわれることがある。
 発泡粒子の密度(kg/m3)は、例えば、20、22.5、25、27.5、30、32.5、35、37.5、40、42.5、45、48、50、75、100、125、150、175、200である。
 好ましい発泡性粒子の嵩密度は、20~48kg/m3の範囲である。
 予備発泡においては、必要に応じて発泡する際にスチームと同時に空気を導入してもよい。
(4) Expanded particles (also referred to as “pre-expanded particles”)
The foamed particles are obtained by pre-foaming the foamable particles to a predetermined bulk density by a known method, and examples thereof include batch-type foaming in which steam is introduced, continuous foaming, and release foaming under pressure.
The expandable particles of the present invention preferably have a bulk density in the range of 20 to 200 kg / m 3 .
When the bulk density of the expandable particles is less than 20 kg / m 3 , the foamed molded product tends to shrink and the appearance may be impaired. On the other hand, when the bulk density of the expandable particles exceeds 200 kg / m 3 , the advantage of weight reduction as a foamed molded product may be impaired.
The density (kg / m 3 ) of the expanded particles is, for example, 20, 22.5, 25, 27.5, 30, 32.5, 35, 37.5, 40, 42.5, 45, 48, 50, 75, 100, 125, 150, 175, 200.
A preferred bulk density of the expandable particles is in the range of 20 to 48 kg / m 3 .
In the pre-foaming, air may be introduced simultaneously with steam when foaming as necessary.
(5)発泡成形体
 発泡成形体は、公知の方法、例えば、発泡粒子を発泡成形機の金型内に充填し、再度加熱して発泡粒子を発泡させながら、発泡粒同士を熱融着させることにより得られる。
 本発明の発泡成形体は、20~200kg/m3の範囲の密度を有するのが好ましい。
 発泡成形体の密度が20kg/m3未満では、遅燃性および耐衝撃性が十分でないことがある。一方、発泡成形体の密度が200kg/m3を超えると、発泡成形体の重量質量が増加し、輸送コストが高くなるため好ましくないことがある。
 発泡成形体の密度(kg/m3)は、例えば、20、22.5、25、27.5、30、32.5、35、37.5、40、42.5、45、48、50、75、100、125、150、175、200である。
 好ましい発泡成形体の密度は、20~48kg/m3の範囲である。
(5) Foam molded body The foam molded body is a known method, for example, the foam particles are filled in a mold of a foam molding machine and heated again to foam the foam particles, and the foam particles are thermally fused. Can be obtained.
The foamed molded article of the present invention preferably has a density in the range of 20 to 200 kg / m 3 .
When the density of the foamed molded product is less than 20 kg / m 3 , the retarded flame resistance and impact resistance may not be sufficient. On the other hand, if the density of the foamed molded product exceeds 200 kg / m 3 , the weight mass of the foamed molded product increases and the transportation cost increases, which may not be preferable.
The density (kg / m 3 ) of the foamed molded product is, for example, 20, 22.5, 25, 27.5, 30, 32.5, 35, 37.5, 40, 42.5, 45, 48, 50. 75, 100, 125, 150, 175, 200.
The density of the preferred foamed molded product is in the range of 20 to 48 kg / m 3 .
 以下、実施例および比較例により本発明を具体的に説明するが、以下の実施例は本発明の例示にすぎず、本発明は以下の実施例のみに限定されない。
 実施例および比較例においては、得られた複合樹脂粒子、発泡粒子および発泡成形体を次のようにして評価した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, the following examples are only illustrations of this invention and this invention is not limited only to the following examples.
In Examples and Comparative Examples, the obtained composite resin particles, expanded particles and expanded molded articles were evaluated as follows.
<ポリエチレン系樹脂粒子(種粒子)の酢酸ビニル含有率>
 試料を0.1~0.5mg精秤し、キューリー点が445℃の強磁性金属体(パイロホイル:日本分析工業株式会社製)に圧着するように包み、キューリーポイントパイロライザーJPS-700型(日本分析工業製)装置にて分解させて生成した酢酸をガスクロマトグラフGC7820(アジレント・テクノロジー株式会社製)(検出器:FID)を用いて測定し、ピーク面積を使用して予め準備した絶対検量線より算出する。
[熱分解条件]
・加熱(445℃-5sec)
・オーブン温度(300℃)
・ニードル温度(300℃)
[GC測定条件]
・カラム(EC-5(φ0.25mm×30m(膜厚0.25μm)):GRACE社製)
・GCオーブン昇温条件:初期温度 50℃(0.5min保持)
第1段階昇温速度 10℃/min(200℃まで)
第2段階昇温速度 20℃/min(290℃まで)
最終温度 320℃(0.5min保持)
・キャリアーガス(He)
・He流量(25mL/min)
・注入口圧力(100kPa)
・注入口温度(300℃)
・検出器温度(300℃)
・スプリット比(1/30)
 検量線作成用標準試料は、酢酸ビニル含有率=4%の日本ポリエチレン株式会社製 EVA樹脂 ノバテックLV-115を使用する。
<Vinyl acetate content of polyethylene resin particles (seed particles)>
A 0.1-0.5 mg sample is precisely weighed and wrapped so as to be crimped to a ferromagnetic metal body (Pyrofoil: manufactured by Nippon Analytical Industrial Co., Ltd.) having a Curie point of 445 ° C., and Curie Point Pyrolyzer JPS-700 type (Japan) Acetic acid produced by decomposition in an analytical industry apparatus was measured using a gas chromatograph GC7820 (manufactured by Agilent Technologies) (detector: FID), and an absolute calibration curve prepared in advance using the peak area. calculate.
[Pyrolysis conditions]
・ Heating (445 ℃ -5sec)
・ Oven temperature (300 ℃)
・ Needle temperature (300 ℃)
[GC measurement conditions]
Column (EC-5 (φ0.25 mm × 30 m (film thickness 0.25 μm)): manufactured by GRACE)
-GC oven temperature rising condition: initial temperature 50 ° C (holding 0.5 min)
First stage heating rate 10 ° C / min (up to 200 ° C)
Second stage heating rate 20 ° C / min (up to 290 ° C)
Final temperature 320 ° C (0.5 min hold)
・ Carrier gas (He)
・ He flow rate (25mL / min)
・ Inlet pressure (100 kPa)
・ Inlet temperature (300 ℃)
・ Detector temperature (300 ℃)
・ Split ratio (1/30)
As a standard sample for preparing a calibration curve, EVA resin Novatec LV-115 manufactured by Nippon Polyethylene Co., Ltd. having a vinyl acetate content of 4% is used.
<複合樹脂粒子のゲル分率>
 ゲル分率(質量%)の測定は、以下のように行う。
 200mLナスフラスコに複合樹脂粒子1.0gを精秤し、トルエン100mLと沸騰石0.03gを加え、冷却管を装着し、130℃に保ったオイルバスに浸けて24時間還流後、ナスフラスコ内の溶解液が冷めないうちに80メッシュ(線径φ0.12mm)金網にて濾過する。樹脂不溶物がある金網を真空オーブンにて1時間乾燥させた後、ゲージ圧で-0.06MPaで2時間乾燥させてトルエンを除去し、室温まで冷却後、金網上の不溶樹脂質量を精秤する。ゲル分率(質量%)は、以下の算出式により求める。
ゲル分率(質量%)=金網上の不溶樹脂質量(g)/試料質量(g)×100
<Gel fraction of composite resin particles>
The gel fraction (mass%) is measured as follows.
In a 200 mL eggplant flask, 1.0 g of composite resin particles are precisely weighed, 100 mL of toluene and 0.03 g of boiling stone are added, a cooling tube is attached, immersed in an oil bath maintained at 130 ° C. and refluxed for 24 hours. The solution is filtered through an 80 mesh (wire diameter φ0.12 mm) wire net before the solution is cooled. After drying the wire mesh with resin insolubles in a vacuum oven for 1 hour, it was dried at −0.06 MPa at gauge pressure for 2 hours to remove toluene, cooled to room temperature, and precisely weighed the insoluble resin mass on the wire mesh To do. The gel fraction (mass%) is determined by the following calculation formula.
Gel fraction (mass%) = mass of insoluble resin on wire mesh (g) / sample mass (g) × 100
<複合樹脂粒子の平均粒子径>
 平均粒子径とはD50で表現される値である。
 具体的には、ロータップ型篩振とう機(飯田製作所製)を用いて、篩目開き4.00mm、3.35mm、2.80mm、2.36mm、2.00mm、1.70mm、1.40mm、1.18mm、1.00mm、0.85mm、0.71mm、0.60mm、0.50mm、0.425mm、0.355mm、0.300mm、0.250mm、0.212mm及び0.180mmのJIS標準篩(JIS Z8801-1:2006)で試料約25gを10分間分級し、篩網上の試料質量を測定する。得られた結果から累積質量分布曲線を作成し、累積質量が50%となる粒子径(メディアン径)を平均粒子径とする。
<Average particle diameter of composite resin particles>
The average particle diameter is a value expressed by D50.
Specifically, using a low-tap type sieve shaker (manufactured by Iida Seisakusho), sieve openings are 4.00 mm, 3.35 mm, 2.80 mm, 2.36 mm, 2.00 mm, 1.70 mm, 1.40 mm. 1.18mm, 1.00mm, 0.85mm, 0.71mm, 0.60mm, 0.50mm, 0.425mm, 0.355mm, 0.300mm, 0.250mm, 0.212mm and 0.180mm JIS About 25 g of the sample is classified for 10 minutes with a standard sieve (JIS Z8801-1: 2006), and the sample mass on the sieve mesh is measured. A cumulative mass distribution curve is created from the obtained results, and the particle diameter (median diameter) at which the cumulative mass is 50% is defined as the average particle diameter.
<複合樹脂粒子のポリスチレン系樹脂のZ平均分子量(Mz)及び重量平均分子量(Mw)>
 ポリスチレン系樹脂のZ平均分子量(Mz)及び重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定した、ポリスチレン換算平均分子量を意味する。以下では、発泡成形体におけるポリスチレン系樹脂の各種平均分子量の測定法を説明しているが、発泡成形体は、複合樹脂粒子の集合体であり、複合樹脂粒子から発泡成形体を製造するまでの工程により各種平均分子量は変化しないため、複合樹脂粒子、発泡性粒子及び予備発泡粒子の各種平均分子量は、発泡成形体のものと同じである。
 まず、スライサー(富士島工機社製FK-4N)にて発泡成形体を厚さ0.3mm、長さ100mm、幅80mmにスライスし、これを分子量測定用試料として扱う。具体的には、試料3mgをテトラヒドロフラン(THF)10mLにて24時間静置して完全溶解させ、得られた溶液をGL社製非水系0.45μmのクロマトディスク(13N)にて濾過した上で次の測定条件にてクロマトグラフを用いて測定し、予め作成しておいた標準ポリスチレンの検量線から試料の平均分子量を求める。また、その時点で完全溶解していない場合は、更に24時間静置毎(合計72時間まで)に完全溶解しているか否かを確認し、72時間後に完全溶解できない場合は、試料に架橋成分が含まれていると判断し、溶解した成分の分子量を測定する。
<Z average molecular weight (Mz) and weight average molecular weight (Mw) of polystyrene resin of composite resin particles>
The Z-average molecular weight (Mz) and the weight-average molecular weight (Mw) of the polystyrene-based resin mean the average molecular weight in terms of polystyrene measured using gel permeation chromatography (GPC). In the following, a method for measuring various average molecular weights of polystyrene-based resin in a foamed molded product is described. However, the foamed molded product is an aggregate of composite resin particles until the foamed molded product is produced from the composite resin particles. Since the various average molecular weights do not change depending on the process, the various average molecular weights of the composite resin particles, the expandable particles and the pre-expanded particles are the same as those of the foamed molded product.
First, the foamed molded product is sliced into 0.3 mm in thickness, 100 mm in length, and 80 mm in width with a slicer (FK-4N manufactured by Fujishima Koki Co., Ltd.), and this is handled as a sample for molecular weight measurement. Specifically, 3 mg of the sample was allowed to stand for 24 hours in 10 mL of tetrahydrofuran (THF) for complete dissolution, and the resulting solution was filtered through a nonaqueous 0.45 μm chromatodisc (13N) manufactured by GL. Measurement is performed using a chromatograph under the following measurement conditions, and the average molecular weight of the sample is determined from a standard polystyrene calibration curve prepared in advance. If it is not completely dissolved at that time, check whether it is completely dissolved every 24 hours (up to 72 hours in total). Is determined, and the molecular weight of the dissolved component is measured.
(測定条件)
 使用装置:東ソー社製 HLC-8320GPC EcoSECシステム(RI検出器内蔵)
 ガードカラム:東ソー社製 TSKguardcolumn SuperHZ-H(4.6mmI.D.×2cm)×1本
 カラム:東ソー社製 TSKgel SuperHZM-H(4.6mmI.D.×15cm)×2本
 カラム温度:40℃
 システム温度:40℃
 移動相:THF
 移動相流量:サンプル側ポンプ=0.175mL/min
       リファレンス側ポンプ=0.175mL/min
 検出器:RI検出器
 試料濃度:0.3g/L
 注入量:50μL
 測定時間:0-25min
 ランタイム:25min
 サンプリングピッチ:200msec
(Measurement condition)
Equipment used: Tosoh HLC-8320GPC EcoSEC system (with built-in RI detector)
Guard column: Tosoh TSKguardcolumn SuperHZ-H (4.6 mm ID × 2 cm) × 1 Column: Tosoh TSKgel SuperHZM-H (4.6 mm ID × 15 cm) × 2 Column temperature: 40 ° C.
System temperature: 40 ° C
Mobile phase: THF
Mobile phase flow rate: sample-side pump = 0.175 mL / min
Reference side pump = 0.175mL / min
Detector: RI detector Sample concentration: 0.3 g / L
Injection volume: 50 μL
Measurement time: 0-25min
Runtime: 25min
Sampling pitch: 200 msec
(検量線の作成)
 検量線用標準ポリスチレン試料は、東ソー社製、商品名「TSK standard POLYSTYRENE」の重量平均分子量が、5,480,000、3,840,000、355,000、102,000、37,900、9,100、2,630、500のものと、昭和電工社製、商品名「Shodex STANDARD」の重量平均分子量が1,030,000のものを用いる。
 上記検量線用標準ポリスチレン試料をグループA(1,030,000)、グループB(3,840,000、102,000、9,100、500)及びグループC(5,480,000、355,000、37,900、2,630)にグループ分けした後、グループAを5mg秤量後THF20mLに溶解し、グループBも各々5~10mg秤量後THF50mLに溶解し、グループCも各々1mg~5mg秤量後THF40mLに溶解した。標準ポリスチレン検量線は、作成したA、B、及びC溶液50μLずつを注入して測定後に得られた保持時間から較正曲線(三次式)をHLC-8320GPC専用データ解析プログラムGPCワークステーション(EcoSEC-WS)にて作成することにより得られ、その検量線を用いて平均分子量を算出する。
(Create a calibration curve)
The standard polystyrene samples for the calibration curve have a weight average molecular weight of 5,480,000, 3,840,000, 355,000, 102,000, 37,900, 9 manufactured by Tosoh Corporation and trade name “TSK standard POLYSTYRENE”. , 100, 2,630, 500, and those having a weight average molecular weight of 1,030,000, manufactured by Showa Denko KK and trade name “Shodex STANDARD” are used.
The standard polystyrene samples for the calibration curve were group A (1,030,000), group B (3,840,000, 102,000, 9,100, 500) and group C (5,480,000, 355,000). , 37,900, 2,630), Group A was weighed 5 mg and then dissolved in 20 mL of THF, Group B was also weighed 5 to 10 mg and then dissolved in 50 mL of THF, and Group C was also weighed 1 mg to 5 mg and then THF 40 mL. Dissolved in. The standard polystyrene calibration curve was prepared by injecting 50 μL each of the prepared A, B, and C solutions, and using the retention time obtained after measurement, a calibration curve (cubic equation) was obtained from the GPC workstation (EcoSEC-WS), a data analysis program dedicated to HLC-8320GPC. The average molecular weight is calculated using the calibration curve.
<発泡粒子の嵩密度及び嵩倍数>
 予備発泡粒子の嵩密度は、下記の要領で測定する。
 まず、予備発泡粒子をメスシリンダに500cm3の目盛りまで充填する。但し、メスシリンダを水平方向から目視し、予備発泡粒子が一粒でも500cm3の目盛りに達していれば、充填を終了する。次に、メスシリンダ内に充填した予備発泡粒子の質量を小数点以下2位の有効数字で秤量し、その質量をW(g)とする。次式により予備発泡粒子の嵩密度を算出する。
   嵩密度(kg/m3)=W÷500×1000
 嵩密度の逆数の1000倍が嵩倍数である。
<Bulk density and multiple of foamed particles>
The bulk density of the pre-expanded particles is measured as follows.
First, pre-expanded particles are filled in a measuring cylinder to a scale of 500 cm 3 . However, the graduated cylinder is visually observed from the horizontal direction, and if at least one pre-expanded particle reaches the scale of 500 cm 3 , the filling is finished. Next, the mass of the pre-expanded particles filled in the graduated cylinder is weighed with two significant figures after the decimal point, and the mass is defined as W (g). The bulk density of the pre-expanded particles is calculated by the following formula.
Bulk density (kg / m 3 ) = W ÷ 500 × 1000
1000 times the reciprocal of the bulk density is the bulk multiple.
<発泡成形体の密度及び発泡倍数>
 発泡成形体の密度は、JIS A9511:1995「発泡プラスチック保温板」記載の方法で測定する。
 得られた発泡成形体から10cm×10cm×3cm(300cm3)の試験片を切り出し、その質量W(g)を小数以下2位で秤量する。
 得られた発泡成形体の質量Wおよび発泡成形体の体積から、次式により、発泡倍数(倍)を算出する。
   発泡成形体の密度(kg/m3)=W÷300×1000
 密度の逆数の1000倍が倍数である。
<Density and expansion ratio of foamed molded product>
The density of the foamed molded product is measured by the method described in JIS A9511: 1995 “Foamed Plastic Insulating Plate”.
A test piece of 10 cm × 10 cm × 3 cm (300 cm 3 ) is cut out from the obtained foamed molded article, and its mass W (g) is weighed at the second decimal place.
From the mass W of the obtained foamed molded product and the volume of the foamed molded product, the expansion factor (times) is calculated by the following formula.
Density of foamed molded product (kg / m 3 ) = W ÷ 300 × 1000
1000 times the reciprocal of the density is a multiple.
<発泡成形体の圧縮強度>
 JIS K6767:1999「発泡プラスチック-ポリエチレン-試験方法」記載の方法により測定する。すなわち、テンシロン万能試験機UCT-10T(オリエンテック社製)、万能試験機データ処理UTPS-237(ソフトブレーン社製)を用いて、試験体サイズは50×50×厚み25mm(加圧面側のみにスキン面あり)で圧縮速度を10.0mm/min(1分あたりの移動速度ができるだけ試験片厚さの50%に近い速度)とする。厚みの10%圧縮時の圧縮応力(MPa)を測定する。試験片の数は3個とし、JIS K7100:1999「プラスチック-状態調節及び試験のための標準雰囲気」の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間かけて状態調整した後、同じ標準雰囲気下で測定する。
 圧縮応力は次式により算出する。
  σ10 = F10/A0
  σ10 : 圧縮応力(MPa)
  F10 : 10%変形時の荷重(N)
  A0 : 試験片の初めの断面積(mm2
<Compressive strength of foam molding>
Measured according to the method described in JIS K6767: 1999 “Foamed Plastics—Polyethylene—Test Method”. That is, using Tensilon universal testing machine UCT-10T (Orientec Co., Ltd.) and universal testing machine data processing UTPS-237 (Soft Brain Co., Ltd.), the test specimen size is 50 × 50 × thickness 25 mm (only on the pressure surface side) The compression speed is 10.0 mm / min (with a skin surface) (the moving speed per minute is as close to 50% of the specimen thickness as possible). The compressive stress (MPa) at 10% compression of the thickness is measured. The number of test pieces is 3, and the symbol “23/50” (temperature 23 ° C., relative humidity 50%) of JIS K7100: 1999 “Plastics-Standard atmosphere for conditioning and testing”, under a standard atmosphere of grade 2 After adjusting the state for 16 hours, the measurement is performed under the same standard atmosphere.
The compressive stress is calculated by the following formula.
σ 10 = F 10 / A 0
σ 10 : Compression stress (MPa)
F 10 : Load at 10% deformation (N)
A 0 : Initial cross-sectional area of the test piece (mm 2 )
<発泡成形体の曲げ強度及び曲げ破断点変位>
 曲げ強度、及び曲げ破断点変位量はJIS K7221-1:2006「硬質発泡プラスチック-曲げ試験-第1部:たわみ特性の求め方」記載の方法により測定する。すなわち、テンシロン万能試験機UCT-10T(オリエンテック社製)、万能試験機データ処理ソフトUTPS-237(ソフトブレーン社製)を用いて、試験片サイズは幅25×長さ130×厚み20mm(加圧面側のみにスキン面あり)で、試験速度を10mm/min、加圧くさび5R、支持台5Rとして支点間距離100mmで、試験片のスキンを持たない面が伸びるように加圧し測定する。試験片の数は5個とし、JIS K7100:1999「プラスチック-状態調節及び試験のための標準雰囲気」の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間かけて状態調整した後、同じ標準雰囲気下で測定する。
 曲げ強さ(MPa)は次式により算出する。
 R =(1.5FR×L/bd2)×103
 R :曲げ強さ(MPa)
 FR:最大荷重(kN)
 L :支点間距離(mm)
 b :試験片の幅(mm)
 d :試験片の厚さ(mm)
 この試験において、破断検出感度を0.5%に設定し、直前荷重サンプリング点と比較して、その減少が設定値0.5%(たわみ量:30mm)を超えた時、直前のサンプリング点を曲げ破断点変位量(mm)として測定し、試験数5の平均を求める。
<Bending strength and bending breaking point displacement of foam molded article>
The bending strength and the amount of displacement at the bending break point are measured by the method described in JIS K7221-1: 2006 “Hard foam plastic—Bending test—Part 1: Determination of flexural properties”. That is, using Tensilon universal testing machine UCT-10T (Orientec) and universal testing machine data processing software UTPS-237 (Softbrain), the test piece size is 25 x 130 x 20 mm in thickness. The test surface is 10 mm / min, the pressure wedge is 5R, and the support base is 5R, the distance between the fulcrums is 100 mm, and the surface of the test piece without skin is stretched and measured. The number of specimens shall be five, and the symbol “23/50” (temperature 23 ° C., relative humidity 50%) of JIS K7100: 1999 “Plastic – Standard atmosphere for conditioning and testing”, under a second grade standard atmosphere After adjusting the state for 16 hours, the measurement is performed under the same standard atmosphere.
The bending strength (MPa) is calculated by the following formula.
R = (1.5F R × L / bd 2 ) × 10 3
R: Bending strength (MPa)
F R : Maximum load (kN)
L: Distance between supporting points (mm)
b: Width of test piece (mm)
d: Test piece thickness (mm)
In this test, the fracture detection sensitivity was set to 0.5%, and when the decrease exceeded the set value of 0.5% (deflection: 30 mm) compared to the previous load sampling point, the previous sampling point was Measured as the displacement at the bending break point (mm), and the average of 5 tests is obtained.
 得られた曲げ破断点変位量を次の基準で評価する。曲げ破断点変位量が大きいほど発泡成形体の柔軟性が大きいことを示す。
  ○(良) :曲げ破断点変位量が15mm以上
  △(可) :曲げ破断点変位量が12mm以上15mm未満の範囲
  ×(不可):曲げ破断点変位量が12mm未満
The obtained bending fracture point displacement is evaluated according to the following criteria. It shows that the flexibility of a foaming molding is so large that a bending fracture point displacement amount is large.
○ (good): Bending rupture point displacement is 15 mm or more △ (possible): Bending rupture point displacement is in the range of 12 mm or more and less than 15 mm × (not possible): Bending rupture point displacement is less than 12 mm
<発泡成形体の落球衝撃値>
 JIS K7211:1976「硬質プラスチックの落錘衝撃試験方法通則」に記載の方法に準拠して落球衝撃強度を測定する。
 得られた発泡成形体を温度50℃で1日間乾燥した後、この発泡成形体から40mm×215mm×20mm(厚さ)の試験片(6面とも表皮なし)を切り出す。
 次いで、支点間の間隔が150mmになるように試験片の両端をクランプで固定し、重さ321gの剛球を所定の高さから試験片の中央部に落下させて、試験片の破壊の有無を観察する。
 試験片5個が全数破壊する最低の高さから全数破壊しない最高の高さまで5cm間隔で剛球の落下高さ(試験高さ)を変えて試験して、落球衝撃値(cm)、すなわち50%破壊高さを次の計算式により算出する。
<Falling ball impact value of foam molding>
The falling ball impact strength is measured in accordance with the method described in JIS K7211: 1976 “General Rules for Hard Plastic Drop Weight Impact Test Method”.
The obtained foamed molded article is dried at a temperature of 50 ° C. for 1 day, and then a 40 mm × 215 mm × 20 mm (thickness) test piece (six surfaces are not covered) is cut out from the foamed molded article.
Next, both ends of the test piece are fixed with clamps so that the distance between the fulcrums is 150 mm, and a hard ball having a weight of 321 g is dropped from a predetermined height onto the center of the test piece to check whether the test piece is broken or not. Observe.
The test piece was tested by changing the falling height (test height) of the hard sphere at 5 cm intervals from the lowest height at which all five specimens were destroyed to the highest height at which all were not destroyed, and the falling ball impact value (cm), ie 50% The fracture height is calculated by the following formula.
   H50=Hi+d[Σ(i・ni)/N±0.5]
 式中の記号は次のことを意味する。
  H50 :50%破壊高さ(cm)
  Hi  :高さ水準(i)が0のときの試験高さ(cm)であり、試験片が破壊することが予測される高さ
  d   :試験高さを上下させるときの高さ間隔(cm)
  i   :Hiのときを0とし,1つずつ増減する高さ水準(i=…-3、-2、-1、0、1、2、3…)
  ni  :各水準において破壊した(又は破壊しなかった)試験片の数で、いずれか多いほうのデータを使用(同数の場合はどちらを使用してもよい)
  N   :破壊した(又は破壊しなかった)試験片の総数(N=Σni)で、いずれか多いほうのデータを使用(同数の場合はどちらを使用してもよい)
  ±0.5:破壊したデータを使用するときは負の数、破壊しなかったデータを使用するときは正の数を採用
H50 = Hi + d [Σ (i · ni) /N±0.5]
The symbols in the formula mean the following:
H50: 50% fracture height (cm)
Hi: Test height (cm) when the height level (i) is 0, and the height at which the test piece is expected to break d: Height interval (cm) when the test height is raised or lowered
i: Height level when Hi is 0, and increases or decreases by 1 (i = ...- 3, -2, -1, 0, 1, 2, 3 ...)
ni: Number of test pieces destroyed (or not destroyed) at each level, whichever data is used (in the case of the same number, either may be used)
N: The total number of specimens that were destroyed (or not destroyed) (N = Σni), whichever data is used (in the case of the same number, either may be used)
± 0.5: Use a negative number when using destroyed data, and a positive number when using data that was not destroyed
 得られた落球衝撃値を次の基準で評価する。落球衝撃値が大きいほど発泡成形体の耐衝撃性が大きいことを示す。
  ○(良) :落球衝撃値が30cm以上
  △(可) :落球衝撃値が20cm以上30cm未満の範囲
  ×(不可):落球衝撃値が20cm未満
The obtained falling ball impact value is evaluated according to the following criteria. The larger the falling ball impact value, the greater the impact resistance of the foamed molded product.
○ (Good): Falling ball impact value is 30 cm or more. △ (possible): Falling ball impact value is a range of 20 cm or more and less than 30 cm. X (Not possible): Falling ball impact value is less than 20 cm.
<発泡成形体の加熱寸法変化率:耐熱性評価>
 JIS K6767:1999「発泡プラスチック-ポリエチレン-試験方法」に記載のB法にて加熱寸法変化率を測定する。
 得られた発泡成形体を温度50℃で1日間乾燥した後、この発泡成形体から試験片150×150×30mm(厚さ)を切り出し、その中央部に縦および横方向にそれぞれ互いに平行に3本の直線を50mm間隔になるよう記入し、80℃の熱風循環式乾燥機の中に168時間置いた後に取出し、標準状態の場所に1時間放置後、縦および横線の寸法を下記式によって測定する。
   S=(L0-L1)/L0×100
 式中、Sは加熱寸法変化率(%)、L1は加熱後の平均寸法(mm)、L0は初めの平均寸法(mm)をそれぞれ表す。
<Change in heating dimension of foamed molded article: heat resistance evaluation>
The heating dimensional change rate is measured by the method B described in JIS K6767: 1999 “Foamed Plastics—Polyethylene—Test Method”.
The obtained foamed molded product was dried at a temperature of 50 ° C. for 1 day, and then a test piece 150 × 150 × 30 mm (thickness) was cut out from the foamed molded product, and 3 and 3 in the longitudinal and lateral directions were parallel to each other at the center. Write a straight line of books at intervals of 50 mm, leave it in a hot air circulating dryer at 80 ° C. for 168 hours, take it out, leave it for 1 hour in a standard location, and then measure the vertical and horizontal line dimensions according to the following formula To do.
S = (L0-L1) / L0 × 100
In the formula, S represents a heating dimensional change rate (%), L1 represents an average dimension (mm) after heating, and L0 represents an initial average dimension (mm).
 得られた加熱寸法変化率Sを次の基準で評価する。
  ○:0≦S<1.5(寸法変化率が低く、寸法の安定性が良好)
  △:1.5≦S<3(寸法の変化がみられるものの、実用上使用可能)
  ×:S≧3(寸法の変化が著しくみられ、実用上使用不可能)
The obtained heating dimensional change rate S is evaluated according to the following criteria.
○: 0 ≦ S <1.5 (Dimensional change rate is low and dimensional stability is good)
Δ: 1.5 ≦ S <3 (although a change in dimensions is observed, it can be used practically)
×: S ≧ 3 (dimensional change is noticeable and cannot be used practically)
<発泡成形体の燃焼速度:遅燃性評価>
 米国自動車安全基準FMVSS302に準拠した方法で燃焼速度を測定する。
 300×400×30mm(厚さ)の成形品から350mm×100mm×12mm(厚み)試験片を切り出し、少なくとも350mm×100mmの二面には表皮が存在するものとする。
 得られた燃焼速度を次の基準で評価する。
 ○: 80mm/min以下
 △: 100mm/min以下
 ×: 100mm/minを超える
<Burning rate of foamed molded article: Evaluation of slow flammability>
The combustion rate is measured by a method in accordance with US automobile safety standard FMVSS302.
A 350 mm × 100 mm × 12 mm (thickness) test piece is cut out from a molded product of 300 × 400 × 30 mm (thickness), and skins are present on at least two sides of 350 mm × 100 mm.
The burning rate obtained is evaluated according to the following criteria.
○: 80 mm / min or less Δ: 100 mm / min or less ×: exceeding 100 mm / min
(実施例1)
(複合樹脂粒子の作製)
 (種粒子の作製)
 低密度ポリエチレン系樹脂(LDPE(1):密度923kg/m3、融点112℃、MFR0.3g/10分、日本ポリエチレン株式会社製、品名:ノバテックLD LF122)100質量部およびエチレン-酢酸ビニル共重合体(EVA(1):酢酸ビニル含有率15%、融点89℃、MFR1.0g/10分、日本ポリエチレン株式会社製、品名:ノバテックEVA LV430)67質量部とをタンブラーミキサーに投入し、10分間混合した。
(Example 1)
(Production of composite resin particles)
(Preparation of seed particles)
Low-density polyethylene resin (LDPE (1): density 923 kg / m 3 , melting point 112 ° C., MFR 0.3 g / 10 min, manufactured by Nippon Polyethylene Co., Ltd., product name: Novatec LD LF122) 100 parts by mass and ethylene-vinyl acetate copolymer 67 parts by mass (EVA (1): vinyl acetate content 15%, melting point 89 ° C., MFR 1.0 g / 10 min, manufactured by Nippon Polyethylene Co., Ltd., product name: Novatec EVA LV430) was put into a tumbler mixer for 10 minutes. Mixed.
 次いで、得られた樹脂混合物を単軸押出機(株式会社星プラスチック製、型式:CER40Y 3.7MB-SX、口径40mmφ、ダイスプレート:口径1.5mm)に供給して、温度230~250℃で溶融混練し、ストランドカット方式によりファンカッター(株式会社星プラスチック製、型式:FCW-110B/SE1-N)にて円筒状0.40~0.60mg/個(平均0.5mg/個)に切断し、ポリエチレン系樹脂よりなる種粒子4000gを得た。種粒子の酢酸ビニル含有率を測定し、表1に示す。 Next, the obtained resin mixture was supplied to a single screw extruder (made by Hoshi Plastic Co., Ltd., model: CER40Y, 3.7 MB-SX, diameter 40 mmφ, die plate: diameter 1.5 mm) at a temperature of 230 to 250 ° C. Melt-kneaded and cut into a cylindrical shape 0.40 to 0.60 mg / piece (average 0.5 mg / piece) with a fan cutter (made by Hoshi Plastic Co., Ltd., model: FCW-110B / SE1-N) by strand cutting Thus, 4000 g of seed particles made of a polyethylene resin were obtained. The vinyl acetate content of the seed particles was measured and shown in Table 1.
 (複合樹脂粒子の作製)
 次に、撹拌機付の5リットルのオートクレーブに、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.15gを純水1900gに分散させて分散用媒体を得た。
 分散用媒体に温度30℃で得られた種粒子600gを分散させて10分間保持し、次いで温度60℃に昇温して懸濁液を得た。
 更に、得られた懸濁液に、重合開始剤としてジクミルパーオキサイドを0.31g溶解させたスチレン単量体260gを30分かけて滴下した。滴下後、30分間保持することで、種粒子中にスチレン単量体を含浸させた。含浸後、温度130℃に昇温し、この温度で1時間40分重合(第1重合)させた。
(Production of composite resin particles)
Next, 20 g of magnesium pyrophosphate and 0.15 g of sodium dodecylbenzenesulfonate were dispersed in 1900 g of pure water in a 5 liter autoclave equipped with a stirrer to obtain a dispersion medium.
600 g of seed particles obtained at a temperature of 30 ° C. were dispersed in a dispersion medium and held for 10 minutes, and then the temperature was raised to 60 ° C. to obtain a suspension.
Furthermore, 260 g of styrene monomer in which 0.31 g of dicumyl peroxide was dissolved as a polymerization initiator was added dropwise to the obtained suspension over 30 minutes. After dropping, the seed particles were impregnated with styrene monomer by holding for 30 minutes. After impregnation, the temperature was raised to 130 ° C., and polymerization was carried out at this temperature for 1 hour and 40 minutes (first polymerization).
 次に、温度90℃に下げた懸濁液中に、ドデシルベンゼンスルホン酸ソーダ0.65gを純水100gに溶解した水溶液を投入した後、ベンゾイルパーオキサイドを3.03g、t-ブチルパーオキシベンゾエートを0.28g、ジクミルパーオキサイドを5.34g、及び油溶性重合禁止剤として2,2-メチレンビス(4-メチル-6-t-ブチルフェノール)を0.06g溶解させたスチレン単量体400gを2時間かけて滴下した。その後、スチレン単量体740gを2時間かけて滴下した。スチレン単量体合計量は、種粒子100質量部に対して、233質量部とした。滴下後、気泡調整剤としてエチレン・ビスステアリン酸アマイド8.0gを投入し、温度90℃で1時間30分保持することで、種粒子中にスチレン単量体を含浸させた。含浸後、温度143℃に昇温し、この温度で2時間保持して重合(第2重合)させた。この重合の結果、複合樹脂粒子2000gを得ることができた。 Next, an aqueous solution in which 0.65 g of sodium dodecylbenzenesulfonate was dissolved in 100 g of pure water was added to the suspension lowered to a temperature of 90 ° C., and then 3.03 g of benzoyl peroxide, t-butylperoxybenzoate. 0.28 g of dicumyl peroxide, 5.34 g of dicumyl peroxide, and 400 g of styrene monomer in which 0.06 g of 2,2-methylenebis (4-methyl-6-tert-butylphenol) was dissolved as an oil-soluble polymerization inhibitor. It was dripped over 2 hours. Thereafter, 740 g of styrene monomer was added dropwise over 2 hours. The total amount of styrene monomer was 233 parts by mass with respect to 100 parts by mass of seed particles. After the dropwise addition, 8.0 g of ethylene / bisstearic acid amide was added as a bubble adjusting agent, and the seed particles were impregnated with styrene monomer by maintaining at a temperature of 90 ° C. for 1 hour and 30 minutes. After impregnation, the temperature was raised to 143 ° C., and the temperature was maintained at this temperature for 2 hours for polymerization (second polymerization). As a result of this polymerization, 2000 g of composite resin particles could be obtained.
(発泡性粒子の作製)
 次いで、温度30℃以下まで冷却し、オートクレーブから複合樹脂粒子を取り出した。複合樹脂粒子2kgと水2リットルとドデシルベンゼンスルホン酸ソーダ0.50gを、5リットルの撹拌機付オートクレーブに入れた。更に、発泡剤としてブタン(n-ブタン:イソブタン=7:3(質量比))520ミリリットル(300g)をオートクレーブに入れた。この後、温度70℃に昇温し、3時間撹拌を続けることで発泡性粒子2200gを得た。
 その後、30℃以下まで冷却して、発泡性粒子をオートクレーブから取り出し、脱水乾燥させた。
 得られた発泡性粒子について、物性を測定・評価した。それらの結果を表1に示す。
(Production of expandable particles)
Subsequently, it cooled to the temperature of 30 degrees C or less, and took out the composite resin particle from the autoclave. 2 kg of composite resin particles, 2 liters of water, and 0.50 g of sodium dodecylbenzenesulfonate were placed in a 5 liter autoclave equipped with a stirrer. Further, 520 ml (300 g) of butane (n-butane: isobutane = 7: 3 (mass ratio)) as a foaming agent was placed in an autoclave. Thereafter, the temperature was raised to 70 ° C. and stirring was continued for 3 hours to obtain 2200 g of expandable particles.
Thereafter, the mixture was cooled to 30 ° C. or lower, and the expandable particles were taken out from the autoclave and dehydrated and dried.
The physical properties of the obtained expandable particles were measured and evaluated. The results are shown in Table 1.
(発泡粒子及び発泡成形体の作製)
 次いで、得られた発泡性粒子を水蒸気で嵩密度25.0kg/m3に予備発泡させることで、発泡粒子を得た。
 得られた発泡粒子について、物性を測定・評価した。それらの結果を表1に示す。
 得られた発泡粒子を1日間室温(23℃)に放置した後、400mm×300mm×30mmの大きさの成形用金型に入れた。
 その後、0.075MPaの水蒸気を40秒間導入して加熱し、次いで、発泡成形体の面圧が0.01MPaに低下するまで冷却することで、密度25.0kg/m3(発泡倍数40倍)の発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。
 得られた発泡成形体について、物性を測定・評価した。それらの結果を表1に示す。
(Preparation of expanded particles and expanded molded body)
Next, the obtained expandable particles were pre-expanded with water vapor to a bulk density of 25.0 kg / m 3 to obtain expanded particles.
The physical properties of the obtained expanded particles were measured and evaluated. The results are shown in Table 1.
The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day, and then placed in a molding die having a size of 400 mm × 300 mm × 30 mm.
Thereafter, 0.075 MPa of water vapor is introduced for 40 seconds and heated, and then cooled until the surface pressure of the foamed molded article is reduced to 0.01 MPa, whereby a density of 25.0 kg / m 3 (expansion factor: 40 times). The foamed molded product was obtained. Both the appearance and fusion of the obtained foamed molded article were good.
About the obtained foaming molding, the physical property was measured and evaluated. The results are shown in Table 1.
(実施例2)
 実施例1と同様にして、種粒子、複合樹脂粒子、発泡性粒子及び発泡粒子を得、それらの物性を測定・評価した。
 発泡成形体の作製において、0.07MPaの水蒸気を35秒間導入して加熱し、次いで、発泡成形体の面圧が0.01MPaに低下するまで冷却すること以外は、実施例1と同様にして密度20.0kg/m3(発泡倍数50倍)の発泡成形体を得、その物性を測定・評価した。
 得られた結果を表1に示す。
(Example 2)
In the same manner as in Example 1, seed particles, composite resin particles, expandable particles, and expanded particles were obtained, and their physical properties were measured and evaluated.
In the production of the foam molded article, 0.07 MPa water vapor was introduced for 35 seconds and heated, and then cooled until the surface pressure of the foam molded article decreased to 0.01 MPa, as in Example 1. A foam molded article having a density of 20.0 kg / m 3 (50 times the expansion ratio) was obtained, and its physical properties were measured and evaluated.
The obtained results are shown in Table 1.
(比較例1)
 種粒子の作製において、EVA(1)を用いないこと以外は、実施例1と同様にして、種粒子、複合樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体を得、それらの物性を測定・評価した。
 得られた結果を表1に示す。
(Comparative Example 1)
In preparation of seed particles, seed particles, composite resin particles, expandable particles, expanded particles, and expanded molded articles were obtained in the same manner as in Example 1 except that EVA (1) was not used, and their physical properties were measured. ·evaluated.
The obtained results are shown in Table 1.
(比較例2)
 種粒子の作製において、EVA(1)を用いないこと以外は、実施例1と同様にして、種粒子、複合樹脂粒子、発泡性粒子及び発泡粒子を得、それらの物性を測定・評価した。
 発泡成形体の作製において、0.09MPaの水蒸気を35秒間導入して加熱し、次いで、発泡成形体の面圧が0.01MPaに低下するまで冷却すること以外は、実施例1と同様にして密度20.0kg/m3(発泡倍数50倍)の発泡成形体を得、その物性を測定・評価した。
 得られた結果を表1に示す。
(Comparative Example 2)
In preparation of seed particles, seed particles, composite resin particles, expandable particles, and expanded particles were obtained in the same manner as in Example 1 except that EVA (1) was not used, and their physical properties were measured and evaluated.
In the production of the foam molded article, 0.09 MPa of water vapor was introduced for 35 seconds and heated, and then cooled until the surface pressure of the foam molded article decreased to 0.01 MPa, as in Example 1. A foam molded article having a density of 20.0 kg / m 3 (50 times the expansion ratio) was obtained, and its physical properties were measured and evaluated.
The obtained results are shown in Table 1.
(比較例3)
 種粒子の作製において、LDPE(1)の代わりに直鎖状低密度ポリエチレン系樹脂(LLDPE:密度924kg/m3、融点121℃、MFR0.5g/10分、東ソー株式会社製、品名:ニポロン-L T140A)を用い、EVA(1)の代わりにエチレン-酢酸ビニル共重合体(EVA(4):酢酸ビニル含有率15%、密度936kg/m3、融点88℃、MFR3.0g/10分、東ソー株式会社製、品名:ウルトラセン626)を用いること以外は、実施例1と同様にして、種粒子、複合樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体を得、それらの物性を測定・評価した。
 得られた結果を表1に示す。
(Comparative Example 3)
In the preparation of seed particles, instead of LDPE (1), a linear low density polyethylene resin (LLDPE: density 924 kg / m 3 , melting point 121 ° C., MFR 0.5 g / 10 min, manufactured by Tosoh Corporation, product name: Nipolon- LT 140A), instead of EVA (1), ethylene-vinyl acetate copolymer (EVA (4): vinyl acetate content 15%, density 936 kg / m 3 , melting point 88 ° C., MFR 3.0 g / 10 min. Except for using Tosoh Corp., product name: Ultrasen 626), seed particles, composite resin particles, expandable particles, expanded particles and expanded molded articles were obtained in the same manner as in Example 1, and their physical properties were measured. ·evaluated.
The obtained results are shown in Table 1.
(実施例3)
 種粒子の作製において、EVA(1)の代わりにエチレン-酢酸ビニル共重合体(EVA(2):酢酸ビニル含有率19%、密度939kg/m3、融点86℃、MFR2.5g/10分、ハンファケミカル社製、品名:EVA2319)を用い、ポリエチレン系樹脂/エチレン-酢酸ビニル共重合体=79/21及び種粒子/ポリスチレン系樹脂=40/60とすること、及び複合樹脂粒子の作製時に、純水1900gに水溶性重合禁止剤として亜硝酸ナトリウムを0.1g添加したこと以外は、実施例1と同様にして、種粒子、複合樹脂粒子、発泡性粒子及び発泡粒子を得、それらの物性を測定・評価した。
 発泡成形体の作製において、0.075MPaの水蒸気を40秒間導入して加熱し、次いで、発泡成形体の面圧が0.01MPaに低下するまで冷却すること以外は、実施例1と同様にして密度33.3kg/m3(発泡倍数30倍)の発泡成形体を得、その物性を測定・評価した。
 得られた結果を表2に示す。
(Example 3)
In preparation of seed particles, instead of EVA (1), an ethylene-vinyl acetate copolymer (EVA (2): vinyl acetate content 19%, density 939 kg / m 3 , melting point 86 ° C., MFR 2.5 g / 10 minutes, Hanwha Chemical Co., Ltd., product name: EVA2319), polyethylene resin / ethylene-vinyl acetate copolymer = 79/21 and seed particles / polystyrene resin = 40/60, and at the time of preparing composite resin particles, Seed particles, composite resin particles, expandable particles and expanded particles were obtained in the same manner as in Example 1 except that 0.1 g of sodium nitrite was added as a water-soluble polymerization inhibitor to 1900 g of pure water, and their physical properties were obtained. Was measured and evaluated.
In the production of the foam molded body, 0.075 MPa water vapor was introduced for 40 seconds and heated, and then cooled until the surface pressure of the foam molded body decreased to 0.01 MPa, as in Example 1. A foamed molded article having a density of 33.3 kg / m 3 (foaming ratio 30 times) was obtained, and the physical properties thereof were measured and evaluated.
The obtained results are shown in Table 2.
(実施例4)
 種粒子の作製において、ポリエチレン系樹脂/エチレン-酢酸ビニル共重合体=68/32とすること以外は、実施例3と同様にして、種粒子、複合樹脂粒子、発泡性粒子及び発泡粒子を得、それらの物性を測定・評価した。
 発泡成形体の作製において、0.070MPaの水蒸気を35秒間導入して加熱し、次いで、発泡成形体の面圧が0.01MPaに低下するまで冷却すること以外は、実施例1と同様にして密度33.3kg/m3(発泡倍数30倍)の発泡成形体を得、その物性を測定・評価した。
 得られた結果を表2に示す。
Example 4
Seed particles, composite resin particles, expandable particles, and expanded particles were obtained in the same manner as in Example 3 except that polyethylene resin / ethylene-vinyl acetate copolymer = 68/32 in the preparation of seed particles. The physical properties were measured and evaluated.
In the production of the foamed molded product, 0.070 MPa water vapor was introduced for 35 seconds and heated, and then cooled until the surface pressure of the foamed molded product decreased to 0.01 MPa, as in Example 1. A foamed molded article having a density of 33.3 kg / m 3 (foaming ratio 30 times) was obtained, and the physical properties thereof were measured and evaluated.
The obtained results are shown in Table 2.
(実施例5)
 種粒子の作製において、ポリエチレン系樹脂/エチレン-酢酸ビニル共重合体=58/42とすること以外は、実施例3と同様にして、種粒子、複合樹脂粒子、発泡性粒子及び発泡粒子を得、それらの物性を測定・評価した。
 発泡成形体の作製において、0.070MPaの水蒸気を35秒間導入して加熱し、次いで、発泡成形体の面圧が0.01MPaに低下するまで冷却すること以外は、実施例1と同様にして密度33.3kg/m3(発泡倍数30倍)の発泡成形体を得、その物性を測定・評価した。
 得られた結果を表2に示す。
(Example 5)
Seed particles, composite resin particles, expandable particles and expanded particles were obtained in the same manner as in Example 3 except that polyethylene resin / ethylene-vinyl acetate copolymer = 58/42 was used in the preparation of seed particles. The physical properties were measured and evaluated.
In the production of the foamed molded product, 0.070 MPa water vapor was introduced for 35 seconds and heated, and then cooled until the surface pressure of the foamed molded product decreased to 0.01 MPa, as in Example 1. A foamed molded article having a density of 33.3 kg / m 3 (foaming ratio 30 times) was obtained, and the physical properties thereof were measured and evaluated.
The obtained results are shown in Table 2.
(比較例4)
 種粒子の作製において、EVA(2)を用いず、種粒子/ポリスチレン系樹脂=40/60とすること以外は、実施例3と同様にして、種粒子、複合樹脂粒子、発泡性粒子及び発泡粒子を得、それらの物性を測定・評価した。
 発泡成形体の作製において、0.09MPaの水蒸気を35秒間導入して加熱し、次いで、発泡成形体の面圧が0.01MPaに低下するまで冷却すること以外は、実施例1と同様にして密度33.3kg/m3(発泡倍数30倍)の発泡成形体を得、その物性を測定・評価した。
 得られた結果を表2に示す。
(Comparative Example 4)
In preparation of seed particles, seed particles, composite resin particles, expandable particles, and foam are the same as in Example 3 except that EVA (2) is not used and seed particles / polystyrene resin = 40/60. Particles were obtained and their physical properties were measured and evaluated.
In the production of the foam molded article, 0.09 MPa of water vapor was introduced for 35 seconds and heated, and then cooled until the surface pressure of the foam molded article decreased to 0.01 MPa, as in Example 1. A foamed molded article having a density of 33.3 kg / m 3 (foaming ratio 30 times) was obtained, and the physical properties thereof were measured and evaluated.
The obtained results are shown in Table 2.
(比較例5)
 種粒子の作製において、LDPE(1)の代わりにLLDPEを用い、EVA(2)の代わりにEVA(4)を用い、ポリエチレン系樹脂/エチレン-酢酸ビニル共重合体=73/27及び種粒子/ポリスチレン系樹脂=40/60とすること以外は、実施例3と同様にして、種粒子、複合樹脂粒子、発泡性粒子及び発泡粒子を得、それらの物性を測定・評価した。
 発泡成形体の作製において、0.09MPaの水蒸気を35秒間導入して加熱し、次いで、発泡成形体の面圧が0.01MPaに低下するまで冷却すること以外は、実施例1と同様にして密度33.3kg/m3(発泡倍数30倍)の発泡成形体を得、その物性を測定・評価した。
 得られた結果を表2に示す。
(Comparative Example 5)
In the preparation of seed particles, LLDPE was used instead of LDPE (1), EVA (4) was used instead of EVA (2), polyethylene resin / ethylene-vinyl acetate copolymer = 73/27 and seed particles / Seed particles, composite resin particles, expandable particles and expanded particles were obtained in the same manner as in Example 3 except that polystyrene resin = 40/60, and their physical properties were measured and evaluated.
In the production of the foam molded article, 0.09 MPa of water vapor was introduced for 35 seconds and heated, and then cooled until the surface pressure of the foam molded article decreased to 0.01 MPa, as in Example 1. A foamed molded article having a density of 33.3 kg / m 3 (foaming ratio 30 times) was obtained, and the physical properties thereof were measured and evaluated.
The obtained results are shown in Table 2.
(実施例6)
 種粒子の作製において、LDPE(1)の代わりに低密度ポリエチレン系樹脂(LDPE(2):密度928kg/m3、融点115℃、MFR0.7g/10分、日本ポリエチレン株式会社製、品名:ノバテックLD LF280H)を用い、EVA(1)の代わりにエチレン-酢酸ビニル共重合体(EVA(3):酢酸ビニル含有率28%、密度950kg/m3、融点69℃、MFR20.0g/10分、株式会社NUC製、品名:DQDJ-3269)を用い、ポリエチレン系樹脂/エチレン-酢酸ビニル共重合体=71/29及び種粒子/ポリスチレン系樹脂=22/78とすること以外は、実施例3と同様にして、種粒子、複合樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体を得、それらの物性を測定・評価した。
 得られた結果を表3に示す。
(Example 6)
In preparation of seed particles, instead of LDPE (1), a low density polyethylene resin (LDPE (2): density 928 kg / m 3 , melting point 115 ° C., MFR 0.7 g / 10 min, manufactured by Nippon Polyethylene Co., Ltd., product name: Novatec LD LF280H), instead of EVA (1), an ethylene-vinyl acetate copolymer (EVA (3): vinyl acetate content 28%, density 950 kg / m 3 , melting point 69 ° C., MFR 20.0 g / 10 minutes, Example 3 except that NUC Co., Ltd., product name: DQDJ-3269) was used, and polyethylene resin / ethylene-vinyl acetate copolymer = 71/29 and seed particles / polystyrene resin = 22/78. In the same manner, seed particles, composite resin particles, expandable particles, expanded particles, and expanded molded articles were obtained, and their physical properties were measured and evaluated.
The obtained results are shown in Table 3.
(実施例7)
 種粒子の作製において、ポリエチレン系樹脂/エチレン-酢酸ビニル共重合体=66/34とすること以外は、実施例6と同様にして、種粒子、複合樹脂粒子、発泡性粒子及び発泡粒子を得、それらの物性を測定・評価した。
 発泡成形体の作製において、0.070MPaの水蒸気を35秒間導入して加熱し、次いで、発泡成形体の面圧が0.01MPaに低下するまで冷却すること以外は、実施例1と同様にして密度25.0kg/m3(発泡倍数40倍)の発泡成形体を得、その物性を測定・評価した。
 得られた結果を表3に示す。
(Example 7)
Seed particles, composite resin particles, expandable particles, and expanded particles were obtained in the same manner as in Example 6 except that polyethylene resin / ethylene-vinyl acetate copolymer = 66/34 in preparation of seed particles. The physical properties were measured and evaluated.
In the production of the foamed molded product, 0.070 MPa water vapor was introduced for 35 seconds and heated, and then cooled until the surface pressure of the foamed molded product decreased to 0.01 MPa, as in Example 1. A foamed molded article having a density of 25.0 kg / m 3 (foaming factor 40 times) was obtained, and its physical properties were measured and evaluated.
The obtained results are shown in Table 3.
(比較例6)
 種粒子の作製において、LDPE(1)の代わりにLDPE(2)を用い、エチレン-酢酸ビニル共重合体(EVA(3))を用いず、種粒子/ポリスチレン系樹脂=22/78とすること以外は、実施例4と同様にして、種粒子、複合樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体を得、それらの物性を測定・評価した。
 得られた結果を表3に示す。
(Comparative Example 6)
In preparation of seed particles, LDPE (2) is used instead of LDPE (1), ethylene-vinyl acetate copolymer (EVA (3)) is not used, and seed particles / polystyrene resin = 22/78. Except for the above, seed particles, composite resin particles, expandable particles, expanded particles, and expanded molded articles were obtained in the same manner as in Example 4, and their physical properties were measured and evaluated.
The obtained results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3の結果から、実施例1~7の複合樹脂粒子は、難燃剤を添加することなしに、耐衝撃性及び遅燃性に優れた発泡成形体を与え得ることがわかる。
 一方、比較例1~6の複合樹脂粒子は、実施例1~7の複合樹脂粒子に劣ることがわかる。
From the results in Tables 1 to 3, it can be seen that the composite resin particles of Examples 1 to 7 can give a foamed molded article having excellent impact resistance and retarded flame retardancy without adding a flame retardant.
On the other hand, it can be seen that the composite resin particles of Comparative Examples 1 to 6 are inferior to the composite resin particles of Examples 1 to 7.
(実施例8)
 種粒子の作製において、ポリエチレン系樹脂/エチレン-酢酸ビニル共重合体=83/17とすること以外は、実施例1と同様にして、種粒子(酢酸ビニル含有率2.6質量%)、複合樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体を得、それらの物性を測定・評価した。
 得られた結果を表4に示す。
(Example 8)
Seed particles (vinyl acetate content 2.6 mass%), composites were prepared in the same manner as in Example 1 except that polyethylene resin / ethylene-vinyl acetate copolymer = 83/17 in the preparation of seed particles. Resin particles, expandable particles, expanded particles, and expanded molded articles were obtained, and their physical properties were measured and evaluated.
Table 4 shows the obtained results.
(実施例9)
 種粒子の作製において、EVA(1)の代わりにエチレン-酢酸ビニル共重合体(EVA(2):酢酸ビニル含有率19%、密度939kg/m3、融点86℃、MFR2.5g/10分、ハンファケミカル社製、品名:EVA2319)を用い、ポリエチレン系樹脂/エチレン-酢酸ビニル共重合体=45/55とすること以外は、実施例1と同様にして、種粒子(酢酸ビニル含有率10.5質量%)、複合樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体を得、それらの物性を測定・評価した。
 得られた結果を表4に示す。
Example 9
In preparation of seed particles, instead of EVA (1), an ethylene-vinyl acetate copolymer (EVA (2): vinyl acetate content 19%, density 939 kg / m 3 , melting point 86 ° C., MFR 2.5 g / 10 minutes, Hanwa Chemical Co., Ltd., product name: EVA2319), except that polyethylene resin / ethylene-vinyl acetate copolymer = 45/55 was used, and seed particles (vinyl acetate content 10. 5% by mass), composite resin particles, foamable particles, foamed particles and foamed molded products were obtained, and their physical properties were measured and evaluated.
Table 4 shows the obtained results.
(実施例10)
 複合樹脂粒子の作製において、ジクミルパーオキサイドの添加量を5.34gから3.76gへ減らすこと以外は、実施例4と同様にして、種粒子、複合樹脂粒子(ゲル分率14.2質量)、発泡性粒子、発泡粒子及び発泡成形体を得、それらの物性を測定・評価した。
 得られた結果を表4に示す。
(Example 10)
In preparation of composite resin particles, seed particles and composite resin particles (gel fraction 14.2 mass) were obtained in the same manner as in Example 4 except that the amount of dicumyl peroxide added was reduced from 5.34 g to 3.76 g. ), Expandable particles, expanded particles, and foamed molded articles were obtained, and their physical properties were measured and evaluated.
Table 4 shows the obtained results.
(実施例11)
 複合樹脂粒子の作製において、ジクミルパーオキサイドの添加量を5.34gから6.32gへ増やすこと以外は、実施例5と同様にして、種粒子、複合樹脂粒子(ゲル分率36.8質量)、発泡性粒子、発泡粒子及び発泡成形体を得、それらの物性を測定・評価した。
 得られた結果を表4に示す。
(Example 11)
In preparation of composite resin particles, seed particles and composite resin particles (gel fraction 36.8 mass) were obtained in the same manner as in Example 5 except that the amount of dicumyl peroxide added was increased from 5.34 g to 6.32 g. ), Expandable particles, expanded particles, and foamed molded articles were obtained, and their physical properties were measured and evaluated.
Table 4 shows the obtained results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、ポリエチレン系樹脂の酢酸ビニル含有率が3~10質量%の範囲外の場合(実施例8及び9)ならびに複合樹脂粒子中のゲル分率が15~35質量%の範囲外の場合(実施例10及び11)には、発泡成形体の耐衝撃性及び遅燃性の少なくとも一方が、他の実施例のものよりも劣ることがわかる。 From the results in Table 4, when the vinyl acetate content of the polyethylene resin is outside the range of 3 to 10% by mass (Examples 8 and 9), the gel fraction in the composite resin particles is outside the range of 15 to 35% by mass. In the case of (Examples 10 and 11), it can be seen that at least one of the impact resistance and the retarded flame resistance of the foam molded article is inferior to those of the other examples.

Claims (8)

  1.  ポリエチレン系樹脂とポリスチレン系樹脂とをこれらの合計に対してそれぞれ50~20質量%及び50~80質量%の範囲で含み、前記ポリエチレン系樹脂が、密度910~930kg/m3の低密度ポリエチレン系樹脂と酢酸ビニル含有率10~30質量%のエチレン-酢酸ビニル共重合体とをこれらの合計に対してそれぞれ45~85質量%及び15~55質量%の範囲で含み、かつ臭素系難燃剤を実質的に含まない複合樹脂粒子。 A low-density polyethylene-based resin having a density of 910 to 930 kg / m 3 , comprising a polyethylene-based resin and a polystyrene-based resin in the range of 50 to 20% by mass and 50 to 80% by mass, respectively, based on the total of these. A resin and an ethylene-vinyl acetate copolymer having a vinyl acetate content of 10 to 30% by mass in a range of 45 to 85% by mass and 15 to 55% by mass, respectively, and a brominated flame retardant Composite resin particles not substantially contained.
  2.  前記ポリエチレン系樹脂が、3~10質量%の酢酸ビニル含有率を有する請求項1に記載の複合樹脂粒子 The composite resin particle according to claim 1, wherein the polyethylene resin has a vinyl acetate content of 3 to 10% by mass.
  3.  前記複合樹脂粒子が、その約1gを温度130℃のトルエン100mlで処理したときに、トルエンに不溶なゲル分率が15~35質量%である請求項1に記載の複合樹脂粒子。 The composite resin particle according to claim 1, wherein when about 1 g of the composite resin particle is treated with 100 ml of toluene at a temperature of 130 ° C., the gel fraction insoluble in toluene is 15 to 35% by mass.
  4.  前記複合樹脂粒子が、1.0~2.0mmの平均粒子径を有する請求項1に記載の複合樹脂粒子。 The composite resin particles according to claim 1, wherein the composite resin particles have an average particle diameter of 1.0 to 2.0 mm.
  5.  請求項1に記載の複合樹脂粒子と揮発性発泡剤とを含む発泡性粒子。 Expandable particles comprising the composite resin particles according to claim 1 and a volatile foaming agent.
  6.  請求項5に記載の発泡性粒子を予備発泡させて得られた発泡粒子。 Expanded particles obtained by pre-expanding the expandable particles according to claim 5.
  7.  請求項6に記載の発泡粒子を発泡成形させて得られた発泡成形体。 A foam-molded product obtained by foam-molding the foamed particles according to claim 6.
  8.  前記発泡成形体が、49kg/m3未満の密度を有する請求項7に記載の発泡成形体。 The foamed molded product according to claim 7, wherein the foamed molded product has a density of less than 49 kg / m 3 .
PCT/JP2016/053795 2015-02-27 2016-02-09 Composite resin particle, and foamable particle, foamed particle and foamed molding thereof WO2016136460A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177023504A KR101996231B1 (en) 2015-02-27 2016-02-09 Composite resin particles, foamed particles thereof, expanded particles and foamed molded articles
JP2017502046A JP6453995B2 (en) 2015-02-27 2016-02-09 Composite resin particles and their expandable particles, expanded particles and expanded molded articles
CN201680012358.3A CN107250184B (en) 2015-02-27 2016-02-09 Composite resin particles, expandable particles thereof, expanded particles, and expanded molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-039020 2015-02-27
JP2015039020 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136460A1 true WO2016136460A1 (en) 2016-09-01

Family

ID=56789579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053795 WO2016136460A1 (en) 2015-02-27 2016-02-09 Composite resin particle, and foamable particle, foamed particle and foamed molding thereof

Country Status (5)

Country Link
JP (1) JP6453995B2 (en)
KR (1) KR101996231B1 (en)
CN (1) CN107250184B (en)
TW (1) TWI704175B (en)
WO (1) WO2016136460A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141087A (en) * 2017-02-28 2018-09-13 積水化成品工業株式会社 Method for producing foamed particle and method for producing foam molded body
JP2020105340A (en) * 2018-12-27 2020-07-09 積水化成品工業株式会社 Flame-retardant foamable composite resin particle, production method therefor and foam molded body
WO2023243584A1 (en) * 2022-06-15 2023-12-21 積水化成品工業株式会社 Composite resin particles, foamable particles, foamed particles, molded foam, and production method for composite resin particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6838447B2 (en) * 2017-03-22 2021-03-03 株式会社ジェイエスピー Composite resin particles and composite resin foam particles

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117981A (en) * 1974-08-06 1976-02-13 Tooshin Kk
US4338271A (en) * 1979-05-28 1982-07-06 Toyo Rubber Chemical Industrial Corp. Method for manufacturing a low density synthetic resin body
JPH04220439A (en) * 1990-12-20 1992-08-11 Sumitomo Chem Co Ltd Polystyrene resin foam
JPH10226729A (en) * 1997-02-14 1998-08-25 Sekisui Plastics Co Ltd Polyethylene resin mixture foam and production thereof
WO2007138916A1 (en) * 2006-05-26 2007-12-06 Jsp Corporation Expandable polyethylene resin particle and method for production thereof
WO2010110337A1 (en) * 2009-03-26 2010-09-30 積水化成品工業株式会社 Method for reducing volatile organic compounds in composite resin particles, and composite resin particles
JP2011144379A (en) * 2003-12-22 2011-07-28 Nova Chemicals Inc Interpolymer resin particle
JP2012214691A (en) * 2011-03-31 2012-11-08 Sekisui Plastics Co Ltd Polyethylene-based resin particle for seed polymerization, composite resin particle, method for producing these, foamable composite resin particle, and preliminary foaming particle, and foamed article
JP2014196441A (en) * 2013-03-29 2014-10-16 積水化成品工業株式会社 Polystyrene-based composite resin particle and method for producing the same, expandable particle, expanded particle, and expansion molded body
JP2015086255A (en) * 2013-10-29 2015-05-07 株式会社ジェイエスピー Method of producing foamable composite resin particle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001899B (en) * 2004-09-03 2010-04-14 积水化成品工业株式会社 Styrene-modified polyethylene resin beads, styrene-modified polyethylene resin expandable beads, processes for production of both, pre-expanded beads, and products of expansion molding
JP5192420B2 (en) * 2009-03-03 2013-05-08 積水化成品工業株式会社 Expandable composite resin particles for long-term storage, pre-expanded particles and expanded molded articles
JP5532742B2 (en) * 2009-08-20 2014-06-25 株式会社ジェイエスピー Expandable modified resin particles, modified resin expanded particles, and modified resin expanded particle molded body
JP5942763B2 (en) * 2012-10-11 2016-06-29 株式会社ジェイエスピー Composite resin foam particles
JP6136601B2 (en) * 2013-06-07 2017-05-31 株式会社ジェイエスピー Composite resin foam particles

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117981A (en) * 1974-08-06 1976-02-13 Tooshin Kk
US4338271A (en) * 1979-05-28 1982-07-06 Toyo Rubber Chemical Industrial Corp. Method for manufacturing a low density synthetic resin body
JPH04220439A (en) * 1990-12-20 1992-08-11 Sumitomo Chem Co Ltd Polystyrene resin foam
JPH10226729A (en) * 1997-02-14 1998-08-25 Sekisui Plastics Co Ltd Polyethylene resin mixture foam and production thereof
JP2011144379A (en) * 2003-12-22 2011-07-28 Nova Chemicals Inc Interpolymer resin particle
WO2007138916A1 (en) * 2006-05-26 2007-12-06 Jsp Corporation Expandable polyethylene resin particle and method for production thereof
WO2010110337A1 (en) * 2009-03-26 2010-09-30 積水化成品工業株式会社 Method for reducing volatile organic compounds in composite resin particles, and composite resin particles
JP2012214691A (en) * 2011-03-31 2012-11-08 Sekisui Plastics Co Ltd Polyethylene-based resin particle for seed polymerization, composite resin particle, method for producing these, foamable composite resin particle, and preliminary foaming particle, and foamed article
JP2014196441A (en) * 2013-03-29 2014-10-16 積水化成品工業株式会社 Polystyrene-based composite resin particle and method for producing the same, expandable particle, expanded particle, and expansion molded body
JP2015086255A (en) * 2013-10-29 2015-05-07 株式会社ジェイエスピー Method of producing foamable composite resin particle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141087A (en) * 2017-02-28 2018-09-13 積水化成品工業株式会社 Method for producing foamed particle and method for producing foam molded body
JP2020105340A (en) * 2018-12-27 2020-07-09 積水化成品工業株式会社 Flame-retardant foamable composite resin particle, production method therefor and foam molded body
WO2023243584A1 (en) * 2022-06-15 2023-12-21 積水化成品工業株式会社 Composite resin particles, foamable particles, foamed particles, molded foam, and production method for composite resin particles

Also Published As

Publication number Publication date
TWI704175B (en) 2020-09-11
CN107250184B (en) 2020-05-19
TW201638187A (en) 2016-11-01
JP6453995B2 (en) 2019-01-16
KR20170107522A (en) 2017-09-25
CN107250184A (en) 2017-10-13
KR101996231B1 (en) 2019-07-04
JPWO2016136460A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP4718645B2 (en) Styrene modified polypropylene resin particles, expandable styrene modified polypropylene resin particles, styrene modified polypropylene resin foam particles, and method for producing styrene modified polypropylene resin foam molded article
JP5528429B2 (en) Method for reducing volatile organic compounds in composite resin particles
JP6170703B2 (en) POLYSTYRENE COMPOSITE RESIN PARTICLE AND METHOD FOR PRODUCING THE SAME, FOAMABLE PARTICLE, FOAMED PARTICLE AND FOAM MOLDED
US10066072B2 (en) Composite resin particles, process for producing same, expandable beads, expanded beads, foamed molded object, and automotive interior trim
JP6453995B2 (en) Composite resin particles and their expandable particles, expanded particles and expanded molded articles
JP5460880B2 (en) MODIFIED POLYSTYRENE RESIN PARTICLE AND ITS MANUFACTURING METHOD, EXPANDABLE PARTICLE AND ITS MANUFACTURING METHOD, PREFOAMED PARTICLE, AND FOAM MOLDED ARTICLE
JP6441948B2 (en) Expandable styrene composite polyolefin resin particles and process for producing the same, pre-expanded particles, and expanded molded body
JP2014189769A (en) Modified polystyrenic foamable resin particles, method for manufacturing the same, foam particles, and foam molding
JP6081267B2 (en) POLYSTYRENE COMPOSITE RESIN PARTICLE AND PROCESS FOR PRODUCING THE SAME, FOAMABLE PARTICLE, FOAMED PARTICLE, AND FOAM MOLDED BODY
JP6404164B2 (en) Seed polymerization seed particles, composite resin particles, expandable particles, expanded particles, and composite resin foam moldings
JP2013117037A (en) Foam molding body
JP6322148B2 (en) Seed polymerization seed particles, composite resin particles, expandable particles, expanded particles, and composite resin foam moldings
JP5337442B2 (en) Foam molded body and method for producing the same
JP6962761B2 (en) Composite resin particles, their manufacturing methods, foamable particles, foamed particles and foamed molded products
JP6076463B2 (en) Modified polystyrene-based cross-linked resin particles and production method thereof, expandable particles and production method thereof, pre-expanded particles and expanded molded article
JP7445480B2 (en) Expandable styrenic resin small particles, pre-expanded styrenic resin small particles, and styrenic resin foam molded products
WO2017168792A1 (en) Antioxidant-containing foamable resin particles, method for producing same, foamable particles, and foam-molded article
WO2017056743A1 (en) Styrene-modified polyolefin-based resin particles, method for producing same, foamable particles, foamed particles and foam molded body
JP2017066359A (en) Styrene modified polyolefin resin particle and manufacturing method therefor, expandable particle, foam particle and foam molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502046

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177023504

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755207

Country of ref document: EP

Kind code of ref document: A1