WO2016133121A1 - Abnormality diagnosis method and abnormality diagnosis system - Google Patents
Abnormality diagnosis method and abnormality diagnosis system Download PDFInfo
- Publication number
- WO2016133121A1 WO2016133121A1 PCT/JP2016/054579 JP2016054579W WO2016133121A1 WO 2016133121 A1 WO2016133121 A1 WO 2016133121A1 JP 2016054579 W JP2016054579 W JP 2016054579W WO 2016133121 A1 WO2016133121 A1 WO 2016133121A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- abnormality diagnosis
- value
- mahalanobis distance
- simulation model
- monitored
- Prior art date
Links
- 230000005856 abnormality Effects 0.000 title claims abstract description 74
- 238000003745 diagnosis Methods 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims description 19
- 238000012544 monitoring process Methods 0.000 claims abstract description 58
- 238000004088 simulation Methods 0.000 claims abstract description 38
- 238000005259 measurement Methods 0.000 claims abstract description 25
- 230000002159 abnormal effect Effects 0.000 claims abstract description 15
- 238000004364 calculation method Methods 0.000 abstract description 16
- 238000002360 preparation method Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 13
- 239000000446 fuel Substances 0.000 description 8
- 239000007800 oxidant agent Substances 0.000 description 8
- 230000001590 oxidative effect Effects 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 7
- 230000007613 environmental effect Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 241001123248 Arma Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000491 multivariate analysis Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/02—Details or accessories of testing apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/52—Protection, safety or emergency devices; Survival aids
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0243—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Definitions
- the present disclosure relates to an abnormality diagnosis method and an abnormality diagnosis system, and more particularly, to an abnormality diagnosis method and an abnormality diagnosis system suitable for finding an abnormality in an unsteady state having a dynamic change.
- Patent Document 1 discloses a monitoring unit that acquires predetermined monitoring target data from a monitoring target, calculates the Mahalanobis distance to detect an abnormality of the monitoring target, and a monitoring target related to an abnormal signal indicating a sign of abnormality.
- Monitoring a predictor of an abnormality in the monitoring target comprising: a data processing unit that extracts a related signal that is data and generates a predetermined input signal; and a failure diagnosis unit that performs a fault diagnosis of the monitoring target based on the input signal
- a monitoring system that can automate a series of processes from fault diagnosis to failure diagnosis is disclosed.
- Patent Document 2 discloses an accumulated data storage unit for storing accumulated data including values of variables input in the past, a newly input value for each variable, and a maximum value and a minimum value for a predetermined period included in the accumulated data.
- a determination unit that extracts a value and determines an intermediate value as a median value; a first calculation unit that calculates a difference value between a newly input value and a median value for each variable;
- a second calculation unit that obtains the Mahalanobis distance using data of a predetermined unit space, and a determination unit that determines whether the Mahalanobis distance is within a predetermined threshold range and diagnoses an abnormality
- An abnormality diagnosing device for diagnosing an abnormality of the plant by comparing values of a plurality of variables input to a predetermined unit space is disclosed.
- a monitoring object such as a plant or an internal combustion engine generally has a steady state indicating a stable operation state and an unsteady state indicating a transient unstable operation state up to the steady state. Yes.
- the unsteady state is different depending on the environmental condition and the operating condition at that time even for the same monitoring object, and hardly shows the same dynamic change.
- a failure diagnosis input signal is generated from an abnormality signal indicating a sign of abnormality and a related signal by calculating a Mahalanobis distance of monitoring target data.
- the reference data cannot be created only from the monitoring target data, and abnormality diagnosis cannot be performed.
- the present disclosure has been devised in view of the above-described problems, and provides an abnormality diagnosis method and an abnormality diagnosis system capable of diagnosing an abnormality not only in a steady state but also in an unsteady state of an object to be monitored. With the goal.
- a first aspect of the present disclosure is a method for diagnosing an abnormality of a monitoring object including a non-steady-state operation state, the model creating step of creating a simulation model of the monitoring object, and the operation state of the monitoring object
- An abnormality diagnosis step is provided.
- the Mahalanobis distance calculating step may include a step of calculating an error vector having the difference and the integral value as components. Furthermore, the prediction step may calculate the prediction value based on a previous actual measurement value in time series.
- a second aspect of the present disclosure is an abnormality diagnosis system for a monitoring object including an unsteady operation state, and includes a simulation model that simulates the monitoring object and an internal state of the monitoring object in the operation state.
- a measuring means for measuring a state quantity; and a Mahalanobis distance is calculated from a difference between a predicted value obtained by the simulation model and an actual value extracted from the measuring means, and the monitoring object is operated based on the Mahalanobis distance.
- the gist is provided with a diagnostic device for diagnosing whether or not the state is abnormal and a control device that transmits at least the same monitoring input value to the monitoring object and the simulation model.
- the diagnostic apparatus may calculate the Mahalanobis distance based on an error vector having the difference and the integral value as components. Further, the simulation model may calculate the predicted value based on a previous measured value in time series.
- the monitoring object is, for example, a reusable spacecraft engine.
- a simulation model that simulates the internal state of the monitoring target is created, and the monitoring target is calculated using the difference between the actual measurement value of the monitoring target and the predicted value of the simulation model. Since the presence or absence of abnormality of the object is diagnosed, the simulation model can calculate the predicted value adapted to the environmental conditions and operating conditions at the time of abnormality diagnosis, and the measured value of the monitored object by taking the difference Can be replaced with a variation value with respect to a normal value. Therefore, even when the monitoring object is in an unsteady state, it is possible to respond to the dynamic change and diagnose abnormality not only in the steady state but also in the unsteady state of the monitoring object. be able to. Further, by using the Mahalanobis distance for abnormality diagnosis, it is possible to simplify and speed up the abnormality diagnosis.
- FIG. 1 is a schematic overall configuration diagram illustrating an abnormality diagnosis system according to the present disclosure.
- FIG. 2 is a flowchart showing the abnormality diagnosis method according to the present disclosure.
- FIGS. 3A and 3B are explanatory diagrams of the Mahalanobis distance calculation step, FIG. 3A shows an error vector, and FIG. 3B shows an example of a prediction value calculation method.
- . 4 (a) and 4 (b) are explanatory diagrams of the abnormality diagnosis step, FIG. 4 (a) is a conceptual diagram of Mahalanobis distance, and FIG. 4 (b) is a conceptual diagram of abnormality diagnosis.
- . 5 (a) to 5 (c) are explanatory diagrams for verifying the effectiveness when the present disclosure is applied to a reusable spacecraft engine.
- FIG. 5 (a) shows control input values
- FIG. 5B shows simulated data of actual measurement values
- FIG. 5C shows an abnormality diagnosis result based on the Mahalanobis distance.
- FIG. 1 is a schematic overall configuration diagram illustrating the abnormality diagnosis system according to the present disclosure.
- FIG. 2 is a flowchart showing the abnormality diagnosis method according to the present disclosure.
- FIGS. 3A and 3B are explanatory diagrams of the Mahalanobis distance calculation step, FIG. 3A shows an error vector, and FIG. 3B shows an example of a prediction value calculation method.
- 4 (a) and 4 (b) are explanatory diagrams of the abnormality diagnosis step, FIG. 4 (a) is a conceptual diagram of Mahalanobis distance, and FIG. 4 (b) is a conceptual diagram of abnormality diagnosis. .
- the abnormality diagnosis system 1 is an abnormality diagnosis system for a monitoring object 2 including an unsteady operation state, and simulates the monitoring object 2.
- a diagnosis device 5 for diagnosing whether there is an abnormality, and a control device 6 for transmitting the same control input value u to the monitored object 2 and the simulation model 3 are provided.
- the monitoring object 2 is, for example, an engine for a reusable spacecraft, but is not limited to this.
- Other internal combustion engines such as a jet engine, gas turbine power plant, nuclear power plant, thermal power plant It may be various plants such as a chemical plant.
- the monitoring object 2 preferably includes a steady state indicating a stable operating state and an unsteady state indicating a transient and unstable operating state up to the steady state in the operating state.
- the simulation model 3 is a model that can estimate the internal state quantity of the monitored object 2, and is created by applying a numerical simulation technique, for example.
- a simulation model it may be described in a recursive expression (ARMA) in consideration of real-time processing.
- the internal state quantities include, for example, the combustion pressure Pc, the regeneration cooling outlet temperature Tjmf, the fuel pump rotational speed Nf, the oxidant pump rotational speed No, the fuel Pump outlet pressure PDF, oxidant pump outlet pressure Pdo, etc. are selected. Therefore, a simulation model capable of calculating these internal state quantities is created.
- the simulation model 3 may be a single simulation model that simulates the entire monitoring target 2 or may be constructed by a plurality of simulation models that can individually calculate the internal state quantities.
- the measuring means 4 is installed on the monitoring object 2, and for example, combustion pressure Pc, regeneration cooling outlet temperature Tjmf, fuel pump rotational speed Nf, oxidant pump rotational speed No, fuel pump outlet pressure PDF, oxidant pump outlet pressure Pdo. It is a sensor which measures internal state quantities, such as.
- the measuring unit 4 is a pressure gauge, a thermometer, a rotary encoder, or the like, but is not limited thereto, and is appropriately selected depending on the amount of internal state to be measured by the monitoring object 2.
- the control device 6 is a device that transmits a control input value u necessary for operating the monitoring object 2 to the monitoring object 2.
- the operation status of the monitoring object 2 may be actual operation or experimental.
- the control device 6 also transmits a control input value u necessary for the operation of the monitored object 2 to the simulation model 3.
- the simulation model 3 calculates an internal state quantity based on the control input value u, and calculates a predicted value x for each internal state quantity. Note that the output value y of the monitored object 2 driven by the control input value u may be measured and extracted to the outside.
- the diagnostic device 5 receives the data of the actual measurement value x ⁇ measured by the measuring means 4 and the data of the predicted value x calculated by the simulation model 3, and uses these data to detect abnormalities in the monitored object 2 It is a device that performs diagnosis. In the diagnostic device 5, for example, the processing is performed based on the flowchart illustrated in FIG. 2.
- the diagnosis result and diagnosis data may be externally output from the diagnosis device 5 by monitor output, paper output, data output, or the like.
- the flowchart shown in FIG. 2 includes a model creation step (Step 1) for creating the simulation model 3 of the monitoring object 2, an operation start step (Step 2) for starting the operation of the monitoring object 2, and the monitoring object.
- the measurement step (Step 3) for measuring the internal state quantity in the operating state of the object 2 and extracting the actual measurement value x ⁇ , and the control input value u identical to the operating state of the monitoring object 2 is input to the simulation model 3 and monitored
- a prediction step (Step 4) for calculating the predicted value x of the internal state quantity of the object 2 and a Mahalanobis distance calculation step for calculating the Mahalanobis distance MD from the difference (x ⁇ -x) between the actual measurement value x ⁇ and the predicted value x ( Step 5) and an abnormality diagnosis step for diagnosing whether or not the operation state of the monitoring object 2 is abnormal based on the Mahalanobis distance MD (Step 6) It has a, and.
- the Mahalanobis distance calculation step (Step 5) and the abnormality diagnosis step (Step 6) are performed.
- whether or not the obtained data (actual measurement value x ⁇ ) is abnormal is diagnosed based on multivariate analysis using the Mahalanobis distance.
- this Mahalanobis distance the correlation of multiple variables can be processed at once, eliminating the need to diagnose whether each variable is abnormal individually, simplifying and speeding up abnormality diagnosis Can be achieved.
- the Mahalanobis distance calculating step (Step 5) includes a difference calculating step (Step 51) for calculating a difference (x ⁇ ⁇ x) between the actual measurement value x ⁇ and the predicted value x, and a difference (x An error vector calculation step (Step 52) for calculating an error vector ⁇ having components of ⁇ ⁇ x) and an error integral value ⁇ , and a Mahalanobis distance calculation step (Step 53) for calculating the Mahalanobis distance MD based on the error vector ⁇ . , May be included.
- the error vector ⁇ can be expressed, for example, as shown in FIG.
- the integral value ⁇ constituting one component of the error vector ⁇ can be calculated as a so-called integral value by continuously calculating an error vector that changes from moment to moment, and the error vector ⁇ every fixed time (span). Is calculated as the sum of the differences (x ⁇ -x).
- the error (difference) integral value ⁇ it is possible to prevent the accumulated error evaluation sensitivity in the same direction from becoming weak.
- the vector ⁇ can be expressed as a matrix of ( ⁇ Pc, ⁇ Tjmf, ⁇ Nf, ⁇ No, ⁇ Pdf, ⁇ Pdo, ⁇ Pc, ⁇ Tjmf, ⁇ Nf, ⁇ No, ⁇ Pdf, ⁇ Pdo).
- the error vector ⁇ since the error vector ⁇ includes 12 variables, the error vector ⁇ is included in the vector space R 12 formed by these variables.
- the prediction step (Step 4) includes an input step (Step 41) for inputting the same control input value u to the operation of the monitored object 2 to the simulation model 3, and a predicted value x of the internal state quantity based on the control input value u.
- the predicted value xn is calculated based on the previous measured value x n ⁇ 1 ⁇ in time series. It may be. That is, the predicted value xn is calculated based on the actual measurement value x n-1 ⁇ , and the predicted value x n + 1 is calculated based on the actual measurement value x n ⁇ .
- Such processing can suppress accumulation of errors, improve the accuracy of the predicted value xn , and improve the accuracy of abnormality diagnosis.
- the error vector ⁇ is normalized using Equation 1 and converted into a state independent of the physical quantity unit.
- the total average vector during the operation period And deviation Is used.
- ⁇ T means a transposed matrix of the error vector ⁇
- dim ( ⁇ ) means the dimension of the error vector ⁇ .
- the covariance matrix can be derived from past accumulated data diagnosed as normal, for example.
- the correlation of the internal state quantities as shown in FIG. 4A can be obtained, and as the distance from the center of the illustrated elliptical region increases The error is large, and it can be diagnosed as abnormal when deviating from this region.
- the correlation shown in FIG. 4A shows the correlation of only two variables of the internal state quantities D1 and D2 in order to promote intuitive understanding. According to this correlation, it can be understood that the allowable amount of error is large in the major axis direction of the substantially elliptical region, and the allowable amount of error is small in the minor axis direction of the substantially elliptical region.
- a 12-dimensional correlation is obtained.
- the Mahalanobis distance MD is calculated for each diagnosis, and each time the error (difference) is calculated. Value) is within the range of Mahalanobis distance MD.
- the Mahalanobis distance MD1 at time t1 the Mahalanobis distance MD2 at time t2
- the Mahalanobis distance MD3 at time t3
- the Mahalanobis distance MD4 at time t4 the Mahalanobis distance MD5 at time t5 are changed from time to time depending on the environmental conditions and operating conditions at that time. It will change. Note that the diagram illustrated in FIG. 4B is illustrated to facilitate intuitive understanding of the abnormality diagnosis method according to the present embodiment.
- the simulation model 3 that simulates the internal state of the monitored object 2 is created, and the actual measurement value x ⁇ of the monitored object 2 and the simulation model 3 Since the presence or absence of abnormality of the monitored object 2 is diagnosed using the difference (x ⁇ -x) from the predicted value x, the predicted value adapted to the environmental conditions and operating conditions at the time of abnormality diagnosis by the simulation model 3 x can be calculated, and by taking the difference, the actual measurement value x ⁇ of the monitoring object 2 can be replaced with a fluctuation value with respect to the normal value. Therefore, even when the operation state of the monitored object 2 is an unsteady state, it is possible to respond to the dynamic change, and not only the steady state but also the unsteady state of the monitored object 2 is abnormal. Can be diagnosed.
- FIG. 5A to FIG. 5C are explanatory diagrams for verifying the effectiveness when the present disclosure is applied to an engine for a reusable spacecraft
- FIG. FIG. 5B shows simulated data of actually measured values
- FIG. 5C shows an abnormality diagnosis result based on Mahalanobis distance.
- the numerical value of thrust is indicated by a solid line
- the numerical value of fuel is indicated by a dotted line
- the numerical value of oxidant is indicated by a one-dot chain line
- the numerical value of combustion pressure is indicated by a two-dot chain line.
- the portion where the thrust is convex upward simulates an unsteady state.
- the amount of fuel and oxidant shall be controlled as shown.
- an offset value ( ⁇ portion in the figure) is given to the normal measured value.
- the simulation data of the actual measurement value that intentionally included the numerical value was created.
- the process of the Mahalanobis distance calculation step Step5 mentioned above was performed using the simulation value of this measured value and the predicted value calculated
- the solid line indicates the temporal change of the Mahalanobis distance MD
- the black circle in the figure indicates the point diagnosed as abnormal.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Analysis (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Remote Sensing (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Emergency Medicine (AREA)
- Software Systems (AREA)
- Evolutionary Biology (AREA)
- Databases & Information Systems (AREA)
- Critical Care (AREA)
- Operations Research (AREA)
- Probability & Statistics with Applications (AREA)
- Aviation & Aerospace Engineering (AREA)
- Algebra (AREA)
- Geometry (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
The present invention is provided with: a model preparation step for preparing a simulation model (3) of an object to be monitored (2); an operation start step for starting operation of the monitoring object; a measurement step for measuring the internal state quantity during the state in which the object to be monitored (2) is in operation and extracting an actual measurement value (xˆ); a prediction step for inputting into the simulation model (3) a control input value (u) that is the same as the state in which the object to be monitored (2) is in operation, and calculating a prediction value (x) of the internal state quantity of the object to be monitored (2); a Mahalanobis-distance calculation step for calculating the Mahalanobis distance (MD) based on the difference between the actual measurement value (xˆ) and the prediction value (x); and an abnormality diagnosis step for diagnosing whether the state in which the article to be monitored (2) is in operation is abnormal on the basis of the Mahalanobis distance (MD).
Description
本開示は、異常診断方法及び異常診断システムに関し、特に、動的変化を有する非定常状態における異常の発見に適した異常診断方法及び異常診断システムに関する。
The present disclosure relates to an abnormality diagnosis method and an abnormality diagnosis system, and more particularly, to an abnormality diagnosis method and an abnormality diagnosis system suitable for finding an abnormality in an unsteady state having a dynamic change.
ガスタービン発電プラント、原子力発電プラント、火力発電プラント等の各種プラントやジェットエンジン等の内燃機関の分野では、安定した運転や出力を保持するために、運転状態(試験を含む)を監視して異常診断することが行われている。
In the field of various turbines such as gas turbine power plants, nuclear power plants, thermal power plants, and internal combustion engines such as jet engines, operating conditions (including tests) are monitored and abnormal to maintain stable operation and output. Diagnosis is done.
例えば、特許文献1には、監視対象から所定の監視対象データを取得し、そのマハラノビス距離を算出して監視対象の異常を検知する監視手段と、異常の予兆を示す異常信号と関連する監視対象データである関連信号とを抽出して所定の入力信号を生成するデータ処理手段と、入力信号に基づいて監視対象の故障診断を行う故障診断手段と、を備え、監視対象における異常の予兆の監視から故障診断までの一連の処理を自動化できる監視システムが開示されている。
For example, Patent Document 1 discloses a monitoring unit that acquires predetermined monitoring target data from a monitoring target, calculates the Mahalanobis distance to detect an abnormality of the monitoring target, and a monitoring target related to an abnormal signal indicating a sign of abnormality. Monitoring a predictor of an abnormality in the monitoring target, comprising: a data processing unit that extracts a related signal that is data and generates a predetermined input signal; and a failure diagnosis unit that performs a fault diagnosis of the monitoring target based on the input signal A monitoring system that can automate a series of processes from fault diagnosis to failure diagnosis is disclosed.
また、特許文献2には、過去に入力した各変数の値を含む蓄積データを記憶する蓄積データ記憶部と、各変数について新たに入力した値と蓄積データに含まれる所定期間の最大値及び最小値を抽出して中間の値を中央値として決定する決定部と、各変数について新たに入力した値と中央値との差分値を求める第1算出部と、求められた各変数の差分値と所定の単位空間のデータを利用してマハラノビス距離を求める第2算出部と、マハラノビス距離が予め定められる閾値の範囲内であるかを判定し異常を診断する判定部と、を備え、プラントから新たに入力する複数の変数の値を所定の単位空間と比較して前記プラントの異常を診断する異常診断装置が開示されている。
Patent Document 2 discloses an accumulated data storage unit for storing accumulated data including values of variables input in the past, a newly input value for each variable, and a maximum value and a minimum value for a predetermined period included in the accumulated data. A determination unit that extracts a value and determines an intermediate value as a median value; a first calculation unit that calculates a difference value between a newly input value and a median value for each variable; A second calculation unit that obtains the Mahalanobis distance using data of a predetermined unit space, and a determination unit that determines whether the Mahalanobis distance is within a predetermined threshold range and diagnoses an abnormality An abnormality diagnosing device for diagnosing an abnormality of the plant by comparing values of a plurality of variables input to a predetermined unit space is disclosed.
ところで、プラントや内燃機関等の監視対象物は、一般に、安定した運転状態を示す定常状態と、定常状態に至るまでの過渡的な不安定な運転状態を示す非定常状態と、を有している。非定常状態は、同一の監視対象物であっても、その時の環境条件や運転条件等によって異なるものであり、同一の動的変化を示すことはほとんどない。
By the way, a monitoring object such as a plant or an internal combustion engine generally has a steady state indicating a stable operation state and an unsteady state indicating a transient unstable operation state up to the steady state. Yes. The unsteady state is different depending on the environmental condition and the operating condition at that time even for the same monitoring object, and hardly shows the same dynamic change.
特許文献1に記載された監視システムでは、監視対象データのマハラノビス距離を算出することにより異常の予兆を示す異常信号及び関連信号から故障診断の入力信号生成している。ここで、監視対象データのマハラノビス距離を算出した後、異常又はその予兆を示しているか否か判断するには、予め基準データを準備しておく必要がある。このとき、定常状態の場合には、運転状態や出力状態が安定していることから、基準データを準備することが可能である。しかしながら、動的変化を伴う非定常状態の場合には、監視対象データのみからは基準データを作成することができず、異常診断を行うことができない。
In the monitoring system described in Patent Document 1, a failure diagnosis input signal is generated from an abnormality signal indicating a sign of abnormality and a related signal by calculating a Mahalanobis distance of monitoring target data. Here, after calculating the Mahalanobis distance of the monitoring target data, it is necessary to prepare reference data in advance in order to determine whether an abnormality or a sign of the abnormality is indicated. At this time, in the steady state, since the operation state and the output state are stable, it is possible to prepare the reference data. However, in the non-steady state with dynamic change, the reference data cannot be created only from the monitoring target data, and abnormality diagnosis cannot be performed.
また、特許文献2に記載された異常診断装置においても、過去の蓄積データを用いてマハラノビス距離を算出していることから、特許文献1と同様に、定常状態の場合には過去のデータと比較して異常診断できるものの、非定常状態の場合には異常診断することができない。
Also, in the abnormality diagnosis apparatus described in Patent Document 2, since the Mahalanobis distance is calculated using past accumulated data, as in Patent Document 1, it is compared with past data in a steady state. Although the abnormality can be diagnosed, the abnormality cannot be diagnosed in the non-steady state.
本開示は、上述した問題点に鑑みて創案されたものであり、監視対象物の定常状態のみならず非定常状態についても異常診断することができる、異常診断方法及び異常診断システムを提供することを目的とする。
The present disclosure has been devised in view of the above-described problems, and provides an abnormality diagnosis method and an abnormality diagnosis system capable of diagnosing an abnormality not only in a steady state but also in an unsteady state of an object to be monitored. With the goal.
本開示の第1の態様は、非定常状態の運転状態を含む監視対象物の異常診断方法であって、前記監視対象物のシミュレーションモデルを作成するモデル作成ステップと、前記監視対象物の運転状態における内部状態量を計測して実測値を抽出する計測ステップと、前記監視対象物の運転状態と同一の制御入力値を前記シミュレーションモデルにインプットして前記監視対象物の内部状態量の予測値を算出する予測ステップと、前記実測値と前記予測値との差分からマハラノビス距離を算出するマハラノビス距離算出ステップと、前記マハラノビス距離に基づいて前記監視対象物の運転状態が異常であるか否か診断する異常診断ステップと、を備えることを要旨とする。
A first aspect of the present disclosure is a method for diagnosing an abnormality of a monitoring object including a non-steady-state operation state, the model creating step of creating a simulation model of the monitoring object, and the operation state of the monitoring object A measurement step of measuring an internal state quantity in the system and extracting an actual measurement value, and inputting a control input value identical to the operation state of the monitoring target object to the simulation model to obtain a predicted value of the internal state quantity of the monitoring target object A prediction step to calculate, a Mahalanobis distance calculation step to calculate a Mahalanobis distance from the difference between the actual measurement value and the prediction value, and whether or not the operating state of the monitoring object is abnormal based on the Mahalanobis distance An abnormality diagnosis step is provided.
前記マハラノビス距離算出ステップは、前記差分とその積分値とを成分とするエラーベクトルを算出するステップを含んでいてもよい。さらに、前記予測ステップは、時系列的に一つ前の実測値に基づいて前記予測値を算出するようにしてもよい。
The Mahalanobis distance calculating step may include a step of calculating an error vector having the difference and the integral value as components. Furthermore, the prediction step may calculate the prediction value based on a previous actual measurement value in time series.
また、本開示の第2の態様は、非定常状態の運転状態を含む監視対象物の異常診断システムであって、前記監視対象物を模擬したシミュレーションモデルと、前記監視対象物の運転状態における内部状態量を計測する計測手段と、前記シミュレーションモデルにより求められた予測値と前記計測手段から抽出された実測値との差分からマハラノビス距離を算出するとともに該マハラノビス距離に基づいて前記監視対象物の運転状態が異常であるか否か診断する診断装置と、少なくとも前記監視対象物及び前記シミュレーションモデルに同一の制御入力値を送信する制御装置と、を備えることを要旨とする。
In addition, a second aspect of the present disclosure is an abnormality diagnosis system for a monitoring object including an unsteady operation state, and includes a simulation model that simulates the monitoring object and an internal state of the monitoring object in the operation state. A measuring means for measuring a state quantity; and a Mahalanobis distance is calculated from a difference between a predicted value obtained by the simulation model and an actual value extracted from the measuring means, and the monitoring object is operated based on the Mahalanobis distance. The gist is provided with a diagnostic device for diagnosing whether or not the state is abnormal and a control device that transmits at least the same monitoring input value to the monitoring object and the simulation model.
前記診断装置は、前記差分とその積分値とを成分とするエラーベクトルに基づいて前記マハラノビス距離を算出するようにしてもよい。さらに、前記シミュレーションモデルは、時系列的に一つ前の実測値に基づいて前記予測値を算出するようにしてもよい。また、前記監視対象物は、例えば、再使用型宇宙機用エンジンである。
The diagnostic apparatus may calculate the Mahalanobis distance based on an error vector having the difference and the integral value as components. Further, the simulation model may calculate the predicted value based on a previous measured value in time series. The monitoring object is, for example, a reusable spacecraft engine.
本開示に係る異常診断方法及び異常診断システムによれば、監視対象物の内部状態を模擬するシミュレーションモデルを作成し、監視対象物の実測値とシミュレーションモデルの予測値との差分を用いて監視対象物の異常の有無を診断するようにしたことから、シミュレーションモデルにより異常診断時の環境条件や運転条件に適応した予測値を算出することができるとともに、差分を取ることにより監視対象物の実測値を正常値に対する変動値に置換することができる。したがって、監視対象物の運転状態が非定常状態の場合であっても、その動的変化に追従して対応することができ、監視対象物の定常状態のみならず非定常状態についても異常診断することができる。また、異常診断にマハラノビス距離を用いることにより、異常診断の簡素化及び高速化を図ることができる。
According to the abnormality diagnosis method and abnormality diagnosis system according to the present disclosure, a simulation model that simulates the internal state of the monitoring target is created, and the monitoring target is calculated using the difference between the actual measurement value of the monitoring target and the predicted value of the simulation model. Since the presence or absence of abnormality of the object is diagnosed, the simulation model can calculate the predicted value adapted to the environmental conditions and operating conditions at the time of abnormality diagnosis, and the measured value of the monitored object by taking the difference Can be replaced with a variation value with respect to a normal value. Therefore, even when the monitoring object is in an unsteady state, it is possible to respond to the dynamic change and diagnose abnormality not only in the steady state but also in the unsteady state of the monitoring object. be able to. Further, by using the Mahalanobis distance for abnormality diagnosis, it is possible to simplify and speed up the abnormality diagnosis.
以下、本開示の実施形態について図を用いて説明する。ここで、図1は、本開示に係る異常診断システムを示す概略全体構成図である。図2は、本開示に係る異常診断方法を示すフロー図である。図(a)及び図3(b)3は、マハラノビス距離算出ステップの説明図であり、図3(a)はエラーベクトル、図3(b)は予測値の算出方法の一例、を示している。図4(a)及び図4(b)は、異常診断ステップの説明図であり、図4(a)はマハラノビス距離の概念図、図4(b)は異常診断の概念図、を示している。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Here, FIG. 1 is a schematic overall configuration diagram illustrating the abnormality diagnosis system according to the present disclosure. FIG. 2 is a flowchart showing the abnormality diagnosis method according to the present disclosure. FIGS. 3A and 3B are explanatory diagrams of the Mahalanobis distance calculation step, FIG. 3A shows an error vector, and FIG. 3B shows an example of a prediction value calculation method. . 4 (a) and 4 (b) are explanatory diagrams of the abnormality diagnosis step, FIG. 4 (a) is a conceptual diagram of Mahalanobis distance, and FIG. 4 (b) is a conceptual diagram of abnormality diagnosis. .
本開示の一実施形態に係る異常診断システム1は、図1に示したように、非定常状態の運転状態を含む監視対象物2の異常診断システムであって、監視対象物2を模擬したシミュレーションモデル3と、監視対象物2の運転状態における所定の内部状態量を計測する計測手段4と、シミュレーションモデル3により求められた予測値xと計測手段4から抽出された実測値x^(実際の表記はxの上に^(サーカムフレックス、ハット)。以下、同じ。)との差分(x^-x)からマハラノビス距離MDを算出するとともにマハラノビス距離MDに基づいて監視対象物2の運転状態が異常であるか否か診断する診断装置5と、監視対象物2及びシミュレーションモデル3に同一の制御入力値uを送信する制御装置6と、を備えている。
As shown in FIG. 1, the abnormality diagnosis system 1 according to an embodiment of the present disclosure is an abnormality diagnosis system for a monitoring object 2 including an unsteady operation state, and simulates the monitoring object 2. The model 3, the measuring means 4 for measuring a predetermined internal state quantity in the operating state of the monitored object 2, the predicted value x obtained by the simulation model 3, and the actual measurement value x ^ extracted from the measuring means 4 (actual The notation is calculated on the x from the difference (x ^ -x) from ^ (circumflex, hat) on the x (the same applies hereinafter), and the operating state of the monitored object 2 is based on the Mahalanobis distance MD. A diagnosis device 5 for diagnosing whether there is an abnormality, and a control device 6 for transmitting the same control input value u to the monitored object 2 and the simulation model 3 are provided.
監視対象物2は、例えば、再使用型宇宙機用エンジンであるが、これに限定されるものではなく、ジェットエンジン等の他の内燃機関や、ガスタービン発電プラント、原子力発電プラント、火力発電プラント、化学プラント等の各種プラント等であってもよい。特に、監視対象物2は、運転状態において、安定した運転状態を示す定常状態と、定常状態に至るまでの過渡的な不安定な運転状態を示す非定常状態と、を含むことが好ましい。
The monitoring object 2 is, for example, an engine for a reusable spacecraft, but is not limited to this. Other internal combustion engines such as a jet engine, gas turbine power plant, nuclear power plant, thermal power plant It may be various plants such as a chemical plant. In particular, the monitoring object 2 preferably includes a steady state indicating a stable operating state and an unsteady state indicating a transient and unstable operating state up to the steady state in the operating state.
シミュレーションモデル3は、監視対象物2の内部状態量を推定可能なモデルであり、例えば、数値シミュレーション技術を応用して作成される。シミュレーションモデル作成時には、リアルタイムでの処理を考慮し、漸化式表現(ARMA)で記述してもよい。例えば、監視対象物2が再使用型宇宙機用エンジンの場合には、内部状態量として、例えば、燃焼圧Pc、再生冷却出口温度Tjmf、燃料ポンプ回転数Nf、酸化剤ポンプ回転数No、燃料ポンプ出口圧力Pdf、酸化剤ポンプ出口圧力Pdo等が選択される。したがって、これらの内部状態量を算出可能なシミュレーションモデルが作成される。シミュレーションモデル3は、監視対象物2の全体を模擬した一つのシミュレーションモデルであってもよいし、内部状態量を個別に算出可能な複数のシミュレーションモデルにより構築されていてもよい。
The simulation model 3 is a model that can estimate the internal state quantity of the monitored object 2, and is created by applying a numerical simulation technique, for example. When creating a simulation model, it may be described in a recursive expression (ARMA) in consideration of real-time processing. For example, when the monitoring object 2 is a reusable spacecraft engine, the internal state quantities include, for example, the combustion pressure Pc, the regeneration cooling outlet temperature Tjmf, the fuel pump rotational speed Nf, the oxidant pump rotational speed No, the fuel Pump outlet pressure Pdf, oxidant pump outlet pressure Pdo, etc. are selected. Therefore, a simulation model capable of calculating these internal state quantities is created. The simulation model 3 may be a single simulation model that simulates the entire monitoring target 2 or may be constructed by a plurality of simulation models that can individually calculate the internal state quantities.
計測手段4は、監視対象物2に設置され、例えば、燃焼圧Pc、再生冷却出口温度Tjmf、燃料ポンプ回転数Nf、酸化剤ポンプ回転数No、燃料ポンプ出口圧力Pdf、酸化剤ポンプ出口圧力Pdo等の内部状態量を計測するセンサである。例えば、計測手段4は、圧力計、温度計、ロータリエンコーダ等であるが、これらに限定されるものではなく、監視対象物2によって、計測する内部状態量によって、適宜選択される。
The measuring means 4 is installed on the monitoring object 2, and for example, combustion pressure Pc, regeneration cooling outlet temperature Tjmf, fuel pump rotational speed Nf, oxidant pump rotational speed No, fuel pump outlet pressure Pdf, oxidant pump outlet pressure Pdo. It is a sensor which measures internal state quantities, such as. For example, the measuring unit 4 is a pressure gauge, a thermometer, a rotary encoder, or the like, but is not limited thereto, and is appropriately selected depending on the amount of internal state to be measured by the monitoring object 2.
制御装置6は、監視対象物2を運転するために必要な制御入力値uを監視対象物2に送信する装置である。監視対象物2の運転状況は、実運用のものであってもよいし、試験的なものであってもよい。また、制御装置6は、監視対象物2の運転に必要な制御入力値uをシミュレーションモデル3にも送信する。シミュレーションモデル3は、この制御入力値uに基づいて内部状態量を計算し、各内部状態量について予測値xを算出する。なお、制御入力値uにより運転された監視対象物2の出力値yを計測して外部に抽出するようにしてもよい。
The control device 6 is a device that transmits a control input value u necessary for operating the monitoring object 2 to the monitoring object 2. The operation status of the monitoring object 2 may be actual operation or experimental. In addition, the control device 6 also transmits a control input value u necessary for the operation of the monitored object 2 to the simulation model 3. The simulation model 3 calculates an internal state quantity based on the control input value u, and calculates a predicted value x for each internal state quantity. Note that the output value y of the monitored object 2 driven by the control input value u may be measured and extracted to the outside.
診断装置5は、計測手段4により計測された実測値x^のデータと、シミュレーションモデル3により算出された予測値xのデータと、を受信し、これらのデータを用いて監視対象物2の異常診断を行う装置である。かかる診断装置5では、例えば、図2に記載したフロー図に基づいて処理される。なお、診断結果及び診断データは、診断装置5からモニタ出力、紙出力、データ出力等によって外部出力するようにしてもよい。
The diagnostic device 5 receives the data of the actual measurement value x ^ measured by the measuring means 4 and the data of the predicted value x calculated by the simulation model 3, and uses these data to detect abnormalities in the monitored object 2 It is a device that performs diagnosis. In the diagnostic device 5, for example, the processing is performed based on the flowchart illustrated in FIG. 2. The diagnosis result and diagnosis data may be externally output from the diagnosis device 5 by monitor output, paper output, data output, or the like.
ここで、図2に記載したフロー図は、監視対象物2のシミュレーションモデル3を作成するモデル作成ステップ(Step1)と、監視対象物2の運転を開始する運転開始ステップ(Step2)と、監視対象物2の運転状態における内部状態量を計測して実測値x^を抽出する計測ステップ(Step3)と、監視対象物2の運転状態と同一の制御入力値uをシミュレーションモデル3にインプットして監視対象物2の内部状態量の予測値xを算出する予測ステップ(Step4)と、実測値x^と予測値xとの差分(x^-x)からマハラノビス距離MDを算出するマハラノビス距離算出ステップ(Step5)と、マハラノビス距離MDに基づいて監視対象物2の運転状態が異常であるか否か診断する異常診断ステップ(Step6)と、を備えている。
Here, the flowchart shown in FIG. 2 includes a model creation step (Step 1) for creating the simulation model 3 of the monitoring object 2, an operation start step (Step 2) for starting the operation of the monitoring object 2, and the monitoring object. The measurement step (Step 3) for measuring the internal state quantity in the operating state of the object 2 and extracting the actual measurement value x ^, and the control input value u identical to the operating state of the monitoring object 2 is input to the simulation model 3 and monitored A prediction step (Step 4) for calculating the predicted value x of the internal state quantity of the object 2 and a Mahalanobis distance calculation step for calculating the Mahalanobis distance MD from the difference (x ^ -x) between the actual measurement value x ^ and the predicted value x ( Step 5) and an abnormality diagnosis step for diagnosing whether or not the operation state of the monitoring object 2 is abnormal based on the Mahalanobis distance MD (Step 6) It has a, and.
上述した診断装置5では、マハラノビス距離算出ステップ(Step5)及び異常診断ステップ(Step6)の処理を行う。本実施形態における異常診断方法では、マハラノビス距離を用いた多変量解析に基づいて、得られたデータ(実測値x^)が異常であるか否かを診断している。このマハラノビス距離を用いることにより、複数の変数の相関関係を一度に処理することができ、個々の変数について個別に異常であるか否かを診断する必要がなく、異常診断の簡素化及び高速化を図ることができる。
In the diagnosis device 5 described above, the Mahalanobis distance calculation step (Step 5) and the abnormality diagnosis step (Step 6) are performed. In the abnormality diagnosis method according to the present embodiment, whether or not the obtained data (actual measurement value x ^) is abnormal is diagnosed based on multivariate analysis using the Mahalanobis distance. By using this Mahalanobis distance, the correlation of multiple variables can be processed at once, eliminating the need to diagnose whether each variable is abnormal individually, simplifying and speeding up abnormality diagnosis Can be achieved.
また、マハラノビス距離算出ステップ(Step5)は、図2に示したように、実測値x^と予測値xとの差分(x^-x)を算出する差分算出ステップ(Step51)と、差分(x^-x)と誤差の積分値Σεとを成分とするエラーベクトルεを算出するエラーベクトル算出ステップ(Step52)と、エラーベクトルεに基づいてマハラノビス距離MDを計算するマハラノビス距離計算ステップ(Step53)と、を含んでいてもよい。
Further, as shown in FIG. 2, the Mahalanobis distance calculating step (Step 5) includes a difference calculating step (Step 51) for calculating a difference (x ^ −x) between the actual measurement value x ^ and the predicted value x, and a difference (x An error vector calculation step (Step 52) for calculating an error vector ε having components of ^ −x) and an error integral value Σε, and a Mahalanobis distance calculation step (Step 53) for calculating the Mahalanobis distance MD based on the error vector ε. , May be included.
ここで、エラーベクトルεは、例えば、図3(a)に示したように表記することができる。エラーベクトルεの一成分を構成する積分値Σεは、時々刻々と変化するエラーベクトルを連続的に計算すれば、いわゆる積分値として算出できるものであり、一定の時間(スパン)毎にエラーベクトルεを計算する場合には、積分値Σεは差分(x^-x)の総和として算出することができる。このように、誤差(差分)の積分値Σεを用いることにより、同一方向への累積誤差評価感度が脆弱となることを防ぐことができる。
Here, the error vector ε can be expressed, for example, as shown in FIG. The integral value Σε constituting one component of the error vector ε can be calculated as a so-called integral value by continuously calculating an error vector that changes from moment to moment, and the error vector ε every fixed time (span). Is calculated as the sum of the differences (x ^ -x). Thus, by using the error (difference) integral value Σε, it is possible to prevent the accumulated error evaluation sensitivity in the same direction from becoming weak.
例えば、内部状態量として、燃焼圧Pc、再生冷却出口温度Tjmf、燃料ポンプ回転数Nf、酸化剤ポンプ回転数No、燃料ポンプ出口圧力Pdf、酸化剤ポンプ出口圧力Pdoを選択した場合には、エラーベクトルεは、図3(a)に示したように、(ΔPc,ΔTjmf,ΔNf,ΔNo,ΔPdf,ΔPdo,ΣΔPc,ΣΔTjmf,ΣΔNf,ΣΔNo,ΣΔPdf,ΣΔPdo)の行列として表記することもできる。この場合、エラーベクトルεは、12個の変数を含んでいることから、これらの変数により形成されるベクトル空間R12に含まれる。
For example, when the combustion pressure Pc, the regeneration cooling outlet temperature Tjmf, the fuel pump rotational speed Nf, the oxidant pump rotational speed No, the fuel pump outlet pressure Pdf, and the oxidant pump outlet pressure Pdo are selected as the internal state quantities, an error occurs. As shown in FIG. 3A, the vector ε can be expressed as a matrix of (ΔPc, ΔTjmf, ΔNf, ΔNo, ΔPdf, ΔPdo, ΣΔPc, ΣΔTjmf, ΣΔNf, ΣΔNo, ΣΔPdf, ΣΔPdo). In this case, since the error vector ε includes 12 variables, the error vector ε is included in the vector space R 12 formed by these variables.
また、予測ステップ(Step4)は、監視対象物2の運転と同一の制御入力値uをシミュレーションモデル3にインプットする入力ステップ(Step41)と、制御入力値uに基づいて内部状態量の予測値xを算出する予測値算出ステップ(Step42)と、を含んでいる。予測値算出ステップStep42(予測ステップ(Step4))は、図3(b)に示したように、時系列的に一つ前の実測値xn-1^に基づいて予測値xnを算出するようにしてもよい。すなわち、予測値xnは実測値xn-1^に基づいて算出され、予測値xn+1は実測値xn^に基づいて算出される。かかる処理により、誤差の累積を抑制することができ、予測値xnの精度を向上させることができ、異常診断の精度を向上させることができる。
The prediction step (Step 4) includes an input step (Step 41) for inputting the same control input value u to the operation of the monitored object 2 to the simulation model 3, and a predicted value x of the internal state quantity based on the control input value u. A predicted value calculating step (Step 42). In the predicted value calculation step Step 42 (prediction step (Step 4)), as shown in FIG. 3B, the predicted value xn is calculated based on the previous measured value x n−1 ^ in time series. It may be. That is, the predicted value xn is calculated based on the actual measurement value x n-1 ^, and the predicted value x n + 1 is calculated based on the actual measurement value x n ^. Such processing can suppress accumulation of errors, improve the accuracy of the predicted value xn , and improve the accuracy of abnormality diagnosis.
マハラノビス距離計算ステップ(Step53)において、エラーベクトルεからマハラノビス距離MDを計算するには、まず、数式1を用いてエラーベクトルεを規格化し、物理量単位に依存しない状態に変換する。エラーベクトルεの規格化には、運転期間中の全平均値ベクトル
及び偏差
を用いる。
In order to calculate the Mahalanobis distance MD from the error vector ε in the Mahalanobis distance calculation step (Step 53), first, the error vector ε is normalized using Equation 1 and converted into a state independent of the physical quantity unit. For normalization of the error vector ε, the total average vector during the operation period
And deviation
Is used.
ただし、
However,
次に、数式2を用いて、マハラノビス距離MDを計算する。ここで、εTは、エラーベクトルεの転置行列を意味し、dim(ε)は、エラーベクトルεの次元を意味している。また、共分散行列は、例えば、正常であると診断された過去の蓄積データから導出することができる。
Next, the Mahalanobis distance MD is calculated using Formula 2. Here, ε T means a transposed matrix of the error vector ε, and dim (ε) means the dimension of the error vector ε. In addition, the covariance matrix can be derived from past accumulated data diagnosed as normal, for example.
マハラノビス距離MDを算出し、等距離の点を結ぶことにより、例えば、図4(a)に示したような内部状態量の相関関係を求めることができ、図示した略楕円領域の中心から離れるに従って誤差が大きく、この領域から逸脱した場合に異常であると診断することができる。ここで、図4(a)に示した相関関係は、直感的理解を促すために、内部状態量D1,D2の2変数のみの相関関係を示している。この相関関係によれば、略楕円領域の長径方向に対しては誤差の許容量が大きく、略楕円領域の短径方向に対しては誤差の許容量が小さいことが理解できる。なお、図示しないが、上述したように、12個の変数を用いた場合には、12次元の相関関係を求めることとなる。
By calculating the Mahalanobis distance MD and connecting the equidistant points, for example, the correlation of the internal state quantities as shown in FIG. 4A can be obtained, and as the distance from the center of the illustrated elliptical region increases The error is large, and it can be diagnosed as abnormal when deviating from this region. Here, the correlation shown in FIG. 4A shows the correlation of only two variables of the internal state quantities D1 and D2 in order to promote intuitive understanding. According to this correlation, it can be understood that the allowable amount of error is large in the major axis direction of the substantially elliptical region, and the allowable amount of error is small in the minor axis direction of the substantially elliptical region. Although not shown, as described above, when 12 variables are used, a 12-dimensional correlation is obtained.
異常診断ステップStep6では、例えば、図4(b)に示したように、時々刻々と変化する誤差(差分値)に対して、診断時毎にマハラノビス距離MDを計算し、その都度、誤差(差分値)がマハラノビス距離MDの範囲内であるかを判断する。例えば、時間t1におけるマハラノビス距離MD1、時間t2におけるマハラノビス距離MD2、時間t3におけるマハラノビス距離MD3、時間t4におけるマハラノビス距離MD4、時間t5におけるマハラノビス距離MD5は、その時の環境条件や運転条件等によって時々刻々と変化するものである。なお、図4(b)に示した図は、本実施形態に係る異常診断方法の直感的理解を促すために図示したものである。
In the abnormality diagnosis step Step 6, for example, as shown in FIG. 4B, for the error (difference value) that changes every moment, the Mahalanobis distance MD is calculated for each diagnosis, and each time the error (difference) is calculated. Value) is within the range of Mahalanobis distance MD. For example, the Mahalanobis distance MD1 at time t1, the Mahalanobis distance MD2 at time t2, the Mahalanobis distance MD3 at time t3, the Mahalanobis distance MD4 at time t4, and the Mahalanobis distance MD5 at time t5 are changed from time to time depending on the environmental conditions and operating conditions at that time. It will change. Note that the diagram illustrated in FIG. 4B is illustrated to facilitate intuitive understanding of the abnormality diagnosis method according to the present embodiment.
上述した本実施形態に係る異常診断方法及び異常診断システム1によれば、監視対象物2の内部状態を模擬するシミュレーションモデル3を作成し、監視対象物2の実測値x^とシミュレーションモデル3の予測値xとの差分(x^-x)を用いて監視対象物2の異常の有無を診断するようにしたことから、シミュレーションモデル3により異常診断時の環境条件や運転条件に適応した予測値xを算出することができるとともに、差分を取ることにより監視対象物2の実測値x^を正常値に対する変動値に置換することができる。したがって、監視対象物2の運転状態が非定常状態の場合であっても、その動的変化に追従して対応することができ、監視対象物2の定常状態のみならず非定常状態についても異常診断することができる。
According to the abnormality diagnosis method and abnormality diagnosis system 1 according to the present embodiment described above, the simulation model 3 that simulates the internal state of the monitored object 2 is created, and the actual measurement value x ^ of the monitored object 2 and the simulation model 3 Since the presence or absence of abnormality of the monitored object 2 is diagnosed using the difference (x ^ -x) from the predicted value x, the predicted value adapted to the environmental conditions and operating conditions at the time of abnormality diagnosis by the simulation model 3 x can be calculated, and by taking the difference, the actual measurement value x ^ of the monitoring object 2 can be replaced with a fluctuation value with respect to the normal value. Therefore, even when the operation state of the monitored object 2 is an unsteady state, it is possible to respond to the dynamic change, and not only the steady state but also the unsteady state of the monitored object 2 is abnormal. Can be diagnosed.
ここで、図5(a)~図5(c)は、本開示を再使用型宇宙機用エンジンに適用した場合の有効性を検証するための説明図であり、図5(a)は制御入力値、図5(b)は実測値の模擬データ、図5(c)はマハラノビス距離による異常診断結果、を示している。図5(a)及び図5(b)において、推力の数値を実線、燃料の数値を点線、酸化剤の数値を一点鎖線、燃焼圧の数値を二点鎖線、で表示している。なお、図5(a)において、推力が上に凸となっている部分(略台形部分)は非定常状態を模擬したものである。
Here, FIG. 5A to FIG. 5C are explanatory diagrams for verifying the effectiveness when the present disclosure is applied to an engine for a reusable spacecraft, and FIG. FIG. 5B shows simulated data of actually measured values, and FIG. 5C shows an abnormality diagnosis result based on Mahalanobis distance. In FIGS. 5A and 5B, the numerical value of thrust is indicated by a solid line, the numerical value of fuel is indicated by a dotted line, the numerical value of oxidant is indicated by a one-dot chain line, and the numerical value of combustion pressure is indicated by a two-dot chain line. In FIG. 5A, the portion where the thrust is convex upward (substantially trapezoidal portion) simulates an unsteady state.
図5(a)に示した推力を得るために、図示したように、燃料及び酸化剤の分量を制御するものとする。いま、マハラノビス距離MDによる異常診断の有効性を検証するために、図5(b)に示したように、正常な実測値に対してオフセット値(図中のαの部分)を与えて、異常な数値を意図的に含む実測値の模擬データを作成した。そして、この実測値の模擬データとシミュレーションモデル3により求められる予測値を用いて、上述したマハラノビス距離算出ステップStep5の処理を行ったところ、図5(c)に示した結果が得られた。
In order to obtain the thrust shown in FIG. 5 (a), the amount of fuel and oxidant shall be controlled as shown. Now, in order to verify the effectiveness of the abnormality diagnosis based on the Mahalanobis distance MD, as shown in FIG. 5B, an offset value (α portion in the figure) is given to the normal measured value, The simulation data of the actual measurement value that intentionally included the numerical value was created. And when the process of the Mahalanobis distance calculation step Step5 mentioned above was performed using the simulation value of this measured value and the predicted value calculated | required by the simulation model 3, the result shown in FIG.5 (c) was obtained.
図5(c)において、実線はマハラノビス距離MDの時間的変化を示しており、図中の黒丸は異常であると診断された点を示している。この検証結果によれば、意図的に異常な数値を付与したオフセット部分に対応した部分のマハラノビス距離MDについて異常であると診断されていることが理解できる。したがって、本実施形態に係る異常診断方法及び異常診断システム1は、非定常状態を含む運転状態に対して異常診断可能な応答性を有していることが認められる。
In FIG. 5 (c), the solid line indicates the temporal change of the Mahalanobis distance MD, and the black circle in the figure indicates the point diagnosed as abnormal. According to this verification result, it can be understood that the Mahalanobis distance MD of the part corresponding to the offset part to which an intentionally abnormal numerical value is given is diagnosed as abnormal. Therefore, it is recognized that the abnormality diagnosis method and abnormality diagnosis system 1 according to the present embodiment have responsiveness capable of performing abnormality diagnosis with respect to an operation state including an unsteady state.
本開示は上述した実施形態に限定されず、本開示の趣旨を逸脱しない範囲で種々変更が可能であることは勿論である。
The present disclosure is not limited to the above-described embodiment, and various changes can be made without departing from the spirit of the present disclosure.
Claims (7)
- 非定常状態の運転状態を含む監視対象物の異常診断方法であって、
前記監視対象物のシミュレーションモデルを作成するモデル作成ステップと、
前記監視対象物の運転状態における内部状態量を計測して実測値を抽出する計測ステップと、
前記監視対象物の運転状態と同一の制御入力値を前記シミュレーションモデルにインプットして前記監視対象物の内部状態量の予測値を算出する予測ステップと、
前記実測値と前記予測値との差分からマハラノビス距離を算出するマハラノビス距離算出ステップと、
前記マハラノビス距離に基づいて前記監視対象物の運転状態が異常であるか否か診断する異常診断ステップと、
を備えることを特徴とする異常診断方法。 An abnormality diagnosis method for an object to be monitored including an unsteady operation state,
A model creation step of creating a simulation model of the monitored object;
A measurement step of measuring an internal state quantity in an operation state of the monitoring object and extracting an actual measurement value;
A prediction step of inputting the same control input value as the operation state of the monitoring object to the simulation model and calculating a predicted value of the internal state quantity of the monitoring object;
A Mahalanobis distance calculating step for calculating a Mahalanobis distance from a difference between the actual measurement value and the predicted value;
An abnormality diagnosis step of diagnosing whether or not the operating state of the monitoring object is abnormal based on the Mahalanobis distance;
An abnormality diagnosis method comprising: - 前記マハラノビス距離算出ステップは、前記差分とその積分値とを成分とするエラーベクトルを算出するステップを含む、ことを特徴とする請求項1に記載の異常診断方法。 The abnormality diagnosis method according to claim 1, wherein the Mahalanobis distance calculating step includes a step of calculating an error vector having the difference and an integral value thereof as components.
- 前記予測ステップは、時系列的に一つ前の実測値に基づいて前記予測値を算出する、ことを特徴とする請求項2に記載の異常診断方法。 3. The abnormality diagnosis method according to claim 2, wherein the predicting step calculates the predicted value based on a previous measured value in time series.
- 非定常状態の運転状態を含む監視対象物の異常診断システムであって、
前記監視対象物を模擬したシミュレーションモデルと、
前記監視対象物の運転状態における内部状態量を計測する計測手段と、
前記シミュレーションモデルにより求められた予測値と前記計測手段から抽出された実測値との差分からマハラノビス距離を算出するとともに該マハラノビス距離に基づいて前記監視対象物の運転状態が異常であるか否か診断する診断装置と、
少なくとも前記監視対象物及び前記シミュレーションモデルに同一の制御入力値を送信する制御装置と、
を備えることを特徴とする異常診断システム。 An abnormality diagnosis system for an object to be monitored including an unsteady operation state,
A simulation model simulating the monitored object;
Measuring means for measuring an internal state quantity in an operating state of the monitoring object;
A Mahalanobis distance is calculated from a difference between a predicted value obtained by the simulation model and an actual measurement value extracted from the measuring means, and whether or not the operating state of the monitored object is abnormal is calculated based on the Mahalanobis distance. A diagnostic device to
A control device that transmits the same control input value to at least the monitoring object and the simulation model;
An abnormality diagnosis system comprising: - 前記診断装置は、前記差分とその積分値とを成分とするエラーベクトルに基づいて前記マハラノビス距離を算出する、ことを特徴とする請求項4に記載の異常診断システム。 The abnormality diagnosis system according to claim 4, wherein the diagnosis device calculates the Mahalanobis distance based on an error vector having the difference and an integral value as a component.
- 前記シミュレーションモデルは、時系列的に一つ前の実測値に基づいて前記予測値を算出する、ことを特徴とする請求項5に記載の異常診断システム。 The abnormality diagnosis system according to claim 5, wherein the simulation model calculates the predicted value based on a previous measured value in time series.
- 前記監視対象物は、再使用型宇宙機用エンジンである、ことを特徴とする請求項4に記載の異常診断システム。 The abnormality diagnosis system according to claim 4, wherein the monitoring object is an engine for a reusable spacecraft.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017132000A RU2667691C1 (en) | 2015-02-18 | 2016-02-17 | Method of fault diagnostics and the fault diagnostic system |
EP16752507.0A EP3229093B1 (en) | 2015-02-18 | 2016-02-17 | Abnormality diagnosing method and abnormality diagnosing system |
US15/664,525 US10408707B2 (en) | 2015-02-18 | 2017-07-31 | Abnormality diagnosing method and abnormality diagnosing system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-029249 | 2015-02-18 | ||
JP2015029249A JP6610987B2 (en) | 2015-02-18 | 2015-02-18 | Abnormality diagnosis method and abnormality diagnosis system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/664,525 Continuation US10408707B2 (en) | 2015-02-18 | 2017-07-31 | Abnormality diagnosing method and abnormality diagnosing system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016133121A1 true WO2016133121A1 (en) | 2016-08-25 |
Family
ID=56689028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/054579 WO2016133121A1 (en) | 2015-02-18 | 2016-02-17 | Abnormality diagnosis method and abnormality diagnosis system |
Country Status (5)
Country | Link |
---|---|
US (1) | US10408707B2 (en) |
EP (1) | EP3229093B1 (en) |
JP (1) | JP6610987B2 (en) |
RU (1) | RU2667691C1 (en) |
WO (1) | WO2016133121A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6332154B2 (en) * | 2015-06-11 | 2018-05-30 | 横河電機株式会社 | Plant operation support apparatus, plant operation support method, and program |
FR3061324B1 (en) * | 2016-12-22 | 2019-05-31 | Electricite De France | METHOD OF CHARACTERIZING ONE OR MORE FAILURES OF A SYSTEM |
US10845792B2 (en) * | 2017-03-24 | 2020-11-24 | Kabushiki Kaisha Toshiba | Failure diagnosis apparatus, monitoring apparatus, failure diagnosis method and recording medium |
JP7179444B2 (en) * | 2017-03-29 | 2022-11-29 | 三菱重工業株式会社 | Sign detection system and sign detection method |
CN108984382B (en) * | 2018-07-26 | 2022-05-13 | 广西防城港核电有限公司 | Nuclear power station simulator I/O channel fault simulation method and device |
JP7110047B2 (en) * | 2018-09-21 | 2022-08-01 | 株式会社東芝 | Plant monitoring system |
CN110334395B (en) * | 2019-05-28 | 2020-11-27 | 中国地质大学(武汉) | JADE-based satellite momentum wheel fault diagnosis method and system for initializing EM algorithm |
JP7417256B2 (en) * | 2020-02-04 | 2024-01-18 | 国立研究開発法人宇宙航空研究開発機構 | Fault diagnosis system for spacecraft liquid propulsion system and fault diagnosis method for spacecraft liquid propulsion system |
CN112000081B (en) * | 2020-08-31 | 2021-10-08 | 江南大学 | Fault monitoring method and system based on multi-block information extraction and Mahalanobis distance |
CN112362987B (en) * | 2020-10-28 | 2022-06-14 | 广东电网有限责任公司佛山供电局 | Lightning arrester fault diagnosis method based on robust estimation |
CN115691144B (en) * | 2023-01-03 | 2023-03-31 | 西南交通大学 | Abnormal traffic state monitoring method, device and equipment and readable storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06103481A (en) * | 1992-09-17 | 1994-04-15 | Mitsubishi Electric Corp | Plant operation monitoring system |
JP2011090382A (en) * | 2009-10-20 | 2011-05-06 | Mitsubishi Heavy Ind Ltd | Monitoring system |
JP2014035282A (en) * | 2012-08-09 | 2014-02-24 | Ihi Corp | Abnormality diagnostic device |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6898554B2 (en) * | 2000-06-12 | 2005-05-24 | Scientific Monitoring, Inc. | Fault detection in a physical system |
US6687596B2 (en) * | 2001-08-31 | 2004-02-03 | General Electric Company | Diagnostic method and system for turbine engines |
US6868760B1 (en) * | 2003-02-12 | 2005-03-22 | Pratt-Read Corporation | Tool locking mechanism |
US7110917B2 (en) * | 2003-11-14 | 2006-09-19 | Ricoh Company, Ltd. | Abnormality determining method, and abnormality determining apparatus and image forming apparatus using same |
US7203431B2 (en) * | 2003-12-26 | 2007-04-10 | Ricoh Company, Ltd. | Abnormality determining method, abnormality determining apparatus, and image forming apparatus |
US7062370B2 (en) * | 2004-03-30 | 2006-06-13 | Honeywell International Inc. | Model-based detection, diagnosis of turbine engine faults |
FR2884605B1 (en) | 2005-04-18 | 2007-07-06 | Eads Europ Aeronautic Defence | METHOD AND DEVICE FOR MONITORING A STRUCTURE OF AN AIRCRAFT |
US7243048B2 (en) * | 2005-11-28 | 2007-07-10 | Honeywell International, Inc. | Fault detection system and method using multiway principal component analysis |
US20080183444A1 (en) * | 2007-01-26 | 2008-07-31 | Grichnik Anthony J | Modeling and monitoring method and system |
EP2806321B1 (en) | 2008-02-27 | 2020-02-05 | Mitsubishi Hitachi Power Systems, Ltd. | Plant state monitoring method, plant state monitoring computer program, and plant state monitoring apparatus |
JP4875661B2 (en) | 2008-05-14 | 2012-02-15 | 三菱重工業株式会社 | Aircraft soundness diagnosis apparatus and method, and program |
FR2939170B1 (en) | 2008-11-28 | 2010-12-31 | Snecma | DETECTION OF ANOMALY IN AN AIRCRAFT ENGINE. |
FR2939924B1 (en) * | 2008-12-15 | 2012-10-12 | Snecma | IDENTIFICATION OF FAILURES IN AN AIRCRAFT ENGINE |
US8306778B2 (en) | 2008-12-23 | 2012-11-06 | Embraer S.A. | Prognostics and health monitoring for electro-mechanical systems and components |
RU2413976C1 (en) * | 2009-09-25 | 2011-03-10 | Открытое акционерное общество "Головной центр сервисного обслуживания и ремонта Концерна ПВО "Алмаз-Антей" "Гранит" | Method of creating control-diagnostic tests |
US8862433B2 (en) * | 2010-05-18 | 2014-10-14 | United Technologies Corporation | Partitioning of turbomachine faults |
FR2966617B1 (en) * | 2010-10-22 | 2013-06-14 | Snecma | METHOD AND DEVICE FOR MONITORING A LOOP LOADING A VARIABLE GEOMETRY ACTUATION SYSTEM OF A TURBOJET ENGINE |
JP2011106467A (en) | 2011-02-28 | 2011-06-02 | Hitachi Ltd | Method for displaying display screen in system for diagnosing performance of gas turbine |
RU2441271C1 (en) * | 2011-03-01 | 2012-01-27 | Открытое акционерное общество "Головной центр сервисного обслуживания и ремонта Концерна ПВО "Алмаз-Антей" "Гранит" | Method to generate tests for control of operability and diagnostics of faulty equipment |
JP5817323B2 (en) | 2011-08-18 | 2015-11-18 | 株式会社Ihi | Abnormality diagnosis device |
FR2983528B1 (en) * | 2011-12-05 | 2014-01-17 | Snecma | METHOD FOR MONITORING A MEASUREMENT CHAIN OF A TURBOJET ENGINE |
JP6340236B2 (en) * | 2014-04-15 | 2018-06-06 | 三菱重工工作機械株式会社 | Diagnostic method and system for machine tools |
-
2015
- 2015-02-18 JP JP2015029249A patent/JP6610987B2/en active Active
-
2016
- 2016-02-17 RU RU2017132000A patent/RU2667691C1/en active
- 2016-02-17 EP EP16752507.0A patent/EP3229093B1/en active Active
- 2016-02-17 WO PCT/JP2016/054579 patent/WO2016133121A1/en active Application Filing
-
2017
- 2017-07-31 US US15/664,525 patent/US10408707B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06103481A (en) * | 1992-09-17 | 1994-04-15 | Mitsubishi Electric Corp | Plant operation monitoring system |
JP2011090382A (en) * | 2009-10-20 | 2011-05-06 | Mitsubishi Heavy Ind Ltd | Monitoring system |
JP2014035282A (en) * | 2012-08-09 | 2014-02-24 | Ihi Corp | Abnormality diagnostic device |
Also Published As
Publication number | Publication date |
---|---|
RU2667691C1 (en) | 2018-09-24 |
US10408707B2 (en) | 2019-09-10 |
JP2016151909A (en) | 2016-08-22 |
EP3229093A1 (en) | 2017-10-11 |
EP3229093A4 (en) | 2018-08-08 |
JP6610987B2 (en) | 2019-11-27 |
EP3229093B1 (en) | 2020-01-01 |
US20170328811A1 (en) | 2017-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016133121A1 (en) | Abnormality diagnosis method and abnormality diagnosis system | |
US6898554B2 (en) | Fault detection in a physical system | |
US7062370B2 (en) | Model-based detection, diagnosis of turbine engine faults | |
JP5260343B2 (en) | Plant operating condition monitoring method | |
US8417432B2 (en) | Method for calculating confidence on prediction in fault diagnosis systems | |
US11187621B2 (en) | Fault diagnosis during testing of turbine unit | |
JP6344158B2 (en) | Failure detection device | |
EP3757696A1 (en) | Control of power generation system by visually monitoring valve during operation | |
RU2684225C2 (en) | Aircraft engine monitoring system validation instrument | |
WO2014091952A1 (en) | Sensor monitoring device, sensor monitoring method, and sensor monitoring program | |
WO2018044507A1 (en) | Machine learning-aided model-based method for estimating gas turbine component life | |
EP3757356A1 (en) | Control of power generation system by visually monitoring gauge during operation | |
JP5490277B2 (en) | Plant operating condition monitoring method | |
EP3757357A1 (en) | Control of power generation system by visually monitoring component during operation | |
JP4611061B2 (en) | Detector calibration support apparatus and method | |
KR20170051525A (en) | Detection and classification of failures of power generating equipment during transient conditions | |
JP7450238B2 (en) | Engine abnormality diagnosis method, engine abnormality diagnosis program, and engine abnormality diagnosis system | |
JP5490278B2 (en) | Plant operating condition monitoring method | |
RU2781738C2 (en) | Method for functional diagnostics of a liquid rocket engine during firing tests | |
JP7121592B2 (en) | Plant monitoring system and plant monitoring method | |
JP2023105972A (en) | Failure sign monitoring system and failure sign monitoring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16752507 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2016752507 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017132000 Country of ref document: RU Kind code of ref document: A |