WO2016136251A1 - 細胞担持用基材及びその製造方法 - Google Patents

細胞担持用基材及びその製造方法 Download PDF

Info

Publication number
WO2016136251A1
WO2016136251A1 PCT/JP2016/000981 JP2016000981W WO2016136251A1 WO 2016136251 A1 WO2016136251 A1 WO 2016136251A1 JP 2016000981 W JP2016000981 W JP 2016000981W WO 2016136251 A1 WO2016136251 A1 WO 2016136251A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
ozone
culture
supporting substrate
Prior art date
Application number
PCT/JP2016/000981
Other languages
English (en)
French (fr)
Inventor
高橋 秀一
大平 美智男
英夫 中田
昌悟 宮田
周吾 遠山
藤田 淳
恵一 福田
Original Assignee
荏原実業株式会社
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原実業株式会社, 学校法人慶應義塾 filed Critical 荏原実業株式会社
Priority to EP16755001.1A priority Critical patent/EP3263692A4/en
Priority to JP2017501942A priority patent/JP6200621B2/ja
Priority to US15/552,973 priority patent/US11193107B2/en
Publication of WO2016136251A1 publication Critical patent/WO2016136251A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0656Adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a cell-supporting substrate having a surface suitable for cell support, adhesion, storage, culture, and / or proliferation, and a method for producing the same.
  • Patent Document 2 such as corona discharge treatment (Patent Document 1), grafting of a polymer chain containing a hydrophilic skeleton (Patent Document 3), Substrate with a contact angle of about 10 to 30 ° by binding aminopropylethylenemaleic anhydride on the surface (Patent Document 4) and a method for presenting hydrophilic groups of amphiphilic substances on the surface (Patent Document 5) Etc. have been reported.
  • Patent Document 2 such as corona discharge treatment (Patent Document 1), grafting of a polymer chain containing a hydrophilic skeleton (Patent Document 3), Substrate with a contact angle of about 10 to 30 ° by binding aminopropylethylenemaleic anhydride on the surface (Patent Document 4) and a method for presenting hydrophilic groups of amphiphilic substances on the surface (Patent Document 5) Etc.
  • Patent Document 6 As a method of controlling the degree of hydrophilicity of the surface, a method of reducing the degree of hydrophilicity by oxidizing and / or decomposing the surface once made highly hydrophilic, A method of binding via a linker and adjusting the degree of hydrophilicity by the density of the linker has been reported (Patent Document 6). Of these, physical methods such as corona discharge treatment and atmospheric pressure plasma treatment are particularly simple, and have become major methods for modifying hydrophilic cell culture surfaces.
  • hydrophilic surface it is considered that groups having an oxygen atom such as a hydroxyl group, a carbonyl group, and a carboxy group mainly contribute to the display of hydrophilicity.
  • groups having an oxygen atom such as a hydroxyl group, a carbonyl group, and a carboxy group mainly contribute to the display of hydrophilicity.
  • oxygen atoms introduced by corona discharge are rapidly removed, there is a problem that the surface is easily deteriorated.
  • the corona discharge treatment can provide only about 20% of surface oxygen on the substrate, and there is a limit to imparting hydrophilicity.
  • plasma discharge can achieve a higher oxygen level than corona discharge, it is necessary to process the substrate in a vacuum, and the treatment process is complicated. Further, the plasma treatment has a problem that the surface is easily damaged.
  • Non-Patent Document 4 ultraviolet laser irradiation to a fluororesin substrate or the like (Patent Document 4) or a method of irradiating ultraviolet light having a wavelength that generates ozone (Non-Patent Documents 3 and 4) has been reported. Also in these reports, it is reported that it is desirable that the ratio of surface oxygen atoms is medium for cell growth (Non-patent Document 4).
  • Non-patent Document 5 a combination of ozone / ultraviolet light treatment and a biomaterial
  • introduction of oxygen atoms into ultra-high molecular weight polyethylene (non-patent document) 6) etc. are being studied.
  • stem cells that are undifferentiated cells are difficult to culture, such as feeder cells, cytokines such as LIF, Matrigel (registered trademark), collagen, etc. It required a special environment such as coating with extracellular matrix proteins.
  • cytokines such as LIF, Matrigel (registered trademark)
  • LIF feeder cells
  • Matrigel registered trademark
  • collagen etc. It required a special environment such as coating with extracellular matrix proteins.
  • all of these technologies depend on biological materials, so they are not stable, cause differences in results due to lot differences, potential contamination may occur, and the lifetime in storage is short. It was.
  • JP-A-6-98756 International Publication No. WO2012 / 144624 JP 2009-17809 A Special table 2012-527896 gazette JP 2012-175893 A Special table 2011-510655 gazette JP 2010-68755 A
  • the present invention has been made in view of the above circumstances, and provides a surface modification method for supporting and culturing cells by stably imparting hydrophilicity suitable for cell adhesion by a simpler method.
  • the present invention provides stem cells without requiring special environments such as feeder cells or coating with extracellular matrix proteins such as Matrigel (registered trademark) (Corning Inc., New York, USA) and collagen.
  • An object is to provide a cell-supporting substrate that can be supported or cultured.
  • the present inventors have found that cell adhesion is achieved by irradiating UV in a humidified oxygen and / or ozone atmosphere. And the present invention was completed by finding that a surface suitable for cell growth was produced. Furthermore, the present inventors cultured stem cells on such a surface, and found that feeder cells, or extracellular matrix such as Matrigel (registered trademark) (Corning Inc., New York, USA, the same applies below) and collagen. The present inventors have found that the function and properties as stem cells are maintained without differentiation without being coated with a protein, and the present invention has been completed.
  • Matrigel registered trademark
  • the present invention includes the following inventions: [1] A cell-supporting base material comprising a base material mainly composed of a non-fluorinated resin, containing a component that generates C 7 H 5 O + molecules by beam irradiation with a time-of-flight secondary ion mass spectrometer A cell-carrying substrate that has a cell-carrying surface that carries cells on the cell-carrying surface. [2] The ratio of the C 7 H 5 O + molecule to all the molecules generated by beam irradiation with the time-of-flight secondary ion mass spectrometer on the cell support surface is 0.015 or more. Cell support substrate.
  • the non-fluorine-based resin is at least one resin selected from the group consisting of polyethylene, acrylic resin, ABS resin, polyethylene terephthalate, polypropylene, polycarbonate, and polystyrene.
  • the cell-supporting substrate according to [11] wherein the non-fluorinated resin is polystyrene.
  • the non-fluorine-based resin is at least one resin selected from the group consisting of polyethylene, acrylic resin, ABS resin, polyethylene terephthalate, polypropylene, polycarbonate, and polystyrene.
  • Method for manufacturing a substrate [17] The method for producing a cell-supporting substrate according to [16], wherein the non-fluorinated resin is polystyrene.
  • a method for culturing adherent cells comprising culturing cells on the cell-carrying surface of the cell-carrying substrate according to any one of [1] to [14] and [23] Method.
  • the culture method according to [24] wherein the adherent cells are stem cells.
  • the culture method according to [25], wherein the stem cells are mouse iPS cells or human iPS cells.
  • the present invention may be the following invention: (1) A cell-supporting substrate comprising a non-fluorine-based resin as a main component, wherein at least a part of the cell-supporting surface has a C—C bond and / or a C—H bond. A cell-supporting substrate having cells on the surface. (2) The cell-supporting substrate according to (1), wherein substantially no carboxy group is present on the cell-supporting surface. (3) The cell carrying surface is a surface capable of carrying or proliferating stem cells in an undifferentiated state even in the absence of a scaffold cell and an extracellular matrix protein coating. ) Or (2).
  • a method for producing a cell-supporting substrate having a cell-supporting surface A humidifying step of humidifying the periphery of a base material mainly composed of a non-fluorinated resin; and A cell-supporting base material comprising a UV irradiation step of irradiating the cell-supporting surface with UV in an atmosphere supplied with oxygen and / or ozone after the humidification step and / or after the humidification step.
  • Manufacturing method (5) The cell support according to (4), wherein the non-fluorine resin is at least one resin selected from the group consisting of polyethylene, acrylic resin, ABS resin, polyethylene terephthalate, polypropylene, polycarbonate, and polystyrene.
  • the cell-carrying surface of the cell-carrying substrate is a surface that can carry or proliferate stem cells in an undifferentiated state even in the absence of scaffold cells and extracellular matrix protein coating.
  • a cell culture vessel for adherent cells comprising a substrate.
  • the “cell-carrying substrate” is a substrate used by supporting cells on the surface, and is a group intended for cell loading, adhesion, storage, culture, and / or proliferation. It may be a material.
  • the cell-supporting base material includes a cell culture base material (for example, a cell culture container), a cell storage base material, or an implant base material.
  • the cells carried by the cell carrying substrate in the present specification are not particularly limited as long as they are adherent cells.
  • mammalian cells such as smooth muscle cells, endothelial cells, fibroblasts, osteoblasts, stem cells, etc.
  • it is a stem cell.
  • the stem cells include iPS cells, ES cells, mesenchymal stem cells and the like, and include mouse, rat, rabbit, dog, monkey, and human cells, preferably mouse iPS cells and human iPS. It is a cell.
  • the shape of the cell-supporting substrate in the present specification can be appropriately selected according to the purpose, and for example, a plate shape, a sheet shape, a spherical shape, a dish shape, a chip shape, or a desired tissue (for example, , An artificial bone or a surface portion thereof).
  • the cell-supporting substrate is an adherent cell culture container or an adherent cell storage container, more preferably an iPS cell culture container or an iPS cell storage container.
  • the cell-supporting substrate in the present specification contains a non-fluorine resin as a main component, but may contain “other components” as necessary.
  • other substances that contribute to cell adhesion such as Matrigel (registered trademark), laminin, collagen, or fibronectin may be appropriately contained.
  • the cell-supporting substrate in the present specification is not subjected to physical treatment including ozone / UV non-treatment with such other components (molecules other than the main component non-fluorine resin are treated as cells.
  • the cell-supporting substrate is an iPS cell (for example, mouse) when a cell-supporting substrate made of a non-fluorine resin that has not been subjected to physical treatment including ozone / UV non-treatment.
  • Matrigel registered trademark
  • Matrigel may be contained at a concentration of not more than half, preferably not more than 0.2 times the concentration of Matrigel (registered trademark) required for culturing iPS cells or human iPS cells).
  • the cell-supporting substrate is an iPS cell (for example, when a cell-supporting substrate made of a non-fluorine resin that has not been subjected to physical treatment including ozone / UV non-treatment is used.
  • Mouse iPS cells or human iPS cells may contain laminin at a concentration of half or less of the concentration of laminin required for culturing.
  • non-fluorine-based resin means a resin that does not contain fluorine.
  • polyethylene ultra-high molecular polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinyl alcohol, acrylic resin, polyethylene terephthalate, polyacetal And polycarbonate, polyamide, polyimide resin, phenol resin, amino resin, epoxy resin, polyester, and acrylonitrile-butadiene-styrene copolymer synthetic resin (ABS resin).
  • ABS resin acrylonitrile-butadiene-styrene copolymer synthetic resin
  • Polystyrene has stereoregularity (tacticity, tacticity), and there are isotactic (isotactic) type, syndiotactic type, and atactic type, but the type of polystyrene in the present invention is not limited. Any of these types, or a mixture of two or more of these types may be used, and an atactic type is generally used. Since polystyrene is a high molecular compound, products with various degrees of polymerization (average molecular weight) are supplied, but the present invention is not limited thereto. For example, the degree of polymerization can be 10 to 100,000, 50 to 10,000.
  • polystyrene culture dishes supplied by various companies there may be a difference in material and physical properties among polystyrene culture dishes supplied by various companies, but the present invention is not limited to this, and culture dishes from any manufacturer can be used.
  • IWAKI registered trademark
  • tissue culture dish AGC Techno Glass Co., Ltd.
  • the cell-supporting substrate of the present invention has a cell-supporting surface at least in part.
  • the “cell-carrying surface” means a surface on which cells can be supported, adhered, stored, cultured, and / or proliferated, and cells are not necessarily cultured or proliferated on the surface. It is not what you need.
  • the cell-carrying surface is a component that generates C 7 H 5 O + molecules (for example, (C 6 H 5 ) C + ( ⁇ O) molecules) by beam irradiation with a time-of-flight secondary ion mass spectrometer. Containing.
  • a component that generates a molecule by beam irradiation by a time-of-flight secondary ion mass spectrometer is detected as a molecular weight spectrum of the molecule by beam irradiation by a time-of-flight secondary ion mass spectrometer. It may be a component.
  • the surface containing such a component may be a surface obtained by UV irradiation in the presence of ozone and in a humidified environment with respect to a surface made of polystyrene.
  • the C 7 H 5 O + molecule is one out of all molecules generated by beam irradiation on the cell-supporting surface by a time-of-flight secondary ion mass spectrometer (when all the molecules are set to 1). , 0.01 or more (that is, 1% or more), 0.015 or more (that is, 1.5% or more), 0.016 or more (that is, 1.6% or more), 0.017 or more (that is, 1..
  • the cell-carrying surface is a time-of-flight secondary to the cell-carrying surface with respect to the ratio of the C 7 H 5 O + molecule to all molecules generated by beam irradiation by a time-of-flight secondary ion mass spectrometer.
  • Ratio of the ratio of the C 2 H 3 O + molecule to all molecules generated by beam irradiation by an ion mass spectrometer ie, (ratio of the C 2 H 3 O + molecule to all molecules) / (to all molecules)
  • the ratio of the C 7 H 5 O + molecule) is 0.45 or less (ie, 45% or less), 0.46 or less (ie, 46% or less), 0.47 or less (ie, 47% or less), 0 .48 or less (ie, 48% or less), 0.485 or less (ie, 48.5% or less), 0.49 or less (ie, 49% or less), 0.5 or less (ie, 50% or less) 0.55 (i.e., 55% or less), or more than 0.6 (i.e., 60% or less) may be used.
  • beam irradiation by a time-of-flight secondary ion mass spectrometer is, for example, for analysis using a time-of-flight secondary ion mass spectrometer (for example, ULVAC-PHI, Inc., PHI nanoTOF II).
  • a time-of-flight secondary ion mass spectrometer for example, ULVAC-PHI, Inc., PHI nanoTOF II.
  • 30 kV Bi3 ++ 6.0 to 7.0 nA DC is used as the primary ion beam, and the primary ion beam path width and the number of frames are 12 nsec, 64 to 75 times (1 ⁇ 10 11 ions / cm 2 ) and charged.
  • Beam irradiation may be performed under the condition that neutralization is 10 eV electron beam + 10 eV Ar + .
  • the cell-carrying surface of the cell-carrying substrate of the present invention has a C—C bond and / or a C—H bond with chemical shift on the surface.
  • C—C bond and / or C—H bond causing chemical shift is a structure in which the bonding state is changed by incorporating an oxygen atom into the molecular structure of polystyrene, It is a structure that does not contain. That is, the C—C bond and / or C—H bond causing a chemical shift means a C—C bond and / or C—H not contained in polystyrene, and C—H, C—C and C— This means a structure other than Ph.
  • the cell-carrying surface of the present invention has a reduced contact angle despite a very small number of oxygen atom-introduced groups (OH, COOH, C ⁇ O, etc.). Therefore, it is considered that this decrease in the contact angle is caused by a C—C bond and / or a C—H bond causing a chemical shift.
  • the carboxy group on the cell culture surface is thought to have an adverse effect on the cells.
  • the cell-carrying surface of the cell-carrying substrate of the present invention has an extremely small amount of carboxy groups as compared to the cell-carrying substrate that has been treated with UV / ozone under the same conditions under non-humidification. Therefore, the cell-supporting substrate of the present invention is substantially free of carboxy groups on the cell-supporting surface.
  • “substantially non-existing” does not mean that it does not exist at all, but means that it does not exist to the extent that it affects cell culture.
  • UV is used under the same conditions under non-humidification.
  • the cell-supporting substrate of the present invention has a medium water contact angle on the cell-supporting surface, for example, 40 to 90 °, 40 to 80 °, 40 to 70 °, 50 to 90 °, 50 to 80 °, They are 50 to 70 °, 55 to 65 ° C., 60 to 90 °, 60 to 80 °, 60 to 70 °, 70 to 90 °, and 70 to 80 °.
  • the water contact angle is 70 to 90 °.
  • the contact angle in the present specification is a contact angle measured by the ⁇ / 2 method by dropping 1 ⁇ L of pure water onto a sample with an automatic contact angle meter.
  • the cell-supporting substrate of the present invention is excellent in storage stability of the cell adhesive surface.
  • the cell-supporting substrate of the present invention preferably has a water contact angle of 24 hours after UV irradiation and the surface of the sealed storage for 1 week within the range of the contact angle, preferably UV. Both the water contact angle of the surface after 24 hours from irradiation and one month sealed storage are within the range of the contact angle. That is, the cell-supporting substrate of the present invention preferably maintains excellent cell adhesion even after one week of sealed storage or one month of sealed storage after UV irradiation.
  • the cell-carrying surface of the cell-carrying substrate of the present invention is a stem cell even in the absence of feeder cells (scaffold cells) and extracellular matrix protein coating or in the presence of a lower concentration of extracellular matrix protein coating. Can be carried or propagated in an undifferentiated state.
  • the cell-carrying surface of the cell-carrying substrate of the present invention can be applied to EB3 cells (Mol. Cell biol. (2002) which are mouse embryonic stem cells derived from the 129 / Ola lineage, even without feeder cells and extracellular matrix protein coating. ) 22: 1526-36; Genes to Cell (2004) 9: 471-7) may be the surface on which it can grow.
  • the cell-carrying surface may be 0.2 times the concentration of Matrigel (registered trademark) necessary for adhering stem cells on a base material mainly composed of the non-fluorinated resin that is not surface-treated, It may be a surface on which stem cells (eg, human iPS cells or mouse iPS cells) can adhere or grow.
  • the cell-carrying surface may be a stem cell (e.g., at a concentration of 0.5 times the concentration of laminin necessary for adhering the stem cell on the base material mainly composed of the non-fluorinated resin whose surface is not treated). It may be a surface to which human iPS cells or mouse iPS cells) can adhere or grow.
  • the present invention relates to a cell culture vessel for adherent cells, comprising the cell-supporting substrate.
  • the cell culture container include plate-shaped, sheet-shaped, spherical, dish-shaped, chip-shaped, fiber-shaped, or flask-shaped culture containers.
  • the method for producing a cell-supporting substrate of the present invention can stably impart hydrophilicity suitable for cell adhesion by a simpler method.
  • the cell-supporting substrate of the present invention does not require the use of biological material, or adherent cells containing stem cells can be cultured in a smaller amount than before, so the difference in results due to lot differences is high. In addition, it can be cultured at a lower cost.
  • the component derived from an animal is not used or the usage-amount can be reduced, the problem of a potential contamination can be reduced.
  • the vertical axis represents the contact angle (degrees), and the horizontal axis represents the ozone / UV treatment time (minutes).
  • the vertical axis represents ozone concentration (ppm), and the horizontal axis represents elapsed time (minutes). In the elapsed time displayed on the horizontal axis, 0 to 5 minutes indicate a period for ozone purge treatment, 5 to 15 minutes indicate a period for UV irradiation, and 15 to 25 minutes indicate a period for decomposing ozone in the treatment tank.
  • Diamonds indicate data without humidification, and squares indicate data with humidification. It is a graph which shows the change of the contact angle in long-term storage. The vertical axis represents the contact angle (°), and the horizontal axis represents the ozone / UV treatment time. In each group, the graph represents the contact angles 24 hours later, 1 week later, and 1 month later from the left. It is a graph which shows the change of the ozone concentration during the ozone / UV process of a polystyrene dish. The graph shows, in order from the top, UV treatment for 1 minute or 3 minutes only (room air, 25 ° C., humidification), oxygen purge for 5 minutes, UV treatment for 3 minutes, ozone purge for 5 minutes, and UV treatment for 3 minutes.
  • the vertical axis of each graph represents the ozone concentration (ppm), and the horizontal axis represents the treatment time.
  • the UV treatment time is 0 to 1 minute (UV 1 min) or 0 to 3 minutes (UV 3 min), and in the lower two graphs, the UV treatment time is 5 to 8 minutes.
  • the 0 to 5 minutes in the middle graph represents the oxygen purge time
  • the 0 to 5 minutes in the bottom graph represents the ozone purge time.
  • the vertical axis represents the number of cells ( ⁇ 10 5 cells / dish).
  • the horizontal axis represents, in order from the left, a UV-untreated polystyrene dish (negative control) (TCPS); a gelatin-coated polystyrene dish (positive control) (Treated PS); 25 ° C. in an atmospheric environment (no humidification and ozone purge) No) polystyrene dish irradiated with UV for 1 minute (UVPS (1 min)); polystyrene dish irradiated with UV for 3 minutes in an atmospheric environment (no humidification and no ozone purge) at 25 ° C.
  • UVPS (3 min); 40 ° C.
  • FIG. It is a graph which shows the result of having performed the XPS analysis about the surface of the polystyrene dish which processed (4) of Example 3.
  • FIG. It is a photograph after culturing mouse iPS cells on each dish for 3 days. Among each photograph, the upper photograph shows an optical microscope photograph, and the lower photograph shows a fluorescence microscope photograph. The upper row shows the results of culturing cells in an ozone / UV-untreated dish, and the lower row shows the results of culturing cells in an ozone / UV-treated dish. The upper left shows the results of culturing mouse iPS cells on feeder cells, and the right shows the results of culturing in the absence of feeder cells and in the absence of gelatin.
  • the lower panel shows the results of culturing mouse iPS cells on a dish that was treated with ozone / UV for 1, 3, and 10 minutes from the left (both in the absence of feeder cells and in the absence of gelatin). It is a graph showing the number of adherent cells after culturing human iPS cells (201B7) on each polystyrene dish for 5 days in the presence of various concentrations of Matrigel (registered trademark). The vertical axis represents the ratio of the number of cultured cells when the number of cells cultured in the presence of 100% Matrigel (registered trademark) is 1.
  • the upper horizontal axis represents the Matrigel (registered trademark) concentration used for each culture in terms of the magnification (Matrigel) when the recommended concentration is 1 time
  • the lower horizontal axis represents the ozone / UV treatment of the polystyrene dish ( UV irradiation) Time (second) (UV radiation [sec]) (lower).
  • the bar ( ⁇ ) on the lower side of the horizontal axis indicates that UV treatment is not performed. Error bars represent standard deviation. It is a photograph of adherent cells after culturing human iPS cells (201B7) on each polystyrene dish in the presence of various concentrations of Matrigel (registered trademark) for 5 days.
  • the upper row shows the results of culturing on a dish not treated with ozone / UV, and the results of culturing with Matrigel (registered trademark) concentration of 0.2 times and 0.5 times of normal culture in order from the left.
  • the left side of the second stage shows the result of culturing on an ozone / UV-untreated dish, and shows the result of culturing with the Matrigel (registered trademark) concentration being 1 time of normal culture.
  • the right side of the second row shows the result of culturing the Matrigel (registered trademark) concentration 0.2 times that of normal culture on a dish subjected to ozone / UV treatment, and represents a dish with 1 minute of UV irradiation.
  • the third row and the fourth row show the results of culturing the Matrigel (registered trademark) concentration at 0.2 times the normal culture on a dish subjected to ozone / UV treatment. Irradiation 2 minutes and 3 minutes, the fourth row represents the dishes of UV irradiation 4 minutes and 5 minutes in order from the left.
  • It is a graph showing the number of adherent cells after culturing human iPS cells (201B7) on each polystyrene dish for 3 days in the presence of various concentrations of laminin 511E8.
  • the vertical axis represents the ratio (Fold) of the number of cultured cells when the number of cells cultured in the presence of 100% laminin 511E8 is 1.
  • the horizontal axis shows the ozone / UV treatment (UV irradiation) time (minutes) (UV radiation [min]) (upper) of the polystyrene dish and the laminin 511E8 concentration (lower) used for the culture, and the recommended concentration of 100%. This is expressed as a ratio.
  • the upper bar ( ⁇ ) on the horizontal axis indicates that UV treatment is not performed. It is a photograph of adherent cells after culturing human iPS cells (201B7) on each polystyrene dish for 5 days in the presence of various concentrations of laminin.
  • the upper row shows the results of culturing on a dish not treated with ozone / UV, and the results of culturing with laminin concentrations of 0.2, 0.5, and 1 times that of normal culture are shown in order from the left.
  • the middle row shows the results of culturing on a dish that has been subjected to ozone / UV treatment with a laminin concentration of 0.2 times that of normal culture, and shows dishes of 1 minute, 3 minutes, and 5 minutes of UV irradiation in order from the left.
  • the lower row shows the results of culturing on a dish that has been subjected to ozone / UV treatment with a laminin concentration of 0.5 times that of normal culture, and in order from the left, it represents dishes of 1 minute, 3 minutes, and 5 minutes of UV irradiation.
  • UV untreated (Control) and ozone / UV surface treatment for 1 minute (1 min) The surface of a polystyrene dish was analyzed using a time-of-flight secondary ion mass spectrometer (ULVAC-PHI, PHI nanoTOF II) It is a graph which shows the result.
  • the vertical axis represents the count number and the horizontal axis represents the mass-to-charge ratio (m / z).
  • the surface of the polystyrene dish that had been subjected to ozone / UV surface treatment for 3 minutes (3 min) and 5 minutes (5 min) was analyzed using a time-of-flight secondary ion mass spectrometer (ULVAC-PHI, PHI nanoTOF II). It is a graph which shows a result. The vertical axis represents the count number and the horizontal axis represents the mass-to-charge ratio (m / z).
  • the surface of the polystyrene dish subjected to ozone / UV surface treatment for 10 minutes (10 minutes) and 20 minutes (20 minutes) was analyzed using a time-of-flight secondary ion mass spectrometer (ULVAC-PHI, PHI nanoTOF II).
  • the vertical axis represents the count number and the horizontal axis represents the mass-to-charge ratio (m / z). It is a graph showing the result of having surface-analyzed the surface which carried out ozone / UV process using the time-of-flight type secondary ion mass spectrometer (ULVAC-PHI Co., Ltd., PHI nanoTOF II).
  • the vertical axis of the graph represents the expression level of C 7 H 5 O + with respect to the expression levels of all factors.
  • the horizontal axis represents the UV irradiation time (minutes).
  • the cell-supporting substrate of the present invention humidifies the periphery of a substrate mainly composed of a non-fluorinated resin, and the substrate is treated with oxygen and / or after the humidification. It can be produced by irradiating UV in an ozone atmosphere. Therefore, in another aspect, the present invention relates to a humidification step of humidifying the periphery of a substrate mainly composed of a non-fluorine resin, and the substrate is treated with oxygen and during and / or after the humidification step. The present invention relates to a method for producing a cell-supporting substrate, which comprises irradiating UV in an ozone supply atmosphere.
  • the humidification may be performed using any method as long as it is a method capable of providing water vapor around the base material mainly composed of a non-fluorinated resin. Humidification is performed so that the surface of the substrate irradiated with UV is exposed to water vapor. That is, the next UV irradiation process is performed in a humidified environment. Also, it is not necessary for all surfaces of the substrate to be exposed to water vapor. For example, humidification can be performed by heating water in a container or device having a certain volume that is blocked from the outside world containing the resin.
  • the humidity after humidification (for example, the humidity during UV irradiation) can be, for example, 20 to 60% RH, preferably 40 to 50% RH at 30 ° C., and 20 to 30% at 40 ° C. .
  • Humidification may be an environment where water vapor is present around the substrate during UV irradiation, or an environment where the surface of the substrate irradiated with UV is exposed to water vapor, before UV irradiation and / or during UV irradiation. Preferably, it is performed before and during UV irradiation.
  • UV irradiation process The UV irradiation is performed by irradiating the substrate with UV in an oxygen and / or ozone atmosphere.
  • the irradiation UV can have an average wavelength of 184.9 nm and 253.7 nm.
  • the wavelength of UV can be measured using a spectroradiometer.
  • UV can be performed at a UV illuminance of 2000 to 5000 ⁇ W / cm 2 , 2500 to 4500 ⁇ W / cm 2 , 3000 to 4000 ⁇ W / cm 2 , 3200 to 3800 ⁇ W / cm 2 , or 3500 ⁇ W / cm 2 .
  • the distance from the UV lamp to each plate is 2-6 cm, 3-5 cm, 3.5-4.5 cm, 3.6-4.4 cm, 3.7-4.3 cm, 3.8-4.2 cm, It can be 3.9 to 4.1 cm, or 4 cm.
  • the water contact angle on the surface of the non-fluorinated resin is, for example, 40 to 90 °, 40 to 80 °, 40 to 70 °, 50 to 90 °, 50 to 80 °, 50 to 70 °, 55 to It can be performed until 65 ° C., 60 to 90 °, 60 to 80 °, 60 to 70 °, 70 to 90 °, or 70 to 80 °.
  • the UV irradiation time is 0.2 to 8 minutes, 0.2 to 5 minutes, 0.2 to 3 minutes, 0.5 to 8 minutes, 0.5 to 5 minutes, 0.5 to 3 minutes, 0 8-8 minutes, 0.8-5 minutes, 0.8-3 minutes, 1-8 minutes, 1-5 minutes, or 1-3 minutes.
  • the oxygen atmosphere means that the oxygen concentration around the base material is 80% or more (preferably 90% or more).
  • An oxygen atmosphere can be obtained by supplying oxygen (for example, 99% oxygen) (for example, dry oxygen) to an environment in which the substrate is held for a certain time (for example, 5 minutes).
  • the ozone atmosphere means that the ozone concentration is 400 ppm or more (preferably 450 ppm or more).
  • UV bonding in an ozone atmosphere increases C—C bonds and / or C—H bonds that cause chemical shifts on the substrate surface. Irradiates UV in an ozone atmosphere (including oxygen and ozone atmosphere).
  • the water contact angle on the substrate surface is reduced to impart hydrophilicity.
  • the carboxy group is not suitable for cell culture because it makes the substrate surface hydrophilic, but it is not suitable for cell culture.
  • the UV irradiation step of the present invention introduces almost no carboxy group on the substrate surface, Provide a hydrophilic surface suitable for culturing.
  • the cells are supported on the cell-supporting substrate of the present invention by adding cells to the surface of the cell-supporting substrate in a medium suitable for the cells to be used, and allowing them to stand for a certain period of time under conditions suitable for the cells to be used. This can be done by attaching.
  • the cell growth using the cell-supporting substrate of the present invention can be carried out by allowing the cells supported by the above method to stand still for a certain period of time under conditions suitable for the cells to be used.
  • the present invention relates to a method for culturing adherent cells, comprising culturing cells on the cell-supporting surface of the cell culture container described above.
  • Cell culture is usually performed by adding a medium to a cell culture vessel, seeding desired cells in the medium, and incubating a mixture of the medium and cells with an incubator (usually 5% CO 2 , 37 (° C.).
  • the culture can be performed for a period until the cells adhere or for a period until the cells divide to a desired number, for example, for several hours to several weeks.
  • the “medium” to be used can be appropriately selected from media known to those skilled in the art according to the type of cells used.
  • stem cells for example, iPS cells
  • DMEM for mesenchymal cells
  • MSCBM for mesenchymal cells
  • EC cell culture medium mesenchymal cell culture medium
  • ES cell culture medium iPS cell culture medium
  • iPS cell culture medium Medium for stem cells
  • iSTEM Cellartis (registered trademark), DEF-CS 500
  • Xeno-Free Culture Medium GS2-M (registered trademark), GS1-R (registered trademark) (above, Takara Bio Inc.), Poweredby10, Plusoid- M, G031101, M061011, SODATT201 (Glyco Technica Co., Ltd.), ReproFF2, ReproNaive, RCHEMD001, RCHEMD001A, RCHEMD001B, ReproStem, ReproXF, ReproFF2, R
  • the adherent cells to be cultured are not particularly limited, but are preferably stem cells (including iPS cells).
  • Stem cells can be cultured in the absence of feeder cells and extracellular matrix protein coatings (such as laminin and Matrigel (registered trademark)) or in extracellular matrix protein coatings at a lower concentration than before by using the culture method of the present invention. Therefore, it is difficult to cause a decrease in stability due to the use of a biological material, a difference in results due to a lot difference, or contamination.
  • the properties (differentiation ability and self-proliferation ability) as stem cells can be maintained. Therefore, since the cell culture method of the present invention can cultivate stem cells without using a biological material, a more stable and safe regenerative medical material can be prepared.
  • the culturing method of the present invention is a culturing method including culturing cells on the cell-carrying surface of the above-described cell culturing vessel, and culturing in the absence of feeder cells.
  • the culture method of the present invention is 0.2 to 1 times the concentration of Matrigel (registered trademark) that is usually necessary for adhering stem cells on a base material mainly composed of the non-fluorinated resin that has not been surface-treated.
  • the “base material mainly composed of the non-fluorine-based resin whose surface has not been treated” means a base material composed only of the non-fluorine-based resin whose surface is the main component of the base material.
  • Matrigel (registered trademark) having a concentration of Matrigel (registered trademark) that is usually necessary for adhering stem cells to a base material mainly composed of the non-fluorine-based resin untreated on the surface is used (1 time).
  • the term “Matrigel (registered trademark) Growth factor reduced (Corning)” refers to a solution prepared by dissolving 10 ml of DMEM-F12 medium (Life Technologies) and coating the culture dish surface at room temperature for 1 hour.
  • the culture method of the present invention is not less than 0.2 times the concentration of laminin that is usually necessary for adhering stem cells on a base material mainly composed of the non-fluorinated resin that is untreated on the surface (for example, 0.2 times to 0.9 times, 0.2 times to 0.8 times, 0.2 times to 0.7 times, 0.2 times to 0.6 times, 0.2 times to 0.5 times, 0.2 times to 0.4 times, 0.2 times to 0.3 times, 0.2 times, 0.3 times to 0.9 times, 0.3 times to 0.8 times, 0.3 times to 0.7 times, 0.3 times to 0.6 times, 0.3 times to 0.5 times, 0.3 times to 0.4 times, 0.3 times, 0.4 times to 0.9 times, 0.4 times to 0.8 times, 0.4 times to 0.7 times, 0.4 times to 0.6 times, 0.4 times to 0.5 times, 0.4 times, 0.5 times to 0.9 times, 0.5 times to 0.8 times, 0.5 times to 0.7 times, 0.5 times to 0.6 times, or 0.5 times the concentration of
  • the laminin concentration (1 time) usually required for adhering stem cells to the base material mainly composed of the non-fluorine-based resin untreated on the surface is finally 0.5 ⁇ g / cm 2 .
  • laminin is typically laminin 511E8.
  • the present invention relates to a method for preserving adherent cells, which comprises carrying cells on the cell carrying surface of the above-mentioned cell culture container.
  • Cells can be stored by culturing and supporting the cells on the cell support surface according to the above-described method, and then placing the cell culture container under appropriate storage conditions.
  • the storage may be temporary storage for movement or the like, or may be long-term storage for future use, but is preferably temporary storage. Appropriate storage conditions can be appropriately selected according to the purpose and period of storage.
  • Example 1 Change in contact angle by ozone / UV treatment for various resin materials
  • Polytetrafluoroethylene (PTFE) 50 ⁇ 50 mm, thickness 1 mm, Nichias Corporation
  • polyethylene 50 ⁇ 50 mm, thickness 1 mm
  • White acrylic resin (30 x 30 mm, thickness 3 mm, clear
  • ABS resin 50 x 50 mm, thickness 0.5 mm, white
  • polyethylene terephthalate 50 x 50 mm, thickness 0.3 mm, clear
  • polypropylene 50 x 50 mm, thickness 0.5 mm, clear
  • polycarbonate 50 x 50 mm, thickness 0.5 mm, clear
  • polystyrene 50 x 50 mm, thickness 0.45 mm, clear, Koeido Co., Ltd.
  • plate Ozone / UV surface treatment equipment EKBIO-1100 (Ebara Jitsugyo Co., Ltd., ozone generation lamp (6W x 2))
  • In-tank dimensions W240 ⁇ H170 ⁇
  • the distance from the UV lamp to each plate was 4 cm (the UV illuminance was about 3500 ⁇ W / cm 2 ).
  • 1 ⁇ L of pure water was dropped onto the sample with an automatic contact angle meter DMs-200 (Kyowa Interface Science Co., Ltd.) and measured by the ⁇ / 2 method.
  • Example 2 Change in contact angle of polystyrene with ozone / UV treatment time
  • Example 3 Examination of influence of humidification and ozone on contact angle change of polystyrene dish by UV treatment
  • Four polystyrene dishes (No. 430589, Corning, Massachusetts, USA) were subjected to ozone / UV surface treatment apparatus EKBIO-1100. (Hagiwara Jitsugyo Co., Ltd.) and processed into the following groups to examine the difference in contact angle.
  • the distance from the UV lamp to each plate was 4 cm (3500 ⁇ W / cm 2 as UV illuminance).
  • 1 ⁇ L of pure water was dropped onto the sample with the same automatic contact angle meter DMs-200 (Kyowa Interface Science Co., Ltd.) as in Example 1 and measured by the ⁇ / 2 method.
  • Table 2 shows the average values for each treatment group. From this result, it was shown that the contact angle changes most in the generation of ozone and in a humidified environment by the UV treatment of polystyrene for the same time.
  • Example 4 Examination of the influence of humidification on the ozone concentration in the tank
  • ozone supply ozone purge
  • UV was applied at 184.9 nm and 253.7 nm for 10 minutes while maintaining the ozone supply. Thereafter, ozone supply and UV irradiation were stopped.
  • the ozone concentration was measured from the ozone purge start time until 10 minutes after the ozone supply and UV irradiation stopped.
  • the ozone concentration was measured with an ultraviolet absorption type ozone concentration meter PG-620 (Hagiwara Jitsugyo Co., Ltd.).
  • the temperature in a tank was set to 40 degreeC.
  • Figure 2 shows the change in ozone concentration.
  • the ozone concentration is increased by UV irradiation.
  • ozone concentration is reversed after UV irradiation even though the UV wavelength includes the ozone generation wavelength (184.9 nm). It was shown that the concentration decreased. Therefore, it was suggested that the energy of UV irradiation in a humidified environment is used for reactions other than the generation of ozone, thereby changing the contact angle and cell adhesion / proliferation.
  • water molecules constituting water vapor generate hydrogen atoms and hydroxy radicals by UV irradiation. Since the hydroxy radical is very reactive, it is considered that the generated hydroxy radical interacts with molecules on the polystyrene surface to change the surface properties.
  • Example 5 Measurement of humidity in the tank under humidified conditions Ozone / UV surface treatment equipment EKBIO-1100 (Ebara Jitsugyo Co., Ltd.) with a tank temperature of 40 ° C or 30 ° C and humidifying conditions at 30 minutes per minute The humidity in the tank for a minute was measured by a temperature / humidity sensor-WATCH LOGGER KT-300 / KT-275 (Fujita Electric Co., Ltd.).
  • the relative humidity in the tank under the humidified condition is almost constant.
  • the relative humidity is in the range of 20 to 40%, and the temperature in the tank is 30%.
  • the relative humidity was in the range of 30-50%.
  • Example 6 Time-dependent change in contact angle of ozone / UV-treated polystyrene dish
  • ozone / UV surface treatment apparatus EKBIO-1100 Ebara Jitsugyo Co., Ltd.
  • a 60 mm diameter untreated polystyrene dish No. 430589 Corning, Massachusetts, USA
  • the treated plate was sealed in a plastic bag, sealed and stored at room temperature for 24 hours, 1 week, and 1 month, and the contact angle after storage was measured by the same method as in Example 1.
  • EB3 cells mouse embryonic stem cells derived from the 129 / Ola lineage obtained from RIKEN Cell Bank (Japan). -7) was used.
  • one of the Oct3 / 4 genes one locus
  • the ires-blastidin S resistance gene has been replaced with the ires-blastidin S resistance gene, so that the transcriptional activity of the Oct3 / 4 gene Blasticidin S resistance gene is expressed.
  • EB3 cells do not proliferate in the presence of blasticidin when they differentiate and the Oct3 / 4 gene is no longer expressed.
  • a frozen ampule of EB3 cells was thawed for 2.5 minutes in a thermostatic chamber, and centrifuged to prepare 10 ml of a cell suspension. Place two 25 cm 2 flasks each containing 5 ml of 0.1% gelatin solution in a 5% CO 2 , 37 ° C. incubator for at least 30 minutes, and aspirate the gelatin solution using a Pasteur pipette. The culture surface of was coated with gelatin. Each 5 ml of the cell suspension of EB3 cells prepared in a gelatin-coated flask was seeded and used as a primary cell (P0).
  • the primary cells obtained were freshly cultured for ES cells every day (100ml composition: GMEM medium 100ml, MEM non-essential amino acid (NEAA) 1ml, sodium pyruvate 1ml, 2-mercaptoethanol 1ml, leukocyte growth inhibition)
  • the cells were cultured in an incubator for 3 days while exchanging the medium with 200 ml of factor 100 ⁇ l and blasticidin S solution 100 ⁇ l, the same applies hereinafter).
  • the culture solution in each flask was removed, PBS was washed with 5 ml each, 2.5 ml each of 0.25% trypsin was added, and the mixture was allowed to stand in an incubator for 2 minutes. Cells remaining on the culture surface after pipetting were completely suspended in trypsin.
  • the obtained cell suspension trypsin solution for 2 flasks and 5 ml of the culture solution were added to a 50 ml tube to make a total volume of 10 ml. The tube was centrifuged at 1500 rpm for 5 minutes, and the cells were collected as a precipitate. A fresh culture solution was added to the collected cells, and a cell suspension was prepared by pipetting.
  • 3 ml of the culture solution was added to 24 culture dishes, 2 ml of the cell suspension diluted to 3.1 ⁇ 10 5 cells / dish was seeded and cultured in an incubator for 3 days. During the culture period, microscopic photographs of the culture dishes were taken every day to observe the growth of EB3 cells. Then, remove the culture medium from each dish, wash with 5 ml of PBS, add 1 ml of trypsin, leave it in an incubator for 5 minutes, and then pipet the cells remaining on the culture surface completely in trypsin. Made cloudy. Each of the cell suspension trypsin solutions obtained from each dish was transferred to a microtube (24 in total) and stored frozen at ⁇ 80 ° C.
  • the cell membrane was broken by thawing the cells while sonicating the microtube, and the number of cells was calculated by measuring the DNA content in the sample.
  • the DNA content was determined by measuring the fluorescence intensity using a fluorescence spectrophotometer (Qubit (registered trademark) 2.0 Fluorometer, LIFE TECHNOLOGIES, Japan) according to the protocol provided by the manufacturer, and preparing a calibration curve using a standard sample. From each sample, the total DNA content of each sample was obtained. The calculated total DNA content was divided by 7.7 pg, which is the DNA content per cell, to calculate the number of cells in each culture dish on the third day of culture. The significant difference test of the number of cells was performed at a significance level of 0.05 using the Turkey-Krammer test method.
  • Fig. 3 shows the change in contact angle.
  • the contact angle tended to gradually increase with the passage of time 1 day, 1 week, 1 month after the ozone / UV treatment, almost no rapid increase was confirmed.
  • the dish 1 day after storage and 1 week later showed exactly the same adhesiveness as the dish on the day of hydrophilization treatment (after 0 day).
  • UV irradiation for 1 minute UVPS (1 m)
  • 25 ° C. in air atmosphere no humidification and no ozone purge
  • 25 ° C. in air atmosphere No humidification and no ozone purge
  • UV irradiation for 3 minutes UVPS (3 m)
  • UV irradiation for 3 minutes O 2 H (+) PS
  • 40 ° C. oxygen purge for 5 minutes, then dry (no humidification)
  • UV irradiation for 3 minutes O 2 H ( ⁇ ) PS
  • 40 ° C. ozone purge
  • UV irradiation for 3 minutes under humidification (O 3 H (+) PS)
  • after 40 minutes at 40 ° C., ozone purge UV irradiation for 3 minutes (O 3 H in a dry state (no humidification)) (-) PS).
  • the ozone concentration during the ozone / UV treatment was measured by the same method as in Example 4.
  • Mouse ES cells were cultured in the same manner as in Example 6, and the number of cells was calculated from the DNA content after the culture.
  • Example 8 Analysis of functional groups on various treated plate surfaces
  • the surface functional groups of polystyrene plates were subjected to the presence or absence of ozone environment, the presence or absence of humidification conditions, and the presence or absence of UV irradiation. It analyzed how it changed by.
  • a polystyrene dish (Corning, Massachusetts, USA; 430589) was prepared in the same manner as in (1) to (4) of Example 3 except that the UV irradiation time was 3 minutes.
  • Each plate of 8 mm was cut out from each dish, and surface analysis was performed using a photoelectron spectrometer (JEOL Ltd., JPS-9010).
  • each sample was affixed to the sample stage, the sample stage was placed in the preparation room and evacuated, and the sample stage was inserted into the measurement room. Since the sample used in this analysis is made of polystyrene, the constituent elements are carbon and oxygen (hydrogen is also a constituent element, but since hydrogen has only one electron, it cannot be measured by XPS). Therefore, in this analysis, the wide scan was not performed, and the narrow scan spectrum of the carbon 1s orbital electron was acquired.
  • the X-ray was an AlKa line (1486.6 eV), and the carbon narrow scan measurement range was 294.0 to 280.0 eV.
  • the step width was 0.1 eV and the number of integrations was 10. After obtaining the spectrum, the spectrum was smoothed by smoothing at step number 5. The background of the spectrum caused by inelastically scattered electrons and noise was removed using Shirley background removal.
  • Spectral waveform separation was performed by approximating the component waveform with a Gauss-Lorentz function normally distributed function.
  • FIG. 6A to 6D show the results of surface analysis of the polystyrene dishes subjected to the treatments (1) to (4) of Example 3.
  • the groups having oxygen atoms were hardly changed unexpectedly.
  • a chemically shifted C—C bond and C—H bond (C—C, C—H (Modified)) were observed only in the UV irradiation group under humidified conditions.
  • Example 9 Cultivation of mouse iPS cells on ozone-UV treated plate From the above examination, it is important for UV irradiation under humidified conditions in an ozone environment to form a surface suitable for adhesion of adherent cells. Furthermore, in order to investigate the UV treatment time suitable for providing a surface suitable for iPS cell culture, the adhesion of mouse iPS cells on polystyrene plates treated with various UV treatment times was examined. . (1) Preparation of plate Using an ozone / UV surface treatment apparatus EKBIO-1100 (Ebara Jitsugyo Co., Ltd.), a polystyrene cell culture dish having a diameter of 60 mm (No.
  • Mouse iPS cells (RIKEN cell bank, APS0001 strain, passage 6) having a GFP gene controlled by the Nanog promoter were cultured in DMEM (15% FBS) prepared in (1). , 0.1 mM NEAA, 0.1 mM 2-mercaptoethanol, 1000 U / ml mouse LIF) (feeder cell free, gelatin free). After culturing for 3 days, non-adherent cells were removed, and adherent cells were confirmed by microscopic observation. Moreover, the same mouse
  • DMEM 15% FBS
  • FIG. 7 shows micrographs and fluorescence micrographs of mouse iPS cells adhered to an ozone / UV surface-treated polystyrene dish. Almost all cells expressed GFP, indicating that the cells maintained undifferentiated ability.
  • the ozone / UV surface treatment time is 1 minute and 3 minutes, the number of adherent cells is the same as the number of adherent cells when cultured on the feeder cells even though the feeder cells and gelatin are not contained. It was shown that.
  • Example 10 Culture of human iPS cells on ozone-UV treated plate (examination of Matrigel (registered trademark) concentration) Is it possible to reduce the Matrigel (registered trademark) concentration of human iPS cells because polystyrene dishes treated with ozone / UV surface were able to culture mouse iPS cells even in the absence of feeder cells and gelatin? We examined whether or not.
  • EKBIO-1100 Ebara Jitsugyo Co., Ltd.
  • UV irradiation for 0 minutes (negative subject), 1 minute, 2 minutes, 3 minutes, 4 minutes, or 5 minutes.
  • All the ozone / UV surface treated plates were coated with Matrigel® (BD biosciences, # 354277) diluted 5-fold ( ⁇ 0.2).
  • a dish without ozone / UV surface treatment was used as a positive target and coated with 5-fold dilution ( ⁇ 0.2), 2-fold dilution ( ⁇ 0.5), or undiluted Matrigel (registered trademark).
  • 1-fold Matrigel refers to Matrigel (registered trademark) Growth factor reduced (Corning) 170 ⁇ l of DMEM-F12 medium (Life Technologies) in a ratio of 10 ml, and the surface of the culture dish was coated at room temperature for 1 hour.
  • FIG. 8 shows the results of counting the number of adherent cells after culturing with ViCell.
  • the number of adherent cells decreased with decreasing Matrigel® concentration.
  • the same tendency was confirmed in ALP staining (FIG. 9). Therefore, by performing ozone / UV treatment for 1 to 2 minutes, it is shown that adhesion culture of human iPS cells is possible even if the Matrigel (registered trademark) concentration is reduced to 1/5 (0.2 times). It was done.
  • Example 11 Culture of human iPS cells on ozone-UV treated plate (examination of laminin concentration) Ozone / UV surface-treated polystyrene dishes showed that human iPS cells adhere efficiently even under low conditions of Matrigel (registered trademark). Therefore, iPS cell culture was performed in the same manner as Matrigel (registered trademark). It was investigated whether the concentration of laminin used as a substrate could be reduced.
  • a cell culture dish (IWAKI) made of polystyrene having a diameter of 60 mm was subjected to 184.9 nm and 253.
  • 1-fold laminin means that iMatrix (1 ⁇ g / ⁇ l) is diluted with PBS so that the final concentration is 0.5 ug / cm 2 , and then 1 hour in a 37 ° C., 5% CO 2 incubator. Incubated and coated.
  • Example 12 Ozone-UV treated plate surface analysis (1) Preparation of plate Ozone / UV surface modification treatment on cell culture dish made of polystyrene (No. 430589, Corning, Massachusetts, USA) with a diameter of 60 mm Using an ozone / UV surface treatment apparatus EKBIO-1100 (Ebara Jitsugyo Co., Ltd.), UV of 184.9 nm and 253.7 nm was irradiated under the following conditions: 40 ° C., oxygen purge for 5 minutes, and then under humidification , UV irradiation for 1 minute, 3 minutes, 5 minutes, 10 minutes or 20 minutes. A UV untreated 60 mm diameter untreated polystyrene dish (No. 430589, Corning, Mass., USA) was used as a control (Control).
  • EKBIO-1100 Ebara Jitsugyo Co., Ltd.
  • C 3 H 7 + (molecular weight 43.0554), C 5 H 7 + (molecular weight 67.0556), and C 7 H 5 O + (molecular weight 105.0317)
  • adhesion promoters C 3 H 5 + (molecular weight 41.0395), C 2 H 3 O + (molecular weight 43.0191), C 3 H 5 O + (molecular weight 57.0347), C 3 H 7 O + ( Molecular weight 59.0498) and C 6 H 5 + (molecular weight 77.0364) were analyzed as adhesion inhibitors.
  • C 3 H 7 + (molecular weight 43.0554) and C 2 H 3 O + (molecular weight 43.0191) was identified which one of the molecule check for containing the O.
  • C 7 H 5 O + (molecular weight of about 105), which showed remarkable fluctuations as a result of surface analysis, was used as a typical adhesion promoting factor increased by ozone / UV surface modification treatment, and C 2 H 3 The UV irradiation time and the variation of these molecules were analyzed as a typical adhesion inhibitor that increases O + (molecular weight about 43) by ozone / UV surface modification treatment.
  • C 7 H 5 O + (molecular weight of about 105) is (a) of the following chemical formula
  • C 2 H 3 O + (molecular weight of about 43) is considered to be a material of (c) of the following chemical formula.
  • the change of the ratio of each factor with respect to time was investigated (FIG. 11).
  • the “external factor” is an external factor that becomes a contamination factor that may adhere in the process of ozone / UV treatment and the cutting process of the dish.
  • the UV irradiation time that can achieve the same number of adherent cells as the Matrigel (registered trademark) -coated dish at the concentration (1 ⁇ ) currently used in iPS culture was 1 to 3 minutes. It was. Therefore, it was shown that when the ratio of C 7 H 5 O + on the dish surface was 0.015 or more, the number of adherent cells was equal to or more than that of a Matrigel (registered trademark) coating dish. Further, C 7 H 5 O + on the dish surface tended to decrease once in 5 minutes after reaching the maximum after 3 minutes of UV irradiation, and then increase over 5 to 20 minutes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Reproductive Health (AREA)
  • Developmental Biology & Embryology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Immunology (AREA)
  • Sustainable Development (AREA)
  • Rheumatology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

【課題】本発明は、上記事情に鑑みなされたもので、より簡便な方法で安定的に細胞接着に適した親水性を付与することによる、細胞を担持及び培養させるための表面修飾方法を提供することを目的とする。 【解決手段】本発明は非フッ素系樹脂を主成分とする基材の周囲を加湿する加湿工程、並びに、前記加湿工程中及び/又は前記加湿工程の後に、該基材を酸素及び/又はオゾン供給雰囲気中でUV照射するUV照射工程を含む、細胞担持用基材の製造方法を提供する。また、本発明は、非フッ素系樹脂を主成分とする基材からなる細胞担持用基材であって、飛行時間型二次イオン質量分析装置によるビーム照射によりCO+分子を生じる成分を含有する細胞担持面を有し、当該細胞担持面において細胞が担持される細胞担持用基材を提供する。

Description

細胞担持用基材及びその製造方法 クロスリファレンス
 本出願は、2015年2月25日に日本国において出願された特願2015-035439号に基づく優先権を主張するものであり、当該出願に記載された内容は全て、参照によりそのまま本明細書に援用される。また、本願において引用した全ての特許、特許出願及び文献に記載された内容は全て、参照によりそのまま本明細書に援用される。
 本発明は、細胞の担持、接着、保存、培養、及び/又は増殖に適した表面を有する細胞担持用基材及びその製造方法に関する。
 接着性細胞は、疎水性表面及び親水性の高い表面に対してはほとんど接着しないのに対し、適切な親水性を有する表面には接着して進展した形態をとることが知られている。特に、水接触角40~70°(非特許文献1)又は60~80°(非特許文献2)の中程度の濡れ性を示す表面に細胞が良く接着することが知られている。よって、このような接着性細胞の接着性及び増殖性に優れる適度な親水性表面を得るための手段が開発されている。これまで、高分子材料表面を親水性とする手法として、コロナ放電処理(特許文献1)等の大気圧プラズマ処理(特許文献2)、親水性骨格を含むポリマー鎖のグラフト(特許文献3)、表面上にアミノプロピルエチレン無水マレイン酸を結合させて接触角を約10~30°とした基体(特許文献4)、及び、両親媒性物質の親水基を表面に提示させる方法(特許文献5)等の化合物修飾などが報告されている。また、表面の親水性の程度をコントロールする方法として、一度高い親水性とした表面を酸化処理及び/又は分解処理することにより、その親水性の程度を下げる方法や、親水性分子と表面とをリンカーを介して結合させ、リンカーの密度により親水性の程度を調節する方法が報告されている(特許文献6)。特にこれらの中でも、コロナ放電処理や大気圧プラズマ処理などの物理的方法は簡便であることから、親水性の細胞培養表面の改質において主要な方法となっている。
 このような親水性表面においては、主に水酸基、カルボニル基、及びカルボキシ基などの酸素原子を有する基が親水性の発揮に寄与していると考えられている。しかし、コロナ放電により導入された酸素原子は急速に除去されるため、表面が劣化しやすいという問題があった。さらに、コロナ放電処理は、約20%の表面酸素しか基材上に提供できないと考えられており、親水性の付与に限界があった。また、プラズマ放電は、コロナ放電よりも高い酸素レベルを達成できるが、基材を真空で処理することが必要であり、処理工程が複雑であった。更に、プラズマ処理は表面を傷つけやすいという問題があった。
 高分子材料表面を親水性とするための別のアプローチとして、フッ素樹脂基板等への紫外線レーザー照射(特許文献4)やオゾンを発生させる波長の紫外線を照射する方法(非特許文献3及び4)が報告されている。これらの報告においても、細胞増殖には表面酸素原子の割合が中程度であることが望ましいこと(非特許文献4)が報告されている。また、このようなオゾン/紫外線を用いた方法を改良すべく、オゾン・紫外線処理と生体材料とを組み合わせること(非特許文献5)、超高分子ポリエチレンへ酸素原子を導入すること(非特許文献6)などが検討されている。
 また、特に、親水性表面を未分化細胞培養用の基材として利用する場合、未分化細胞である幹細胞は培養が難しく、フィーダー細胞、LIFなどのサイトカイン、又は、マトリゲル(登録商標)やコラーゲン等の細胞外基質タンパク質によるコーティング等の特殊な環境を必要としていた。しかし、これらの技術はいずれも生体由来材料に依存することから安定性が低くロット差による結果の違いを生じること、潜在的なコンタミネーションが生じ得ること、貯蔵における寿命が短いこと等が問題となっていた。
 そこで、未分化細胞である幹細胞を培養可能な細胞培養表面をより安定的に化学的改質で作製することが試みられている。例えば、細胞培養表面に膨潤性(メタ)アクリレート層を形成させることにより、これらの問題を解決することが提案されている(特許文献7)。
特開平6-98756号公報 国際公開公報WO2012/144624号 特開2009-17809号公報 特表2012-527896号公報 特開2012-175983号公報 特表2011-510655号公報 特開2010-68755号公報
酒井康行及び民谷栄一監修、「動物実験代替のためのバイオマテリアルデバイス」シーエムシー出版、2014年、133~134頁 Yasushi Tamadaら、Journal of Biomedical Materials Research;28:783-789(1994) D.O.H.Teareら、Kanbmuir;16:2818-2824(2000) S.A.Mitchellら、Biomaterials;25:4079-4086(2004) Fabio Formosaら、Microvascular Research;75:330-342(2008) Alexandra H.C.Poulssonら、Langmuir;25:3718-3727(2009)
 本発明は、上記事情に鑑みなされたもので、より簡便な方法で安定的に細胞接着に適した親水性を付与することによる、細胞を担持及び培養させるための表面修飾方法を提供することを目的とする。あるいは、本発明は、フィーダー細胞、又は、マトリゲル(登録商標)(コーニング インコーポレーティッド、ニューヨーク州、米国)やコラーゲン等の細胞外基質タンパク質によるコーティング等の特殊な環境を必要とすることなく幹細胞を担持又は培養可能な細胞担持用基材を提供することを目的とする。
 本発明者らは、種々の方法を用いて樹脂基材表面を処理して細胞増殖との関係を調べた結果、加湿された酸素及び/又はオゾン雰囲気中でUVを照射することにより、細胞接着及び細胞増殖に適した表面が生成されることを見出し、本発明を完成させた。更に、本発明者らは、このような表面で幹細胞を培養したところ、フィーダー細胞、又は、マトリゲル(登録商標)(コーニング インコーポレーティッド、ニューヨーク州、米国、以下同様)やコラーゲン等の細胞外基質タンパク質によるコーティングを施さなくても分化することなく幹細胞としての機能及び性質を維持することを見出し、本発明を完成させた。
 よって、本発明は、以下の発明を含むものである:
[1] 非フッ素系樹脂を主成分とする基材からなる細胞担持用基材であって、飛行時間型二次イオン質量分析装置によるビーム照射によりC分子を生じる成分を含有する細胞担持面を有し、当該細胞担持面において細胞が担持される細胞担持用基材。
[2] 前記細胞担持面への飛行時間型二次イオン質量分析装置によるビーム照射により生じる全ての分子に対する前記C分子の割合が0.015以上である、[1]に記載の細胞担持用基材。
[3] 前記細胞担持面への飛行時間型二次イオン質量分析装置によるビーム照射により生じる全ての分子に対する前記C分子の割合に対する、前記細胞担持面への飛行時間型二次イオン質量分析装置によるビーム照射により生じる全ての分子に対する前記C分子の割合が、0.485以下である、[1]又は[2]に記載の細胞担持用基材。
[4] 前記細胞担持面にケミカルシフトを生じたC-C結合及び/又はC-H結合を有する、[1]~[3]のいずれか1項に記載の細胞担持用基材。
[5] 前記細胞担持面に実質的にカルボキシ基が存在しないことを特徴とする、[1]~[4]のいずれか1項に記載の細胞担持用基材。
[6] 前記細胞担持面の水接触角が40~70°であることを特徴とする、[1]~[5]のいずれか1項に記載の細胞担持用基材。
[7] 前記細胞担持面が、フィーダー細胞の非存在下においても、幹細胞が未分化の状態で接着し又は増殖することができる表面であることを特徴とする、[1]~[6]のいずれか1項に記載の細胞担持用基材。
[8] 前記細胞担持面が、表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために必要なマトリゲル(登録商標)の濃度の0.2倍の濃度においても、幹細胞が接着し又は増殖することができる表面であることを特徴とする、[1]~[7]のいずれか1項に記載の細胞担持用基材。
[9] 前記細胞担持面が、表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために必要なラミニンの濃度の0.2倍の濃度においても、幹細胞が接着し又は増殖することができる表面であることを特徴とする、[1]~[8]のいずれか1項に記載の細胞担持用基材。
[10] 幹細胞が、マウスiPS細胞又はヒトiPS細胞である、[8]又は[9]に記載の細胞担持用基材。
[11] 前記非フッ素系樹脂が、ポリエチレン、アクリル樹脂、ABS樹脂、ポリエチレンテレフタレート、ポリプロピレン、ポリカーボネート、及びポリスチレンからなる群から選択される少なくとも1種類の樹脂である、[1]~[10]のいずれか1項に記載の細胞担持用基材。
[12] 前記非フッ素系樹脂がポリスチレンである、[11]に記載の細胞担持用基材。
[13] 接着細胞培養用容器である、[1]~[12]のいずれか1項に記載の細胞担持用基材。
[14] 前記接着細胞培養用容器が、接着細胞培養用ディッシュである、[13]に記載の細胞担持用基材。
[15] 細胞担持面を有する細胞担持用基材の製造方法であって、
 非フッ素系樹脂を主成分とする基材の周囲を加湿する加湿工程、及び、
 前記加湿工程中、及び/又は前記加湿工程の後に、該基材を酸素及び/又はオゾン供給雰囲気中で該細胞担持面にUVを照射するUV照射工程を含む、細胞担持用基材の製造方法。
[16] 前記非フッ素系樹脂が、ポリエチレン、アクリル樹脂、ABS樹脂、ポリエチレンテレフタレート、ポリプロピレン、ポリカーボネート、及びポリスチレンからなる群から選択される少なくとも1種類の樹脂である、[15]に記載の細胞担持用基材の製造方法。
[17] 前記非フッ素系樹脂がポリスチレンである、[16]に記載の細胞担持用基材の製造方法。
[18] 前記UV照射が、平均波長184.9nm及び253.7nmのUVを照射することにより行われることを特徴とする、[15]~[17]のいずれか1項に記載の細胞担持用基材の製造方法。
[19] 前記UV照射が、前記非フッ素系樹脂表面の水接触角が40~70°となるまでの間行われることを特徴とする、[15]~[18]のいずれか1項に記載の細胞担持用基材の製造方法。
[20] 前記UV照射が、1~3分間行われることを特徴とする、[15]~[19]のいずれか1項に記載の細胞担持用基材の製造方法。
[21] 6Wのオゾン発生ランプ2本で184.9及び253.7nmのUVを照射することを特徴とする、[15]~[20]のいずれか1項に記載の製造方法。
[22] UVランプから前記基材までの距離が3~5cmであることを特徴とする、[15]~[21]のいずれか1項に記載の製造方法。
[23] [15]~[22]のいずれか1項に記載の方法により製造された細胞担持用基材。
[24] 接着細胞の培養方法であって、[1]~[14]及び[23]のいずれか1項に記載の細胞担持用基材の細胞担持面上で細胞を培養することを含む培養方法。
[25] 前記接着細胞が幹細胞である、[24]に記載の培養方法。
[26] 前記幹細胞が、マウスiPS細胞又はヒトiPS細胞である、[25]に記載の培養方法。
[27] フィーダー細胞の非存在下で培養することを特徴とする、[25]又は[26]に記載の培養方法。
[28] 表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために必要なマトリゲル(登録商標)の濃度の0.2倍の濃度のマトリゲル(登録商標)存在下で培養することを特徴とする、[25]~[27]のいずれか1項に記載の培養方法。
[29] 表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために必要なラミニンの濃度の0.5倍の濃度のラミニン存在下で培養することを特徴とする、[25]~[28]のいずれか1項に記載の培養方法。
[30] [24]~[29]のいずれか1項に記載の培養方法で培養された細胞を保存することを含む、接着細胞の保存方法。
 別の態様において本発明は、以下の発明であっても良い:
(1) 非フッ素系樹脂を主成分とする基材からなる細胞担持用基材であって、少なくとも一部の細胞担持面にケミカルシフトを生じたC-C結合及び/又はC-H結合を有し、当該表面において細胞が担持される細胞担持用基材。
(2) 前記細胞担持面に実質的にカルボキシ基が存在しないことを特徴とする、(1)に記載の細胞担持用基材。
(3) 前記細胞担持面が、足場細胞及び細胞外基質タンパク質コーティングの非存在下においても、幹細胞を未分化の状態で担持し又は増殖させることができる表面であることを特徴とする、(1)又は(2)に記載の細胞担持用基材。
(4) 細胞担持面を有する細胞担持用基材の製造方法であって、
 非フッ素系樹脂を主成分とする基材の周囲を加湿する加湿工程、及び、
 前記加湿工程と重複する時間、及び/又は前記加湿工程の後に、該基材を酸素及び/又はオゾン供給雰囲気中で該細胞担持面にUVを照射するUV照射工程を含む、細胞担持用基材の製造方法。
(5) 前記非フッ素系樹脂が、ポリエチレン、アクリル樹脂、ABS樹脂、ポリエチレンテレフタレート、ポリプロピレン、ポリカーボネート、及びポリスチレンからなる群から選択される少なくとも1種類の樹脂である、(4)に記載の細胞担持用基材の製造方法。
(6) 前記UV照射が、平均波長184.9nm及び253.7nmのUVを照射することにより行われることを特徴とする、(4)又は(5)に記載の細胞担持用基材の製造方法。
(7) 前記UV照射が、前記非フッ素系樹脂表面の水接触角が40~70°となるまでの間行われることを特徴とする、(4)~(6)のいずれか1項に記載の細胞担持用基材の製造方法。
(8) 前記細胞担持用基材の細胞担持面が、足場細胞及び細胞外基質タンパク質コーティングの非存在下においても、幹細胞を未分化の状態で担持し又は増殖させることができる表面であることを特徴とする、(4)~(7)のいずれか1項に記載の製造方法。
(9) (1)~(3)のいずれか1項に記載の細胞担持用基材、又は、(4)~(8)のいずれか1項に記載の製造方法により製造された細胞担持用基材を備える、接着細胞用細胞培養容器。
(10) (9)に記載の細胞培養容器であって、少なくとも一部において、足場細胞及び細胞外基質タンパク質コーティングの非存在下においても、幹細胞を未分化の状態で担持し又は増殖させることができる表面であることを特徴とする、細胞培養容器。
(11) 接着性細胞の培養方法であって、(9)又は(10)に記載の細胞培養容器の細胞担持面上で細胞を培養することを含む培養方法。
(12) 前記接着性細胞が幹細胞である、(11)に記載の培養方法。
 本明細書において「細胞担持用基材」とは、細胞を表面上に担持させて用いられる基材のことであり、細胞の担持、接着、保存、培養、及び/又は増殖を目的とする基材であってもよい。例えば、細胞担持用基材は、細胞培養用基材(例えば、細胞培養用容器)、細胞保存用基材、又はインプラント用基材などを含む。本明細書における細胞担持用基材が担持する細胞は、接着細胞であれば特に制限されるものではなく、例えば、平滑筋細胞、内皮細胞、線維芽細胞、骨芽細胞、幹細胞などの哺乳類細胞を含み、好ましくは、幹細胞である。本明細書において、幹細胞とは、iPS細胞、ES細胞、間葉系幹細胞などを含み、マウス、ラット、ウサギ、イヌ、サル、及びヒトの細胞を含むが、好ましくは、マウスiPS細胞及びヒトiPS細胞である。また、本明細書における細胞担持用基材の形状は、その目的に応じて適宜選択することができ、例えば、プレート状、シート状、球状、ディッシュ状、チップ状、又は、所望の組織(例えば、人工骨又はその表面部分)の形状とすることができる。好ましくは、細胞担持用基材は、接着細胞培養用容器又は接着細胞保存用容器であり、より好ましくは、iPS細胞培養用容器又はiPS細胞保存用容器である。
 本明細書における細胞担持用基材は、主成分として非フッ素系樹脂を含有するが、必要に応じて「他の成分」を含有していても良い。例えば、必要に応じて、マトリゲル(登録商標)、ラミニン、コラーゲン又はフィブロネクチンなどの他の細胞接着に寄与する物質を適宜含んでいても良い。好ましくは、本明細書における細胞担持用基材は、このような他の成分を、オゾン/UV未処理を含む物理的処理を施していない(主成分である非フッ素系樹脂以外の分子を細胞担持面に有していない)非フッ素系樹脂からなる細胞担持用基材を用いた場合に、接着細胞(例えば、iPS細胞)を培養するために必要となる他の成分の濃度の半分以下の濃度で、当該他の成分を含有する。例えば、本明細書における細胞担持用基材は、オゾン/UV未処理を含む物理的処理を施していない非フッ素系樹脂からなる細胞担持用基材を用いた場合に、iPS細胞(例えば、マウスiPS細胞又はヒトiPS細胞)を培養するために必要となるマトリゲル(登録商標)の濃度の半分以下、好ましくは0.2倍以下の濃度で、マトリゲル(登録商標)を含有していてもよい。また、例えば、本明細書における細胞担持用基材は、オゾン/UV未処理を含む物理的処理を施していない非フッ素系樹脂からなる細胞担持用基材を用いた場合に、iPS細胞(例えば、マウスiPS細胞又はヒトiPS細胞)を培養するために必要となるラミニンの濃度の半分以下の濃度で、ラミニンを含有していてもよい。
 本明細書において、「非フッ素系樹脂」とは、フッ素を含有しない樹脂を意味し、例えば、ポリエチレン、超高分子ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリビニルアルコール、アクリル樹脂、ポリエチレンテレフタレート、ポリアセタール、ポリカーボネート、ポリアミド、ポリイミド樹脂、フェノール樹脂、アミノ樹脂、エポキシ樹脂、ポリエステル、及びアクリロニトリル-ブタジエン-スチレン共重合合成樹脂(ABS樹脂)を挙げることができる。これらのうち、好ましくは、ポリスチレンである。ポリスチレンは立体規則性(タクティシティー、tacticity)を有し、イソタクチック(アイソタクチック)型、シンジオタクチック型、アタクチック型が存在するが、本発明におけるポリスチレンの型は限定されるものではなく、これらのいずれの型、又はこれらのうち2種類以上の型の混合物であってもよく、通常はアタクチック型が汎用される。またポリスチレンは高分子化合物であるため種々の重合度(平均分子量)の製品が供給されているが、本発明においては限定されない。例えば、重合度が10~100,000、50~10,000とすることができる。従って各社が供給するポリスチレン製培養用ディッシュには材質・物性上の差異が存在し得るが本発明においては限定されず、いずれの製造元の培養用ディッシュを使用することができる。一例として、IWAKI(登録商標)組織培養用ディッシュ(AGCテクノグラス株式会社)を挙げることができる。
 本発明の細胞担持用基材は少なくともその一部に細胞担持面を有する。本明細書において、「細胞担持面」とは、細胞を担持、接着、保存、培養、及び/又は増殖させることができる表面を意味し、必ずしも当該表面上で細胞を培養し又は増殖させることを必要とするものではない。
 本明細書において、細胞担持面は、飛行時間型二次イオン質量分析装置によるビーム照射によりC分子(例えば、(C)C(=O)分子)を生じる成分を含有する。本明細書全体に亘って、飛行時間型二次イオン質量分析装置によるビーム照射によりある分子を生じる成分とは、飛行時間型二次イオン質量分析装置によるビーム照射により当該分子の分子量スペクトルとして検出される成分であってよい。このような成分を含有する表面は、ポリスチレンからなる表面に対してオゾン存在下かつ加湿環境下でUV照射することにより得られる表面であってもよい。好ましくは、C分子は、当該細胞担持面への飛行時間型二次イオン質量分析装置によるビーム照射により生じる全ての分子を1のうち(当該すべての分子を1とした場合)、0.01以上(すなわち、1%以上)、0.015以上(すなわち、1.5%以上)、0.016以上(すなわち、1.6%以上)、0.017以上(すなわち、1.7%以上)、0.018以上(すなわち、1.8%以上)、0.019以上(すなわち、1.9%以上)、又は0.02以上(すなわち、2%以上)の割合で含まれていてもよい。また、細胞担持面は、好ましくは、飛行時間型二次イオン質量分析装置によるビーム照射によりC分子(例えば、CHO=CH分子)を生じる成分を、当該細胞担持面への該ビーム照射により生じる全ての分子のうち(当該すべての分子を1とした場合)、0.45以下(すなわち、45%以下)、0.5以下(すなわち、50%以下)、0.55以下(すなわち、55%以下)、又は0.6以下(すなわち、60%以下)の割合で含有していてもよい。更に好ましくは、細胞担持面は、飛行時間型二次イオン質量分析装置によるビーム照射により生じる全ての分子に対する前記C分子の割合に対する、前記細胞担持面への飛行時間型二次イオン質量分析装置によるビーム照射により生じる全ての分子に対する前記C分子の割合の比、すなわち、(全ての分子に対する前記C分子の割合)/(全ての分子に対する前記C分子の割合)が、0.45以下(すなわち、45%以下)、0.46以下(すなわち、46%以下)、0.47以下(すなわち、47%以下)、0.48以下(すなわち、48%以下)、0.485以下(すなわち、48.5%以下)、0.49以下(すなわち、49%以下)、0.5以下(すなわち、50%以下)、0.55以下(すなわち、55%以下)、又は0.6以下(すなわち、60%以下)であってもよい。本明細書において、飛行時間型二次イオン質量分析装置によるビーム照射とは、例えば、飛行時間型二次イオン質量分析装置(例えば、アルバック・ファイ株式会社、PHI nanoTOF II)を用いて、分析用の一次イオンビームとして、30kV Bi3++ 6.0~7.0nA DCを用い、一次イオンビームのパス幅とフレーム数は、12n秒,64~75回(1×1011個/cm)として、帯電中和を10eV電子線+10eV Arとする条件下で行われるビーム照射であってよい。
 一態様において、本発明の細胞担持用基材の細胞担持面は、ケミカルシフトを生じたC-C結合及び/又はC-H結合を表面に有する。本明細書において「ケミカルシフトを生じたC-C結合及び/又はC-H結合」とは、ポリスチレンの分子構造に酸素原子が組み込まれたことによって結合状態が変化した構造であって、酸素原子を含まない構造である。即ち、ケミカルシフトを生じたC-C結合及び/又はC-H結合とは、ポリスチレンに含まれないC-C結合及び/又はC-Hを意味し、C-H、C-C及びC-Ph以外の構造を意味する。本発明の細胞担持面は、酸素原子の導入された基(OH、COOH、C=Oなど)が極めて少ないにもかかわらず、接触角が減少している。よって、この接触角の減少はケミカルシフトを生じたC-C結合及び/又はC-H結合によりもたらされたものと考えられる。
 細胞培養表面上のカルボキシ基は細胞にとって良くない影響を及ぼすと考えられている。本発明の細胞担持用基材の細胞担持面は、非加湿下の同条件においてUV/オゾン処理された細胞担持用基材と比較して極めて少ない量のカルボキシ基しか有しない。よって、本発明の細胞担持用基材は、細胞担持面に実質的にカルボキシ基が存在しない。ここで、「実質的に存在しない」とは、全く存在しないことを意味するのではなく、細胞培養に影響を与える程度に存在しないことを意味し、好ましくは、非加湿下の同条件においてUV/オゾン処理された細胞担持用基材と比較して極めて少ないことを意味し、より好ましくは、C(1s)ナロースキャンXPSスペクトルにおいてほとんど検出されないか、又は検出されないことを意味してもよい。
 本発明の細胞担持用基材は、細胞担持面の水接触角が中程度であり、例えば、40~90°、40~80°、40~70°、50~90°、50~80°、50~70°、55~65℃、60~90°、60~80°、60~70°、70~90°、70~80°である。好ましくは、前記水接触角は、70~90°である。好ましくは、本明細書における接触角は、自動接触角計にて試料に1μLの純水を滴下しθ/2法により測定される接触角である。また、本発明の細胞担持用基材は、細胞接着性表面の保存安定性に優れる。このため、本発明の細胞担持用基材は、好ましくは、UV照射から24時間後及び1週間密閉保管の表面の水接触角がいずれも、前記接触角の範囲内であり、好ましくは、UV照射から24時間後及び1ヶ月密閉保管の表面の水接触角がいずれも、前記接触角の範囲内である。即ち、本発明の細胞担持用基材は、好ましくは、UV照射から1週間密閉保管後又は1月密閉保管後においても、優れた細胞接着性を維持するものである。
 一態様において、本発明の細胞担持用基材の細胞担持面は、フィーダー細胞(足場細胞)及び細胞外基質タンパク質コーティングの非存在下又はより低濃度の細胞外基質タンパク質コーティング存在下においても、幹細胞を未分化の状態で担持し又は増殖させることができる。例えば、本発明の細胞担持用基材の細胞担持面は、フィーダー細胞及び細胞外基質タンパク質コーティングがなくても、129/Ola系統由来マウス胚性幹細胞であるEB3細胞(Mol.Cell biol.(2002)22:1526-36;Genes to Cell(2004)9:471-7)が増殖することができる表面であってもよい。又は、前記細胞担持面は、表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために必要なマトリゲル(登録商標)の濃度の0.2倍の濃度においても、幹細胞(例えば、ヒトiPS細胞又はマウスiPS細胞)が接着し又は増殖することができる表面であってもよい。あるいは、前記細胞担持面は、表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために必要なラミニンの濃度の0.5倍の濃度においても、幹細胞(例えば、ヒトiPS細胞又はマウスiPS細胞)が接着し又は増殖することができる表面であってもよい。
 具体的な態様において、本発明は、上記細胞担持用基材を備える、接着細胞用の細胞培養容器に関する。細胞培養容器としては、プレート状、シート状、球状、ディッシュ状、チップ状、繊維状、又はフラスコ状の培養容器を挙げることができる。
 本発明の細胞担持用基材の製造方法は、より簡便な方法で安定的に細胞接着に適した親水性を付与することができる。また、本発明の細胞担持用基材は、生体由来材料を用いる必要が無いか、従来よりは少ない量で幹細胞を含む接着細胞を培養することができることから安定性が高くロット差による結果の違いを生じにくい他、より安価に培養することができる。また、動物由来成分を使用せず、又は使用量を減らすことができ得ることから潜在的なコンタミネーションの問題を減少させることができる。
ポリスチレンのオゾン/UV処理時間による接触角の変化を示すグラフである。縦軸は接触角(度)を示し、横軸はオゾン/UV処理時間(分)を示す。 加湿有り/無しにおける、槽内のオゾン濃度の変化を示すグラフである。縦軸はオゾン濃度(ppm)を示し、横軸は経過時間(分)を示す。横軸に表示された経過時間において、0~5分はオゾンパージ処理をした期間、5~15分はUV照射した期間、15~25分は処理槽内オゾンを分解している期間を示す。ひし形は加湿無し、四角は加湿有りのデータを表す。 長期保存における接触角の変化を示すグラフである。縦軸は接触角(°)を示し、横軸はオゾン/UV処理時間を示す。各群においてグラフは左から、24時間後、1週間後、及び1月後の接触角を表す。 ポリスチレンディッシュのオゾン/UV処理中のオゾン濃度の変化を示すグラフである。グラフは上から順に、UV処理1分間又は3分間のみ(室内空気、25℃、加湿)、酸素パージ5分間の後UV処理3分間、オゾンパージ5分間の後UV処理3分間を表す。各グラフの縦軸はオゾン濃度(ppm)を表し、横軸は処理時間を表す。一番上のグラフにおいては、UV処理時間は0~1分(UV 1min)又は0~3分(UV 3min)の間であり、下の二つのグラフにおいては、UV処理時間は5~8分の間である。真ん中のグラフの0~5分は酸素パージの時間を表し、一番下のグラフの0~5分はオゾンパージの時間を表す。 各種ディッシュ上でマウスES細胞であるEB3細胞を3日間培養した後の細胞数を示すグラフである。縦軸は細胞数(×10細胞/ディッシュ)を示す。横軸は、左から順に、UV未処理のポリスチレンディッシュ(陰性対照)(TCPS);ゼラチンコートされたポリスチレンディッシュ(陽性対照)(Treated PS);25℃、大気環境下(加湿無し、かつ、オゾンパージ無し)でUVを1分間照射したポリスチレンディッシュ(UVPS(1min));25℃、大気環境下(加湿無し、かつ、オゾンパージ無し)でUVを3分間照射したポリスチレンディッシュ(UVPS(3min);40℃、酸素パージ、加湿下で、UVを3分間照射したポリスチレンディッシュ(OH(+)PS);40℃、酸素パージ、乾燥状態(加湿無し)で、UVを3分間照射したポリスチレンディッシュ(OH(-)PS);40℃、オゾンパージ、加湿下で、UVを3分間照射したポリスチレンディッシュ(OH(+)PS);及び、40℃、オゾンパージ、乾燥状態(加湿無し)で、UVを3分間照射したポリスチレンディッシュ(OH(-)PS)を示す。**は、P<0.05を示し、エラーバーは標準誤差を示す。 実施例3の(1)の処理を行ったポリスチレンディッシュの表面についてXPS分析行った結果を示すグラフである。 実施例3の(2)の処理を行ったポリスチレンディッシュの表面についてXPS分析行った結果を示すグラフである。 実施例3の(3)の処理を行ったポリスチレンディッシュの表面についてXPS分析行った結果を示すグラフである。 実施例3の(4)の処理を行ったポリスチレンディッシュの表面についてXPS分析行った結果を示すグラフである。 各ディッシュ上でマウスiPS細胞を3日間培養した後の写真である。各写真のうち、上の写真は光学顕微鏡写真を示し、下の写真は蛍光顕微鏡写真を示す。上段はオゾン/UV未処理のディッシュで細胞を培養した結果を示し、下段はオゾン/UV処理のディッシュで細胞を培養した結果を示す。上段の左はフィーダー細胞上でマウスiPS細胞を培養した結果を示し、右はフィーダー細胞非存在下、ゼラチン非存在下で培養した結果を示す。下段は左からオゾン/UV処理を1分、3分及び10分行ったディッシュ上でマウスiPS細胞を培養した結果を示す(いずれもフィーダー細胞非存在下、ゼラチン非存在下)。 ヒトiPS細胞(201B7)を、各種濃度のマトリゲル(登録商標)存在下、各ポリスチレンディッシュ上で5日間培養した後の接着細胞数を表すグラフである。縦軸はマトリゲル(登録商標)100%存在下で培養した細胞の細胞数を1とした場合の各培養細胞数の割合を表す。横軸上段は、各培養に用いたマトリゲル(登録商標)濃度を、推奨される濃度を1倍としたときの、倍率(Matrigel)で表し、横軸下段は、ポリスチレンディッシュのオゾン/UV処理(UV照射)時間(秒)(UV radiation[sec])(下段)を表す。横軸下段のバー(-)は、UV処理を行っていないことを示す。エラーバーは標準偏差を表す。 ヒトiPS細胞(201B7)を、各種濃度のマトリゲル(登録商標)存在下、各ポリスチレンディッシュ上で5日間培養した後の接着細胞の写真である。上段はオゾン/UV未処理のディッシュ上で培養した結果を示し、左から順に、マトリゲル(登録商標)濃度を通常培養の0.2倍、0.5倍として培養した結果を示す。二段目左はオゾン/UV未処理のディッシュ上で培養した結果を示し、マトリゲル(登録商標)濃度を通常培養の1倍として培養した結果を示す。二段目右はオゾン/UV処理を行ったディッシュ上で、マトリゲル(登録商標)濃度を通常培養の0.2倍として培養した結果を示し、UV照射1分のディッシュを表す。三段目及び四段目は、オゾン/UV処理を行ったディッシュ上で、マトリゲル(登録商標)濃度を通常培養の0.2倍として培養した結果を示し、三段目は左から順に、UV照射2分及び3分、四段目は左から順にUV照射4分及び5分のディッシュを表す。 ヒトiPS細胞(201B7)を、各種濃度のラミニン511E8存在下、各ポリスチレンディッシュ上で3日間培養した後の接着細胞数を表すグラフである。縦軸は、ラミニン511E8 100%存在下で培養した細胞の細胞数を1とした場合の各培養細胞数の割合(Fold)を表す。横軸は、ポリスチレンディッシュのオゾン/UV処理(UV照射)時間(分)(UV radiation[min])(上段)、及び培養に用いたラミニン511E8濃度(下段)を、推奨される濃度を100%としたときの割合で表す。横軸上段のバー(-)は、UV処理を行っていないことを示す。 ヒトiPS細胞(201B7)を、各種濃度のラミニン存在下、各ポリスチレンディッシュ上で5日間培養した後の接着細胞の写真である。上段はオゾン/UV未処理のディッシュ上で培養した結果を示し、左から順に、ラミニン濃度を通常培養の0.2倍、0.5倍、1倍として培養した結果を示す。中段はオゾン/UV処理を行ったディッシュ上で、ラミニン濃度を通常培養の0.2倍として培養した結果を示し、左から順に、UV照射1分、3分、5分のディッシュを表す。下段はオゾン/UV処理を行ったディッシュ上で、ラミニン濃度を通常培養の0.5倍として培養した結果を示し、左から順に、UV照射1分、3分、5分のディッシュを表す。 UV未処理(Control)、及びオゾン/UV表面処理を1分間行った(1min)ポリスチレンディッシュの表面を飛行時間型二次イオン質量分析装置(アルバック・ファイ株式会社、PHI nanoTOF II)を用いて分析した結果を示すグラフである。縦軸はカウント数を、横軸は質量電荷比(m/z)を示す。 オゾン/UV表面処理を3分間(3min)、及び5分間(5min)行ったポリスチレンディッシュの表面を飛行時間型二次イオン質量分析装置(アルバック・ファイ株式会社、PHI nanoTOF II)を用いて分析した結果を示すグラフである。縦軸はカウント数を、横軸は質量電荷比(m/z)を示す。 オゾン/UV表面処理を10分間(10min)、及び20分間(20min)行ったポリスチレンディッシュの表面を飛行時間型二次イオン質量分析装置(アルバック・ファイ株式会社、PHI nanoTOF II)を用いて分析した結果を示すグラフである。縦軸はカウント数を、横軸は質量電荷比(m/z)を示す。 オゾン/UV処理した表面を、飛行時間型二次イオン質量分析装置(アルバック・ファイ株式会社、PHI nanoTOF II)を用いて表面分析した結果を表すグラフである。グラフの縦軸は、全ての因子の発現量に対するCの発現量を表す。横軸はUV照射時間(分)を表す。 オゾン/UV処理した表面を、飛行時間型二次イオン質量分析装置(アルバック・ファイ株式会社、PHI nanoTOF II)を用いて表面分析した結果を表すグラフである。グラフの縦軸は、全ての分子に対する前記C分子の割合に対する、全ての分子に対するC分子の割合を示すグラフである。横軸はUV照射時間(分)を表す。
1.細胞担持用基材の製造方法
 本発明の細胞担持用基材は、非フッ素系樹脂を主成分とする基材の周囲を加湿し、前記加湿中及び/又は加湿後に、該基材を酸素及び/又はオゾン雰囲気中でUVを照射することにより製造することができる。よって、別の態様において、本発明は、非フッ素系樹脂を主成分とする基材の周囲を加湿する加湿工程、及び、前記加湿工程中及び/又は前記加湿工程後に、該基材を酸素及び/又はオゾン供給雰囲気中でUV照射することを含む、細胞担持用基材の製造方法に関する。
(加湿工程)
 加湿は、非フッ素系樹脂を主成分とする基材の周囲に水蒸気を提供することができる方法であれば、いかなる方法を用いて行われても良い。加湿は、UVを照射する基材表面が水蒸気に曝されるように行われる。すなわち、次のUV照射工程は加湿環境下で行われる。また、必ずしも基材の全ての面が水蒸気に曝されることを必要としない。例えば、加湿は、前記樹脂を内包する外界とは遮断された一定容積を有する容器又は装置内において、水を加熱することにより行うことができる。加湿後の湿度(例えば、UV照射時の湿度)としては、例えば、20~60%RHとすることができ、好ましくは、30℃では40~50%RH、40℃では20~30%である。加湿は、UV照射時に基材の周囲に水蒸気が存在する環境、又は、UVが照射される基材表面が水蒸気に曝される環境とすることができればよく、UV照射前及び/又はUV照射中に行うことができるが、好ましくは、UV照射前及びUV照射中に行う。
(UV照射工程)
 UV照射は、酸素及び/又はオゾン雰囲気中で前記基材に対してUVを照射することにより行う。照射するUVは平均波長が184.9nm及び253.7nmとすることができる。UVの波長は分光放射計を用いて測定することができる。UVは、例えば、UV照度として、2000~5000μW/cm、2500~4500μW/cm、3000~4000μW/cm、3200~3800μW/cm、又は3500μW/cmで行うことができる。UVランプから各プレートまでの距離は、2~6cm、3~5cm、3.5~4.5cm、3.6~4.4cm、3.7~4.3cm、3.8~4.2cm、3.9~4.1cm、又は4cmとすることができる。UV照射時間は、非フッ素系樹脂表面の水接触角が、例えば、40~90°、40~80°、40~70°、50~90°、50~80°、50~70°、55~65℃、60~90°、60~80°、60~70°、70~90°、又は70~80°となるまでの間行うことができる。あるいは、UV照射時間は、0.2~8分間、0.2~5分間、0.2~3分間、0.5~8分間、0.5~5分間、0.5~3分間、0.8~8分間、0.8~5分間、0.8~3分間、1~8分間、1~5分間、又は1~3分間とすることができる。
 酸素雰囲気とは、基材周辺の酸素濃度が80%以上(好ましくは90%以上)であることを意味する。酸素(例えば、99%酸素)(例えば、乾燥酸素)を一定時間(例えば、5分間)基材を保持する環境に供給することにより酸素雰囲気とすることができる。また、オゾン雰囲気とは、オゾン濃度が400ppm以上(好ましくは450ppm以上)であることを意味する。酸素を放電方式オゾン発生器に通気することにより、オゾンを発生させて基材を保持する環境に供給することにより、オゾン雰囲気とすることができる。酸素雰囲気中でもUV照射によりオゾンは発生するが、オゾン雰囲気中でUV照射することにより、基材表面上にケミカルシフトを生じたC-C結合及び/又はC-H結合が増加することから、好ましくは、オゾン雰囲気中(酸素及びオゾン雰囲気中を含む)でUVを照射する。
 UV照射工程は、基材表面にケミカルシフトを生じたC-C結合及び/又はC-H結合を導入することに加え、基材表面の水接触角を減少させて親水性を付与する。また、カルボキシ基は、基材表面を親水性にするものの反応性が高いことから細胞培養には適さないが、本発明のUV照射工程は基材表面にほとんどカルボキシ基を導入しないことから、細胞培養に適した親水性表面を提供する。
 本発明の細胞担持用基材への細胞の担持は、用いる細胞に適した培地中、該細胞担持用基材表面に細胞を添加し、用いる細胞に適した条件下で一定時間静置して付着させることにより行うことができる。また、本発明の細胞担持用基材を用いた細胞の増殖は、前記方法により担持させた細胞を更に用いる細胞に適した条件下で一定時間静置して培養することにより行うことができる。
2.細胞担持用基材を用いた細胞培養方法
 一態様において、本発明は接着性細胞の培養方法であって、上述の細胞培養容器の細胞担持面上で細胞を培養することを含む培養方法に関する。細胞の培養は、通常、細胞培養容器に培地を添加すること、当該培地中に所望の細胞を播種すること、及び、当該培地と細胞との混合物をインキュベータ(通常は、5%CO、37℃)内で静置することにより行うことができる。培養は、細胞が接着するまでの期間又は細胞が所望の数まで分裂するまでの期間行うことができ、例えば、数時間~数週間行うことができる。培養が長期間の場合、必要に応じて培地交換することが望ましい。
 本明細書における細胞の培養方法において、使用する「培地」は、当業者に知られた培地の中から使用する細胞の種類に応じて適宜選択することができる。例えば、幹細胞(例えば、iPS細胞)を培養する場合、間葉系細胞用DMEM、間葉系細胞用MSCBM、EC細胞用培地、間葉系細胞用培地、ES細胞用培地、iPS細胞用培地、幹細胞用の培地、iSTEM、Cellartis(登録商標) DEF-CS 500 Xeno-Free Culture Medium、GS2-M(登録商標)、GS1-R(登録商標)(以上、タカラバイオ株式会社)、Poweredby10、Plusoid-M、G031101、M061101、SODATT201(以上、株式会社グライコテクニカ)、ReproFF2、ReproNaive、RCHEMD001、RCHEMD001A、RCHEMD001B、ReproStem、ReproXF、ReproFF2、ReproFF、NutriStem(以上、株式会社リプロセル)、StemFit(登録商標)AK02N等のStem fit培地(AJINOMOTO)を使用することができる。
 本明細書における細胞の培養方法において、培養する接着性細胞は特に限定されるものではないが、好ましくは幹細胞(iPS細胞を含む)である。幹細胞は、本発明の培養方法を用いることにより、フィーダー細胞及び細胞外基質タンパク質コーティング(ラミニン、マトリゲル(登録商標)等)非存在下又は従来より低濃度の細胞外基質タンパク質コーティングにおいても培養することができることから、生体由来材料を用いることによる安定性の低下やロット差による結果の違い、又はコンタミネーションを生じにくい。また、本発明に細胞培養方法により幹細胞を培養する場合、幹細胞としての性質(分化能、及び自己増殖能)を維持することができる。よって、本発明の細胞培養方法は、生体由来材料を用いることなく、幹細胞を培養することができることから、より安定的に安全な再生医療材料を調製することができる。
 例えば、本発明の培養方法は、上述の細胞培養容器の細胞担持面上で細胞を培養することを含む培養方法であって、フィーダー細胞の非存在下で培養することを特徴とする培養方法であってもよい。また、本発明の培養方法は、表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために通常必要なマトリゲル(登録商標)の濃度の0.2倍以上1倍未満(例えば、0.2倍~0.9倍、0.2倍~0.8倍、0.2倍~0.7倍、0.2倍~0.6倍、0.2倍~0.5倍、0.2倍~0.4倍、0.2倍~0.3倍、0.2倍、0.3倍~0.9倍、0.3倍~0.8倍、0.3倍~0.7倍、0.3倍~0.6倍、0.3倍~0.5倍、0.3倍~0.4倍、0.3倍、0.4倍~0.9倍、0.4倍~0.8倍、0.4倍~0.7倍、0.4倍~0.6倍、0.4倍~0.5倍、0.4倍、0.5倍~0.9倍、0.5倍~0.8倍、0.5倍~0.7倍、0.5倍~0.6倍、又は0.5倍)の濃度のマトリゲル(登録商標)存在下で培養することを特徴とする、前記培養方法であってもよい。本明細書において、「表面未処理の前記非フッ素系樹脂を主成分とする基材」とは、表面が当該基材の主成分である前記非フッ素系樹脂のみからなる基材を意味する。また、本明細書において、表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために通常必要なマトリゲル(登録商標)の濃度のマトリゲル(登録商標)(1倍)とは、マトリゲル(登録商標)Growth factor reduced(Corning)170μlに対してDMEM-F12培地(Life Technologies)10mlの割合でとかし、培養皿表面を常温1時間でコーティングしたものを意味する。
 更に、本発明の培養方法は、表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために通常必要なラミニンの濃度の0.2倍以上1倍未満(例えば、0.2倍~0.9倍、0.2倍~0.8倍、0.2倍~0.7倍、0.2倍~0.6倍、0.2倍~0.5倍、0.2倍~0.4倍、0.2倍~0.3倍、0.2倍、0.3倍~0.9倍、0.3倍~0.8倍、0.3倍~0.7倍、0.3倍~0.6倍、0.3倍~0.5倍、0.3倍~0.4倍、0.3倍、0.4倍~0.9倍、0.4倍~0.8倍、0.4倍~0.7倍、0.4倍~0.6倍、0.4倍~0.5倍、0.4倍、0.5倍~0.9倍、0.5倍~0.8倍、0.5倍~0.7倍、0.5倍~0.6倍、又は0.5倍)の濃度のラミニン存在下で培養することを特徴とする、前記培養方法であってもよい。本明細書において表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために通常必要なラミニンの濃度(1倍)とは、最終的に0.5μg/cmになるように、iMatrix(1μg/μl)をPBS希釈した後、37℃、5%COインキュベータで1時間インキュベートしコートしたものを意味する。また、本明細書において、ラミニンは、代表的にはラミニン511E8である。
 更に、本発明は、接着性細胞の保存方法であって、上述の細胞培養容器の細胞担持面上に細胞を担持させることを含む保存方法に関する。細胞の保存は、上述の方法に従って細胞担持面上で細胞を培養して担持させた後、適切な保存条件下に細胞培養容器を設置することにより行うことができる。保存は、移動等のための一時的な保存であっても良いし、将来の利用を目的とした長期的な保存であってもよいが、好ましくは一時的な保存である。保存の目的及び期間に応じて、適切な保存条件は適宜選択することができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。なお、本願全体を通して引用される全文献は参照によりそのまま本願に組み込まれる。
(実施例1)各種樹脂材料へのオゾン/UV処理による接触角の変化
 ポリテトラフルオロエチレン(PTFE)(50×50mm、厚さ1mm、ニチアス株式会社)、ポリエチレン(50×50mm、厚さ1mm、白色)、アクリル樹脂(30×30mm、厚さ3mm、クリア)、ABS樹脂(50×50mm、厚さ0.5mm、白色)、ポリエチレンテレフタレート(50×50mm、厚さ0.3mm、クリア)、ポリプロピレン(50×50mm、厚さ0.5mm、クリア)、ポリカーボネート(50×50mm、厚さ0.5mm、クリア)、ポリスチレン(50×50mm、厚さ0.45mm、クリア、株式会社 光栄堂)のプレートをオゾン/UV表面処理装置EKBIO-1100(荏原実業株式会社、オゾン発生ランプ(6W×2本)、槽内寸法W240×H170×D175(mm)/有効寸法W150×H80×D150(mm))に設置し、40℃、酸素パージ、加湿条件下、10分間、184.9及び253.7nmのUVを照射した。UVランプから各プレートまでの距離は4cm(UV照度として、約3500μW/cm)とした。処理後、接触角を自動接触角計DMs-200(協和界面科学株式会社)にて試料に1μLの純水を滴下しθ/2法により測定した。
 結果を表1に示す。PTFE以外のいずれの材料も、加湿環境下のオゾン/UV処理により接触角が増加することが確認された。
Figure JPOXMLDOC01-appb-T000001
(実施例2)ポリスチレンのオゾン/UV処理時間による接触角の変化
 ポリスチレン 50×50mm、厚さ0.45mm、型式:TP-45、クリア(株式会社 光栄堂)のプレートをオゾン/UV表面処理装置EKBIO-1100(荏原実業株式会社)に設置し、30℃、空気、加湿条件下で1分~30分間、184.9及び253.7nmのUVを照射した。UVランプから各プレートまでの距離は4cm(UV照度として、約3500μW/cm)とした。処理後、接触角を実施例1と同じ方法で自動接触角計DMs-200(協和界面科学株式会社) にて試料に1μLの純水を滴下し、θ/2法により測定した。
 結果を図1に示す。オゾン/UV処理時間により接触角が低下することが確認された。オゾン/UV処理時間が1分~3分間の場合、水接触角は40~70°の範囲内であった。
(実施例3)ポリスチレンディッシュのUV処理による接触角の変化に与える加湿及びオゾンの影響の検討
 ポリスチレンディッシュ(No.430589、コーニング、マサチューセッツ州、米国)4枚をオゾン/UV表面処理装置EKBIO-1100(荏原実業株式会社)に設置し、以下の群に分けて処理を行い接触角の違いを検討した。(1)40℃、放電式オゾン発生環境下で5分間オゾンをパージし、加湿条件下で10分間、184.9及び253.7nmのUVを照射した群;(2)40℃、放電式オゾン発生環境下で5分間オゾンをパージし、非加湿条件下で10分間、184.9及び253.7nmを照射した群;(3)40℃、5分間酸素をパージし、加湿条件下で10分間、184.9及び253.7nmを照射した群(放電式オゾン発生無し);(4)40℃、5分間酸素をパージし、非加湿条件下で10分間、184.9及び253.7nmを照射した群(放電式オゾン発生無し);(5)オゾン/UV未処理群。UVランプから各プレートまでの距離は4cm(UV照度として、3500μW/cm)とした。処理後、接触角を実施例1と同じ自動接触角計DMs-200(協和界面科学株式会社) にて試料に1μLの純水を滴下しθ/2法により測定した。
 各処理群の平均値を表2に示す。この結果から、ポリスチレンの同一時間のUV処理では、オゾン発生かつ加湿環境下において最も接触角が変化することが示された。
Figure JPOXMLDOC01-appb-T000002
(実施例4)槽内オゾン濃度に与える加湿の影響の検討
 槽内のオゾン濃度に与える加湿の影響を検討するため、加湿有り及び加湿無しの両条件下について以下の実験を行った。オゾン/UV表面処理装置EKBIO-1100(荏原実業株式会社)を用いて、放電式オゾン発生器からのオゾン供給(オゾンパージ)を5分間行った。続いて、オゾン供給を維持しながら、10分間184.9nm及び253.7nmのUVを照射した。その後、オゾン供給とUV照射を停止した。オゾンパージ開始時点から、オゾン供給とUV照射の停止から10分後までの間、オゾン濃度を測定した。オゾン濃度の測定は、紫外線吸収式オゾン濃度計PG-620型(荏原実業株式会社)により行った。また、全ての工程において、槽内温度は40℃に設定した。
 オゾン濃度の推移を図2に示す。加湿が無い場合には、UV照射によりオゾン濃度が上昇するのに対し、加湿がある場合には、UV波長がオゾン発生波長(184.9nm)を含むにもかかわらず、UV照射後に逆にオゾン濃度が低下することが示された。よって、加湿環境下でのUV照射のエネルギーがオゾン発生以外の反応に利用され、それにより接触角や細胞接着性・増殖性が変化することが示唆された。例えば、水蒸気を構成する水分子は、UV照射により水素原子とヒドロキシラジカルを生成させることが知られている。ヒドロキシラジカルは非常に反応性が高いことから、生成したヒドロキシラジカルがポリスチレン表面の分子と相互作用して表面の性質を変えると考えられる。
(実施例5)加湿条件下における槽内湿度の測定
 オゾン/UV表面処理装置EKBIO-1100(荏原実業株式会社)の槽内温度40℃、又は30℃で、加湿条件とし、1分毎に30分間槽内の湿度を温湿度センサ-WATCH LOGGER KT-300/KT-275(株式会社藤田電機製作所)により測定した。
 いずれの温度条件下においても加湿条件下における槽内の相対湿度はほぼ一定であり、槽内温度が40℃の場合には相対湿度は20~40%の範囲内であり、槽内温度が30℃の場合には相対湿度は30~50%の範囲内であった。
(実施例6)オゾン/UV処理ポリスチレンディッシュの接触角の経時変化
 オゾン/UV処理により得られた接触角が一定時間経過後においても保存されるかを確認するため、オゾン/UV処理から1日後、1週間後、及び1月後の接触角を測定した。オゾン/UV表面処理装置EKBIO-1100(荏原実業株式会社)を用いて、40℃、酸素パージ5分間の後、加湿下、UVランプからの距離4cmで、直径60mm無処理ポリスチレンディッシュ(No.430589、コーニング、マサチューセッツ州、米国)にUVを1分、2分、3分、5分、10分、20分又は30分間照射した。処理後のプレートをビニール袋に封入して密閉し、室温で24時間、1週間、及び1月間保存して、保存後の接触角を実施例1と同様の方法により測定した。
 また、それぞれのディッシュについて、細胞接着性および増殖性について検討した。マウスES細胞として、理研セルバンク(日本)より入手した129/Ola系統由来マウス胚性幹細胞であるEB3細胞(Mol.Cell biol.(2002)22:1526-36;Genes to Cell(2004)9:471-7)を使用した。この細胞は、未分化細胞特異的遺伝子の一つであるOct3/4遺伝子の片方(一方の遺伝子座)がires-blasticidin S耐性遺伝子と置換されていることから、Oct3/4遺伝子の転写活性でblasticidin S耐性遺伝子が発現する。このため、EB3細胞は、分化してOct3/4遺伝子が発現しなくなると、ブラストサイジン存在下で増殖しない。
 EB3細胞の凍結アンプルを恒温槽で2.5分間解凍し,遠心分離して細胞懸濁液10mlを調製した。0.1%のゼラチン溶液を各5ml添加した25cmフラスコ2個を5%CO、37℃のインキュベータ内で30分以上静置し,パスツールピペットを用いてゼラチン溶液を吸引して、フラスコの培養面をゼラチンでコートした。ゼラチンコートしたフラスコに調製したEB3細胞の細胞懸濁液を各5ml播種し,これを初代細胞(P0)とした。得られた初代細胞は,毎日新鮮なES細胞用培養液(100ml中の組成として:GMEM培地 100ml、MEM用非必須アミノ酸(NEAA) 1ml、ピルビン酸ナトリウム 1ml、2-メルカプトエタノール 1ml、白血球増殖抑制因子 100μl、ブラストサイジン S溶液 100μl、以下同じ)200mlで培地交換を行いながら,インキュベータ内で3日間培養した。
 培養3日後、各フラスコ内の培養液を除去して,PBSを各5mlで洗浄した後,0.25%トリプシンを各2.5ml加え,インキュベータ内で2分間静置した。ピペッティングして培養面に残った細胞をトリプシン中に完全に懸濁させた。得られたフラスコ2個分の細胞懸濁トリプシン溶液と培養液5mlを50mlチューブに加え,全量を10mlとした。このチューブを,1500rpmで5分間遠心分離して,細胞を沈殿物として回収した。回収した細胞に新鮮な培養液加え、ピペッティングして細胞懸濁液を調製した。培養ディッシュ24枚に培養液を3mlずつ添加し、3.1×10cells/dishとなるように希釈した前述の細胞懸濁液を2mlずつ播種してインキュベータ内で3日間培養した。培養期間中,毎日培養ディッシュの顕微鏡写真を撮像して,EB3細胞の増殖の様子を観察した。その後、各ディッシュは培養液を除去してPBS 5mlで洗浄し、トリプシン 1mlを加えて,インキュベータ内で5分間静置してからピペッティングして培養面に残った細胞をトリプシン中に完全に懸濁させた。各ディッシュから得られた細胞懸濁トリプシン溶液のそれぞれをマイクロチューブ(合計24本)に移し,-80℃で冷凍保存した。
 翌日マイクロチューブを超音波処理しながら細胞を解凍させることにより細胞膜を破壊し,サンプル中のDNA含有量を測定して細胞数を算出した。DNA含有量は、蛍光分光光度計(Qubit(登録商標) 2.0 Fluorometer,LIFE TECHNOLOGIES,Japan)を用いて、製造者提供のプロトコルに従い蛍光強度を測定し、標準検体を用いて作成した検量線から各サンプルの総DNA含有量を得た。算出された総DNA含有量を1細胞あたりのDNA含有量である7.7pgで除して,培養3日目の各培養ディッシュ内の細胞数を算出した。細胞数の有意差検定は,Turkey-Krammerの検定法を利用して,有意水準0.05で行った。
 接触角の変化を図3に示す。オゾン/UV処理後1日後、1週間後、1か月後と時間の経過とともに接触角は徐々に上昇する傾向は認められたが、急激な上昇はほとんど確認されなかった。また、細胞の接着性状を検討した結果、保存1日後、及び1週間後のディッシュは、親水化処理当日(0日後)のディッシュと全く同様の接着性を示すことを確認した。一方で、保存1ヶ月後のディッシュにおいてはわずかに細胞の形態変化が確認されたものの、十分な細胞接着性が維持されていることを確認した。
(実施例7)各種処理プレート上におけるES細胞の培養
(1)プレートの用意
 陰性対照として、UV未処理の直径60mm無処理ポリスチレンディッシュ(No.430589、コーニング、マサチューセッツ州、米国)を用いた(TCPS)。陽性対象として、ゼラチンコートされたポリスチレンディッシュ(AGCテクノグラス株式会社、日本;3010‐060)(Treated PS)を用いた。UV処理群として、直径60mm無処理ポリスチレンディッシュ(No.430589、コーニング、マサチューセッツ州、米国)を、オゾン/UV表面処理装置EKBIO-1100(荏原実業株式会社)を用いて、以下の条件で184.9nm及び253.7nmのUVを照射したディッシュを用意した:25℃、大気雰囲気下(加湿無し、かつ、オゾンパージ無し)で、UVを1分間照射(UVPS(1m));25℃、大気雰囲気下(加湿無し、かつ、オゾンパージ無し)で、UVを3分間照射(UVPS(3m));40℃、酸素パージ5分間の後、加湿下で、UVを3分間照射(OH(+)PS);40℃、酸素パージ5分間の後、乾燥状態(加湿無し)で、UVを3分間照射(OH(-)PS);40℃、オゾンパージ5分間の後、加湿下で、UVを3分間照射(OH(+)PS);40℃、オゾンパージ5分間の後、乾燥状態(加湿無し)で、UVを3分間照射(OH(-)PS)。オゾン/UV処理中のオゾン濃度を実施例4と同じ方法により測定した。
(2)接触角の測定
 上記実施例7(1)で用意したプレート((Treated PSを除く)の接触角を実施例1と同じ方法により測定した。接触角は、同一プレート上の5箇所で測定し、その平均値として求めた。
(3)マウスES細胞の培養
 実施例6と同様にしてマウスES細胞を培養し、培養後のDNA含有量から細胞数を算出した。
(4)結果
 各プレート処理中のオゾン濃度の推移を図4に示す。また、各プレートの条件及び測定された接触角を表3に示す。培養3日目の細胞数を計算した結果を図5に示す。細胞増殖は、オゾン環境下で加湿した場合が最も多かった。よって、ポリスチレンプレートをオゾン環境下、加湿条件下でUV照射することにより、より多くの接着細胞が接着する表面が得られることが示された。
Figure JPOXMLDOC01-appb-T000003
(実施例8)各種処理プレート表面上の官能基の分析
 細胞接着と表面官能基との関係を調べるため、ポリスチレンプレートの表面官能基がオゾン環境の有無、加湿条件の有無、及びUV照射の有無によりどのように変化するかを分析した。
 UV照射時間を3分間とする他は実施例3の(1)~(4)と同様に処理したポリスチレンディッシュ(コーニング、マサチューセッツ州、米国;430589)を作製した。各ディッシュから8mm各のプレートを切り出して、光電子分光装置(日本電子株式会社、JPS-9010)を用いて表面分析を行った。各試料を試料台に貼付し,試料台を準備室に入れて真空引きを行った後,試料台を測定室に挿入した。本分析で使用する試料はポリスチレン製であるため,構成元素は炭素および酸素である(水素も構成元素ではあるが,水素は電子が1個しか存在しないので,XPSでは測定ができない)。従って,本分析では,ワイドスキャンは行わず,炭素の1s軌道の電子のナロースキャンスペクトルを取得した。X線はAlKa線(1486.6eV)を用い,炭素のナロースキャンの測定範囲は294.0~280.0eVとした.また,ステップ幅は0.1eV,積算回数は10回とした。スペクトルを取得後,ステップ数5でスムージングによるスペクトルの平滑化を行った。非弾性散乱した電子やノイズが原因で発生するスペクトルのバックグラウンドの除去は,シャーリーバックグラウンド除去を利用して行った。スペクトルの波形分離は,成分波形をガウス-ローレンツ関数の正規分布型の関数で近似して行った。
 実施例3の(1)~(4)の処理を行ったポリスチレンディッシュの表面分析の結果を、それぞれ図6A~図6Dに示す。これらの結果から、親水性の発揮に寄与していると考えられている、水酸基、カルボニル基、及びカルボキシ基などの酸素原子を有する基が、加湿がない条件でのUV照射群において認められた。一方で、加湿条件でのUV照射群では予想外にも酸素原子を有する基がほとんど変化しなかった。さらに、加湿条件でのUV照射群のみにケミカルシフトしたC-C結合、C-H結合(C-C、C-H(Modified))が認められた。このため、通常のオゾン/UV処理では導入されないが、加湿とオゾンの供給を併せてすることにより導入された、このようなケミカルシフトしたC-C結合、C-H結合(C-C、C-H(Modified))が、細胞の接着性及び増殖性の向上に寄与していることが示された。
(実施例9)オゾン-UV処理されたプレートでのマウスiPS細胞の培養
 上記検討からオゾン環境下、加湿条件下でUV照射することが接着細胞の接着に適した表面の形成に重要であることが示されたことから、更に、iPS細胞の培養に適した表面を与えるために適したUV処理時間を調べるため、各種UV処理時間で処理したポリスチレンプレート上へのマウスiPS細胞の接着を検討した。
(1)プレートの調製
 オゾン/UV表面処理装置EKBIO-1100(荏原実業株式会社)を用いて、直径60mmのポリスチレン製の細胞培養用ディッシュ(No.430589、コーニング、マサチューセッツ州、米国)に、以下の条件で184.9nm及び253.7nmのUVを照射した:40℃、酸素パージ5分間の後、加湿下で、UVを0分(陰性対象)、1分、3分又は10分間照射。
(2)マウスiPS細胞の培養
 Nanogプロモーターに制御されたGFP遺伝子を有するマウスiPS細胞(理研セルバンク、APS0001株、6回継代)を、(1)で調製したポリスチレンディッシュ中のDMEM(15%FBS,0.1mM NEAA、0.1mM 2-メルカプトエタノール、1000U/ml マウスLIF)に播種した(フィーダー細胞フリー、ゼラチンフリー)。3日間培養後、非接着細胞を除去し、顕微鏡観察により接着細胞を確認した。また、陽性対象として、オゾン/UV表面改質処理していないディッシュを用いること、及びフィーダー細胞(MEF細胞)上で培養すること以外は同じ条件で同じマウスiPS細胞を培養した。
(3)結果
 オゾン/UV表面処理したポリスチレンディッシュに接着したマウスiPS細胞の顕微鏡写真及び蛍光顕微鏡写真を図7に示す。ほぼ全ての細胞がGFPを発現していることから、細胞が未分化能を維持していることが示された。接着細胞数は、オゾン/UV表面処理時間が1分及び3分の場合に、フィーダー細胞及びゼラチンが含まれていないにもかかわらず、フィーダー細胞上で培養した場合と同等の細胞接着数となることが示された。
(実施例10)オゾン-UV処理されたプレートでのヒトiPS細胞の培養(マトリゲル(登録商標)濃度検討)
 オゾン/UV表面処理したポリスチレンディッシュは、フィーダー細胞及びゼラチン非存在下でもマウスiPS細胞の培養が可能であったことから、ヒトのiPS細胞についてもマトリゲル(登録商標)濃度を減少させることができるか否かについて検討した。
(1)プレートの調製
 オゾン/UV表面処理装置EKBIO-1100(荏原実業株式会社)を用いて、直径60mmのポリスチレン製の細胞培養用ディッシュ(IWAKI)に、以下の条件で184.9nm及び253.7nmのUVを照射した:25℃、酸素パージ5分間の後、加湿下で、UVを0分(陰性対象)、1分、2分、3分、4分、又は5分間照射。オゾン/UV表面処理した全てのプレートを5倍希釈(×0.2)したマトリゲル(登録商標)(BD biosciences、#354277)でコーティングした。また、オゾン/UV表面処理していないディッシュを陽性対象として、5倍希釈(×0.2)、2倍希釈(×0.5)、又は希釈していないマトリゲル(登録商標)でコーティングした。なお、本実施例において、1倍のマトリゲル(登録商標)とは、マトリゲル(登録商標)Growth factor reduced (Corning)170μlに対してDMEM-F12培地(Life Technologies)10mlの割合でとかし、培養皿表面を常温1時間でコーティングしたものとした。
(2)ヒトiPS細胞の培養
 ヒトiPS細胞(201B7)を(1)で調製したポリスチレンディッシュ中のStem fit培地(AJINOMOTO)(Scientific Reports 4, Article number: 3594 (2014)doi:10.1038/srep03594)(Y27364含有)に5.0×10細胞/ディッシュで播種した。37℃、5%CO、湿度100%の条件下で、5日間培養した。培養後、非接着細胞を除去し、ALP染色及びViCellにより細胞数をカウントすることにより接着細胞数を評価した。
(3)結果
 培養後の接着細胞数をViCellでカウントした結果を図8に示す。オゾン/UV未処理のポリスチレンディッシュにおいては、マトリゲル(登録商標)の濃度の減少に応じて接着細胞数も減少した。オゾン/UV処理を1~2分行うことにより、5倍希釈のマトリゲル(登録商標)(×0.2)濃度で1倍のマトリゲル(登録商標)と同じ数の細胞が接着し、オゾン/UV処理時間が長くなるに従って接着細胞数が減少することが示された。また、ALP染色においても同じ傾向が確認された(図9)。よって、オゾン/UV処理を1~2分行うことにより、マトリゲル(登録商標)濃度を5分の1(0.2倍)に減少させてもヒトiPS細胞の接着培養が可能であることが示された。
(実施例11)オゾン-UV処理されたプレートでのヒトiPS細胞の培養(ラミニン濃度検討)
 オゾン/UV表面処理したポリスチレンディッシュは、マトリゲル(登録商標)濃度が低い条件下でもヒトiPS細胞が効率的に接着することが示されたことから、マトリゲル(登録商標)と同様にiPS細胞の培養基材として用いられるラミニン濃度を減少させることができるか否かについて検討した。
(1)プレートの調製
 オゾン/UV表面処理装置EKBIO-1100(荏原実業株式会社)を用いて、直径60mmのポリスチレン製の細胞培養用ディッシュ(IWAKI)に、以下の条件で184.9nm及び253.7nmのUVを照射した:25℃、酸素パージ5分間の後、加湿下で、UVを0分(陰性対象)、1分、3分、又は5分間照射。オゾン/UV表面処理した全てのプレートを5倍希釈(×0.2)、及び2倍希釈(×0.5)したラミニンでコーティングした。また、オゾン/UV表面処理していないディッシュを陽性対象として、5倍希釈(×0.2)、2倍希釈(×0.5)、又は希釈していないラミニン511E8でコーティングした。なお、本実施例において1倍のラミニンとは、最終的に0.5ug/cmになるように、iMatrix(1μg/μl)をPBS希釈した後、37℃、5%COインキュベータで1時間インキュベートしコートしたものとした。
(2)ヒトiPS細胞の培養
 ヒトiPS細胞(201B7)を(1)で調製したポリスチレンディッシュ中のStem fit培地(AJINOMOTO)(Scientific Reports 4, Article number: 3594 (2014)doi:10.1038/srep03594)(Y27364含有)に5.0×10細胞/ディッシュで播種した。37℃、5%CO、湿度100%の条件下で、5日間培養した。培養後、非接着細胞を除去し、ALP染色及びViCellにより細胞数をカウントすることにより接着細胞数を評価した。
(3)結果
 培養後の接着細胞数をViCellでカウントした結果を図10に示す。オゾン/UV未処理のポリスチレンディッシュにおいては、ラミニンの濃度の減少に応じて接着細胞数も減少した。オゾン/UV処理を1~3分行うことにより、2倍希釈のラミニン(50%)濃度で1倍のラミニンを超える数の細胞が接着し、オゾン/UV処理時間が長くなるに従って接着細胞数が減少することが示された。また、ラミニン濃度を5倍希釈とした場合も、オゾン/UV処理を1分行うことにより1倍のラミニンを超える数の細胞が接着した。また、培養後の接着細胞をALP染色した結果を図11に示す。オゾン/UV未処理のポリスチレンディッシュにおいては、ラミニンの濃度の減少に応じて接着細胞数も減少する傾向がみられた(図11上段)。オゾン/UV処理ディッシュにおいては、ラミニン濃度を0.2倍とした場合には、オゾン/UV処理を施してもコントロール(ラミニン濃度1倍)と比較して接着細胞数が減少した。一方、ラミニン濃度を0.5倍とした場合には、オゾン/UV処理を1~3分行うことにより、ラミニン濃度1倍の場合と同等数の細胞が接着した。よって、オゾン/UV処理を1~3分行うことにより、ラミニン濃度を2分の1(0.5倍)に減少させてもヒトiPS細胞の接着培養が可能であることが示された。
(実施例12)オゾン-UV処理されたプレート表面分析
(1)プレートの用意
 直径60mmポリスチレン製(No.430589、コーニング、マサチューセッツ州、米国)の細胞培養用ディッシュにオゾン/UV表面改質処理として、オゾン/UV表面処理装置EKBIO-1100(荏原実業株式会社)を用いて、以下の条件で184.9nm及び253.7nmのUVを照射した:40℃、酸素パージ5分間の後、加湿下で、UVを1分、3分、5分、10分又は20分間照射。対照として、UV未処理の直径60mm無処理ポリスチレンディッシュ(No.430589、コーニング、マサチューセッツ州、米国)を用いた(Control)。
(2)表面分析
 各ディッシュから15mm各のプレートを切り出して、飛行時間型二次イオン質量分析装置(アルバック・ファイ株式会社、PHI nanoTOF II)を用いて表面分析を行った。分析用の一次イオンビームは、30kV Bi ++ 6.0~7.0nA DCとした。走査範囲は、500×500μm(画素数:256×256μm、表示範囲128×128μm)とした。一次イオンビームのパス幅とフレーム数は、12n秒,64~75回(1×1011個/cm)として、帯電中和は10eV電子線+10eV Arとした。ポリスチレンから生成可能なイオンは全て陽イオンであることから、正のイオン分子量スペクトルのみを検出した。
(3)結果
 結果を図10A~Cに示す。表面分子をJing Yang, et al. Biomaterials,31:8827-8838,(2010)に従い接着促進因子と接着阻害因子に分類して評価した。具体的には、ポリスチレンから生成する分子のうち、C (分子量43.0554)、C (分子量67.0556)、及びC(分子量105.0317)は接着促進因子、C (分子量41.0395)、C(分子量43.0191)、C(分子量57.0347)、C(分子量59.0498)、及びC (分子量77.0364)は接着阻害因子として分析した。なお、C (分子量43.0554)とC(分子量43.0191)については、Oの含有の有無を調べていずれの分子であるかを同定した。これらのうち、表面分析の結果、際立って変動が見られたC(分子量約105)をオゾン/UV表面改質処理により増加する代表的な接着促進因子とし、C(分子量約43)をオゾン/UV表面改質処理により増加する代表的な接着阻害因子として、UV照射時間とこれらの分子の変動を分析した。C(分子量約105)は以下の化学式の(a)であり、C(分子量約43)は以下の化学式の(c)の物資であると考えられる。
Figure JPOXMLDOC01-appb-C000001
 具体的には、ディッシュ表面を構成する分子のうち、これらの因子の割合を(接着促進因子の割合)=(接着促進因子の発現量)/{(全ての因子の発現量)-(外部因子の発現量)}、及び、(接着促阻害因子の割合)=(接着阻害因子の発現量)/{(全ての因子の発現量)-(外部因子の発現量)}として算出し、UV照射時間に対するそれぞれの因子の割合の変化を調べた(図11)。「外部因子」は、オゾン・UV処理の過程及びディッシュの裁断過程で付着する可能性のある汚染要因となる外部因子であり、具体的には、Na(分子量22.9932)、(CHSi(分子量73.0518)、及び(CHSi-O-Si(CH とした。その結果、CはUV照射1分から増え始め、3分で最大に達した。また、Cは、UV照射3分から徐々に増え始め、UV照射20分まで増加し続けることがわかった。
 iPS細胞の実験結果においては、現在iPSの培養で使用されている濃度(1倍)のマトリゲル(登録商標)コーティングディッシュと同等の接着細胞数を達成できるUV照射時間は、1~3分間であった。よって、ディッシュ表面のCの割合が0.015以上の場合、1倍のマトリゲル(登録商標)コーティングディッシュと同等かそれ以上の接着細胞数となることが示された。また、ディッシュ表面のCはUV照射時間が3分経過後に最大に達した後、5分で一度減少し、その後5~20分にかけて増加する傾向にあった。一方で、接着細胞数はUV照射時間が1~3分で最大に達した後は減少した。よって、接着促進因子以外に接着阻害因子についても検討を行ったところ、Cは、UV照射5分を経過した後急激に増加することから、(接着促阻害因子の割合)/(接着促進因子の割合)を計算したところ(図12)、この割合が0.485以下であれば、接着細胞数の増加に寄与することが示された。

Claims (30)

  1.  非フッ素系樹脂を主成分とする基材からなる細胞担持用基材であって、飛行時間型二次イオン質量分析装置によるビーム照射によりCO+分子を生じる成分を含有する細胞担持面を有し、当該細胞担持面において細胞が担持される細胞担持用基材。
  2.  前記細胞担持面への飛行時間型二次イオン質量分析装置によるビーム照射により生じる全ての分子に対する前記CO+分子の割合が0.015以上である、請求項1に記載の細胞担持用基材。
  3.  前記細胞担持面への飛行時間型二次イオン質量分析装置によるビーム照射により生じる全ての分子に対する前記CO+分子の割合に対する、前記細胞担持面への飛行時間型二次イオン質量分析装置によるビーム照射により生じる全ての分子に対する前記CO+分子の割合が、0.485以下である、請求項1又は請求項2に記載の細胞担持用基材。
  4.  前記細胞担持面にケミカルシフトを生じたC-C結合及び/又はC-H結合を有する、請求項1~請求項3のいずれか1項に記載の細胞担持用基材。
  5.  前記細胞担持面に実質的にカルボキシ基が存在しないことを特徴とする、請求項1~請求項4のいずれか1項に記載の細胞担持用基材。
  6.  前記細胞担持面の水接触角が40~70°であることを特徴とする、請求項1~請求項5のいずれか1項に記載の細胞担持用基材。
  7.  前記細胞担持面が、フィーダー細胞の非存在下においても、幹細胞が未分化の状態で接着し又は増殖することができる表面であることを特徴とする、請求項1~請求項6のいずれか1項に記載の細胞担持用基材。
  8.  前記細胞担持面が、表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために必要なマトリゲル(登録商標)の濃度の0.2倍の濃度においても、幹細胞が接着し又は増殖することができる表面であることを特徴とする、請求項1~請求項7のいずれか1項に記載の細胞担持用基材。
  9.  前記細胞担持面が、表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために必要なラミニンの濃度の0.2倍の濃度においても、幹細胞が接着し又は増殖することができる表面であることを特徴とする、請求項1~請求項8のいずれか1項に記載の細胞担持用基材。
  10.  幹細胞が、マウスiPS細胞又はヒトiPS細胞である、請求項8又は請求項9に記載の細胞担持用基材。
  11.  前記非フッ素系樹脂が、ポリエチレン、アクリル樹脂、ABS樹脂、ポリエチレンテレフタレート、ポリプロピレン、ポリカーボネート、及びポリスチレンからなる群から選択される少なくとも1種類の樹脂である、請求項1~請求項10のいずれか1項に記載の細胞担持用基材。
  12.  前記非フッ素系樹脂がポリスチレンである、請求項11に記載の細胞担持用基材。
  13.  接着細胞培養用容器である、請求項1~請求項12のいずれか1項に記載の細胞担持用基材。
  14.  前記接着細胞培養用容器が、接着細胞培養用ディッシュである、請求項13に記載の細胞担持用基材。
  15.  細胞担持面を有する細胞担持用基材の製造方法であって、
     非フッ素系樹脂を主成分とする基材の周囲を加湿する加湿工程、及び、
     前記加湿工程中、及び/又は前記加湿工程の後に、該基材を酸素及び/又はオゾン供給雰囲気中で該細胞担持面にUVを照射するUV照射工程を含む、細胞担持用基材の製造方法。
  16.  前記非フッ素系樹脂が、ポリエチレン、アクリル樹脂、ABS樹脂、ポリエチレンテレフタレート、ポリプロピレン、ポリカーボネート、及びポリスチレンからなる群から選択される少なくとも1種類の樹脂である、請求項15に記載の細胞担持用基材の製造方法。
  17.  前記非フッ素系樹脂がポリスチレンである、請求項16に記載の細胞担持用基材の製造方法。
  18.  前記UV照射が、平均波長184.9nm及び253.7nmのUVを照射することにより行われることを特徴とする、請求項15~請求項17のいずれか1項に記載の細胞担持用基材の製造方法。
  19.  前記UV照射が、前記非フッ素系樹脂表面の水接触角が40~70°となるまでの間行われることを特徴とする、請求項15~請求項18のいずれか1項に記載の細胞担持用基材の製造方法。
  20.  前記UV照射が、1~3分間行われることを特徴とする、請求項15~請求項19のいずれか1項に記載の細胞担持用基材の製造方法。
  21.  6Wのオゾン発生ランプ2本で184.9及び253.7nmのUVを照射することを特徴とする、請求項15~請求項20のいずれか1項に記載の製造方法。
  22.  UVランプから前記基材までの距離が3~5cmであることを特徴とする、請求項15~請求項21のいずれか1項に記載の製造方法。
  23.  請求項15~請求項22のいずれか1項に記載の方法により製造された細胞担持用基材。
  24.  接着細胞の培養方法であって、請求項1~請求項14及び請求項23のいずれか1項に記載の細胞担持用基材の細胞担持面上で細胞を培養することを含む培養方法。
  25.  前記接着細胞が幹細胞である、請求項24に記載の培養方法。
  26.  前記幹細胞が、マウスiPS細胞又はヒトiPS細胞である、請求項25に記載の培養方法。
  27.  フィーダー細胞の非存在下で培養することを特徴とする、請求項25又は請求項26に記載の培養方法。
  28.  表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために必要なマトリゲル(登録商標)の濃度の0.2倍の濃度のマトリゲル(登録商標)存在下で培養することを特徴とする、請求項25~請求項27のいずれか1項に記載の培養方法。
  29.  表面未処理の前記非フッ素系樹脂を主成分とする基材において幹細胞を接着させるために必要なラミニンの濃度の0.5倍の濃度のラミニン存在下で培養することを特徴とする、請求項25~請求項28のいずれか1項に記載の培養方法。
  30.  請求項24~請求項29のいずれか1項に記載の培養方法で培養された細胞を保存することを含む、接着細胞の保存方法。
     

     
PCT/JP2016/000981 2015-02-25 2016-02-24 細胞担持用基材及びその製造方法 WO2016136251A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16755001.1A EP3263692A4 (en) 2015-02-25 2016-02-24 Substrate for carrying cells and method for producing same
JP2017501942A JP6200621B2 (ja) 2015-02-25 2016-02-24 細胞担持用基材及びその製造方法
US15/552,973 US11193107B2 (en) 2015-02-25 2016-02-24 Substrate for supporting cells and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-035439 2015-02-25
JP2015035439 2015-02-25

Publications (1)

Publication Number Publication Date
WO2016136251A1 true WO2016136251A1 (ja) 2016-09-01

Family

ID=56788371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000981 WO2016136251A1 (ja) 2015-02-25 2016-02-24 細胞担持用基材及びその製造方法

Country Status (4)

Country Link
US (1) US11193107B2 (ja)
EP (1) EP3263692A4 (ja)
JP (1) JP6200621B2 (ja)
WO (1) WO2016136251A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134007A (ja) * 2017-02-20 2018-08-30 東洋製罐グループホールディングス株式会社 細胞培養方法、及び細胞培養システム
JP2019017387A (ja) * 2017-07-11 2019-02-07 荏原実業株式会社 Uvオゾン−プラズマ複合処理方法及び処理装置
JP2019193604A (ja) * 2018-05-03 2019-11-07 東洋製罐グループホールディングス株式会社 培養容器基材、培養容器、及び培養容器基材の製造方法
JP2019198288A (ja) * 2018-05-17 2019-11-21 東洋製罐グループホールディングス株式会社 細胞培養容器、及び細胞培養容器の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152973A (ja) * 1986-12-17 1988-06-25 Shinsozai Sogo Kenkyusho:Kk 培養器具または検査用器具及びその製造方法
JP2004254516A (ja) * 2003-02-24 2004-09-16 Olympus Corp 細胞培養方法、生体組織補填体の製造方法、細胞培養装置および生体組織補填材の製造装置
JP2007267673A (ja) * 2006-03-31 2007-10-18 Nitto Denko Corp 細胞培養基材
JP2009017809A (ja) * 2007-07-11 2009-01-29 Nitto Denko Corp 細胞培養基材及びその製造方法並びに細胞培養方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698756A (ja) 1992-09-18 1994-04-12 Nissho Corp 付着性細胞培養用バツグ
DK2247716T3 (da) 2008-01-30 2012-05-29 Geron Corp Syntetiske overflader til dyrkning af celler i kemisk defineret medie
JP2010068755A (ja) 2008-09-18 2010-04-02 Institute Of Physical & Chemical Research 細胞培養基板、その製造方法、細胞培養方法
US20100273259A1 (en) * 2009-04-22 2010-10-28 Massachusetts Institute Of Technology Substrates and methods for culturing stem cells
JP2012527896A (ja) 2009-05-29 2012-11-12 コーニング インコーポレイテッド 細胞を付着させ、培養し、検査するための基体
EP2700707B1 (en) 2011-04-21 2018-06-06 Nipro Corporation Cell culture method and cell culture kit
JP5477423B2 (ja) 2012-06-19 2014-04-23 大日本印刷株式会社 細胞培養用基板
JP6786820B2 (ja) * 2016-03-09 2020-11-18 ダイキン工業株式会社 成形体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152973A (ja) * 1986-12-17 1988-06-25 Shinsozai Sogo Kenkyusho:Kk 培養器具または検査用器具及びその製造方法
JP2004254516A (ja) * 2003-02-24 2004-09-16 Olympus Corp 細胞培養方法、生体組織補填体の製造方法、細胞培養装置および生体組織補填材の製造装置
JP2007267673A (ja) * 2006-03-31 2007-10-18 Nitto Denko Corp 細胞培養基材
JP2009017809A (ja) * 2007-07-11 2009-01-29 Nitto Denko Corp 細胞培養基材及びその製造方法並びに細胞培養方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3263692A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134007A (ja) * 2017-02-20 2018-08-30 東洋製罐グループホールディングス株式会社 細胞培養方法、及び細胞培養システム
CN110312787A (zh) * 2017-02-20 2019-10-08 东洋制罐集团控股株式会社 细胞培养方法以及细胞培养系统
EP3584309A4 (en) * 2017-02-20 2020-11-25 Toyo Seikan Group Holdings, Ltd. CELL CULTURE METHOD AND CELL CULTURE SYSTEM
CN110312787B (zh) * 2017-02-20 2024-03-01 东洋制罐集团控股株式会社 细胞培养方法以及细胞培养系统
JP2019017387A (ja) * 2017-07-11 2019-02-07 荏原実業株式会社 Uvオゾン−プラズマ複合処理方法及び処理装置
JP7198008B2 (ja) 2017-07-11 2022-12-28 荏原実業株式会社 Uvオゾン-プラズマ複合処理方法及び処理装置
JP2019193604A (ja) * 2018-05-03 2019-11-07 東洋製罐グループホールディングス株式会社 培養容器基材、培養容器、及び培養容器基材の製造方法
WO2019212027A1 (ja) 2018-05-03 2019-11-07 東洋製罐グループホールディングス株式会社 培養容器基材、培養容器、及び培養容器基材の製造方法
US12122990B2 (en) 2018-05-03 2024-10-22 Toyo Seikan Group Holdings, Ltd. Culture container base material, culture container, and production method of culture container base material
JP2019198288A (ja) * 2018-05-17 2019-11-21 東洋製罐グループホールディングス株式会社 細胞培養容器、及び細胞培養容器の製造方法
JP7196419B2 (ja) 2018-05-17 2022-12-27 東洋製罐グループホールディングス株式会社 細胞培養容器、及び細胞培養容器の製造方法

Also Published As

Publication number Publication date
JPWO2016136251A1 (ja) 2017-07-06
US20180201898A1 (en) 2018-07-19
EP3263692A1 (en) 2018-01-03
US11193107B2 (en) 2021-12-07
JP6200621B2 (ja) 2017-09-20
EP3263692A4 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
Tylek et al. Precisely defined fiber scaffolds with 40 μm porosity induce elongation driven M2-like polarization of human macrophages
Slepička et al. Surface modification of biopolymers by argon plasma and thermal treatment
JP6200621B2 (ja) 細胞担持用基材及びその製造方法
Slepička et al. Nanostructuring of polymethylpentene by plasma and heat treatment for improved biocompatibility
Yildirim et al. Enhanced cellular functions on polycaprolactone tissue scaffolds by O2 plasma surface modification
Vandrovcova et al. Interaction of human osteoblast-like Saos-2 and MG-63 cells with thermally oxidized surfaces of a titanium-niobium alloy
Hess et al. Dose‐dependent surface endothelialization and biocompatibility of polyurethane noble metal nanocomposites
Axente et al. Combinatorial MAPLE gradient thin film assemblies signalling to human osteoblasts
Tajima et al. Differential regulation of endothelial cell adhesion, spreading, and cytoskeleton on low‐density polyethylene by nanotopography and surface chemistry modification induced by argon plasma treatment
Choi et al. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation
Hadjizadeh Acetaldehyde plasma polymer‐coated PET fibers for endothelial cell patterning: Chemical, topographical, and biological analysis
Tunma et al. Improving the attachment and proliferation of umbilical cord mesenchymal stem cells on modified polystyrene by nitrogen-containing plasma
Iwanami‐Kadowaki et al. Development of novel bone‐like nanocomposite coating of hydroxyapatite/collagen on titanium by modified electrophoretic deposition
Myung et al. Effect of plasma surface functionalization on preosteoblast cells spreading and adhesion on a biomimetic hydroxyapatite layer formed on a titanium surface
Tan et al. Customizable implant-specific and tissue-specific extracellular matrix protein coatings fabricated using atmospheric plasma
Wu et al. Adsorption of serum proteins on titania nanotubes and its role on regulating adhesion and migration of mesenchymal stem cells
Oughlis et al. The osteogenic differentiation improvement of human mesenchymal stem cells on titanium grafted with polyNaSS bioactive polymer
Kitakami et al. Adhesion and Proliferation of Human Periodontal Ligament Cells on Poly (2‐methoxyethyl acrylate)
Maciąg et al. Development and investigation of mesoporous bioactive glass/zein coatings electrodeposited on titanium alloy for biomedical applications
Kawase et al. An atmospheric‐pressure plasma‐treated titanium surface potentially supports initial cell adhesion, growth, and differentiation of cultured human prenatal‐derived osteoblastic cells
Kodama et al. Amine modification of calcium phosphate by low-pressure plasma for bone regeneration
Kim et al. Array of amorphous calcium phosphate particles improves cellular activity on a hydrophobic surface
Maurer et al. Cell growth in a porous microcellular structure: influence of surface modification and nanostructures
Liu et al. Ultraviolet radiant energy-dependent functionalization regulates cellular behavior on titanium dioxide nanodots
JP7198008B2 (ja) Uvオゾン-プラズマ複合処理方法及び処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501942

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016755001

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15552973

Country of ref document: US