WO2014091952A1 - Sensor monitoring device, sensor monitoring method, and sensor monitoring program - Google Patents

Sensor monitoring device, sensor monitoring method, and sensor monitoring program Download PDF

Info

Publication number
WO2014091952A1
WO2014091952A1 PCT/JP2013/082303 JP2013082303W WO2014091952A1 WO 2014091952 A1 WO2014091952 A1 WO 2014091952A1 JP 2013082303 W JP2013082303 W JP 2013082303W WO 2014091952 A1 WO2014091952 A1 WO 2014091952A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
correlation
sensors
values
sets
Prior art date
Application number
PCT/JP2013/082303
Other languages
French (fr)
Japanese (ja)
Inventor
哲 寺澤
加藤 真也
敬之 山本
敬喜 朝倉
林 司
山本 秀夫
睦男 生田
安達 勝
将弘 崎部
健三 宮
知也 相馬
真弓 高城
大石 敏之
Original Assignee
日本電気株式会社
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, 中国電力株式会社 filed Critical 日本電気株式会社
Priority to JP2014551979A priority Critical patent/JP6304767B2/en
Publication of WO2014091952A1 publication Critical patent/WO2014091952A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks

Definitions

  • the present invention relates to a sensor monitoring device, a sensor monitoring method, and a sensor monitoring program for monitoring the state of a sensor, and more particularly to a sensor monitoring device, a sensor monitoring method, and a sensor monitoring program for monitoring a sensor installed in a power plant.
  • various devices are diagnosed and maintenance work is performed when necessary for the purpose of operating safely and efficiently. From the viewpoint of safety, especially in power plants such as nuclear power plants, many sensors are installed, and various types of parameters are constantly measured and diagnosed. Diagnosis of various devices is performed by a plurality of sensors attached to a device such as a water supply pump. Usually, it is understood that some abnormality has occurred in the device when the measured value detected by the sensor exceeds a predetermined threshold. Here, when sensor drift occurs in the sensor due to aging deterioration or environmental change, the measured value deviates from the correct value. That is, when any abnormality is recognized in the measurement value detected by the sensor, it cannot be determined whether an abnormality has occurred in the device or in the sensor itself.
  • An object of the present invention is to provide a sensor monitoring apparatus, a sensor monitoring method, and a sensor monitoring program that solve the above-described misdiagnosis.
  • one embodiment of the present invention is a sensor monitoring device provided in a power plant, which includes a plurality of sensor sets each including a plurality of sensors, and sensors from the plurality of sensors constituting each sensor set.
  • a database for modeling correlation between values and sensor values from the plurality of sensors constituting another sensor set, and storing them as a relationship model, and sensor detection values in the plurality of sensors constituting each sensor set And the correlation between the sensor detection values of the plurality of sensors constituting the other sensor set and the correlation of the modeled relationship model stored in the database and comparing the detected sensor values.
  • a correlation detection module for detecting disturbances from the correlation of the modeled relationship model in the correlation of It relates to a sensor monitoring apparatus characterized by.
  • Another aspect of the present invention is a sensor monitoring method executed at a power plant, wherein sensor values from a plurality of sensors constituting each sensor set and a plurality of sensors constituting another sensor set are received.
  • sensor values from a plurality of sensors constituting each sensor set and a plurality of sensors constituting another sensor set are received.
  • sensor detection values in the plurality of sensors constituting each sensor set and sensors in the plurality of sensors constituting another sensor set The correlation between the detected values is compared with the correlation of the modeled relationship model stored in the database and the correlation of the modeled relationship model in the correlation of the detected sensor value
  • the present invention relates to a sensor monitoring method characterized by detecting disturbance from a relationship.
  • another aspect of the present invention is a sensor monitoring program executed in a power plant, wherein sensor values from a plurality of sensors constituting each sensor set and a plurality of sensors constituting another sensor set are received.
  • a process for referring to a database storing a relationship model in which a correlation with a sensor value is modeled, a sensor detection value in the plurality of sensors constituting each of the sensor sets, and the plurality of sensors constituting another sensor set The process of comparing the correlation between the sensor detection values in FIG. And the correlation of the modeled relationship model stored in the database and the modeled relation in the correlation of the detected sensor values
  • the present invention relates to a sensor monitoring program for causing a computer to execute processing for detecting disturbances from the correlation of models.
  • FIG. 1 is a block diagram showing a schematic configuration of a system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart for explaining a model generation phase for constructing a relationship model executed in one embodiment of the present invention.
  • FIG. 3 is a flowchart for explaining a monitoring phase executed in an embodiment of the present invention.
  • FIG. 4 is a graph showing sensor measurement values of the respective sensors installed at the same location in the related art.
  • FIG. 4 is a graph showing sensor measurement values (detection values) of a plurality of sensors arranged in the same place with time.
  • the sensor measured values by the three sensors # 1, # 2, and #N are graphed.
  • a process value when a process value is measured by a plurality of sensors installed at the same physical location, if the measured value of each of the plurality of sensors is the same, the measured value may be used as a correct value. it can.
  • the problem here is when the measured values of the plurality of sensors are different. This is because it is unknown which sensor's measured value is correct. For example, in the present situation, an intermediate value (measured value of sensor # 2) is adopted, or an appropriate rule of measurement is determined by predicting an appropriate sensor measurement value by judging from an empirical rule which sensor becomes abnormal due to deterioration. It has been done.
  • a process value shows the state quantity showing the state of a power plant, and the detected value measured by the sensor may correspond directly to a process value.
  • FIG. 1 is a diagram showing a schematic configuration of a system (here, a power plant system) to which a sensor monitoring apparatus according to an embodiment of the present invention is applied.
  • the illustrated power plant system is composed of various devices, and power generation using nuclear power or thermal power is performed.
  • various devices of the power plant system are the measurement target 11.
  • the measurement object 11 include devices such as a nuclear reactor containment vessel, a pressurizer, a condenser, power wiring, a boiler, a turbine, and a water supply pump.
  • Sensors S ⁇ b> 1 to S ⁇ b> 3 and other sensor groups 15 are appropriately arranged on these various devices to be measured 11.
  • the plurality of sensors S1 to S3 are attached to various devices of the system as a sensor set, and measure the process values of the system.
  • one sensor set is physically installed at the same cylinder, and is arranged at a physical position different from that of the other sensor group (a plurality of sensor sets) 15.
  • measured values are constantly measured by a large number of sensor sets composed of sensors S1 to S3 multiplexed in order to grasp the state, and are used for actual driving and safety decision making.
  • the sensors S1 to S3 include sensors such as a temperature sensor, a voltage / current sensor, a vibration sensor, a radiation dose sensor, a pressure sensor, a flow rate sensor, and a water level sensor.
  • the number of sensors is not limited to the three illustrated in FIG. 1, and it goes without saying that four or five or more sensors can be installed for safety measures. The same applies to the other sensor groups 15.
  • the sensor set described above constitutes a part of the sensor monitoring apparatus according to the present embodiment.
  • the monitoring module 13 periodically acquires sensor detection values (measurement values) output from the plurality of sensors S1 to S3 installed in the system.
  • the monitoring module 13 stores sensor detection values from the sensors S1 to S3 as sensor information in the sensor value storage database 17 together with IDs, times, physical positions, measurement target information, and the like of the sensors S1 to S3.
  • the monitoring module 13 periodically acquires sensor detection values from other sensor groups 15 and similarly stores them in the sensor value storage database 17.
  • the data stored in the sensor value storage database 17 is input to the relationship verification module 19 (correlation detection module).
  • the relationship verification module 19 verifies the relationship between the sensor data of the plurality of sensor sets including the plurality of sensors S1 to S3 and the relationship between the sensor data of the plurality of sensors S1 to S3. That is, the relationship verification module 19 includes a relationship storage database 21.
  • the relationship storage database 21 includes a plurality of sensors S1 to S1 as well as correlations between sensor data of the plurality of sensors S1 to S3. Relationships between past sensors and sensor sets that represent correlations between sensor data of a plurality of sensor sets including S3 are accumulated. As the relationship between past sensors and sensor sets, it is preferable to use output data of the sensors S1 to S3 and other sensor groups 15 when the system is operating normally.
  • the verification result in the relationship verification module 19 is given to the drift determination module (determination module) 23 to determine sensor drift. If an abnormality is detected as a result of the determination, an alarm or a display device notifies the user.
  • the monitoring module 13, the relationship verification module 19, and the drift determination module 23 are illustrated as hardware, but these modules are actually configured by a program that can be executed by a computer. Can be done.
  • the monitoring module 13, the relationship verification module 19, and the drift determination module 23 are realized by a storage medium that stores programs for executing operations in these modules and a computer (CPU) that executes these programs. it can.
  • the correlation between the sensor detection values in the plurality of sensors constituting each sensor set and the sensor detection values in the plurality of sensors constituting another sensor set is performed by the relationship verification module 19.
  • the relationship and the correlation of the modeled relationship model stored in the relationship storage database 21 are compared, and the disturbance from the correlation of the modeled relationship model in the correlation of the detected sensor values is compared. By detecting it, it is characterized by detecting an abnormality that has occurred at an early stage.
  • the relationship model generation phase is described as being executed by a program that can be executed by a computer, but it can also be realized by using a hardware circuit.
  • a sensor data collection period is defined and a collection period is set (F1-2).
  • sensor data is acquired during the collection period from the sensors S1 to S3 and the other sensor groups 15 in step F1-3.
  • the acquired sensor data is stored in a memory (not shown) included in the relationship verification module 19.
  • step F1-4 the correlation between the sensor data from the plurality of sensors S1 to S3 and other sensor groups 15 is expressed under the control of the verification program for realizing the operation of the relationship verification module 19.
  • a relationship model is built.
  • the constructed relationship model is stored in the relationship storage database 21 in step F1-5, and the creation of the relationship model is terminated.
  • a monitoring phase in which monitoring is performed using the generated relationship model will be described with reference to FIG.
  • the monitoring phase shown in FIG. 3 is performed using the monitoring module 13, the sensor value storage database 17, the relationship verification module 19, the relationship storage database 21, and the drift determination module 23 shown in FIG.
  • the monitoring phase is executed by a program that realizes an operation corresponding to the operation performed by the above-described module, but can also be realized by using a hardware circuit.
  • FIG. 3 the case where the present invention is applied to monitoring of the sensors S1 to S3 will be described.
  • step F3 is started by acquiring sensor detection values (detection data) from the sensors S1 to S3 in the monitoring module 13 (F2-1), and a sensor set including the sensors S1 to S3; Correlation with other sensor sets is confirmed in step F2-2.
  • This operation is performed using the relationship verification module 19 and the relationship storage database 21.
  • the relationship verification module 19 checks whether there is any disturbance in the correlation between the sensor data from each of the sensors S1 to S3 and the other sensor group 15 by correlation analysis. That is, the correlation model constructed using the sensor values obtained from the plurality of sensor sets including the plurality of sensors S1 to S3 and the sensor detection value from the sensor set including the plurality of sensors S1 to S3 are the same correlation. Is determined in step F2-3.
  • correlation analysis using a relationship model automatically generates an invariant model of the entire system (for example, a power plant) from a plurality of observation data (for example, sensor values from a sensor) obtained from a physical system. This refers to monitoring the state of the system (or the sensor itself) by comparing this model with data obtained from an actual physical system (for example, a sensor detection value in the sensor).
  • the correlation is not disturbed (step F2-3: NO)
  • the process returns to step F2-1 and sensor detection values from other sensors are acquired.
  • step F2-3 step F2-3: YES
  • the relationship verification module 19 determines that an abnormality has occurred in the sensor set including the sensors S1 to S3. The process proceeds to step F2-4.
  • step F2-4 the relationship between the sensors S1 to S3 measuring the same location is checked.
  • step F2-5 the correlation of the sensor S1 with the other sensors S2 and S3 is compared and the value of the sensor S1 with a small disturbance is stored. This operation is performed for the number of sensors installed at the same location (step).
  • step F2-7 NO
  • the process returns to steps 2-4 and F2-5, and the sensor S2 is similarly verified.
  • the correlation disturbance with the other sensors S1 and S2 in the last sensor S3 installed in the same place is compared, and a sensor with a small disturbance is stored (F2-5).
  • step F2-8 After the sensor S3 that measures the same location is verified (F2-7: YES), the process proceeds to step F2-8, and the value of the sensor with the smallest disturbance among the verified sensors S1 to S3 is applied. The process ends.
  • the reason why the value of the sensor having the smallest disturbance among the verified sensors S1 to S3 is applied is that the value of the sensor having the smallest disturbance is the most detected value of the sensors S1 to S3 installed at the same location. This is because the reliability is high.
  • the measured process value is valid or the sensor drift is detected. It is determined whether.
  • the measured value is corrected using the drift estimation value, which is a related technology, and it is possible to shift to inspection based on state standards instead of periodic inspection It becomes.
  • the technology using the correlation analysis based on the relationship model used in the present embodiment the more the number of sensors installed, the more effective analysis can be performed, so in an existing power plant where a large number of sensors are arranged. A very effective analysis can be performed.
  • the present invention is particularly effective for grasping pressure abnormalities that affect a wide area in space and the situation by sensors that are spatially densely installed.
  • an unhealthy state before an abnormality occurs is detected at an early stage, rather than a method of detecting an abnormality for the first time when a threshold is exceeded as in the current abnormality detection means. be able to.
  • abnormality is diagnosed based on the disorder of correlation between the sensor to be audited and thousands of other sensors, it is possible to easily distinguish between abnormality of the device and sensor drift.
  • the sensor monitoring program using the characteristics included in the above-described embodiment is also included in the category of the present invention.
  • the processing of the embodiments may be executed by a computer-readable storage medium encoded with a program, software, or instructions that can be executed by a computer.
  • the storage medium includes not only a portable recording medium such as an optical disk, a floppy (registered trademark) disk, and a hard disk, but also a transmission medium that temporarily records and holds data such as a network.
  • the database is divided into two databases, the sensor value storage database 17 and the relationship storage database 21.
  • the sensor monitoring device, the sensor monitoring method, and the sensor monitoring program of the present invention can be configured by using the sensor value storage database 17 and the relationship storage database 21 as a single database.
  • the sensor monitoring apparatus, the sensor monitoring method, and the sensor monitoring program described in the above-described embodiments can be arbitrarily applied to a power plant such as a nuclear power plant or a thermal power plant.
  • a power plant such as a nuclear power plant or a thermal power plant.
  • the present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments.
  • Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
  • the present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-mentioned embodiment is only a mere illustration in all points, and should not be interpreted limitedly.
  • the scope of the present invention is indicated by the scope of the claims, and is not restricted by the text of the specification.

Abstract

Provided is a technology that monitors sensors themselves and prevents misdiagnosis caused by deterioration over time and environmental changes. This sensor monitoring device provided in power plants comprises: a plurality of sensor sets each including a plurality of sensors; a database that models the correlation between sensor values from the plurality of sensors configuring each sensor set and the sensor values from a plurality of sensors configuring other sensor sets, and stores same as a relationship model; and a correlation detection module. The correlation detection module: compares the correlation between the sensor detection values for the plurality of sensors configuring each sensor set and the sensor detection values for the plurality of sensors configuring the other sensor sets, and the correlation to the modeled relationship model stored in the database, and detects deviation from the correlation to the modeled relationship model, in the correlation between the detected sensor values.

Description

センサ監視装置、センサ監視方法、及びセンサ監視プログラムSENSOR MONITORING DEVICE, SENSOR MONITORING METHOD, AND SENSOR MONITORING PROGRAM
 本発明は、センサの状態を監視するセンサ監視装置、センサ監視方法、及びセンサ監視プログラムに関し、特に、発電所に設置されたセンサを監視するセンサ監視装置、センサ監視方法、及びセンサ監視プログラムに関する。 The present invention relates to a sensor monitoring device, a sensor monitoring method, and a sensor monitoring program for monitoring the state of a sensor, and more particularly to a sensor monitoring device, a sensor monitoring method, and a sensor monitoring program for monitoring a sensor installed in a power plant.
 発電所では、安全かつ効率的に稼動させることを目的として、各種機器の診断をして必要な時期に保守作業を行っている。安全上の観点から、特に原子力発電所等の発電所では、数多くのセンサを設置し、様々な種類のパラメータを常時測定・診断している。
 各種機器の診断は、例えば給水ポンプなどの機器に取り付けられた複数のセンサによって行われる。通常、センサが検知する測定値が所定の閾値を越えることにより、機器に何らかの異常が発生したことが分かる。ここで、経年劣化や環境変化の影響でセンサにセンサドリフトが発生した場合、測定値が正しい値からずれてしまう。即ち、センサによって検知した測定値に何らかの異常が認められた場合、機器に異常が発生したのかセンサ自体に異常が発生したのかが判断できなくなる。それゆえ、機器を保守すべきか、またはセンサを保守すべきか判断するためには、機器の異常とセンサドリフトとを区別する必要がある。
 また、センサにより計測した測定値が所定の閾値に達したときに初めて異常と判断されることになるが、センサの経年劣化等のように長期間にわたって測定値が変化する場合には、異常の発見が遅れて的確な診断ができず、発電所の停止に至る可能性もある。
 特許文献1には、原子力発電所等のプラントにおいて各種プロセス量を計測し、プロセス値に異常かもしれない可能性をデータに曖昧さで追加表現してプロセスデータとし、このプロセスデータにより、異常かもしれない可能性を考慮して、プロセス値の異常検出を的確に行うプラント診断システムを提供する技術が開示されている。
At power plants, various devices are diagnosed and maintenance work is performed when necessary for the purpose of operating safely and efficiently. From the viewpoint of safety, especially in power plants such as nuclear power plants, many sensors are installed, and various types of parameters are constantly measured and diagnosed.
Diagnosis of various devices is performed by a plurality of sensors attached to a device such as a water supply pump. Usually, it is understood that some abnormality has occurred in the device when the measured value detected by the sensor exceeds a predetermined threshold. Here, when sensor drift occurs in the sensor due to aging deterioration or environmental change, the measured value deviates from the correct value. That is, when any abnormality is recognized in the measurement value detected by the sensor, it cannot be determined whether an abnormality has occurred in the device or in the sensor itself. Therefore, in order to determine whether the device should be maintained or the sensor should be maintained, it is necessary to distinguish between a device abnormality and a sensor drift.
In addition, when the measured value measured by the sensor reaches a predetermined threshold value, it is determined that there is an abnormality. However, if the measured value changes over a long period of time, such as sensor aging, There is a possibility that the discovery will be delayed and an accurate diagnosis cannot be made, leading to the shutdown of the power plant.
In Patent Document 1, various process quantities are measured in a plant such as a nuclear power plant, and the possibility that the process value may be abnormal is added to the data as ambiguity to form process data. In consideration of the possibility of failure, a technique for providing a plant diagnosis system that accurately detects an abnormality in a process value is disclosed.
特開平06−129883号公報Japanese Patent Application Laid-Open No. 06-128983
 しかしながら、各種機器の診断においては、センサドリフトによるプロセス値の変化とプロセス値そのものの変化とを区別することが難しいという問題があった。関連する技術では、あらかじめ調査されたセンサのドリフト量を各種機器の診断に用いるプロセス値から除去する手法がとられていた。この方法では、センサにより計測したプロセス値からドリフトを除去する際に誤ったドリフト推定値を入力すると誤診断につながる可能性があった。
 本発明は、上述した誤診断を解決するセンサ監視装置、センサ監視方法、及びセンサ監視プログラムを提供することを目的とする。
However, in the diagnosis of various devices, there is a problem that it is difficult to distinguish between a change in the process value due to sensor drift and a change in the process value itself. In the related technology, a technique for removing the drift amount of the sensor investigated in advance from the process value used for diagnosis of various devices has been adopted. In this method, if an incorrect drift estimation value is input when the drift is removed from the process value measured by the sensor, there is a possibility of erroneous diagnosis.
An object of the present invention is to provide a sensor monitoring apparatus, a sensor monitoring method, and a sensor monitoring program that solve the above-described misdiagnosis.
 上述の課題に鑑み、本発明の一態様は、発電所に設けられるセンサ監視装置であって、それぞれ複数のセンサを含む複数のセンサセットと、各センサセットを構成する上記複数のセンサからのセンサ値と、他のセンサセットを構成する上記複数のセンサからのセンサ値との相関関係をモデル化し、関係性モデルとして格納するデータベースと、上記各センサセットを構成する上記複数のセンサにおけるセンサ検出値及び他のセンサセットを構成する上記複数のセンサにおけるセンサ検出値間の相関関係と、上記データベースに格納され、上記モデル化された関係性モデルの相関関係とを比較し、上記検出されたセンサ値の相関関係における上記モデル化された関係性モデルの相関関係からの乱れを検出する相関関係検出モジュールと、を有することを特徴とするセンサ監視装置に関する。
 また、本発明の別の態様は、発電所において実行されるセンサ監視方法であって、各センサセットを構成する複数のセンサからのセンサ値と、他のセンサセットを構成する複数のセンサからのセンサ値との相関関係をモデル化した関係性モデルを格納するデータベースを参照し、上記各センサセットを構成する上記複数のセンサにおけるセンサ検出値及び他のセンサセットを構成する上記複数のセンサにおけるセンサ検出値間の相関関係と、上記データベースに格納され、上記モデル化された関係性モデルの相関関係とを比較し、上記検出されたセンサ値の相関関係における上記モデル化された関係性モデルの相関関係からの乱れを検出する、ことを特徴とするセンサ監視方法に関する。
 さらに、本発明の他の態様は、発電所において実行されるセンサ監視プログラムであって、各センサセットを構成する複数のセンサからのセンサ値と、他のセンサセットを構成する複数のセンサからのセンサ値との相関関係をモデル化した関係性モデルを格納するデータベースを参照する処理と、上記各センサセットを構成する上記複数のセンサにおけるセンサ検出値及び他のセンサセットを構成する上記複数のセンサにおけるセンサ検出値間の相関関係と、上記データベースに格納され、上記モデル化された関係性モデルの相関関係とを比較する処理と、上記検出されたセンサ値の相関関係における上記モデル化された関係モデルの相関関係からの乱れを検出する処理と、をコンピュータに実行させるためのセンサ監視プログラムに関する。
In view of the above-described problems, one embodiment of the present invention is a sensor monitoring device provided in a power plant, which includes a plurality of sensor sets each including a plurality of sensors, and sensors from the plurality of sensors constituting each sensor set. A database for modeling correlation between values and sensor values from the plurality of sensors constituting another sensor set, and storing them as a relationship model, and sensor detection values in the plurality of sensors constituting each sensor set And the correlation between the sensor detection values of the plurality of sensors constituting the other sensor set and the correlation of the modeled relationship model stored in the database and comparing the detected sensor values. A correlation detection module for detecting disturbances from the correlation of the modeled relationship model in the correlation of It relates to a sensor monitoring apparatus characterized by.
Another aspect of the present invention is a sensor monitoring method executed at a power plant, wherein sensor values from a plurality of sensors constituting each sensor set and a plurality of sensors constituting another sensor set are received. Referring to a database storing a relationship model in which a correlation with a sensor value is modeled, sensor detection values in the plurality of sensors constituting each sensor set and sensors in the plurality of sensors constituting another sensor set The correlation between the detected values is compared with the correlation of the modeled relationship model stored in the database and the correlation of the modeled relationship model in the correlation of the detected sensor value The present invention relates to a sensor monitoring method characterized by detecting disturbance from a relationship.
Furthermore, another aspect of the present invention is a sensor monitoring program executed in a power plant, wherein sensor values from a plurality of sensors constituting each sensor set and a plurality of sensors constituting another sensor set are received. A process for referring to a database storing a relationship model in which a correlation with a sensor value is modeled, a sensor detection value in the plurality of sensors constituting each of the sensor sets, and the plurality of sensors constituting another sensor set The process of comparing the correlation between the sensor detection values in FIG. And the correlation of the modeled relationship model stored in the database and the modeled relation in the correlation of the detected sensor values The present invention relates to a sensor monitoring program for causing a computer to execute processing for detecting disturbances from the correlation of models.
 本発明によると、発生した異常を相関性の乱れにより特定して早期に発見することができ、発電所の安全性を向上することが可能となる。
 本発明の更なる利点及び実施形態を、記述と図面を用いて下記に詳細に説明する。
According to the present invention, it is possible to identify an anomaly that has occurred due to a disorder in the correlation and discover it at an early stage, thereby improving the safety of the power plant.
Further advantages and embodiments of the present invention are described in detail below using the description and the drawings.
 図1は、本発明の一実施形態によるシステムの概略構成を示すブロック図である。
 図2は、本発明の一実施形態で実行される関係性モデルを構築するモデル生成フェーズを説明するためのフローチャートである。
 図3は、本発明の一実施形態で実行される監視フェーズを説明するためのフローチャートである。
 図4は、関連技術における同一箇所に設置された各センサのセンサ測定値を示すグラフである。
FIG. 1 is a block diagram showing a schematic configuration of a system according to an embodiment of the present invention.
FIG. 2 is a flowchart for explaining a model generation phase for constructing a relationship model executed in one embodiment of the present invention.
FIG. 3 is a flowchart for explaining a monitoring phase executed in an embodiment of the present invention.
FIG. 4 is a graph showing sensor measurement values of the respective sensors installed at the same location in the related art.
 まず、本願発明の内容を説明する前に、本発明者等が検討した技術及びその課題について説明する。現状、複数のセンサにより測定されたセンサ検出値から正しい測定値を判断する際に、経験則に基づいた判断がなされている。図4を参照しながらこの経験則に基づくセンサ測定値の決定方法について説明する。
 図4は、同一箇所に多重化して配置された複数のセンサのセンサ測定値(検出値)を時間の経過とともに示すグラフである。この例では、センサ#1、#2、#Nの3つのセンサによるセンサ測定値をグラフにしている。図4から分かるように、物理的に同一の場所に設置された複数のセンサによりプロセス値を測定した際、複数のセンサそれぞれの測定値が同じであればその測定値を正しい値として用いることができる。ここで問題になるのが、複数のセンサそれぞれの測定値が異なる場合である。どのセンサの測定値が正しいか不明だからである。例えば、現状では中間値(センサ#2の測定値)を採用したり、どのセンサが劣化により異常となるか経験則で判断することで妥当なセンサ測定値を予測して採用する測定値を決定することがなされてきた。なお、本実施形態においてプロセス値とは、発電所の状態を表す状態量のことを示し、センサにより計測された検出値が直接プロセス値に対応する場合もある。また、複数の検出値を演算して求められる場合もある。
 しかしながら、これらの方法により正しいセンサ測定値を決定する方法では、より正しいと考えられる測定値を選択しているだけで、選択した測定値が実際に正しいとは限らない。従って、このように選択された測定値を用いて発電所の運転がなされると、誤った測定値で誤った判断をするおそれがあるため、各種機器の経年劣化や不良を見つけることが遅れる結果、重大な問題を引き起こす可能性がある。
 上記した問題点を解決できる本発明の実施形態について図面を参照しつつ説明する。但し、以下に説明する実施形態によって本発明の技術的範囲は何ら限定解釈されることはない。
 図1は、本発明の実施形態によるセンサ監視装置を適用したシステム(ここでは、発電所システム)の概略構成を示す図である。
 図示された発電所システムは、種々の機器から構成されており、原子力や火力などを利用した発電が行われている。本実施形態では、発電所システムの各種機器が計測対象11となる。計測対象11としては、例えば、原子炉格納容器、加圧器、復水器、電力配線、ボイラー、タービンや給水ポンプなどの機器が挙げられる。これら計測対象11の各種機器にセンサS1からS3やその他のセンサ群15が適宜配置されている。
 複数のセンサS1~S3は、センサセットとしてシステムの各種機器に取り付けられ、システムのプロセス値を測定する。また、一のセンサセットは物理的に同一筒所に設置され、他のセンサ群(複数のセンサセット)15と互いに異なる物理的位置に配置される。発電所においては、状態を把握するために多重化されたセンサS1~S3からなる数多くのセンサセットにより常時測定値が計測され、実際の運転や保安上の意思決定に用いられている。ここで、センサS1~S3としては、例えば、温度センサ、電圧電流センサ、振動センサ、放射線量センサ、圧力センサ、流量センサ、水位センサ等のセンサが挙げられる。また、センサの個数は図1で例示された個数の3個に限定されず、安全対策のために4個や5個以上の何重ものセンサを設置することができることは言うまでもない。その他のセンサ群15についても同様である。なお、後述するように、本実施形態で用いる技術では、センサの数が多いと分析の有効性も高まる。上述したセンサセットは本実施形態に係るセンサ監視装置の一部を構成している。
 監視モジュール13は、システムに設置された複数のセンサS1~S3から出力されるセンサ検出値(測定値)を周期的に取得する。監視モジュール13は、各センサS1~S3からのセンサ検出値を各センサS1~S3のID、時刻、物理位置、及び計測対象情報等と共に、センサ値保存用データベース17にセンサ情報として格納させる。同様に、監視モジュール13は、その他のセンサ群15からのセンサ検出値も周期的に取得して同じくセンサ値保存用データベース17に格納させる。
 次に、センサ値保存用データベース17に格納されたデータは、関係性検証モジュール19(相関関係検出モジュール)に入力される。ここで、関係性検証モジュール19は複数のセンサS1~S3を含む複数のセンサセットのセンサデータ相互間の関係性及び複数のセンサS1~S3のセンサデータ相互間の関係性を検証する。即ち、関係性検証モジュール19には、関係性保存データベース21が備えられており、当該関係性保存データベース21は、複数のセンサS1~S3のセンサデータ相互間の相関関係とともに、複数のセンサS1~S3を含む複数のセンサセットのセンサデータ相互間の相関関係をあらわす過去のセンサ間及びセンサセット間の関係性を蓄積している。過去のセンサ間及びセンサセット間の関係性としては、システムが正常に動作している場合における各センサS1~S3及びその他のセンサ群15の出力データを用いることが好ましい。
 関係性検証モジュール19における検証結果は、ドリフト判定モジュール(判定モジュール)23に与えられ、センサドリフトの判定が行われる。判定の結果、異常が検出されると、アラーム或いはディスプレイ装置等により報知される。
 説明の都合上、図1では、監視モジュール13、関係性検証モジュール19、及びドリフト判定モジュール23をハードウェアとして図示しているが、これらのモジュールは、実際にはコンピュータによって実行可能なプログラムによって構成され得る。この場合、監視モジュール13、関係性検証モジュール19、及びドリフト判定モジュール23は、これらのモジュールにおける動作を実行するためのプログラムを格納する記憶媒体と、これらのプログラムを実行するコンピュータ(CPU)によって実現できる。
 上記したように、本発明の実施形態は、関係性検証モジュール19により、各センサセットを構成する複数のセンサにおけるセンサ検出値及び他のセンサセットを構成する複数のセンサにおけるセンサ検出値間の相関関係と、関係性保存データベース21に格納されたモデル化された関係性モデルの相関関係とを比較し、検出されたセンサ値の相関関係におけるモデル化された関係性モデルの相関関係からの乱れを検出することにより、発生した異常を早期に検出することを特徴としている。
 図2及び図3を参照して、上記した点を更に具体的に説明する。
 まず、図2を参照すると、関係性保存データベース21に格納される関係性モデルの生成フェーズが示されている。ここでは、関係性モデルの生成フェーズがコンピュータによって実行可能なプログラムによって実行されるものとして説明するが、ハードウェア回路を用いても実現可能である。図2のステップF1−1に示すように、センサデータの収集期間が定義され、収集期間が設定される(F1−2)。収集期間が設定されると、ステップF1−3において、センサS1~S3及びその他のセンサ群15からの収集期間中、センサデータが取得される。取得されたセンサデータは、関係性検証モジュール19に含まれているメモリ(図示せず)内に格納される。
 続いて、ステップF1−4では、関係性検証モジュール19の動作を実現する検証プログラムの制御の下に、複数のセンサS1~S3やその他のセンサ群15からのセンサデータ間相互の相関関係を表す関係性モデルが構築される。構築された関係性モデルは、ステップF1−5において関係性保存データベース21に格納され、関係性モデルの作成を終了する。
 次に、図3を参照して、生成された関係性モデルを用いて監視を行う監視フェーズについて説明する。図3に示された監視フェーズは、図1に示された監視モジュール13、センサ値保存用データベース17、関係性検証モジュール19、関係性保存データベース21、及びドリフト判定モジュール23を用いて行われる。実際には、監視フェーズは、上記したモジュールで行われる動作に対応した動作を実現するプログラムによって実行されるが、ハードウェア回路を用いて実現することも可能である。
 図3の例では本発明をセンサS1~S3の監視に適用した場合について説明する。図3に示された監視フェーズは、監視モジュール13において、各センサS1~S3からセンサ検出値(検出データ)を取得することによって開始され(F2−1)、センサS1~S3を含むセンサセットとその他のセンサセットとの相関性がステップF2−2において確認される。この動作は、関係性検証モジュール19及び関係性保存データベース21を使用して行われる。
 ステップF2−3において、関係性検証モジュール19は、各センサS1~S3及びその他のセンサ群15からのセンサデータ間の相関関係性に乱れがないかどうか相関分析によりチェックする。即ち、複数のセンサS1~S3を含む複数のセンサセットから得たセンサ値を用いて構築された関係性モデルと、複数のセンサS1~S3を含むセンサセットからのセンサ検出値が同じ相関関係性を有しているかどうかがステップF2−3に判定される。ここで、関係性モデルを用いた相関分析とは、物理システムから得られる複数の観測データ(例えばセンサからのセンサ値)から、システム全体(例えば発電所)の不変性モデルを自動的に生成し、このモデルと実際の物理システムから得られるデータ(例えばセンサにおけるセンサ検出値)を比較することで、システム(又はセンサ自体)の状態を監視することを言う。相関関係性に乱れがない場合(ステップF2−3:NO)、ステップF2−1に戻って、他のセンサからのセンサ検出値が取得される。
 一方、ステップF2−3で相関関係性に乱れが有ると(ステップF2−3:YES)、関係性検証モジュール19は、センサS1~S3を含むセンサセットに異常が発生したものと判定して、ステップF2−4に移行する。ステップF2−4では、同一箇所を計測するセンサS1~S3間の関係性をチェックする。まず、ステップF2−5では、センサS1における他のセンサS2、S3との相関関係性の乱れを比較して乱れの小さいセンサS1の値を記憶しておく。この動作が同一箇所に設置されたセンサの個数分行われる(ステップ)。本例では検証されたセンサはセンサS1であるので(ステップF2−7:NO)、ステップ2−4及びF2−5に戻って、センサS2の検証が同様に行われる。その後、同一箇所に設置された最後のセンサS3における他のセンサS1、S2との相関関係性の乱れを比較して、乱れの小さいセンサを記憶する(F2−5)。同一箇所を計測するセンサS3が検証された後(F2−7:YES)、ステップF2−8に進み、検証した各センサS1~S3のうち乱れの一番小さいセンサの値が適用されることとなり、処理は終了する。検証した各センサS1~S3のうち乱れの一番小さいセンサの値を適用する理由は、乱れの一番小さいセンサの値が同一箇所に設置されたセンサS1~S3の検出値のなかで一番信頼性が高いからである。
 このように、本実施形態では、多重化されたセンサ間の相関性の乱れや、センサセット間の相関性の崩れを監視することにより、計測されたプロセス値が妥当であるか、センサドリフトなのかを判定する。センサドリフトによる影響の有無を判定することで、センサドリフトによる影響であれば関連する技術であるドリフト推定値を用いた測定値の補正を行い、定期点検ではなく状態基準による点検への移行が可能となる。
 なお、本実施形態で用いる関係性モデルによる相関分析を用いた技術では、センサの設置数が多いほど有効な分析を行うことができるため、多数のセンサが配置されている既存の発電所においては非常に有効な分析を行うことが可能となる。また、空間的に広範囲に影響を与える圧力異常や空間的に密に設置されたセンサによる状況の把握に本発明は特に有効となる。
 本実施形態によると、現状の異常検知手段のような閾値を超えた際に初めて異常を発見する方法ではなく、異常が発生する前の不健全な状態、つまり故障の予兆、を早期に検出することができる。また、本実施形態では、監査対象のセンサと他の数千のセンサとの相関関係性の乱れにより異常を診断しているため、機器の異常とセンサドリフトを容易に区別することが可能となる。
 なお、上述した実施形態に含まれる特徴を用いたセンサ監視プログラムも本発明の範疇に含まれる。上述の実施形態において、実施形態の処理は、プログラム、ソフトウェア、又はコンピュータによって実行されることが可能な命令でコード化された、コンピュータ読み取り可能な記憶媒体によって実行されてもよい。記憶媒体には、光ディスク、フロッピー(登録商標)ディスク、ハードディスク等の可搬型の記録媒体が含まれることはもとより、ネットワークのようにデータを一時的に記録保持するような伝送媒体も含まれる。
 上述した実施形態においては、説明の便宜上、データベースをセンサ値保存用データベース17と関係性保存データベース21の二つのデータベースに分けて説明した。本発明はセンサ値保存用データベース17と関係性保存データベース21を単一のデータベースとして本発明のセンサ監視装置、センサ監視方法、及びセンサ監視プログラムを構成できることは言うまでもない。
 上述の実施形態で説明したセンサ監視装置、センサ監視方法、及びセンサ監視プログラムは、原子力発電所や火力発電所などの発電所において随意に適用することができる。
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細は、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本発明は、その趣旨または主要な特徴から逸脱することなく、他の様々な形で実施することができる。そのため、前述の実施形態はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は、特許請求項の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求項の範囲の均等範囲に属する全ての変形、様々な改良、代替および改質は、すべて本発明の範囲内のものである。
 この出願は、2012年12月14日に出願された日本国特許出願第2012−273453号からの優先権を基礎として、その利益を主張するものであり、その開示はここに全体として参考文献として取り込む。
First, before describing the contents of the present invention, the technology studied by the present inventors and the problems thereof will be described. Currently, when a correct measurement value is determined from sensor detection values measured by a plurality of sensors, a determination based on an empirical rule is made. A method for determining sensor measurement values based on this rule of thumb will be described with reference to FIG.
FIG. 4 is a graph showing sensor measurement values (detection values) of a plurality of sensors arranged in the same place with time. In this example, the sensor measured values by the three sensors # 1, # 2, and #N are graphed. As can be seen from FIG. 4, when a process value is measured by a plurality of sensors installed at the same physical location, if the measured value of each of the plurality of sensors is the same, the measured value may be used as a correct value. it can. The problem here is when the measured values of the plurality of sensors are different. This is because it is unknown which sensor's measured value is correct. For example, in the present situation, an intermediate value (measured value of sensor # 2) is adopted, or an appropriate rule of measurement is determined by predicting an appropriate sensor measurement value by judging from an empirical rule which sensor becomes abnormal due to deterioration. It has been done. In addition, in this embodiment, a process value shows the state quantity showing the state of a power plant, and the detected value measured by the sensor may correspond directly to a process value. Further, it may be obtained by calculating a plurality of detection values.
However, in the method of determining the correct sensor measurement value by these methods, the selected measurement value is not always correct only by selecting the measurement value considered to be more correct. Therefore, if the power plant is operated using the measurement values selected in this way, there is a risk of making erroneous judgments with incorrect measurement values. Can cause serious problems.
An embodiment of the present invention that can solve the above problems will be described with reference to the drawings. However, the technical scope of the present invention is not construed as being limited by the embodiments described below.
FIG. 1 is a diagram showing a schematic configuration of a system (here, a power plant system) to which a sensor monitoring apparatus according to an embodiment of the present invention is applied.
The illustrated power plant system is composed of various devices, and power generation using nuclear power or thermal power is performed. In the present embodiment, various devices of the power plant system are the measurement target 11. Examples of the measurement object 11 include devices such as a nuclear reactor containment vessel, a pressurizer, a condenser, power wiring, a boiler, a turbine, and a water supply pump. Sensors S <b> 1 to S <b> 3 and other sensor groups 15 are appropriately arranged on these various devices to be measured 11.
The plurality of sensors S1 to S3 are attached to various devices of the system as a sensor set, and measure the process values of the system. In addition, one sensor set is physically installed at the same cylinder, and is arranged at a physical position different from that of the other sensor group (a plurality of sensor sets) 15. In a power plant, measured values are constantly measured by a large number of sensor sets composed of sensors S1 to S3 multiplexed in order to grasp the state, and are used for actual driving and safety decision making. Here, examples of the sensors S1 to S3 include sensors such as a temperature sensor, a voltage / current sensor, a vibration sensor, a radiation dose sensor, a pressure sensor, a flow rate sensor, and a water level sensor. Also, the number of sensors is not limited to the three illustrated in FIG. 1, and it goes without saying that four or five or more sensors can be installed for safety measures. The same applies to the other sensor groups 15. As will be described later, in the technique used in the present embodiment, the effectiveness of analysis increases as the number of sensors increases. The sensor set described above constitutes a part of the sensor monitoring apparatus according to the present embodiment.
The monitoring module 13 periodically acquires sensor detection values (measurement values) output from the plurality of sensors S1 to S3 installed in the system. The monitoring module 13 stores sensor detection values from the sensors S1 to S3 as sensor information in the sensor value storage database 17 together with IDs, times, physical positions, measurement target information, and the like of the sensors S1 to S3. Similarly, the monitoring module 13 periodically acquires sensor detection values from other sensor groups 15 and similarly stores them in the sensor value storage database 17.
Next, the data stored in the sensor value storage database 17 is input to the relationship verification module 19 (correlation detection module). Here, the relationship verification module 19 verifies the relationship between the sensor data of the plurality of sensor sets including the plurality of sensors S1 to S3 and the relationship between the sensor data of the plurality of sensors S1 to S3. That is, the relationship verification module 19 includes a relationship storage database 21. The relationship storage database 21 includes a plurality of sensors S1 to S1 as well as correlations between sensor data of the plurality of sensors S1 to S3. Relationships between past sensors and sensor sets that represent correlations between sensor data of a plurality of sensor sets including S3 are accumulated. As the relationship between past sensors and sensor sets, it is preferable to use output data of the sensors S1 to S3 and other sensor groups 15 when the system is operating normally.
The verification result in the relationship verification module 19 is given to the drift determination module (determination module) 23 to determine sensor drift. If an abnormality is detected as a result of the determination, an alarm or a display device notifies the user.
For convenience of explanation, in FIG. 1, the monitoring module 13, the relationship verification module 19, and the drift determination module 23 are illustrated as hardware, but these modules are actually configured by a program that can be executed by a computer. Can be done. In this case, the monitoring module 13, the relationship verification module 19, and the drift determination module 23 are realized by a storage medium that stores programs for executing operations in these modules and a computer (CPU) that executes these programs. it can.
As described above, according to the embodiment of the present invention, the correlation between the sensor detection values in the plurality of sensors constituting each sensor set and the sensor detection values in the plurality of sensors constituting another sensor set is performed by the relationship verification module 19. The relationship and the correlation of the modeled relationship model stored in the relationship storage database 21 are compared, and the disturbance from the correlation of the modeled relationship model in the correlation of the detected sensor values is compared. By detecting it, it is characterized by detecting an abnormality that has occurred at an early stage.
The above points will be described more specifically with reference to FIGS.
First, referring to FIG. 2, the generation phase of the relationship model stored in the relationship storage database 21 is shown. Here, the relationship model generation phase is described as being executed by a program that can be executed by a computer, but it can also be realized by using a hardware circuit. As shown in step F1-1 in FIG. 2, a sensor data collection period is defined and a collection period is set (F1-2). When the collection period is set, sensor data is acquired during the collection period from the sensors S1 to S3 and the other sensor groups 15 in step F1-3. The acquired sensor data is stored in a memory (not shown) included in the relationship verification module 19.
Subsequently, in step F1-4, the correlation between the sensor data from the plurality of sensors S1 to S3 and other sensor groups 15 is expressed under the control of the verification program for realizing the operation of the relationship verification module 19. A relationship model is built. The constructed relationship model is stored in the relationship storage database 21 in step F1-5, and the creation of the relationship model is terminated.
Next, a monitoring phase in which monitoring is performed using the generated relationship model will be described with reference to FIG. The monitoring phase shown in FIG. 3 is performed using the monitoring module 13, the sensor value storage database 17, the relationship verification module 19, the relationship storage database 21, and the drift determination module 23 shown in FIG. In practice, the monitoring phase is executed by a program that realizes an operation corresponding to the operation performed by the above-described module, but can also be realized by using a hardware circuit.
In the example of FIG. 3, the case where the present invention is applied to monitoring of the sensors S1 to S3 will be described. The monitoring phase shown in FIG. 3 is started by acquiring sensor detection values (detection data) from the sensors S1 to S3 in the monitoring module 13 (F2-1), and a sensor set including the sensors S1 to S3; Correlation with other sensor sets is confirmed in step F2-2. This operation is performed using the relationship verification module 19 and the relationship storage database 21.
In step F2-3, the relationship verification module 19 checks whether there is any disturbance in the correlation between the sensor data from each of the sensors S1 to S3 and the other sensor group 15 by correlation analysis. That is, the correlation model constructed using the sensor values obtained from the plurality of sensor sets including the plurality of sensors S1 to S3 and the sensor detection value from the sensor set including the plurality of sensors S1 to S3 are the same correlation. Is determined in step F2-3. Here, correlation analysis using a relationship model automatically generates an invariant model of the entire system (for example, a power plant) from a plurality of observation data (for example, sensor values from a sensor) obtained from a physical system. This refers to monitoring the state of the system (or the sensor itself) by comparing this model with data obtained from an actual physical system (for example, a sensor detection value in the sensor). When the correlation is not disturbed (step F2-3: NO), the process returns to step F2-1 and sensor detection values from other sensors are acquired.
On the other hand, if the correlation is disturbed in step F2-3 (step F2-3: YES), the relationship verification module 19 determines that an abnormality has occurred in the sensor set including the sensors S1 to S3. The process proceeds to step F2-4. In step F2-4, the relationship between the sensors S1 to S3 measuring the same location is checked. First, in step F2-5, the correlation of the sensor S1 with the other sensors S2 and S3 is compared and the value of the sensor S1 with a small disturbance is stored. This operation is performed for the number of sensors installed at the same location (step). In this example, since the verified sensor is the sensor S1 (step F2-7: NO), the process returns to steps 2-4 and F2-5, and the sensor S2 is similarly verified. Then, the correlation disturbance with the other sensors S1 and S2 in the last sensor S3 installed in the same place is compared, and a sensor with a small disturbance is stored (F2-5). After the sensor S3 that measures the same location is verified (F2-7: YES), the process proceeds to step F2-8, and the value of the sensor with the smallest disturbance among the verified sensors S1 to S3 is applied. The process ends. The reason why the value of the sensor having the smallest disturbance among the verified sensors S1 to S3 is applied is that the value of the sensor having the smallest disturbance is the most detected value of the sensors S1 to S3 installed at the same location. This is because the reliability is high.
As described above, in the present embodiment, by monitoring the disorder of the correlation between the multiplexed sensors and the collapse of the correlation between the sensor sets, the measured process value is valid or the sensor drift is detected. It is determined whether. By determining whether or not there is an effect due to sensor drift, if the effect is due to sensor drift, the measured value is corrected using the drift estimation value, which is a related technology, and it is possible to shift to inspection based on state standards instead of periodic inspection It becomes.
In the technology using the correlation analysis based on the relationship model used in the present embodiment, the more the number of sensors installed, the more effective analysis can be performed, so in an existing power plant where a large number of sensors are arranged. A very effective analysis can be performed. In addition, the present invention is particularly effective for grasping pressure abnormalities that affect a wide area in space and the situation by sensors that are spatially densely installed.
According to the present embodiment, an unhealthy state before an abnormality occurs, that is, a sign of a failure, is detected at an early stage, rather than a method of detecting an abnormality for the first time when a threshold is exceeded as in the current abnormality detection means. be able to. Further, in the present embodiment, since abnormality is diagnosed based on the disorder of correlation between the sensor to be audited and thousands of other sensors, it is possible to easily distinguish between abnormality of the device and sensor drift. .
In addition, the sensor monitoring program using the characteristics included in the above-described embodiment is also included in the category of the present invention. In the above-described embodiments, the processing of the embodiments may be executed by a computer-readable storage medium encoded with a program, software, or instructions that can be executed by a computer. The storage medium includes not only a portable recording medium such as an optical disk, a floppy (registered trademark) disk, and a hard disk, but also a transmission medium that temporarily records and holds data such as a network.
In the embodiment described above, for convenience of explanation, the database is divided into two databases, the sensor value storage database 17 and the relationship storage database 21. Needless to say, the sensor monitoring device, the sensor monitoring method, and the sensor monitoring program of the present invention can be configured by using the sensor value storage database 17 and the relationship storage database 21 as a single database.
The sensor monitoring apparatus, the sensor monitoring method, and the sensor monitoring program described in the above-described embodiments can be arbitrarily applied to a power plant such as a nuclear power plant or a thermal power plant.
The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
The present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-mentioned embodiment is only a mere illustration in all points, and should not be interpreted limitedly. The scope of the present invention is indicated by the scope of the claims, and is not restricted by the text of the specification. Furthermore, all modifications, various improvements, substitutions and modifications belonging to the equivalent scope of the claims are all within the scope of the present invention.
This application claims its benefit on the basis of priority from Japanese Patent Application No. 2012-273453 filed on Dec. 14, 2012, the disclosure of which is hereby incorporated by reference in its entirety. take in.
11 計測対象
S1~S3 センサ
13 監視モジュール
15 その他のセンサ群
17 センサ値保存用データベース
19 関係性検証モジュール
21 関係性保存データベース
23 ドリフト判定モジュール
11 Measurement objects S1 to S3 Sensor 13 Monitoring module 15 Other sensor group 17 Sensor value storage database 19 Relationship verification module 21 Relationship storage database 23 Drift determination module

Claims (11)

  1.  発電所に設けられるセンサ監視装置であって、
     それぞれ複数のセンサを含む複数のセンサセットと、
     各センサセットを構成する前記複数のセンサからのセンサ値と、他のセンサセットを構成する前記複数のセンサからのセンサ値との相関関係をモデル化し、関係性モデルとして格納するデータベースと、
     前記各センサセットを構成する前記複数のセンサにおけるセンサ検出値及び他のセンサセットを構成する前記複数のセンサにおけるセンサ検出値間の相関関係と、前記データベースに格納され、前記モデル化された関係性モデルの相関関係とを比較し、前記検出されたセンサ値の相関関係における前記モデル化された関係性モデルの相関関係からの乱れを検出する相関関係検出モジュールと、を有することを特徴とするセンサ監視装置。
    A sensor monitoring device provided in a power plant,
    A plurality of sensor sets each including a plurality of sensors;
    A database for modeling correlation between sensor values from the plurality of sensors constituting each sensor set and sensor values from the plurality of sensors constituting another sensor set, and storing as a relationship model;
    Correlation between sensor detection values in the plurality of sensors constituting each sensor set and sensor detection values in the plurality of sensors constituting another sensor set, and the modeled relationship stored in the database A correlation detection module that compares the correlation of the model and detects a disturbance from the correlation of the modeled relationship model in the correlation of the detected sensor value. Monitoring device.
  2.  更に、前記相関関係の乱れの少ないセンサを前記複数のセンサセットから選択する判定モジュールを有することを特徴とする請求項1記載のセンサ監視装置。 The sensor monitoring apparatus according to claim 1, further comprising a determination module that selects a sensor with less disorder in the correlation from the plurality of sensor sets.
  3.  前記複数のセンサセットは、互いに異なる物理的位置に取り付けられるものであることを特徴とする請求項1又は2記載のセンサ監視装置。 The sensor monitoring apparatus according to claim 1 or 2, wherein the plurality of sensor sets are attached to different physical positions.
  4.  前記複数のセンサセットは、発電所の互いに異なる物理的位置に取り付けられるものであることを特徴とする請求項1又は2記載のセンサ監視装置。 The sensor monitoring device according to claim 1 or 2, wherein the plurality of sensor sets are attached to different physical positions of the power plant.
  5.  更に、前記判定モジュールは、前記複数のセンサセットの各センサにおけるドリフト量を推定し、推定されたドリフト量に基づいて補正を行うことを特徴とする請求項2乃至4の何れか一項に記載のセンサ監視装置。 5. The determination module according to claim 2, wherein the determination module estimates a drift amount in each sensor of the plurality of sensor sets, and performs correction based on the estimated drift amount. Sensor monitoring device.
  6.  発電所において実行されるセンサ監視方法であって、
     各センサセットを構成する複数のセンサからのセンサ値と、他のセンサセットを構成する複数のセンサからのセンサ値との相関関係をモデル化した関係性モデルを格納するデータベースを参照し、
     前記各センサセットを構成する前記複数のセンサにおけるセンサ検出値及び他のセンサセットを構成する前記複数のセンサにおけるセンサ検出値間の相関関係と、前記データベースに格納され、前記モデル化された関係性モデルの相関関係とを比較し、
     前記検出されたセンサ値の相関関係における前記モデル化された関係性モデルの相関関係からの乱れを検出する、ことを特徴とするセンサ監視方法。
    A sensor monitoring method executed in a power plant,
    Refer to a database that stores a relationship model that models the correlation between sensor values from multiple sensors that make up each sensor set and sensor values from multiple sensors that make up another sensor set,
    Correlation between sensor detection values in the plurality of sensors constituting each sensor set and sensor detection values in the plurality of sensors constituting another sensor set, and the modeled relationship stored in the database Compare with model correlation,
    A sensor monitoring method, comprising: detecting a disturbance from the correlation of the modeled relationship model in the correlation of the detected sensor value.
  7.  更に、前記相関関係の乱れの少ないセンサを前記複数のセンサセットから選択することを特徴とする請求項6記載のセンサ監視方法。 The sensor monitoring method according to claim 6, further comprising: selecting a sensor with less disorder in the correlation from the plurality of sensor sets.
  8.  前記複数のセンサセットは、互いに異なる物理的位置に取り付けられてセンサ検出値を得ていることを特徴とする請求項6又は7記載のセンサ監視方法。 The sensor monitoring method according to claim 6 or 7, wherein the plurality of sensor sets are attached to different physical positions to obtain sensor detection values.
  9.  前記複数のセンサセットは、発電所の互いに異なる物理的位置に取り付けられてセンサ検出値を得ていることを特徴とする請求項6又は7記載のセンサ監視方法。 The sensor monitoring method according to claim 6 or 7, wherein the plurality of sensor sets are attached to different physical positions of the power plant to obtain sensor detection values.
  10.  更に、前記複数のセンサセットの各センサにおけるドリフト量を推定し、推定されたドリフト量に基づいて補正を行うことを特徴とする請求項6乃至9の何れか一項に記載のセンサ監視方法。 10. The sensor monitoring method according to claim 6, further comprising: estimating a drift amount in each sensor of the plurality of sensor sets, and performing correction based on the estimated drift amount.
  11.  発電所において実行されるセンサ監視プログラムであって、
     各センサセットを構成する複数のセンサからのセンサ値と、他のセンサセットを構成する複数のセンサからのセンサ値との相関関係をモデル化した関係性モデルを格納するデータベースを参照する処理と、
     前記各センサセットを構成する前記複数のセンサにおけるセンサ検出値及び他のセンサセットを構成する前記複数のセンサにおけるセンサ検出値間の相関関係と、前記データベースに格納され、前記モデル化された関係性モデルの相関関係とを比較する処理と、
     前記検出されたセンサ値の相関関係における前記モデル化された関係モデルの相関関係からの乱れを検出する処理と、をコンピュータに実行させるためのセンサ監視プログラム。
    A sensor monitoring program executed at a power plant,
    A process of referring to a database storing a relationship model in which a correlation between sensor values from a plurality of sensors constituting each sensor set and sensor values from a plurality of sensors constituting another sensor set is modeled;
    Correlation between sensor detection values in the plurality of sensors constituting each sensor set and sensor detection values in the plurality of sensors constituting another sensor set, and the modeled relationship stored in the database A process of comparing the correlation of the models;
    A sensor monitoring program for causing a computer to execute a process of detecting a disturbance from the correlation of the modeled relation model in the correlation of the detected sensor values.
PCT/JP2013/082303 2012-12-14 2013-11-25 Sensor monitoring device, sensor monitoring method, and sensor monitoring program WO2014091952A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014551979A JP6304767B2 (en) 2012-12-14 2013-11-25 SENSOR MONITORING DEVICE, SENSOR MONITORING METHOD, AND SENSOR MONITORING PROGRAM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012273453 2012-12-14
JP2012-273453 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014091952A1 true WO2014091952A1 (en) 2014-06-19

Family

ID=50934244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082303 WO2014091952A1 (en) 2012-12-14 2013-11-25 Sensor monitoring device, sensor monitoring method, and sensor monitoring program

Country Status (2)

Country Link
JP (1) JP6304767B2 (en)
WO (1) WO2014091952A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035433A1 (en) * 2014-09-01 2016-03-10 株式会社Ihi Failure detecting device
WO2016147656A1 (en) * 2015-03-16 2016-09-22 日本電気株式会社 Information processing device, information processing method, and recording medium
JP2017021702A (en) * 2015-07-14 2017-01-26 中国電力株式会社 Failure foretaste monitoring method
WO2017204307A1 (en) * 2016-05-27 2017-11-30 中部電力株式会社 System model evaluation system, operation management system, system model evaluation method, and program
WO2018181120A1 (en) * 2017-03-29 2018-10-04 三菱重工業株式会社 Information processing device, information processing method, and program
KR101918949B1 (en) 2018-07-20 2018-11-15 주식회사 엠앤디 Uncertainty Calculation Method for Data Based Model
JP2019105920A (en) * 2017-12-11 2019-06-27 株式会社東芝 Plant inspection apparatus, method, and program
KR20190075628A (en) * 2017-12-21 2019-07-01 주식회사 스마트시티그리드 Apparatus for detecting failure of sensor of atmosphere environment
CN111290368A (en) * 2014-09-23 2020-06-16 英飞凌科技股份有限公司 Sensor system using safety mechanism
JP2020140278A (en) * 2019-02-27 2020-09-03 日立Geニュークリア・エナジー株式会社 Abnormality cause estimation method and abnormality cause estimation device
WO2023135876A1 (en) * 2022-01-17 2023-07-20 日立Geニュークリア・エナジー株式会社 Measuring instrument inaccuracy assessment system and measuring instrument inaccuracy assessment method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151515A (en) * 1990-06-07 1992-05-25 Hitachi Ltd Method and system for estimating change in characteristic
JPH07110708A (en) * 1993-10-13 1995-04-25 Hitachi Ltd Method and device for fault diagnosis
JP2003207373A (en) * 2002-01-16 2003-07-25 Mitsubishi Heavy Ind Ltd Sensor calibration assistance system, sensor calibration assistance method, and computer readable recording medium storing program for computer execution of the same
WO2010110021A1 (en) * 2009-03-24 2010-09-30 日立建機株式会社 Device for detecting abnormality in construction machine
JP2012242159A (en) * 2011-05-17 2012-12-10 Internatl Business Mach Corp <Ibm> Method for interpolating sensor data for high availability of system, computer program and system
JP2013073414A (en) * 2011-09-28 2013-04-22 Hitachi-Ge Nuclear Energy Ltd Sensor diagnostic device and sensor diagnostic method for plant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151515A (en) * 1990-06-07 1992-05-25 Hitachi Ltd Method and system for estimating change in characteristic
JPH07110708A (en) * 1993-10-13 1995-04-25 Hitachi Ltd Method and device for fault diagnosis
JP2003207373A (en) * 2002-01-16 2003-07-25 Mitsubishi Heavy Ind Ltd Sensor calibration assistance system, sensor calibration assistance method, and computer readable recording medium storing program for computer execution of the same
WO2010110021A1 (en) * 2009-03-24 2010-09-30 日立建機株式会社 Device for detecting abnormality in construction machine
JP2012242159A (en) * 2011-05-17 2012-12-10 Internatl Business Mach Corp <Ibm> Method for interpolating sensor data for high availability of system, computer program and system
JP2013073414A (en) * 2011-09-28 2013-04-22 Hitachi-Ge Nuclear Energy Ltd Sensor diagnostic device and sensor diagnostic method for plant

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051360A (en) * 2014-09-01 2016-04-11 株式会社Ihi Failure detector
US10113443B2 (en) 2014-09-01 2018-10-30 Ihi Corporation Failure detection device
WO2016035433A1 (en) * 2014-09-01 2016-03-10 株式会社Ihi Failure detecting device
US11573105B2 (en) 2014-09-23 2023-02-07 Infineon Technologies Ag Sensor system using safety mechanism
CN111290368A (en) * 2014-09-23 2020-06-16 英飞凌科技股份有限公司 Sensor system using safety mechanism
WO2016147656A1 (en) * 2015-03-16 2016-09-22 日本電気株式会社 Information processing device, information processing method, and recording medium
US10747188B2 (en) 2015-03-16 2020-08-18 Nec Corporation Information processing apparatus, information processing method, and, recording medium
JPWO2016147656A1 (en) * 2015-03-16 2017-12-28 日本電気株式会社 Information processing apparatus, information processing method, and recording medium
JP2017021702A (en) * 2015-07-14 2017-01-26 中国電力株式会社 Failure foretaste monitoring method
WO2017204307A1 (en) * 2016-05-27 2017-11-30 中部電力株式会社 System model evaluation system, operation management system, system model evaluation method, and program
JPWO2017204307A1 (en) * 2016-05-27 2019-03-22 中部電力株式会社 System model evaluation system, operation management system, system model evaluation method and program
JP7074293B2 (en) 2016-05-27 2022-05-24 中部電力株式会社 System model evaluation system, operation management system, system model evaluation method and program
US11288159B2 (en) 2016-05-27 2022-03-29 Chubu Electric Power Company, Inc. System model evaluation system, operation management system, system model evaluation method, and program
JP2018169754A (en) * 2017-03-29 2018-11-01 三菱重工業株式会社 Information processing apparatus, information processing method, and program
CN110462538A (en) * 2017-03-29 2019-11-15 三菱重工业株式会社 Information processing unit, information processing method and program
WO2018181120A1 (en) * 2017-03-29 2018-10-04 三菱重工業株式会社 Information processing device, information processing method, and program
US11237547B2 (en) 2017-03-29 2022-02-01 Mitsubishi Heavy Industries, Ltd. Information processing device, information processing method, and program
JP2019105920A (en) * 2017-12-11 2019-06-27 株式会社東芝 Plant inspection apparatus, method, and program
JP7055628B2 (en) 2017-12-11 2022-04-18 株式会社東芝 Plant inspection equipment, methods and programs
KR20190075628A (en) * 2017-12-21 2019-07-01 주식회사 스마트시티그리드 Apparatus for detecting failure of sensor of atmosphere environment
KR102046503B1 (en) * 2017-12-21 2019-11-20 주식회사 스마트시티그리드 Apparatus for detecting failure of sensor of atmosphere environment
WO2020017702A1 (en) * 2018-07-20 2020-01-23 주식회사 엠앤디 Method for calculating uncertainty of data-based model
KR101918949B1 (en) 2018-07-20 2018-11-15 주식회사 엠앤디 Uncertainty Calculation Method for Data Based Model
JP2020140278A (en) * 2019-02-27 2020-09-03 日立Geニュークリア・エナジー株式会社 Abnormality cause estimation method and abnormality cause estimation device
JP7153585B2 (en) 2019-02-27 2022-10-14 日立Geニュークリア・エナジー株式会社 Abnormality cause estimation method and abnormality cause estimation device
WO2023135876A1 (en) * 2022-01-17 2023-07-20 日立Geニュークリア・エナジー株式会社 Measuring instrument inaccuracy assessment system and measuring instrument inaccuracy assessment method

Also Published As

Publication number Publication date
JPWO2014091952A1 (en) 2017-01-05
JP6304767B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
JP6304767B2 (en) SENSOR MONITORING DEVICE, SENSOR MONITORING METHOD, AND SENSOR MONITORING PROGRAM
JP6394726B2 (en) Operation management apparatus, operation management method, and program
JP5901140B2 (en) Methods, computer programs, and systems for interpolating sensor data for high system availability.
US9122273B2 (en) Failure cause diagnosis system and method
JP6610987B2 (en) Abnormality diagnosis method and abnormality diagnosis system
JP6523815B2 (en) Plant diagnostic device and plant diagnostic method
KR20190025474A (en) Apparatus and Method for Predicting Plant Data
JP5827426B1 (en) Predictive diagnosis system and predictive diagnosis method
JP6655926B2 (en) Fault diagnosis system
KR102241650B1 (en) Deep-learning based Reheater Tube Leak detection Method for Thermoelectric power plant And Apparatus Of Thereof
JP2013073414A (en) Sensor diagnostic device and sensor diagnostic method for plant
KR102073537B1 (en) Risk Assessment Apparatus, Risk Assessment System, Risk Assessment Method and Risk Assessment Program
JP2016128971A (en) Sign diagnosis system and sign diagnosis method
JPWO2017150286A1 (en) System analysis apparatus, system analysis method, and program
JP5771317B1 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP6574533B2 (en) Risk assessment device, risk assessment system, risk assessment method, and risk assessment program
JP2011060012A (en) Plant monitoring apparatus and plant monitoring method
WO2016174958A1 (en) Water leak occurence position estimation device, system, and method
JP2018205992A (en) Apparatus diagnosing system
JP5771318B1 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP6482742B1 (en) Risk assessment device, risk assessment system, risk assessment method, and risk assessment program
JP6096397B1 (en) Analysis system and analysis method
JPWO2015040683A1 (en) Sensor soundness determination method and sensor soundness determination device
JP2007241366A (en) Plant monitoring system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551979

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863312

Country of ref document: EP

Kind code of ref document: A1