WO2016135420A1 - Vitrage comprenant un substrat revetu d'un empilement comprenant au moins une couche fonctionnelle a base d'argent - Google Patents

Vitrage comprenant un substrat revetu d'un empilement comprenant au moins une couche fonctionnelle a base d'argent Download PDF

Info

Publication number
WO2016135420A1
WO2016135420A1 PCT/FR2016/050427 FR2016050427W WO2016135420A1 WO 2016135420 A1 WO2016135420 A1 WO 2016135420A1 FR 2016050427 W FR2016050427 W FR 2016050427W WO 2016135420 A1 WO2016135420 A1 WO 2016135420A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
material according
layer
grains
dielectric
Prior art date
Application number
PCT/FR2016/050427
Other languages
English (en)
Inventor
Sophie BROSSARD
Florent Martin
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to EP16713528.4A priority Critical patent/EP3262005A1/fr
Priority to US15/553,369 priority patent/US20180072616A1/en
Publication of WO2016135420A1 publication Critical patent/WO2016135420A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/012Tempering or quenching glass products by heat treatment, e.g. for crystallisation; Heat treatment of glass products before tempering by cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3647Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer in combination with other metals, silver being more than 50%
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/216ZnO
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/24Doped oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • C03C2217/256Ag
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/261Iron-group metals, i.e. Fe, Co or Ni
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/281Nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering

Definitions

  • the invention relates to a material such as a glazing unit comprising a transparent substrate coated with a stack of thin layers comprising at least one silver-based functional metal layer.
  • Functional metal layers based on silver (or silver layers) have advantageous electrical conduction and reflection properties of infrared (IR) radiation, hence their use in "solar control" glazing aimed at reducing the amount of incoming solar energy and / or in so-called “low emissivity” glazing aimed at reducing the amount of energy dissipated to the outside of a building or a vehicle.
  • IR infrared
  • These silver layers are deposited between coatings based on dielectric materials which generally comprise several dielectric layers to adjust the optical properties of the stack. These dielectric layers also make it possible to protect the silver layer from chemical or mechanical aggression.
  • the optical and electrical properties of the glazings depend directly on the quality of the silver layers such as:
  • the silver layers comprise monocrystalline grains based on silver
  • dielectric-based coatings comprising dielectric layers with a stabilizing function intended to promote the wetting and nucleation of the silver layer.
  • the quality of the silver layer affects not only the visual appearance but also the optical properties including the presence of blur, electrical conductivity and chemical resistance including the corrosion resistance of the stack.
  • the applicant has discovered that it is possible to improve the homogeneity of the silver layer both in terms of thickness, surface area and volume by optimizing the crystallization. Homogenization is achieved by controlling the distribution, shape and size of monocrystalline silver grains. Obtaining a better homogenization affects several properties, in particular the mechanical durability of the stacks, the plasticity of the silver layer but also the electrical properties such as square resistance.
  • the subject of the invention is a material comprising a transparent substrate coated with a stack of thin layers comprising at least one silver-based functional metal layer, comprising a doping element of thickness E formed of monocrystalline grains having a lateral dimension. D, defined as a grain edge cord characterized in that the D / E ratio is greater than 1.05.
  • the invention also relates to a method for preparing a material comprising a transparent substrate coated with a stack of thin layers, according to which:
  • At least one silver-based functional layer comprising a doping element over a thickness E is deposited, the functional layer is formed of monocrystalline grains having a lateral dimension d defined as a rope of the edge of grain and then
  • DIGM-induced diffusion growth is a phenomenon known in the field of metallurgy.
  • this growth technique is particularly advantageous when it is applied to silver-based functional layers which have, by their small thickness, to be formed of columnar monocrystalline grains.
  • Columnar means that the monocrystalline silver grains are arranged so that there is essentially a single monocrystalline grain occupying the thickness of the silver layer at any point.
  • the doping of silver-based metal layers with other elements allows for increased and controlled growth of monocrystalline silver-based grains during heat treatment.
  • the lateral growth of the grains induced by diffusion of the doping elements is carried out by a heat treatment of quenching or annealing type.
  • Silver-based metal functional layers in stacks are deposited at thicknesses less than 20 nm.
  • the lateral dimension of the grains is generally of the order of thickness.
  • a heat treatment equivalent to quenching for example about 10 minutes at 620 ° C., thus produces an increase of about 45% in the average size of the monocrystalline grains in the absence of a doping element.
  • the grain growth induced by diffusion of doping elements operates according to the diagram presented in FIG.
  • a silver layer 1 comprises several monocrystalline grains 2 separated by grain boundaries 4. These monocrystalline grains 2 comprise doping elements 3 in solution.
  • the diffusion rate of the doping elements 3 is a function of the temperature.
  • the doping elements 3 diffuse little or no while the grain boundaries 4 can in turn diffuse.
  • they "sweep" an area of material represented by the two horizontal arrows.
  • the doping elements 3 will then concentrate in the grain boundaries 4 where their presence disturbs less the crystal lattice.
  • the doping elements concentrated at the grain boundaries are then in a more favorable energy position. This energy balance will then further promote the movement of grain boundaries and thus the lateral growth of monocrystalline grains.
  • a lateral dimension is defined as a rope of the grain edge.
  • Chord D or d
  • the lateral dimension of the grains can be measured by image processing obtained by any microscopic observation mode, direct or indirect, such as scanning electron microscopy, transmission electron microscopy, backscatter electron diffraction (Electron backscatter diffraction "), Atomic force microscopy and optical microscopy.
  • D corresponds to the lateral dimension of the grains before lateral growth of grains induced by diffusion of the doping elements and "D" corresponds to the lateral dimension of the grains after lateral growth of grains induced by diffusion of the doping elements.
  • the D / E characteristic greater than 1 is considered to be satisfied when at least 80%, preferably at least 90%, better still at least 95% and even better 100% of the grains have at least one lateral dimension D satisfying this relationship.
  • the lateral dimension of 100 to 200 grains is measured manually.
  • the monocrystalline grain or grains have, in order of increasing preference, a lateral dimension D, defined as a chord of the grain edge, on all grains, greater than 15 nm, greater than 16 nm, greater than 17 nm, greater at 18 nm, greater than 19 nm, greater than 20 nm and better still greater than 23 nm.
  • the lateral dimension D is less than 300 nm, or even less than 200 nm or better still less than 100 nm.
  • the ratio D / E is, in order of increasing preference, greater than 1, 10, greater than 1, 20, greater than 1, 30, greater than 1, 40, greater than 1, 50 and better still greater than 1, 60.
  • the ratio D / E is less than 10.
  • the stack is deposited by sputtering assisted by a magnetic field (magnetron process). According to this advantageous embodiment, all the layers of the stack are deposited by sputtering assisted by a magnetic field.
  • the thicknesses discussed herein are physical thicknesses and the layers are thin layers.
  • thin film is meant a layer having a thickness of between 0.1 nm and 100 micrometers.
  • the substrate according to the invention is considered laid horizontally.
  • the stack of thin layers is deposited above the substrate.
  • the meaning of the terms “above” and “below” and “below” and “above” should be considered in relation to this orientation.
  • the terms “above” and “below” do not necessarily mean that two layers and / or coatings are arranged in contact with each other.
  • a layer is deposited "in contact” with another layer or a coating, this means that there can not be one or more layers interposed between these two layers.
  • a silver-based metal functional layer comprises at least 95.0%, preferably at least 96.5% and most preferably at least 97.0% by weight of silver based on the weight of the functional layer.
  • the silver-based functional metal layer comprises less than 3.5 mass% of non-silver metals relative to the weight of the silver-based functional metal layer.
  • the functional silver-based metal layer comprises at least 95.0%, preferably at least 96.5% and better still at least 97.0% by weight of silver relative to the weight of the layer functional means that the total mass of doping elements or impurities does not exceed 5.0%, preferably 3.5% and better 3.0% of the mass of the functional layer.
  • the silver-based functional metal layers have a thickness E of less than 20 nm.
  • the thickness of the silver-based functional layers is in order of increasing preference ranging from 5 to 20 nm, from 8 to 15 nm.
  • the silver-based metal functional layers comprise a doping element. These layers can be obtained by sputter deposition either from two targets or from a silver target doped with the element. dopant.
  • the doping element is preferably a metal chosen from aluminum, nickel, zinc or chromium.
  • the doping element is chosen from aluminum, nickel and zinc, and even more advantageously, it is chosen from aluminum and nickel. Better yet, it is aluminum.
  • the silver-based functional metal layer may comprise in particular 0.5 to 5.0% by weight of doping element relative to the mass of doping element and silver in the functional layer.
  • the silver-based functional metal layer may be doped with aluminum and possibly only with aluminum. It comprises less than 1.0%, preferably less than 0.5%, or even less than 0.1% by weight of metals other than silver and aluminum relative to the weight of the functional metallic layer. based on money.
  • the doping element is aluminum, its weight proportions are from 1.0 to 4.0%, preferably from 1.5 to 3.5% with respect to the mass of doping element and silver in the functional layer.
  • the silver-based functional metal layer may be doped with nickel and possibly only with nickel. It comprises less than 1.0%, preferably less than 0.5%, or even less than 0.1% by weight of metals other than silver and nickel relative to the weight of the functional metal layer based on silver.
  • the doping element is nickel, its weight proportions are from 1.0 to 3.0%, preferably from 1.0 to 2.0% relative to the mass of doping element and silver in the layer. functional.
  • the silver-based functional metal layer may be doped with zinc and optionally only with zinc. It comprises less than 1.0%, preferably less than 0.5%, or even less than 0.1% by weight of metals other than silver and zinc relative to the weight of the functional metal layer based on silver.
  • the silver-based functional metal layer can be doped with chromium and optionally only with chromium. It comprises less than 1.0%, preferably less than 0.5%, or even less than 0.1% by weight of metals other than silver and chromium relative to the weight of the functional metal layer based on silver.
  • Doping measurement can be performed for example by microprobe analysis of Castaing (ElectroProbe MicroAnalyzer or EPMA in English).
  • the thin film stack advantageously comprises at least one silver-based functional metal layer and at least two dielectric material-based coatings, each coating comprising at least one layer dielectric, so that each functional layer is disposed between two dielectric material-based coatings.
  • Coatings based on dielectric materials have a thickness greater than 15 nm, between 15 and 50 nm or between 30 and 40 nm.
  • barrier dielectric layers means a layer of a material capable of barrier to the diffusion of oxygen and water at high temperature, from the ambient atmosphere or the transparent substrate, to the functional layer.
  • the barrier-type dielectric layers may be based on silicon and / or aluminum compounds chosen from oxides such as SiO 2 , nitrides such as silicon nitride Si 3 N 4 and aluminum nitrides AlN, and the oxynitrides SiO x N y optionally doped with at least one other element.
  • the barrier-type dielectric layers may also be based on zinc oxide and tin.
  • dielectric layers with stabilizing function means a layer made of a material capable of stabilizing the interface between the functional layer and this layer.
  • the dielectric layers with a stabilizing function are preferably based on crystalline oxide, in particular based on zinc oxide, optionally doped with at least one other element, such as aluminum.
  • the dielectric layer (s) with a stabilizing function are preferably zinc oxide layers.
  • the stabilizing function dielectric layer (s) may be above and / or below, preferably below, at least one silver-based functional metal layer or each functional metal-based layer. money, either directly to him or separated by a blocking layer.
  • the material according to the invention is characterized in that the stack of thin layers comprises at least one functional metal layer based on silver and at least two coatings based on dielectric materials, each coating with less a dielectric layer, so that each silver-based functional metal layer is disposed between two dielectric material-based coatings, said dielectric layer being selected from the barrier-function or stabilizer-function dielectric layers.
  • Said dielectric layer is particularly advantageously a stabilizing function dielectric layer lying beneath said silver-based functional layer. It is preferably based on zinc oxide, optionally doped with at least one other element.
  • said element is aluminum.
  • the stack comprises a dielectric layer based on silicon nitride and / or aluminum located above at least a portion of the functional layer.
  • the dielectric layer based on silicon nitride and / or aluminum has a thickness:
  • the stacks may further include blocking layers whose function is to protect the functional layers by avoiding possible degradation related to the deposition of a coating based on dielectric materials or linked to a heat treatment.
  • the stack comprises at least one blocking layer located below and in contact with a silver-based functional metal layer and / or at least one blocking layer situated above and -contact of a functional metallic layer based on silver.
  • the metal-based blocking layers chosen from among niobium Nb, tantalum Ta, titanium Ti, Cr chromium or nickel Ni or based on an alloy obtained from at least two of these metals, in particular an alloy of nickel and chromium (NiCr).
  • each blocking layer is preferably:
  • the stack may comprise an upper protective layer deposited as the last layer of the stack, in particular to give anti-scratch properties.
  • the upper layers of protection may be chosen from among the layers based on titanium oxide, zirconium oxide and / or zinc oxide. These layers have a thickness of between 2 and 5 nm.
  • An example of a stack that is suitable according to the invention comprises: a coating based on dielectric materials located beneath the functional metallic layer based on silver, the coating possibly comprising at least one dielectric layer based on silicon nitride and / or aluminum,
  • a coating based on dielectric materials situated above the silver-based functional metal layer possibly comprising at least one dielectric layer based on silicon nitride and / or aluminum, a top layer of protection.
  • the transparent substrates according to the invention are preferably made of a mineral rigid material, such as glass, in particular silico-soda-lime or organic based on polymers (or polymer).
  • the transparent organic substrates according to the invention can also be made of polymer, rigid or flexible.
  • suitable polymers according to the invention include, in particular:
  • polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN);
  • polyacrylates such as polymethyl methacrylate (PMMA);
  • fluorinated polymers such as fluoroesters such as ethylene tetrafluoroethylene (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), ethylene chlorotrifluoroethylene (ECTFE), fluorinated ethylene-propylene copolymers (FEP);
  • fluoroesters such as ethylene tetrafluoroethylene (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), ethylene chlorotrifluoroethylene (ECTFE), fluorinated ethylene-propylene copolymers (FEP);
  • photocurable and / or photopolymerizable resins such as thiolene, polyurethane, urethane-acrylate, polyester-acrylate and
  • the thickness of the substrate generally varies between 0.5 mm and 19 mm.
  • the thickness of the substrate is preferably less than or equal to 6 mm or even 4 mm.
  • the invention also relates to the process for preparing the material according to the invention.
  • the stack of thin layers is deposited on the substrate by a vacuum technique of the cathode sputtering type possibly assisted by a magnetic field.
  • the lateral grain growth induced by diffusion of the doping elements is preferably carried out by a heat treatment. This heat treatment can be carried out at temperatures between 350 and 800 ° C, preferably between 500 and 700 ° C.
  • the heat treatment may in particular be quenching carried out at a temperature of at least 500 ° C., preferably at least 600 ° C.
  • the heat treatment may in particular be annealing carried out at a temperature of between 200 ° C. and 550 ° C., or even between 350 ° C. and 500 ° C. for a period of preferably at least 1 hour.
  • the material according to the invention may therefore have undergone a heat treatment, said heat treatment being advantageously chosen from annealing, quenching and / or a bending. It is said that it is a heat-treated material. Advantageously, it is an annealed, tempered and / or curved material.
  • the material may be monolithic glazing, laminated glazing or multiple glazing including double glazing or triple glazing.
  • Stacks of thin layers defined below are deposited on clear soda-lime glass substrates with a thickness of 2 mm.
  • Doping of the silver layer can be achieved:
  • the two targets When deposition by co-spraying from two targets, the two targets are placed inclined and lit at the same time.
  • the desired doping is obtained by adjusting the deposition powers.
  • the deposition power of the silver target is fixed and the deposition power of the doping element target is varied.
  • Silver layers with different doping elements and proportions of doping elements were tested.
  • Silver layers doped with zinc (Zn), chromium (Cr) and nickel (Ni) are obtained by co-spraying from two targets.
  • the silver layers doped with aluminum are obtained by sputtering from a single already doped target (3% doped Ag / Al target).
  • composition of the layers, and in particular the proportions of doping elements in the doped silver layer were measured by conventional microprobe techniques of Castaing (also known as Electron Probe Microanalyser or EPMA). Concentration as a doping element is expressed as a mass of doping element with respect to the mass of silver and of the doping element.
  • Atomic wt weight; * : at 550 nm.
  • stacks which differ in the nature of the silver-based functional layer and in particular by the presence and nature of the doping element.
  • the stacks comprise the following thin layers, defined starting from the substrate, according to the physical thicknesses in nanometers given:
  • FIG. 2 presents a light-field transmission electron microscopy image of a substrate comprising a stack comprising at least one silver-based functional metal layer.
  • the grain boundaries are redrawn by white dotted lines.
  • the lateral dimension of the monocrystalline grains is determined by measuring this quantity over 100 to 200 grains.
  • FIG. 3 is a graph showing the evolution of the mean lateral grain size as a function of temperature and annealing time, for pure silver-based layers and for silver-based layers comprising a doping element .
  • the measurement of the evolution of the mean lateral dimension of the grains as a function of the temperature, the annealing time and the doping element confirms that the addition of doping element makes it possible to obtain an increased growth of the monocrystalline grains of money.
  • the lateral growth of the grains induced by diffusion of doping elements chosen especially from aluminum and nickel makes it possible to obtain grains having a lateral dimension of about 25 nm.
  • a silver-based layer without a doping element comprises grains having a lateral dimension, generally less than 15 nm. This method of doping makes it possible to obtain a layer based on silver with grains almost twice as large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

L'invention concerne un matériau comprenant un substrat transparent revêtu d'un empilement de couches minces comprenant au moins une couche métallique fonctionnelle à base d'argent, comprenant un élément dopant, d'épaisseur E formée de grains monocristallins ayant une dimension latérale D, définie comme une corde du bord de grain caractérisée en ce que le rapport D/E est supérieur à 1,05. Ledit matériau est caractérisé par un empilement de couches minces comprenant au moins une couche métallique fonctionnelle à base d'argent disposée entre deux revêtements à base de matériaux diélectriques. Ces revêtements diélectriques comprennent au moins une couche diélectrique, se trouvant avantageusement en-dessous de ladite couche fonctionnelle à base d'argent et étant à base d'oxyde de zinc, éventuellement dopé. Elle concerne également le procédé de préparation d'un tel matériau comprenant une étape de croissance latérale des grains par un traitement thermique, ladite croissance étant induite par diffusion des éléments dopants.

Description

VITRAGE COMPRENANT UN SUBSTRAT REVETU D'UN EMPILEMENT COMPRENANT AU MOINS UNE COUCHE FONCTIONNELLE A BASE D'ARGENT
L'invention concerne un matériau tel qu'un vitrage comprenant un substrat transparent revêtu d'un empilement de couches minces comprenant au moins une couche métallique fonctionnelle à base d'argent.
Les couches métalliques fonctionnelles à base d'argent (ou couches d'argent) ont des propriétés de conduction électrique et de réflexion des rayonnements infrarouges (IR) avantageuses, d'où leur utilisation dans des vitrages dits « de contrôle solaire » visant à diminuer la quantité d'énergie solaire entrante et/ou dans des vitrages dits « bas émissifs » visant à diminuer la quantité d'énergie dissipée vers l'extérieur d'un bâtiment ou d'un véhicule.
Ces couches d'argent sont déposées entre des revêtements à base de matériaux diélectriques qui comprennent généralement plusieurs couches diélectriques permettant d'ajuster les propriétés optiques de l'empilement. Ces couches diélectriques permettent en outre de protéger la couche d'argent des agressions chimiques ou mécaniques.
Les propriétés optiques et électriques des vitrages dépendent directement de la qualité des couches d'argent telle que :
- leur état cristallin, les couches d'argent comprennent des grains monocristallins à base d'argent,
- leur homogénéité,
- leur environnement tel que la nature et la rugosité de surface aux interfaces au- dessus et en-dessous de la couche d'argent.
Pour améliorer la qualité des couches métalliques fonctionnelles à base d'argent, il est connu d'utiliser des revêtements à base de matériaux diélectriques comprenant des couches diélectriques à fonction stabilisante destinées à favoriser le mouillage et la nucléation de la couche d'argent.
La qualité de la couche d'argent impacte non seulement l'aspect visuel mais aussi les propriétés optiques notamment la présence de flou, la conductivité électrique et la résistance chimique notamment la résistance à la corrosion de l'empilement.
Le demandeur a découvert qu'il est possible d'améliorer l'homogénéité de la couche d'argent à la fois, en épaisseur, en surface et en volume en optimisant la cristallisation. L'homogénéisation est obtenue par le contrôle de la distribution, de la forme et de la taille des grains monocristallins d'argent. L'obtention d'une meilleure homogénéisation influe sur plusieurs propriétés, notamment sur la durabilité mécanique des empilements, sur la plasticité de la couche d'argent mais aussi sur les propriétés électriques telles que la résistance par carré. L'invention a pour objet un matériau comprenant un substrat transparent revêtu d'un empilement de couches minces comprenant au moins une couche métallique fonctionnelle à base d'argent, comprenant un élément dopant, d'épaisseur E formée de grains monocristallins ayant une dimension latérale D, définie comme une corde du bord de grain caractérisée en ce que le rapport D/E est supérieur à 1 ,05.
L'invention concerne également un procédé de préparation d'un matériau comprenant un substrat transparent revêtu d'un empilement de couches minces selon lequel :
- on dépose, au-dessus du substrat transparent, au moins une couche fonctionnelle à base d'argent comprenant un élément dopant sur une épaisseur E, la couche fonctionnelle est formée de grains monocristallins ayant une dimension latérale d définie comme une corde du bord de grain, puis
- on réalise une croissance latérale des grains induite par diffusion des éléments dopants conduisant à l'obtention de grains monocristallins ayant une dimension latérale D définie comme une corde du bord de grain telle que le rapport D/E soit supérieur à 1 ,05.
La croissance des grains induite par diffusion d'éléments dopants ou DIGM « Diffusion Induced Grain boundary Migration » est un phénomène connu dans le domaine de la métallurgie. Cependant, le demandeur a découvert que cette technique de croissance est particulièrement intéressante lorsqu'elle est appliquée aux couches fonctionnelles à base d'argent qui ont pour particularité, de par leur faible épaisseur, d'être formée des grains monocristallins colonnaires. On entend par « colonnaire » le fait que les grains monocristallins d'argent sont arrangés de sorte qu'il existe essentiellement un seul grain monocristallin occupant l'épaisseur de la couche d'argent en tout point.
Le dopage des couches métalliques à base d'argent avec d'autres éléments permet une croissance accrue et contrôlée des grains monocristallins à base d'argent lors d'un traitement thermique. Avantageusement, la croissance latérale des grains induite par diffusion des éléments dopants est réalisée par un traitement thermique de type trempe ou recuit.
Les couches fonctionnelles métalliques à base d'argent comprises dans des empilements sont déposées à des épaisseurs inférieures à 20 nm. La dimension latérale des grains est généralement de l'ordre de l'épaisseur. Lors d'un traitement thermique, selon la température et la durée, la dimension latérale des grains augmente, mais d'une manière limitée lorsque la couche ne comprend pas d'éléments dopants. Un traitement thermique équivalent à une trempe, par exemple d'environ 10 min à 620 °C, produit ainsi une augmentation d'environ 45 % de la taille moyenne des grains monocristallins en l'absence d'élément dopant. La croissance des grains induite par diffusion d'éléments dopants fonctionne selon le schéma présenté sur la figure 1 . Une couche d'argent 1 comprend plusieurs grains monocristallins 2 séparés par des joints de grains 4. Ces grains monocristallins 2 comprennent des éléments dopants 3 en solution. La vitesse de diffusion des éléments dopants 3 est fonction de la température. Pour une température dite « basse », les éléments dopants 3 diffusent peu ou pas alors que les joints de grains 4 peuvent quant à eux diffuser. Lorsque les joints de grains 4 diffusent, ils « balaient » une zone de matière représentée par les deux flèches horizontales. Les éléments dopants 3 vont alors se concentrer dans les joints de grain 4 où leur présence perturbe moins le réseau cristallin. Les éléments dopants concentrés aux joints de grains sont alors dans une position plus favorable énergétiquement. Cette balance énergétique va alors favoriser encore davantage le mouvement des joints de grains et donc la croissance latérale des grains monocristallins.
Selon l'invention, une dimension latérale (d ou D) est définie comme une corde du bord de grain. On appelle « corde » (D ou d), un segment de droite joignant deux points du contour d'un grain. La dimension latérale des grains peut être mesurée par traitement d'images obtenues par tous modes d'observation microscopique, directs ou indirects, tels que la microscopie électronique à balayage, la microscopie électronique en transmission, la diffraction des électrons rétrodiffusés (« Electron backscatter diffraction »), la microscopie à force atomique et la microscopie optique.
« d » correspond à la dimension latérale des grains avant croissance latérale des grains induite par diffusion des éléments dopants et « D » correspond à la dimension latérale des grains après croissance latérale des grains induite par diffusion des éléments dopants.
Selon l'invention, on considère la caractéristique D/E supérieur à 1 comme satisfaite lorsqu'au moins 80%, de préférence au moins 90%, mieux au moins 95% et encore mieux 100% des grains présentent au moins une dimension latérale D satisfaisant cette relation. Pour cela, la dimension latérale de 100 à 200 grains est mesurée manuellement.
Avantageusement, le ou les grains monocristallins présentent, par ordre de préférence croissant, une dimension latérale D, définie comme une corde du bord de grain, sur tous les grains, supérieure à 15 nm, supérieure à 16 nm, supérieure à 17 nm, supérieure à 18 nm, supérieure à 19 nm, supérieure à 20 nm et mieux supérieure à 23 nm.
De préférence, la dimension latérale D est inférieure à 300 nm, voire inférieure à 200 nm ou mieux encore inférieure à 100 nm. Avantageusement, le rapport D/E est, par ordre de préférence croissant, supérieur à 1 ,10, supérieur à 1 ,20, supérieur à 1 ,30, supérieur à 1 ,40, supérieur à 1 ,50 et mieux supérieur à 1 ,60. De préférence, le rapport D/E est inférieur à 10.
L'empilement est déposé par pulvérisation cathodique assistée par un champ magnétique (procédé magnétron). Selon ce mode de réalisation avantageux, toutes les couches de l'empilement sont déposées par pulvérisation cathodique assistée par un champ magnétique.
Sauf mention contraire, les épaisseurs évoquées dans le présent document sont des épaisseurs physiques et les couches sont des couches minces. On entend par couche mince, une couche présentant une épaisseur comprise entre 0,1 nm et 100 micromètres.
Dans toute la description le substrat selon l'invention est considéré posé horizontalement. L'empilement de couches minces est déposé au-dessus du substrat. Le sens des expressions « au-dessus » et « en-dessous » et « inférieur » et « supérieur » est à considérer par rapport à cette orientation. A défaut de stipulation spécifique, les expressions « au-dessus » et « en-dessous » ne signifient pas nécessairement que deux couches et/ou revêtements sont disposés au contact l'un de l'autre. Lorsqu'il est précisé qu'une couche est déposée « au contact » d'une autre couche ou d'un revêtement, cela signifie qu'il ne peut y avoir une ou plusieurs couches intercalées entre ces deux couches.
Une couche fonctionnelle métallique à base d'argent comprend au moins 95,0 %, de préférence au moins 96,5 % et mieux au moins 97,0 % en masse d'argent par rapport à la masse de la couche fonctionnelle. De préférence, la couche métallique fonctionnelle à base d'argent comprend moins de 3,5 % en masse de métaux autres que de l'argent par rapport à la masse de la couche métallique fonctionnelle à base d'argent.
La limitation selon laquelle la couche métallique fonctionnelle à base d'argent comprend au moins 95,0 %, de préférence au moins 96,5 % et mieux au moins 97,0 % en masse d'argent par rapport à la masse de la couche fonctionnelle signifie que la masse totale d'éléments dopants ou d'impuretés ne dépasse pas 5,0 %, de préférence 3,5 % et mieux 3,0 % de la masse de la couche fonctionnelle.
Les couches métalliques fonctionnelles à base d'argent ont une épaisseur E inférieure à 20 nm. L'épaisseur des couches fonctionnelles à base d'argent est par ordre de préférence croissant comprise de 5 à 20 nm, de 8 à 15 nm.
Les couches fonctionnelles métalliques à base d'argent comprennent un élément dopant. Ces couches peuvent être obtenues par dépôt par pulvérisation cathodique soit à partir de deux cibles, soit à partir d'une cible d'argent dopé avec l'élément dopant. L'élément dopant est de préférence un métal choisi parmi l'aluminium, le nickel, le zinc ou le chrome.
Avantageusement, l'élément dopant est choisi parmi l'aluminium, le nickel et le zinc, encore plus avantageusement, il est choisi parmi l'aluminium et le nickel. Mieux encore, il s'agit de l'aluminium.
La couche métallique fonctionnelle à base d'argent peut comprendre notamment 0,5 à 5,0 % en masse d'élément dopant par rapport à la masse d'élément dopant et d'argent dans la couche fonctionnelle.
La couche métallique fonctionnelle à base d'argent peut être dopée par de l'aluminium et éventuellement uniquement par de l'aluminium. Elle comprend moins de 1 ,0 %, de préférence moins de 0,5 %, voire moins de 0,1 % en masse de métaux autres que de l'argent et de l'aluminium par rapport à la masse de la couche métallique fonctionnelle à base d'argent. Lorsque l'élément dopant est de l'aluminium, ses proportions pondérales sont de 1 ,0 à 4,0 %, de préférence de 1 ,5 à 3,5 % par rapport à la masse d'élément dopant et d'argent dans la couche fonctionnelle.
La couche métallique fonctionnelle à base d'argent peut être dopée par du nickel et éventuellement uniquement par du nickel. Elle comprend moins de 1 ,0 %, de préférence moins de 0,5 %, voire moins de 0,1 % en masse de métaux autres que de l'argent et du nickel par rapport à la masse de la couche métallique fonctionnelle à base d'argent. Lorsque l'élément dopant est du nickel, ses proportions pondérales sont de 1 ,0 à 3,0 %, de préférence de 1 ,0 à 2,0 % par rapport à la masse d'élément dopant et d'argent dans la couche fonctionnelle.
La couche métallique fonctionnelle à base d'argent peut être dopée par du zinc et éventuellement uniquement par du zinc. Elle comprend moins de 1 ,0 %, de préférence moins de 0,5 %, voire moins de 0,1 % en masse de métaux autres que de l'argent et du zinc par rapport à la masse de la couche métallique fonctionnelle à base d'argent.
La couche métallique fonctionnelle à base d'argent peut être dopée par du chrome et éventuellement uniquement par du chrome. Elle comprend moins de 1 ,0 %, de préférence moins de 0,5 %, voire moins de 0,1 % en masse de métaux autres que de l'argent et du chrome par rapport à la masse de la couche métallique fonctionnelle à base d'argent.
La mesure du dopage peut être réalisée par exemple par analyse microsonde de Castaing (ElectroProbe MicroAnalyzer ou EPMA en anglais).
L'empilement de couches minces comprend avantageusement au moins une couche métallique fonctionnelle à base d'argent et au moins deux revêtements à base de matériaux diélectriques, chaque revêtement comportant au moins une couche diélectrique, de manière à ce que chaque couche fonctionnelle soit disposée entre deux revêtements à base de matériaux diélectriques.
Les revêtements à base de matériaux diélectriques présentent une épaisseur supérieure à 15 nm, comprise entre 15 et 50 nm ou entre 30 et 40 nm.
Les couches diélectriques des revêtements à base de matériaux diélectriques présentent les caractéristiques suivantes seules ou en combinaison :
- elles sont déposées par pulvérisation cathodique assistée par champ magnétique,
- elles sont choisies parmi les couches diélectriques à fonction barrière ou à fonction stabilisante, avantageusement elles sont choisies parmi les couches diélectriques à fonction stabilisante,
- elles sont choisies parmi les oxydes ou nitrures d'un ou plusieurs éléments choisi(s) parmi le titane, le silicium, l'aluminium, l'étain et le zinc,
- elles ont une épaisseur supérieure à 5 nm, de préférence comprise entre 8 et 35 nm.
On entend par couches diélectriques à fonction barrière, une couche en un matériau apte à faire barrière à la diffusion de l'oxygène et de l'eau à haute température, provenant de l'atmosphère ambiante ou du substrat transparent, vers la couche fonctionnelle. Les couches diélectriques à fonction barrière peuvent être à base de composés de silicium et/ou d'aluminium choisis parmi les oxydes tels que Si02, les nitrures tels que les nitrure de silicium Si3N4 et les nitrures d'aluminium AIN, et les oxynitrures SiOxNy éventuellement dopé à l'aide d'au moins un autre élément. Les couches diélectriques à fonction barrière peuvent également être à base d'oxyde de zinc et d'étain.
On entend par couches diélectriques à fonction stabilisante, une couche en un matériau apte à stabiliser l'interface entre la couche fonctionnelle et cette couche. Les couches diélectriques à fonction stabilisante sont de préférence à base d'oxyde cristallisé, notamment à base d'oxyde de zinc, éventuellement dopé à l'aide d'au moins un autre élément, comme l'aluminium. La ou les couches diélectriques à fonction stabilisante sont de préférence des couches d'oxyde de zinc.
La ou les couches diélectriques à fonction stabilisante peuvent se trouver au- dessus et/ou en-dessous, de préférence en-dessous, d'au moins une couche métallique fonctionnelle à base d'argent ou de chaque couche métallique fonctionnelle à base d'argent, soit directement à son contact ou soit séparées par une couche de blocage.
Selon un mode de réalisation particulièrement avantageux, le matériau selon l'invention est caractérisé en ce que l'empilement de couches minces comprend au moins une couche métallique fonctionnelle à base d'argent et au moins deux revêtements à base de matériaux diélectriques, chaque revêtement comportant au moins une couche diélectrique, de manière à ce que chaque couche métallique fonctionnelle à base d'argent soit disposée entre deux revêtements à base de matériaux diélectriques, ladite couche diélectrique étant choisie parmi les couches diélectriques à fonction barrière ou à fonction stabilisante. Ladite couche diélectrique est de façon particulièrement avantageuse une couche diélectrique à fonction stabilisante se trouvant en-dessous de ladite couche fonctionnelle à base d'argent. Elle est, de préférence, à base d'oxyde de zinc, éventuellement dopé à l'aide d'au moins un autre élément. Avantageusement, ledit élément est l'aluminium.
Selon un mode de réalisation avantageux, l'empilement comprend une couche diélectrique à base de nitrure de silicium et/ou d'aluminium située au-dessus d'au moins une partie de la couche fonctionnelle. La couche diélectrique à base de nitrure de silicium et/ou d'aluminium a une épaisseur :
- inférieure ou égale à 100 nm, inférieure ou égale à 50 nm ou inférieure ou égale à 40 nm, et/ou
- supérieure ou égale à 15 nm, supérieure ou égale à 20 nm ou supérieure ou égale à 25 nm.
Les empilements peuvent comprendre en outre des couches de blocage dont la fonction est de protéger les couches fonctionnelles en évitant une éventuelle dégradation liée au dépôt d'un revêtement à base de matériaux diélectriques ou liée à un traitement thermique. Selon un mode de réalisation, l'empilement comprend au moins une couche de blocage située en-dessous et au-contact d'une couche métallique fonctionnelle à base d'argent et/ou au moins une couche de blocage située au-dessus et au-contact d'une couche métallique fonctionnelle à base d'argent.
Parmi les couches de blocage traditionnellement utilisées notamment lorsque la couche fonctionnelle est une couche métallique à base d'argent, on peut citer les couches de blocage à base d'un métal choisi parmi le niobium Nb, le tantale Ta, le titane Ti, le chrome Cr ou le nickel Ni ou à base d'un alliage obtenu à partir d'au moins deux de ces métaux, notamment d'un alliage de nickel et de chrome (NiCr).
L'épaisseur de chaque couche de blocage est de préférence :
- d'au moins 0,5 nm ou d'au moins 0,8 nm et/ou
- d'au plus 5,0 nm ou d'au plus 2,0 nm.
L'empilement peut comprendre une couche supérieure de protection déposée comme dernière couche de l'empilement notamment pour conférer des propriétés antirayures. Les couches supérieures de protection peuvent être choisies parmi les couches à base d'oxyde de titane, de zirconium et/ou de zinc. Ces couches ont une épaisseur comprise entre 2 et 5 nm.
Un exemple d'empilement convenant selon l'invention comprend : - un revêtement à base de matériaux diélectriques situé en-dessous de la couche métallique fonctionnelle à base d'argent, le revêtement pouvant comprendre au moins une couche diélectrique à base de nitrure de silicium et/ou d'aluminium,
- éventuellement une couche de blocage,
- une couche métallique fonctionnelle à base d'argent,
- éventuellement une couche de blocage,
- un revêtement à base de matériaux diélectriques situé au-dessus de la couche métallique fonctionnelle à base d'argent, le revêtement pouvant comprendre au moins une couche diélectrique à base de nitrure de silicium et/ou d'aluminium, - une couche supérieure de protection.
Les substrats transparents selon l'invention sont de préférence en un matériau rigide minéral, comme en verre, notamment silico-sodo-calcique ou organiques à base de polymères (ou en polymère).
Les substrats transparents organiques selon l'invention peuvent également être en polymère, rigides ou flexibles. Des exemples de polymères convenant selon l'invention comprennent, notamment :
- le polyéthylène,
- les polyesters tels que le polyéthylène téréphtalate (PET), le polybutylène téréphtalate (PBT), le polyéthylène naphtalate (PEN) ;
- les polyacrylates tels que le polyméthacrylate de méthyle (PMMA) ;
- les polycarbonates ;
- les polyuréthanes ;
- les polyamides ;
- les polyimides ;
- les polymères fluorés comme les fluoroesters tels que l'éthylène tétrafluoroéthylène (ETFE), le polyfluorure de vinylidène (PVDF), le polychlorotrifluorethylène (PCTFE), l'éthylène de chlorotrifluorethylène (ECTFE), les copolymères éthylène-propylène fluorés (FEP) ;
- les résines photoréticulables et/ou photopolymérisables, telles que les résines thiolène, polyuréthane, uréthane-acrylate, polyester-acrylate et
- les polythiouréthanes.
L'épaisseur du substrat varie généralement entre 0,5 mm et 19 mm. L'épaisseur du substrat est de préférence inférieure ou égale à 6 mm, voire 4 mm.
L'invention concerne également le procédé de préparation du matériau selon l'invention. Selon ce procédé, on dépose l'empilement de couches minces sur le substrat par une technique sous vide du type pulvérisation cathodique éventuellement assistée par champ magnétique. La croissance latérale des grains induite par diffusion des éléments dopants est de préférence réalisée par un traitement thermique. Ce traitement thermique peut être réalisé à des températures comprises entre 350 et 800 °C, de préférence comprises entre 500 et 700 °C.
Le traitement thermique peut notamment être une trempe réalisée à une température d'au moins 500 °C, de préférence d'au moins 600 °C.
Le traitement thermique peut notamment être un recuit réalisé à une température comprise entre 200 °C et 550 °C, voire entre 350 °C et 500 °C pendant une durée de préférence d'au moins 1 heure.
Le matériau selon l'invention, c'est-à-dire le substrat transparent revêtu de l'empilement défini ci-dessus, peut donc avoir subi un traitement thermique, ledit traitement thermique étant avantageusement choisi parmi un recuit, une trempe et/ou un bombage. On dit alors que c'est un matériau traité thermiquement. Avantageusement, c'est un matériau recuit, trempé et/ou bombé.
Le matériau peut être un vitrage monolithique, un vitrage feuilleté ou un vitrage multiple notamment un double-vitrage ou un triple vitrage.
Exemple I. Préparation des matériaux
Des empilements de couches minces définis ci-après sont déposés sur des substrats en verre sodo-calcique clair d'une épaisseur de 2 mm.
Pour ces exemples, les conditions de dépôt des couches déposées par pulvérisation (pulvérisation dite « cathodique magnétron ») sont résumées dans le tableau ci-dessous.
Le dopage de la couche d'argent peut être réalisé :
- soit par co-pulvérisation à partir de deux cibles, une cible d'argent et une cible d'élément dopant,
- soit par pulvérisation à partir d'une cible d'argent comprenant l'élément dopant.
Lors du dépôt par co-pulvérisation à partir de deux cibles, les deux cibles sont placées inclinées et allumées en même temps. Le dopage souhaité est obtenu en ajustant les puissances de dépôt. La puissance de dépôt de la cible d'argent est fixe et on fait varier la puissance de dépôt de la cible d'élément dopant.
Des couches d'argent dopées avec différent éléments dopants et proportions d'éléments dopants ont été testées. Les couches d'argent dopées par du zinc (Zn), du chrome (Cr) et du nickel (Ni) sont obtenues par co-pulvérisation à partir de deux cibles. Les couches d'argent dopées par de l'aluminium sont obtenues par pulvérisation à partir d'une seule cible déjà dopée (Cible Ag/AI dopée à 3 %).
Dans tous les exemples qui suivent, la composition des couches et notamment les proportions d'éléments dopants dans la couche d'argent dopée ont été mesurées par les techniques classiques de microsonde de Castaing (également appelée en anglais Electron Probe Microanalyser ou EPMA) La concentration en élément dopant est exprimée en masse d'élément dopant par rapport à la masse d'argent et d'élément dopant.
Figure imgf000011_0001
at. : atomique ; pds : poids ; * : à 550 nm.
Différents matériaux ont été préparés comprenant des empilements qui différent par la nature de la couche fonctionnelle à base d'argent et notamment par la présence et la nature de l'élément dopant. Les empilements comprennent les couches minces suivantes, définies en partant du substrat, selon les épaisseurs physiques en nanomètres données :
- une couche d'oxyde de zinc dopé à l'aluminium de 5 nm
- une couche d'argent comprenant ou non un élément dopant de 15 nm d'épaisseur,
- une couche de NiCr de 0,5 nm et
- une couche de nitrure de silicium de 5 nm.
Le tableau ci-dessous précise pour chaque matériau testé, la nature et les proportions d'éléments dopants.
Figure imgf000012_0001
La croissance latérale des grains peut être mesurée par microscopie électronique en transmission. La figure 2 présente une image de microscopie électronique en transmission en champ clair d'un substrat comprenant un empilement comprenant au moins une couche métallique fonctionnelle à base d'argent. Sur cette figure, les joints de grains sont redessinés par des pointillés blancs. La dimension latérale des grains monocristallins est déterminée en mesurant cette grandeur sur 100 à 200 grains.
La figure 3 est un graphique représentant l'évolution de la dimension latérale moyenne des grains en fonction de la température et du temps de recuit, pour des couches à base d'argent pur et pour des couches à base d'argent comprenant un élément dopant. Ces résultats, repris dans le tableau ci-dessous, sont obtenus :
- en chauffant des empilements comprenant des couches à base d'argent avec et sans élément dopant in situ dans le microscope électronique en transmission, - en réalisant des paliers de température successifs tous les 100 °C et
- en prenant des images au bout de 1 et 40 min à chaque fois.
Figure imgf000012_0002
* : Dimension latérale des grains, moyenne mesurée sur 100 à 200 grains.
La mesure de l'évolution de la dimension latérale moyenne des grains en fonction de la température, du temps de recuit et de l'élément dopant confirme que l'ajout d'élément dopant permet d'obtenir une croissance accrue des grains monocristallins d'argent. En effet, la croissance latérale des grains induite par diffusion d'éléments dopants notamment choisis parmi l'aluminium et le nickel permet d'obtenir des grains présentant une dimension latérale de 25 nm environ. En comparaison, une couche à base d'argent sans élément dopant comprend des grains présentant une dimension latérale, en général, inférieure à 15 nm. Cette méthode de dopage permet d'obtenir une couche à base d'argent avec des grains presque deux fois plus larges.

Claims

REVENDICATIONS
1 . Matériau comprenant un substrat transparent revêtu d'un empilement de couches minces comprenant au moins une couche métallique fonctionnelle à base d'argent, comprenant un élément dopant, d'épaisseur E formée de grains monocristallins ayant une dimension latérale D, définie comme une corde du bord de grain caractérisée en ce que le rapport D/E est supérieur à 1 ,05.
2. Matériau selon la revendication 1 caractérisé en ce que la couche métallique fonctionnelle à base d'argent a une épaisseur E inférieure à 20 nm.
3. Matériau selon la revendication 1 ou 2 caractérisé en ce que le rapport D/E est supérieur à 1 ,30.
4. Matériau selon l'une quelconque des revendications précédentes caractérisé en ce que le ou les grains monocristallins présentent une dimension latérale D, définie comme une corde du bord de grain, sur tous les grains supérieure à 15 nm, de préférence supérieure à 20 nm.
5. Matériau selon l'une quelconque des revendications précédentes, caractérisé en ce que l'élément dopant est un métal choisi parmi l'aluminium, le nickel, le zinc ou le chrome.
6. Matériau selon l'une quelconque des revendications précédentes caractérisé en ce que la couche métallique fonctionnelle à base d'argent comprend 0,5 à 5,0 % en masse d'élément dopant par rapport à la masse d'élément dopant et d'argent dans la couche fonctionnelle.
7. Matériau selon l'une quelconque des revendications précédentes caractérisé en ce que l'élément dopant est (i) de l'aluminium dont les proportions pondérales sont de 1 ,0 à 4,0 % par rapport à la masse d'élément dopant et d'argent dans la couche fonctionnelle ou (ii) du nickel dont les proportions pondérales sont de 1 ,0 à 3,0 % par rapport à la masse d'élément dopant et d'argent dans la couche fonctionnelle.
8. Matériau selon l'une quelconque des revendications précédentes caractérisé en ce que l'empilement de couches minces comprend au moins une couche métallique fonctionnelle à base d'argent et au moins deux revêtements à base de matériaux diélectriques, chaque revêtement comportant au moins une couche diélectrique, de manière à ce que chaque couche métallique fonctionnelle à base d'argent soit disposée entre deux revêtements à base de matériaux diélectriques, ladite couche diélectrique étant choisie parmi les couches diélectriques à fonction barrière ou à fonction stabilisante.
9. Matériau selon la revendication précédente dans lequel la couche diélectrique est une couche diélectrique à fonction stabilisante se trouvant en-dessous de ladite couche fonctionnelle à base d'argent.
10. Matériau selon la revendication précédente dans lequel ladite couche diélectrique à fonction stabilisante est à base d'oxyde de zinc, éventuellement dopé.
1 1 . Matériau selon l'une quelconque des revendications précédentes tel que le substrat est en verre, notamment silico-sodo-calcique ou en polymère notamment en polyéthylène, en polyéthylène téréphtalate ou en polyéthylène naphtalate.
12. Matériau selon l'une quelconque des revendications précédente ayant subi un traitement thermique.
13. Matériau selon la revendication précédente caractérisé en ce que le traitement thermique est choisi parmi un recuit, une trempe et/ou un bombage.
14. Procédé de préparation d'un matériau comprenant un substrat transparent revêtu d'un empilement de couches minces selon lequel :
- on dépose, au-dessus dudit substrat transparent, au moins ladite couche fonctionnelle à base d'argent, comprenant un élément dopant, sur une épaisseur E, ladite couche fonctionnelle étant formée de grains monocristallins ayant une dimension latérale d définie comme une corde du bord de grain, puis
- on réalise une croissance latérale des grains induite par diffusion des éléments dopants conduisant à l'obtention de grains monocristallins ayant une dimension latérale D définie comme une corde du bord de grain telle que le rapport D/E soit supérieur à 1 ,05.
15. Procédé de préparation d'un matériau selon la revendication 14 caractérisé en ce que la croissance latérale des grains induite par diffusion des éléments dopants est réalisée par un traitement thermique.
16. Procédé de préparation d'un matériau selon la revendication 15 caractérisé en ce que le traitement thermique est réalisé à des températures comprises entre 350 et 800 °C, de préférence comprises entre 500 et 700 °C.
17. Procédé de préparation d'un matériau selon la revendication 15 caractérisé en ce que le traitement thermique est une trempe réalisée à une température d'au moins 500 °C, de préférence d'au moins 600 °C.
18. Procédé de préparation d'un matériau selon la revendication 15 caractérisé en ce que le traitement thermique est un recuit réalisé à une température comprise entre 350 °C et 550 °C pendant une durée d'au moins 1 heure.
PCT/FR2016/050427 2015-02-25 2016-02-24 Vitrage comprenant un substrat revetu d'un empilement comprenant au moins une couche fonctionnelle a base d'argent WO2016135420A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16713528.4A EP3262005A1 (fr) 2015-02-25 2016-02-24 Vitrage comprenant un substrat revetu d'un empilement comprenant au moins une couche fonctionnelle a base d'argent
US15/553,369 US20180072616A1 (en) 2015-02-25 2016-02-24 Glass panel including a substrate coated with a stack that includes at least one silver functional layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1551592A FR3032959A1 (fr) 2015-02-25 2015-02-25 Vitrage comprenant un substrat revetu d'un empilement comprenant au moins une couche fonctionnelle a base d'argent
FR1551592 2015-02-25

Publications (1)

Publication Number Publication Date
WO2016135420A1 true WO2016135420A1 (fr) 2016-09-01

Family

ID=53177628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/050427 WO2016135420A1 (fr) 2015-02-25 2016-02-24 Vitrage comprenant un substrat revetu d'un empilement comprenant au moins une couche fonctionnelle a base d'argent

Country Status (4)

Country Link
US (1) US20180072616A1 (fr)
EP (1) EP3262005A1 (fr)
FR (1) FR3032959A1 (fr)
WO (1) WO2016135420A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018156837A3 (fr) * 2017-02-24 2018-11-01 Guardian Glass, LLC Article revêtu d'un revêtement à faible émissivité comportant une ou des couches réfléchissant les ir en argent qui sont dopées

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE543408C2 (en) * 2018-10-22 2021-01-05 Mimsi Mat Ab Glazing and method of its production
EP4363387A1 (fr) * 2021-06-29 2024-05-08 AGP América S.A. Revêtement solaire amélioré, procédé de fabrication et stratifié en verre comprenant un tel revêtement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020037414A1 (en) * 2000-07-18 2002-03-28 Cunningham James A. Low emissivity panel assembly
US20040005432A1 (en) * 2002-07-08 2004-01-08 Ridout James W. Reflective or semi-reflective metal alloy coatings
DE102009051796A1 (de) * 2009-11-03 2011-05-05 Kramer & Best Process Engineering Gmbh Thermisch belastbares Schichtsystem
CN103802379A (zh) * 2014-01-26 2014-05-21 林嘉佑 一种含银合金的可钢化低辐射镀膜玻璃

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2798738B1 (fr) * 1999-09-16 2001-10-26 Saint Gobain Vitrage Substrat transparent muni d'un empilement de couches reflechissant la chaleur
FR3013349B1 (fr) * 2013-11-15 2015-11-20 Saint Gobain Vitrage comprenant un substrat revetu d'un empilement comprenant au moins une couche fonctionnelle a base d'argent dope par du zinc
CN107077906B (zh) * 2014-05-23 2020-08-07 密歇根大学董事会 用于光电子学和光子学应用的超薄的掺杂的贵金属膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020037414A1 (en) * 2000-07-18 2002-03-28 Cunningham James A. Low emissivity panel assembly
US20040005432A1 (en) * 2002-07-08 2004-01-08 Ridout James W. Reflective or semi-reflective metal alloy coatings
DE102009051796A1 (de) * 2009-11-03 2011-05-05 Kramer & Best Process Engineering Gmbh Thermisch belastbares Schichtsystem
CN103802379A (zh) * 2014-01-26 2014-05-21 林嘉佑 一种含银合金的可钢化低辐射镀膜玻璃

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018156837A3 (fr) * 2017-02-24 2018-11-01 Guardian Glass, LLC Article revêtu d'un revêtement à faible émissivité comportant une ou des couches réfléchissant les ir en argent qui sont dopées
US10227819B2 (en) 2017-02-24 2019-03-12 Guardian Glass, LLC Coated article with low-E coating having doped silver IR reflecting layer(s)

Also Published As

Publication number Publication date
EP3262005A1 (fr) 2018-01-03
US20180072616A1 (en) 2018-03-15
FR3032959A1 (fr) 2016-08-26

Similar Documents

Publication Publication Date Title
EP3068742B1 (fr) Vitrage comprenant un substrat revetu d'un empilement comprenant au moins une couche fonctionnelle a base d'argent dope par du zinc
EP3880623A1 (fr) Materiau traite thermiquement a proprietes mecaniques ameliorees
EP3068741B1 (fr) Vitrage comprenant un substrat revetu d'un empilement comprenant une couche fonctionnelle a base d'argent et une sous-couche de blocage epaisse de tiox
WO2005019126A1 (fr) Substrat transparent revetu d'un empilement de couches minces a proprietes de reflexion dans l'infrarouge et/ou dans le domaine du rayonnement solaire
EP3233748A1 (fr) Vitrage contrôle solaire ou bas émissif comprenant une couche de protection supérieure
WO2016135420A1 (fr) Vitrage comprenant un substrat revetu d'un empilement comprenant au moins une couche fonctionnelle a base d'argent
EP3347321A1 (fr) Vitrage comprenant un revetement fonctionnel
EP4182278A1 (fr) Matériau à faible émissivité comportant un revêtement comprenant un gradient d'oxydation à base d'oxyde de titane
WO2022013495A1 (fr) Matériau à faible émissivité comprenant une couche à base d'oxyde de titane épaisse
CA2995471C (fr) Vitrage comprenant un empilement de couches minces
FR3112545A1 (fr) Matériau à faible émissivité comprenant une couche à base d'oxyde de titane épaisse et une couche à base d'oxyde de zinc et d'étain
FR3112544A1 (fr) Matériau à faible émissivité comportant un revêtement comprenant un gradient d'oxydation à base d'oxyde de titane
EP3880622B1 (fr) Materiau traite thermiquement a proprietes mecaniques ameliorees
FR3039537A1 (fr) Vitrage comprenant une couche de blocage epaisse
WO2023131766A1 (fr) Vitrage contrôle solaire
WO2023131765A1 (fr) Vitrage contrôle solaire
WO2020099802A1 (fr) Materiau traite thermiquement a faible resistivite et proprietes mecaniques ameliorees
FR3131743A1 (fr) Vitrage contrôle solaire et/ou bas émissif
FR3112543A1 (fr) Matériau à faible émissivité comportant une couche à base d'oxyde de titane épaisse
KR20160085773A (ko) 아연으로 도핑된 은으로부터 제조된 하나 이상의 기능성 층을 포함하는 스택으로 코팅된 기판을 포함하는 글레이징

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16713528

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016713528

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15553369

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE