WO2016136402A1 - Luminous flux homogenizing mechanism, illuminating optical system, light-receiving optical system, reference optical system, and colorimeter - Google Patents

Luminous flux homogenizing mechanism, illuminating optical system, light-receiving optical system, reference optical system, and colorimeter Download PDF

Info

Publication number
WO2016136402A1
WO2016136402A1 PCT/JP2016/053029 JP2016053029W WO2016136402A1 WO 2016136402 A1 WO2016136402 A1 WO 2016136402A1 JP 2016053029 W JP2016053029 W JP 2016053029W WO 2016136402 A1 WO2016136402 A1 WO 2016136402A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light beam
bundle
optical system
resin
Prior art date
Application number
PCT/JP2016/053029
Other languages
French (fr)
Japanese (ja)
Inventor
昌広 興津
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201680010998.0A priority Critical patent/CN107250743B/en
Publication of WO2016136402A1 publication Critical patent/WO2016136402A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to a light flux uniformizing mechanism, an illumination optical system, a light receiving optical system, a reference optical system, and a colorimeter.
  • a color meter is used to quantitatively measure the color of industrial products, foods, and the like.
  • a sample is illuminated with a light beam bundle of illumination light, a light beam bundle of reflected light reflected by the sample or a light beam bundle transmitted through the sample is measured, and a color value is obtained from the measurement result.
  • the beam bundle of illumination light, the beam bundle of reflected light, and the like may be made uniform by an integrating sphere. For example, in the geometry of 8 ° direction illumination / diffuse light reception (8 °: d), the beam of illumination light enters the sample surface from a direction that makes an angle of 8 ° with the normal of the sample surface, and in all directions from the sample surface.
  • the light flux of the reflected light that exits is made uniform by the integrating sphere and guided to the light receiving sensor. Also, in the geometry of diffuse illumination and 8 ° direction light reception (d: 8 °), the light beam of the illumination light is made uniform by the integrating sphere and incident on the sample surface from all directions, and from the sample surface to the normal of the sample surface. The bundle of reflected light emitted in the direction of 8 ° is guided to the light receiving sensor.
  • a spherical space is formed in the integrating sphere that makes the light flux uniform.
  • the inner surface of the integrating sphere defining the spherical space is a white diffuse reflection surface.
  • the light beam enters the spherical space, diffusely reflects on the inner surface of the integrating sphere while propagating through the spherical space, and exits from the spherical space.
  • the light beam emitted from the spherical space is made uniform by diffuse multiple reflection.
  • Patent Documents 1 and 2 describe a technique for making the inner surface of an integrating sphere a white diffuse reflection surface.
  • a coating is formed by applying a white matte paint on the inner surface of the base of the integrating sphere.
  • the surface of the coating becomes a diffuse reflection surface.
  • the integrating sphere is made of a white porous material.
  • a block-like base material is produced by compression molding a powdery raw material, and the integrating sphere having the target shape is obtained by machining the shape of the block-like base material. Is produced. Machining changes the shape.
  • the inner surface of the integrating sphere produced by machining becomes a diffuse reflection surface.
  • the invention described below is made to solve these problems.
  • the problem to be solved by the invention described below is to increase the uniformity of the reflectance of the diffusive reflecting surface of the light beam uniformizing mechanism without making the light beam uniformizing mechanism expensive, and to make the light beam uniform It is to increase the reflectance of the diffuse reflection surface of the mechanism.
  • the light beam homogenizing mechanism includes a base material and a coating.
  • a space is formed in the substrate.
  • the inner surface of the substrate defines a space.
  • the substrate is made of a white resin and reflects the light beam.
  • the coating is formed by coating a transparent matte paint on the inner surface of the substrate to diffuse the light beam.
  • the uniformity of the reflectance of the diffuse reflecting surface of the beam bundle uniforming mechanism is increased, and the reflectance of the diffuse reflecting surface of the beam bundle uniformizing mechanism is increased.
  • FIG. 1 shows a colorimeter.
  • the schematic diagram of FIG. 2 shows the longitudinal cross section of the measuring mechanism which comprises a color meter.
  • the schematic diagram of FIG. 3 shows a cross section of a light beam separating mechanism and a light receiving mechanism for reference light that constitute the colorimeter.
  • the schematic diagrams of FIGS. 4 and 5 show cross sections of the integrating sphere and the light receiving mechanism for reflected light that constitute the colorimeter.
  • FIG. 5 shows an enlarged view of the vicinity of the light receiving mechanism for reflected light.
  • the measurement mechanism 1010 includes an illumination mechanism 1020, an integrating sphere 1021, a light receiving mechanism 1022 for reflected light, and a light receiving mechanism 1023 for reference light.
  • the illumination mechanism 1020 includes a radiation mechanism 1030, a light beam separation mechanism 1031 and an imaging optical system 1032.
  • the radiation mechanism 1030 and the imaging optical system 1032 constitute an illumination optical system.
  • the beam bundle separating mechanism 1031 and the light receiving mechanism 1023 for reference light constitute a reference optical system.
  • the integrating sphere 1021 and the light receiving mechanism 1022 for reflected light constitute a light receiving optical system.
  • the radiation mechanism 1030 emits a diffused beam.
  • the diffuse beam bundle is a beam bundle made uniform by diffuse reflection, and preferably a beam bundle made uniform by diffuse multiple reflection.
  • the beam bundle separation mechanism 1031 separates the emitted diffuse beam bundle into a beam bundle 1041 for illumination light and a beam bundle 1042 for reference light.
  • the imaging optical system 1032 forms an image of the light beam 1041 of the illumination light. Thereby, the illumination mechanism 1020 illuminates the sample with the light beam 1041 of the illumination light.
  • the integrating sphere 1021 diffuses and reflects the light beam 1043 of the reflected light reflected by the sample and then guides it to the light receiving mechanism 1022 for the reflected light.
  • the light receiving mechanism 1022 for reflected light receives the reflected light bundle 1043 and outputs the measurement results of the tristimulus values X, Y, and Z of the reflected light.
  • the reference light receiving mechanism 1023 receives the reference light beam 1042 and outputs the measurement results of the tristimulus values X, Y, and Z of the reference light. Thereby, the measurement mechanism 1010 outputs the measurement result of the tristimulus values X, Y, and Z of the reflected light and the measurement result of the tristimulus values X, Y, and Z of the reference light.
  • the controller 1011 controls the radiation of the diffuse light beam by the radiation mechanism 1030. Further, the controller 1011 acquires the measurement results of the tristimulus values X, Y, and Z of the reflected light and the measurement results of the tristimulus values X, Y, and Z of the reference light, and the tristimulus values X, Y, and Z of the reflected light.
  • the color value is derived from the measurement result. When the color value is derived, correction based on the measurement results of the tristimulus values X, Y and Z of the reference light is performed. This makes the color value less susceptible to illumination light fluctuations.
  • the radiation mechanism 1030 includes a pulse xenon lamp 1050, a reflector 1051, and a diffusion plate 1052.
  • the pulse xenon lamp 1050 emits a light beam.
  • the reflector 1051 diffusely reflects the light beam.
  • the diffusing plate 1052 diffuses the light beam into a diffused beam beam.
  • the pulse xenon lamp 1050 emits flash light. When flash is emitted, the sample is illuminated with a large amount of light in a short time, improving the signal-to-noise ratio of the measurement.
  • the pulse xenon lamp 1050 may be replaced with another type of light source.
  • the pulse xenon lamp 1050 may be replaced with a tungsten lamp, a light emitting diode, or the like.
  • the reflector 1051 has a diffuse reflection surface 1060.
  • the reflector 1051 may be replaced with a reflector having a shape that is difficult to say as an umbrella.
  • the pulse xenon lamp 1050 emits a light beam
  • the light beam emitted toward the diffusion plate 1052 is diffused to the diffusion plate 1052 to be a diffusion light beam.
  • the light beam emitted toward the diffuse reflection surface 1060 is diffused and reflected by the diffuse reflection surface 1060 to form a diffuse light beam, and the light beam emitted from the diffuse reflection surface 1060 toward the diffusion plate 1052 is diffused. It is diffused by 1052 and is made into a further uniformed diffused light bundle. Thereby, the light flux emitted from the pulse xenon lamp 1050 is efficiently used.
  • the pulse xenon lamp 1050 is a discharge lamp.
  • the flash radiation source differs for each flash radiation.
  • the light flux emitted from the pulse xenon lamp 1050 is diffusely reflected by the diffuse reflection surface 1060 and diffused by the diffuser plate 1052, so that the diffuse light flux is not easily affected by the flash radiation source.
  • the ray bundle separating mechanism 1031 includes a rectangular tubular structure 1070 and an attachment mechanism 1071.
  • a space 1080 formed in the rectangular tube-shaped structure 1070 is defined on the inner peripheral surface 1090 of the rectangular tube-shaped structure 1070, and has an incident port 1100 at one end and an output port 1101 at the other end.
  • the shape of the cross section perpendicular to the optical axis direction indicated by the arrow 1110 in the space 1080 is a rectangular shape, and is constant even when going in the optical axis direction.
  • the space 1080 extends straight in the optical axis direction and extends from the entrance 1100 to the exit 1101. When the cross-sectional shape of the space 1080 is constant and the space 1080 extends straight, the entire exit port 1101 is seen from the entrance port 1100.
  • the inner peripheral surface 1090 has a diffuse reflection surface 1120. Desirably, the entire inner peripheral surface 1090 is the diffuse reflection surface 1120, but the inner peripheral surface 1090 may have a slight surface that is not the diffuse reflection surface 1120.
  • the openings 1130, 1131 and 1132 formed in the rectangular tubular structure 1070 have inlets 1140, 1141 and 1142 at one end and outlets 1150, 1151 and 1152 at the other ends, respectively.
  • the inner peripheral surface 1090 of 1070 extends to the outer peripheral surface 1091 of the rectangular tubular structure 1070.
  • the inlets 1140, 1141 and 1142 are in the inner peripheral surface 1090.
  • Outlets 1150, 1151, and 1152 are on the outer peripheral surface 1091.
  • Diffuse reflecting surface 1120 is seen from each of outlets 1150, 1151, and 1152.
  • the openings 1130, 1131 and 1132 extend in a direction perpendicular to the optical axis direction.
  • the light enters the entrance 1100, travels through the space 1080, and is diffusely reflected by the diffuse reflection surface 1120 while traveling through the space 1080, and the entrances 1140, 1141. And 1142, travel through apertures 1130, 1131, and 1132, and exit from exits 1150, 1151, and 1152.
  • the openings 1130, 1131, and 1132 may be replaced with slit-shaped openings that connect the openings 1130, 1131, and 1132.
  • the diffused light beam radiated by the radiation mechanism 1030 is incident on the entrance 1100.
  • the light beam traveling in the direction of looking through the output port 1101 travels through the space 1080 without being diffusely reflected by the diffuse reflection surface 1120, and is emitted from the output port 1101. Of the light beam 1041.
  • the light beam traveling in a direction other than the direction through which the exit port 1101 is seen travels through the space 1080 and is diffused and reflected by the diffuse reflection surface 1120 while traveling through the space 1080, and enters the entrances 1140, 1141 and 1142, and the openings 1130, 1131 and Proceeding 1132, the light exits from the exits 1150, 1151, and 1152 to become a light beam 1042 of reference light.
  • the light beam traveling in a direction other than the direction through which the exit port 1101 is viewed becomes the light beam 1042 of the reference light
  • the light beam that cannot be the light beam 1041 of the illumination light becomes the light beam 1042 of the reference light
  • the light beam of the illumination light The beam bundle 1042 of the reference light is obtained without affecting the light quantity of the bundle 1041.
  • the entrance 1100 is not seen through the exits 1150, 1151 and 1152.
  • the light bundle does not directly reach the exits 1150, 1151 and 1152 from the entrance 1100, and the light bundle 1042 of the reference light is made uniform.
  • the space 1080 is extended in the optical axis direction in order to increase the area of the diffuse reflection surface 1120 seen from the exits 1150, 1151, and 1152.
  • the diameters of 1130, 1131 and 1132 are enlarged. This improves the measurement signal-to-noise ratio. Since the amount of the light beam 1042 of the reference light is proportional to the product of the area of the entrance 1100 and the length of the space 1080 in the optical axis direction, the illumination mechanism 1020 excessively increases the light amount of the light beam 1042 of the reference light. It will never grow.
  • the square cylindrical structure 1070 may be replaced with another type of structure.
  • the rectangular tubular structure 1070 may be replaced with a cylindrical structure.
  • a light receiving mechanism 1023 for reference light is attached to the attachment mechanism 1071.
  • the imaging optical system 1032 includes a field stop 1160, an aperture stop 1161, a lens 1162, and a lens barrel 1163 as shown in FIG.
  • the field stop 1160 and the aperture stop 1161 limit the beam bundle 1041 of the illumination light.
  • the lens 1162 forms an image of the light beam 1041 of the illumination light.
  • the lens barrel 1163 supports the field stop 1160, the aperture stop 1161, and the lens 1162.
  • the field stop illuminated by the beam bundle 1041 of the illumination light is adjusted by the field stop 1160.
  • the numerical aperture is adjusted by the aperture stop 1161.
  • Optical elements other than the field stop 1160, the aperture stop 1161, and the lens 1162 may be added to the imaging optical system 1032.
  • a diffusion plate 1164 may be added in front of the aperture stop 1161.
  • the imaging optical system 1032 may be replaced with a collimating optical system that collimates the light beam 1041 of the illumination light.
  • Integrating Sphere The integrating sphere 1021 is a hollow spherical structure as shown in FIGS.
  • the space 1170 formed in the integrating sphere 1021 is defined on the inner surface 1180 of the integrating sphere 1021.
  • the shape of the space 1170 is spherical.
  • a sample window 1190 formed on the integrating sphere 1021 is seen from an illumination window 1191 formed on the integrating sphere 1021.
  • the sample window 1190 and the illumination window 1191 are not seen through the light receiving window 1192 formed in the integrating sphere 1021.
  • An illumination mechanism 1020 is coupled to the illumination window 1191.
  • a light receiving mechanism 1022 for reflected light is attached to the light receiving window 1192.
  • the inner surface 1180 has a diffuse reflection surface 1200. Desirably, the entire inner surface 1180 is the diffuse reflection surface 1200, but the inner surface 1180 may have a slight surface that is not the diffuse reflection surface 1200.
  • the illumination mechanism 1020 emits a light beam 1041 of illumination light
  • the light beam 1041 of illumination light enters the illumination window 1191, travels through the space 1170 without being reflected by the inner surface 1180, and reaches the sample window 1190.
  • the sample is illuminated by the beam bundle 1041 of the illumination light reaching the sample window 1190, and the sample reflects the beam bundle 1043 of the reflected light.
  • the reflected light bundle 1043 propagates through the space 1170, is diffusely reflected by the diffuse reflection surface 1200 while propagating through the space 1170, and exits from the light receiving window 1192.
  • the light receiving mechanism 1022 for reflected light includes a sensor unit 1210 as shown in FIG.
  • the sensor unit 1210 includes filters 1220, 1221 and 1222, stops 1230, 1231 and 1232, light receiving sensors 1240, 1241 and 1242, and a structure 1250.
  • the filters 1220, 1221, and 1222 are inserted into holes 1260, 1261, and 1262 formed in the structure 1250, respectively, and are supported by the structure 1250.
  • the apertures 1230, 1231, and 1232 are inserted into holes 1260, 1261, and 1262 formed in the structure 1250, respectively, and are supported by the structure 1250.
  • the light receiving sensors 1240, 1241, and 1242 are inserted into holes 1260, 1261, and 1262 formed in the structure 1250, respectively, and are supported by the structure 1250.
  • the diaphragm 1270, the filter 1220, the diaphragm 1230, and the light receiving sensor 1240 formed on the structure 1250 constitute a measurement system that measures the stimulus value X.
  • the diaphragm 1271, the filter 1221, the diaphragm 1231, and the light receiving sensor 1241 formed on the structure 1250 constitute a measurement system that measures the stimulus value Y.
  • the diaphragm 1272, the filter 1222, the diaphragm 1232, and the light receiving sensor 1242 formed in the structure 1250 constitute a measurement system that measures the stimulus value Z.
  • the common points of the measurement system that measures the stimulus value X, the measurement system that measures the stimulus value Y, and the measurement system that measures the stimulus value Z will be described by taking a measurement system that measures the stimulus value Y as an example.
  • the aperture 1271, the filter 1221, the aperture 1231, and the light receiving sensor 1241 are arranged in the order described.
  • the reflected light beam 1043 When the reflected light beam 1043 enters the hole 1261, the reflected light beam 1043 passes through the aperture 1261 and passes through the aperture 1271, the filter 1221, and the aperture 1231 in the order described.
  • the light receiving sensor 1241 receives the light.
  • the diaphragms 1271 and 1231 limit the beam bundle 1043 of the reflected light.
  • the light receiving sensor 1241 receives the reflected light bundle 1043 and outputs a signal corresponding to the amount of received light. Thereby, the stimulus value Y is measured.
  • the apertures 1271 and 1231 the incident angle of the reflected light beam 1043 to the filter 1221 is reduced. That is, the reflected light bundle 1043 is incident on the filter 1221 substantially perpendicularly.
  • the operating angle ⁇ 1 of the sensor unit 1210 that is, the opening angle ⁇ 1 of the light beam passing through the apertures 1271 and 1231, the light beam 1041 of the illumination light incident on the illumination window 1191 is not received by the light receiving sensor 1241 and the reflected light beam
  • the bundle 1043 is set not to be diffusely reflected by the diffuse reflection surface 1200 and received by the light receiving sensor 1241.
  • the light flux 1043 of the reflected light is uniformly mixed by diffuse reflection and then received by the light receiving sensor 1241.
  • the opening angle ⁇ 1 is set large within a range that satisfies this condition, and is set to about 40 °, for example. Thereby, the light flux 1043 of the reflected light is taken in from a wide range of the diffuse reflection surface 1200, and the measurement signal-to-noise ratio is improved.
  • Light receiving mechanism for reference light includes a diffusion plate 1280 and a sensor unit 1281 as shown in FIG.
  • the diffusion plate 1280 is disposed between the openings 1130, 1131, and 1132 and the sensor unit 1281, and diffuses the light beam 1042 of the reference light.
  • the sensor unit 1281 includes filters 1290, 1291 and 1292, stops 1300, 1301 and 1302, light receiving sensors 1310, 1311 and 1312, and a structure 1320.
  • a structure 1320 In the structure 1320, apertures 1330, 1331 and 1332 are formed, and holes 1340, 1341 and 1342 are formed.
  • the sensor unit 1281 is the same type as the sensor unit 1210.
  • the sensor unit 1281 being the same type as the sensor unit 1210 reduces the manufacturing cost of the color meter 1000.
  • the diffusion plate 1280 diffuses the light beam 1042 of the reference light.
  • the diffused beam of reference light 1042 is incident on the holes 1340, 1341 and 1342.
  • the diffuser plate 1280 causes a part of the light beam that travels in a direction other than the direction from the outlets 1150, 1151, and 1152 to the light receiving sensors 1310, 1311, and 1312 to the light receiving sensors 1310, 1311, and 1312, thereby improving the measurement signal-to-noise ratio.
  • the sensor unit 1281 When the sensor unit 1281 is the same type as the sensor unit 1210, the sensor unit 1281 includes the diaphragms 1300, 1301, and 1302 and the diaphragms 1330, 1331, and 1332, so that the light receiving sensors 1310, 1311, and 1312 are connected from the outlets 1150, 1151, and 1152. Installed away.
  • the light receiving sensors 1310, 1311, and 1312 are installed apart from the outlets 1150, 1151, and 1152, the light flux that goes in a direction other than the direction from the outlets 1150, 1151, and 1152 toward the light receiving sensors 1310, 1311, and 1312 increases.
  • the light flux received by the light receiving sensors 1310, 1311 and 1312 decreases, and the measurement signal-to-noise ratio deteriorates.
  • the diffuser plate 1280 suppresses such a decrease in received light flux.
  • the sensor unit 1281 may be replaced with a sensor unit that is not the same type as the sensor unit 1210.
  • the sensor unit 1281 is preferably replaced with a sensor unit without an aperture.
  • FIG. 7 shows a cross section of the light beam separation mechanism and the light receiving mechanism for reference light when the sensor unit is replaced with a sensor unit that does not have a diaphragm.
  • the sensor unit 1350 shown in FIG. 7 includes light receiving sensors 1360, 1361, and 1362 and filters 1370, 1371, and 1372.
  • the light receiving sensors 1360, 1361 and 1362 are installed close to the outlets 1150, 1151 and 1152.
  • Each measurement method of the light receiving mechanism 1022 for reflected light and the light receiving mechanism 1023 for reference light may be changed from the tristimulus value method to the spectroscopic method.
  • the measurement method of the light receiving mechanism 1022 for reflected light and the light receiving mechanism 1023 for reference light is a spectroscopic method
  • the light receiving mechanism 1022 for reflected light and the light receiving mechanism 1023 for reference light have wavelength dispersion such as a diffraction grating and a prism.
  • Each is equipped with a polychromator equipped with elements.
  • the light receiving mechanism 1022 for reflected light and the light receiving mechanism 1023 for reference light each measure a spectral spectrum.
  • the colorimeter becomes a spectrocolorimeter. Colorimeters are broadly classified into colorimeters and spectral colorimeters.
  • the light receiving mechanism 1022 for reflected light may be replaced with a light receiving mechanism for transmitted light.
  • the light receiving mechanism for transmitted light receives the light bundle of transmitted light that has passed through the sample, and outputs the measurement results of the tristimulus values X, Y, and Z of the transmitted light.
  • the controller 1011 is an embedded computer, and performs control by executing firmware. All or part of the control by the controller 1011 may be realized by hardware without software.
  • the controller 1011 controls the pulse xenon lamp 1050 and causes the pulse xenon lamp 1050 to emit a light beam. Further, the controller 1011 acquires the tristimulus values X, Y and Z of the reflected light from the light receiving sensors 1240, 1241 and 1242, respectively, when the pulse xenon lamp 1050 emits the light bundle, and the tristimulus values of the reference light. X, Y, and Z are acquired from the light receiving sensors 1310, 1311, and 1312, respectively. Furthermore, the controller 1011 derives a color value from the tristimulus values X, Y, and Z of the reflected light.
  • the color values are expressed in Munsell color system, L * a * b * color system, L * C * h color system, Hunter Lab color system, XYZ color system, and the like. When the color value is derived, correction by the tristimulus values X, Y and Z of the reference light is performed.
  • Beam bundle uniformizing mechanism Each of the reflector 1051, the beam bundle separating mechanism 1031 and the integrating sphere 1021 constitutes a beam bundle uniformizing mechanism.
  • the reflector 1051 makes the light flux emitted by the pulse xenon lamp 1050 uniform.
  • the beam bundle separation mechanism 1031 makes the beam bundle 1042 of the reference light uniform when separating the beam bundle emitted by the radiation mechanism 1030 into the beam bundle 1041 of illumination light and the beam bundle 1042 of reference light.
  • the integrating sphere 1021 makes the reflected light beam 1043 uniform.
  • the light bundle is made uniform by diffusely reflecting or diffusely reflecting the light bundle on the diffuse reflection surfaces 1060, 1120, and 1200, respectively.
  • the uniformization of the light beam the change in the intensity of the light beam due to the radiation direction is reduced.
  • the light beam uniformizing mechanism is configured by forming a film on the inner surface of a base material made of white resin.
  • the coating is formed by painting a transparent matte paint on the inner surface of the substrate.
  • FIG. 8 shows a cross section of the integrating sphere.
  • FIG. 8 shows an enlarged view of the vicinity of the diffuse reflection surface.
  • the integrating sphere 1021 includes a base material 1400 and coatings 1401 and 1402 as shown in FIG.
  • a space 1410 is formed in the base material 1400.
  • the space 1410 is spherical.
  • the shape of the space formed in the light flux uniformizing mechanism changes according to the light flux uniformizing mechanism.
  • a space 1410 is defined on the inner surface 1420 of the substrate 1400.
  • the base material 1400 is made of a white resin.
  • the coating 1401 is formed by coating a transparent matte paint on the inner surface 1420 of the substrate 1400, and diffuses the light beam. A surface 1430 of the coating 1401 is exposed to a space 1170 formed in the integrating sphere 1021. The back surface 1431 of the coating 1401 is in close contact with the inner surface 1420 of the substrate 1400.
  • the coating film 1402 is formed by coating the outer surface 1421 of the base material 1400 with a paint, and becomes a light shielding film that covers the outer surface 1421 of the base material 1400.
  • the coating 1402 makes it difficult for unnecessary light to enter the space 1410 even when the base material 1400 transmits light.
  • the paint applied to the outer surface 1421 of the substrate 1400 desirably includes black pigment or metal particles.
  • the light shielding property of the coating 1402 is improved by the black pigment or the metal particles.
  • the coating 1402 may be omitted.
  • the coating 1402 may be replaced with another type of light shielding material.
  • the coating 1402 may be replaced with a light shielding member that contacts the outer surface 1421 of the substrate 1400.
  • the light shielding member is preferably made of a resin containing a black pigment or metal particles.
  • the base material 1400 and the light shielding member may be integrally formed by two-color molding.
  • the incident light beam When a light beam is incident on the diffuse reflection surface 1200, the incident light beam generally passes through the coating 1401, the light beam that has passed through the coating 1401 is reflected by the substrate 1400, and the reflected light beam passes through the coating 1401. The light beam that has passed through is emitted. There may be a light bundle propagating along a different path.
  • the light beam passes through the coating 1401, the light beam is diffused.
  • the base material 1400 has a function of reflecting the light beam among the functions of the diffuse reflection surface 1200 that diffusely reflects the light beam.
  • the coating 1401 has a function of diffusing the light bundle among the functions of the diffuse reflection surface 1200 that diffusely reflects the light bundle.
  • the base material 1400 has a function of reflecting the light flux, and therefore the film thickness of the coating 1401 does not affect the reflectance of the diffuse reflection surface 1200. For this reason, the reflectance of the diffuse reflection surface 1200 is determined by the reflectance of the inner surface 1420 of the substrate 1400.
  • the base material 1400 made of white resin has a function of reflecting the light flux
  • the dispersion of the reflectance of the inner surface 1420 of the base material 1400 is small and the reflectance of the inner surface 1420 of the base material 1400 is high.
  • the variation in reflectance is small, and the reflectance of the diffuse reflection surface 1200 is high.
  • the reason why the variation in the reflectance of the inner surface 1420 of the substrate 1400 is small and the reflectance of the inner surface 1420 of the substrate 1400 is high is that the substrate 1400 is made of white resin and has a sufficient thickness.
  • the coating formed by applying the white paint has a function of reflecting the light beam
  • the variation in the reflectance of the diffuse reflecting surface is small and the reflectance of the diffuse reflecting surface is high. Cannot be compatible.
  • the coating formed by applying white paint is thickened, the reflectance of the diffuse reflection surface increases, but the variation in the film thickness of the coating increases and the variation in the reflectance of the diffuse reflection surface increases.
  • the coating formed by applying a white paint is thinned, the variation in the coating thickness is reduced and the variation in the reflectance of the diffuse reflecting surface is reduced, but the reflectance of the diffuse reflecting surface is reduced.
  • the small variation in the reflectance of the diffuse reflection surface 1200 contributes to increasing the ability of the integrating sphere 1021 to uniformize the light flux.
  • the high reflectance of the diffuse reflection surface 1200 also contributes to increasing the ability of the integrating sphere 1021 to make the light flux uniform. This is because when the reflectance of the diffuse reflection surface 1200 is high, the number of times that the light flux is diffusely reflected can be increased.
  • the spectral spectrum of the light bundle is the light bundle. Is less affected by the number of times it is diffusely reflected.
  • the variation in the reflectance of the diffuse reflection surface 1200 includes a variation in one integrating sphere 1021 and a variation among many integrating spheres 1021.
  • the variation in one integrating sphere 1021 is small, the ability to make the light beam uniform in one integrating sphere 1021 is improved.
  • the variation between the many integrating spheres 1021 is small, the variation in the ability to uniformize the light flux among the many integrating spheres 1021 becomes small.
  • the dispersion of the mixing ratio of the plurality of raw materials is reduced and the unevenness of mixing of the plurality of raw materials is reduced, so that the resin becomes uniform.
  • the resin is produced in a small amount using a small amount of raw materials by self-mixing, custom order, etc.
  • the dispersion of the mixing ratio of the plurality of raw materials becomes large, and the mixing unevenness of the plurality of raw materials increases. Becomes uneven.
  • the white resin is uniform because it is produced in large quantities using a large amount of raw materials.
  • the base material 1400 is uniform, so that the variation in the reflectance of the diffuse reflection surface 1200 is reduced.
  • the base material 1400 is made of resin, a molded product formed by a mold can be used as the base material 1400 as it is. It is not necessary to change the shape by machining. Thereby, the base material 1400 can be manufactured at low cost.
  • the base material 1400 is made of a resin, it can be manufactured at low cost even when an accessory is provided.
  • the attachment includes a coupling mechanism for coupling other components.
  • the inner surface 1420 of the base material 1400 may not be a uniform rough surface or a uniform mirror surface. For this reason, it is not necessary to perform special processing on the molding surface of the mold, and the mold can be manufactured using a general material. Thereby, a metal mold
  • the transparent matte paint necessary for forming the coating film 1401 is reduced, so that the coating film 1401 can be formed at low cost.
  • transparent matte paint is in great demand, it is produced in large quantities using a large amount of raw materials. For this reason, transparent matte paint is inexpensive and the coating 1401 can be formed inexpensively.
  • the white resin includes a base resin, a white pigment, an inorganic filler, and the like.
  • the base resin, white pigment, inorganic filler and the like are mixed uniformly.
  • the white resin is a compounding type in which a white pigment, an inorganic filler and the like are blended with a base resin. Since the paint adheres to the surface of the compounding type white resin without performing any special ground treatment, the coating 1401 is inexpensive when the coating 1401 is formed on the inner surface 1420 of the base material 1400 made of the compounding type white resin. Can be formed.
  • the compounded white resin may be replaced with a resin that exhibits a white color that is not a compounded type.
  • the white resin is a crystalline resin that is a thermoplastic resin and has a high crystallinity or a large crystal size, and is preferably polystyrene or polyacetal.
  • the reflectance of the white resin is desirably 60% or more, and more desirably 97% or more.
  • the reflectance of 60% corresponds to the reflectance of Palegrey, which is the achromatic color closest to White in the BCRA tile used as the reference color sample of the colorimeter.
  • a reflectance of 97% or more is realized when the white pigment is a titanium oxide powder described later.
  • the integrating sphere efficiency which is the ratio of the amount of light beams emitted from the sphere 1021, increases.
  • the measurement signal-to-noise ratio increases, so that the measurement accuracy increases.
  • Base resin is desirably a thermoplastic resin or a thermosetting resin.
  • the thermoplastic resin is an acrylic resin, a polycarbonate resin, or a liquid crystal polymer resin.
  • the acrylic resin is desirably a polymethyl methacrylate resin, such as Acrypet (registered trademark) VH NW401 manufactured by Mitsubishi Rayon Co., Ltd.
  • the polycarbonate resin is, for example, Iupilon (registered trademark) EHR3100 manufactured by Mitsubishi Engineering Plastics.
  • the liquid crystal polymer resin is desirably a liquid crystal polyester resin, for example, SUMIKASUPER LCP manufactured by Sumitomo Chemical Co., Ltd.
  • Acrylic resin has high light resistance. For this reason, when the base resin is an acrylic resin, the base material 1400 is not easily faded even when the light beam is irradiated for a long time or many times, and the measurement accuracy is not easily lowered over time.
  • Polycarbonate resin has high heat resistance. Therefore, when the base resin is a polycarbonate resin, the base material 1400 is unlikely to deteriorate even when the temperature rises due to irradiation with a light bundle having a large amount of light.
  • a polycarbonate resin having high light resistance developed for a light emitting diode backlight may be used.
  • the liquid crystal polymer resin has high heat resistance and high self-extinguishing properties (flame retardant). Therefore, in the case where the base resin is a liquid crystal polymer resin, the base material 1400 is not easily deteriorated even when a light bundle having a large amount of light is irradiated and the temperature rises. The substrate 1400 does not burn even when overheated.
  • the thermosetting resin is desirably an unsaturated polyester resin or an epoxy resin.
  • the unsaturated polyester resin is, for example, Fulbright CE6000 manufactured by Panasonic Corporation.
  • the epoxy resin is, for example, white mold resin CEL-W-7005 for light-emitting diode reflector manufactured by Hitachi Chemical Co., Ltd.
  • An unsaturated polyester resin or epoxy resin having high light resistance developed for a light emitting diode chip may be used.
  • the white pigment is preferably at least one selected from the group consisting of titanium oxide powder, zinc oxide powder, barium sulfate powder, and calcium carbonate powder, and more preferably titanium oxide powder. It is.
  • titanium oxide powder Since the refractive index of titanium oxide is high, when the white pigment is a titanium oxide powder, the reflectance of the white resin increases even if the amount of white pigment contained in the white resin is small. Titanium oxide powder is readily available and inexpensive.
  • Titanium oxide has a problem of absorbing a short wavelength component belonging to a short wavelength region having a wavelength of about 420 nm or less. However, this problem has little effect on the measurement accuracy. This point will be described.
  • the reflectance of titanium oxide decreases in the short wavelength region where the wavelength is about 420 nm or less. Since the reflectance of titanium oxide decreases in the short wavelength region, when the white pigment is a titanium oxide powder, the reflectance of the white resin decreases in the short wavelength region as shown in FIG. When the reflectance of the white resin is reduced in the short wavelength range, the short wavelength component contained in the light bundle emitted from the integrating sphere 1021 is reduced, so that the measurement signal-to-noise ratio is reduced in the short wavelength range. When the measurement signal-to-noise ratio decreases in the short wavelength region, the measurement accuracy generally decreases.
  • the spectroscopic spectrum is measured in the visible light wavelength range where the wavelength is approximately 380 to 780 nm, and the product of the spectroscopic spectrum and each of the color matching functions xbar, ybar and zbar is integrated with respect to the wavelength. And tristimulus values are determined.
  • the color matching functions xbar, ybar, and zbar do not become zero in the short wavelength region but take small values, the influence of the short wavelength region of the spectral spectrum on the tristimulus values is small. Since the influence of the short wavelength region of the spectral spectrum on the tristimulus value is small, even when the signal-to-noise ratio of the measurement is decreased in the short wavelength region, the measurement accuracy of the tristimulus value hardly decreases.
  • the measurement method is a tristimulus value method
  • the amount of light flux that has passed through a color filter with a spectral transmittance determined so as to obtain a stimulus value reflecting the color matching functions xbar, ybar, and zbar is measured, Tristimulus values are required. Since the color matching functions xbar, ybar and zbar do not become zero in the short wavelength region but take small values, the color filter hardly transmits the short wavelength component. Since the color filter hardly transmits the short wavelength component, the influence of the short wavelength component on the tristimulus value is small. Since the influence of the short wavelength component on the tristimulus value is small, even when the signal-to-noise ratio of the measurement is lowered in the short wavelength region, the measurement accuracy of the tristimulus value is hardly lowered.
  • the transparent matte paint When the transparent matte paint is a two-component paint, it contains a main agent (main component resin), a curing agent, a diluent and a matting agent. The main agent, curing agent, diluent and matting agent are mixed uniformly.
  • the transparent matte paint may be a one-component paint.
  • the transparent matte paint may not belong to the category of one-component paint and two-component paint.
  • the two-component paint includes a main agent (main component resin) and a curing agent.
  • the main agent and the curing agent are provided in an unmixed state with each other and are mixed with each other immediately before painting.
  • the transparent matte paint is a two-component paint
  • the mixed liquid of the main agent and the curing agent is coated on the inner surface 1420 of the base material 1400, and a coating film is formed on the inner surface 1420 of the base material 1400.
  • the main agent and the curing agent chemically react with each other in the coating film, the coating film is cured and a coating film 1401 is formed.
  • the mixed solution may contain a diluent such as thinner. By the diluent, the viscosity of the mixed solution is adjusted to be suitable for coating, and the drying speed of the coating film is adjusted to be suitable for forming the coating film 1401.
  • the transparent matte paint is a two-component paint
  • a complex molecular structure is formed in the film 1401, so the film 1401 is strong and adheres to the ground.
  • the temperature or humidity fluctuates and the film 1401 expands or contracts, or the film 1401 receives an impact during use or transportation. Hard to damage.
  • the two-component paint is classified into an acrylic resin paint, a urethane resin paint, an epoxy resin paint, a silicon resin paint, a fluororesin paint, and the like.
  • the urethane resin paint includes an acrylic urethane resin paint whose main component is an acrylic resin and whose curing agent is a polyisocyanate resin.
  • the silicone resin paint includes an acrylic silicone resin paint in which an acrylic resin and a silicone resin are co-condensed.
  • the coating 1401 has high transparency and high light resistance, and therefore, the variation in the transmittance of the coating 1401 does not increase even when the variation in the thickness of the coating 1401 is large. For this reason, when the two-component paint is an acrylic resin paint, the variation in the reflectance of the diffuse reflection surface 1200 does not increase.
  • the film 1401 has high light resistance, and therefore the film 1401 is hardly yellowed. For this reason, when the two-component paint is an acrylic resin paint, the measurement accuracy is unlikely to decrease even if time passes.
  • the film 1401 has high heat resistance, and therefore the film 1401 is not easily deteriorated even when a light bundle having a large amount of light is irradiated and the temperature rises. For this reason, when the two-component paint is a urethane resin paint or an epoxy resin paint, the measurement accuracy is unlikely to deteriorate even if time elapses.
  • the two-component paint is a silicon resin paint or a fluororesin paint
  • the coating 1401 since the coating 1401 has high contamination resistance, the coating 1401 is formed even when the sample is powder or liquid and the scattered sample enters the space 1170. Keep clean.
  • the matting agent preferably contains one or more types selected from the group consisting of silica fine particles, calcium carbonate fine particles and calcium phosphate fine particles.
  • the matting agent forms a fine unevenness on the surface of the coating 1401 after the matting paint is applied and the coating film is dried, and gives the coating 1401 a function of diffusing the light beam.
  • the lower limit of the particle diameter of the fine particles is desirably 0.2 ⁇ m.
  • the lower limit of the particle diameter of the fine particles of 0.2 ⁇ m is about 1 ⁇ 2 of the lower limit wavelength of the visible light wavelength range in which the wavelength used in the color meter 1000 is 380 to 780 nm.
  • the lower limit of the particle size is selected in this way because, according to Gustav-Me's scattering theory, particles scatter light most efficiently when the particle size is about half the wavelength of light. is there.
  • the upper limit of the particle diameter of the fine particles is not limited, but is selected to be smaller than the film thickness of the coating 1401.
  • the film thickness of the film 1401 is preferably 100 ⁇ m or less, more preferably several tens of ⁇ m, and particularly preferably 25 ⁇ 15 ⁇ m. When the film thickness of the coating film 1401 is within these ranges, the variation in the film thickness of the coating film 1401 is difficult to increase.
  • the film thickness of the coating 1401 of 25 ⁇ m is standard when the coating 1401 is formed by a single coating.
  • the coating 1401 is uniformly formed on the inner surface 1420 of the base material 1400, and the coating 1401 is formed in an island shape so that a part of the inner surface 1420 of the base material 1400 is formed. It is possible to avoid that the coating film 1401 is not formed.
  • the allowable variation width of ⁇ 15 ⁇ m is ⁇ 60% of the target film thickness of 25 ⁇ m.
  • the allowable width of the coating condition is widened, so that the yield rate is improved and the coating 1401 can be formed at a low cost.
  • the texture formed on the molding surface of the mold is transferred to the inner surface of the base material.
  • the diffuse reflection surface can be formed by sandblasting the inner surface of the substrate.
  • the texture formed on the molding surface of the mold is transferred to the inner surface of the substrate, the texture formed on a portion of the inner surface of the substrate that is nearly parallel to the mold release direction is damaged at the time of mold release. Produce.
  • the problem can be avoided by dividing the integrating sphere into a number of pieces, but such a division prevents the integrating sphere from being inexpensively manufactured.
  • the coating 1401 is formed on the inner surface 1420 of the substrate 1400, such a problem does not occur.
  • the graphs in FIGS. 10 and 11 show a case where a transparent matte paint is not applied (white resin + no paint) and a case where a transparent matte paint is applied to form a film (white resin + transparent matte).
  • the spectral reflectance of the white resin is shown for each of the paints 25 ⁇ m).
  • FIG. 11 shows an enlarged view of the reflectance range of 90-100% in FIG.
  • the film thickness is 25 nm.
  • the spectral reflectance when a transparent matte paint is applied is 96% or more except for a short wavelength region where the wavelength is about 420 nm or less. It is almost the same as the spectral reflectance when not painted.
  • the base material 1400 made of white resin can take a function of reflecting the light beam, and the film thickness of the coating film 1401 formed by applying a transparent matte paint is the reflectance of the diffuse reflection surface 1200. Indicates no effect.
  • the graphs of FIGS. 12 and 13 show the spectral reflectance of the film formed by applying a white matte paint for each of the film thicknesses of 66 ⁇ m, 88 ⁇ m, 93 ⁇ m, 110 ⁇ m, 124 ⁇ m, 155 ⁇ m and 186 ⁇ m.
  • the graph of FIG. 13 shows an enlarged view of the reflectance 85-95% range of FIG.
  • the white matte paint is a mixture of a transparent matte paint and a powder of titanium oxide which is a white pigment.
  • the dispersion of the coating 1401 greatly affects the reflectance of the diffuse reflection surface 1200. Moreover, in order to make the film thickness of about 90 ⁇ m, it is necessary to repeat the coating three times or four times. When coating is repeated three times or four times, the variation of the coating becomes large, and the reflectance of the diffuse reflection surface is greatly affected.
  • the measuring head 2000 shown in FIG. 14 is the main part of a handy type colorimeter that employs a diffuse illumination and 0 ° light receiving geometry.
  • the measurement head 2000 includes a pulse xenon lamp 2010, a reflector 2011, a diffuse reflection sphere 2012, a reflected light extraction mechanism 2013, and an optical fiber 2014.
  • a spherical space 2020 is formed, and a sample window 2040 and an opening 2041 are formed.
  • the space 2020 is defined on the inner surface 2050 of the diffuse reflection sphere 2012.
  • the inner surface 2050 is formed as a diffuse reflection surface by coating a transparent matte paint on the inner surface of the substrate in the same manner as already described.
  • the diffuse reflection sphere 2012 constitutes a light beam uniform mechanism.
  • the pulse xenon lamp 2010, the reflector 2011, and the diffuse reflection sphere 2012 constitute an illumination optical system that illuminates the sample.
  • the pulse xenon lamp 2010 emits a light beam.
  • the emitted light beam is incident on the space 2020 after being reflected by the reflector 2011 or without being reflected by the reflector 2011.
  • the incident light bundle is diffused and reflected by the inner surface 2050 while being propagated through the space 2020, and is made uniform.
  • a part of the uniformed light bundle becomes a light bundle of illumination light, and illuminates the sample pressed against the sample window 2040.
  • a part of the uniformed light bundle exits from the opening 2041 and becomes a light bundle of reference light.
  • the beam of reflected light reflected by the sample is extracted by the reflected light extraction mechanism 2013 and guided to the light receiving mechanism by the optical fiber 2014.
  • the reflection optical axis of the reflector 2011 is tilted slightly upward from the direction perpendicular to the central axis 2060 of the space 2020. Thereby, the light flux emitted from the pulse xenon lamp 2010 is prevented from reaching the sample window 2040 without being diffusely reflected.
  • a milky white acrylic plate 2015 may be provided in the space 2020.
  • the milky white acrylic plate 2015 diffuses the light beam when the light beam propagating through the space 2020 passes through the milky white acrylic plate 2015.
  • the milky white acrylic plate 2015 may be replaced with another type of permeable diffusion slope.
  • the milky white acrylic plate 2015 may be replaced with ground glass.
  • FIG. 16 shows a cross section of the illumination mechanism.
  • the illumination mechanism 3000 shown in FIG. 16 constitutes an illumination optical system of a color meter.
  • the illumination mechanism 3000 includes a pulse xenon lamp 3010, an integrating sphere 3011, a field stop 3012, a stop 3013, and an imaging optical system 3014.
  • a spherical space 3020 is formed in the integrating sphere 3011, and an exit window 3030 is formed.
  • a space 3020 is defined on the inner surface 3040 of the integrating sphere 3011.
  • the inner surface 3040 is made into a diffuse reflection surface by applying a white matte paint on the inner surface of the substrate in the same manner as already described.
  • the pulse xenon lamp 3010 is disposed in the space 3020.
  • the integrating sphere 3011 constitutes a light flux uniformizing mechanism.
  • the pulse xenon lamp 3010 emits a light beam.
  • the emitted light bundle propagates through the space 3020, and is diffused and reflected by the inner surface 3040 while being propagated through the space 3020, and is made uniform.
  • the uniformed light beam exits from the exit window 3030.
  • the emitted light bundle is limited by the field stop 3012.
  • the alignment characteristics of the light beam limited by the field stop 3012 are almost complete alignment characteristics of diffused light.
  • the limited light bundle is further limited by the aperture stop 3013. Further, the limited light beam is imaged by the imaging optical system 3014 and illuminates the sample 3060.
  • FIG. 17 shows a cross section of the illumination mechanism.
  • the illumination mechanism 4000 shown in FIG. 17 constitutes an illumination optical system of a color meter.
  • the illumination mechanism 4000 includes a pulse xenon lamp 4010, a concave mirror 4011, a reflection plate 4012, and a collimating optical system 4013.
  • the reflection plate 4012 is disposed so as to close the open portion 4020 of the concave mirror 4011 in the open portion 4020 of the concave mirror 4011.
  • the reflection surface 4030 of the reflection plate 4012 is opposed to the reflection surface 4040 of the concave mirror 4011.
  • Each of the reflecting surface 4040 of the concave mirror 4011 and the reflecting surface 4030 of the reflecting plate 4012 is made a diffusive reflecting surface by coating a transparent matte paint on the inner surface of the substrate in the same manner as already described.
  • the “inner surface” referred to here means a surface that becomes the inner surface in the composite of the base material of the concave mirror 4011 and the base material of the reflector 4012.
  • a hemispherical space 4060 defined by the reflecting surface 4040 of the concave mirror 4011 and the reflecting surface 4030 of the reflecting plate 4012 is formed.
  • An exit window 4070 is formed in the reflection plate 4012.
  • the pulse xenon lamp 4010 is disposed in the space 4060.
  • a complex composed of the concave mirror 4011 and the reflecting plate 4012 constitutes a light beam uniformizing mechanism.
  • the pulse xenon lamp 4010 When the illumination mechanism 4000 illuminates the sample 4080, the pulse xenon lamp 4010 emits a light beam.
  • the emitted light beam propagates in the space 4060, and is diffused and reflected uniformly by the reflecting surface 4040 of the concave mirror 4011 and the reflecting surface 4030 of the reflecting plate 4012 while propagating in the space 4060.
  • the uniformed light beam exits from the exit window 4070.
  • the emitted light bundle is collimated by the collimating optical system 4013 and illuminates the sample 4080.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

The objective of the present invention is to increase the homogeneity of a reflection coefficient of a diffuse reflecting surface possessed by a luminous flux homogenizing mechanism, and to increase the reflection coefficient of a diffuse reflecting surface possessed by a luminous flux homogenizing mechanism, without making the luminous flux homogenizing mechanism costly. An integrating sphere is provided with a base material and a film. A space is formed in the base material. The inner surface of the base material defines the space. The base material comprises a white resin, and reflects luminous flux. The film is formed by coating a transparent matte coating material onto the inner surface of the base material, and said film causes the luminous flux to diffuse.

Description

光線束均一化機構、照明光学系、受光光学系、参照光学系及び測色計Light beam uniformizing mechanism, illumination optical system, light receiving optical system, reference optical system, and colorimeter
 本発明は、光線束均一化機構、照明光学系、受光光学系、参照光学系及び測色計に関する。 The present invention relates to a light flux uniformizing mechanism, an illumination optical system, a light receiving optical system, a reference optical system, and a colorimeter.
 色彩計は、工業製品、食品等の色彩を定量的に測定するために使用される。色彩計においては、試料が照明光の光線束で照明され、試料により反射された反射光の光線束又は試料を透過した透過光の光線束が測定され、測定結果から色彩値が求められる。色彩計においては、照明光の光線束、反射光の光線束等が積分球により均一化される場合がある。例えば、8°方向照明・拡散受光(8°:d)というジオメトリにおいては、試料面の法線と8°をなす方向から照明光の光線束が試料面に入射し、試料面からあらゆる方向に出射する反射光の光線束が積分球により均一化され受光センサーに導かれる。また、拡散照明・8°方向受光(d:8°)というジオメトリにおいては、照明光の光線束が積分球により均一化されあらゆる方向から試料面に入射し、試料面から試料面の法線と8°をなす方向へ出射する反射光の光線束が受光センサーに導かれる。 A color meter is used to quantitatively measure the color of industrial products, foods, and the like. In a colorimeter, a sample is illuminated with a light beam bundle of illumination light, a light beam bundle of reflected light reflected by the sample or a light beam bundle transmitted through the sample is measured, and a color value is obtained from the measurement result. In a colorimeter, the beam bundle of illumination light, the beam bundle of reflected light, and the like may be made uniform by an integrating sphere. For example, in the geometry of 8 ° direction illumination / diffuse light reception (8 °: d), the beam of illumination light enters the sample surface from a direction that makes an angle of 8 ° with the normal of the sample surface, and in all directions from the sample surface. The light flux of the reflected light that exits is made uniform by the integrating sphere and guided to the light receiving sensor. Also, in the geometry of diffuse illumination and 8 ° direction light reception (d: 8 °), the light beam of the illumination light is made uniform by the integrating sphere and incident on the sample surface from all directions, and from the sample surface to the normal of the sample surface. The bundle of reflected light emitted in the direction of 8 ° is guided to the light receiving sensor.
 光線束を均一化する積分球には、球状の空間が形成される。球状の空間を規定する積分球の内面は、白色の拡散反射面になっている。これにより、光線束が、球状の空間に入射し、球状の空間を伝搬する間に積分球の内面に拡散多重反射され、球状の空間から出射する。球状の空間から出射する光線束は、拡散多重反射により均一化される。 A spherical space is formed in the integrating sphere that makes the light flux uniform. The inner surface of the integrating sphere defining the spherical space is a white diffuse reflection surface. As a result, the light beam enters the spherical space, diffusely reflects on the inner surface of the integrating sphere while propagating through the spherical space, and exits from the spherical space. The light beam emitted from the spherical space is made uniform by diffuse multiple reflection.
 特許文献1及び2には、積分球の内面を白色の拡散反射面にするための技術が記載されている。 Patent Documents 1 and 2 describe a technique for making the inner surface of an integrating sphere a white diffuse reflection surface.
 特許文献1に記載された技術においては、積分球の基材の内面に白色のつや消し塗料を塗装することにより被膜が形成される。被膜の表面は、拡散反射面になる。 In the technique described in Patent Document 1, a coating is formed by applying a white matte paint on the inner surface of the base of the integrating sphere. The surface of the coating becomes a diffuse reflection surface.
 特許文献2に記載された技術においては、積分球が白色の多孔質材料からなる。積分球が多孔質材料からなる場合は、パウダー状の原材料を圧縮成形することによりブロック状の基材が作製され、ブロック状の基材の形状を機械加工することにより目的の形状を有する積分球が作製される。機械加工は、形状の変更を行う。機械加工により作製された積分球の内面は、拡散反射面になる。 In the technique described in Patent Document 2, the integrating sphere is made of a white porous material. When the integrating sphere is made of a porous material, a block-like base material is produced by compression molding a powdery raw material, and the integrating sphere having the target shape is obtained by machining the shape of the block-like base material. Is produced. Machining changes the shape. The inner surface of the integrating sphere produced by machining becomes a diffuse reflection surface.
米国特許第3764364号明細書US Pat. No. 3,764,364 特開平5-118911号公報Japanese Patent Laid-Open No. 5-118911
 塗料を塗装することにより被膜が形成される場合は、被膜が厚くなるほど被膜の膜厚のばらつきが大きくなる。このため、特許文献1に記載された技術においては、被膜を厚くした場合は、被膜の膜厚のばらつきが大きくなり、拡散反射面の反射率のばらつきが大きくなり、積分球の光線束を均一化する能力が低下するか、又は、積分球の光線束を均一化する能力の個体差が大きくなる。逆に、被膜を薄くした場合は、拡散反射面の反射率が小さくなり、積分球効率が低下する。特許文献2に記載された技術においては、積分球が高価な多孔質材料からなるため、積分球が高価になる。これらの問題は、積分球以外の光線束均一化機構においても生じる。 When a coating is formed by applying paint, the variation in the coating thickness increases as the coating becomes thicker. For this reason, in the technique described in Patent Document 1, when the coating is thickened, the variation in the thickness of the coating increases, the variation in the reflectance of the diffuse reflection surface increases, and the light flux of the integrating sphere is made uniform. Or the individual difference of the ability to equalize the light flux of the integrating sphere increases. On the other hand, when the coating is made thin, the reflectance of the diffuse reflection surface is reduced, and the integrating sphere efficiency is lowered. In the technique described in Patent Document 2, since the integrating sphere is made of an expensive porous material, the integrating sphere becomes expensive. These problems also occur in a light beam uniformizing mechanism other than an integrating sphere.
 以下に記載される発明は、これらの問題を解決するためになされる。以下に記載される発明が解決しようとする課題は、光線束均一化機構を高価にすることなく、光線束均一化機構が有する拡散反射面の反射率の均一性を高くし、光線束均一化機構が有する拡散反射面の反射率を高くすることである。 The invention described below is made to solve these problems. The problem to be solved by the invention described below is to increase the uniformity of the reflectance of the diffusive reflecting surface of the light beam uniformizing mechanism without making the light beam uniformizing mechanism expensive, and to make the light beam uniform It is to increase the reflectance of the diffuse reflection surface of the mechanism.
 光線束均一化機構は、基材及び被膜を備える。基材には、空間が形成される。基材の内面は、空間を規定する。基材は、白色樹脂からなり、光線束を反射する。被膜は、透明のつや消し塗料を基材の内面に塗装することにより形成され、光線束を拡散する。 The light beam homogenizing mechanism includes a base material and a coating. A space is formed in the substrate. The inner surface of the substrate defines a space. The substrate is made of a white resin and reflects the light beam. The coating is formed by coating a transparent matte paint on the inner surface of the substrate to diffuse the light beam.
 光線束均一化機構を高価にすることなく、光線束均一化機構が有する拡散反射面の反射率の均一性が高くなり、光線束均一化機構が有する拡散反射面の反射率が高くなる。 な く Without making the beam bundle uniforming mechanism expensive, the uniformity of the reflectance of the diffuse reflecting surface of the beam bundle uniforming mechanism is increased, and the reflectance of the diffuse reflecting surface of the beam bundle uniformizing mechanism is increased.
色彩計を示す模式図である。It is a schematic diagram which shows a color meter. 測定機構を示す断面図である。It is sectional drawing which shows a measurement mechanism. 光線束分離機構及び参照光用の受光機構を示す断面図である。It is sectional drawing which shows the light beam separation mechanism and the light-receiving mechanism for reference lights. 積分球及び反射光用の受光機構を示す断面図である。It is sectional drawing which shows the light receiving mechanism for an integrating sphere and reflected light. 積分球及び反射光用の受光機構を示す断面図である。It is sectional drawing which shows the light receiving mechanism for an integrating sphere and reflected light. 測定機構の別例を示す断面図である。It is sectional drawing which shows another example of a measurement mechanism. 光線束分離機構及び参照光用の受光機構の別例を示す断面図である。It is sectional drawing which shows another example of the light beam separation mechanism and the light-receiving mechanism for reference lights. 積分球を示す断面図である。It is sectional drawing which shows an integrating sphere. 分光反射率及び等価関数を示すグラフである。It is a graph which shows a spectral reflectance and an equivalent function. 分光反射率を示すグラフである。It is a graph which shows a spectral reflectance. 分光反射率を示すグラフである。It is a graph which shows a spectral reflectance. 分光反射率を示すグラフである。It is a graph which shows a spectral reflectance. 分光反射率を示すグラフである。It is a graph which shows a spectral reflectance. 測定ヘッドを示す断面図である。It is sectional drawing which shows a measurement head. 測定ヘッドの別例を示す断面図である。It is sectional drawing which shows another example of a measurement head. 照明機構を示す断面図である。It is sectional drawing which shows an illumination mechanism. 照明機構を示す断面図である。It is sectional drawing which shows an illumination mechanism.
 (1)概略
 図1の模式図は、色彩計を示す。図2の模式図は、色彩計を構成する測定機構の縦断面を示す。図3の模式図は、色彩計を構成する光線束分離機構及び参照光用の受光機構の断面を示す。図4及び図5の模式図は、色彩計を構成する積分球及び反射光用の受光機構の断面を示す。図5は、反射光用の受光機構の付近を拡大して示す。
(1) Outline The schematic diagram of FIG. 1 shows a colorimeter. The schematic diagram of FIG. 2 shows the longitudinal cross section of the measuring mechanism which comprises a color meter. The schematic diagram of FIG. 3 shows a cross section of a light beam separating mechanism and a light receiving mechanism for reference light that constitute the colorimeter. The schematic diagrams of FIGS. 4 and 5 show cross sections of the integrating sphere and the light receiving mechanism for reflected light that constitute the colorimeter. FIG. 5 shows an enlarged view of the vicinity of the light receiving mechanism for reflected light.
 図1に示される色彩計1000は、測定機構1010及びコントローラー1011を備える。測定機構1010は、図1及び図2に示されるように、照明機構1020、積分球1021、反射光用の受光機構1022及び参照光用の受光機構1023を備える。照明機構1020は、放射機構1030、光線束分離機構1031及び結像光学系1032を備える。放射機構1030及び結像光学系1032は、照明光学系を構成する。光線束分離機構1031及び参照光用の受光機構1023は、参照光学系を構成する。積分球1021及び反射光用の受光機構1022は、受光光学系を構成する。 1 includes a measurement mechanism 1010 and a controller 1011. The color meter 1000 shown in FIG. As shown in FIGS. 1 and 2, the measurement mechanism 1010 includes an illumination mechanism 1020, an integrating sphere 1021, a light receiving mechanism 1022 for reflected light, and a light receiving mechanism 1023 for reference light. The illumination mechanism 1020 includes a radiation mechanism 1030, a light beam separation mechanism 1031 and an imaging optical system 1032. The radiation mechanism 1030 and the imaging optical system 1032 constitute an illumination optical system. The beam bundle separating mechanism 1031 and the light receiving mechanism 1023 for reference light constitute a reference optical system. The integrating sphere 1021 and the light receiving mechanism 1022 for reflected light constitute a light receiving optical system.
 放射機構1030は、拡散光線束を放射する。拡散光線束とは、拡散反射されることにより均一化された光線束であり、望ましくは拡散多重反射されることにより均一化された光線束である。光線束分離機構1031は、放射された拡散光線束を照明光の光線束1041と参照光の光線束1042とに分離する。結像光学系1032は、照明光の光線束1041を結像させる。これにより、照明機構1020は、照明光の光線束1041で試料を照明する。 The radiation mechanism 1030 emits a diffused beam. The diffuse beam bundle is a beam bundle made uniform by diffuse reflection, and preferably a beam bundle made uniform by diffuse multiple reflection. The beam bundle separation mechanism 1031 separates the emitted diffuse beam bundle into a beam bundle 1041 for illumination light and a beam bundle 1042 for reference light. The imaging optical system 1032 forms an image of the light beam 1041 of the illumination light. Thereby, the illumination mechanism 1020 illuminates the sample with the light beam 1041 of the illumination light.
 積分球1021は、試料により反射された反射光の光線束1043を拡散反射してから反射光用の受光機構1022へ導く。反射光用の受光機構1022は、反射光の光線束1043を受光し、反射光の三刺激値X,Y及びZの測定結果を出力する。参照光用の受光機構1023は、参照光の光線束1042を受光し、参照光の三刺激値X,Y及びZの測定結果を出力する。これにより、測定機構1010は、反射光の三刺激値X,Y及びZの測定結果及び参照光の三刺激値X,Y及びZの測定結果を出力する。 The integrating sphere 1021 diffuses and reflects the light beam 1043 of the reflected light reflected by the sample and then guides it to the light receiving mechanism 1022 for the reflected light. The light receiving mechanism 1022 for reflected light receives the reflected light bundle 1043 and outputs the measurement results of the tristimulus values X, Y, and Z of the reflected light. The reference light receiving mechanism 1023 receives the reference light beam 1042 and outputs the measurement results of the tristimulus values X, Y, and Z of the reference light. Thereby, the measurement mechanism 1010 outputs the measurement result of the tristimulus values X, Y, and Z of the reflected light and the measurement result of the tristimulus values X, Y, and Z of the reference light.
 コントローラー1011は、放射機構1030による拡散光線束の放射を制御する。また、コントローラー1011は、反射光の三刺激値X,Y及びZの測定結果並びに参照光の三刺激値X,Y及びZの測定結果を取得し、反射光の三刺激値X,Y及びZの測定結果から色彩値を導出する。色彩値が導出される場合は、参照光の三刺激値X,Y及びZの測定結果による補正が行われる。これにより、色彩値が照明光の変動の影響を受けにくくなる。 The controller 1011 controls the radiation of the diffuse light beam by the radiation mechanism 1030. Further, the controller 1011 acquires the measurement results of the tristimulus values X, Y, and Z of the reflected light and the measurement results of the tristimulus values X, Y, and Z of the reference light, and the tristimulus values X, Y, and Z of the reflected light. The color value is derived from the measurement result. When the color value is derived, correction based on the measurement results of the tristimulus values X, Y and Z of the reference light is performed. This makes the color value less susceptible to illumination light fluctuations.
 (2)放射機構
 放射機構1030は、パルスキセノンランプ1050、反射傘1051及び拡散板1052を備える。パルスキセノンランプ1050は、光線束を放射する。反射傘1051は、光線束を拡散反射する。拡散板1052は、光線束を拡散し拡散光線束にする。
(2) Radiation mechanism The radiation mechanism 1030 includes a pulse xenon lamp 1050, a reflector 1051, and a diffusion plate 1052. The pulse xenon lamp 1050 emits a light beam. The reflector 1051 diffusely reflects the light beam. The diffusing plate 1052 diffuses the light beam into a diffused beam beam.
 パルスキセノンランプ1050は、閃光を放射する。閃光が放射される場合は、試料が短時間に大光量で照明され、測定の信号対ノイズ比が改善する。パルスキセノンランプ1050が他の種類の光源に置き換えられてもよい。例えば、パルスキセノンランプ1050がタングステンランプ、発光ダイオード等に置き換えられてもよい。 The pulse xenon lamp 1050 emits flash light. When flash is emitted, the sample is illuminated with a large amount of light in a short time, improving the signal-to-noise ratio of the measurement. The pulse xenon lamp 1050 may be replaced with another type of light source. For example, the pulse xenon lamp 1050 may be replaced with a tungsten lamp, a light emitting diode, or the like.
 反射傘1051は、拡散反射面1060を有する。反射傘1051が傘とは言い難い形状を有する反射鏡に置き換えられてもよい。 The reflector 1051 has a diffuse reflection surface 1060. The reflector 1051 may be replaced with a reflector having a shape that is difficult to say as an umbrella.
 パルスキセノンランプ1050が光線束を放射する場合は、拡散板1052に向かって放射される光線束が、拡散板1052に拡散され、拡散光線束にされる。また、拡散反射面1060に向かって放射される光線束が、拡散反射面1060に拡散反射され、拡散光線束にされ、拡散反射面1060から拡散板1052に向かって出射する光線束が、拡散板1052により拡散され、さらに均一化された拡散光線束にされる。これにより、パルスキセノンランプ1050が放射する光線束が効率よく利用される。 When the pulse xenon lamp 1050 emits a light beam, the light beam emitted toward the diffusion plate 1052 is diffused to the diffusion plate 1052 to be a diffusion light beam. The light beam emitted toward the diffuse reflection surface 1060 is diffused and reflected by the diffuse reflection surface 1060 to form a diffuse light beam, and the light beam emitted from the diffuse reflection surface 1060 toward the diffusion plate 1052 is diffused. It is diffused by 1052 and is made into a further uniformed diffused light bundle. Thereby, the light flux emitted from the pulse xenon lamp 1050 is efficiently used.
 パルスキセノンランプ1050は、放電灯である。放電灯においては、放電の経路が閃光の放射ごとに異なるため、閃光の放射源が閃光の放射ごとに異なる。放射機構1030においては、パルスキセノンランプ1050が放射する光線束が拡散反射面1060により拡散反射され拡散板1052により拡散されるため、拡散光線束が閃光の放射源の影響を受けにくい。 The pulse xenon lamp 1050 is a discharge lamp. In a discharge lamp, since the discharge path differs for each flash radiation, the flash radiation source differs for each flash radiation. In the radiation mechanism 1030, the light flux emitted from the pulse xenon lamp 1050 is diffusely reflected by the diffuse reflection surface 1060 and diffused by the diffuser plate 1052, so that the diffuse light flux is not easily affected by the flash radiation source.
 (3)光線束分離機構
 光線束分離機構1031は、図2及び図3に示されるように、角筒状構造物1070及び取り付け機構1071を備える。
(3) Ray bundle separating mechanism As shown in FIGS. 2 and 3, the ray bundle separating mechanism 1031 includes a rectangular tubular structure 1070 and an attachment mechanism 1071.
 角筒状構造物1070に形成される空間1080は、角筒状構造物1070の内周面1090に規定され、一端に入射口1100を有し、他端に出射口1101を有する。空間1080の矢印1110で示される光軸方向と垂直をなす断面の形状は、矩形状であり、光軸方向に進んでも一定である。空間1080は、光軸方向にまっすぐに伸び、入射口1100から出射口1101へ至る。空間1080の断面の形状が一定であり空間1080がまっすぐに伸びる場合は、出射口1101の全体が入射口1100から見通される。出射口1101の全体が入射口1100から見通される場合は、入射口1100に入射し、内周面1090に反射されることなく空間1080を進み、出射口1101から出射する光線束が存在する。空間1080の断面の形状が一定でない場合又は空間1080がまっすぐに伸びない場合は、出射口1101の全体が入射口1100から見通されない場合がある。しかし、出射口1101の一部が入射口1100から見通される場合も、入射口1100に入射し、内周面1090に反射されることなく空間1080を進み、出射口1101から出射する光線束が存在する。一の位置が他の位置から見通されるとは、一の位置と他の位置とを結ぶ直線上に光線の遮蔽物がなく、他の位置から一の位置へ光線が直接的に到達することをいう。 A space 1080 formed in the rectangular tube-shaped structure 1070 is defined on the inner peripheral surface 1090 of the rectangular tube-shaped structure 1070, and has an incident port 1100 at one end and an output port 1101 at the other end. The shape of the cross section perpendicular to the optical axis direction indicated by the arrow 1110 in the space 1080 is a rectangular shape, and is constant even when going in the optical axis direction. The space 1080 extends straight in the optical axis direction and extends from the entrance 1100 to the exit 1101. When the cross-sectional shape of the space 1080 is constant and the space 1080 extends straight, the entire exit port 1101 is seen from the entrance port 1100. When the entire exit port 1101 is seen from the entrance port 1100, there is a light flux that enters the entrance port 1100, travels through the space 1080 without being reflected by the inner peripheral surface 1090, and exits from the exit port 1101. When the cross-sectional shape of the space 1080 is not constant or when the space 1080 does not extend straight, the entire exit port 1101 may not be seen through the entrance port 1100. However, even when a part of the exit port 1101 is seen through the entrance port 1100, there is a light beam that enters the entrance port 1100, travels through the space 1080 without being reflected by the inner peripheral surface 1090, and exits from the exit port 1101. To do. When one position is seen from another position, it means that there is no light shielding object on the straight line connecting one position and the other position, and that the light beam directly reaches the one position from the other position. Say.
 内周面1090は、拡散反射面1120を有する。望ましくは内周面1090の全体が拡散反射面1120であるが、内周面1090が拡散反射面1120でない面をわずかに有してもよい。 The inner peripheral surface 1090 has a diffuse reflection surface 1120. Desirably, the entire inner peripheral surface 1090 is the diffuse reflection surface 1120, but the inner peripheral surface 1090 may have a slight surface that is not the diffuse reflection surface 1120.
 角筒状構造物1070に形成される開口1130,1131及び1132は、それぞれ一端に入口1140,1141及び1142を有し、それぞれ他端に出口1150,1151及び1152を有し、角筒状構造物1070の内周面1090から角筒状構造物1070の外周面1091へ至る。入口1140,1141及び1142は、内周面1090にある。出口1150,1151及び1152は、外周面1091にある。拡散反射面1120は、出口1150,1151及び1152の各々から見通される。開口1130,1131及び1132は、光軸方向と垂直をなす方向に伸びる。拡散反射面1120が出口1150,1151及び1152の各々から見通される場合は、入射口1100に入射し、空間1080を進み、空間1080を進む間に拡散反射面1120に拡散反射され、入口1140,1141及び1142に入射し、開口1130,1131及び1132を進み、出口1150,1151及び1152から出射する光線束が存在する。開口1130,1131及び1132が、開口1130,1131及び1132をつなげたようなスリット状の開口に置き換えられてもよい。 The openings 1130, 1131 and 1132 formed in the rectangular tubular structure 1070 have inlets 1140, 1141 and 1142 at one end and outlets 1150, 1151 and 1152 at the other ends, respectively. The inner peripheral surface 1090 of 1070 extends to the outer peripheral surface 1091 of the rectangular tubular structure 1070. The inlets 1140, 1141 and 1142 are in the inner peripheral surface 1090. Outlets 1150, 1151, and 1152 are on the outer peripheral surface 1091. Diffuse reflecting surface 1120 is seen from each of outlets 1150, 1151, and 1152. The openings 1130, 1131 and 1132 extend in a direction perpendicular to the optical axis direction. When the diffuse reflection surface 1120 is seen through each of the exits 1150, 1151, and 1152, the light enters the entrance 1100, travels through the space 1080, and is diffusely reflected by the diffuse reflection surface 1120 while traveling through the space 1080, and the entrances 1140, 1141. And 1142, travel through apertures 1130, 1131, and 1132, and exit from exits 1150, 1151, and 1152. The openings 1130, 1131, and 1132 may be replaced with slit-shaped openings that connect the openings 1130, 1131, and 1132.
 入射口1100には、放射機構1030が放射した拡散光線束が入射する。拡散光線束が入射口1100に入射する場合は、出射口1101を見通す方向に進む光線束が、拡散反射面1120に拡散反射されることなく空間1080を進み、出射口1101から出射し、照明光の光線束1041になる。また、出射口1101を見通す方向以外に進む光線束が、空間1080を進み、空間1080を進む間に拡散反射面1120に拡散反射され、入口1140,1141及び1142に入射し、開口1130,1131及び1132を進み、出口1150,1151及び1152から出射し、参照光の光線束1042になる。出射口1101を見通す方向以外に進む光線束が参照光の光線束1042になる場合は、照明光の光線束1041になることができない光線束が参照光の光線束1042になり、照明光の光線束1041の光量に影響を与えることなく参照光の光線束1042が得られる。 The diffused light beam radiated by the radiation mechanism 1030 is incident on the entrance 1100. When the diffused light beam is incident on the incident port 1100, the light beam traveling in the direction of looking through the output port 1101 travels through the space 1080 without being diffusely reflected by the diffuse reflection surface 1120, and is emitted from the output port 1101. Of the light beam 1041. In addition, the light beam traveling in a direction other than the direction through which the exit port 1101 is seen travels through the space 1080 and is diffused and reflected by the diffuse reflection surface 1120 while traveling through the space 1080, and enters the entrances 1140, 1141 and 1142, and the openings 1130, 1131 and Proceeding 1132, the light exits from the exits 1150, 1151, and 1152 to become a light beam 1042 of reference light. When the light beam traveling in a direction other than the direction through which the exit port 1101 is viewed becomes the light beam 1042 of the reference light, the light beam that cannot be the light beam 1041 of the illumination light becomes the light beam 1042 of the reference light, and the light beam of the illumination light The beam bundle 1042 of the reference light is obtained without affecting the light quantity of the bundle 1041.
 入射口1100に入射し、空間1080を進み、空間1080を進む間に拡散反射面1120に拡散反射され、出射口1101から出射する光線束が照明光の光線束1041の一部となってもよい。これにより、測定の信号対ノイズ比が改善される。 The light beam that enters the incident port 1100, travels through the space 1080, is diffusely reflected by the diffuse reflection surface 1120 while traveling through the space 1080, and the light beam emitted from the output port 1101 may be part of the light beam 1041 of the illumination light. . This improves the measurement signal-to-noise ratio.
 入射口1100は、出口1150,1151及び1152から見通されない。入射口1100が出口1150,1151及び1152から見通されない場合は、入射口1100から出口1150,1151及び1152へ光線束が直接に到達せず、参照光の光線束1042が均一化される。 The entrance 1100 is not seen through the exits 1150, 1151 and 1152. When the entrance 1100 is not seen through the exits 1150, 1151 and 1152, the light bundle does not directly reach the exits 1150, 1151 and 1152 from the entrance 1100, and the light bundle 1042 of the reference light is made uniform.
 参照光の光線束1042の光量を大きくすることが望まれる場合は、出口1150,1151及び1152から見通される拡散反射面1120の面積を大きくするために、空間1080が光軸方向に延長され、開口1130,1131及び1132の径が拡大される。これにより、測定の信号対ノイズ比が改善される。参照光の光線束1042の光量は入射口1100の面積と空間1080の光軸方向の長さとの積に比例するため、参照光の光線束1042の光量を大きくするために照明機構1020が過度に大きくなることはない。 When it is desired to increase the amount of the light beam 1042 of the reference light, the space 1080 is extended in the optical axis direction in order to increase the area of the diffuse reflection surface 1120 seen from the exits 1150, 1151, and 1152. The diameters of 1130, 1131 and 1132 are enlarged. This improves the measurement signal-to-noise ratio. Since the amount of the light beam 1042 of the reference light is proportional to the product of the area of the entrance 1100 and the length of the space 1080 in the optical axis direction, the illumination mechanism 1020 excessively increases the light amount of the light beam 1042 of the reference light. It will never grow.
 角筒状構造物1070が他の種類の構造物に置き換えられてもよい。例えば、角筒状構造物1070が円筒状構造物に置き換えられてもよい。 The square cylindrical structure 1070 may be replaced with another type of structure. For example, the rectangular tubular structure 1070 may be replaced with a cylindrical structure.
 取り付け機構1071には、参照光用の受光機構1023が取り付けられる。 A light receiving mechanism 1023 for reference light is attached to the attachment mechanism 1071.
 (4)結像光学系
 結像光学系1032は、図2に示されるように、視野絞り1160、開口絞り1161、レンズ1162及び鏡筒1163を備える。視野絞り1160及び開口絞り1161は、照明光の光線束1041を制限する。レンズ1162は、照明光の光線束1041を結像させる。鏡筒1163は、視野絞り1160、開口絞り1161及びレンズ1162を支持する。視野絞り1160により、照明光の光線束1041で照明される視野が調整される。開口絞り1161により、開口数が調整される。
(4) Imaging Optical System The imaging optical system 1032 includes a field stop 1160, an aperture stop 1161, a lens 1162, and a lens barrel 1163 as shown in FIG. The field stop 1160 and the aperture stop 1161 limit the beam bundle 1041 of the illumination light. The lens 1162 forms an image of the light beam 1041 of the illumination light. The lens barrel 1163 supports the field stop 1160, the aperture stop 1161, and the lens 1162. The field stop illuminated by the beam bundle 1041 of the illumination light is adjusted by the field stop 1160. The numerical aperture is adjusted by the aperture stop 1161.
 視野絞り1160、開口絞り1161及びレンズ1162以外の光学素子が結像光学系1032に追加されてもよい。例えば、図6に示されるように、開口絞り1161の前に拡散板1164が追加されてもよい。 Optical elements other than the field stop 1160, the aperture stop 1161, and the lens 1162 may be added to the imaging optical system 1032. For example, as shown in FIG. 6, a diffusion plate 1164 may be added in front of the aperture stop 1161.
 結像光学系1032が照明光の光線束1041をコリメート化するコリメート光学系に置き換えられてもよい。 The imaging optical system 1032 may be replaced with a collimating optical system that collimates the light beam 1041 of the illumination light.
 (5)積分球
 積分球1021は、図2及び図4に示されるように、中空球状の構造物である。
(5) Integrating Sphere The integrating sphere 1021 is a hollow spherical structure as shown in FIGS.
 積分球1021に形成される空間1170は、積分球1021の内面1180に規定される。空間1170の形状は、球状である。積分球1021に形成される試料窓1190は、積分球1021に形成される照明窓1191から見通される。試料窓1190及び照明窓1191は、積分球1021に形成される受光窓1192から見通されない。照明窓1191には、照明機構1020が結合される。受光窓1192には、反射光用の受光機構1022が取り付けられる。 The space 1170 formed in the integrating sphere 1021 is defined on the inner surface 1180 of the integrating sphere 1021. The shape of the space 1170 is spherical. A sample window 1190 formed on the integrating sphere 1021 is seen from an illumination window 1191 formed on the integrating sphere 1021. The sample window 1190 and the illumination window 1191 are not seen through the light receiving window 1192 formed in the integrating sphere 1021. An illumination mechanism 1020 is coupled to the illumination window 1191. A light receiving mechanism 1022 for reflected light is attached to the light receiving window 1192.
 内面1180は、拡散反射面1200を有する。望ましくは内面1180の全体が拡散反射面1200であるが、内面1180が拡散反射面1200でない面をわずかに有してもよい。 The inner surface 1180 has a diffuse reflection surface 1200. Desirably, the entire inner surface 1180 is the diffuse reflection surface 1200, but the inner surface 1180 may have a slight surface that is not the diffuse reflection surface 1200.
 照明機構1020が照明光の光線束1041を放射する場合は、照明光の光線束1041が、照明窓1191に入射し、内面1180に反射されることなく空間1170を進み、試料窓1190に至る。試料窓1190に試料がある場合は、試料窓1190に至った照明光の光線束1041により試料が照明され、試料が反射光の光線束1043を反射する。反射光の光線束1043は、空間1170を伝搬し、空間1170を伝搬する間に拡散反射面1200に拡散反射され、受光窓1192から出射する。 When the illumination mechanism 1020 emits a light beam 1041 of illumination light, the light beam 1041 of illumination light enters the illumination window 1191, travels through the space 1170 without being reflected by the inner surface 1180, and reaches the sample window 1190. When there is a sample in the sample window 1190, the sample is illuminated by the beam bundle 1041 of the illumination light reaching the sample window 1190, and the sample reflects the beam bundle 1043 of the reflected light. The reflected light bundle 1043 propagates through the space 1170, is diffusely reflected by the diffuse reflection surface 1200 while propagating through the space 1170, and exits from the light receiving window 1192.
 (6)反射光用の受光機構
 反射光用の受光機構1022は、図5に示されるように、センサーユニット1210を備える。
(6) Light receiving mechanism for reflected light The light receiving mechanism 1022 for reflected light includes a sensor unit 1210 as shown in FIG.
 センサーユニット1210は、フィルター1220,1221及び1222、絞り1230,1231及び1232、受光センサー1240,1241及び1242並びに構造物1250を備える。 The sensor unit 1210 includes filters 1220, 1221 and 1222, stops 1230, 1231 and 1232, light receiving sensors 1240, 1241 and 1242, and a structure 1250.
 フィルター1220,1221及び1222は、それぞれ構造物1250に形成される孔1260,1261及び1262に挿入され、構造物1250により支持される。絞り1230,1231及び1232は、それぞれ構造物1250に形成される孔1260,1261及び1262に挿入され、構造物1250により支持される。受光センサー1240,1241及び1242は、それぞれ構造物1250に形成される孔1260,1261及び1262に挿入され、構造物1250により支持される。 The filters 1220, 1221, and 1222 are inserted into holes 1260, 1261, and 1262 formed in the structure 1250, respectively, and are supported by the structure 1250. The apertures 1230, 1231, and 1232 are inserted into holes 1260, 1261, and 1262 formed in the structure 1250, respectively, and are supported by the structure 1250. The light receiving sensors 1240, 1241, and 1242 are inserted into holes 1260, 1261, and 1262 formed in the structure 1250, respectively, and are supported by the structure 1250.
 構造物1250に形成される絞り1270、フィルター1220、絞り1230及び受光センサー1240は、刺激値Xを測定する測定系を構成する。構造物1250に形成される絞り1271、フィルター1221、絞り1231及び受光センサー1241は、刺激値Yを測定する測定系を構成する。構造物1250に形成される絞り1272、フィルター1222、絞り1232及び受光センサー1242は、刺激値Zを測定する測定系を構成する。 The diaphragm 1270, the filter 1220, the diaphragm 1230, and the light receiving sensor 1240 formed on the structure 1250 constitute a measurement system that measures the stimulus value X. The diaphragm 1271, the filter 1221, the diaphragm 1231, and the light receiving sensor 1241 formed on the structure 1250 constitute a measurement system that measures the stimulus value Y. The diaphragm 1272, the filter 1222, the diaphragm 1232, and the light receiving sensor 1242 formed in the structure 1250 constitute a measurement system that measures the stimulus value Z.
 刺激値Xを測定する測定系、刺激値Yを測定する測定系及び刺激値Zを測定する測定系の共通点を刺激値Yを測定する測定系を例にとって説明する。 The common points of the measurement system that measures the stimulus value X, the measurement system that measures the stimulus value Y, and the measurement system that measures the stimulus value Z will be described by taking a measurement system that measures the stimulus value Y as an example.
 絞り1271、フィルター1221、絞り1231及び受光センサー1241は、記載された順序で配列される。 The aperture 1271, the filter 1221, the aperture 1231, and the light receiving sensor 1241 are arranged in the order described.
 反射光の光線束1043が孔1261に入射した場合は、反射光の光線束1043が、孔1261を進み、孔1261を進む間に絞り1271、フィルター1221及び絞り1231を記載された順序で通過し、受光センサー1241に受光される。絞り1271及び1231は、反射光の光線束1043を制限する。受光センサー1241は、反射光の光線束1043を受光し、受光量に応じた信号を出力する。これにより、刺激値Yが測定される。絞り1271及び1231により、反射光の光線束1043のフィルター1221への入射角が小さくなる。すなわち、反射光の光線束1043がフィルター1221に略垂直に入射する。 When the reflected light beam 1043 enters the hole 1261, the reflected light beam 1043 passes through the aperture 1261 and passes through the aperture 1271, the filter 1221, and the aperture 1231 in the order described. The light receiving sensor 1241 receives the light. The diaphragms 1271 and 1231 limit the beam bundle 1043 of the reflected light. The light receiving sensor 1241 receives the reflected light bundle 1043 and outputs a signal corresponding to the amount of received light. Thereby, the stimulus value Y is measured. By the apertures 1271 and 1231, the incident angle of the reflected light beam 1043 to the filter 1221 is reduced. That is, the reflected light bundle 1043 is incident on the filter 1221 substantially perpendicularly.
 センサーユニット1210の動作角θ1、すなわち、絞り1271及び1231を通過する光線束の開き角θ1は、照明窓1191に入射した照明光の光線束1041が受光センサー1241に受光されず、反射光の光線束1043が拡散反射面1200に拡散反射されることなく受光センサー1241に受光されることがないように設定される。これにより、反射光の光線束1043は、拡散反射により均一に混合されてから受光センサー1241に受光される。開き角θ1は、この条件を満たす範囲で大きく設定され、例えば約40°に設定される。これにより、拡散反射面1200の広い範囲から反射光の光線束1043が取り込まれ、測定の信号対ノイズ比が改善される。 The operating angle θ 1 of the sensor unit 1210, that is, the opening angle θ 1 of the light beam passing through the apertures 1271 and 1231, the light beam 1041 of the illumination light incident on the illumination window 1191 is not received by the light receiving sensor 1241 and the reflected light beam The bundle 1043 is set not to be diffusely reflected by the diffuse reflection surface 1200 and received by the light receiving sensor 1241. As a result, the light flux 1043 of the reflected light is uniformly mixed by diffuse reflection and then received by the light receiving sensor 1241. The opening angle θ1 is set large within a range that satisfies this condition, and is set to about 40 °, for example. Thereby, the light flux 1043 of the reflected light is taken in from a wide range of the diffuse reflection surface 1200, and the measurement signal-to-noise ratio is improved.
 (7)参照光用の受光機構
 参照光用の受光機構1023は、図3に示されるように、拡散板1280及びセンサーユニット1281を備える。
(7) Light receiving mechanism for reference light The light receiving mechanism 1023 for reference light includes a diffusion plate 1280 and a sensor unit 1281 as shown in FIG.
 拡散板1280は、開口1130,1131及び1132とセンサーユニット1281との間に配置され、参照光の光線束1042を拡散する。 The diffusion plate 1280 is disposed between the openings 1130, 1131, and 1132 and the sensor unit 1281, and diffuses the light beam 1042 of the reference light.
 センサーユニット1281は、フィルター1290,1291及び1292、絞り1300,1301及び1302、受光センサー1310,1311及び1312並びに構造物1320を備える。構造物1320には、絞り1330,1331及び1332が形成され、孔1340,1341及び1342が形成される。 The sensor unit 1281 includes filters 1290, 1291 and 1292, stops 1300, 1301 and 1302, light receiving sensors 1310, 1311 and 1312, and a structure 1320. In the structure 1320, apertures 1330, 1331 and 1332 are formed, and holes 1340, 1341 and 1342 are formed.
 センサーユニット1281は、センサーユニット1210と同型である。センサーユニット1281がセンサーユニット1210と同型であることは、色彩計1000の製造費用を減少させる。 The sensor unit 1281 is the same type as the sensor unit 1210. The sensor unit 1281 being the same type as the sensor unit 1210 reduces the manufacturing cost of the color meter 1000.
 参照光用の受光機構1023が参照光の光線束1042を受光した場合は、拡散板1280が参照光の光線束1042を拡散する。拡散された参照光の光線束1042は、孔1340,1341及び1342に入射する。拡散板1280により、出口1150,1151及び1152から受光センサー1310,1311及び1312へ向かう方向以外に向かう光線束の一部が受光センサー1310,1311及び1312へ向かい、測定の信号対ノイズ比が改善される。 When the reference light receiving mechanism 1023 receives the light beam 1042 of the reference light, the diffusion plate 1280 diffuses the light beam 1042 of the reference light. The diffused beam of reference light 1042 is incident on the holes 1340, 1341 and 1342. The diffuser plate 1280 causes a part of the light beam that travels in a direction other than the direction from the outlets 1150, 1151, and 1152 to the light receiving sensors 1310, 1311, and 1312 to the light receiving sensors 1310, 1311, and 1312, thereby improving the measurement signal-to-noise ratio. The
 センサーユニット1281がセンサーユニット1210と同型である場合は、センサーユニット1281が絞り1300,1301及び1302並びに絞り1330,1331及び1332を有するため、受光センサー1310,1311及び1312が出口1150,1151及び1152から離して設置される。受光センサー1310,1311及び1312が出口1150,1151及び1152から離して設置される場合は、出口1150,1151及び1152から受光センサー1310,1311及び1312へ向かう方向以外に向かう光線束が増加するため、受光センサー1310,1311及び1312に受光される光線束が減少し、測定の信号対ノイズ比が悪化する。拡散板1280は、このような受光される光線束の減少を抑制する。 When the sensor unit 1281 is the same type as the sensor unit 1210, the sensor unit 1281 includes the diaphragms 1300, 1301, and 1302 and the diaphragms 1330, 1331, and 1332, so that the light receiving sensors 1310, 1311, and 1312 are connected from the outlets 1150, 1151, and 1152. Installed away. When the light receiving sensors 1310, 1311, and 1312 are installed apart from the outlets 1150, 1151, and 1152, the light flux that goes in a direction other than the direction from the outlets 1150, 1151, and 1152 toward the light receiving sensors 1310, 1311, and 1312 increases. The light flux received by the light receiving sensors 1310, 1311 and 1312 decreases, and the measurement signal-to-noise ratio deteriorates. The diffuser plate 1280 suppresses such a decrease in received light flux.
 センサーユニット1281がセンサーユニット1210と同型でないセンサーユニットに置き換えられてもよい。センサーユニット1281がセンサーユニット1210と同型でないセンサーユニットに置き換えられる場合は、望ましくはセンサーユニット1281が絞りを備えないセンサーユニットに置き換えられる。 The sensor unit 1281 may be replaced with a sensor unit that is not the same type as the sensor unit 1210. When the sensor unit 1281 is replaced with a sensor unit that is not the same type as the sensor unit 1210, the sensor unit 1281 is preferably replaced with a sensor unit without an aperture.
 図7の模式図は、センサーユニットが絞りを備えないセンサーユニットに置き換えられた場合の光線束分離機構及び参照光用の受光機構の断面を示す。 The schematic diagram of FIG. 7 shows a cross section of the light beam separation mechanism and the light receiving mechanism for reference light when the sensor unit is replaced with a sensor unit that does not have a diaphragm.
 図7に示されるセンサーユニット1350は、受光センサー1360,1361及び1362並びにフィルター1370,1371及び1372を備える。受光センサー1360,1361及び1362は、出口1150,1151及び1152に近づけて設置される。 The sensor unit 1350 shown in FIG. 7 includes light receiving sensors 1360, 1361, and 1362 and filters 1370, 1371, and 1372. The light receiving sensors 1360, 1361 and 1362 are installed close to the outlets 1150, 1151 and 1152.
 (8)測定方式の変更
 反射光用の受光機構1022及び参照光用の受光機構1023の各々の測定方式が三刺激値方式から分光方式に変更されてもよい。反射光用の受光機構1022及び参照光用の受光機構1023の測定方式が分光方式である場合は、反射光用の受光機構1022及び参照光用の受光機構1023が回折格子、プリズム等の波長分散素子を備えるポリクロメーター等をそれぞれ備える。反射光用の受光機構1022及び参照光用の受光機構1023の測定方式が分光方式に変更された場合は、反射光用の受光機構1022及び参照光用の受光機構1023が分光スペクトルをそれぞれ測定し、色彩計が分光測色計になる。測色計は、色彩計及び分光測色計に大別される。
(8) Change of measurement method Each measurement method of the light receiving mechanism 1022 for reflected light and the light receiving mechanism 1023 for reference light may be changed from the tristimulus value method to the spectroscopic method. When the measurement method of the light receiving mechanism 1022 for reflected light and the light receiving mechanism 1023 for reference light is a spectroscopic method, the light receiving mechanism 1022 for reflected light and the light receiving mechanism 1023 for reference light have wavelength dispersion such as a diffraction grating and a prism. Each is equipped with a polychromator equipped with elements. When the measurement method of the light receiving mechanism 1022 for reflected light and the light receiving mechanism 1023 for reference light is changed to the spectroscopic method, the light receiving mechanism 1022 for reflected light and the light receiving mechanism 1023 for reference light each measure a spectral spectrum. The colorimeter becomes a spectrocolorimeter. Colorimeters are broadly classified into colorimeters and spectral colorimeters.
 (9)透過光の測定
 反射光用の受光機構1022が透過光用の受光機構に置き換えられてもよい。透過光用の受光機構は、試料を透過した透過光の光線束を受光し、透過光の三刺激値X,Y及びZの測定結果を出力する。
(9) Measurement of transmitted light The light receiving mechanism 1022 for reflected light may be replaced with a light receiving mechanism for transmitted light. The light receiving mechanism for transmitted light receives the light bundle of transmitted light that has passed through the sample, and outputs the measurement results of the tristimulus values X, Y, and Z of the transmitted light.
 (10)コントローラー
 コントローラー1011は、組み込みコンピューターであり、ファームウェアを実行することにより制御を行う。コントローラー1011による制御の全部又は一部がソフトウェアを伴わないハードウェアにより実現されてもよい。
(10) Controller The controller 1011 is an embedded computer, and performs control by executing firmware. All or part of the control by the controller 1011 may be realized by hardware without software.
 コントローラー1011は、パルスキセノンランプ1050を制御し、パルスキセノンランプ1050に光線束を放射させる。また、コントローラー1011は、パルスキセノンランプ1050に光線束を放射させたときに、反射光の三刺激値X,Y及びZをそれぞれ受光センサー1240,1241及び1242から取得し、参照光の三刺激値X,Y及びZをそれぞれ受光センサー1310,1311及び1312から取得する。さらに、コントローラー1011は、反射光の三刺激値X,Y及びZから色彩値を導出する。色彩値は、マンセル表色系、L*a*b*表色系、L*C*h表色系、ハンターLab表色系、XYZ表色系等で表現される。色彩値が導出される場合は、参照光の三刺激値X,Y及びZによる補正が行われる。 The controller 1011 controls the pulse xenon lamp 1050 and causes the pulse xenon lamp 1050 to emit a light beam. Further, the controller 1011 acquires the tristimulus values X, Y and Z of the reflected light from the light receiving sensors 1240, 1241 and 1242, respectively, when the pulse xenon lamp 1050 emits the light bundle, and the tristimulus values of the reference light. X, Y, and Z are acquired from the light receiving sensors 1310, 1311, and 1312, respectively. Furthermore, the controller 1011 derives a color value from the tristimulus values X, Y, and Z of the reflected light. The color values are expressed in Munsell color system, L * a * b * color system, L * C * h color system, Hunter Lab color system, XYZ color system, and the like. When the color value is derived, correction by the tristimulus values X, Y and Z of the reference light is performed.
 (11)光線束均一化機構
 反射傘1051、光線束分離機構1031及び積分球1021の各々は、光線束均一化機構を構成する。反射傘1051は、パルスキセノンランプ1050が放射した光線束を均一化する。光線束分離機構1031は、放射機構1030が放射した光線束を照明光の光線束1041と参照光の光線束1042とに分離する場合に参照光の光線束1042を均一化する。積分球1021は、反射光の光線束1043を均一化する。反射傘1051、光線束分離機構1031及び積分球1021においては、それぞれ、拡散反射面1060,1120及び1200に光線束を拡散反射又は拡散多重反射させることにより、光線束を均一化する。光線束の均一化においては、光線束の強度の放射方向による変化が小さくされる。
(11) Beam bundle uniformizing mechanism Each of the reflector 1051, the beam bundle separating mechanism 1031 and the integrating sphere 1021 constitutes a beam bundle uniformizing mechanism. The reflector 1051 makes the light flux emitted by the pulse xenon lamp 1050 uniform. The beam bundle separation mechanism 1031 makes the beam bundle 1042 of the reference light uniform when separating the beam bundle emitted by the radiation mechanism 1030 into the beam bundle 1041 of illumination light and the beam bundle 1042 of reference light. The integrating sphere 1021 makes the reflected light beam 1043 uniform. In the reflector 1051, the light bundle separation mechanism 1031, and the integrating sphere 1021, the light bundle is made uniform by diffusely reflecting or diffusely reflecting the light bundle on the diffuse reflection surfaces 1060, 1120, and 1200, respectively. In the uniformization of the light beam, the change in the intensity of the light beam due to the radiation direction is reduced.
 光線束均一化機構は、白色樹脂からなる基材の内面に被膜を形成することにより構成される。被膜は、透明のつや消し塗料を基材の内面に塗装することにより形成される。 The light beam uniformizing mechanism is configured by forming a film on the inner surface of a base material made of white resin. The coating is formed by painting a transparent matte paint on the inner surface of the substrate.
 以下では、積分球1021を例として光線束均一化機構の構成を説明する。 Hereinafter, the configuration of the light beam uniformizing mechanism will be described using the integrating sphere 1021 as an example.
 図8の模式図は、積分球の断面を示す。図8は、拡散反射面の付近を拡大して示す。 The schematic diagram of FIG. 8 shows a cross section of the integrating sphere. FIG. 8 shows an enlarged view of the vicinity of the diffuse reflection surface.
 積分球1021は、図8に示されるように、基材1400並びに被膜1401及び1402を備える。 The integrating sphere 1021 includes a base material 1400 and coatings 1401 and 1402 as shown in FIG.
 基材1400には、空間1410が形成される。空間1410は、球状である。光線束均一化機構に形成される空間の形状は、光線束均一化機構に応じて変化する。空間1410は、基材1400の内面1420に規定される。基材1400は、白色樹脂からなる。 A space 1410 is formed in the base material 1400. The space 1410 is spherical. The shape of the space formed in the light flux uniformizing mechanism changes according to the light flux uniformizing mechanism. A space 1410 is defined on the inner surface 1420 of the substrate 1400. The base material 1400 is made of a white resin.
 被膜1401は、透明のつや消し塗料を基材1400の内面1420に塗装することにより形成され、光線束を拡散する。被膜1401の表面1430は、積分球1021に形成される空間1170に露出する。被膜1401の裏面1431は、基材1400の内面1420に密着する。 The coating 1401 is formed by coating a transparent matte paint on the inner surface 1420 of the substrate 1400, and diffuses the light beam. A surface 1430 of the coating 1401 is exposed to a space 1170 formed in the integrating sphere 1021. The back surface 1431 of the coating 1401 is in close contact with the inner surface 1420 of the substrate 1400.
 被膜1402は、塗料を基材1400の外面1421に塗装することにより形成され、基材1400の外面1421を覆う遮光膜になる。被膜1402により、基材1400が光を透過する場合でも空間1410に不要な光が入射しにくくなる。基材1400の外面1421に塗装される塗料は、望ましくは黒色顔料又は金属粒子を含む。黒色顔料又は金属粒子により、被膜1402の遮光性が向上する。被膜1402が省略されてもよい。 The coating film 1402 is formed by coating the outer surface 1421 of the base material 1400 with a paint, and becomes a light shielding film that covers the outer surface 1421 of the base material 1400. The coating 1402 makes it difficult for unnecessary light to enter the space 1410 even when the base material 1400 transmits light. The paint applied to the outer surface 1421 of the substrate 1400 desirably includes black pigment or metal particles. The light shielding property of the coating 1402 is improved by the black pigment or the metal particles. The coating 1402 may be omitted.
 被膜1402が他の種類の遮光物に置き換えられてもよい。例えば、被膜1402が基材1400の外面1421に接触する遮光部材に置き換えられてもよい。遮光部材は、望ましくは黒色顔料又は金属粒子を含む樹脂からなる。樹脂からなる遮光部材が備えられる場合は、基材1400及び遮光部材が二色成形により一体成形されてもよい。 The coating 1402 may be replaced with another type of light shielding material. For example, the coating 1402 may be replaced with a light shielding member that contacts the outer surface 1421 of the substrate 1400. The light shielding member is preferably made of a resin containing a black pigment or metal particles. In the case where a light shielding member made of resin is provided, the base material 1400 and the light shielding member may be integrally formed by two-color molding.
 拡散反射面1200に光線束が入射した場合は、概ね、入射した光線束が被膜1401を通過し、被膜1401を通過した光線束が基材1400に反射され、反射された光線束が被膜1401を通過し、通過した光線束が出射する。これとは異なる経路で伝搬する光線束が存在してもよい。光線束が被膜1401を通過する場合に、光線束が拡散される。基材1400は、光線束を拡散反射するという拡散反射面1200の機能のうち、光線束を反射する機能を担う。被膜1401は、光線束を拡散反射するという拡散反射面1200の機能のうち、光線束を拡散する機能を担う。 When a light beam is incident on the diffuse reflection surface 1200, the incident light beam generally passes through the coating 1401, the light beam that has passed through the coating 1401 is reflected by the substrate 1400, and the reflected light beam passes through the coating 1401. The light beam that has passed through is emitted. There may be a light bundle propagating along a different path. When the light beam passes through the coating 1401, the light beam is diffused. The base material 1400 has a function of reflecting the light beam among the functions of the diffuse reflection surface 1200 that diffusely reflects the light beam. The coating 1401 has a function of diffusing the light bundle among the functions of the diffuse reflection surface 1200 that diffusely reflects the light bundle.
 (12)反射率の均一性
 積分球1021においては基材1400が光線束を反射する機能を担うため、被膜1401の膜厚は拡散反射面1200の反射率に影響しない。このため、拡散反射面1200の反射率は、基材1400の内面1420の反射率によって決まる。
(12) Uniformity of reflectance In the integrating sphere 1021, the base material 1400 has a function of reflecting the light flux, and therefore the film thickness of the coating 1401 does not affect the reflectance of the diffuse reflection surface 1200. For this reason, the reflectance of the diffuse reflection surface 1200 is determined by the reflectance of the inner surface 1420 of the substrate 1400.
 白色樹脂からなる基材1400が光線束を反射する機能を担う場合は、基材1400の内面1420の反射率のばらつきが小さく基材1400の内面1420の反射率が高いため、拡散反射面1200の反射率のばらつきが小さく拡散反射面1200の反射率が高い。基材1400の内面1420の反射率のばらつきが小さく基材1400の内面1420の反射率が高いのは、基材1400が白色樹脂からなり十分な厚さを有するからである。 In the case where the base material 1400 made of white resin has a function of reflecting the light flux, the dispersion of the reflectance of the inner surface 1420 of the base material 1400 is small and the reflectance of the inner surface 1420 of the base material 1400 is high. The variation in reflectance is small, and the reflectance of the diffuse reflection surface 1200 is high. The reason why the variation in the reflectance of the inner surface 1420 of the substrate 1400 is small and the reflectance of the inner surface 1420 of the substrate 1400 is high is that the substrate 1400 is made of white resin and has a sufficient thickness.
 これに対して、白色の塗料を塗装することにより形成される被膜が光線束を反射する機能を担う場合は、拡散反射面の反射率のばらつきの小ささ及び拡散反射面の反射率の高さを両立できない。白色の塗料を塗装することにより形成される被膜を厚くした場合は、拡散反射面の反射率が高くなるが、被膜の膜厚のばらつきが大きくなり、拡散反射面の反射率のばらつきが大きくなる。白色の塗料を塗装することにより形成される被膜を薄くした場合は、被膜の膜厚のばらつきが小さくなり、拡散反射面の反射率のばらつきが小さくなるが、拡散反射面の反射率が小さくなる。 On the other hand, when the coating formed by applying the white paint has a function of reflecting the light beam, the variation in the reflectance of the diffuse reflecting surface is small and the reflectance of the diffuse reflecting surface is high. Cannot be compatible. When the coating formed by applying white paint is thickened, the reflectance of the diffuse reflection surface increases, but the variation in the film thickness of the coating increases and the variation in the reflectance of the diffuse reflection surface increases. . When the coating formed by applying a white paint is thinned, the variation in the coating thickness is reduced and the variation in the reflectance of the diffuse reflecting surface is reduced, but the reflectance of the diffuse reflecting surface is reduced. .
 拡散反射面1200の反射率のばらつきが小さいことは、積分球1021の光線束を均一化する能力を高くすることに寄与する。拡散反射面1200の反射率が高いことも、積分球1021の光線束を均一化する能力を高くすることに寄与する。拡散反射面1200の反射率が高い場合は、光線束を拡散反射させる回数を多くできるからである。 The small variation in the reflectance of the diffuse reflection surface 1200 contributes to increasing the ability of the integrating sphere 1021 to uniformize the light flux. The high reflectance of the diffuse reflection surface 1200 also contributes to increasing the ability of the integrating sphere 1021 to make the light flux uniform. This is because when the reflectance of the diffuse reflection surface 1200 is high, the number of times that the light flux is diffusely reflected can be increased.
 基材1400が白色である場合は、基材1400の内面1420の反射率の波長による変化が小さいため、拡散反射面1200の反射率の波長による変化が小さくなり、光線束の分光スペクトルは光線束が拡散反射される回数の影響を受けにくくなる。 When the substrate 1400 is white, since the change due to the wavelength of the reflectance of the inner surface 1420 of the substrate 1400 is small, the change due to the wavelength of the reflectance of the diffuse reflection surface 1200 is small, and the spectral spectrum of the light bundle is the light bundle. Is less affected by the number of times it is diffusely reflected.
 拡散反射面1200の反射率のばらつきには、1個の積分球1021におけるばらつき、及び、多数の積分球1021の間のばらつきがある。1個の積分球1021におけるばらつきが小さい場合は、1個の積分球1021において光線束を均一化する能力が向上する。多数の積分球1021の間のばらつきが小さい場合は、多数の積分球1021の間の光線束を均一化する能力のばらつきが小さくなる。 The variation in the reflectance of the diffuse reflection surface 1200 includes a variation in one integrating sphere 1021 and a variation among many integrating spheres 1021. When the variation in one integrating sphere 1021 is small, the ability to make the light beam uniform in one integrating sphere 1021 is improved. When the variation between the many integrating spheres 1021 is small, the variation in the ability to uniformize the light flux among the many integrating spheres 1021 becomes small.
 樹脂が大量の原材料を用いて大量に生産される場合は、複数の原材料の混合比のばらつきが小さくなり複数の原材料の混合むらが小さくなるため、樹脂が均一になる。これに対して、樹脂が自家混合、特注等により少量の原材料を用いて少量に生産される場合は、複数の原材料の混合比のばらつきが大きくなり複数の原材料の混合むらが大きくなるため、樹脂が不均一になる。白色樹脂は、大量の原材料を用いて大量に生産されるため、均一である。白色樹脂が均一である場合は、基材1400が均一になるため、拡散反射面1200の反射率のばらつきが小さくなる。 When the resin is produced in large quantities using a large amount of raw materials, the dispersion of the mixing ratio of the plurality of raw materials is reduced and the unevenness of mixing of the plurality of raw materials is reduced, so that the resin becomes uniform. On the other hand, when the resin is produced in a small amount using a small amount of raw materials by self-mixing, custom order, etc., the dispersion of the mixing ratio of the plurality of raw materials becomes large, and the mixing unevenness of the plurality of raw materials increases. Becomes uneven. The white resin is uniform because it is produced in large quantities using a large amount of raw materials. When the white resin is uniform, the base material 1400 is uniform, so that the variation in the reflectance of the diffuse reflection surface 1200 is reduced.
 (13)拡散性の均一性
 透明のつや消し塗料は、大量の原材料を用いて大量に生産されるため、均一である。このため、被膜1401の拡散性のばらつきは小さい。
(13) Uniformity of diffusivity Transparent matte paint is uniform because it is produced in large quantities using a large amount of raw materials. For this reason, the dispersion | variation in the diffusibility of the film 1401 is small.
 (14)基材の安価な製造
 白色樹脂は、大量の原材料を用いて大量に生産されるため、安価である。これにより、基材1400を安価に製造できる。
(14) Inexpensive production of base material White resin is inexpensive because it is produced in large quantities using a large amount of raw materials. Thereby, the base material 1400 can be manufactured at low cost.
 基材1400は樹脂からなるため、金型により成形された成形品をそのまま基材1400とすることができる。機械加工による形状の変更は、不要である。これにより、基材1400を安価に製造できる。 Since the base material 1400 is made of resin, a molded product formed by a mold can be used as the base material 1400 as it is. It is not necessary to change the shape by machining. Thereby, the base material 1400 can be manufactured at low cost.
 基材1400は、樹脂からなるため、付属物を備える場合でも安価に製造できる。付属物には、他の構成物を結合するための結合機構等がある。 Since the base material 1400 is made of a resin, it can be manufactured at low cost even when an accessory is provided. The attachment includes a coupling mechanism for coupling other components.
 被膜1401が光線束を拡散する機能を担うため、基材1400の内面1420は、均一な粗面でなくてもよく、均一な鏡面でなくてもよい。このため、金型の成形面に特殊な加工を行う必要はなく、一般的な材料で金型を作製できる。これにより、金型を安価に製造でき、基材1400を安価に製造できる。 Since the coating 1401 has a function of diffusing the light flux, the inner surface 1420 of the base material 1400 may not be a uniform rough surface or a uniform mirror surface. For this reason, it is not necessary to perform special processing on the molding surface of the mold, and the mold can be manufactured using a general material. Thereby, a metal mold | die can be manufactured cheaply and the base material 1400 can be manufactured cheaply.
 (15)被膜の安価な形成
 光線束を拡散する機能は、透明のつや消し塗料に含まれる微粒子が被膜1401の表面1430に凹凸を形成することにより発現する。したがって、拡散性は、被膜1401の表面1430の凹凸の状態に依存し、被膜1401の膜厚に依存しない。被膜1401は、薄い場合でも、光線束を拡散する機能を担いうる。
(15) Inexpensive formation of coating The function of diffusing the light flux is manifested by the formation of irregularities on the surface 1430 of the coating 1401 by the fine particles contained in the transparent matte paint. Therefore, the diffusibility depends on the unevenness of the surface 1430 of the coating 1401 and does not depend on the thickness of the coating 1401. Even when the coating 1401 is thin, the coating 1401 can have a function of diffusing the light beam.
 被膜1401が薄い場合は、被膜1401を形成する場合に必要な透明のつや消し塗料が少なくなるため、被膜1401を安価に形成できる。 When the coating film 1401 is thin, the transparent matte paint necessary for forming the coating film 1401 is reduced, so that the coating film 1401 can be formed at low cost.
 透明のつや消し塗料は、需要が多いため、大量の原材料を用いて大量に生産される。このため、透明のつや消し塗料は安価であり、被膜1401は安価に形成できる。 Since transparent matte paint is in great demand, it is produced in large quantities using a large amount of raw materials. For this reason, transparent matte paint is inexpensive and the coating 1401 can be formed inexpensively.
 (16)白色樹脂
 白色樹脂は、ベースの樹脂、白色顔料、無機充填材等を含む。ベースの樹脂、白色顔料、無機充填材等は、均一に混合される。白色樹脂は、白色顔料、無機充填材等がベースの樹脂に配合された配合型である。配合型の白色樹脂の表面には特別な下地処理を行わなくても塗料が付着するため、配合型の白色樹脂からなる基材1400の内面1420に被膜1401を形成する場合は、被膜1401を安価に形成できる。
(16) White resin The white resin includes a base resin, a white pigment, an inorganic filler, and the like. The base resin, white pigment, inorganic filler and the like are mixed uniformly. The white resin is a compounding type in which a white pigment, an inorganic filler and the like are blended with a base resin. Since the paint adheres to the surface of the compounding type white resin without performing any special ground treatment, the coating 1401 is inexpensive when the coating 1401 is formed on the inner surface 1420 of the base material 1400 made of the compounding type white resin. Can be formed.
 配合型の白色樹脂が、配合型でない白色を呈する樹脂に置き換えられてもよい。白色を呈する樹脂は、熱可塑性樹脂である結晶性樹脂であって結晶化度が高いもの又は結晶サイズが大きいものであり、望ましくはポリスチレン又はポリアセタールである。 The compounded white resin may be replaced with a resin that exhibits a white color that is not a compounded type. The white resin is a crystalline resin that is a thermoplastic resin and has a high crystallinity or a large crystal size, and is preferably polystyrene or polyacetal.
 白色樹脂の反射率は、望ましくは60%以上であり、さらに望ましくは97%以上である。白色樹脂の反射率が60%以上である場合は、人が白色樹脂を白色であると認識する。60%という反射率は、測色計の基準色サンプルとして用いられているBCRAタイルにおいてホワイト(White)に最も近い無彩色であるペールグレー(Palegrey)の反射率に相当する。 The reflectance of the white resin is desirably 60% or more, and more desirably 97% or more. When the reflectance of the white resin is 60% or more, a person recognizes the white resin as white. The reflectance of 60% corresponds to the reflectance of Palegrey, which is the achromatic color closest to White in the BCRA tile used as the reference color sample of the colorimeter.
 97%以上の反射率は、白色顔料が後述の酸化チタンの粉末である場合に実現する。 A reflectance of 97% or more is realized when the white pigment is a titanium oxide powder described later.
 基材1400の内面1420の反射率が高い場合は、拡散反射面1200が光線束を拡散反射するときの光線束の光量の低下が小さくなるため、積分球1021に入射する光線束の光量に対する積分球1021から出射する光線束の光量の比である積分球効率が高くなる。積分球効率が高い場合は、測定の信号対ノイズ比が大きくなるため、測定の精度が高くなる。 When the reflectivity of the inner surface 1420 of the base material 1400 is high, a decrease in the light amount of the light beam when the diffuse reflection surface 1200 diffusely reflects the light beam becomes small, so that the integration with respect to the light amount of the light beam incident on the integrating sphere 1021 is performed. The integrating sphere efficiency, which is the ratio of the amount of light beams emitted from the sphere 1021, increases. When the integrating sphere efficiency is high, the measurement signal-to-noise ratio increases, so that the measurement accuracy increases.
 (17)ベースの樹脂
 ベースの樹脂は、望ましくは熱可塑性樹脂又は熱硬化性樹脂である。
(17) Base resin The base resin is desirably a thermoplastic resin or a thermosetting resin.
 熱可塑性樹脂は、望ましくはアクリル樹脂、ポリカーボーネート樹脂又は液晶ポリマー樹脂である。アクリル樹脂は、望ましくはポリメタクリル酸メチル樹脂であり、例えば三菱レイヨン株式会社製のアクリペット(登録商標)VH NW401である。ポリカーボーネート樹脂は、例えば三菱エンジニアリングプラスチック株式会社製のユーピロン(登録商標)EHR3100である。液晶ポリマー樹脂は、望ましくは液晶ポリエステル樹脂であり、例えば住友化学株式会社製のスミカスーパーLCPである。 Desirably, the thermoplastic resin is an acrylic resin, a polycarbonate resin, or a liquid crystal polymer resin. The acrylic resin is desirably a polymethyl methacrylate resin, such as Acrypet (registered trademark) VH NW401 manufactured by Mitsubishi Rayon Co., Ltd. The polycarbonate resin is, for example, Iupilon (registered trademark) EHR3100 manufactured by Mitsubishi Engineering Plastics. The liquid crystal polymer resin is desirably a liquid crystal polyester resin, for example, SUMIKASUPER LCP manufactured by Sumitomo Chemical Co., Ltd.
 アクリル樹脂は、高い耐光性を有する。このため、ベースの樹脂がアクリル樹脂である場合は、光線束が長時間又は多数回にわたって照射された場合でも基材1400が退色しにくく、時間が経過しても測定の精度が低下しにくい。 Acrylic resin has high light resistance. For this reason, when the base resin is an acrylic resin, the base material 1400 is not easily faded even when the light beam is irradiated for a long time or many times, and the measurement accuracy is not easily lowered over time.
 ポリカーボーネート樹脂は、高い耐熱性を有する。このため、ベースの樹脂がポリカーボーネート樹脂である場合は、大きな光量を有する光線束が照射され温度が上昇する場合でも基材1400が劣化しにくい。発光ダイオードバックライト用に開発された高い耐光性を有するポリカーボーネート樹脂が用いられてもよい。 Polycarbonate resin has high heat resistance. Therefore, when the base resin is a polycarbonate resin, the base material 1400 is unlikely to deteriorate even when the temperature rises due to irradiation with a light bundle having a large amount of light. A polycarbonate resin having high light resistance developed for a light emitting diode backlight may be used.
 液晶ポリマー樹脂は、高い耐熱性及び高い自己消火性(難燃性)を有する。このため、ベースの樹脂が液晶ポリマー樹脂がである場合は、大きな光量を有する光線束が照射され温度が上昇する場合でも基材1400が劣化しにくく、空間1410に光源が存在し基材1400が過熱された場合も基材1400が燃焼しない。 The liquid crystal polymer resin has high heat resistance and high self-extinguishing properties (flame retardant). Therefore, in the case where the base resin is a liquid crystal polymer resin, the base material 1400 is not easily deteriorated even when a light bundle having a large amount of light is irradiated and the temperature rises. The substrate 1400 does not burn even when overheated.
 熱硬化性樹脂は、望ましくは不飽和ポリエステル樹脂又はエポキシ樹脂である。不飽和ポリエステル樹脂は、例えばパナソニック株式会社製のフルブライトCE6000である。エポキシ樹脂は、例えば日立化成株式会社製の発光ダイオードリフレクター用の白色モールド樹脂CEL-W-7005である。発光ダイオードチップ用に開発された高い耐光性を有する不飽和ポリエステル樹脂又はエポキシ樹脂が用いられてもよい。 The thermosetting resin is desirably an unsaturated polyester resin or an epoxy resin. The unsaturated polyester resin is, for example, Fulbright CE6000 manufactured by Panasonic Corporation. The epoxy resin is, for example, white mold resin CEL-W-7005 for light-emitting diode reflector manufactured by Hitachi Chemical Co., Ltd. An unsaturated polyester resin or epoxy resin having high light resistance developed for a light emitting diode chip may be used.
 (18)白色顔料
 白色顔料は、望ましくは酸化チタンの粉末、酸化亜鉛の粉末、硫酸バリウムの粉末及び炭酸カルシウムの粉末からなる群より選択される1種類以上であり、さらに望ましくは酸化チタンの粉末である。
(18) White pigment The white pigment is preferably at least one selected from the group consisting of titanium oxide powder, zinc oxide powder, barium sulfate powder, and calcium carbonate powder, and more preferably titanium oxide powder. It is.
 酸化チタンの屈折率は高いため、白色顔料が酸化チタンの粉末である場合は、白色樹脂に含まれる白色顔料が少量であっても白色樹脂の反射率が高くなる。酸化チタンの粉末は、容易に入手でき安価である。 Since the refractive index of titanium oxide is high, when the white pigment is a titanium oxide powder, the reflectance of the white resin increases even if the amount of white pigment contained in the white resin is small. Titanium oxide powder is readily available and inexpensive.
 酸化チタンは、波長が約420nm以下となる短波長域に属する短波長成分を吸収するという問題を有する。しかし、当該問題は、測定の精度にほとんど影響しない。この点について説明する。 Titanium oxide has a problem of absorbing a short wavelength component belonging to a short wavelength region having a wavelength of about 420 nm or less. However, this problem has little effect on the measurement accuracy. This point will be described.
 酸化チタンはバンドギャップ以上のエネルギーを有する光を吸収するため、酸化チタンの反射率は波長が約420nm以下となる短波長域において低下する。酸化チタンの反射率が短波長域において低下するため、白色顔料が酸化チタンの粉末である場合は、図9に示されるように、短波長域において白色樹脂の反射率が低下する。短波長域において白色樹脂の反射率が低下する場合は、積分球1021から出射する光線束に含まれる短波長成分が少なくなるため、短波長域において測定の信号対ノイズ比が低下する。短波長域において測定の信号対ノイズ比が低下する場合は、一般的には、測定の精度が低下する。しかし、目の感度を再現した等色関数xbar,ybar及びzbarを反映した刺激値が求められる場合は、測定方式が分光方式及び三刺激値方式のいずれであっても、測定の精度の低下はほとんど問題にならない。 Since titanium oxide absorbs light having energy greater than or equal to the band gap, the reflectance of titanium oxide decreases in the short wavelength region where the wavelength is about 420 nm or less. Since the reflectance of titanium oxide decreases in the short wavelength region, when the white pigment is a titanium oxide powder, the reflectance of the white resin decreases in the short wavelength region as shown in FIG. When the reflectance of the white resin is reduced in the short wavelength range, the short wavelength component contained in the light bundle emitted from the integrating sphere 1021 is reduced, so that the measurement signal-to-noise ratio is reduced in the short wavelength range. When the measurement signal-to-noise ratio decreases in the short wavelength region, the measurement accuracy generally decreases. However, when stimulus values that reflect the color matching functions xbar, ybar, and zbar that reproduce the sensitivity of the eye are required, the measurement accuracy is reduced regardless of whether the measurement method is the spectroscopic method or the tristimulus value method. Almost no problem.
 測定方式が分光方式である場合は、波長が概ね380-780nmである可視光の波長域において分光スペクトルが測定され、分光スペクトルと等色関数xbar,ybar及びzbarの各々との積が波長について積分され、三刺激値が求められる。しかし、等色関数xbar,ybar及びzbarは短波長域において0とはならないものの小さい値をとるため、分光スペクトルの短波長域が三刺激値に与える影響は小さい。分光スペクトルの短波長域が三刺激値に与える影響が小さいため、短波長域において測定の信号対ノイズ比が低下した場合でも、三刺激値の測定の精度はほとんど低下しない。 When the measurement method is a spectroscopic method, the spectroscopic spectrum is measured in the visible light wavelength range where the wavelength is approximately 380 to 780 nm, and the product of the spectroscopic spectrum and each of the color matching functions xbar, ybar and zbar is integrated with respect to the wavelength. And tristimulus values are determined. However, since the color matching functions xbar, ybar, and zbar do not become zero in the short wavelength region but take small values, the influence of the short wavelength region of the spectral spectrum on the tristimulus values is small. Since the influence of the short wavelength region of the spectral spectrum on the tristimulus value is small, even when the signal-to-noise ratio of the measurement is decreased in the short wavelength region, the measurement accuracy of the tristimulus value hardly decreases.
 測定方式が三刺激値方式である場合は、等色関数xbar,ybar及びzbarを反映した刺激値が得られるように分光透過率が決められた色フィルターを透過した光線束の光量が測定され、三刺激値が求められる。等色関数xbar,ybar及びzbarは短波長域において0とはならないものの小さい値をとるため、色フィルターは短波長成分をほとんど透過させない。色フィルターが短波長成分をほとんど透過させないため、短波長成分が三刺激値に与える影響は小さい。短波長成分が三刺激値に与える影響は小さいため、短波長域において測定の信号対ノイズ比が低下した場合でも、三刺激値の測定の精度はほとんど低下しない。 When the measurement method is a tristimulus value method, the amount of light flux that has passed through a color filter with a spectral transmittance determined so as to obtain a stimulus value reflecting the color matching functions xbar, ybar, and zbar is measured, Tristimulus values are required. Since the color matching functions xbar, ybar and zbar do not become zero in the short wavelength region but take small values, the color filter hardly transmits the short wavelength component. Since the color filter hardly transmits the short wavelength component, the influence of the short wavelength component on the tristimulus value is small. Since the influence of the short wavelength component on the tristimulus value is small, even when the signal-to-noise ratio of the measurement is lowered in the short wavelength region, the measurement accuracy of the tristimulus value is hardly lowered.
 (19)透明のつや消し塗料
 透明のつや消し塗料は、2液性塗料である場合は、主剤(主成分樹脂)、硬化剤、希釈剤及びつや消し剤を含む。主剤、硬化剤、希釈剤及びつや消し剤は、均一に混合される。透明のつや消し塗料が1液性塗料であってもよい。透明のつや消し塗料が1液性塗料及び2液性塗料の範疇に属しないものであってもよい。
(19) Transparent matte paint When the transparent matte paint is a two-component paint, it contains a main agent (main component resin), a curing agent, a diluent and a matting agent. The main agent, curing agent, diluent and matting agent are mixed uniformly. The transparent matte paint may be a one-component paint. The transparent matte paint may not belong to the category of one-component paint and two-component paint.
 (20)2液性塗料
 2液性塗料は、主剤(主成分樹脂)及び硬化剤を含む。主剤及び硬化剤は、互いに混合されていない状態で提供され、塗装の直前に互いに混合される。透明のつや消し塗料が2液性塗料である場合は、主剤及び硬化剤の混合液が基材1400の内面1420に塗装され、基材1400の内面1420に塗装膜が形成される。塗装膜中で主剤及び硬化剤が互いに化学反応することにより、塗装膜が硬化し、被膜1401が形成される。混合液がシンナー等の希釈剤を含んでもよい。希釈剤により、混合液の粘度が塗装に適したものに調整され、塗装膜の乾燥速度が被膜1401の形成に適したものに調整される。
(20) Two-component paint The two-component paint includes a main agent (main component resin) and a curing agent. The main agent and the curing agent are provided in an unmixed state with each other and are mixed with each other immediately before painting. When the transparent matte paint is a two-component paint, the mixed liquid of the main agent and the curing agent is coated on the inner surface 1420 of the base material 1400, and a coating film is formed on the inner surface 1420 of the base material 1400. When the main agent and the curing agent chemically react with each other in the coating film, the coating film is cured and a coating film 1401 is formed. The mixed solution may contain a diluent such as thinner. By the diluent, the viscosity of the mixed solution is adjusted to be suitable for coating, and the drying speed of the coating film is adjusted to be suitable for forming the coating film 1401.
 透明のつや消し塗料が2液性塗料である場合は、被膜1401中に複雑な分子構造が形成されるため、被膜1401は強固であり下地に密着する。このため、透明のつや消し塗料が2液性塗料である場合は、温度又は湿度が変動し被膜1401が膨張又は収縮する場合、使用時又は輸送時に被膜1401が衝撃を受ける場合等においても被膜1401が損傷しにくい。 When the transparent matte paint is a two-component paint, a complex molecular structure is formed in the film 1401, so the film 1401 is strong and adheres to the ground. For this reason, when the transparent matte paint is a two-component paint, the temperature or humidity fluctuates and the film 1401 expands or contracts, or the film 1401 receives an impact during use or transportation. Hard to damage.
 主剤により2液性塗料が分類される場合は、2液性塗料がアクリル樹脂塗料、ウレタン樹脂塗料、エポキシ樹脂塗料、シリコン樹脂塗料、フッ素樹脂塗料等に分類される。ウレタン樹脂塗料は、主剤がアクリル樹脂であり硬化剤がポリイソシアネート樹脂であるアクリルウレタン樹脂塗料を含む。シリコン樹脂塗料は、アクリル樹脂とシリコン樹脂とが共縮合されたアクリルシリコン樹脂塗料を含む。 When the two-component paint is classified according to the main agent, the two-component paint is classified into an acrylic resin paint, a urethane resin paint, an epoxy resin paint, a silicon resin paint, a fluororesin paint, and the like. The urethane resin paint includes an acrylic urethane resin paint whose main component is an acrylic resin and whose curing agent is a polyisocyanate resin. The silicone resin paint includes an acrylic silicone resin paint in which an acrylic resin and a silicone resin are co-condensed.
 2液性塗料がアクリル樹脂塗料である場合は、被膜1401が高い透明性及び高い耐光性を有するため、被膜1401の膜厚のばらつきが大きい場合でも被膜1401の透過率のばらつきが大きくならない。このため、2液性塗料がアクリル樹脂塗料である場合は、拡散反射面1200の反射率のばらつきが大きくならない。 When the two-component paint is an acrylic resin paint, the coating 1401 has high transparency and high light resistance, and therefore, the variation in the transmittance of the coating 1401 does not increase even when the variation in the thickness of the coating 1401 is large. For this reason, when the two-component paint is an acrylic resin paint, the variation in the reflectance of the diffuse reflection surface 1200 does not increase.
 2液性塗料がアクリル樹脂塗料である場合は、被膜1401が高い耐光性を有するため、被膜1401が黄変しにくい。このため、2液性塗料がアクリル樹脂塗料である場合は、時間が経過しても測定の精度が低下しにくい。 When the two-component paint is an acrylic resin paint, the film 1401 has high light resistance, and therefore the film 1401 is hardly yellowed. For this reason, when the two-component paint is an acrylic resin paint, the measurement accuracy is unlikely to decrease even if time passes.
 2液性塗料がウレタン樹脂塗料又はエポキシ樹脂塗料である場合は、被膜1401が高い耐熱性を有するため、大きな光量を有する光線束が照射され温度が上昇する場合でも被膜1401が劣化しにくい。このため、2液性塗料がウレタン樹脂塗料又はエポキシ樹脂塗料である場合は、時間が経過しても測定の精度が低下しにくい。 When the two-component paint is a urethane resin paint or an epoxy resin paint, the film 1401 has high heat resistance, and therefore the film 1401 is not easily deteriorated even when a light bundle having a large amount of light is irradiated and the temperature rises. For this reason, when the two-component paint is a urethane resin paint or an epoxy resin paint, the measurement accuracy is unlikely to deteriorate even if time elapses.
 2液性塗料がシリコン樹脂塗料又はフッ素樹脂塗料である場合は、被膜1401が高い耐汚染性を有するため、試料が粉末又は液体であって飛散した試料が空間1170に侵入する場合でも被膜1401が清浄に保たれる。 When the two-component paint is a silicon resin paint or a fluororesin paint, since the coating 1401 has high contamination resistance, the coating 1401 is formed even when the sample is powder or liquid and the scattered sample enters the space 1170. Keep clean.
 (21)つや消し剤
 つや消し剤は、望ましくはシリカの微粒子、炭酸カルシウムの微粒子及びリン酸カルシウムの微粒子からなる群より選択される1種類以上を含む。つや消し剤は、つや消し塗料が塗装され塗装膜が乾燥させられた後に、被膜1401の表面に微細な凹凸を形成し、光線束を拡散する機能を被膜1401に付与する。
(21) Matting agent The matting agent preferably contains one or more types selected from the group consisting of silica fine particles, calcium carbonate fine particles and calcium phosphate fine particles. The matting agent forms a fine unevenness on the surface of the coating 1401 after the matting paint is applied and the coating film is dried, and gives the coating 1401 a function of diffusing the light beam.
 微粒子の粒子径の下限は、望ましくは0.2μmである。0.2μmという微粒子の粒子径の下限は、色彩計1000において利用される波長が380-780nmである可視光の波長域の下限の波長の約1/2である。このように微粒子の粒子径の下限が選択されるのは、グスタフ・ミーの散乱理論によると粒子径が光の波長の約1/2である場合に粒子が光を最も効率よく散乱するからである。 The lower limit of the particle diameter of the fine particles is desirably 0.2 μm. The lower limit of the particle diameter of the fine particles of 0.2 μm is about ½ of the lower limit wavelength of the visible light wavelength range in which the wavelength used in the color meter 1000 is 380 to 780 nm. The lower limit of the particle size is selected in this way because, according to Gustav-Me's scattering theory, particles scatter light most efficiently when the particle size is about half the wavelength of light. is there.
 微粒子の粒子径の上限は、制限されないが、被膜1401の膜厚より小さくなるように選択される。 The upper limit of the particle diameter of the fine particles is not limited, but is selected to be smaller than the film thickness of the coating 1401.
 (22)被膜の膜厚
 被膜1401の膜厚は、望ましくは100μm以下であり、さらに望ましくは数10μmであり、特に望ましくは25±15μmである。被膜1401の膜厚がこれらの範囲内である場合は、被膜1401の膜厚のばらつきが大きくなりにくい。
(22) Film thickness The film thickness of the film 1401 is preferably 100 μm or less, more preferably several tens of μm, and particularly preferably 25 ± 15 μm. When the film thickness of the coating film 1401 is within these ranges, the variation in the film thickness of the coating film 1401 is difficult to increase.
 25μmという被膜1401の膜厚は、1回の塗装により被膜1401が形成される場合の標準的なものである。被膜1401の膜厚が25-15=10μm以上である場合は、基材1400の内面1420に被膜1401が均一に形成され、被膜1401が島状に形成されて基材1400の内面1420の一部に被膜1401が形成されなくなることを回避できる。被膜1401の膜厚が25+15=40μm以下である場合は、塗装膜が乾燥するまでにつや消し剤が沈降し被膜1401の表面に凹凸が形成されなくなることを回避できる。±15μmという許容ばらつき幅は、25μmという目標膜厚の±60%もある。このように許容ばらつき幅が広い場合は、塗装条件の許容幅が広くなるため、良品率が向上し、被膜1401を安価に形成できる。 The film thickness of the coating 1401 of 25 μm is standard when the coating 1401 is formed by a single coating. When the thickness of the coating 1401 is 25−15 = 10 μm or more, the coating 1401 is uniformly formed on the inner surface 1420 of the base material 1400, and the coating 1401 is formed in an island shape so that a part of the inner surface 1420 of the base material 1400 is formed. It is possible to avoid that the coating film 1401 is not formed. When the film thickness of the film 1401 is 25 + 15 = 40 μm or less, it can be avoided that the matting agent settles and the surface of the film 1401 is not formed uneven until the coating film is dried. The allowable variation width of ± 15 μm is ± 60% of the target film thickness of 25 μm. Thus, when the allowable variation width is wide, the allowable width of the coating condition is widened, so that the yield rate is improved and the coating 1401 can be formed at a low cost.
 (23)他の拡散反射面の形成方法との比較
 被膜1401を基材1400の内面1420に形成することに代えて、金型の成形面に形成されたシボを基材の内面に転写することにより、又は、基材の内面をサンドブラスト加工することによっても、拡散反射面を形成できる。
(23) Comparison with other diffuse reflection surface forming methods Instead of forming the coating 1401 on the inner surface 1420 of the base material 1400, the texture formed on the molding surface of the mold is transferred to the inner surface of the base material. Alternatively, the diffuse reflection surface can be formed by sandblasting the inner surface of the substrate.
 しかし、金型の成形面に形成されたシボを基材の内面に転写する場合は、基材の内面のうち離型方向と平行に近い部分に形成されたシボが離型時に損傷するという問題を生じる。当該問題は、積分球を多数の片に分割することにより回避できるが、そのような分割は積分球を安価に製造することを妨げる。これに対して、被膜1401を基材1400の内面1420に形成する場合は、このような問題が生じない。 However, when the texture formed on the molding surface of the mold is transferred to the inner surface of the substrate, the texture formed on a portion of the inner surface of the substrate that is nearly parallel to the mold release direction is damaged at the time of mold release. Produce. The problem can be avoided by dividing the integrating sphere into a number of pieces, but such a division prevents the integrating sphere from being inexpensively manufactured. On the other hand, when the coating 1401 is formed on the inner surface 1420 of the substrate 1400, such a problem does not occur.
 また、基材の内面をサンドブラスト加工する場合は、加工条件のばらつきにより形成される拡散反射面の拡散性がばらつくという問題を生じる。これに対して、被膜1401を基材1400の内面1420に形成する場合は、加工条件のばらつきによる被膜1401の膜厚のばらつきが拡散反射面1200の拡散性に影響しないので、拡散反射面1200の拡散性がばらつきにくい。 Also, when the inner surface of the base material is sandblasted, there arises a problem that the diffusibility of the diffuse reflection surface formed due to variations in processing conditions varies. On the other hand, when the coating 1401 is formed on the inner surface 1420 of the substrate 1400, the variation in the film thickness of the coating 1401 due to variations in processing conditions does not affect the diffusibility of the diffusion reflecting surface 1200. Diffusivity is difficult to vary.
 (24)具体例
 図10及び図11のグラフは、透明のつや消し塗料が塗装されない場合(白色樹脂+塗装なし)及び透明のつや消し塗料が塗装され被膜が形成される場合(白色樹脂+透明のつや消し塗料25μm)の各々について、白色樹脂の分光反射率を示す。図11は、図10の反射率90-100%の範囲を拡大して示す。被膜の膜厚は、25nmである。
(24) Specific examples The graphs in FIGS. 10 and 11 show a case where a transparent matte paint is not applied (white resin + no paint) and a case where a transparent matte paint is applied to form a film (white resin + transparent matte). The spectral reflectance of the white resin is shown for each of the paints 25 μm). FIG. 11 shows an enlarged view of the reflectance range of 90-100% in FIG. The film thickness is 25 nm.
 図10及び図11に示されるように、透明のつや消し塗料が塗装された場合の分光反射率は、波長が約420nm以下となる短波長域を除いて96%以上であり、透明のつや消し塗料が塗装されない場合の分光反射率とほぼ同じである。このことは、白色樹脂からなる基材1400が光線束を反射する機能を担うことができ、透明のつや消し塗料を塗装することにより形成される被膜1401の膜厚が拡散反射面1200の反射率に影響しないことを示す。 As shown in FIG. 10 and FIG. 11, the spectral reflectance when a transparent matte paint is applied is 96% or more except for a short wavelength region where the wavelength is about 420 nm or less. It is almost the same as the spectral reflectance when not painted. This means that the base material 1400 made of white resin can take a function of reflecting the light beam, and the film thickness of the coating film 1401 formed by applying a transparent matte paint is the reflectance of the diffuse reflection surface 1200. Indicates no effect.
 図12及び図13のグラフは、白色のつや消し塗料を塗装することにより形成される被膜の分光反射率を、被膜の膜厚66μm,88μm,93μm,110μm,124μm,155μm及び186μmの各々について示す。図13のグラフは、図12の反射率85-95%の範囲を拡大して示す。白色のつや消し塗料は、透明のつや消し塗料と白色顔料である酸化チタンの粉末との混合物である。 The graphs of FIGS. 12 and 13 show the spectral reflectance of the film formed by applying a white matte paint for each of the film thicknesses of 66 μm, 88 μm, 93 μm, 110 μm, 124 μm, 155 μm and 186 μm. The graph of FIG. 13 shows an enlarged view of the reflectance 85-95% range of FIG. The white matte paint is a mixture of a transparent matte paint and a powder of titanium oxide which is a white pigment.
 図12及び図13に示されるように、白色のつや消し塗料を塗装することにより被膜が形成される場合は、被膜1401のばらつきが拡散反射面1200の反射率に大きく影響する。また、被膜の膜厚を約90μmにするためには、3回又は4回にわたって塗装を繰り返す必要がある。3回又は4回にわたって塗装を繰り返した場合は、被膜のばらつきが大きくなり、拡散反射面の反射率が大きな影響を受ける。 As shown in FIGS. 12 and 13, when a coating is formed by applying a white matte paint, the dispersion of the coating 1401 greatly affects the reflectance of the diffuse reflection surface 1200. Moreover, in order to make the film thickness of about 90 μm, it is necessary to repeat the coating three times or four times. When coating is repeated three times or four times, the variation of the coating becomes large, and the reflectance of the diffuse reflection surface is greatly affected.
 (25)別例
 図14の模式図は、測定ヘッドを示す。
(25) Another Example The schematic diagram of FIG. 14 shows a measurement head.
 図14に示される測定ヘッド2000は、拡散照明・0°受光のジオメトリが採用されたハンディタイプの色彩計の主要部である。測定ヘッド2000は、パルスキセノンランプ2010、反射傘2011、拡散反射球2012、反射光抽出機構2013及び光ファイバー2014を備える。拡散反射球2012には、球状の空間2020が形成され、試料窓2040及び開口2041が形成される。空間2020は、拡散反射球2012の内面2050に規定される。内面2050は、既に説明したのと同様に透明のつや消し塗料を基材の内面に塗装することにより拡散反射面にされている。拡散反射球2012は、光線束均一機構を構成する。パルスキセノンランプ2010、反射傘2011及び拡散反射球2012は、試料を照明する照明光学系を構成する。 The measuring head 2000 shown in FIG. 14 is the main part of a handy type colorimeter that employs a diffuse illumination and 0 ° light receiving geometry. The measurement head 2000 includes a pulse xenon lamp 2010, a reflector 2011, a diffuse reflection sphere 2012, a reflected light extraction mechanism 2013, and an optical fiber 2014. In the diffuse reflection sphere 2012, a spherical space 2020 is formed, and a sample window 2040 and an opening 2041 are formed. The space 2020 is defined on the inner surface 2050 of the diffuse reflection sphere 2012. The inner surface 2050 is formed as a diffuse reflection surface by coating a transparent matte paint on the inner surface of the substrate in the same manner as already described. The diffuse reflection sphere 2012 constitutes a light beam uniform mechanism. The pulse xenon lamp 2010, the reflector 2011, and the diffuse reflection sphere 2012 constitute an illumination optical system that illuminates the sample.
 測定が行われる場合は、パルスキセノンランプ2010が光線束を放射する。放射された光線束は、反射傘2011に反射されてから又は反射傘2011に反射されることなく空間2020に入射する。入射した光線束は、空間2020を伝搬する間に内面2050に拡散多重反射され、均一化される。均一化された光線束の一部は、照明光の光線束となり、試料窓2040に押し付けられた試料を照明する。均一化された光線束の一部は、開口2041から出射し、参照光の光線束になる。試料により反射された反射光の光線束は、反射光抽出機構2013により抽出され、光ファイバー2014により受光機構に導かれる。反射傘2011の反射光軸は、空間2020の中心軸2060と垂直をなす方向よりやや上方に傾けられる。これにより、パルスキセノンランプ2010が放射する光線束が拡散反射されることなく試料窓2040に到達することが抑制される。 When the measurement is performed, the pulse xenon lamp 2010 emits a light beam. The emitted light beam is incident on the space 2020 after being reflected by the reflector 2011 or without being reflected by the reflector 2011. The incident light bundle is diffused and reflected by the inner surface 2050 while being propagated through the space 2020, and is made uniform. A part of the uniformed light bundle becomes a light bundle of illumination light, and illuminates the sample pressed against the sample window 2040. A part of the uniformed light bundle exits from the opening 2041 and becomes a light bundle of reference light. The beam of reflected light reflected by the sample is extracted by the reflected light extraction mechanism 2013 and guided to the light receiving mechanism by the optical fiber 2014. The reflection optical axis of the reflector 2011 is tilted slightly upward from the direction perpendicular to the central axis 2060 of the space 2020. Thereby, the light flux emitted from the pulse xenon lamp 2010 is prevented from reaching the sample window 2040 without being diffusely reflected.
 図15に示されるように、乳白色アクリル板2015が空間2020に設けられてもよい。乳白色アクリル板2015は、空間2020を伝搬する光線束が乳白色アクリル板2015を透過する場合に光線束を拡散する。乳白色アクリル板2015が他の種類の透過性拡散坂に置き換えられてもよい。例えば、乳白色アクリル板2015がスリガラスにおきかえられてもよい。 As illustrated in FIG. 15, a milky white acrylic plate 2015 may be provided in the space 2020. The milky white acrylic plate 2015 diffuses the light beam when the light beam propagating through the space 2020 passes through the milky white acrylic plate 2015. The milky white acrylic plate 2015 may be replaced with another type of permeable diffusion slope. For example, the milky white acrylic plate 2015 may be replaced with ground glass.
 図16の模式図は、照明機構の断面を示す。 The schematic diagram of FIG. 16 shows a cross section of the illumination mechanism.
 図16に示される照明機構3000は、色彩計の照明光学系を構成する。照明機構3000は、パルスキセノンランプ3010、積分球3011、視野絞り3012、絞り3013及び結像光学系3014を備える。積分球3011には、球状の空間3020が形成され、出射窓3030が形成される。空間3020は、積分球3011の内面3040に規定される。内面3040は、既に説明したのと同様に白色のつや消し塗料を基材の内面に塗装することにより拡散反射面にされる。パルスキセノンランプ3010は、空間3020に配置される。積分球3011は、光線束均一化機構を構成する。 The illumination mechanism 3000 shown in FIG. 16 constitutes an illumination optical system of a color meter. The illumination mechanism 3000 includes a pulse xenon lamp 3010, an integrating sphere 3011, a field stop 3012, a stop 3013, and an imaging optical system 3014. A spherical space 3020 is formed in the integrating sphere 3011, and an exit window 3030 is formed. A space 3020 is defined on the inner surface 3040 of the integrating sphere 3011. The inner surface 3040 is made into a diffuse reflection surface by applying a white matte paint on the inner surface of the substrate in the same manner as already described. The pulse xenon lamp 3010 is disposed in the space 3020. The integrating sphere 3011 constitutes a light flux uniformizing mechanism.
 照明機構3000が試料3060を照明する場合は、パルスキセノンランプ3010が光線束を放射する。放射された光線束は、空間3020を伝搬し、空間3020を伝搬する間に内面3040に拡散多重反射され均一化される。均一化された光線束は、出射窓3030から出射する。出射した光線束は、視野絞り3012により制限される。視野絞り3012により制限された光線束の配向特性は、ほぼ完全な拡散光の配向特性となる。制限された光線束は、開口絞り3013によりさらに制限される。さらに制限された光線束は、結像光学系3014により結像させられ、試料3060を照明する。 When the illumination mechanism 3000 illuminates the sample 3060, the pulse xenon lamp 3010 emits a light beam. The emitted light bundle propagates through the space 3020, and is diffused and reflected by the inner surface 3040 while being propagated through the space 3020, and is made uniform. The uniformed light beam exits from the exit window 3030. The emitted light bundle is limited by the field stop 3012. The alignment characteristics of the light beam limited by the field stop 3012 are almost complete alignment characteristics of diffused light. The limited light bundle is further limited by the aperture stop 3013. Further, the limited light beam is imaged by the imaging optical system 3014 and illuminates the sample 3060.
 図17の模式図は、照明機構の断面を示す。 The schematic diagram of FIG. 17 shows a cross section of the illumination mechanism.
 図17に示される照明機構4000は、色彩計の照明光学系を構成する。照明機構4000は、パルスキセノンランプ4010、凹面鏡4011、反射板4012及びコリメート化光学系4013を備える。反射板4012は、凹面鏡4011の開放部4020に凹面鏡4011の開放部4020を閉塞するように配置される。反射板4012の反射面4030は、凹面鏡4011の反射面4040と対向させられる。凹面鏡4011の反射面4040及び反射板4012の反射面4030の各々は、既に説明したのと同様に透明のつや消し塗料を基材の内面に塗装することにより拡散反射面にされる。ここでいう「内面」は、凹面鏡4011の基材及び反射板4012の基材の複合体において内面となる面を意味する。凹面鏡4011の反射面4040及び反射板4012の反射面4030に規定される半球状の空間4060が形成される。反射板4012には、出射窓4070が形成される。パルスキセノンランプ4010は、空間4060に配置される。凹面鏡4011及び反射板4012からなる複合体は、光線束均一化機構を構成する。 The illumination mechanism 4000 shown in FIG. 17 constitutes an illumination optical system of a color meter. The illumination mechanism 4000 includes a pulse xenon lamp 4010, a concave mirror 4011, a reflection plate 4012, and a collimating optical system 4013. The reflection plate 4012 is disposed so as to close the open portion 4020 of the concave mirror 4011 in the open portion 4020 of the concave mirror 4011. The reflection surface 4030 of the reflection plate 4012 is opposed to the reflection surface 4040 of the concave mirror 4011. Each of the reflecting surface 4040 of the concave mirror 4011 and the reflecting surface 4030 of the reflecting plate 4012 is made a diffusive reflecting surface by coating a transparent matte paint on the inner surface of the substrate in the same manner as already described. The “inner surface” referred to here means a surface that becomes the inner surface in the composite of the base material of the concave mirror 4011 and the base material of the reflector 4012. A hemispherical space 4060 defined by the reflecting surface 4040 of the concave mirror 4011 and the reflecting surface 4030 of the reflecting plate 4012 is formed. An exit window 4070 is formed in the reflection plate 4012. The pulse xenon lamp 4010 is disposed in the space 4060. A complex composed of the concave mirror 4011 and the reflecting plate 4012 constitutes a light beam uniformizing mechanism.
 照明機構4000が試料4080を照明する場合は、パルスキセノンランプ4010が光線束を放射する。放射された光線束は、空間4060を伝搬し、空間4060を伝搬する間に凹面鏡4011の反射面4040及び反射板4012の反射面4030に拡散多重反射され均一化される。均一化された光線束は、出射窓4070から出射する。出射した光線束は、コリメート化光学系4013によりコリメート化され、試料4080を照明する。 When the illumination mechanism 4000 illuminates the sample 4080, the pulse xenon lamp 4010 emits a light beam. The emitted light beam propagates in the space 4060, and is diffused and reflected uniformly by the reflecting surface 4040 of the concave mirror 4011 and the reflecting surface 4030 of the reflecting plate 4012 while propagating in the space 4060. The uniformed light beam exits from the exit window 4070. The emitted light bundle is collimated by the collimating optical system 4013 and illuminates the sample 4080.
 1000 色彩計
 1010 測定機構
 1020 照明機構
 1021 積分球
 1022 反射光用の受光機構
 1023 参照光用の受光機構
 1030 放射機構
 1031 光線束分離機構
 1032 結像光学系
 1050 パルスキセノンランプ
 1051 反射傘
 1070 角筒状構造物
 1400 基材
 1401 被膜
 1402 被膜
 2000 測定ヘッド
 2012 拡散反射球
 3000 照明機構
 3011 積分球
 4000 照明機構
 4011 凹面鏡
 4012 反射板
1000 Colorimeter 1010 Measuring mechanism 1020 Illuminating mechanism 1021 Integrating sphere 1022 Light receiving mechanism for reflected light 1023 Light receiving mechanism for reference light 1030 Radiation mechanism 1031 Beam bundle separating mechanism 1032 Imaging optical system 1050 Pulse xenon lamp 1051 Reflecting umbrella 1070 Square cylindrical shape Structure 1400 Base material 1401 Coating 1402 Coating 2000 Measuring head 2012 Diffuse reflection sphere 3000 Illumination mechanism 3011 Integration sphere 4000 Illumination mechanism 4011 Concave mirror 4012 Reflector

Claims (16)

  1.  空間が形成され、前記空間を規定する内面を有し、白色樹脂からなり、光線束を反射する基材と、
     透明のつや消し塗料を前記内面に塗装することにより形成され、光線束を拡散する被膜と、
    を備える測色用の光線束均一化機構。
    A base is formed with a space, having an inner surface defining the space, made of a white resin, and reflecting the light bundle;
    A coating formed by applying a transparent matte paint on the inner surface and diffusing a light beam;
    A light flux uniformizing mechanism for colorimetry.
  2.  前記白色樹脂が熱可塑性樹脂を含む
    請求項1の光線束均一化機構。
    The light beam homogenizing mechanism according to claim 1, wherein the white resin contains a thermoplastic resin.
  3.  前記熱可塑性樹脂がアクリル樹脂、ポリカーボーネート樹脂又は液晶ポリマー樹脂である
    請求項2の光線束均一化機構。
    The light beam uniformizing mechanism according to claim 2, wherein the thermoplastic resin is an acrylic resin, a polycarbonate resin, or a liquid crystal polymer resin.
  4.  前記白色樹脂が熱硬化性樹脂を含む
    請求項1の光線束均一化機構。
    The light beam uniformizing mechanism according to claim 1, wherein the white resin includes a thermosetting resin.
  5.  前記熱硬化性樹脂が不飽和ポリエステル樹脂又はエポキシ樹脂である
    請求項4の光線束均一化機構。
    The light flux uniformizing mechanism according to claim 4, wherein the thermosetting resin is an unsaturated polyester resin or an epoxy resin.
  6.  前記透明のつや消し塗料は、つや消し剤を含み、
     前記つや消し剤は、シリカの微粒子、炭酸カルシウムの微粒子及びリン酸カルシウムの微粒子からなる群より選択される1種類以上を含む
    請求項1から5までのいずれかの光線束均一化機構。
    The transparent matte paint contains a matting agent,
    6. The light flux homogenizing mechanism according to claim 1, wherein the matting agent includes at least one selected from the group consisting of silica fine particles, calcium carbonate fine particles, and calcium phosphate fine particles.
  7.  前記基材が外面を有し、
     前記外面を覆う遮光物
    をさらに備える請求項1から6までのいずれかの光線束均一化機構。
    The substrate has an outer surface;
    The light beam uniformizing mechanism according to any one of claims 1 to 6, further comprising a light shielding member covering the outer surface.
  8.  前記遮光物が、塗料を前記外面に塗装することにより形成される遮光膜である
    請求項7の光線束均一化機構。
    The light beam uniformizing mechanism according to claim 7, wherein the light shielding object is a light shielding film formed by coating a paint on the outer surface.
  9.  前記遮光物が、前記外面に接触する遮光部材である
    請求項7の光線束均一化機構。
    The light beam uniformizing mechanism according to claim 7, wherein the light blocking object is a light blocking member that contacts the outer surface.
  10.  前記空間が球状である
    請求項1から9までのいずれかの光線束均一化機構。
    The light beam uniformizing mechanism according to any one of claims 1 to 9, wherein the space is spherical.
  11.  光線束を放射する光源と、
     放射された光線束を均一化する請求項1から10までのいずれかの光線束均一化機構と、
    を備える照明光学系。
    A light source that emits a bundle of rays;
    The light beam uniformizing mechanism according to any one of claims 1 to 10, which uniformizes the emitted light beam,
    An illumination optical system.
  12.  請求項11の照明光学系と、
     受光光学系と、
    を備える測色計。
    An illumination optical system according to claim 11;
    A receiving optical system;
    A colorimeter with
  13.  試料により反射された反射光の光線束又は試料を透過した透過光の光線束を均一化する請求項1から10までのいずれかの光線束均一化機構と、
     均一化された反射光の光線束又は均一化された透過光の光線束を受光し測定結果を出力する受光機構と、
    を備える受光光学系。
    The beam bundle uniformizing mechanism according to any one of claims 1 to 10, wherein the beam bundle of reflected light reflected by the sample or the beam bundle of transmitted light that has passed through the sample is made uniform.
    A light receiving mechanism for receiving a uniform light beam of reflected light or a uniform light beam of transmitted light and outputting a measurement result;
    A light receiving optical system.
  14.  照明光学系と、
     請求項13の受光光学系と、
    を備える測色計。
    Illumination optics,
    A light receiving optical system according to claim 13;
    A colorimeter with
  15.  放射された光線束を照明光の光線束と参照光の光線束とに分離する光線束分離機構、
    を備え、
     前記光線束分離機構が請求項1から10までのいずれかの光線束均一化機構を備え、
     前記光線束均一化機構が前記参照光の光線束を均一化する
    参照光学系。
    A beam bundle separation mechanism for separating the emitted beam bundle into a bundle of illumination light and a bundle of reference light;
    With
    The light beam separation mechanism comprises any one of the light beam uniformizing mechanisms according to claim 1,
    A reference optical system in which the beam bundle uniformizing mechanism uniformizes the beam bundle of the reference light.
  16.  照明光学系と、
     請求項15の参照光学系と、
     受光光学系と、
    を備える測色計。
    Illumination optics,
    The reference optical system of claim 15;
    A receiving optical system;
    A colorimeter with
PCT/JP2016/053029 2015-02-24 2016-02-02 Luminous flux homogenizing mechanism, illuminating optical system, light-receiving optical system, reference optical system, and colorimeter WO2016136402A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680010998.0A CN107250743B (en) 2015-02-24 2016-02-02 Beam uniformity mechanism, lamp optical system, light receiving optical system, reference optical system and colour meter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015034165 2015-02-24
JP2015-034165 2015-02-24

Publications (1)

Publication Number Publication Date
WO2016136402A1 true WO2016136402A1 (en) 2016-09-01

Family

ID=56788602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053029 WO2016136402A1 (en) 2015-02-24 2016-02-02 Luminous flux homogenizing mechanism, illuminating optical system, light-receiving optical system, reference optical system, and colorimeter

Country Status (2)

Country Link
CN (1) CN107250743B (en)
WO (1) WO2016136402A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07212537A (en) * 1994-01-20 1995-08-11 Nichia Chem Ind Ltd Generation method for standard light source for reading and light source device
US5471053A (en) * 1994-06-24 1995-11-28 E. I. Du Pont De Nemours And Company Light collector
JPH11241949A (en) * 1997-12-26 1999-09-07 Minolta Co Ltd Apparatus for measuring reflection property
JP2005119259A (en) * 2003-09-26 2005-05-12 Dainippon Printing Co Ltd Highly light reflective transparent laminated film, its manufacturing method and liquid crystal display device
JP2013003061A (en) * 2011-06-20 2013-01-07 Seishin Shoji Kk Light source inspection apparatus
JP2015031702A (en) * 2013-07-31 2015-02-16 平岡織染株式会社 Back face projection screen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85200717U (en) * 1985-04-01 1986-01-08 中国科学院安徽光学精密机械研究所 Optical integrating ball
JPH1062240A (en) * 1996-08-20 1998-03-06 Nikon Corp Apparatus and method for measuring scattering
CN101620180B (en) * 2009-05-08 2011-03-23 合肥美亚光电技术有限责任公司 Method for rapidly detecting tea quality through near infrared technology

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07212537A (en) * 1994-01-20 1995-08-11 Nichia Chem Ind Ltd Generation method for standard light source for reading and light source device
US5471053A (en) * 1994-06-24 1995-11-28 E. I. Du Pont De Nemours And Company Light collector
JPH11241949A (en) * 1997-12-26 1999-09-07 Minolta Co Ltd Apparatus for measuring reflection property
JP2005119259A (en) * 2003-09-26 2005-05-12 Dainippon Printing Co Ltd Highly light reflective transparent laminated film, its manufacturing method and liquid crystal display device
JP2013003061A (en) * 2011-06-20 2013-01-07 Seishin Shoji Kk Light source inspection apparatus
JP2015031702A (en) * 2013-07-31 2015-02-16 平岡織染株式会社 Back face projection screen

Also Published As

Publication number Publication date
CN107250743A (en) 2017-10-13
CN107250743B (en) 2019-07-05

Similar Documents

Publication Publication Date Title
Bergmann et al. Precise determination of the optical properties of turbid media using an optimized integrating sphere and advanced Monte Carlo simulations. Part 2: experiments
US4995727A (en) Compact diffusion light mixing box and colorimeter
US7821641B2 (en) Precise flow-oriented multi-angle remission sensor
KR100242670B1 (en) Method and device for spectral remission and transmission measurement
US8072607B2 (en) Measuring device for measuring optical properties of transparent substrates
JP2019531488A (en) Sensor for substantially simultaneous measurement of transmission and / or forward scattering and / or re-radiation of a liquid sample and for simultaneous measurement of transmission and forward scattering or transmission and re-radiation
US8456638B2 (en) Optical measurement apparatus, optical measurement system, and fiber coupler
CN106255908B (en) Calibration fiber connector
JP2016218000A (en) Set of integrating sphere and mask, colorimetry device and mask
TWI790252B (en) Optical sensor package and method of producing same
WO2016136402A1 (en) Luminous flux homogenizing mechanism, illuminating optical system, light-receiving optical system, reference optical system, and colorimeter
WO2015178142A1 (en) Surface characteristic measurement device
JP4239955B2 (en) Multi-angle colorimeter, lighting device and light receiving device
CN111435180B (en) Double-sided light adjusting sheet and preparation method thereof
CN209326939U (en) A kind of focusing mirror integrating sphere uniform source structure
JP6330480B2 (en) Light emission mechanism, illumination mechanism and reflection characteristic measuring device
JP6750189B2 (en) Optical property measuring device
CN109738159A (en) A kind of focusing mirror integrating sphere uniform source
JP2006145374A (en) Reflection characteristics measuring apparatus and multi-angle colorimeter
CN111504464A (en) Time division multiplexing double-beam photometric device
JP2016211874A (en) Colorimeter
KR100996881B1 (en) Integrating sphere
CN111435182B (en) Light filtering type dimming sheet and preparation method thereof
US20230062325A1 (en) Integrating sphere
JPS63305221A (en) Integrating sphere

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16755152

Country of ref document: EP

Kind code of ref document: A1