WO2016133040A1 - Method for producing transparent barrier film - Google Patents

Method for producing transparent barrier film Download PDF

Info

Publication number
WO2016133040A1
WO2016133040A1 PCT/JP2016/054248 JP2016054248W WO2016133040A1 WO 2016133040 A1 WO2016133040 A1 WO 2016133040A1 JP 2016054248 W JP2016054248 W JP 2016054248W WO 2016133040 A1 WO2016133040 A1 WO 2016133040A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic layer
compound
film
barrier film
layer
Prior art date
Application number
PCT/JP2016/054248
Other languages
French (fr)
Japanese (ja)
Inventor
清司 伊関
沼田 幸裕
晃侍 伊藤
崇 江畑
稲垣 京子
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2016509161A priority Critical patent/JP6614134B2/en
Publication of WO2016133040A1 publication Critical patent/WO2016133040A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material

Definitions

  • the present invention relates to a method for producing a transparent barrier film used as a packaging material that requires airtightness such as foods, pharmaceuticals, and electronic parts having excellent gas barrier properties, or a gas barrier material.
  • a film having excellent gas barrier properties a film obtained by laminating an aluminum foil on a plastic film and a film coated with vinylidene chloride or an ethylene vinyl alcohol copolymer are known.
  • a material using an inorganic thin film a material in which a silicon oxide, an aluminum oxide thin film, or the like is laminated is known (for example, see Patent Document 1).
  • the inorganic layer formed on the plastic film is very thin, it may deteriorate when post-processing such as printing on the inorganic thin film layer. For example, in the printing process, due to rubbing with the gravure roll and pigment particles contained in the ink, the inorganic layer may be damaged and the barrier property may be lowered.
  • organic layers can be formed by mixing various materials to improve the adhesion between the inorganic layer and the organic layer, but in a general method using a vacuum process, two or more substances with different evaporation temperatures are mixed. When evaporated, the mixing ratio of the vapor deposition materials and the composition of the deposited film are shifted. Therefore, a flash vapor deposition method in which the material is brought into contact with a heating plate whose temperature has been sufficiently raised from the evaporation temperature of the substance and evaporated instantly is used.
  • a reactive organic substance is flash-deposited, it may be fixed by a heating plate and there may be a problem in stability.
  • stacking without mixing is proposed (for example, refer permission document 3). However, in this method, it is difficult to always make it constant, such as mixing of two layers laminated in a liquid phase. Further, a mechanism for evaporating two kinds of monomers is required, and the apparatus becomes complicated.
  • the present invention solves the above-mentioned problems, and has an excellent barrier property in which an inorganic layer is provided on one surface of a plastic film and an organic layer having excellent adhesion containing a silane coupling agent is laminated thereon.
  • a method for producing a barrier film is provided.
  • the present invention is a method for producing a transparent barrier film having an inorganic layer and an organic layer in this order on at least one side of a plastic film, wherein the organic layer has at least two kinds of compounds having an acryloyl group and / or a methacryloyl group. And at least one compound of at least two or more compounds having an acryloyl group and / or a methacryloyl group is a silane coupling agent, and the compound is 200 ° C. or more, 300
  • a method for producing a transparent barrier film comprising: forming a liquid organic layer by flash vapor deposition using metallic copper heated to a temperature of not higher than ° C .;
  • the acceleration voltage of the electron beam is preferably 500 V or more and 10 kV or less.
  • an excellent adhesion strength between the organic layer and the inorganic layer is obtained, and a high-performance barrier film is obtained, and the barrier property is deteriorated even after processing such as printing or lamination with another film.
  • a transparent barrier film that can be used as a packaging material that requires high airtightness or a gas barrier material.
  • Schematic of transparent barrier film produced by the production method of the present invention Schematic of an example of an apparatus used in the production method of the present invention
  • FIG. 1 shows a laminate of transparent gas barrier films produced by the production method of the present invention
  • FIGS. 2 and 3 show production apparatuses used in the production method as an example.
  • the plastic film (1) referred to in the present invention is a film obtained by melt-extrusion of an organic polymer and stretching, cooling, and heat setting in the longitudinal direction and / or the width direction as necessary.
  • an organic polymer polypropylene, polyethylene terephthalate, polyethylene-2,6-naphthalate, nylon 6, nylon 4, nylon 66, nylon 12, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, wholly aromatic polyamide, polyamideimide, Examples thereof include polyimide, polyetherimide, polysulfone, polyphenylene sulfide, and polyphenylene oxide.
  • organic polymers organic polymers may be copolymerized or blended with a small amount of other organic polymers.
  • known additives such as ultraviolet absorbers, antistatic agents, plasticizers, lubricants, colorants and the like may be added to the organic polymer, and the transparency thereof is not particularly limited.
  • a transparent gas barrier film those having a transmittance of 50% or more are preferred.
  • the plastic film (1) of the present invention is subjected to corona discharge treatment, glow discharge treatment and other surface roughening treatment prior to laminating the thin film layer.
  • a known anchor coat treatment, printing, or decoration may be applied.
  • the thickness of the plastic film (1) in the present invention is preferably in the range of 1 ⁇ m to 300 ⁇ m, more preferably in the range of 9 ⁇ m to 25 ⁇ m.
  • the inorganic layer (1) may be a single layer or a laminate of two or more layers.
  • a particularly preferable inorganic layer (2) is preferably a composite oxide layer prepared by vapor deposition of aluminum oxide and silicon oxide or a composite oxide layer prepared by vapor deposition of aluminum oxide and magnesium oxide.
  • the weight ratio of aluminum oxide contained in the inorganic compound thin film is not particularly limited, but aluminum oxide and silicon oxide (oxidized) contained in the inorganic compound thin film are not limited.
  • the ratio of aluminum oxide is preferably 10% by weight or more, more preferably 20% by weight or more, and further preferably 30% by weight or more with respect to 100% by weight of the total (magnesium).
  • the aluminum oxide ratio is preferably 90% by weight or less, more preferably 75% by weight or less, and further preferably 65% by weight or less. If the ratio of aluminum oxide exceeds 75% by weight, the flexibility tends to be poor, so that cracking due to handling is likely to occur, and stable barrier properties may be difficult to obtain. On the other hand, when the ratio of aluminum oxide is less than 30% by weight, the barrier property tends to be lowered.
  • the film thickness of the inorganic layer (2) of the present invention is not particularly limited, but is preferably 5 to 500 nm, more preferably 8 nm or more and 100 nm or less, and the inorganic layer (2) having a film thickness of less than 5 nm is satisfactory. However, even if the thickness exceeds 500 nm, the corresponding effect of improving the gas barrier property cannot be obtained, which is disadvantageous in terms of bending resistance and manufacturing cost. It becomes.
  • a known method such as a physical vapor deposition method such as a vacuum vapor deposition method, a sputtering method or an ion plating method, a chemical vapor deposition method such as PECVD, or the like is employed.
  • the heating method resistance heating, induction heating, electron beam heating or the like is employed.
  • the organic layer (3) referred to in the present invention is obtained by crosslinking at least two kinds of compounds having an acryloyl group and / or a methacryloyl group. Furthermore, at least one of the compounds needs to be a silane coupling agent. At this time, the weight of the compound of the silane coupling agent is preferably 5% by weight or more based on the total weight of the compound having an acryloyl group or a methacryloyl group.
  • Examples of the compound having an acryloyl group and / or a methacryloyl group include a compound having an acryloyl group and / or a methacryloyl group and not a silane coupling agent, and a compound having an acryloyl group and / or a methacryloyl group and a silane coupling agent.
  • the compound having an acryloyl group and / or a methacryloyl group and not a silane coupling agent is not particularly limited.
  • the compound which is a silane coupling agent having an acryloyl group and / or a methacryloyl group refers to an organosilicon compound having at least an acryloyl group or a methacryloyl group and a hydrolyzable group. For example, raising 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, etc. Can do.
  • These compounds preferably have a viscosity at 20 ° C. of 500 mPa ⁇ s or less from the viewpoint of material supply during vapor deposition. More preferably, it is 200 mPa * s or less. From the viewpoint of safety, the skin primary irritation index (PII) is 2 or less, preferably 1 or less.
  • Silane coupling agent having acryloyl group and / or methacryloyl group with respect to the total weight of the compound having acryloyl group and / or methacryloyl group and not silane coupling agent and compound having acryloyl group and / or methacryloyl group and silane coupling agent The weight ratio of the compound can be calculated by measuring the amount of silicon atoms contained in the organic layer.
  • the compound having an acryloyl group and / or a methacryloyl group and being a silane coupling agent contributes to improving the adhesion between the inorganic layer and the organic layer, but the content is preferably 5% by weight or more. More preferably, it is 10 weight% or more.
  • the content of the compound having an acryloyl group and / or methacryloyl group and being a silane coupling agent increases, the adhesion is improved, but the compound having an acryloyl group and / or methacryloyl group and being a silane coupling agent is expensive and Moreover, since the excess which cannot react at the interface with the inorganic layer also increases, 50% by weight or less is preferable. It is more preferably 40% by weight or less, and most preferably 30% by weight or less.
  • the organic layer has a protective function for the inorganic layer and a function for improving the adhesion when pasted with a sealant and an adhesive.
  • the organic layer is preferably 50 nm or more. If the thickness is 50 nm or less, the inorganic layer cannot be protected from pigment particles contained in the pigment ink. Further, when the film thickness is 150 nm or more, the protective function is increased, but the distortion is increased and the adhesion is reduced.
  • the flash vapor deposition referred to in the present invention is a method in which a vapor deposition material is brought into contact with a heated plate or the like little by little and instantly evaporated.
  • a material such as a plate to be heated may have only heat resistance, but a metal is preferable from the viewpoint of workability.
  • the heating plate material metal is preferably copper having a purity of at least 90%.
  • a compound having an acryloyl group or a methacryloyl group used in the present invention may be cross-linked by a heating plate, resulting in an increase in molecular weight and difficulty in evaporation.
  • the material that has not evaporated adheres to the surface of the heating plate.
  • the adhering material is polymerized and becomes a solid substance, which cuts off the heat from the heating plate to reduce the evaporation amount and lower the evaporation efficiency.
  • a known technique can be used as a method of heating the heating plate. Examples include a method of installing a heating wire so that thermal contact is good on the opposite surface where the vapor deposition material contacts the heating plate, a method of circulating a heating medium, and a method of heating with an IR heater.
  • the temperature of the heating plate is preferably 200 ° C. or higher for a compound of 500 mPa ⁇ s or less that has fluidity as a liquid supply. High temperature is preferable for flash vapor deposition, but if it is too high, the compound decomposes and is not preferable. Moreover, 300 degrees C or less is preferable from mechanical factors, such as a dimensional change of the heating plate with temperature.
  • a known source can be used as the electron source.
  • the acceleration voltage of electrons is preferably 500 V or higher. If it is 500 V or less, electrons do not sufficiently enter the compound, and radicals necessary for initiation of crosslinking are not sufficiently generated. At an acceleration voltage of 10 kV or more, the number of electrons that pass through the organic layer increases and efficiency decreases. In addition, the generation of X-rays also occurs, causing a problem in safety and health.
  • the transparent vapor deposition barrier film manufacturing method of the present invention will be described with reference to FIGS.
  • the plastic film roll of the substrate is set on the unwinding roll (4).
  • the unrolled plastic film (1) passes through the plasma processor (5) to treat the surface.
  • the ceramic contained in the crucible (7) is heated and evaporated by the electron gun (6) to form an inorganic layer on the plastic film running on the inorganic coating roll (8).
  • a mixed compound (13) comprising at least two or more kinds of compounds having an acryloyl group and / or a methacryloyl group, and at least one of which is a silane coupling agent, is placed in a liquid container (14).
  • the mixed compound (13) is transferred into the organic vapor deposition source (16) by the liquid pump (15).
  • the transferred mixed compound (13) comes into contact with the heating plate (18) heated by the heating wire (17) and becomes steam.
  • the vapor moves in the organic vapor deposition source (16) heated so as not to condense and reaches the organic nozzle (9).
  • Adhesive strength of laminate A 40 ⁇ m thick polyethylene film (Toyobo Co., Ltd. L4102) was adhered to a transparent vapor-deposited barrier film using an adhesive for dry lamination (TM590, CAT56 manufactured by Toyo Morton Co., Ltd.) to produce a laminate film did.
  • the adhesive strength of the laminate is measured by cutting the laminate film to a width of 15 mm, peeling a part of the laminate film, using a universal material testing machine (Tensilon), pulling the peel piece at a speed of 300 mm / min, and peeling it 180 °. did.
  • Oxygen permeation amount is measured according to JIS K7126-2 A method by preparing an oxygen permeation amount measuring device (manufactured by OXTRAN 2/21 MOCOM) in an atmosphere of temperature 23 degrees and humidity 65% RH. did.
  • the content ratio wa (%) in the aluminum oxide film and the content ws (%) in the silicon oxide film are Ma (g / cm 2 ) as the adhesion amount per unit area of aluminum oxide, and the unit area of silicon oxide.
  • the amount of adhesion per unit is Mm (g / cm 2 )
  • the following formulas (1) and (2) are obtained.
  • wa 100 ⁇ [Ma / (Ma + Mm)]
  • ws 100-wa
  • the deposition amount per unit area of aluminum oxide is Ma (g / cm 2 )
  • the density of the bulk is ⁇ a (3.97 g / cm 3 )
  • the deposition amount per unit area of silicon oxide is Ms (g / cm 2).
  • the film thickness t (nm) is obtained by the following formula (3).
  • t ((Ma / ( ⁇ a ⁇ 0.8) + Ms / ( ⁇ s ⁇ 0.8)) ⁇ 10 ⁇ 7 ...
  • Formula (3) Several types of inorganic oxide thin films that define the film thickness and composition are prepared and fluorescence is obtained.
  • a calibration curve was prepared by measuring with an X-ray apparatus. Using a fluorescent X-ray analyzer (“ZSX100e” manufactured by Rigaku Corporation), the film thickness composition was measured with a calibration curve prepared in advance. The conditions for the excitation X-ray tube were 50 kV and 70 mA.
  • a cured organic layer is formed in advance with various thicknesses by irradiation with an electron beam comprising a compound having an acryloyl group and / or a methacryloyl group and being a silane coupling agent alone.
  • This organic layer was measured with a fluorescent X-ray analyzer, and a calibration curve was prepared from the fluorescent X-ray intensity of silicon atoms and the thickness of the organic layer consisting of the compound alone as the silane coupling agent.
  • the film thickness of an organic layer obtained by crosslinking and copolymerizing a compound having an acryloyl group and / or a methacryloyl group and not a silane coupling agent and a compound having an acryloyl group and / or a methacryloyl group and a silane coupling agent was measured. Further, measurement was performed with fluorescent X-rays, and the equivalent film thickness of the compound having an acryloyl group and / or a methacryloyl group and being a silane coupling agent was calculated from the calibration curve using the value.
  • TEM transmission electron microscope
  • a method of measuring using interference by an ellipsometer can be used.
  • a correlation is obtained with the value obtained by TEM, and the value is converted into the value.
  • the content ratio was calculated by dividing the equivalent film thickness of the compound having an acryloyl group and / or methacryloyl group calculated from the result of fluorescent X-ray and being a silane coupling agent by the total film thickness of the organic layer.
  • an organic layer composed of a compound alone having an acryloyl group and / or a methacryloyl group and a silane coupling agent, a compound having an acryloyl group and / or a methacryloyl group and not a silane coupling agent, and an acryloyl group and / or a methacryloyl group
  • the density of the organic layer crosslinked and copolymerized with the compound that is a silane coupling agent was calculated as the same.
  • Example 1 While a polyethylene terephthalate film (E5100 thickness 12 ⁇ m, manufactured by Toyobo Co., Ltd.) was run as a plastic film at 150 m / min, aluminum oxide and silicon oxide were separately put into a crucible and heated individually with an electron gun for vapor deposition. .
  • the formed inorganic layer had a thickness of 13 nm and an aluminum oxide content of 41% by weight.
  • the formed liquid layer was irradiated with electrons from an electron gun at an acceleration voltage of -8 kV and a current of 400 mA to be crosslinked and cured.
  • the organic film thickness was 77 nm.
  • Table 1 shows the oxygen transmission amount and the laminate strength of the transparent barrier film.
  • Table 2 shows the situation of the heating plate.
  • Example 1 In Example 1, it carried out similarly to Example 1 except heating the copper heating plate to 110 degreeC with the heat medium, and dripping the mixed compound at the speed
  • the state of the heating plate is shown in Table 2.
  • Comparative Example 2 Comparative Example 1 was the same as Comparative Example 1 except that an aluminum heating plate was used. Observe the condition of the heating plate and record it in Table 2.
  • a transparent barrier film having excellent printing resistance and excellent adhesion can be provided.

Abstract

The present invention provides a transparent barrier film that has excellent printing resistance, and that includes an inorganic layer and an organic layer having excellent adhesion and made by employing a vacuum. The present invention is a method for producing a transparent evaporation-deposition barrier film, wherein: the barrier film includes an inorganic layer and an organic layer on at least one surface of a plastic film; the organic layer is made by crosslinking at least two types of compounds each including an acryloyl group or a methacryloyl group; at least one type of said compound is a silane coupling agent; and the method comprises forming the organic layer on the inorganic layer by flash evaporation deposition wherein the compound mixture is evaporated by metallic copper heated to a temperature from 200°C to 300°C inclusive, and curing the organic layer with electronic beams.

Description

透明バリアフィルムの製造法Production method of transparent barrier film
 本発明は、ガスバリア性に優れた食品、医薬品、電子部品等の気密性を要求される包装材料、または、ガス遮断材料として使用される透明バリアフィルムの製造法に関するものである。 The present invention relates to a method for producing a transparent barrier film used as a packaging material that requires airtightness such as foods, pharmaceuticals, and electronic parts having excellent gas barrier properties, or a gas barrier material.
 ガスバリア性のすぐれたフィルムとしては、プラスチックフィルム上にアルミニウム箔を積層したもの、塩化ビニリデンやエチレンビニールアルコール共重合体をコーティングしたものが知られている。また、無機薄膜を利用したものとしては、酸化珪素、酸化アルミニウム薄膜等を積層したものが知られている(例えば、特許文献1参照。)。
しかし、プラスチックフィルム上に形成した無機層は非常に薄いため無機薄膜層に印刷加工を行うなど、後加工を行うと劣化することがある。たとえば印刷工程ではグラビアロールとの擦れやインクに含まれる顔料粒子のため、無機層が傷付きバリア性が低下することがある。この改良のために、有機層を無機層上にコーティングする方法がある。溶剤にコーティング剤を溶かしたものを塗布し乾燥し有機層を形成するものである。また、真空プロセスを利用した方法もある(例えば、特許文献2参照)。
As a film having excellent gas barrier properties, a film obtained by laminating an aluminum foil on a plastic film and a film coated with vinylidene chloride or an ethylene vinyl alcohol copolymer are known. In addition, as a material using an inorganic thin film, a material in which a silicon oxide, an aluminum oxide thin film, or the like is laminated is known (for example, see Patent Document 1).
However, since the inorganic layer formed on the plastic film is very thin, it may deteriorate when post-processing such as printing on the inorganic thin film layer. For example, in the printing process, due to rubbing with the gravure roll and pigment particles contained in the ink, the inorganic layer may be damaged and the barrier property may be lowered. For this improvement, there is a method of coating an organic layer on an inorganic layer. A solution obtained by dissolving a coating agent in a solvent is applied and dried to form an organic layer. There is also a method using a vacuum process (see, for example, Patent Document 2).
 塗布方式では無機層と有機層との密着を改善するため種々材料を混ぜて、有機層形成を行えるが、真空プロセスを利用した一般的な方法では、蒸発温度が異なる2種類以上の物質を混合して蒸発させると蒸着材料の混合比と堆積した膜の組成がずれる。そこで、物質の蒸発温度より十分に温度を上げた加熱板に材料を少量ずつ接触させ瞬時に蒸発させるフラッシュ蒸着法で対応する。
 しかし、反応し易い有機物をフラッシュ蒸着すると加熱板で固着したりして安定性に問題があることがある。そこで混合せずに積層する方法が提案されている(例えば、許文献3参照)。
 しかし、この方法では液相のまま積層された2層の混ざり合いなど、常に一定にすることは難しい。また、二種類のモノマーを蒸発させる機構が必要になり装置が複雑になる。
In the coating method, organic layers can be formed by mixing various materials to improve the adhesion between the inorganic layer and the organic layer, but in a general method using a vacuum process, two or more substances with different evaporation temperatures are mixed. When evaporated, the mixing ratio of the vapor deposition materials and the composition of the deposited film are shifted. Therefore, a flash vapor deposition method in which the material is brought into contact with a heating plate whose temperature has been sufficiently raised from the evaporation temperature of the substance and evaporated instantly is used.
However, when a reactive organic substance is flash-deposited, it may be fixed by a heating plate and there may be a problem in stability. Then, the method of laminating | stacking without mixing is proposed (for example, refer permission document 3).
However, in this method, it is difficult to always make it constant, such as mixing of two layers laminated in a liquid phase. Further, a mechanism for evaporating two kinds of monomers is required, and the apparatus becomes complicated.
特許第2700019号公報Japanese Patent No. 2700019 特許第4604674号公報Japanese Patent No. 4,604,674 特開2006-95932号公報JP 2006-95932 A
 本発明は、上記問題点を解決するものであり、プラスチックフィルムの片面に無機層を設け、その上にシランカップリング剤を含む密着性に優れた有機層を積層した優れたバリア性をもつ透明バリアフィルムを製造する方法を提供するものである。 The present invention solves the above-mentioned problems, and has an excellent barrier property in which an inorganic layer is provided on one surface of a plastic film and an organic layer having excellent adhesion containing a silane coupling agent is laminated thereon. A method for producing a barrier film is provided.
 すなわち、本発明は、少なくともプラスチックフィルムの片面に無機層と有機層とをこの順に有する透明バリアフィルムの製造方法であって、有機層がアクリロイル基および/またはメタクリロイル基を持つ少なくとも二種類以上の化合物を架橋して形成されたものであり、且つ、アクリロイル基および/またはメタクリロイル基を持つ少なくとも二種類以上化合物のうち少なくとも一種類の化合物がシランカップリング剤であり、前記化合物を200℃以上、300℃以下に加熱された金属銅を用いたフラッシュ蒸着により液体有機層を形成した後に、電子線照射により硬化させることを特徴とする透明バリアフィルムの製造法である。 That is, the present invention is a method for producing a transparent barrier film having an inorganic layer and an organic layer in this order on at least one side of a plastic film, wherein the organic layer has at least two kinds of compounds having an acryloyl group and / or a methacryloyl group. And at least one compound of at least two or more compounds having an acryloyl group and / or a methacryloyl group is a silane coupling agent, and the compound is 200 ° C. or more, 300 A method for producing a transparent barrier film, comprising: forming a liquid organic layer by flash vapor deposition using metallic copper heated to a temperature of not higher than ° C .;
 この場合において、電子線の加速電圧が500V以上、10kV以下であることが好適である。 In this case, the acceleration voltage of the electron beam is preferably 500 V or more and 10 kV or less.
 本発明により、有機層と無機層との密着性に優れラミネートしたときの接着強度に優れ、 且つ、高性能なバリアフィルムが得られ、印刷や他フィルムとのラミネートなど加工後もバリア性が劣化することなく高い気密性を要求される包装材料、または、ガス遮断材料として使用することができる透明バリアフィルムを製造できる。 According to the present invention, an excellent adhesion strength between the organic layer and the inorganic layer is obtained, and a high-performance barrier film is obtained, and the barrier property is deteriorated even after processing such as printing or lamination with another film. Thus, it is possible to produce a transparent barrier film that can be used as a packaging material that requires high airtightness or a gas barrier material.
本発明の製造法による透明バリアフィルムの概略図Schematic of transparent barrier film produced by the production method of the present invention 本発明の製造法に用いる装置の一例の概略図Schematic of an example of an apparatus used in the production method of the present invention 本発明の製造法に用いる有機蒸着源の一例の概略図Schematic of an example of an organic vapor deposition source used in the production method of the present invention
 本発明の製造法を一例をあげて説明する。図1に本発明の製造法で作成した透明ガスバリアフィルムの積層体を示し、図2、図3に一例としての製造法で使用する製造装置をしめす。 The production method of the present invention will be described with an example. FIG. 1 shows a laminate of transparent gas barrier films produced by the production method of the present invention, and FIGS. 2 and 3 show production apparatuses used in the production method as an example.
(プラスチックフィルム)
本発明でいうプラスチックフィルム(1)とは、有機高分子を溶融押出して、必要に応じ、長手方向、および、または、幅方向に延伸、冷却、熱固定を施したフィルムであり、有機高分子としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ナイロン6、ナイロン4、ナイロン66、ナイロン12、ポリ塩化ビニール、ポリ塩化ビニリデン、ポリビニールアルコール、全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリスルフォン、ポリフェニレンスルフィド、ポリフェニレンオキサイドなどがあげられる。また、これらの(有機重合体)有機高分子は他の有機重合体を少量共重合したり、ブレンドしたりしてもよい。
(Plastic film)
The plastic film (1) referred to in the present invention is a film obtained by melt-extrusion of an organic polymer and stretching, cooling, and heat setting in the longitudinal direction and / or the width direction as necessary. As polyethylene, polypropylene, polyethylene terephthalate, polyethylene-2,6-naphthalate, nylon 6, nylon 4, nylon 66, nylon 12, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, wholly aromatic polyamide, polyamideimide, Examples thereof include polyimide, polyetherimide, polysulfone, polyphenylene sulfide, and polyphenylene oxide. These (organic polymers) organic polymers may be copolymerized or blended with a small amount of other organic polymers.
 さらにこの有機高分子には、公知の添加剤、例えば、紫外線吸収剤、帯電防止剤、可塑剤、滑剤、着色剤などが添加されていてもよく、その透明度は特に限定するものではないが、透明ガスバリアフィルムとして使用する場合には、50%以上の透過率をもつものが好ましい。
 本発明のプラスチックフィルム(1)は、本発明の目的を損なわない限りにおいて、薄膜層を積層するに先行して、該フィルムをコロナ放電処理、グロー放電処理、その他の表面粗面化処理を施してもよく、また、公知のアンカーコート処理、印刷、装飾が施されていてもよい。
Furthermore, known additives such as ultraviolet absorbers, antistatic agents, plasticizers, lubricants, colorants and the like may be added to the organic polymer, and the transparency thereof is not particularly limited. When used as a transparent gas barrier film, those having a transmittance of 50% or more are preferred.
As long as the object of the present invention is not impaired, the plastic film (1) of the present invention is subjected to corona discharge treatment, glow discharge treatment and other surface roughening treatment prior to laminating the thin film layer. Alternatively, a known anchor coat treatment, printing, or decoration may be applied.
 本発明におけるプラスチックフィルム(1)は、その厚さが1μm以上、300μm以下の範囲であることが好ましく、さらに好ましくは9μm以上、25μm以下の範囲である。 The thickness of the plastic film (1) in the present invention is preferably in the range of 1 μm to 300 μm, more preferably in the range of 9 μm to 25 μm.
(無機層)
 本発明でいう無機層(2)は、物質としては、Al、Si、Ti、Zn、Zr、Mg、Sn、Cu、Fe等の金属や、これら金属の酸化物、窒化物、フッ素物、硫化物等が挙げられ、具体的には、SiOx(x=1.0~2.0)、アルミナ、マグネシア、硫化亜鉛、チタニア、ジルコニア、酸化セリウム、あるいはこれらの混合物が例示される。無機層(1)は1層でもあるいは2層以上の積層体であってもよい。
(Inorganic layer)
The inorganic layer (2) referred to in the present invention includes, as materials, metals such as Al, Si, Ti, Zn, Zr, Mg, Sn, Cu, and Fe, and oxides, nitrides, fluorides, sulfides of these metals. Specific examples include SiOx (x = 1.0 to 2.0), alumina, magnesia, zinc sulfide, titania, zirconia, cerium oxide, or a mixture thereof. The inorganic layer (1) may be a single layer or a laminate of two or more layers.
 本発明では、特に好ましい無機層(2)としては酸化アルミニウムと酸化ケイ素とを蒸着して作成した複合酸化物層や酸化アルミニウムと酸化マグネシウムとを蒸着して作成した複合酸化物層が好ましい。
 酸化アルミニウムと酸化ケイ素とを蒸着して作成した複合酸化物の場合、無機化合物薄膜中に含まれる酸化アルミニウムの重量比率は特に限定されないが、無機化合物薄膜中に含まれる酸化アルミニウムおよび酸化ケイ素(酸化マグシウム)の合計100重量%に対し、酸化アルミニウムの比率が10重量%以上が好ましく、さらに20重量%以上が好ましく、さらに30重量%以上が好ましい。 また酸化アルミニウムの比率が90重量%以下が好ましく、さらに75重量%以下が好ましく、さらに65重量%以下であることが好ましい。
 酸化アルミニウムの比率が75重量%を超えると、柔軟性が乏しくなる傾向があるためハンドリングによる割れが生じ易く、安定したバリア性が得られ難くなる場合がある。一方、酸化アルミニウムの比率が30重量%未満であるとバリア性が低下する傾向にある。
In the present invention, a particularly preferable inorganic layer (2) is preferably a composite oxide layer prepared by vapor deposition of aluminum oxide and silicon oxide or a composite oxide layer prepared by vapor deposition of aluminum oxide and magnesium oxide.
In the case of a composite oxide prepared by vapor deposition of aluminum oxide and silicon oxide, the weight ratio of aluminum oxide contained in the inorganic compound thin film is not particularly limited, but aluminum oxide and silicon oxide (oxidized) contained in the inorganic compound thin film are not limited. The ratio of aluminum oxide is preferably 10% by weight or more, more preferably 20% by weight or more, and further preferably 30% by weight or more with respect to 100% by weight of the total (magnesium). The aluminum oxide ratio is preferably 90% by weight or less, more preferably 75% by weight or less, and further preferably 65% by weight or less.
If the ratio of aluminum oxide exceeds 75% by weight, the flexibility tends to be poor, so that cracking due to handling is likely to occur, and stable barrier properties may be difficult to obtain. On the other hand, when the ratio of aluminum oxide is less than 30% by weight, the barrier property tends to be lowered.
 本発明の無機層(2)の膜厚は、特に限定されないが、5~500nmが好ましく、さらに好ましくは8nm以上、100nm以下であり、無機層(2)の膜厚が5nm未満では、満足のいくガスバリア性が得られ難くなる場合があり、一方、500nmを超えて過度に厚くしても、それに相当するガスバリア性の向上の効果は得られず、耐屈曲性や製造コストの点でかえって不利となる。 The film thickness of the inorganic layer (2) of the present invention is not particularly limited, but is preferably 5 to 500 nm, more preferably 8 nm or more and 100 nm or less, and the inorganic layer (2) having a film thickness of less than 5 nm is satisfactory. However, even if the thickness exceeds 500 nm, the corresponding effect of improving the gas barrier property cannot be obtained, which is disadvantageous in terms of bending resistance and manufacturing cost. It becomes.
 本発明の無機層(2)の形成方法としては、公知の方法、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法や、PECVD等の化学蒸着法等が採用される。 As a method for forming the inorganic layer (2) of the present invention, a known method such as a physical vapor deposition method such as a vacuum vapor deposition method, a sputtering method or an ion plating method, a chemical vapor deposition method such as PECVD, or the like is employed.
 真空蒸着法においては、蒸着材料としてアルミニウム、珪素、チタン、マグネシウム、ジルコニウム、セリウム、亜鉛等の金属、また、SiOx(x=1.0~2.0)、アルミナ、マグネシア、硫化亜鉛、チタニア、ジルコニア等の化合物およびそれらの混合物が用いられる。加熱方法としては抵抗加熱、誘導加熱、電子線加熱等が採用される。また、反応ガスとして、酸素等を導入したり、オゾン添加、イオンアシスト等の手段を用いたりした反応性蒸着法を採用してもよい。 In the vacuum deposition method, the deposition material is a metal such as aluminum, silicon, titanium, magnesium, zirconium, cerium, zinc, SiOx (x = 1.0 to 2.0), alumina, magnesia, zinc sulfide, titania, Compounds such as zirconia and mixtures thereof are used. As the heating method, resistance heating, induction heating, electron beam heating or the like is employed. Moreover, you may employ | adopt the reactive vapor deposition method which introduce | transduced oxygen etc. as a reactive gas, or used means, such as ozone addition and ion assist.
(有機層)
 本発明で言う有機層(3)は、アクリロイル基および/またはメタクリロイル基を持つ少なくとも二種類以上の化合物を架橋して得られる。さらに、そのうちの少なくとも一種類の化合物がシランカップリング剤であることが必要である。このとき、シランカップリング剤の化合物の重量がアクリロイル基またはメタクリロイル基を持つ化合物の合計重量に対して5重量%以上であることが好ましい。
 アクリロイル基および/またはメタクリロイル基を有する化合物には、アクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤ではない化合物やアクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤である化合物があげられる。
(Organic layer)
The organic layer (3) referred to in the present invention is obtained by crosslinking at least two kinds of compounds having an acryloyl group and / or a methacryloyl group. Furthermore, at least one of the compounds needs to be a silane coupling agent. At this time, the weight of the compound of the silane coupling agent is preferably 5% by weight or more based on the total weight of the compound having an acryloyl group or a methacryloyl group.
Examples of the compound having an acryloyl group and / or a methacryloyl group include a compound having an acryloyl group and / or a methacryloyl group and not a silane coupling agent, and a compound having an acryloyl group and / or a methacryloyl group and a silane coupling agent.
 アクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤ではない化合物とは特に限定されるものではないが、例えばフェノキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルメタクリレート、メタクリル酸、グリシジルメタクリレート、2-メタクリロイロキシエチルアシッドホスフェート、ジエチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1.4-ブタンジオールジメタクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、トリエチレングリコールジメタクリレート、PEG#200ジメタクリレート、PEG#400ジメタクリレート、メトキシポリエチレングリコールメタクリレート、エトキシ-ジエチレングリコールアクリレート、メトキシ-トリエチレングリコールアクリレート、メトキシジプロピレングリコールアクリレート、2-ヒドロキシブチルアクリレート、2-ヒドロキシ-3フェノキシプロピルアクリレート、2-アクリロイロキシエチルコハク酸、2-アクリロイロキシエチルヘキサヒドロフタル酸、2-アクリロイロキシエチル-フタル酸、2-アクリロイルオキシエチルアシッドフォスフェート、トリエチレングリコールジアクリレート、PEG200#ジアクリレート、PEG400#ジアクリレート、PEG600#ジアクリレート、ポリテトラメチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールアクリル酸付加物、トリメチロールプロパントリアクリレート、EO変性トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレートなどを上げることができる。 The compound having an acryloyl group and / or a methacryloyl group and not a silane coupling agent is not particularly limited. For example, phenoxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl methacrylate, methacrylic acid, glycidyl methacrylate, 2-methacryloyloxyethyl acid phosphate, diethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1.4-butanediol dimethacrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate, Triethylene glycol dimethacrylate, PEG # 200 dimethacrylate, PEG # 400 dimethacrylate Methoxypolyethylene glycol methacrylate, ethoxy-diethylene glycol acrylate, methoxy-triethylene glycol acrylate, methoxydipropylene glycol acrylate, 2-hydroxybutyl acrylate, 2-hydroxy-3phenoxypropyl acrylate, 2-acryloyloxyethyl succinic acid, 2 -Acryloyloxyethyl hexahydrophthalic acid, 2-acryloyloxyethyl-phthalic acid, 2-acryloyloxyethyl acid phosphate, triethylene glycol diacrylate, PEG200 # diacrylate, PEG400 # diacrylate, PEG600 # diacrylate, Polytetramethylene glycol diacrylate, neopentyl glycol diacrylate, hydroxy Phosphoric acid neopentyl glycol acrylic acid adduct, trimethylolpropane triacrylate, EO modified trimethylolpropane triacrylate, and the like pentaerythritol triacrylate.
 アクリロイル基および/またはメタクリロイル基を持つシランカップリング剤である化合物とは、少なくともアクリロイル基またはメタクリロイル基と加水分解性基とを持つ有機珪素化合物を言う。例えば3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシランなどを上げることができる。 The compound which is a silane coupling agent having an acryloyl group and / or a methacryloyl group refers to an organosilicon compound having at least an acryloyl group or a methacryloyl group and a hydrolyzable group. For example, raising 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, etc. Can do.
 これらの化合物は、蒸着時の材料供給の観点から 20℃でのその粘度は500mPa・s以下が好ましい。さらに好ましくは200mPa・s以下である。
 安全性の面から皮膚一次刺激性指数(PII)が、2以下、好ましくは1以下が好ましい。
These compounds preferably have a viscosity at 20 ° C. of 500 mPa · s or less from the viewpoint of material supply during vapor deposition. More preferably, it is 200 mPa * s or less.
From the viewpoint of safety, the skin primary irritation index (PII) is 2 or less, preferably 1 or less.
 アクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤ではない化合物とアクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤である化合物の合計重量に対するアクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤である化合物の重量割合は、有機層に含まれる珪素原子の量を測定することにより、算出することができる。 Silane coupling agent having acryloyl group and / or methacryloyl group with respect to the total weight of the compound having acryloyl group and / or methacryloyl group and not silane coupling agent and compound having acryloyl group and / or methacryloyl group and silane coupling agent The weight ratio of the compound can be calculated by measuring the amount of silicon atoms contained in the organic layer.
 アクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤である化合物は、無機層と有機層との密着力の改善に寄与するが、含有量は5重量%以上が好ましい。さらに好ましくは10重量%以上である。アクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤である化合物の含有率が増えると密着力は向上するが、アクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤である化合物は高価でありまた、無機層との界面で反応できない過剰のものも増えるので50重量%以下が好ましい。40重量%以下がより好ましく、30重量%以下が最も好ましい。 The compound having an acryloyl group and / or a methacryloyl group and being a silane coupling agent contributes to improving the adhesion between the inorganic layer and the organic layer, but the content is preferably 5% by weight or more. More preferably, it is 10 weight% or more. As the content of the compound having an acryloyl group and / or methacryloyl group and being a silane coupling agent increases, the adhesion is improved, but the compound having an acryloyl group and / or methacryloyl group and being a silane coupling agent is expensive and Moreover, since the excess which cannot react at the interface with the inorganic layer also increases, 50% by weight or less is preferable. It is more preferably 40% by weight or less, and most preferably 30% by weight or less.
 有機層は、無機層の保護機能とシーラントなどと接着剤で張り付ける際の密着力改善の機能がある。保護機能を満足するためには、有機層は50nm以上が好ましい。50nm以下であると顔料インキに含まれる顔料粒子等から無機層を保護できない。また、150nm以上の膜厚があると保護機能は増すが、歪がまして密着力が低下する。 The organic layer has a protective function for the inorganic layer and a function for improving the adhesion when pasted with a sealant and an adhesive. In order to satisfy the protective function, the organic layer is preferably 50 nm or more. If the thickness is 50 nm or less, the inorganic layer cannot be protected from pigment particles contained in the pigment ink. Further, when the film thickness is 150 nm or more, the protective function is increased, but the distortion is increased and the adhesion is reduced.
 本発明で言うフラッシュ蒸着とは加熱した板等に蒸着する材料を少量ずつ接触させ、瞬時に蒸発させる方法をいう。一般的には加熱する板等の素材は耐熱さえあればよいが、加工性の観点から金属が好ましい。本発明で加熱板材料金属としては、少なくとも純度90%以上の銅が好ましい。他金属では本発明で用いるアクリロイル基またはメタクリロイル基を持つ化合物が加熱板で架橋してしまい分子量が上がり蒸発が難しくなる場合がある。蒸発しなかった材料は加熱板表面に付着する。付着した材料は高分子化が進み固形物になり、加熱板からの熱を遮断して蒸発量を減らし、蒸発効率を下げる。 The flash vapor deposition referred to in the present invention is a method in which a vapor deposition material is brought into contact with a heated plate or the like little by little and instantly evaporated. In general, a material such as a plate to be heated may have only heat resistance, but a metal is preferable from the viewpoint of workability. In the present invention, the heating plate material metal is preferably copper having a purity of at least 90%. In other metals, a compound having an acryloyl group or a methacryloyl group used in the present invention may be cross-linked by a heating plate, resulting in an increase in molecular weight and difficulty in evaporation. The material that has not evaporated adheres to the surface of the heating plate. The adhering material is polymerized and becomes a solid substance, which cuts off the heat from the heating plate to reduce the evaporation amount and lower the evaporation efficiency.
 加熱板を加熱する方法としては、公知の技術が使える。加熱板に蒸着材料が接触する反対面に熱接触がよいように電熱線を設置する方法、熱媒を循環する方法、IRヒーターで加熱する方法等があげられる。 A known technique can be used as a method of heating the heating plate. Examples include a method of installing a heating wire so that thermal contact is good on the opposite surface where the vapor deposition material contacts the heating plate, a method of circulating a heating medium, and a method of heating with an IR heater.
 加熱板の温度としては、液体供給として流動性がある500mPa・s以下の化合物に対して200℃以上が好ましい。フラッシュ蒸着としては高温が好ましいが、高すぎると化合物が分解し好ましくない。また、温度による加熱板の寸法変化など機械的な要因から300℃以下が好ましい。 The temperature of the heating plate is preferably 200 ° C. or higher for a compound of 500 mPa · s or less that has fluidity as a liquid supply. High temperature is preferable for flash vapor deposition, but if it is too high, the compound decomposes and is not preferable. Moreover, 300 degrees C or less is preferable from mechanical factors, such as a dimensional change of the heating plate with temperature.
 フラッシュ蒸着でプラスチックフィルムの無機層上に形成したアクリロイル基および/またはメタクリロイル基を持つ化合物の液体有機層を架橋硬化する方法としては、電子線照射による硬化が適している。紫外線照射による硬化法もあるが、化合物に光重合開始剤を混合しなくてはならず、この場合冷暗所の保管が必要となり問題である。 As a method of crosslinking and curing a liquid organic layer of a compound having an acryloyl group and / or a methacryloyl group formed on an inorganic layer of a plastic film by flash vapor deposition, curing by electron beam irradiation is suitable. Although there is a curing method by ultraviolet irradiation, a photopolymerization initiator must be mixed with the compound, and in this case, storage in a cool and dark place is necessary, which is a problem.
 電子線源としては公知の線源が使える。電子の加速度電圧としては500V以上が好ましい。500V以下では電子が化合物内部まで十分入らず、架橋開始に必要なラジカルの発生も十分にない。10kV以上の加速電圧では有機層を透過する電子が多くなり効率が落ちる。また、X線の発生も起こり安全衛生上も問題となる。 A known source can be used as the electron source. The acceleration voltage of electrons is preferably 500 V or higher. If it is 500 V or less, electrons do not sufficiently enter the compound, and radicals necessary for initiation of crosslinking are not sufficiently generated. At an acceleration voltage of 10 kV or more, the number of electrons that pass through the organic layer increases and efficiency decreases. In addition, the generation of X-rays also occurs, causing a problem in safety and health.
本発明の透明蒸着バリアフィルム製造法を概略図である図2、図3を使い説明する。基板のプラスチックフィルムのロールを巻出しロール(4)にセットする。巻き出されたプラスチックフィルム(1)はプラズマ処理器(5)を通過して表面を処理する。電子銃(6)により坩堝(7)内に入っているセラミックを加熱して蒸発させ、無機コーティングロール(8)上を走行しているプラスチックフィルムに無機層を形成する。 The transparent vapor deposition barrier film manufacturing method of the present invention will be described with reference to FIGS. The plastic film roll of the substrate is set on the unwinding roll (4). The unrolled plastic film (1) passes through the plasma processor (5) to treat the surface. The ceramic contained in the crucible (7) is heated and evaporated by the electron gun (6) to form an inorganic layer on the plastic film running on the inorganic coating roll (8).
アクリロイル基および/またはメタクリロイル基を持つ少なくとも二種類以上の化合物をからなり、且つ、そのうちの少なくとも一種類の化合物がシランカップリング剤である混合化合物(13)を、液体容器(14)に入れる。混合化合物(13)は液体ポンプ(15)により有機蒸着源(16)内部に移送される。移送した混合化合物(13)は、電熱線(17)により加熱した加熱板(18)に接触し蒸気となる。蒸気は凝縮しないように加熱してある有機蒸着源(16)内を移動し有機ノズル(9)に達する。 A mixed compound (13) comprising at least two or more kinds of compounds having an acryloyl group and / or a methacryloyl group, and at least one of which is a silane coupling agent, is placed in a liquid container (14). The mixed compound (13) is transferred into the organic vapor deposition source (16) by the liquid pump (15). The transferred mixed compound (13) comes into contact with the heating plate (18) heated by the heating wire (17) and becomes steam. The vapor moves in the organic vapor deposition source (16) heated so as not to condense and reaches the organic nozzle (9).
加熱された有機ノズル(9)から有機コーティングロール(10)上を走行する無機層を積層したプラスチックフィルムに蒸着する。無機層上には化合物混合物の液体層が形成される。形成された液体層に電子線照射装置(11)を使い電子線を照射して、架橋硬化する。このようにして無機層上に有機層を形成して巻取ロール(12)に巻き取られる。 It vapor-deposits on the plastic film which laminated | stacked the inorganic layer which drive | works on an organic coating roll (10) from the heated organic nozzle (9). A liquid layer of the compound mixture is formed on the inorganic layer. The formed liquid layer is irradiated with an electron beam using an electron beam irradiation device (11) and cured by crosslinking. In this way, an organic layer is formed on the inorganic layer and wound around the winding roll (12).
 以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。なお、各実施例で得られたフィルム特性は以下の方法により測定、評価した。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples. The film properties obtained in each example were measured and evaluated by the following methods.
(1)ラミネートの接着強度
 40μm厚のポリエチレンフィルム(東洋紡株式会社 L4102)をドライラミネート用接着剤(東洋モートン株式会社製 TM590、CAT56)を用いて、透明蒸着バリアフィルムと接着し、ラミネートフィルムを作成した。
ラミネートの接着強度はラミネートフィルムを15mm幅に切断して、ラミネートフィルムの一部を剥がし、万能材料試験機(テンシロン)を使用して300mm/minの速度で剥離片を引っ張り180°剥離を行い測定した。
(1) Adhesive strength of laminate A 40 μm thick polyethylene film (Toyobo Co., Ltd. L4102) was adhered to a transparent vapor-deposited barrier film using an adhesive for dry lamination (TM590, CAT56 manufactured by Toyo Morton Co., Ltd.) to produce a laminate film did.
The adhesive strength of the laminate is measured by cutting the laminate film to a width of 15 mm, peeling a part of the laminate film, using a universal material testing machine (Tensilon), pulling the peel piece at a speed of 300 mm / min, and peeling it 180 °. did.
(2)酸素透過量
 酸素透過量はJIS K7126-2 A法に準じて、酸素透過量測定装置(OXTRAN 2/21 MOCOM社製)を用意、温度23度、湿度65%RHの雰囲気下で測定した。
(2) Oxygen permeation amount Oxygen permeation amount is measured according to JIS K7126-2 A method by preparing an oxygen permeation amount measuring device (manufactured by OXTRAN 2/21 MOCOM) in an atmosphere of temperature 23 degrees and humidity 65% RH. did.
(3)無機層の膜厚、組成の測定
 無機膜の酸化アルミニウムおよび酸化ケイ素のそれぞれの含有量の組成の測定方法を下記に説明する。
 まず、酸化アルミニウムと酸化ケイ素とからなる無機化合物薄膜を持つフィルムを作成し、誘導結合プラズマ発光法(ICP法)で酸化アルミニウムと酸化ケイ素それぞれの付着量を求めた。求めた酸化アルミニウムと酸化ケイ素との付着量より、作成した無機酸化物薄膜の組成を算出した。
 膜厚は、無機酸化薄膜の密度がバルク密度の8割であるとし、かつ 酸化アルミニウムと酸化ケイ素とが混合された状態であってもそれぞれ体積を保つとして算出した。
 酸化アルミニウムの膜中の含有率wa(%)、酸化ケイ素の膜中の含有量ws(%)は、酸化アルミニウムの単位面積当たりの付着量をMa(g/cm)、酸化ケイ素の単位面積当たりの付着量をMm(g/cm)とすると、各々下記式(1)、(2)で求められる。
   wa=100×[Ma/(Ma+Mm)]  (1)
   ws=100-wa            (2)
 酸化アルミニウムの単位面積当たりの付着量をMa(g/cm)、そのバルクの密度をρa(3.97g/cm)とし、酸化ケイ素の単位面積当たりの付着量をMs(g/cm)、そのバルクの密度をρs(2.65g/cm)とすると、膜厚t(nm)は下記式(3)で求められる。
t=((Ma/(ρa×0.8)+Ms/(ρs×0.8))×10-7・・・式(3)膜厚、組成を規定した無機酸化薄膜を数種類作成し、蛍光X線装置で測定することにより検量線を作成した。
 蛍光X線分析装置((株)リガク製「ZSX100e」)を用いて、予め作成した検量線により膜厚組成を測定した。なお、励起X線管の条件として50kV、70mAとした。
(3) Measurement of film thickness and composition of inorganic layer A method for measuring the composition of each content of aluminum oxide and silicon oxide in the inorganic film will be described below.
First, a film having an inorganic compound thin film composed of aluminum oxide and silicon oxide was prepared, and the adhesion amounts of aluminum oxide and silicon oxide were determined by an inductively coupled plasma emission method (ICP method). The composition of the prepared inorganic oxide thin film was calculated from the obtained adhesion amount of aluminum oxide and silicon oxide.
The film thickness was calculated on the assumption that the density of the inorganic oxide thin film was 80% of the bulk density, and that the volume was maintained even when aluminum oxide and silicon oxide were mixed.
The content ratio wa (%) in the aluminum oxide film and the content ws (%) in the silicon oxide film are Ma (g / cm 2 ) as the adhesion amount per unit area of aluminum oxide, and the unit area of silicon oxide. When the amount of adhesion per unit is Mm (g / cm 2 ), the following formulas (1) and (2) are obtained.
wa = 100 × [Ma / (Ma + Mm)] (1)
ws = 100-wa (2)
The deposition amount per unit area of aluminum oxide is Ma (g / cm 2 ), the density of the bulk is ρa (3.97 g / cm 3 ), and the deposition amount per unit area of silicon oxide is Ms (g / cm 2). ), Where the bulk density is ρs (2.65 g / cm 3 ), the film thickness t (nm) is obtained by the following formula (3).
t = ((Ma / (ρa × 0.8) + Ms / (ρs × 0.8)) × 10 −7 ... Formula (3) Several types of inorganic oxide thin films that define the film thickness and composition are prepared and fluorescence is obtained. A calibration curve was prepared by measuring with an X-ray apparatus.
Using a fluorescent X-ray analyzer (“ZSX100e” manufactured by Rigaku Corporation), the film thickness composition was measured with a calibration curve prepared in advance. The conditions for the excitation X-ray tube were 50 kV and 70 mA.
(4)有機層の膜厚および組成の測定
 アクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤ではない化合物とアクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤である化合物の合計重量に対するアクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤である化合物の重量割合は、有機層に含まれる珪素原子の量を測定することにより、算出した。
 アクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤である化合物単独からなる電子線照射による硬化有機層を予め色々な厚みで形成する。この有機層を蛍光X線分析装置にて測定し、珪素原子の蛍光X線強度とシランカップリング剤である化合物単独からなる有機層厚みから検量線を作成した。
 アクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤ではない化合物とアクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤である化合物とを架橋共重合した有機層の膜厚を測定した。さらに蛍光X線で測定し、その値を用いて上記検量線からアクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤である化合物の相当膜厚を算出した。
 有機層の膜厚の測定方法としては、断面を透過型電子顕微鏡(TEM)により直接測定する方法がある。他にエリプソメーターにより干渉を利用して測定する方法も使用できるが、この場合TEMで求めた値と相関をとっておき、その値に換算する。
 蛍光X線の結果より算出したアクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤である化合物の相当膜厚を有機層の全体膜厚で除することにより、含有率を計算した。
 このとき、アクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤である化合物単独からなる有機層とアクリロイル基および/またはメタクリロイル基を持ちシランカップリング剤ではない化合物とアクリロイル基および/またはメタクリロイル基をシランカップリング剤である化合物とが架橋共重合した有機層の密度は同じとして計算した。
(4) Measurement of film thickness and composition of organic layer Acryloyl relative to the total weight of a compound having an acryloyl group and / or methacryloyl group and not a silane coupling agent and a compound having an acryloyl group and / or methacryloyl group and a silane coupling agent The weight ratio of the compound having a group and / or a methacryloyl group and being a silane coupling agent was calculated by measuring the amount of silicon atoms contained in the organic layer.
A cured organic layer is formed in advance with various thicknesses by irradiation with an electron beam comprising a compound having an acryloyl group and / or a methacryloyl group and being a silane coupling agent alone. This organic layer was measured with a fluorescent X-ray analyzer, and a calibration curve was prepared from the fluorescent X-ray intensity of silicon atoms and the thickness of the organic layer consisting of the compound alone as the silane coupling agent.
The film thickness of an organic layer obtained by crosslinking and copolymerizing a compound having an acryloyl group and / or a methacryloyl group and not a silane coupling agent and a compound having an acryloyl group and / or a methacryloyl group and a silane coupling agent was measured. Further, measurement was performed with fluorescent X-rays, and the equivalent film thickness of the compound having an acryloyl group and / or a methacryloyl group and being a silane coupling agent was calculated from the calibration curve using the value.
As a method for measuring the film thickness of the organic layer, there is a method in which a cross section is directly measured by a transmission electron microscope (TEM). In addition, a method of measuring using interference by an ellipsometer can be used. In this case, a correlation is obtained with the value obtained by TEM, and the value is converted into the value.
The content ratio was calculated by dividing the equivalent film thickness of the compound having an acryloyl group and / or methacryloyl group calculated from the result of fluorescent X-ray and being a silane coupling agent by the total film thickness of the organic layer.
At this time, an organic layer composed of a compound alone having an acryloyl group and / or a methacryloyl group and a silane coupling agent, a compound having an acryloyl group and / or a methacryloyl group and not a silane coupling agent, and an acryloyl group and / or a methacryloyl group The density of the organic layer crosslinked and copolymerized with the compound that is a silane coupling agent was calculated as the same.
(実施例1)
プラスチックフィルムとしてポリエチレンテレフタレートフィルム(東洋紡株式会社製 E5100 厚み12μm)を150m/minで走行させながら、坩堝の中に酸化アルミニウムと酸化シリコンとを別々に投入して電子銃にて個々に加熱し蒸着した。形成した無機層の厚みは13nm、酸化アルミニウム含有量41重量%であった。
 続けて無機層の上にPEG200#ジアクリレート(共栄社化学株式会社製 ライトエステル4EG) 9部とシランカップリング剤 3-メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製 KBM-503)1部とを混合した化合物を銅製加熱板の上に7ml/minの速度で滴下した。加熱板は電熱線により加熱されており加熱板裏に設置した熱電対により温度を250℃に制御している。200℃に加熱している有機ノズルから無機層上に混合化合物蒸気を当てた。形成された液体層に電子銃より加速電圧-8kV 電流400mAで電子を照射して架橋硬化した。
有機膜厚は77nmであった。表1に透明バリアフィルムの酸素透過量とラミネート強度を示す。表2に加熱板の状況を示す。
(Example 1)
While a polyethylene terephthalate film (E5100 thickness 12 μm, manufactured by Toyobo Co., Ltd.) was run as a plastic film at 150 m / min, aluminum oxide and silicon oxide were separately put into a crucible and heated individually with an electron gun for vapor deposition. . The formed inorganic layer had a thickness of 13 nm and an aluminum oxide content of 41% by weight.
Subsequently, 9 parts of PEG200 # diacrylate (Light Ester 4EG manufactured by Kyoeisha Chemical Co., Ltd.) and 1 part of silane coupling agent 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) are formed on the inorganic layer. Was added dropwise on a copper heating plate at a rate of 7 ml / min. The heating plate is heated by a heating wire, and the temperature is controlled at 250 ° C. by a thermocouple installed behind the heating plate. Mixed compound vapor was applied onto the inorganic layer from an organic nozzle heated to 200 ° C. The formed liquid layer was irradiated with electrons from an electron gun at an acceleration voltage of -8 kV and a current of 400 mA to be crosslinked and cured.
The organic film thickness was 77 nm. Table 1 shows the oxygen transmission amount and the laminate strength of the transparent barrier film. Table 2 shows the situation of the heating plate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(比較例1)
 実施例1において、銅製の加熱板を熱媒により110℃に加熱して1ml/minの速度で混合化合物を滴下した以外は、実施例1と同様にした。加熱板の状況を表2に記す。
(Comparative Example 1)
In Example 1, it carried out similarly to Example 1 except heating the copper heating plate to 110 degreeC with the heat medium, and dripping the mixed compound at the speed | rate of 1 ml / min. The state of the heating plate is shown in Table 2.
(比較例2)
 比較例1において、アルミニウム製の加熱板を使った以外は、比較例1と同様にした。加熱板の状況を観察し、表2に記す。
(Comparative Example 2)
Comparative Example 1 was the same as Comparative Example 1 except that an aluminum heating plate was used. Observe the condition of the heating plate and record it in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明により、耐印刷性に優れて、密着性に優れた透明バリアフィルムを提供できる。 According to the present invention, a transparent barrier film having excellent printing resistance and excellent adhesion can be provided.
1:プラスチックフィルム
2:無機層
3:有機層
4:巻出しロール
5:プラズマ処理器
6:電子銃
7:坩堝
8:無機コーティングロール
9:有機ノズル
10:有機コーティングロール
11:電子線照射装置
12:巻取ロール
13:混合化合物
14:液体容器
15:液体ポンプ
16:有機蒸着源
17:電熱線
18:加熱板
1: Plastic film 2: Inorganic layer 3: Organic layer 4: Unwinding roll 5: Plasma treatment device 6: Electron gun 7: Crucible 8: Inorganic coating roll 9: Organic nozzle 10: Organic coating roll 11: Electron beam irradiation device 12 : Winding roll 13: mixed compound 14: liquid container 15: liquid pump 16: organic vapor deposition source 17: heating wire 18: heating plate

Claims (2)

  1.  少なくともプラスチックフィルムの片面に無機層と有機層とをこの順に有する透明バリアフィルムの製造方法であって、有機層がアクリロイル基および/またはメタクリロイル基を持つ少なくとも二種類以上の化合物が架橋されて形成されたものであり、且つ、アクリロイル基および/またはメタクリロイル基を持つ少なくとも二種類以上の化合物のうち少なくとも一種類がシランカップリング剤であり、前記化合物を200℃以上、300℃以下に加熱された金属銅を用いたフラッシュ蒸着法により液体有機層を形成した後に、電子線照射により硬化させることを特徴とする透明バリアフィルムの製造法。 A method for producing a transparent barrier film having an inorganic layer and an organic layer in this order on at least one side of a plastic film, wherein the organic layer is formed by crosslinking at least two kinds of compounds having an acryloyl group and / or a methacryloyl group. In addition, at least one of at least two kinds of compounds having an acryloyl group and / or a methacryloyl group is a silane coupling agent, and the compound is heated to 200 ° C. or higher and 300 ° C. or lower. A method for producing a transparent barrier film, comprising forming a liquid organic layer by flash vapor deposition using copper, and then curing the film by electron beam irradiation.
  2.  電子線の加速電圧が500V以上、10kV以下である請求項1に記載の透明蒸着バリアフィルムの製造法。 The method for producing a transparent vapor-deposited barrier film according to claim 1, wherein the acceleration voltage of the electron beam is 500 V or more and 10 kV or less.
PCT/JP2016/054248 2015-02-20 2016-02-15 Method for producing transparent barrier film WO2016133040A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016509161A JP6614134B2 (en) 2015-02-20 2016-02-15 Production method of transparent barrier film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-031698 2015-02-20
JP2015031698 2015-02-20

Publications (1)

Publication Number Publication Date
WO2016133040A1 true WO2016133040A1 (en) 2016-08-25

Family

ID=56688893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054248 WO2016133040A1 (en) 2015-02-20 2016-02-15 Method for producing transparent barrier film

Country Status (2)

Country Link
JP (1) JP6614134B2 (en)
WO (1) WO2016133040A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247335A (en) * 2009-04-10 2010-11-04 Fujifilm Corp Gas-barrier film and method for producing the same
JP2010247369A (en) * 2009-04-13 2010-11-04 Fujifilm Corp Method for producing gas-barrier laminate and gas-barrier laminate
JP2012176519A (en) * 2011-02-25 2012-09-13 Fujifilm Corp Barrier laminate and method of manufacturing the same
WO2014103756A1 (en) * 2012-12-25 2014-07-03 コニカミノルタ株式会社 Gas-barrier film
JP2014172231A (en) * 2013-03-07 2014-09-22 Fujifilm Corp Barriering laminate and gas barrier film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247335A (en) * 2009-04-10 2010-11-04 Fujifilm Corp Gas-barrier film and method for producing the same
JP2010247369A (en) * 2009-04-13 2010-11-04 Fujifilm Corp Method for producing gas-barrier laminate and gas-barrier laminate
JP2012176519A (en) * 2011-02-25 2012-09-13 Fujifilm Corp Barrier laminate and method of manufacturing the same
WO2014103756A1 (en) * 2012-12-25 2014-07-03 コニカミノルタ株式会社 Gas-barrier film
JP2014172231A (en) * 2013-03-07 2014-09-22 Fujifilm Corp Barriering laminate and gas barrier film

Also Published As

Publication number Publication date
JP6614134B2 (en) 2019-12-04
JPWO2016133040A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP4677692B2 (en) Transparent gas barrier material and method for producing the same
JP6411707B2 (en) Gas barrier laminate
JP2014069389A (en) Gass barrier laminate film
JP7115501B2 (en) Laminated barrier film.
JP2010076288A (en) Gas-barrier laminated film
JP4941149B2 (en) Gas barrier laminated film
JP2014223788A (en) Moisture and heat resistant gas barrier film and method of producing the same
JP2002264274A (en) Transparent gas-barrier laminated film
JP2014205855A (en) Composition for forming gas barrier resin layer, gas barrier film formed by using the same and method for producing the same
JP5695505B2 (en) Gas barrier film and method for producing the same
JP2010173134A (en) Gas barrier laminated film
JP2010184409A (en) Method of forming gas barrier laminated film
JP6614134B2 (en) Production method of transparent barrier film
JP4835125B2 (en) Gas barrier laminated film
WO2016133039A1 (en) Transparent barrier film and method for producing same
JP4941073B2 (en) Gas barrier laminated film
WO2017047346A1 (en) Electronic device and method for sealing electronic device
JP6938913B2 (en) Manufacturing method of transparent barrier film
JP5093391B2 (en) Method for producing gas barrier film
JP5870962B2 (en) Gas barrier laminated film
JP4349078B2 (en) Manufacturing method of strong adhesion vapor deposition film and strong adhesion vapor deposition film
JP2020163857A (en) Protective film, film laminate using the same and method for producing the same
JP2021186982A (en) Aluminum vapor deposition film and method for producing the same
JP6272389B2 (en) Gas barrier laminate
JP2008068474A (en) Gas barrier laminated film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016509161

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16752426

Country of ref document: EP

Kind code of ref document: A1