WO2016132958A1 - 送信装置及び受信装置 - Google Patents

送信装置及び受信装置 Download PDF

Info

Publication number
WO2016132958A1
WO2016132958A1 PCT/JP2016/053744 JP2016053744W WO2016132958A1 WO 2016132958 A1 WO2016132958 A1 WO 2016132958A1 JP 2016053744 W JP2016053744 W JP 2016053744W WO 2016132958 A1 WO2016132958 A1 WO 2016132958A1
Authority
WO
WIPO (PCT)
Prior art keywords
encoded
analog signal
analog signals
unit
encoded analog
Prior art date
Application number
PCT/JP2016/053744
Other languages
English (en)
French (fr)
Inventor
智春 山▲崎▼
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2017500614A priority Critical patent/JP6633608B2/ja
Publication of WO2016132958A1 publication Critical patent/WO2016132958A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/45Soft decoding, i.e. using symbol reliability information
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/47Error detection, forward error correction or error protection, not provided for in groups H03M13/01 - H03M13/37
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system

Definitions

  • the present invention relates to a transmission device and a reception device used in a wireless transmission system.
  • a transmission apparatus that employs a digital transmission method performs signal processing of quantization, binary coding, and symbol mapping when generating a transmission signal from an analog signal.
  • the quantization is a process of approximately replacing an analog signal that is a continuous quantity with a discrete value such as an integer.
  • the binary coding is a process for converting a discrete value obtained by quantization into a binary number (that is, a bit string).
  • Symbol mapping is a process of converting a bit string obtained by binary coding into a transmission symbol (that is, digital modulation).
  • the digital transmission method is less likely to cause transmission errors, but it is necessary to increase the amount of transmission data in order to increase the resolution. Therefore, it is conceivable that an analog signal that can tolerate a transmission error is transmitted as it is without being subjected to binary encoding.
  • Non-Patent Document 1 a technique using chaos coding has been proposed as error correction coding for enhancing error tolerance in an analog transmission system.
  • the transmission apparatus recursively encodes an input analog signal (N ⁇ 1) times (N ⁇ 2) using a chaotic function, and includes N encoded analog signals together with the original input analog signal.
  • An analog signal sequence is transmitted to the receiving device.
  • different chaotic functions are connected in parallel, each input analog signal is recursively encoded (N ⁇ 1) times, and an analog signal sequence composed of 2N encoded analog signals is transmitted to the receiving apparatus.
  • the transmission device is used in a wireless transmission system.
  • the transmitting device recursively encodes an input analog signal (N ⁇ 1) times (N ⁇ 2) using a chaotic function, thereby generating N encoded analog signals together with the input analog signal.
  • a transmitting unit that transmits the K encoded analog signals selected by the puncturing unit to a receiving device.
  • the receiving device is used in a wireless transmission system.
  • the receiving apparatus recursively encodes an input analog signal (N ⁇ 1) times (N ⁇ 2) by a chaotic function, and generates N (N ⁇ 2) codes generated together with the input analog signal.
  • a receiver for receiving K (K ⁇ N) encoded analog signals from the encoded analog signals, and likelihood calculation of (NK) encoded analog signals decimated by the transmitter And a decoding unit that estimates the input analog signal by a maximum likelihood decoding method based on the K encoded analog signals.
  • the transmission device is used in a wireless transmission system.
  • the transmitting device recursively encodes an input analog signal (N ⁇ 1) times (N ⁇ 2) using a chaotic function, thereby generating N encoded analog signals together with the input analog signal.
  • the chaos encoding unit applies different functions according to the attribute of the signal to be encoded at the time of encoding.
  • the transmitting unit transmits the attribute corresponding to at least some of the N encoded analog signals to the receiving apparatus as decoding auxiliary information.
  • the receiving device is used in a wireless transmission system.
  • the receiving apparatus recursively encodes an input analog signal (N ⁇ 1) times (N ⁇ 2) by a chaotic function, and generates N (N ⁇ 2) codes generated together with the input analog signal.
  • a receiving unit that receives at least some of the encoded analog signals from the transmission device, and decoding that estimates the input analog signal by a maximum likelihood decoding method based on the encoded analog signals received by the receiving unit A section.
  • different functions are applied depending on the attribute of the signal to be encoded.
  • the receiving unit receives, as decoding auxiliary information, the attribute corresponding to at least a part of the N encoded analog signals from the transmission apparatus.
  • the decoding unit calculates the likelihood only for the attribute received by the receiving unit.
  • FIG. 1 is a block diagram illustrating a wireless transmission system according to a first embodiment. It is a block diagram which shows the structural example of a transmission part. It is a figure for demonstrating an input analog signal. It is a figure for demonstrating the chaos encoding algorithm 1. FIG. It is a figure for demonstrating the chaos encoding algorithm 2. FIG. It is a figure for demonstrating operation
  • FIG. It is a figure for demonstrating the effect of 1st Embodiment. It is a figure which shows the example of a change of the thinning-out process (puncturing) by the puncture part which concerns on the example 1 of a change of 1st Embodiment.
  • an object of the embodiment is to provide a transmission device and a reception device capable of reducing the amount of transmission data while suppressing a decrease in error correction performance when chaos encoding is applied to an analog transmission method. .
  • the transmission device is used in a wireless transmission system.
  • the transmitting device recursively encodes an input analog signal (N ⁇ 1) times (N ⁇ 2) using a chaotic function, thereby generating N encoded analog signals together with the input analog signal.
  • a transmitting unit that transmits the K encoded analog signals selected by the puncturing unit to a receiving device.
  • the puncturing unit preferentially selects the N-th encoded analog signal obtained last from among the N encoded analog signals.
  • the puncturing unit preferentially selects a first encoded analog signal corresponding to the input analog signal from among the N encoded analog signals.
  • the chaos encoding unit applies different functions according to the attribute of the signal to be encoded at the time of encoding.
  • the transmitting unit transmits the attribute corresponding to at least some of the N encoded analog signals to the receiving apparatus as decoding auxiliary information.
  • the attribute is a positive / negative attribute that is a positive value or a negative value.
  • the receiving apparatus is used in a wireless transmission system.
  • the receiving apparatus recursively encodes an input analog signal (N ⁇ 1) times (N ⁇ 2) by a chaotic function, and generates N (N ⁇ 2) codes generated together with the input analog signal.
  • a receiver for receiving K (K ⁇ N) encoded analog signals from the encoded analog signals, and likelihood calculation of (NK) encoded analog signals decimated by the transmitter And a decoding unit that estimates the input analog signal by a maximum likelihood decoding method based on the K encoded analog signals.
  • the K encoded analog signals include the Nth encoded analog signal obtained at the end of the N encoded analog signals.
  • the K encoded analog signals include a first encoded analog signal corresponding to the input analog signal among the N encoded analog signals.
  • the receiving unit receives, as decoding auxiliary information, the attribute corresponding to at least a part of the N encoded analog signals from the transmission apparatus.
  • the decoding unit calculates the likelihood only for the attribute received by the receiving unit.
  • the attribute is a positive / negative attribute that is a positive value or a negative value.
  • the transmission device is used in a wireless transmission system.
  • the transmitting device recursively encodes an input analog signal (N ⁇ 1) times (N ⁇ 2) using a chaotic function, thereby generating N encoded analog signals together with the input analog signal.
  • the chaos encoding unit applies different functions according to the attribute of the signal to be encoded at the time of encoding.
  • the transmitting unit transmits the attribute corresponding to at least some of the N encoded analog signals to the receiving apparatus as decoding auxiliary information.
  • the receiving apparatus is used in a wireless transmission system.
  • the receiving apparatus recursively encodes an input analog signal (N ⁇ 1) times (N ⁇ 2) by a chaotic function, and generates N (N ⁇ 2) codes generated together with the input analog signal.
  • a receiving unit that receives at least some of the encoded analog signals from the transmission device, and decoding that estimates the input analog signal by a maximum likelihood decoding method based on the encoded analog signals received by the receiving unit A section.
  • different functions are applied depending on the attribute of the signal to be encoded.
  • the receiving unit receives, as decoding auxiliary information, the attribute corresponding to at least a part of the N encoded analog signals from the transmission apparatus.
  • the decoding unit calculates the likelihood only for the attribute received by the receiving unit.
  • FIG. 1 is a block diagram showing a wireless transmission system according to the first embodiment.
  • the wireless transmission system includes a transmission device 100 and a reception device 200.
  • the transmission device 100 and the reception device 200 communicate via a wireless channel.
  • the wireless transmission system is a mobile communication system
  • one of the transmission device 100 and the reception device 200 is provided in the user terminal, and the other is provided in the base station.
  • the wireless transmission system is a mobile communication system.
  • the transmission device 100 includes a chaos encoding unit 110, a puncturing unit 120, and a transmission unit 130.
  • the chaos encoding unit 110 recursively encodes the input analog signal by a chaos function (N ⁇ 1) times (N ⁇ 2), so that N encoded analog signals are combined with the original input analog signal.
  • Chaotic coding has a property (so-called butterfly effect) that a slight difference in an initial value (input signal) gives a large fluctuation to an output. Utilizing such properties, the input signal can be estimated with high accuracy on the receiving side.
  • a chaotic encoding algorithm for example, “Baker ’s Map” or “Tent Map” can be used. Details of the chaos encoding algorithm will be described later.
  • the puncturing unit 120 selects K (K ⁇ N) encoded analog signals from among the N encoded analog signals and thins out (NK) encoded analog signals. In other words, the puncturing unit 120 selectively selects only a part (K encoded analog signals) of a plurality of encoded analog signals (N encoded analog signals) generated by the chaos encoding unit 110. Output. In this way, the puncturing unit 120 thins out (NK) encoded analog signals, so that the amount of transmission data can be reduced.
  • the puncturing unit 120 preferentially selects the Nth encoded analog signal obtained last among the N encoded analog signals.
  • the error correction performance increases as the number of encoding repetitions increases. Therefore, by selecting at least the Nth encoded analog signal, it is possible to reduce the amount of transmission data while suppressing a decrease in error correction performance.
  • the puncturing unit 120 preferentially selects the first encoded analog signal corresponding to the input analog signal among the N encoded analog signals.
  • the error correction performance decreases as the number of encoding repetitions increases. Therefore, by transmitting the first encoded analog signal corresponding to the input analog signal, it is possible to suppress a decrease in error correction performance when the state of the radio channel is poor.
  • the transmitting unit 130 transmits the K encoded analog signals selected by the puncturing unit 120 to the receiving device 200. Since the transmitting unit 130 transmits K encoded analog signals to the receiving apparatus 200 via the wireless channel, fluctuation occurs in the wireless channel.
  • the transmission unit 130 directly converts the encoded analog signal into a transmission signal without binary encoding of the encoded analog signal.
  • FIG. 2A is a block diagram illustrating a configuration example 1 of the transmission unit 130
  • FIG. 2B is a block diagram illustrating a configuration example 2 of the transmission unit 130.
  • the transmission unit 130 converts an encoded analog signal into an IQ symbol by amplitude modulation / phase modulation or modulation on two independent axes on the IQ plane.
  • a mapping processing unit 131A is included.
  • Transmitting section 130 also includes a precoder holding section 132A that holds a precoder (precoder matrix) known on the receiving side, and a precoding processing section 133A that applies (multiplies) the precoder to an IQ symbol and outputs a transmission symbol. , May further be included.
  • the transmission unit 130 includes an IQ symbol mapping processing unit 131B that converts a reference signal into a transmission symbol, and a precoder generation unit 132B that generates an encoded analog signal as a precoder. And a precoding processing unit 133B that applies (multiplies) an analog signal (precoder) to the IQ symbol to generate a transmission symbol.
  • the processing content of the transmission unit 130 is described in detail in International Publication No. 2014 / 156,956 by the present applicant.
  • the receiving device 200 includes a receiving unit 210 and a decoding unit 220.
  • the reception unit 210 receives K encoded analog signals (K transmission symbols) from the transmission device 100.
  • the first encoded analog signal corresponding to the input analog signal (transmission symbol) may be included in addition to the K encoded analog signals.
  • the reception unit 220 may receive a reference signal from the transmission device 100.
  • the receiving unit 220 performs channel estimation based on the reference signal from the transmission device 100. Based on the result of channel estimation, receiving section 220 performs symbol determination of the transmission symbol received from transmitting apparatus 100, and detects an encoded analog signal. For example, the receiving unit 220 detects the precoder applied to the transmission symbol as an encoded analog signal by correlating the reference signal and the transmission symbol. However, the transmission symbol received from the transmission apparatus 100 varies in the radio channel. The receiving unit 220 outputs the detected encoded analog signal to the decoding unit 220.
  • the decoding unit 220 estimates the original input analog signal by the maximum likelihood decoding method based on the K encoded analog signals subjected to the channel fluctuation. Specifically, the decoding unit 220 estimates an input analog signal before being subjected to channel fluctuation.
  • decoding section 220 uses K encoded analog signals for likelihood calculation without using (NK) encoded analog signals thinned out in transmitting apparatus 100 for likelihood calculation. Then, the original input analog signal is estimated.
  • FIG. 3 is a diagram for explaining an input analog signal according to the first embodiment.
  • the input analog signal according to the first embodiment is channel state information (CSI) obtained by channel estimation (that is, channel estimation of a downlink radio channel) in the user terminal.
  • CSI channel state information
  • the CSI is a channel response matrix, a covariance matrix, diagonal components of the covariance matrix, absolute value information thereof, or a compressed version thereof.
  • the input analog signal (CSI) may be a quantized value.
  • the input analog signal may be a value sensed by the user terminal (ambient temperature, atmospheric pressure, humidity, etc.).
  • the transmission apparatus 100 transmits an analog signal that can tolerate a transmission error as it is without being subjected to binary encoding.
  • error correction coding Coding
  • the transmission apparatus 100 applies chaos coding as error correction coding.
  • the chaos encoding unit 110 of the transmission apparatus 100 recursively encodes the input analog signal (N ⁇ 1) times (N ⁇ 2) using the chaos function, and N signals are combined with the original input analog signal.
  • the encoded analog signal is generated.
  • FIG. 4 is a diagram for explaining the chaos encoding algorithm 1 according to the first embodiment.
  • the chaos encoding unit 110 uses “Baker's Map”.
  • the input analog signal is (x 0 , y 0 ). That is, the input analog signal is composed of two values “x” and “y”. However, the input analog signal may be composed of one value (for example, “x” only).
  • Chaotic coding unit 110 by the following equation (1), the input analog signal (x 0, y 0) of a plurality of encoded analog signal (x 0, y 0), (x 1, y 1) ... (x n-1 , y n-1 ) is generated.
  • FIG. 4B shows an encoded analog signal (x 1 , y 1 ) covered when the input analog signal (x 0 , y 0 ) is (0.15, 0.72) in the chaos encoding algorithm 1. x n-1 , y n-1 ).
  • the chaos encoding unit 110 generates an encoded analog signal sequence composed of a plurality of encoded analog signals (N encoded analog signals) by such repetitive encoding.
  • the puncturing unit 120 selects K (K ⁇ N) encoded analog signals from among the N encoded analog signals and thins out (NK) encoded analog signals. For example, when four encoded analog signals are generated, the second encoded analog signal (x 1 , y 1 ) and the third encoded analog signal (x 2 , y 2 ) are thinned out, and the first The encoded analog signal (x 0 , y 0 ) and the fourth encoded analog signal (x 3 , y 3 ) are selected. In this case, the transmission unit 130 transmits the first encoded analog signal (x 0 , y 0 ) and the fourth encoded analog signal (x 3 , y 3 ) selected by the puncture unit 120.
  • FIG. 5 is a diagram for explaining the chaos encoding algorithm 2 according to the first embodiment.
  • the chaos encoding unit 110 uses “Mirrored Baker's Map”.
  • the chaos encoding unit 110 generates the encoded analog signal sequence 1 based on the normal input analog signal (x 0 , y 0 ), “x” and “x” “Baker's Map II” that generates the encoded analog signal sequence 2 based on the inverted input analog signal (y 0 ⁇ x 0 , x 0 ⁇ y 0 ) with “y” replaced is used.
  • “Baker's Map I” and “Baker's Map II” generate encoded analog signal sequences 1 and 2 according to Equation (1).
  • FIG. 5B is a diagram illustrating an encoded analog signal when the input analog signal (x 0 , y 0 ) is (0.15, 0.72) in the chaos encoding algorithm 2.
  • the encoded analog signal sequence 1 generated by “Baker's Map I” is the same as the case of the encoding algorithm 1 described above.
  • “Baker's Map II” generates the encoded analog signal sequence 2 from the inverted input analog signals (y 0 ⁇ x 0 , x 0 ⁇ y 0 ) as follows.
  • the chaos encoding unit 110 generates encoded analog signal sequences 1 and 2 using “Baker's Map I” and “Baker's Map II” through such repeated encoding.
  • “Mirrored Baker's Map” can improve the error correction performance for “y”, but increases the amount of transmission data compared to “Baker's Map”.
  • the transmission data amount is four times as much as when only the input analog signal is transmitted.
  • FIG. 6 is a diagram for explaining the operation of the puncturing unit 120 in the case of the chaos encoding algorithm 2.
  • the puncturing unit 120 performs the second encoded analog signal (x 1 , y 1 ) and the third encoded analog signal (x 2 , y 2 ) for “Baker's Map I”. Are selected, and the first encoded analog signal (x 0 , y 0 ) and the fourth encoded analog signal (x 3 , y 3 ) are selected. Similarly for “Baker's Map II”, the puncturing unit 120 thins out the second encoded analog signal (x 1 , y 1 ) and the third encoded analog signal (x 2 , y 2 ). The fourth encoded analog signal (x 0 , y 0 ) and the fourth encoded analog signal (x 3 , y 3 ) are selected. In the example of FIG. 6, the total number of encoded analog signals to be transmitted is three.
  • the puncture unit 120 thins out (NK) encoded analog signals, whereby the amount of transmission data can be reduced.
  • the N-th encoded analog signal obtained last among N encoded analog signals is preferentially selected and transmitted, thereby reducing the amount of transmission data while suppressing a decrease in error correction performance. can do.
  • FIG. 7 is a diagram for explaining the effect of the first embodiment.
  • N 1 (Step size 1)
  • N 2 (Step size 2)
  • N 3 (Step size 3)
  • MSE mean square error
  • SNR signal-to-noise ratio
  • the MSE of Step size 3 is the lowest.
  • the MSE in the order of Step size 2 and Step size 1 is the lowest, and the MSE of Repetition 1/3 is the highest.
  • Step size is preset.
  • “Step size” may be changed according to the state of the radio channel (uplink radio channel).
  • the transmission device 100 preferably notifies the reception device 200 of “Step size”.
  • FIG. 8 is a diagram illustrating modification examples 1 to 3 of the thinning process (puncturing) performed by the puncturing unit 120.
  • the chaos encoding unit 110 generates five encoded analog signals for two systems of an input analog signal and an inverted input analog signal. Therefore, when puncturing is not performed, a total of 10 encoded analog signals are transmitted by the transmission unit 130.
  • the puncturing unit 120 includes the first encoded analog signal (inverted input analog signal) of the encoded analog signal sequence 2 and the encoded analog signal sequence.
  • the second and fourth encoded analog signals 1 and 2 are thinned out. Therefore, a total of five encoded analog signals are transmitted by the transmission unit 130.
  • the puncturing unit 120 includes the first encoded analog signal (inverted input analog signal) of the encoded analog signal sequence 2 and the encoded analog signal sequence.
  • the third and fourth encoded analog signals 1 and 2 are thinned out. Therefore, a total of five analog signals are transmitted by the transmission unit 130.
  • the puncturing unit 120 thins out the second to fourth encoded analog signals of the encoded analog signal series 1 and 2, respectively.
  • the puncturing unit 120 duplicates the first encoded analog signal (input analog signal) of the encoded analog signal sequence 1 and outputs the first encoded analog signal in duplicate. Therefore, a total of five analog signals are transmitted by the transmission unit 130.
  • the number of encoded analog signals transmitted by the transmission unit 130 can be halved.
  • the input analog signal has the following conditions.
  • “Baker ’s MAP” has a constraint condition of “x> -1.0 and y ⁇ 1.0”.
  • “Mirrored baker ’s MAP” has a constraint of “ ⁇ 1.0 ⁇ x ⁇ +1.0 and ⁇ 1.0 ⁇ y ⁇ +1.0”.
  • FIG. 9 is a diagram illustrating a wireless transmission system according to the second modification of the first embodiment.
  • the transmission device 100 includes a scaling unit 105
  • the reception device 200 includes a descaling unit 230.
  • the transmission device 100 includes a scaling unit 105
  • the reception device 200 includes a descaling unit 230.
  • the transmission device 100 includes a scaling unit 105
  • the reception device 200 includes a descaling unit 230.
  • the transmission device 100 includes a scaling unit 105
  • the reception device 200 includes a descaling unit 230.
  • the scaling unit 105 performs scaling (compression) so that most of the input analog signals (for example, 95%) are within the range of ( ⁇ 1.0, +1.0).
  • the scaling unit 105 outputs the scaled input analog signal to the chaos encoding unit 110.
  • the descaling unit 230 performs a process (descaling) opposite to the scaling unit 105 on the input analog signal estimated by the decoding unit 220.
  • FIG. 10 is a block diagram showing a wireless transmission system according to the second embodiment.
  • the radio transmission system recursively encodes an input analog signal (N ⁇ 1) times (N ⁇ 2) using a chaos function, thereby obtaining the original input analog signal.
  • a chaos encoding unit 110 that generates N encoded analog signals
  • a transmission unit 130 that transmits at least a part of the encoded analog signals of the N encoded analog signals to the reception device 200.
  • the transmitting apparatus 100 selects K (K ⁇ N) encoded analog signals from among N encoded analog signals and thins out (NK) encoded analog signals.
  • a puncture unit 120 is provided.
  • the transmission unit 130 transmits K encoded analog signals to the reception device 200.
  • the puncture unit 120 is not an essential configuration, and the puncture unit 120 may be omitted.
  • transmitting section 130 transmits N encoded analog signals to receiving apparatus 200.
  • the transmission apparatus 100 includes the puncture unit 120 will be mainly described.
  • the chaos encoding unit 110 applies different functions according to the attribute of the signal to be encoded at the time of encoding. Specifically, as shown in Expression (1), the function A applied when “x i-1 ” is less than 0 and the analog signal “x i-1 ” to be encoded are This is different from the function B applied when it is 0 or more.
  • the decoding unit 220 performs maximum likelihood decoding corresponding to the algorithm in the transmitting device 100.
  • FIG. 11 is a diagram for explaining maximum likelihood decoding by the decoding unit 220.
  • the encoded analog signal in the encoded analog signal sequence transmitted by the transmitting apparatus 100 is represented as (x, y), and the encoded analog signal in the encoded analog signal sequence received by the receiving apparatus 100 is represented by ( Rx, Ry).
  • FIG. 11 illustrates the case where the encoded analog signal sequence is composed of five encoded analog signals.
  • the encoded analog signal sequence transmitted by the transmission device 100 is received by the reception device 200 after being subjected to fluctuations in the radio channel. If the variation in the radio channel is large, it may happen that the sign of “x” in the encoded analog signal is reversed.
  • the decoding unit 220 performs a full search for “positive / negative” of “x” for each of the five encoded analog signals in the received analog signal series. There are many patterns in the “positive / negative” combinations that can be taken by “x” in five encoded analog signals (that is, “x” positive / negative attribute sequence candidates). The decoding unit 220 estimates the most probable (x ′, y ′) from the received analog signal sequence for each pattern, and finally estimates the most probable (x ′, y ′) among all patterns. As a result. “Positive” includes “0”.
  • the transmission unit 130 transmits attributes (positive / negative attributes) corresponding to at least some of the encoded analog signals among the N encoded analog signals to the reception device 200 as decoding auxiliary information.
  • the transmission unit 130 transmits the positive / negative attribute of at least one encoded analog signal as decoding auxiliary information.
  • the receiving unit 210 receives from the transmitting apparatus 100 positive / negative attributes corresponding to at least some of the encoded analog signals among the N encoded analog signals as decoding auxiliary information.
  • the decoding unit 220 calculates the likelihood only for the positive / negative attribute received by the receiving unit 210. That is, the decoding unit 220 determines the positive / negative attribute of the received analog signal based on the auxiliary decoding information. Thereby, it is possible to avoid a large estimation error due to a determination error of the positive / negative attribute.
  • FIG. 12 is a diagram for explaining a specific example of the operation according to the second embodiment.
  • the puncturing unit 120 includes the first encoded analog signal (inverted input analog signal) of the encoded analog signal sequence 2 and the second and second encoded analog signals 1 and 2, respectively.
  • the third encoded analog signal is thinned out. Therefore, a total of three encoded analog signals are transmitted by the transmission unit 130.
  • the transmission unit 130 includes the positive / negative attribute (positive / negative code) of at least one encoded analog signal in the encoded analog signal sequence 1 and at least one in the encoded analog signal sequence 2.
  • the positive / negative attribute (positive / negative sign) of the encoded analog signal is transmitted as decoding auxiliary information.
  • the transmission unit 130 includes the positive / negative attributes of all the encoded analog signals in the encoded analog signal sequence 1 and all the signals in the encoded analog signal sequence 2.
  • the positive / negative attribute of the encoded analog signal is transmitted as decoding auxiliary information.
  • the transmission unit 130 determines the positive / negative attribute of the first and fourth (last) encoded analog signals for each of the encoded analog signal sequences 1 and 2. Is transmitted as decoding auxiliary information.
  • the transmission unit 130 for each of the encoded analog signal sequences 1 and 2, has the positive / negative attribute of the first and third (halfway) encoded analog signals. Is transmitted as decoding auxiliary information.
  • the transmission unit 130 transmits the positive / negative attribute of the first encoded analog signal of each of the encoded analog signal sequences 1 and 2 as decoding auxiliary information. .
  • the decoding assistance information may be transmitted by an analog transmission method or a digital transmission method.
  • the decoding auxiliary information may be configured as a bit string (bitmap) in which “positive” is “1” and “negative” is “0”, for example.
  • the transmission unit 130 transmits the positive / negative attribute of at least one encoded analog signal as decoding auxiliary information. Thereby, it is possible to avoid a large estimation error due to a determination error of the positive / negative attribute.
  • the blocks (for example, the chaos encoding unit 110, the puncturing unit 120, and the transmission unit 130) of the transmission device 100 in the above-described embodiment may be configured by a processor (controller). Further, the block may be implemented by hardware or software (program). The same applies to the blocks of the receiving apparatus 200 (for example, the receiving unit 220 and the decoding unit 220).
  • the wireless transmission system is a mobile communication system
  • the wireless transmission system may be a system different from the mobile communication system.
  • the wireless transmission system may be a wireless LAN system or a broadcasting system.
  • the present invention is useful in the communication field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Error Detection And Correction (AREA)

Abstract

 送信装置は、無線伝送システムにおいて用いられる。送信装置は、カオス関数により入力アナログ信号を再帰的に(N-1)回(N≧2)符号化することにより、元の入力アナログ信号と合せてN個の符号化アナログ信号を生成するカオス符号化部と、N個の符号化アナログ信号のうちK個(K<N)の符号化アナログ信号を選択するとともに、(N-K)個の符号化アナログ信号を間引くパンクチャ部と、パンクチャ部により選択されたK個の符号化アナログ信号を受信装置に送信する送信部と、を備える。

Description

送信装置及び受信装置
 本発明は、無線伝送システムにおいて用いられる送信装置及び受信装置に関する。
 近年、無線伝送システムにおいてデジタル伝送方式が主流になっている。デジタル伝送方式を採用する送信装置は、アナログ信号から送信信号を生成する場合に、量子化、二進符号化、及びシンボルマッピングの各信号処理を行う。
 ここで量子化とは、連続量であるアナログ信号を整数等の離散値に近似的に置換する処理である。二進符号化とは、量子化により得られた離散値を二進数(すなわち、ビット列)に変換する処理である。シンボルマッピングとは、二進符号化により得られたビット列を送信シンボルに変換(すなわち、デジタル変調)する処理である。
 デジタル伝送方式は、伝送エラーが生じ難いものの、分解能を上げるためには伝送データ量を増やす必要があるため、チャネル容量を逼迫する。よって、伝送エラーを許容し得るアナログ信号については、二進符号化することなく、アナログ信号のまま送信することが考えられる。
 また、アナログ伝送方式において、エラー耐性を高めるための誤り訂正符号化として、カオス符号化を使用する技術が提案されている(非特許文献1参照)。具体的には、送信装置は、カオス関数により入力アナログ信号を再帰的に(N-1)回(N≧2)符号化し、元の入力アナログ信号と合せてN個の符号化アナログ信号からなるアナログ信号系列を受信装置に送信する。あるいは、異なるカオス関数を並列に連結し、各々入力アナログ信号を再帰的に(N-1)回符号化し、2N個の符号化アナログ信号からなるアナログ信号系列を受信装置に送信する。
K. Xie, and J. Li, "Chaotic analog error correction codes: The mirrored baker’s codes," IEEE Global Commun. Conf. (GLOBECOM), Miami, FL, Dec. 2010
 第1の特徴に係る送信装置は、無線伝送システムにおいて用いられる。前記送信装置は、カオス関数により入力アナログ信号を再帰的に(N-1)回(N≧2)符号化することにより、前記入力アナログ信号と合せてN個の符号化アナログ信号を生成するカオス符号化部と、前記N個の符号化アナログ信号のうちK個(K<N)の符号化アナログ信号を選択するとともに、(N-K)個の符号化アナログ信号を間引くパンクチャ部と、前記パンクチャ部により選択された前記K個の符号化アナログ信号を受信装置に送信する送信部と、を備える。
 第2の特徴に係る受信装置は、無線伝送システムにおいて用いられる。前記受信装置は、カオス関数により入力アナログ信号を再帰的に(N-1)回(N≧2)符号化することにより前記入力アナログ信号と合せて生成されたN個(N≧2)の符号化アナログ信号のうちK個(K<N)の符号化アナログ信号を送信装置から受信する受信部と、前記送信装置において間引かれた(N-K)個の符号化アナログ信号を尤度計算に使用せずに、前記K個の符号化アナログ信号に基づいて最尤復号法により前記入力アナログ信号を推定する復号部と、を備える。
 第3の特徴に係る送信装置は、無線伝送システムにおいて用いられる。前記送信装置は、カオス関数により入力アナログ信号を再帰的に(N-1)回(N≧2)符号化することにより、前記入力アナログ信号と合せてN個の符号化アナログ信号を生成するカオス符号化部と、前記N個の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号を受信装置に送信する送信部と、を備える。前記カオス符号化部は、符号化の際に、該符号化の対象となる信号の属性に応じて異なる関数を適用している。前記送信部は、前記N個の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号に対応する前記属性を復号補助情報として前記受信装置に送信する。
 第4の特徴に係る受信装置は、無線伝送システムにおいて用いられる。前記受信装置は、カオス関数により入力アナログ信号を再帰的に(N-1)回(N≧2)符号化することにより前記入力アナログ信号と合せて生成されたN個(N≧2)の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号を送信装置から受信する受信部と、前記受信部が受信した前記符号化アナログ信号に基づいて最尤復号法により前記入力アナログ信号を推定する復号部と、を備える。前記送信装置における符号化の際に、該符号化の対象となる信号の属性に応じて異なる関数が適用されている。前記受信部は、前記N個の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号に対応する前記属性を復号補助情報として前記送信装置から受信する。前記復号部は、前記受信部が受信した前記属性についてのみ尤度を計算する。
第1実施形態に係る無線伝送システムを示すブロック図である。 送信部の構成例を示すブロック図である。 入力アナログ信号を説明するための図である。 カオス符号化アルゴリズム1を説明するための図である。 カオス符号化アルゴリズム2を説明するための図である。 カオス符号化アルゴリズム2の場合のパンクチャ部の動作を説明するための図である。 第1実施形態の効果を説明するための図である。 第1実施形態の変更例1に係るパンクチャ部による間引き処理(パンクチャリング)の変更例を示す図である。 第1実施形態の変更例2に係る無線伝送システムを示す図である。 第2実施形態に係る無線伝送システムを示すブロック図である。 復号部による最尤復号を説明するための図である。 第2実施形態に係る動作の具体例を説明するための図である。
 [実施形態の概要]
 背景技術において、アナログ伝送方式にカオス符号化を適用する場合において、十分な誤り訂正性能を得ようとすると、符号化の繰り返し回数「N」を多くしなければならない。よって、伝送データ量が増大し、チャネル容量を逼迫してしまう。特に、カオス関数を並列に連結して2N個の符号化アナログ信号を生成する場合には、そのような問題が顕著になる。
 そこで、実施形態は、アナログ伝送方式にカオス符号化を適用する場合において、誤り訂正性能の低下を抑制しつつ、伝送データ量を削減可能とする送信装置及び受信装置を提供することを目的とする。
 第1実施形態及び第2実施形態に係る送信装置は、無線伝送システムにおいて用いられる。前記送信装置は、カオス関数により入力アナログ信号を再帰的に(N-1)回(N≧2)符号化することにより、前記入力アナログ信号と合せてN個の符号化アナログ信号を生成するカオス符号化部と、前記N個の符号化アナログ信号のうちK個(K<N)の符号化アナログ信号を選択するとともに、(N-K)個の符号化アナログ信号を間引くパンクチャ部と、前記パンクチャ部により選択された前記K個の符号化アナログ信号を受信装置に送信する送信部と、を備える。
 第1実施形態及び第2実施形態において、前記パンクチャ部は、前記N個の符号化アナログ信号のうち最後に得られたN番目の符号化アナログ信号を優先的に選択する。
 第1実施形態及び第2実施形態において、前記パンクチャ部は、前記N個の符号化アナログ信号のうち前記入力アナログ信号に相当する1番目の符号化アナログ信号を優先的に選択する。
 第2実施形態において、前記カオス符号化部は、符号化の際に、該符号化の対象となる信号の属性に応じて異なる関数を適用している。前記送信部は、前記N個の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号に対応する前記属性を復号補助情報として前記受信装置に送信する。
 第2実施形態において、前記属性とは、正の値であるか又は負の値であるかの正負属性である。
 第1実施形態及び第2実施形態に係る受信装置は、無線伝送システムにおいて用いられる。前記受信装置は、カオス関数により入力アナログ信号を再帰的に(N-1)回(N≧2)符号化することにより前記入力アナログ信号と合せて生成されたN個(N≧2)の符号化アナログ信号のうちK個(K<N)の符号化アナログ信号を送信装置から受信する受信部と、前記送信装置において間引かれた(N-K)個の符号化アナログ信号を尤度計算に使用せずに、前記K個の符号化アナログ信号に基づいて最尤復号法により前記入力アナログ信号を推定する復号部と、を備える。
 第1実施形態及び第2実施形態において、前記K個の符号化アナログ信号は、前記N個の符号化アナログ信号のうち最後に得られたN番目の符号化アナログ信号を含む。
 第1実施形態及び第2実施形態において、前記K個の符号化アナログ信号は、前記N個の符号化アナログ信号のうち前記入力アナログ信号に相当する1番目の符号化アナログ信号を含む。
 第2実施形態において、前記送信装置における符号化の際に、該符号化の対象となる信号の属性に応じて異なる関数が適用されている。前記受信部は、前記N個の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号に対応する前記属性を復号補助情報として前記送信装置から受信する。前記復号部は、前記受信部が受信した前記属性についてのみ尤度を計算する。
 第2実施形態において、前記属性とは、正の値であるか又は負の値であるかの正負属性である。
 第2実施形態に係る送信装置は、無線伝送システムにおいて用いられる。前記送信装置は、カオス関数により入力アナログ信号を再帰的に(N-1)回(N≧2)符号化することにより、前記入力アナログ信号と合せてN個の符号化アナログ信号を生成するカオス符号化部と、前記N個の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号を受信装置に送信する送信部と、を備える。前記カオス符号化部は、符号化の際に、該符号化の対象となる信号の属性に応じて異なる関数を適用している。前記送信部は、前記N個の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号に対応する前記属性を復号補助情報として前記受信装置に送信する。
 第2実施形態に係る受信装置は、無線伝送システムにおいて用いられる。前記受信装置は、カオス関数により入力アナログ信号を再帰的に(N-1)回(N≧2)符号化することにより前記入力アナログ信号と合せて生成されたN個(N≧2)の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号を送信装置から受信する受信部と、前記受信部が受信した前記符号化アナログ信号に基づいて最尤復号法により前記入力アナログ信号を推定する復号部と、を備える。前記送信装置における符号化の際に、該符号化の対象となる信号の属性に応じて異なる関数が適用されている。前記受信部は、前記N個の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号に対応する前記属性を復号補助情報として前記送信装置から受信する。前記復号部は、前記受信部が受信した前記属性についてのみ尤度を計算する。
 [第1実施形態]
 (無線伝送システム)
 以下において、第1実施形態に係る無線伝送システムについて説明する。図1は、第1実施形態に係る無線伝送システムを示すブロック図である。
 図1に示すように、第1実施形態に係る無線伝送システムは、送信装置100及び受信装置200を備える。
 送信装置100及び受信装置200は、無線チャネルを介して通信を行う。例えば、無線伝送システムが移動通信システムである場合、送信装置100及び受信装置200のうち、一方がユーザ端末に設けられ、他方が基地局に設けられる。以下においては、無線伝送システムが移動通信システムである場合を主として想定する。
 (送信装置)
 図1に示すように、送信装置100は、カオス符号化部110、パンクチャ部120、及び送信部130を備える。
 カオス符号化部110は、カオス関数により入力アナログ信号を再帰的に(N-1)回(N≧2)符号化することにより、元の入力アナログ信号と合せてN個の符号化アナログ信号を生成する。カオス符号化は、初期値(入力信号)の僅かな違いが出力に大きな変動を与えるという性質(いわゆる、バタフライ効果)を有する。このような性質を利用して、受信側で高精度に入力信号を推定できるようにする。このようなカオス符号化アルゴリズムとしては、例えば「Baker’s Map」又は「Tent Map」を使用できる。カオス符号化アルゴリズムの詳細については後述する。
 パンクチャ部120は、N個の符号化アナログ信号のうちK個(K<N)の符号化アナログ信号を選択するとともに、(N-K)個の符号化アナログ信号を間引く。換言すると、パンクチャ部120は、カオス符号化部110により生成された複数の符号化アナログ信号(N個の符号化アナログ信号)のうち一部(K個の符号化アナログ信号)のみを選択的に出力する。このように、パンクチャ部120が(N-K)個の符号化アナログ信号を間引くことにより、伝送データ量を削減することができる。
 パンクチャ部120は、N個の符号化アナログ信号のうち最後に得られたN番目の符号化アナログ信号を優先的に選択することが好ましい。無線チャネルの状態が良好である場合、符号化の繰り返し数が多いほど、誤り訂正性能が高くなる。よって、少なくともN番目の符号化アナログ信号を選択することにより、誤り訂正性能の低下を抑制しつつ、伝送データ量を削減することができる。
 また、パンクチャ部120は、N個の符号化アナログ信号のうち入力アナログ信号に相当する1番目の符号化アナログ信号を優先的に選択することが好ましい。無線チャネルの状態が劣悪である場合、符号化の繰り返し数が多いほど、誤り訂正性能が低くなる。よって、入力アナログ信号に相当する1番目の符号化アナログ信号も送信することにより、無線チャネルの状態が劣悪である場合における誤り訂正性能の低下を抑制することができる。
 送信部130は、パンクチャ部120により選択されたK個の符号化アナログ信号を受信装置200に送信する。送信部130が無線チャネルを介してK個の符号化アナログ信号を受信装置200に送信するため、無線チャネルにおいて変動が生じる。
 送信部130は、符号化アナログ信号を二進符号化せずに符号化アナログ信号を直接的に送信信号に変換する。図2(a)は送信部130の構成例1を示すブロック図であり、図2(b)は送信部130の構成例2を示すブロック図である。
 図2(a)に示すように、構成例1において、送信部130は、振幅変調位相変調、又はIQ平面上の独立な2軸に対する変調により、符号化アナログ信号をIQシンボルに変換するIQシンボルマッピング処理部131Aを含む。また、送信部130は、受信側で既知であるプレコーダ(プレコーダ行列)を保持するプレコーダ保持部132Aと、当該プレコーダをIQシンボルに適用(乗算)して送信シンボルを出力するプレコーディング処理部133Aと、をさらに含んでもよい。
 図2(b)に示すように、構成例2において、送信部130は、基準信号を送信シンボルに変換するIQシンボルマッピング処理部131Bと、符号化アナログ信号をプレコーダとして生成するプレコーダ生成部132Bと、IQシンボルにアナログ信号(プレコーダ)を適用(乗算)して送信シンボルを生成するプレコーディング処理部133Bと、を含む。
 なお、送信部130の処理内容については、本出願人による国際公開第2014/156956号に詳細に記載されている。
 (受信装置)
 図1に示すように、受信装置200は、受信部210及び復号部220を備える。
 受信部210は、K個の符号化アナログ信号(K個の送信シンボル)を送信装置100から受信する。K個の符号化アナログ信号にはく、入力アナログ信号(送信シンボル)に相当する1番目の符号化アナログ信号が含まれていてもよい。また、受信部220は、送信装置100から参照信号を受信してもよい。
 受信部220は、送信装置100からの参照信号に基づいてチャネル推定を行う。受信部220は、チャネル推定の結果に基づいて、送信装置100から受信した送信シンボルのシンボル判定を行い、符号化アナログ信号を検出する。例えば、受信部220は、参照信号と送信シンボルとの相関をとることによって、送信シンボルに適用されているプレコーダを符号化アナログ信号として検出する。但し、送信装置100から受信した送信シンボルは、無線チャネルにおいて変動が生じる。受信部220は、検出した符号化アナログ信号を復号部220に出力する。
 復号部220は、チャネル変動を受けたK個の符号化アナログ信号に基づいて、最尤復号法により元の入力アナログ信号を推定する。具体的には、復号部220は、チャネル変動を受ける前の入力アナログ信号を推定する。ここで、復号部220は、送信装置100において間引かれた(N-K)個の符号化アナログ信号を尤度計算に使用せずに、K個の符号化アナログ信号を尤度計算に使用して、元の入力アナログ信号を推定する。
 (入力アナログ信号)
 以下において、第1実施形態に係る入力アナログ信号について説明する。ここでは、送信装置100がユーザ端末に設けられ、受信装置200が基地局に設けられる場合を想定する。
 図3は、第1実施形態に係る入力アナログ信号を説明するための図である。
 図3に示すように、第1実施形態に係る入力アナログ信号は、ユーザ端末におけるチャネル推定(すなわち、下り無線チャネルのチャネル推定)により得られたチャネル状態情報(CSI)である。ここでCSIは、チャネル応答行列、共分散行列、共分散行列の対角成分、これらの絶対値情報、あるいはこれらを圧縮したもの等である。入力アナログ信号(CSI)は、量子化された値であってもよい。
 或いは、入力アナログ信号は、ユーザ端末でセンシングされた値(周囲の気温・気圧・湿度等)であってもよい。
 このように、送信装置100は、伝送エラーを許容し得るアナログ信号については、二進符号化することなく、アナログ信号のまま送信する。ここでアナログ信号について誤り訂正符号化(Coding)を適用することにより、エラー耐性を高めることが可能である。送信装置100は、誤り訂正符号化としてカオス符号化を適用する。
 (カオス符号化アルゴリズム)
 以下において、第1実施形態に係るカオス符号化アルゴリズムについて説明する。上述したように、送信装置100のカオス符号化部110は、カオス関数により入力アナログ信号を再帰的に(N-1)回(N≧2)符号化し、元の入力アナログ信号と合せてN個の符号化アナログ信号を生成する。
 (1)カオス符号化アルゴリズム1
 図4は、第1実施形態に係るカオス符号化アルゴリズム1を説明するための図である。
 図4(a)に示すように、カオス符号化アルゴリズム1において、カオス符号化部110は、「Baker’s Map」を使用する。ここでは、入力アナログ信号が(x0,y0)である場合を想定する。すなわち、入力アナログ信号は、「x」及び「y」の2つの値により構成される。但し、入力アナログ信号は、1つの値(例えば「x」のみ)により構成されてもよい。
 カオス符号化部110は、下記の式(1)により、入力アナログ信号(x0,y0)から複数の符号化アナログ信号(x0,y0),(x1,y1)…(xn-1,yn-1)を生成する。
Figure JPOXMLDOC01-appb-M000001
 
 式(1)に示すように、「Baker’s Map」においては、符号化の対象となるアナログ信号の正負属性に応じて異なる関数を適用する。具体的には、「xi-1」が0未満である場合に適用される関数Aと、符号化の対象となるアナログ信号「xi-1」が0以上である場合に適用される関数Bと、が異なっている。このように、「xi-1」に応じて関数を異ならせることにより、「xi-1」に対する出力「xi」の変化を大きくすることができる。これにより、「x」についての誤り訂正性能が高められる。
 図4(b)は、カオス符号化アルゴリズム1において入力アナログ信号(x0,y0)が(0.15,0.72)である場合の符号化アナログ信号(x1,y1)…(xn-1,yn-1)を示す図である。
 図4(b)に示すように、入力アナログ信号(x0,y0)中の「x0」=0.15は、0以上の値である。よって、カオス符号化部110は、関数Bにより入力アナログ信号(x0,y0)から符号化アナログ信号(x1,y1)=(0.7,0.14)を生成する。
 次に、符号化アナログ信号(x1,y1)中の「x1」=0.7は、0以上の値である。よって、カオス符号化部110は、関数Bにより符号化アナログ信号(x1,y1)から符号化アナログ信号(x2,y2)=(-0.4,0.43)を生成する。
 次に、符号化アナログ信号(x2,y2)中の「x2」=-0.4は、0未満の値である。よって、カオス符号化部110は、関数Aにより符号化アナログ信号(x2,y2)から符号化アナログ信号(x3,y3)=(0.2,-0.285)を生成する。
 カオス符号化部110は、このような繰り返し符号化により、複数の符号化アナログ信号(N個の符号化アナログ信号)からなる符号化アナログ信号系列を生成する。
 パンクチャ部120は、N個の符号化アナログ信号のうちK個(K<N)の符号化アナログ信号を選択するとともに、(N-K)個の符号化アナログ信号を間引く。例えば、4個の符号化アナログ信号が生成される場合、2番目の符号化アナログ信号(x1,y1)及び3番目の符号化アナログ信号(x2,y2)を間引き、1番目の符号化アナログ信号(x0,y0)及び4番目の符号化アナログ信号(x3,y3)を選択する。この場合、送信部130は、パンクチャ部120により選択された1番目の符号化アナログ信号(x0,y0)及び4番目の符号化アナログ信号(x3,y3)を送信する。
 (2)カオス符号化アルゴリズム2
 図5は、第1実施形態に係るカオス符号化アルゴリズム2を説明するための図である。
 図5(a)に示すように、カオス符号化アルゴリズム2において、カオス符号化部110は、「Mirrored Baker’s Map」を使用する。
 上述した「Baker’s Map」は、条件分岐が「x」のみであるため、「x」についての誤り訂正性能が高められる。しかしながら、「y」についての誤り訂正性能を高めることができない。これに対し、「Mirrored Baker’s Map」は、入力の「x」と「y」とを入れ替えて結合する。これにより、入れ替えられた「y」が式(1)における「x」とみなされることにより、「y」についての誤り訂正性能も高めることができる。
 具体的には、カオス符号化部110は、通常の入力アナログ信号(x0,y0)に基づいて符号化アナログ信号系列1を生成する「Baker’s Map I」と、「x」と「y」とを入れ替えた反転入力アナログ信号(y0→x0,x0→y0)に基づいて符号化アナログ信号系列2を生成する「Baker’s Map II」と、を使用する。「Baker’s Map I」及び「Baker’s Map II」は、式(1)により符号化アナログ信号系列1及び2を生成する。
 図5(b)は、カオス符号化アルゴリズム2において入力アナログ信号(x0,y0)が(0.15,0.72)である場合の符号化アナログ信号を示す図である。
 図5(b)に示すように、「Baker’s Map I」が生成する符号化アナログ信号系列1は、上述した符号化アルゴリズム1の場合と同じである。
 これに対し、「Baker’s Map II」は、以下のようにして反転入力アナログ信号(y0→x0,x0→y0)から符号化アナログ信号系列2を生成する。
 まず、入力アナログ信号(x0,y0)中の「x0」=0.72は、0以上の値である。よって、カオス符号化部110は、関数Bにより入力アナログ信号(x0,y0)から符号化アナログ信号(x1,y1)=(-0.44,0.425)を生成する。
 次に、符号化アナログ信号(x1,y1)中の「x1」=-0.44は、0未満の値である。よって、カオス符号化部110は、関数Aにより符号化アナログ信号(x1,y1)から符号化アナログ信号(x2,y2)=(0.12,-0.2875)を生成する。
 次に、符号化アナログ信号(x2,y2)中の「x2」=0.12は、0以上の値である。よって、カオス符号化部110は、関数Bにより符号化アナログ信号(x2,y2)から符号化アナログ信号(x3,y3)=(0.76,0.64375)を生成する。
 カオス符号化部110は、このような繰り返し符号化により、「Baker’s Map I」及び「Baker’s Map II」により符号化アナログ信号系列1及び2を生成する。
 「Mirrored Baker’s Map」は、「y」についての誤り訂正性能を高めることができるものの、「Baker’s Map」に比べて伝送データ量が増えてしまう。
 ここで、「Baker’s Map」により4個の符号化アナログ信号を生成する場合を想定する。この場合、入力アナログ信号のみを送信する場合に比べて、4倍の伝送データ量になる。
 さらに、「Mirrored Baker’s Map」において、「Baker’s Map I」により4個の符号化アナログ信号を生成し、「Baker’s Map II」により4個の符号化アナログ信号を生成する場合、送信すべき符号化アナログ信号は合計で8個になる。ここで、「x」と「y」とを入れ替えた反転入力アナログ信号(y0→x0,x0→y0)については、通常の入力アナログ信号(x0,y0)と同じ値の組み合わせであるため、送信を省略可能である。それでも、送信すべき符号化アナログ信号は合計で7個であり、入力アナログ信号のみを送信する場合に比べて、7倍の伝送データ量になる。
 図6は、カオス符号化アルゴリズム2の場合のパンクチャ部120の動作を説明するための図である。
 図6に示すように、パンクチャ部120は、「Baker’s Map I」について、2番目の符号化アナログ信号(x1,y1)及び3番目の符号化アナログ信号(x2,y2)を間引き、1番目の符号化アナログ信号(x0,y0)及び4番目の符号化アナログ信号(x3,y3)を選択する。「Baker’s Map II」についても同様に、パンクチャ部120は、2番目の符号化アナログ信号(x1,y1)及び3番目の符号化アナログ信号(x2,y2)を間引き、1番目の符号化アナログ信号(x0,y0)及び4番目の符号化アナログ信号(x3,y3)を選択する。図6の例では、送信すべき符号化アナログ信号は合計3個で済んでいる。
 (第1実施形態のまとめ)
 上述したように、パンクチャ部120が(N-K)個の符号化アナログ信号を間引くことにより、伝送データ量を削減することができる。特に、N個の符号化アナログ信号のうち最後に得られたN番目の符号化アナログ信号を優先的に選択して送信することにより、誤り訂正性能の低下を抑制しつつ、伝送データ量を削減することができる。
 図7は、第1実施形態の効果を説明するための図である。図7(a)に示すように、「Mirrored Baker’s Map」において、N=1(Step size 1)、N=2(Step size 2)、N=3(Step size 3)のそれぞれについて、チャネル品質指標の1つである信号雑音比(SNR)に対する平均二乗誤差(MSE)をシミュレーションにより評価する。また、同じ入力アナログ信号を3回繰り返し送信(Repetition 1/3)した場合を比較例として挙げる。
 図7(b)に示すように、SNRが高い場合、すなわち無線チャネルの状態が良好である場合、Step size 3のMSEが最も低くなっている。次いで、Step size 2、Step size 1の順にMSEが低く、Repetition 1/3のMSEが最も高い。
 一方、SNRが低い場合、すなわち無線チャネルの状態が劣悪である場合、Step size 1及びRepetition 1/3のMSEが低くなっており、Step size 2、Step size 3のMSEが高い。
 上述した実施形態において、「Step size」が事前設定されていることを想定していた。しかしながら、無線チャネル(上り無線チャネル)の状態に応じて、「Step size」を変更してもよい。この場合、送信装置100は、「Step size」を受信装置200に通知することが好ましい。
 [第1実施形態の変更例1]
 図8は、パンクチャ部120による間引き処理(パンクチャリング)の変更例1乃至3を示す図である。図8において、カオス符号化部110は、入力アナログ信号及び反転入力アナログ信号の2系統について、5個の符号化アナログ信号を生成している。よって、パンクチャリングを行わない場合、送信部130が送信する符号化アナログ信号は合計10個である。
 図8(a)に示すように、パンクチャリングの変更例1において、パンクチャ部120は、符号化アナログ信号系列2の1番目の符号化アナログ信号(反転入力アナログ信号)と、符号化アナログ信号系列1及び2のそれぞれの2番目及び4番目の符号化アナログ信号と、を間引く。よって、送信部130が送信する符号化アナログ信号は合計5個である。
 図8(b)に示すように、パンクチャリングの変更例2において、パンクチャ部120は、符号化アナログ信号系列2の1番目の符号化アナログ信号(反転入力アナログ信号)と、符号化アナログ信号系列1及び2のそれぞれの3番目及び4番目の符号化アナログ信号と、を間引く。よって、送信部130が送信するアナログ信号は合計5個である。
 図8(c)に示すように、パンクチャリングの変更例3において、パンクチャ部120は、符号化アナログ信号系列1及び2のそれぞれの2番目乃至4番目の符号化アナログ信号を間引く。また、パンクチャ部120は、符号化アナログ信号系列1の1番目の符号化アナログ信号(入力アナログ信号)を複製し、当該1番目の符号化アナログ信号を二重に出力する。よって、送信部130が送信するアナログ信号は合計5個である。
 このように、パンクチャリングの変更例1乃至3によれば、送信部130が送信する符号化アナログ信号の数を半分にすることができる。
 [第1実施形態の変更例2]
 上述した第1実施形態において、入力アナログ信号には以下の条件がある。
 第1に、「Baker’s MAP」については、「x > -1.0かつy < 1.0」という制約条件がある。第2に、「Mirrored baker’s MAP」については、「-1.0 < x < +1.0かつ-1.0 < y < +1.0」という制約条件がある。
 図9は、第1実施形態の変更例2に係る無線伝送システムを示す図である。図9に示すように、送信装置100がスケーリング部105を備え、受信装置200がデスケーリング部230を備える。その他の構成については、上述した第1実施形態と同様である。
 スケーリング部105は、入力アナログ信号の大半(例えば、95%)が(-1.0, +1.0)の範囲内となるようスケーリング(圧縮)を行う。スケーリング部105は、スケーリングした入力アナログ信号をカオス符号化部110に出力する。一方、デスケーリング部230は、復号部220が推定した入力アナログ信号に対して、スケーリング部105とは逆の処理(デスケーリング)を行う。
 [第2実施形態]
 次に、第2実施形態について、第1実施形態との相違点を主として説明する。
 (無線伝送システム)
 以下において、第2実施形態に係る無線伝送システムについて説明する。図10は、第2実施形態に係る無線伝送システムを示すブロック図である。
 図10に示すように、第2実施形態に係る無線伝送システムは、カオス関数により入力アナログ信号を再帰的に(N-1)回(N≧2)符号化することにより、元の入力アナログ信号と合せてN個の符号化アナログ信号を生成するカオス符号化部110と、N個の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号を受信装置200に送信する送信部130と、を備える。
 第2実施形態において、送信装置100は、N個の符号化アナログ信号のうちK個(K<N)の符号化アナログ信号を選択するとともに、(N-K)個の符号化アナログ信号を間引くパンクチャ部120を備える。この場合、送信部130は、K個の符号化アナログ信号を受信装置200に送信する。
 但し、第2実施形態において、パンクチャ部120は必須の構成ではなく、パンクチャ部120を省略してもよい。パンクチャ部120を省略する場合、送信部130は、N個の符号化アナログ信号を受信装置200に送信する。以下においては、送信装置100がパンクチャ部120を備える構成について主として説明する。
 上述したように、カオス符号化部110は、符号化の際に、該符号化の対象となる信号の属性に応じて異なる関数を適用している。具体的には、式(1)に示したように、「xi-1」が0未満である場合に適用される関数Aと、符号化の対象となるアナログ信号「xi-1」が0以上である場合に適用される関数Bと、が異なっている。
 受信装置200において、復号部220は、送信装置100におけるアルゴリズムに対応した最尤復号を行う。図11は、復号部220による最尤復号を説明するための図である。図11において、送信装置100が送信した符号化アナログ信号系列中の符号化アナログ信号を(x、y)と表記し、受信装置100が受信した符号化アナログ信号系列中の符号化アナログ信号を(Rx、Ry)と表記している。図11において、符号化アナログ信号系列が5個の符号化アナログ信号からなる場合を例示している。
 図11に示すように、送信装置100が送信した符号化アナログ信号系列は、無線チャネルにおいて変動を受けた後、受信装置200により受信される。無線チャネルにおける変動が大きい場合、符号化アナログ信号中の「x」の正負が逆転することが起こり得る。
 復号部220は、受信アナログ信号系列中の5個の符号化アナログ信号それぞれについて、「x」の「正/負」を全探索する。5個の符号化アナログ信号中の「x」が取り得る「正/負」の組み合わせ(すなわち、「x」の正負属性系列候補)には、多数のパターンが存在する。復号部220は、各パターンに対して、受信アナログ信号系列から最も確からしい(x’, y’)を推定し、全パターンの中で最も確からしい(x’, y’)を最終的な推定結果とする。なお、「正」は「0」を含むものとする。
 ここで、正しい正負属性系列に対する(x’, y’)が選ばれれば高精度な推定が可能である。しかしながら、特に低SNR環境等において、誤った正負属性系列に対する(x’, y’)が選ばれると、元の信号とは大きく異なった推定結果となってしまう。
 よって、送信装置100において、送信部130は、N個の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号に対応する属性(正負属性)を復号補助情報として受信装置200に送信する。換言すると、送信部130は、符号化アナログ信号系列を送信することに加えて、少なくとも1つの符号化アナログ信号の正負属性を復号補助情報として送信する。
 受信装置200において、受信部210は、N個の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号に対応する正負属性を復号補助情報として送信装置100から受信する。復号部220は、受信部210が受信した正負属性についてのみ尤度を計算する。すなわち、復号部220は、復号補助情報に基づいて受信アナログ信号の正負属性を判定する。これにより、正負属性の判定誤りによる大きな推定誤差を回避することができる。
 (動作の具体例)
 図12は、第2実施形態に係る動作の具体例を説明するための図である。
 図12(a)に示すように、パンクチャ部120は、符号化アナログ信号系列2の1番目の符号化アナログ信号(反転入力アナログ信号)と、符号化アナログ信号1及び2のそれぞれの2番目及び3番目の符号化アナログ信号と、を間引く。よって、送信部130が送信する符号化アナログ信号は、合計3個である。
 図12(b)に示すように、送信部130は、符号化アナログ信号系列1中の少なくとも1つの符号化アナログ信号の正負属性(正負符号)と、符号化アナログ信号系列2中の少なくとも1つの符号化アナログ信号の正負属性(正負符号)と、を復号補助情報として送信する。
 復号補助情報の構成例1において、「A」に示すように、送信部130は、符号化アナログ信号系列1中の全ての符号化アナログ信号の正負属性と、符号化アナログ信号系列2中の全ての符号化アナログ信号の正負属性と、を復号補助情報として送信する。
 復号補助情報の構成例2において、「B」に示すように、送信部130は、符号化アナログ信号系列1及び2のそれぞれについて、1番目及び4番目(最後)の符号化アナログ信号の正負属性を復号補助情報として送信する。
 復号補助情報の構成例3において、「C」に示すように、送信部130は、符号化アナログ信号系列1及び2のそれぞれについて、1番目及び3番目(途中)の符号化アナログ信号の正負属性を復号補助情報として送信する。
 復号補助情報の構成例4において、「D」に示すように、送信部130は、符号化アナログ信号系列1及び2のそれぞれの1番目の符号化アナログ信号の正負属性を復号補助情報として送信する。
 なお、復号補助情報は、アナログ伝送方式で送信されてもよいし、デジタル伝送方式で送信されてもよい。デジタル伝送方式で送信される場合、復号補助情報は、例えば「正」を「1」、「負」を「0」とするビット列(ビットマップ)として構成してもよい。
 (第2実施形態のまとめ)
 送信部130は、符号化アナログ信号系列を送信することに加えて、少なくとも1つの符号化アナログ信号の正負属性を復号補助情報として送信する。これにより、正負属性の判定誤りによる大きな推定誤差を回避することができる。
 [その他の実施形態]
 上述した実施形態において、カオス符号化アルゴリズムとして「Baker’s Map」及び「Mirrored Baker’s Map」を例示した。しかしながら、他の符号化アルゴリズムを使用してもよい。この場合、第2実施形態における「正/負」の属性に代えて、「偶数/奇数」の属性又は「閾値以上/閾値未満」の属性を使用し得る。
 上述した実施形態における送信装置100のブロック(例えば、カオス符号化部110、パンクチャ部120、送信部130)は、プロセッサ(コントローラ)により構成されてもよい。また、当該ブロックは、ハードウェアにより実装されてもよいし、ソフトウェア(プログラム)により実装されてもよい。受信装置200のブロック(例えば、受信部220、復号部220)についても同様である。
 上述した実施形態において、無線伝送システムが移動通信システムである場合を主として想定した。しかしながら、無線伝送システムは、移動通信システムとは異なるシステムであってもよい。例えば、無線伝送システムは、無線LANシステム又は放送システムであってもよい。
 [相互参照]
 日本国特許出願第2015-028235号(2015年2月17日出願)の全内容が参照により本願明細書に組み込まれている。
 本発明は、通信分野において有用である。

Claims (12)

  1.  無線伝送システムにおいて用いられる送信装置であって、
     カオス関数により入力アナログ信号を再帰的に(N-1)回(N≧2)符号化することにより、前記入力アナログ信号と合せてN個の符号化アナログ信号を生成するカオス符号化部と、
     前記N個の符号化アナログ信号のうちK個(K<N)の符号化アナログ信号を選択するとともに、(N-K)個の符号化アナログ信号を間引くパンクチャ部と、
     前記パンクチャ部により選択された前記K個の符号化アナログ信号を受信装置に送信する送信部と、を備えることを特徴とする送信装置。
  2.  前記パンクチャ部は、前記N個の符号化アナログ信号のうち最後に得られたN番目の符号化アナログ信号を優先的に選択することを特徴とする請求項1に記載の送信装置。
  3.  前記パンクチャ部は、前記N個の符号化アナログ信号のうち前記入力アナログ信号に相当する1番目の符号化アナログ信号を優先的に選択することを特徴とする請求項1に記載の送信装置。
  4.  前記カオス符号化部は、符号化の際に、該符号化の対象となる信号の属性に応じて異なる関数を適用しており、
     前記送信部は、前記N個の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号に対応する前記属性を復号補助情報として前記受信装置に送信することを特徴とする請求項1に記載の送信装置。
  5.  前記属性とは、正の値であるか又は負の値であるかの正負属性であることを特徴とする請求項4に記載の送信装置。
  6.  無線伝送システムにおいて用いられる受信装置であって、
     カオス関数により入力アナログ信号を再帰的に(N-1)回(N≧2)符号化することにより前記入力アナログ信号と合せて生成されたN個(N≧2)の符号化アナログ信号のうちK個(K<N)の符号化アナログ信号を送信装置から受信する受信部と、
     前記送信装置において間引かれた(N-K)個の符号化アナログ信号を尤度計算に使用せずに、前記K個の符号化アナログ信号に基づいて最尤復号法により前記入力アナログ信号を推定する復号部と、を備えることを特徴とする受信装置。
  7.  前記K個の符号化アナログ信号は、前記N個の符号化アナログ信号のうち最後に得られたN番目の符号化アナログ信号を含むことを特徴とする請求項6に記載の受信装置。
  8.  前記K個の符号化アナログ信号は、前記N個の符号化アナログ信号のうち前記入力アナログ信号に相当する1番目の符号化アナログ信号を含むことを特徴とする請求項6に記載の受信装置。
  9.  前記送信装置における符号化の際に、該符号化の対象となる信号の属性に応じて異なる関数が適用されており、
     前記受信部は、前記N個の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号に対応する前記属性を復号補助情報として前記送信装置から受信し、
     前記復号部は、前記受信部が受信した前記属性についてのみ尤度を計算することを特徴とする請求項6に記載の受信装置。
  10.  前記属性とは、正の値であるか又は負の値であるかの正負属性であることを特徴とする請求項8に記載の受信装置。
  11.  無線伝送システムにおいて用いられる送信装置であって、
     カオス関数により入力アナログ信号を再帰的に(N-1)回(N≧2)符号化することにより、前記入力アナログ信号と合せてN個の符号化アナログ信号を生成するカオス符号化部と、
     前記N個の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号を受信装置に送信する送信部と、を備え、
     前記カオス符号化部は、符号化の際に、該符号化の対象となる信号の属性に応じて異なる関数を適用しており、
     前記送信部は、前記N個の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号に対応する前記属性を復号補助情報として前記受信装置に送信することを特徴とする送信装置。
  12.  無線伝送システムにおいて用いられる受信装置であって、
     カオス関数により入力アナログ信号を再帰的に(N-1)回(N≧2)符号化することにより前記入力アナログ信号と合せて生成されたN個(N≧2)の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号を送信装置から受信する受信部と、
     前記受信部が受信した前記符号化アナログ信号に基づいて最尤復号法により前記入力アナログ信号を推定する復号部と、を備え、
     前記送信装置における符号化の際に、該符号化の対象となる信号の属性に応じて異なる関数が適用されており、
     前記受信部は、前記N個の符号化アナログ信号のうち少なくとも一部の符号化アナログ信号に対応する前記属性を復号補助情報として前記送信装置から受信し、
     前記復号部は、前記受信部が受信した前記属性についてのみ尤度を計算することを特徴とする受信装置。
PCT/JP2016/053744 2015-02-17 2016-02-09 送信装置及び受信装置 WO2016132958A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017500614A JP6633608B2 (ja) 2015-02-17 2016-02-09 送信装置及び受信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015028235 2015-02-17
JP2015-028235 2015-02-17

Publications (1)

Publication Number Publication Date
WO2016132958A1 true WO2016132958A1 (ja) 2016-08-25

Family

ID=56692218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053744 WO2016132958A1 (ja) 2015-02-17 2016-02-09 送信装置及び受信装置

Country Status (2)

Country Link
JP (1) JP6633608B2 (ja)
WO (1) WO2016132958A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044047A (ja) * 2000-07-19 2002-02-08 Mitsubishi Electric Corp 通信装置および通信方法
JP2005354674A (ja) * 2004-05-14 2005-12-22 Nagoya Institute Of Technology カオス符号化変調復調方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044047A (ja) * 2000-07-19 2002-02-08 Mitsubishi Electric Corp 通信装置および通信方法
JP2005354674A (ja) * 2004-05-14 2005-12-22 Nagoya Institute Of Technology カオス符号化変調復調方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHIHARU YAMAZAKI ET AL.: "Preliminary Evaluation Results on Analog CSI Feedback Enhancement for LTE-Advanced", IEICE TECHNICAL REPORT, 14 May 2015 (2015-05-14), pages 1 - 6 *
CHIHARU YAMAZAKI ET AL.: "Preliminary Evaluation Results on Analog CSI Feedback Enhancement for LTE-Advanced", IEICE TECHNICAL REPORT, 25 February 2015 (2015-02-25), pages 141 - 146 *
KAI XIE ET AL.: "Chaotic Analog Error Correction Codes: The Mirrored Baker's Codes", GLOBAL TELECOMMUNICATIONS CONFERENCE (GLOBECOM 2010 *

Also Published As

Publication number Publication date
JP6633608B2 (ja) 2020-01-22
JPWO2016132958A1 (ja) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2020035683A1 (en) Joint source channel coding for noisy channels using neural networks
US20210351863A1 (en) Joint source channel coding based on channel capacity using neural networks
US9020029B2 (en) Arbitrary precision multiple description coding
EP3418821B1 (en) Method and device for configuring a data transmission system
CN108880566B (zh) 一种Polar码传输方法及装置
WO2018019044A1 (zh) 编码方法和设备
WO2020035684A1 (en) Joint source channel coding of information sources using neural networks
KR20070081786A (ko) 통신시스템에서 다중입출력을 위한 신호 수신 방법 및 장치
US20140184431A1 (en) Methods for simplified mmi vq based harq buffer reduction for lte
KR101527114B1 (ko) 다중 입출력 무선통신 시스템에서 스트림별 서로 다른부호화 방식을 지원하는 격자 감소 기반의 신호 검출 장치및 방법
JP4562575B2 (ja) 通信システム、通信装置、通信方法及び通信制御プログラム
CN115066845A (zh) 用于随机接入通信的发送设备、接收设备和方法
CN107911152B (zh) 适用于任意发送天线数量的空间编码调制系统和方法
KR20220143131A (ko) 하드웨어 장애가 있을 때에 잡음이 있는 과부하된 무선 통신 시스템에서의 이산 디지털 신호 복원 방법
JP6190945B2 (ja) 受信装置
CN110612672B (zh) 用于使用低位模数转换器进行数据检测的设备和方法
WO2016132958A1 (ja) 送信装置及び受信装置
KR20120038987A (ko) Mimo 통신 시스템을 위한 디코딩 방법 및 장치
CN109257077B (zh) 一种结合霍夫曼编码和bch编码的新型空间调制方法
CN109787637B (zh) 一种整数有限域压缩感知方法
CN114915376B (zh) 译码方法、编码方法、装置、设备和存储介质
JP2018160730A (ja) 無線通信システム
KR101060530B1 (ko) 연판정 검출방법 및 이를 이용한 복호 방법
JP7038923B2 (ja) 受信装置および通信システム
JP2009117922A (ja) データ伝送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500614

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16752344

Country of ref document: EP

Kind code of ref document: A1