WO2016134830A1 - Prozessanordnung sowie verfahren zur herstellung eines faserverstärkten kunststoffbauteils - Google Patents

Prozessanordnung sowie verfahren zur herstellung eines faserverstärkten kunststoffbauteils Download PDF

Info

Publication number
WO2016134830A1
WO2016134830A1 PCT/EP2016/000254 EP2016000254W WO2016134830A1 WO 2016134830 A1 WO2016134830 A1 WO 2016134830A1 EP 2016000254 W EP2016000254 W EP 2016000254W WO 2016134830 A1 WO2016134830 A1 WO 2016134830A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
matrix material
fiber
thermoplastic matrix
residues
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2016/000254
Other languages
German (de)
English (en)
French (fr)
Inventor
Thomas Mertens
Max Ehleben
Christine Kunze
Olaf Täger
Maurice Bitterlich
Katja Zeuner
Philippe Desbois
Andreas Wollny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Volkswagen AG
Original Assignee
BASF SE
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE, Volkswagen AG filed Critical BASF SE
Priority to JP2017562125A priority Critical patent/JP2018507128A/ja
Priority to KR1020177026692A priority patent/KR20170118893A/ko
Priority to US15/552,987 priority patent/US11034102B2/en
Priority to CN201680011510.6A priority patent/CN107257731B/zh
Priority to EP16705425.3A priority patent/EP3261823B1/de
Publication of WO2016134830A1 publication Critical patent/WO2016134830A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0005Direct recuperation and re-use of scrap material during moulding operation, i.e. feed-back of used material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B2017/001Pretreating the materials before recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention relates to a process arrangement for producing a fiber-reinforced
  • fiber-reinforced plastic components can be done using textile semi-finished products, so-called prepregs.
  • prepregs textile semi-finished products
  • a textile fiber material having a reactive, that is to say not yet polymerized thermoplastic matrix material is preimpregnated below a polymerization start temperature.
  • the prepregs are stacked in a deposition process to a layer package and this is subjected to a thermoforming or pressing process.
  • WO 2012/116947 A1 discloses a generic process for the production of reactive prepregs, that is to say of continuous-fiber-reinforced, sheet-like semi-finished products with polyamide matrix.
  • first textile structures with a liquid that is to say of continuous-fiber-reinforced, sheet-like semi-finished products with polyamide matrix.
  • Starting component of the polyamide matrix that is molten lactam including added catalysts and / or activators, pre-impregnated, in one
  • the preimpregnated textile endless structure is assembled in a cutting station to fiber-reinforced sheet semi-finished and stacked in a stacking station.
  • the preimpregnated textile endless structure is assembled in a cutting station to fiber-reinforced sheet semi-finished and stacked in a stacking station.
  • the shaping takes place, namely at a temperature above the polymerization start temperature in a press or
  • the preimpregnated lactam polymerizes to a polyamide. Due to the simultaneous deep drawing / pressing, the fiber-reinforced, flat semifinished product is brought into the intended form of the component to be produced.
  • a final trimming of the finished plastic component can take place, with the formation of end trimming residues, which consist of a
  • thermoplastic matrix can be fed by a simple crushing and extruding new applications in injection molding.
  • Fiber composites based on a thermoplastic matrix in excellent recycling properties. By simply melting and regranulating, the fibers and the matrix mix homogeneously. The granulate recycled in this way can once again be used as a high-quality raw material for a wide variety of applications.
  • the problem is that - apart from the end trim remainder mentioned above - edge trim remnants (from the fabrication of the semifinished fiber products) and assembly trim remnants are also produced at upstream process times.
  • the edge trimming residues and the Assemblierbeites residues are - unlike the Endberough residue - not yet polymerized and therefore can not be further processed in the above recycling process.
  • the edge trim and assembly trim residues are therefore removed from the process chain as non-recyclable material scrap.
  • the object of the invention is to provide a process arrangement and a method for producing a fiber-reinforced plastic component, which has a comparison with the prior art improved recycling concept.
  • the object of the invention is characterized by the features of claim 1 or
  • the recycling station is additionally assigned a treatment station.
  • the preparation station are trimming residues from a composite of fibers of not yet polymerized, that is reactive thermoplastic matrix material fed.
  • the processing station first the reactive
  • the composite material supplied by the treatment station is further processed together with the Endberough-residues to the recyclate, which is suitable for applications in injection molding or pressing processes.
  • the treatment station With a view to proper polymerization in the treatment station, it is of
  • the polymerization of the bleed residues takes place in an oven, for example in a continuous furnace.
  • a production engineering implementation can in the manufacturing station in a
  • edge trim residues consist of a composite of fibers and reactive thermoplastic matrix material.
  • the fibers are not completely wetted with the matrix material due to production engineering.
  • the edge trim remnants can sometimes even be completely without matrix material.
  • the fiber content in the edge trim residues is very high.
  • the prepregs are initially stacked on top of one another in a laying process to form a layer package. Subsequently, an Assemblierberough done, in which the layer package corresponding to a final contour of the fiber-reinforced
  • Plastic component is cut. This is done to form Assemblierberough- residues, consisting of a composite of fibers and reactive thermoplastic
  • Fiber content is relatively large and corresponds to the fiber content of a finished fiber-reinforced plastic component.
  • the Assemblierberough and then the deposition process can be done first.
  • the reactive prepregs may be formed with an outer component edge which has a projection required for the pressing and / or deep-drawing process forms. This is functionless after the pressing and / or deep-drawing process and can therefore be removed from the finished plastic component in the post-treatment station, with the formation of Endberough residues. At the same time breakthroughs, recesses or the like can be incorporated into the finished plastic component in the post-treatment station, which also Endberough remains arise, which
  • the supernatant removed from the plastic component may have a fiber content that is identical to the fiber content of the finished plastic component.
  • the removed supernatant may also have a lower fiber content, due to an overflow of excess atrix material during the molding of the plastic component in the press / deep draw tool.
  • Recyclates to be produced can be added to the recycling station led trimming residues a pure polymerized matrix material.
  • the processing station and / or the recycling station can be assigned a comminution unit, for example a granulator, in which the clippings which can be brought together to form the recyclate
  • the edge trimming residues and the Assemblierberough- residues can be polymerized before the granulator processing.
  • the Endbetre rest can be mixed depending on the requirements with the Assemblierberough-rest and / or with the Randberough- remainder before or after the granulator in different weight ratios with each other and only then the recycling station. Therein then the further processing of short or long fiber reinforced, polymerized
  • the reactive thermoplastic matrix material used is preferably caprolactam (so-called cast PA).
  • Alternative reactive thermoplastic matrix systems besides caprolactam may also be, for example, laurolactam and cyclic butylene terephthalate, etc.
  • fiber material all possible fibers are conceivable.
  • fibers of glass, carbon (so-called carbon fibers), basalt, aramid or a combination thereof are used. These are in a variety of arrangements, such as tissue, scrim or unidirectional before.
  • the polymerization takes place in caprolactam by means of a
  • Reaction temperature of about 150 ° C at which the caprolactam polyamide (PA6) is formed.
  • PA6 caprolactam polyamide
  • temperatures adapted to the respective material should be selected.
  • 5 is a block diagram of the process chain including a recycling station and an associated conditioning station.
  • FIGS. 1 to 4 show the process stations I to VI for producing a fiber-reinforced plastic component 1 (FIGS. 3 and 4) in so far as is necessary for the understanding of the invention.
  • a production station I two fiber layers 2 are initially brought by way of example onto a continuous conveyor belt 5 in a continuous process with the interposition of a first film 3 of, for example, polyamide or another suitable material.
  • the thus formed textile layer structure 7 is impregnated with an initial component 8 of a reactive thermoplastic matrix material, such as lactam, under heat application 10 at a temperature below the starting temperature for a
  • a reactive thermoplastic matrix material such as lactam
  • a second film 9 is applied and the textile layer structure 7 is cooled (ie consolidated) in a cooling unit 11 and, in a subsequent cutting station II, made into individual pre-impregnated textile semifinished fiber products 15.
  • an edge trimming takes place in which the preimpregnated endless structure 7 is cut to the continuous fiber-reinforced textile semifinished fiber products 15 (also referred to below as prepregs).
  • prepregs continuous fiber-reinforced textile semifinished fiber products
  • the fibers are not completely wetted with the reactive matrix material or they are entirely without matrix material, whereby the marginal trim residual m R has a very high fiber content.
  • the prefabricated textile semi-finished fiber products 15 are stacked and stored in a following stacking station III. Depending on requirements, the semi-finished fiber packs 15 stacked on top of one another are transferred to an assembling station IV downstream of the process, which is indicated in FIG. In the Assemblierstation IV are the
  • the assembly trim residue m A consists of a composite of fibers and reactive thermoplastic matrix material.
  • edge trimming residue m R are in
  • Assemblierbeites rest m A the fibers completely surrounded by matrix material, that is fully impregnated.
  • the fiber fraction of the assembly trim residue m A is therefore higher than the marginal trim residue m R and substantially identical to the fiber fraction of the finished plastic component 1.
  • the layer package 16 is transferred to the, roughly schematic, indicated pressing and / or deep-drawing station V in FIG. 3, in which the layer package 16 is heated to a temperature above the polymerization temperature and at the same time deep-drawn into the shape of the plastic component 1 to be produced / is pressed.
  • a subsequent downstream treatment station VI FIG. 4
  • a plastic component 1 is attached
  • Final trimming is performed, in which an example required for the thermoforming process outer component edge 17 is removed from the plastic component 1, to form a final trimming residue m E , which consists of a composite of fibers and polymerized matrix material.
  • the process chain I to VI for producing the plastic component 1 is a
  • the recycling station VII may optionally be arranged a cutting mill, which the
  • the recycling station VII the end trimming residues m E are further processed into a recyclate R, which is suitable for use in an injection molding or pressing process.
  • the recycling station VII is assigned a treatment station VIII.
  • the processing station VIII are the edge trim residues m R and the
  • trim residues m R , m A consist of a composite of fibers with reactive (that is, not yet polymerized) thermoplastic matrix material and are therefore not directly in the recycling station VII to the recyclate R processable.
  • the reactive thermoplastic matrix material of the two trimming residues m R , m A is polymerized.
  • polymerized matrix material is then combined in the recycling station VII with the Endberough- residues m E and further processed there.
  • the treatment station VIII may also have a cutting mill in which the trimming residues m R and m A are comminuted. It is preferred if the cutting mill processing of the edge trim and the assembly trim residues m R , m A only takes place after they have been polymerized.
  • Embodiment variant of the Endberough rest m E at one, the recycling station VII upstream coupling point 21 are merged with the polymerized bleed residues m A , m R and then forwarded to the recycling station VII.
  • the recycling station VII upstream coupling point 21 are merged with the polymerized bleed residues m A , m R and then forwarded to the recycling station VII.
  • polymerized matrix material may be added to optionally the fiber content in
  • admixtures can be added to the recycled material R produced in the recycling station VII.
  • the recyclate R can be plasticized in the further course of the process and fed to a screw extruder and then processed in the injection molding or pressing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
PCT/EP2016/000254 2015-02-23 2016-02-15 Prozessanordnung sowie verfahren zur herstellung eines faserverstärkten kunststoffbauteils Ceased WO2016134830A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017562125A JP2018507128A (ja) 2015-02-23 2016-02-15 繊維強化プラスチック部品のプロセス装置及び製造方法
KR1020177026692A KR20170118893A (ko) 2015-02-23 2016-02-15 섬유 강화 플라스틱 부품을 제조하기 위한 공정 설비 및 방법
US15/552,987 US11034102B2 (en) 2015-02-23 2016-02-15 Process arrangement and a method for producing a fiber-reinforced plastic component
CN201680011510.6A CN107257731B (zh) 2015-02-23 2016-02-15 用于生产纤维增强的塑料零件的过程布置以及方法
EP16705425.3A EP3261823B1 (de) 2015-02-23 2016-02-15 Prozessanordnung sowie verfahren zur herstellung eines faserverstärkten kunststoffbauteils

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015002106.0A DE102015002106A1 (de) 2015-02-23 2015-02-23 Prozessanordnung sowie Verfahren zur Herstellung eines faserverstärkten Kunststoffbauteils
DE102015002106.0 2015-02-23

Publications (1)

Publication Number Publication Date
WO2016134830A1 true WO2016134830A1 (de) 2016-09-01

Family

ID=55404669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/000254 Ceased WO2016134830A1 (de) 2015-02-23 2016-02-15 Prozessanordnung sowie verfahren zur herstellung eines faserverstärkten kunststoffbauteils

Country Status (7)

Country Link
US (1) US11034102B2 (enExample)
EP (1) EP3261823B1 (enExample)
JP (1) JP2018507128A (enExample)
KR (1) KR20170118893A (enExample)
CN (1) CN107257731B (enExample)
DE (1) DE102015002106A1 (enExample)
WO (1) WO2016134830A1 (enExample)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10661482B2 (en) 2015-02-23 2020-05-26 Volkswagen Ag Method for producing fiber-reinforced components or semi-finished products
US11225555B2 (en) 2015-05-12 2022-01-18 Basf Se Caprolactam formulations

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112895219B (zh) * 2021-04-07 2022-08-30 江苏华纳环保科技有限公司 一种复合材料玻璃钢破碎回收装置及破碎方法
CN114347311B (zh) * 2022-01-17 2022-11-04 无锡阳光精机股份有限公司 一种高端装备制造用硅片切割成形的高性能碳纤维主辊智能制造装备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0443051A1 (de) * 1990-02-17 1991-08-28 FIBRON Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung einer duroplastischen Pressmasse aus Glasfaser-Polyester-Verbundwerkstoff; Vorrichtung zur Durchführung des Verfahrens
WO2011056293A1 (en) * 2009-11-06 2011-05-12 The Boeing Company Compression molding method and reinforced thermoplastic parts molded thereby
WO2012116947A1 (de) * 2011-03-03 2012-09-07 Basf Se Verfahren zur herstellung von faserverstärkten, flachen halbzeugen mit polyamidmatrix

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3166533A (en) 1959-12-16 1965-01-19 Wichterle Otto Method for the adiabatic production of castings of polycaprolactam and similar polyamides having any required shape and size
BE708095A (enExample) 1967-12-15 1968-04-16
US5445701A (en) 1987-05-08 1995-08-29 Research Association For New Technology Development Of High Performance Polymer Apparatus of manufacturing a sheet-prepreg reinforced with fibers
DE4112172A1 (de) 1991-04-13 1992-08-27 Krupp Ag Verfahren zur herstellung eines wiederaufbereitbaren faserverbundwerkstoffs aus thermoplastischem kunststoff
JP2005513206A (ja) * 2001-12-20 2005-05-12 エムス−ヒェミー アクチェンゲゼルシャフト 熱可塑性マトリックスを使用する複合材料の製造方法
JP3687607B2 (ja) * 2001-12-25 2005-08-24 松下電工株式会社 プリプレグの切断方法
US20060073311A1 (en) * 2004-10-05 2006-04-06 The Boeing Company Apparatus and method for composite tape profile cutting
CN101062595A (zh) 2007-05-16 2007-10-31 陈锦松 碳纤维/玻璃纤维复合材料制作过程中废弃边角料的应用及其制品
CN101264667A (zh) 2008-04-08 2008-09-17 浙江大洲固体废物处置研究所 利用环氧树脂玻璃纤维布废料生产绝缘板的方法
US8883908B2 (en) 2009-06-02 2014-11-11 Johns Manville Methods for making reinforced thermoplastic composites using reactive fibers and/or reactive flakes
JP5861941B2 (ja) * 2010-12-24 2016-02-16 東レ株式会社 炭素繊維集合体の製造方法および炭素繊維強化プラスチックの製造方法
FR2981652B1 (fr) 2011-10-21 2015-03-27 Arkema France Composites via la polymerisation in-situ de resines thermoplastiques methacryliques
DE102012005625A1 (de) * 2012-03-22 2013-09-26 Rheinisch-Westfälische Technische Hochschule Aachen Verfahren und Vorrichtung zur Herstellung eines endkonturnahen Geleges
EP2666805B1 (de) 2012-05-25 2014-10-22 LANXESS Deutschland GmbH Verfahren zur Herstellung eines Faserverbund-Werkstoffs
TWI520844B (zh) * 2012-10-30 2016-02-11 三菱麗陽股份有限公司 預形體的製造方法及纖維強化樹脂成形品的製造方法
US9186852B2 (en) * 2013-11-22 2015-11-17 Johns Manville Fiber-containing prepregs and methods and systems of making

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0443051A1 (de) * 1990-02-17 1991-08-28 FIBRON Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung einer duroplastischen Pressmasse aus Glasfaser-Polyester-Verbundwerkstoff; Vorrichtung zur Durchführung des Verfahrens
WO2011056293A1 (en) * 2009-11-06 2011-05-12 The Boeing Company Compression molding method and reinforced thermoplastic parts molded thereby
WO2012116947A1 (de) * 2011-03-03 2012-09-07 Basf Se Verfahren zur herstellung von faserverstärkten, flachen halbzeugen mit polyamidmatrix

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10661482B2 (en) 2015-02-23 2020-05-26 Volkswagen Ag Method for producing fiber-reinforced components or semi-finished products
US11225555B2 (en) 2015-05-12 2022-01-18 Basf Se Caprolactam formulations

Also Published As

Publication number Publication date
KR20170118893A (ko) 2017-10-25
EP3261823B1 (de) 2019-05-15
US11034102B2 (en) 2021-06-15
DE102015002106A1 (de) 2016-08-25
CN107257731A (zh) 2017-10-17
EP3261823A1 (de) 2018-01-03
US20180065326A1 (en) 2018-03-08
CN107257731B (zh) 2020-01-03
JP2018507128A (ja) 2018-03-15

Similar Documents

Publication Publication Date Title
DE19809264C2 (de) Fasergelegeanordnung und Verfahren zur Herstellung eines Vorformlings
EP3261813B1 (de) Verfahren zur herstellung faserverstärkter bauteile oder halbzeuge
EP2165821B1 (de) Verfahren und Vorrichtung zum Herstellen von einem faserverstärkten Verbundwerkstoff und die Verwendung des faserverstärkten Verbundwerkstoffs
EP3261823B1 (de) Prozessanordnung sowie verfahren zur herstellung eines faserverstärkten kunststoffbauteils
DE102018132317A1 (de) Langfaserverstärktes thermoplastisches Filament
EP3261822B1 (de) Prozessanordnung sowie verfahren zur herstellung eines faserverstärkten kunststoffbauteils
DE60220221T2 (de) Zehenkappe aus langfaserverstärktem thermoplastischem Kunststoff für Sicherheitsschuhe und Verfahren zu dessen Herstellung
DE4330860C2 (de) Verfahren zur Herstellung eines flächigen Halbzeugs aus glasmattenverstärkten Propylenpolymerisaten
WO2008055459A2 (de) Verfahren zur herstellung einer blattfeder aus einem faserverbundwerkstoff mit einem thermoplastischen kunststoff und die so erhaltene blattfeder
DE102015014752A1 (de) Verfahren zum Herstellen eines Faserverbundwerkstoff-Bauteils und Faserverbundwerkstoff-Bauteil
DE69810637T2 (de) Verfahren zum formen eines lasttrageteils aus verstärktem thermoplast
DE102015206637A1 (de) Faser-Kunststoff-Verbundhalbzeug und Verfahren zur Herstellung
DE3821803A1 (de) Verfahren zur kontinuierlichen herstellung von faserverstaerkten thermoplastbahnen, faserverstaerkte thermoplastbahnen sowie ihre verwendung
EP2669076A1 (de) Verfahren zum Verbinden zweier Kunststoffteile zur Bildung einer einzigen Komponente
DE10258935A1 (de) Verfahren zur Herstellung von dreidimensionalen Bauteilen
EP3500420B1 (de) Verfahren zur herstellung eines faserverstärkten kunststoffbauteils
WO2016020252A1 (de) Sandwich-bauteile aus poly(meth)acrylat-basierten schaumkörpern und reversibel vernetzbaren composites
EP0084135A2 (de) Verfahren zur Herstellung von Formkörpern aus faserverstärkten Schichtstoffen
EP0654341B1 (de) Verfahren zur kontinuierlichen Herstellung von verstärkten Kunststoffen
DE102016200530B4 (de) Verfahren zur Herstellung eines faserverstärkten Kunststoffbauteils
DE102007028872A1 (de) Verfahren zur Herstellung eines flächigen Strukturverbundbauteils
EP3529406B1 (de) Funktionslagenherstellungsverfahren, zugehörige funktionslage und faserverbundwerkstoff
DE102020208150A1 (de) Polymerkompositmaterial für Spritzgussanwendungen mit hervorragender Rezyklierbarkeit
DE102015009660A1 (de) Verfahren zum Herstellen eines Verbundbauelements, insbesondere für einen Kraftwagen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16705425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562125

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016705425

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15552987

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177026692

Country of ref document: KR

Kind code of ref document: A