WO2016132913A1 - Optical element and method for manufacturing optical element - Google Patents

Optical element and method for manufacturing optical element Download PDF

Info

Publication number
WO2016132913A1
WO2016132913A1 PCT/JP2016/053311 JP2016053311W WO2016132913A1 WO 2016132913 A1 WO2016132913 A1 WO 2016132913A1 JP 2016053311 W JP2016053311 W JP 2016053311W WO 2016132913 A1 WO2016132913 A1 WO 2016132913A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical element
resin
light source
glass fiber
Prior art date
Application number
PCT/JP2016/053311
Other languages
French (fr)
Japanese (ja)
Inventor
一啓 和田
秀之 藤森
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016132913A1 publication Critical patent/WO2016132913A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present invention relates to an optical element suitably used for, for example, optical communication or a copying machine, and an optical element manufacturing method.
  • optical fibers are basically flexible, so that they can be bent and slack to some extent.
  • the minimum bend diameter allowed to ensure light transmission efficiency is specified. Has been. Therefore, when bending less than the minimum diameter is required due to installation space restrictions, etc., the optical fiber is cut and the optical coupling is performed by bending the optical path of the light beam transmitted between the cut optical fibers.
  • the use of the coupling device may lead to more efficient storage as a whole and increase the light transmission efficiency.
  • the merit of using such an optical coupling device is not limited to optical fibers, but can also occur in optical coupling between a light emitting element and an optical fiber or between an optical fiber and a light receiving element.
  • the light emitting element, the light source, the light receiving element, and the like are collectively referred to as an optical element.
  • Patent Documents 1 and 2 there is an attempt to mold an optical element with a material close to the characteristics of glass by mixing glass fiber into resin.
  • the present invention has been made in view of the above-described problems, and provides an optical element capable of obtaining a desired linear expansion coefficient using a material mixed with glass fiber and a method for manufacturing the optical element. Objective.
  • an optical element reflecting one aspect of the present invention is an optical element that transmits a light beam emitted from a light source having a single light source wavelength.
  • the optical element is formed by arranging a plurality of optical surfaces on which the light flux is incident or reflected,
  • the optical element is molded from a mixed material of resin and glass fiber, When the optical surfaces are arranged in a matrix, a resin inflow port exists in the arrangement direction in which the distance between the optical surfaces at both ends in the arrangement direction is longer, among the arrangement in the row direction and the arrangement in the column direction.
  • a general multi-core optical fiber tape core wire covers a plurality of exposed fiber strands with a so-called secondary layer surrounding portion.
  • a UV curable resin including a glass fiber is often used because it is relatively inexpensive.
  • the distance between the cores of the fiber strands when the temperature changes is determined by the amount of linear expansion of the secondary layer.
  • the amount of extension of the surrounding portion made of the UV curable resin including the glass fiber is 1 mm. Since the linear expansion amount of the material per 1 ° C.
  • the present inventors considered the reason why the linear expansion characteristic changes depending on the flow direction of the material during molding. According to the study by the present inventors, referring to FIG. 2, when the glass fiber GF, which is a fine rod mixed in the resin PL, flows into the cavity CV of the mold through the gate. It has been found that the longitudinal direction tends to coincide with the flow direction (that is, the MD direction). When the resin PL is solidified in such a state that the glass fiber GF is oriented along the MD direction, when the resin PL expands when the temperature rises, the binding force of the glass fiber GF in the TD direction orthogonal to the MD direction. However, in the MD direction, the influence of the restraining force of the glass fiber GF is large, and the expansion of the resin PL is suppressed. That is, the amount of linear expansion is more easily suppressed on the MD direction side than the TD direction.
  • the resin inflow port GTO may be provided so as to include a straight line EL passing through the middle of the two rows of optical surfaces OP.
  • a flange surface of the optical element By transferring the flange surface transfer surface FPP connected to the gate GT, a flange surface of the optical element is formed, and this surface becomes a surface having a resin inlet. That is, when the length of one side of the rectangular surface of the optical element is ⁇ , the width of the resin inlet in the direction of the side is ⁇ / 5 or more and ⁇ or less, and the thickness of the optical element is ⁇ In addition, an optical element in which the thickness of the resin inlet in the same direction is ⁇ / 5 or more and ⁇ or less can be molded.
  • the flange surface transfer surface FPP and an extension that forms part of the gate GT are formed. It means that the surface GT1 is flush with the surface GT1. Thereby, a raw material can be smoothly flowed in metal mold
  • another optical element reflecting one aspect of the present invention is an optical element that transmits a light beam emitted from a light source having a single light source wavelength.
  • an optical surface on which the light beam is incident or reflected is an ellipse or a rectangle having a major axis and a minor axis when viewed in the optical axis direction,
  • the optical element is molded from a material formed by mixing resin and glass fiber, A resin inflow port exists in the long axis direction.
  • the material mixed with the resin and the glass fiber is made flowable and flows into the mold through the resin inlet along the long axis direction of the optical surface ( In other words, the major axis direction of the optical surface is made substantially parallel to the MD direction), and if solidified thereafter, the amount of linear expansion in the major axis direction between the elliptical optical surfaces at the time of temperature change can be suppressed.
  • a good optical element can be molded.
  • the optical surface OP of the optical element OE is elliptical when viewed in the optical axis direction when viewed in the directions shown in FIGS. 4A and 4B, a straight line EL extending the long axis is formed at the resin inlet GTO. If it is provided in parallel, it can be seen that the material has flowed into the mold through the gate corresponding to the resin inlet GTO during molding, and the linear expansion in this direction can be suppressed.
  • an optical element such as an f ⁇ lens improves handling by cutting a region in the vicinity of an unused edge of the optical surface in parallel, and when viewed in the optical axis direction, it may appear rectangular. However, even in such a case, since the remaining optical surface is a toric surface or the like, it is treated as having a major axis and a minor axis.
  • the optical element is preferably formed by injection molding. Thereby, optical elements can be mass-produced at low cost.
  • a thermoplastic resin etc. can also be used as a raw material of an optical element.
  • the mixing (mixing) amount of the glass fiber is preferably 2 to 40 wt%.
  • the mixing amount of the glass fiber 2 wt% or more, it is possible to obtain an effect sufficient to suppress the amount of linear expansion.
  • a glass filler It is possible to avoid adverse effects such as an increase in the amount of mixing and the injection becomes impossible and the moldability deteriorates.
  • the shape of the glass fiber is preferably a rod-like body having a cross section of 5 to 50 ⁇ m and a length of 10 to 500 ⁇ m. Thereby, a general glass fiber can be utilized.
  • the light source wavelength is preferably 850 ⁇ 150 nm, 1310 ⁇ 150 nm, or 1550 ⁇ 150 nm. Since such a light source wavelength is frequently used in optical communication or the like, it is preferable that it can cope with these.
  • an optical element manufacturing method reflecting one aspect of the present invention is an optical element manufacturing method that transmits a light beam emitted from a light source having a single light source wavelength.
  • the optical element is formed by arranging a plurality of optical surfaces on which the light flux is incident or reflected, Molding the optical element by allowing the material mixed with resin and glass fiber to flow in the mold along the direction of alignment of the optical surfaces and then solidifying the mold. It is characterized by.
  • another optical element manufacturing method reflecting one aspect of the present invention is a method for manufacturing an optical element that transmits a light beam emitted from a light source having a single light source wavelength.
  • an optical surface on which the light beam is incident or reflected is an ellipse or a rectangle having a major axis and a minor axis when viewed in the optical axis direction
  • the optical element is molded by allowing the material mixed with resin and glass fiber to flow in the mold along the major axis direction of the optical surface through the gate and then solidifying the material. It is characterized by that.
  • single light source wavelength means that a single light source wavelength is used for a specific purpose.
  • the same light source wavelength is used for upstream communication and downstream communication.
  • the light source wavelength at the time of upstream communication is single, and the light source wavelength at the time of downstream communication is single.
  • glass fiber general-purpose E glass, C glass, A glass, S glass, D glass, NE glass, T glass, quartz glass, and the like may be used.
  • the glass fiber can be obtained by using a conventionally known method for spinning long glass fibers.
  • the glass raw material is continuously vitrified in a melting furnace, led to fore-haas, and a direct melt (DM) method in which a bushing is attached to the bottom of the fore-heart and spun, or the melted glass is processed into marble, cullet, or rod shape
  • DM direct melt
  • the glass can be made into fiber using various methods such as a remelting method in which it is remelted and spun.
  • the diameter of the glass fiber is not particularly limited, but a glass fiber having a diameter of 5 to 50 ⁇ m is preferably used. If it is thicker than ⁇ 50 ⁇ m, the filling pressure at the time of injection molding becomes high, which may lead to insufficient transfer to the mold. When it is thinner than ⁇ 5 ⁇ m, the dispersion uniformity of the glass fiber is lowered, and the linear expansion characteristic may vary in the product.
  • the optical coupling device 100 includes an optical module 110, an optical path changing element 120, and an optical connector 130.
  • the optical module 110 has a function of transmitting light, and can be installed on a substrate that is stacked and inserted on the back surface of a large-capacity server or the like.
  • the substrate itself may be the optical module 110.
  • the optical module 110 includes a plurality of VCSEL type semiconductor lasers 112 which are light emitting elements arranged in a row on a base plate 111 having a rectangular shape and a flat upper surface.
  • the light source wavelength of the semiconductor laser 112 is any one of 850 nm, 1310 nm, and 1550 nm.
  • the multi-core optical fiber body 132 for example, an all-quartz multi-mode optical fiber or a single-mode optical fiber can be used.
  • a multi-core optical fiber tape (ribbon) having a plurality of optical fibers is used. Is used.
  • the multi-core optical fiber body 132 is covered with a resin protection portion 132a except for both exposed ends.
  • a plurality of fiber strands 132b are exposed at the end of the multi-core optical fiber body 132, and a tube-shaped primary layer 132c made of resin around each fiber strand 132b.
  • the primary layer 132c is covered with an integral secondary layer 132d.
  • the material of the secondary layer 132d that is the surrounding portion is UV curable resin or glass mixed with glass fiber, and the linear expansion coefficient is substantially equal to the linear expansion coefficient of the optical element.
  • the main body 131 is formed in a thick rectangular plate shape, and one side is cut out in a rectangular shape when viewed from above in FIG. 6 to form a recess 131a.
  • an insertion hole 131 b into which the multicore optical fiber body 132 is inserted is formed on the opposite side of the main body 131 from the recess 131 a.
  • the insertion hole 131b has a wide rectangular cross section so that the protection part 132a as a coating of the multi-core optical fiber body 132 can be accommodated.
  • a long hole 131c penetrating from the bottom surface of the insertion hole 131b toward the recess 131a is formed.
  • a secondary layer 132d provided at the end of the multi-core optical fiber body 132 is inserted through the long hole 131c.
  • the optical path changing element 120 is integrally formed of a resin mixed with a predetermined amount of glass fiber as will be described later.
  • the optical path changing element 120 has an elongated triangular prism shape, and has a first surface 121, a second surface 122, and a third surface 123.
  • the first surface 121 and the third surface 123 are orthogonal to each other.
  • size of the optical axis direction (OA1, OA2 direction) of the optical path change element 120 is 10 mm or less. Further, from the viewpoint that the optical fiber can be made smaller than the minimum diameter when the optical fiber is bent, the size is more preferably 5 mm or less.
  • the length of the light beam path passing through the optical element is preferably about 1 mm.
  • the length of the light path is smaller than 1 mm, it is possible to use a material having a low transmittance, and conversely, when the length of the light path is larger than 1 mm, a material having a high transmittance is used. By using it, it is possible to ensure a sufficient transmittance as an optical path polarizing element.
  • Each of the reflecting surfaces 122a has the same shape protruding from the connecting surface 122b.
  • the reflecting surface 122a has an elliptical shape when viewed from the front, and bends the optical axis by 90 ° when a conical divergent light beam is incident. It has an anamorphic free-form surface that can reflect a conical convergent light beam.
  • a toroidal surface an anamorphic surface in a broad sense
  • having an elliptical shape in one direction is formed. Thereby, the aberration can be almost eliminated.
  • the arrangement interval of the reflecting surfaces 122a is equal to the arrangement interval of the semiconductor lasers 112 of the optical module 110 and the arrangement interval of the fiber strands 132b inserted into the long holes 131c.
  • the arrangement direction of the reflection surfaces 122a is a direction orthogonal to a surface including two optical axes of one reflection surface 122a.
  • the angle (acute angle) formed between the tangential plane at the outer peripheral edge of the reflecting surface 122a and the optical axis is usually 75 degrees or less.
  • the distance between the protrusion 122c and the reflecting surface 122a is preferably 0.05 mm or more from the viewpoint of not affecting the coupling efficiency.
  • FIG. 11 is a perspective view showing a mold for forming the optical path changing element
  • FIG. 12 is a diagram showing a molding process of the optical path changing element with resin.
  • the first mold MD1 has a V-groove-shaped transfer surface composed of slopes MD1a and MD1b, and a gate GT connected to the V-groove.
  • the second mold MD2 has an optical surface transfer surface MD2a, a joint surface transfer surface MD2b, and a protruding portion transfer surface MD2c.
  • the molded optical path changing element 120 can be taken out by opening the first mold MD1 and the second mold MD2.
  • the resin material that has flowed in from the gate GT solidifies after flowing along the alignment direction of the optical surface transfer surface MD2a. Therefore, in the formed optical path changing element 120, the reflection surface 122a when the temperature rises.
  • the linear expansion amount in the arrangement direction that is, the longitudinal direction of the optical path changing element 120) can be kept small.
  • optical coupling device 110 optical module 111 base plate 112 semiconductor laser 113 pin 120 optical path changing element 121 first surface 122 second surface 123 third surface 125 cover member 130 optical connector 131 body 131a recess 131b insertion hole 131c long hole 131d bottom 131e Lower surface 131f Circular opening 132 Multi-core optical fiber body 132a Protection part 132b Fiber strand 132c Primary layer 132d Secondary layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

Provided is an optical element capable of obtaining a desired linear expansion coefficient by using a material with glass fiber mixed therein. In an optical element that transmits a light beam emitted from a light source with a single light source wavelength, the optical element is composed of a plurality of optical surfaces arrayed so that a light beam is incident thereon or reflected therefrom. The optical element is formed from a material composed of a resin with glass fiber mixed therein. When the optical surfaces are arranged in a matrix, a resin inlet is provided along whichever of the row arrangement or the column arrangement that has a greater distance than the other between optical surfaces at both ends in the arrangement direction.

Description

光学素子及び光学素子の製造方法Optical element and optical element manufacturing method
 本発明は、例えば光通信等又は複写機等に好適に用いられる光学素子及び光学素子の製造方法に関する。 The present invention relates to an optical element suitably used for, for example, optical communication or a copying machine, and an optical element manufacturing method.
 ルータ等のネットワーク装置、サーバ、大型コンピュータを含む様々な情報/信号処理装置において、情報/信号処理の大規模化、高速化が進んでいる。これらの装置においては、回路基板(ボード)におけるCPUおよびメモリ相互間、配線基板相互間、装置(ラック)相互間等における信号伝送は、従来から電気配線により行われてきた。しかし、伝送速度、伝送容量、消費電力、伝送路からの輻射、伝送路に対する電磁波の干渉等の観点における優位性から、上述の電気配線に代えて、光ファイバ等を伝送路として光により信号を伝送する、いわゆる光インタコネクションが実際に導入されはじめている。 In various information / signal processing devices including network devices such as routers, servers, and large computers, information / signal processing is becoming larger and faster. In these devices, signal transmission between a CPU and a memory on a circuit board (board), between wiring boards, between devices (rack), and the like has been conventionally performed by electrical wiring. However, because of superiority in terms of transmission speed, transmission capacity, power consumption, radiation from the transmission line, electromagnetic wave interference with the transmission line, etc., instead of the above-mentioned electrical wiring, a signal is transmitted by light using an optical fiber or the like as the transmission line. So-called optical interconnection for transmission is actually being introduced.
 このような光インタコネクションにおいては、電気信号を光信号に変換して光信号を送信する発光素子を含む光送信モジュール、および、光信号を受信し電気信号に変換する受光素子を含む光受信モジュール、あるいは、それらの両方の機能を有する光送受信モジュールが主要な光部品として用いられる。これらのモジュールを総称して、光モジュールという。 In such an optical interconnection, an optical transmission module including a light emitting element that converts an electrical signal into an optical signal and transmits the optical signal, and an optical reception module including a light receiving element that receives the optical signal and converts it into an electrical signal. Alternatively, an optical transceiver module having both functions is used as a main optical component. These modules are collectively referred to as an optical module.
 光モジュール間で、伝送チャネルを用いて並行して光信号を伝送することで、大容量の通信が可能になる。伝送チャネルとしては、光モジュール間で並行して光信号の送信/受信を行うために、光ファイバが用いられることが多い。よって、光ファイバと光モジュール間の光結合のため、一般的に光結合装置が用いられる。 Large-capacity communication becomes possible by transmitting optical signals between optical modules in parallel using a transmission channel. As a transmission channel, an optical fiber is often used to transmit / receive optical signals in parallel between optical modules. Therefore, an optical coupling device is generally used for optical coupling between the optical fiber and the optical module.
 ところで、光ファイバは基本的に可撓性を有するので、ある程度の曲げや弛みが許容されるが、一般的な光ファイバでは光の伝送効率を確保するために許容される曲げの最小径が規定されている。従って、設置スペースの制限等によって最小径以下の曲げが要求される場合には、光ファイバを切断した上で,切断された光ファイバ間で伝達される光束の光路を折り曲げて光結合を行う光結合装置を用いる方が、全体としてより効率的な収納につながることや光の伝送効率が高まることがある。このような光結合装置を用いるメリットは、光ファイバ同士に限らず、発光素子と光ファイバ或いは光ファイバと受光素子との間の光結合においても同様に生じうる。ここで、発光素子、光源、受光素子等を総称して、光素子という。 By the way, optical fibers are basically flexible, so that they can be bent and slack to some extent. However, in general optical fibers, the minimum bend diameter allowed to ensure light transmission efficiency is specified. Has been. Therefore, when bending less than the minimum diameter is required due to installation space restrictions, etc., the optical fiber is cut and the optical coupling is performed by bending the optical path of the light beam transmitted between the cut optical fibers. The use of the coupling device may lead to more efficient storage as a whole and increase the light transmission efficiency. The merit of using such an optical coupling device is not limited to optical fibers, but can also occur in optical coupling between a light emitting element and an optical fiber or between an optical fiber and a light receiving element. Here, the light emitting element, the light source, the light receiving element, and the like are collectively referred to as an optical element.
 光素子間の光結合を行うために、光路を折り曲げる構造を持つ光コネクタが光結合装置に用いられることがある。このような光コネクタとしては、コネクタ内部で光軸を90°変更させるPT光コネクタ(JPCA-PE03-01-06Sで規格化)等が実用化されている。PT光コネクタは、多芯光ファイバテープ芯線などの多芯光ファイバ体と、フレキシブル配線基板上の光素子とを光結合する基板実装型の光コネクタである。 In order to perform optical coupling between optical elements, an optical connector having a structure in which an optical path is bent may be used in an optical coupling device. As such an optical connector, a PT optical connector (standardized by JPCA-PE03-01-06S) that changes the optical axis by 90 ° inside the connector has been put into practical use. The PT optical connector is a board-mounted optical connector that optically couples a multi-core optical fiber body such as a multi-core optical fiber tape core wire and an optical element on a flexible wiring board.
 一方、近年において光通信情報量は増加の一途をたどっており、加えて情報の長距離・高速伝送が切望されている。ところが、従来から用いられているマルチモードファイバの場合、光ファイバのコア径として50μm・62.5μmのものが採用されており、光信号を複数のモードで伝送するため、信号の到達時間にズレが生じ、モード分散が発生するという問題がある。従って、モード分散によってデータ損失が発生するために、長距離・高速伝送は不向きとされている。 On the other hand, in recent years, the amount of optical communication information has been increasing, and in addition, long-distance and high-speed transmission of information is desired. However, in the case of multimode fibers that have been used in the past, optical fiber core diameters of 50 μm and 62.5 μm are employed, and optical signals are transmitted in a plurality of modes. Occurs and mode dispersion occurs. Therefore, since data loss occurs due to mode dispersion, long-distance / high-speed transmission is not suitable.
 これに対し、シングルモードファイバはモードフィールド径9.2μmの極細径の光ファイバであり、光信号の伝播をひとつのモードにすることで、減衰を極力抑えることができるという利点がある。従ってマルチモードファイバのように多くのモードを使用する伝送方法と違い、信号の到達時間が単一であるため、モード損失の発生がなく、長距離・高速伝送に適していることから、シングルモードファイバが使用される機会が多くなってきた。 On the other hand, the single mode fiber is an ultrafine fiber having a mode field diameter of 9.2 μm, and has an advantage that attenuation can be suppressed as much as possible by setting the propagation of the optical signal to one mode. Therefore, unlike a transmission method that uses many modes such as multimode fiber, the signal arrival time is single, so there is no mode loss and it is suitable for long-distance and high-speed transmission. Opportunities for fiber use have increased.
 しかるに、シングルモードファイバを用いる際の課題の一つとして、そのモードフィールド径が9.2μmと小さいことから、光コネクタを用いて光ファイバと光素子とを光結合する際に、位置ずれの許容度が狭まり、すなわち組付の困難性が高まるということがある。特に問題となるのが、複数のコアを介して独立して情報を伝送できる多芯光ファイバ体と、複数の光素子とを単一の光コネクタを用いて光結合を行う場合である。このような用途に用いる光コネクタは、一般的に、個々の光ファイバと光素子とに光を伝播させるためのレンズ面を複数個有しているが、かかる光コネクタを樹脂から形成した場合、例えば環境温度変化による熱膨張によって、光ファイバの芯間距離と、レンズ面同士の間隔とにずれが生じ、これにより一部の光ファイバと光素子との間で光結合が行えなくなる恐れがある。その一方で、情報伝送時における光ロスを抑えるべく、光コネクタはある程度高い透明度(透過率)を確保する必要がある。 However, as one of the problems when using a single mode fiber, since the mode field diameter is as small as 9.2 μm, when optical coupling between an optical fiber and an optical element is performed using an optical connector, positional deviation is allowed. The degree is reduced, that is, the difficulty of assembly is increased. Particularly problematic is the case where a multi-core optical fiber body capable of independently transmitting information via a plurality of cores and a plurality of optical elements are optically coupled using a single optical connector. An optical connector used for such an application generally has a plurality of lens surfaces for propagating light to individual optical fibers and optical elements, but when such an optical connector is formed from a resin, For example, due to thermal expansion due to changes in environmental temperature, there is a possibility that the optical fiber core-to-core distance and the distance between the lens surfaces may be shifted, thereby making it impossible to perform optical coupling between some optical fibers and optical elements. . On the other hand, in order to suppress optical loss during information transmission, the optical connector needs to secure a certain degree of transparency (transmittance).
 かかる問題に対し、光コネクタの素材としてガラスを用いれば、高い透明度を有しつつ、光ファイバに対して熱膨張差が近づくので、光ファイバの芯間距離と、レンズ面同士の間隔とのずれを抑えることができる。ところが、ガラスは樹脂に比べて成形性が劣るため大量生産に不向きであり、コストの増大を招くという問題がある。 To solve this problem, if glass is used as the material of the optical connector, the difference in thermal expansion approaches the optical fiber while having high transparency. Can be suppressed. However, since glass is inferior in moldability compared to resin, it is unsuitable for mass production, and there is a problem that costs increase.
 これに対し、特許文献1,2に示すように、樹脂にガラスファイバを混入させることで、ガラスの特性に近づけた素材により光学素子を成形しようとする試みがある。 On the other hand, as shown in Patent Documents 1 and 2, there is an attempt to mold an optical element with a material close to the characteristics of glass by mixing glass fiber into resin.
特開2006-312706号公報JP 2006-312706 A 特開2006-169324号公報JP 2006-169324 A
 しかしながら、特許文献1,2に示すように、ガラスファイバを混入させた素材を用いて光学素子を用いた場合において、成形条件によっては所望の線膨張率を得られないという問題が生じた。 However, as shown in Patent Documents 1 and 2, when an optical element is used using a material mixed with glass fiber, there is a problem that a desired linear expansion coefficient cannot be obtained depending on molding conditions.
 本発明は、上記した問題に鑑みてなされたものであり、ガラスファイバを混入させた素材を用いて、所望の線膨張率を得ることができる光学素子及び光学素子の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and provides an optical element capable of obtaining a desired linear expansion coefficient using a material mixed with glass fiber and a method for manufacturing the optical element. Objective.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した光学素子は、単一光源波長を持つ光源から出射した光束を透過する光学素子において、
 前記光学素子は、前記光束が入射もしくは反射する光学面を複数個並べて配置してなり、
 前記光学素子は樹脂とガラスファイバとを混合した素材から成形され、
 前記光学面がマトリクス状に並んでいたときは、行方向の並びと列方向の並びのうち、並び方向両端の光学面間の距離が長い方の並び方向に樹脂流入口が存在することを特徴とする。
In order to achieve at least one of the above objects, an optical element reflecting one aspect of the present invention is an optical element that transmits a light beam emitted from a light source having a single light source wavelength.
The optical element is formed by arranging a plurality of optical surfaces on which the light flux is incident or reflected,
The optical element is molded from a mixed material of resin and glass fiber,
When the optical surfaces are arranged in a matrix, a resin inflow port exists in the arrangement direction in which the distance between the optical surfaces at both ends in the arrangement direction is longer, among the arrangement in the row direction and the arrangement in the column direction. And
 以下、本発明の原理について説明する。まず、本発明者らは、樹脂にガラスファイバを混入させた素材を用いて成形した光学素子において、線膨張率が安定しない原因を考察した。本発明者らは、樹脂へのガラスファイバの混入量を変化させた素材から、金型を用いて実際に光学素子を成形し、30℃から60℃に温度を上昇させた際の線膨張量を測定したところ、図1に示す結果を得た。ここで、光学素子の成形時における金型のキャビティCVの内部の素材流動状態を模式的に示す図2において、素材が樹脂流入口(ゲート)GTを介して金型内に流れ込んできた方向をMD,それに直交する方向をTDとした。なお、樹脂素材とガラスフィラーとが混ざっていればよいため「混合」という表現を用いているが、通常は樹脂素材にガラスフィラーを混ぜて成形するため、本説明においては「混入」という表現を用いて説明することもある。 Hereinafter, the principle of the present invention will be described. First, the present inventors considered the cause of the unstable linear expansion coefficient in an optical element molded using a material in which a glass fiber is mixed into a resin. The present inventors actually formed an optical element using a mold from a material in which the amount of glass fiber mixed into the resin was changed, and the linear expansion amount when the temperature was raised from 30 ° C. to 60 ° C. Was measured, and the result shown in FIG. 1 was obtained. Here, in FIG. 2 schematically showing the material flow state inside the mold cavity CV at the time of molding the optical element, the direction in which the material flows into the mold through the resin inlet (gate) GT is shown. MD and the direction orthogonal to it were taken as TD. Note that the expression “mixed” is used because it is sufficient if the resin material and the glass filler are mixed. However, since the glass filler is usually mixed with the resin material and molded, the expression “mixed” is used in this description. Sometimes used to explain.
 図1によれば、TD方向の線膨張量はガラスファイバの混入量が20wt%以上になると、温度が上昇しても線膨張量がそれほど変化しなくなるということが分かった。一方、MD方向の線膨張量は、常にTD方向の線膨張量を下回り、更にガラスファイバの混入量が増大するにつれて漸次低下することが分かった。特にMD方向の場合、ガラスファイバの混入量が30%wt以上になると、線膨張量が21ppm以下となる。 According to FIG. 1, it was found that the linear expansion amount in the TD direction does not change so much even when the temperature rises when the glass fiber mixing amount is 20 wt% or more. On the other hand, it has been found that the linear expansion amount in the MD direction is always lower than the linear expansion amount in the TD direction, and gradually decreases as the mixing amount of the glass fiber increases. Particularly in the MD direction, when the glass fiber mixing amount is 30% wt or more, the linear expansion amount is 21 ppm or less.
 一般的な多芯光ファイバテープ芯線は、露出した複数のファイバ素線の周囲を、所謂セカンダリー層という一体物の包囲部で覆っている。この包囲部の素材として、比較的安価であることから、ガラスファイバを含むUV硬化性樹脂が用いられることが多い。かかる場合、温度変化時におけるファイバ素線の芯間距離は、セカンダリー層の線膨張量により決定されることとなる。ここで、光学素子におけるレンズ面の並び方向の寸法を3mmとした場合において、25℃から85℃に温度上昇させたとき、ガラスファイバを含むUV硬化性樹脂製の包囲部の伸び量は、1mm、1℃当たりの当該素材の線膨張量が20ppmであるから、20×(85-25)×3=0.0036mmとされる。一方、同じ温度上昇時における、樹脂へのガラスファイバの混入量が30%wt以上である素材を用いて成形した光学素子のMD方向における伸び量は、図1の結果より、1mm、1℃当たりの当該素材の線膨張量が21ppmであるから、21×(85-25)×3=0.0038mmとされる。よって、両者の伸び量の差は0.0038-0.0036=0.0002mmとなる。尚、光コネクタに要求される伸び量の差の許容公差は、0.001mm未満とされているので、同じ条件では、(0.0036+0.001)/((85-25)×3)=25.5ppm未満まで許容されることとなる。つまり、光学素子のMD方向における伸び量が許容範囲内であるのに対し、光学素子のTD方向における伸び量は、同じ条件下では許容範囲外となってしまう。 A general multi-core optical fiber tape core wire covers a plurality of exposed fiber strands with a so-called secondary layer surrounding portion. As the material of the surrounding portion, a UV curable resin including a glass fiber is often used because it is relatively inexpensive. In such a case, the distance between the cores of the fiber strands when the temperature changes is determined by the amount of linear expansion of the secondary layer. Here, when the dimension of the lens surfaces in the optical element is set to 3 mm, when the temperature is increased from 25 ° C. to 85 ° C., the amount of extension of the surrounding portion made of the UV curable resin including the glass fiber is 1 mm. Since the linear expansion amount of the material per 1 ° C. is 20 ppm, 20 × (85−25) × 3 = 0.636 mm. On the other hand, the amount of elongation in the MD direction of an optical element molded using a material in which the amount of glass fiber mixed into the resin is 30% wt or more at the same temperature rise is 1 mm per 1 ° C. from the result of FIG. Since the linear expansion amount of the material is 21 ppm, 21 × (85−25) × 3 = 0.038 mm. Therefore, the difference in elongation between the two is 0.0038−0.0036 = 0.0002 mm. Note that the allowable tolerance of the difference in elongation required for the optical connector is less than 0.001 mm. Under the same conditions, (0.0036 + 0.001) / ((85−25) × 3) = 25 It will be acceptable to less than 5 ppm. That is, while the extension amount of the optical element in the MD direction is within the allowable range, the extension amount of the optical element in the TD direction is outside the allowable range under the same conditions.
 本発明者らは、成形時における素材の流れ方向によって線膨張特性が変化する理由を考察した。本発明者らの検討によれば、図2を参照して、樹脂PLに混入された微細な棒状体であるガラスファイバGFが、ゲートを通って金型のキャビティCV内に流れてゆく際に、その長手方向が流れ方向(すなわちMD方向)に一致する傾向があることが判明した。このようにガラスファイバGFがMD方向に沿って方向付けられた状態で樹脂PLが固化すると、温度上昇時に樹脂PLが膨張したときに、MD方向に直交するTD方向では、ガラスファイバGFの拘束力の影響が小さく、樹脂PLは比較的膨張しやすいのに対し、MD方向では、ガラスファイバGFの拘束力の影響が大きく、樹脂PLの膨張が抑制される。すなわち、TD方向よりもMD方向側で、線膨張量が抑制されやすくなるのである。 The present inventors considered the reason why the linear expansion characteristic changes depending on the flow direction of the material during molding. According to the study by the present inventors, referring to FIG. 2, when the glass fiber GF, which is a fine rod mixed in the resin PL, flows into the cavity CV of the mold through the gate. It has been found that the longitudinal direction tends to coincide with the flow direction (that is, the MD direction). When the resin PL is solidified in such a state that the glass fiber GF is oriented along the MD direction, when the resin PL expands when the temperature rises, the binding force of the glass fiber GF in the TD direction orthogonal to the MD direction. However, in the MD direction, the influence of the restraining force of the glass fiber GF is large, and the expansion of the resin PL is suppressed. That is, the amount of linear expansion is more easily suppressed on the MD direction side than the TD direction.
 以上の知見により、光学素子の成形時に、樹脂にガラスファイバを混入してなる素材を流動可能とした状態で、光束が入射もしくは反射する光学面の並び方向に沿って金型内に流動させ(すなわち光学面の並び方向をMD方向に略平行とする)、その後に固化させれば、温度変化時における光学面間の線膨張量を抑制できる光学素子を成形できることが見出されたのである。これにより、光学素子において温度変化による線膨張が問題になりやすい方向における線膨張を抑制できる。 Based on the above knowledge, at the time of molding the optical element, in a state in which a material made by mixing glass fiber into the resin is flowable, it is caused to flow in the mold along the alignment direction of the optical surfaces on which the light beam is incident or reflected ( That is, it was found that an optical element capable of suppressing the amount of linear expansion between the optical surfaces at the time of temperature change can be formed by solidifying the optical surfaces in the MD direction. Thereby, in the optical element, linear expansion in a direction in which linear expansion due to temperature change tends to be a problem can be suppressed.
 ここで、一般的には成形後における光学素子を目視することで、成形時における樹脂の流動方向を判断することは困難である。しかるに、光学素子を射出成形する際は、金型内に形成されたキャビティにゲートを介して溶融した樹脂を導入するため、樹脂の固化時にゲート内の樹脂も固化し、これがゲート跡(樹脂流入口)として光学素子に付随して離型されることとなる。従って、光学素子の樹脂流入口から、樹脂の流動方向を推定することはできる。尚、後加工によって、光学素子のゲート跡を削除することもできるが、その場合でも光学素子の複屈折の状態を観察することでゲート跡があった位置を見つけることが出来、これを基準として温度変化時における光学面間の線膨張量を抑制できる方向が分かるのである。従って、「樹脂流入口(ゲート跡)」とは、ゲート内で固化し光学素子に付随した樹脂の他、成形加工された光学素子の複屈折状態よりゲートが設けられていたと推認できる部位も含む。 Here, it is generally difficult to determine the flow direction of the resin during molding by visually observing the optical element after molding. However, when the optical element is injection-molded, the molten resin is introduced into the cavity formed in the mold through the gate, so that the resin in the gate is also solidified when the resin is solidified. As an entrance), the mold is released along with the optical element. Therefore, the flow direction of the resin can be estimated from the resin inlet of the optical element. Although the gate trace of the optical element can be deleted by post-processing, the position of the gate trace can be found by observing the birefringence state of the optical element even in that case. The direction in which the amount of linear expansion between the optical surfaces when the temperature changes can be suppressed is known. Therefore, the “resin inlet (gate trace)” includes a portion that can be inferred from the birefringence state of the molded optical element in addition to the resin that is solidified in the gate and attached to the optical element. .
 図3は、本発明の一例となる複数の光学面OPを有する光学素子OEを、光学面OPの光軸側から見た図である。光学面OPは、矩形状の面RP上に並べて形成されている。図3において、樹脂流入口GTOは、成形後に点線で示す位置で光学素子OEから切り離されるが、残したままでも良い。 FIG. 3 is a diagram of an optical element OE having a plurality of optical surfaces OP as an example of the present invention as viewed from the optical axis side of the optical surface OP. The optical surface OP is formed side by side on the rectangular surface RP. In FIG. 3, the resin inlet GTO is separated from the optical element OE at a position indicated by a dotted line after molding, but may be left as it is.
 図3(a)に示すように、光学素子OEの光学面OPが一列に並んでいる場合、その光軸を通る仮想面VP(図3(a)では上下方向に延在する直線で表せる)が樹脂流入口GTOに平行にあれば、成形時に樹脂流入口GTOに対応するゲートを介して金型内に素材が流入し、光学面OPの並び方向に流動したことが分かり、当該方向の線膨張を抑制できることがわかる。ここで、図3(a)に示すように、樹脂流入口GTOは2カ所(又はそれ以上)設けても良いが、それぞれ仮想面VPが交差するように対向する位置に設けられていることが望ましい。このとき、それぞれのゲートから流入した樹脂の合わさり目で発生するウェルドラインについて、光学面上に発生しないように光学面の配置やそれぞれのゲートの大きさに差異を設ける場合がある。なお、図3(a)に示すように、光学面OPが一列に並んでいる形状(例えば1×4の配列)もマトリクス状に含まれるものとする。他にもマトリクス状としては、2×2、3×4の配列も含み、図3(d)に示すように、マトリクスの一部に光学面が存在しないような,例えば光学面OPが千鳥配置されているようなものも含む。 As shown in FIG. 3A, when the optical surfaces OP of the optical elements OE are arranged in a line, a virtual surface VP passing through the optical axis (represented by a straight line extending in the vertical direction in FIG. 3A). Is parallel to the resin inlet GTO, it can be seen that the material flows into the mold through the gate corresponding to the resin inlet GTO during molding and flows in the direction in which the optical surfaces OP are aligned. It can be seen that the expansion can be suppressed. Here, as shown in FIG. 3A, two (or more) resin inflow ports GTO may be provided, but the resin inflow ports GTO may be provided at positions facing each other so that the virtual planes VP intersect each other. desirable. At this time, there may be a difference in the arrangement of the optical surface and the size of each gate so that the weld line generated at the joint of the resin flowing in from each gate does not occur on the optical surface. Note that, as shown in FIG. 3A, a shape (for example, a 1 × 4 array) in which the optical surfaces OP are arranged in a line is also included in the matrix. In addition, the matrix shape includes a 2 × 2, 3 × 4 arrangement, and as shown in FIG. 3D, the optical surfaces OP are staggered, for example, so that there is no optical surface in a part of the matrix. It also includes those that are.
 図3(c)に示す方向に見て、光学素子OEの光学面OPが複数行及び列でマトリクス状に並んでいる場合、光学面OPの行方向の並びと列方向の並びのうち、両端の光学面OP間の距離が長い方の並び方向に沿って並んだ少なくとも2つの光学面OPの光軸を結んだ直線ELと平行に樹脂流入口GTOが設けられていれば、成形時に樹脂流入口GTOに対応するゲートを介して金型内に素材が流入し、光学面OPの長い方の並び方向に流動したことが分かり、当該方向の線膨張を抑制できる。また図3(b)のように、2列の光学面OPの並びの中間を通る直線ELを含むように樹脂流入口GTOを設けても良い。 3C, when the optical surfaces OP of the optical element OE are arranged in a matrix with a plurality of rows and columns, both ends of the rows in the row direction and the columns in the optical surface OP are arranged. If the resin inlet GTO is provided in parallel with the straight line EL connecting the optical axes of at least two optical surfaces OP aligned along the longer alignment direction, the resin flow during molding is reduced. It can be seen that the material has flowed into the mold through the gate corresponding to the entrance GTO and has flowed in the direction in which the optical surface OP is longer, and linear expansion in this direction can be suppressed. Further, as shown in FIG. 3B, the resin inflow port GTO may be provided so as to include a straight line EL passing through the middle of the two rows of optical surfaces OP.
 上記光学素子において、前記光学素子の樹脂流入口のある面の一辺の長さをαとしたときに、前記一辺の方向における前記樹脂流入口の幅はα/5以上、α以下であり、前記光学素子の厚みをβとしたときに、同方向における前記樹脂流入口の厚さはβ/5以上、β以下であることが好ましい。 In the optical element, when the length of one side of the surface having the resin inlet of the optical element is α, the width of the resin inlet in the direction of the one side is α / 5 or more and α or less, When the thickness of the optical element is β, the thickness of the resin inlet in the same direction is preferably β / 5 or more and β or less.
 図5(a)は、本発明の一例となる光学素子を成形する為の金型を型締め状態で示しており、図5(b)は、図5(a)の構成をVB-VB線の位置(パーティングライン)で分割して矢印方向に見た図である。図5に示す金型MD1は、複数の光学面転写面OPPと、矩形状のフランジ面転写面FPPとを有しており、これに対向する金型MD2は、光学素子のそれ以外の面を形成する裏側転写面BPPを有している。樹脂流入口としてのゲートGTは、金型MD2側に設けられた矩形断面溝GT2と、金型MD1のフランジ面転写面FPPの延長面GT1とを合わせることで形成されている。 FIG. 5A shows a mold for molding an optical element as an example of the present invention in a clamped state, and FIG. 5B shows the configuration of FIG. 5A in the VB-VB line. It is the figure which divided | segmented in the position (parting line) of and looked at in the arrow direction. The mold MD1 shown in FIG. 5 has a plurality of optical surface transfer surfaces OPP and a rectangular flange surface transfer surface FPP, and the mold MD2 opposite to this has a surface other than that of the optical element. It has a back side transfer surface BPP to be formed. The gate GT as a resin inlet is formed by combining a rectangular cross-sectional groove GT2 provided on the mold MD2 side and an extended surface GT1 of the flange surface transfer surface FPP of the mold MD1.
 ここで、フランジ面転写面FPPの上辺の長さをWp(=α)とし、同方向におけるゲートGTの幅をWgとすると、(1)式が成立すると好ましい。
 Wp/5≦Wg≦Wp   (1)
 又、裏側転写面BPPの深さ(成形した光学素子の厚みに相当)をDp(=β)とし、ゲートGTの深さをDgとすると、(2)式が成立すると好ましい。
 Dp/5≦Dg≦Dp   (2)
 これにより、ゲートGTを介して金型MD1,MD2内にスムーズに素材を流動させることができる。ゲートGTにつながるフランジ面転写面FPPを転写することで、光学素子のフランジ面が形成され、かかる面が樹脂流入口のある面となる。すなわち、光学素子の矩形状の面の一辺の長さをαとしたときに、一辺の方向における樹脂流入口の幅がα/5以上、α以下であり、光学素子の厚みをβとしたときに、同方向における樹脂流入口の厚さがβ/5以上、β以下である光学素子を成形することができる。
Here, when the length of the upper side of the flange surface transfer surface FPP is Wp (= α) and the width of the gate GT in the same direction is Wg, it is preferable that the expression (1) is satisfied.
Wp / 5 ≦ Wg ≦ Wp (1)
Further, when the depth of the back transfer surface BPP (corresponding to the thickness of the molded optical element) is Dp (= β) and the depth of the gate GT is Dg, it is preferable that the formula (2) is satisfied.
Dp / 5 ≦ Dg ≦ Dp (2)
Thereby, a raw material can be smoothly flowed in metal mold | die MD1, MD2 via the gate GT. By transferring the flange surface transfer surface FPP connected to the gate GT, a flange surface of the optical element is formed, and this surface becomes a surface having a resin inlet. That is, when the length of one side of the rectangular surface of the optical element is α, the width of the resin inlet in the direction of the side is α / 5 or more and α or less, and the thickness of the optical element is β In addition, an optical element in which the thickness of the resin inlet in the same direction is β / 5 or more and β or less can be molded.
 尚、光学素子の矩形状の面と、樹脂流入口内で固化した素材とが面一である場合、例えば図5に示すように、フランジ面転写面FPPと、ゲートGTの一部を形成する延長面GT1とが面一であることを意味する。これによりゲートGTを介して金型MD1,MD2内にスムーズに素材を流動させることができる。 When the rectangular surface of the optical element is flush with the material solidified in the resin inlet, for example, as shown in FIG. 5, the flange surface transfer surface FPP and an extension that forms part of the gate GT are formed. It means that the surface GT1 is flush with the surface GT1. Thereby, a raw material can be smoothly flowed in metal mold | die MD1, MD2 via the gate GT.
 また、前記光学素子の光学面は、複数の光素子と、多芯光ファイバ体とを光結合する為に用いられ、前記多芯光ファイバ体における前記光学素子に対向する複数のファイバ素線を囲う包囲部の線膨張率と、前記光学素子の線膨張率とは略等しいことが好ましい。これにより、前記複数の光素子と、前記多芯光ファイバ体のファイバ素線とを精度良く光結合することができる。「線膨張率が略等しい」とは、線膨張率が小さい方の線膨張率が、線膨張率が大きい方の±20%以内に入るものを言う。 The optical surface of the optical element is used to optically couple a plurality of optical elements and a multi-core optical fiber body, and includes a plurality of fiber strands facing the optical element in the multi-core optical fiber body. It is preferable that the linear expansion coefficient of the surrounding enclosure part and the linear expansion coefficient of the optical element are substantially equal. Thereby, the plurality of optical elements and the optical fiber of the multi-core optical fiber body can be optically coupled with high accuracy. “The linear expansion coefficient is substantially equal” means that the linear expansion coefficient with the smaller linear expansion coefficient falls within ± 20% of the larger linear expansion coefficient.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した別の光学素子は、単一光源波長を持つ光源から出射した光束を透過する光学素子において、
 前記光学素子は、前記光束が入射もしくは反射する光学面が、その光軸方向に見て長軸と短軸とを持つ楕円形又は矩形となっており、
 前記光学素子は樹脂とガラスファイバとを混合してなる素材から成形され、
 前記長軸方向に樹脂流入口が存在することを特徴とする。
In order to achieve at least one of the above objects, another optical element reflecting one aspect of the present invention is an optical element that transmits a light beam emitted from a light source having a single light source wavelength.
In the optical element, an optical surface on which the light beam is incident or reflected is an ellipse or a rectangle having a major axis and a minor axis when viewed in the optical axis direction,
The optical element is molded from a material formed by mixing resin and glass fiber,
A resin inflow port exists in the long axis direction.
 上述したように、光学素子の成形時に、樹脂とガラスファイバとを混合した素材を流動可能とした状態で、光学面の長軸方向に沿って樹脂流入口を介して金型内に流動させ(すなわち光学面の長軸方向をMD方向に略平行とする)、その後に固化させれば、温度変化時における楕円形である光学面間の長軸方向の線膨張量を抑制できるから、精度の良い光学素子を成形できる。 As described above, at the time of molding the optical element, the material mixed with the resin and the glass fiber is made flowable and flows into the mold through the resin inlet along the long axis direction of the optical surface ( In other words, the major axis direction of the optical surface is made substantially parallel to the MD direction), and if solidified thereafter, the amount of linear expansion in the major axis direction between the elliptical optical surfaces at the time of temperature change can be suppressed. A good optical element can be molded.
 図4(a)、(b)に示す方向に見て、光学素子OEの光学面OPが光軸方向に見て楕円形である場合、その長軸を延長する直線ELが樹脂流入口GTOに平行に設けられていれば、成形時に樹脂流入口GTOに対応するゲートを介して金型内に素材が流動してきたことが分かり、当該方向の線膨張を抑制できる。尚、fθレンズなどの光学素子は、光学面の使用しない縁近傍領域を平行にカットして取り扱い性を高めており、これを光軸方向に見ると矩形状に見えることもある。但し、このような場合でも、残った光学面はトーリック面等であるから、長軸と短軸を有するものとして扱う。 When the optical surface OP of the optical element OE is elliptical when viewed in the optical axis direction when viewed in the directions shown in FIGS. 4A and 4B, a straight line EL extending the long axis is formed at the resin inlet GTO. If it is provided in parallel, it can be seen that the material has flowed into the mold through the gate corresponding to the resin inlet GTO during molding, and the linear expansion in this direction can be suppressed. Note that an optical element such as an fθ lens improves handling by cutting a region in the vicinity of an unused edge of the optical surface in parallel, and when viewed in the optical axis direction, it may appear rectangular. However, even in such a case, since the remaining optical surface is a toric surface or the like, it is treated as having a major axis and a minor axis.
 前記光学素子は射出成形によって形成されることが好ましい。これにより、光学素子を安価に大量生産できる。尚、光学素子の素材としては、熱可塑性樹脂なども用いることができる。 The optical element is preferably formed by injection molding. Thereby, optical elements can be mass-produced at low cost. In addition, a thermoplastic resin etc. can also be used as a raw material of an optical element.
 また、前記ガラスファイバの混合(混入)量は2~40wt%であることが好ましい。前記ガラスファイバの混入量を2wt%以上とすることで、線膨張量を抑えるのに十分な効果を得ることが出来、一方、前記ガラスファイバの混入量を40wt%以下とすることで、ガラスフィラーの混入量が多くなってしまい射出ができなくなってしまい成形性が悪くなるなどの悪影響を回避できる。 Further, the mixing (mixing) amount of the glass fiber is preferably 2 to 40 wt%. By making the mixing amount of the glass fiber 2 wt% or more, it is possible to obtain an effect sufficient to suppress the amount of linear expansion. On the other hand, by making the mixing amount of the glass fiber 40 wt% or less, a glass filler It is possible to avoid adverse effects such as an increase in the amount of mixing and the injection becomes impossible and the moldability deteriorates.
 また、前記樹脂は、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリオレフィン系樹脂、透明ポリアミド(PA)、ポリサルホン(PSU)/ポリフェニレンサルホン(PPSU)、ポリエーテルサルホン(PES)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)のいずれかであることが好ましい。このような樹脂は透明性に優れ、ガラスファイバとの相性も良いので、光学素子の素材として好適である。 The resin is polycarbonate (PC), polymethyl methacrylate (PMMA), polyolefin resin, transparent polyamide (PA), polysulfone (PSU) / polyphenylenesulfone (PPSU), polyethersulfone (PES), polyether. It is preferably either imide (PEI) or polyetheretherketone (PEEK). Such a resin is suitable as a material for an optical element because it is excellent in transparency and has good compatibility with a glass fiber.
 また、前記ガラスファイバの形状は、断面がφ5~50μmであり、長さが10~500μmである棒状体であることが好ましい。これにより、一般的なガラスファイバを利用することができる。 The shape of the glass fiber is preferably a rod-like body having a cross section of 5 to 50 μm and a length of 10 to 500 μm. Thereby, a general glass fiber can be utilized.
 また、前記光源波長は、850±150nm、1310±150nm、1550±150nmのいずれかであることが好ましい。このような光源波長は、光通信等にて多用されるので、これらに対応できることが好ましい。 The light source wavelength is preferably 850 ± 150 nm, 1310 ± 150 nm, or 1550 ± 150 nm. Since such a light source wavelength is frequently used in optical communication or the like, it is preferable that it can cope with these.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した光学素子の製造方法は、単一光源波長を持つ光源から出射した光束を透過する光学素子の製造方法において、
 前記光学素子は、前記光束が入射もしくは反射する光学面を複数個並べて配置してなり、
 樹脂とガラスファイバとを混合した素材を流動可能とした状態で、前記光学面の並び方向に沿ってゲートを介して金型内に流動させ、その後に固化させることにより前記光学素子を成形することを特徴とする。
In order to achieve at least one of the objects described above, an optical element manufacturing method reflecting one aspect of the present invention is an optical element manufacturing method that transmits a light beam emitted from a light source having a single light source wavelength.
The optical element is formed by arranging a plurality of optical surfaces on which the light flux is incident or reflected,
Molding the optical element by allowing the material mixed with resin and glass fiber to flow in the mold along the direction of alignment of the optical surfaces and then solidifying the mold. It is characterized by.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した別の光学素子の製造方法は、単一光源波長を持つ光源から出射した光束を透過する光学素子の製造方法において、
 前記光学素子は、前記光束が入射もしくは反射する光学面が、その光軸方向に見て長軸と短軸とを持つ楕円形又は矩形となっており、
 樹脂とガラスファイバとを混合した素材を流動可能とした状態で、前記光学面の長軸方向に沿ってゲートを介して金型内に流動させ、その後に固化させることにより前記光学素子を成形することを特徴とする。
In order to achieve at least one of the above-described objects, another optical element manufacturing method reflecting one aspect of the present invention is a method for manufacturing an optical element that transmits a light beam emitted from a light source having a single light source wavelength. In
In the optical element, an optical surface on which the light beam is incident or reflected is an ellipse or a rectangle having a major axis and a minor axis when viewed in the optical axis direction,
The optical element is molded by allowing the material mixed with resin and glass fiber to flow in the mold along the major axis direction of the optical surface through the gate and then solidifying the material. It is characterized by that.
 「単一光源波長」というときは、特定の目的に使用する光源波長が単一であることを意味し、例えば光通信等において、上り通信と下り通信とで同じ光学素子を用いる場合でも光源波長が異なる場合があり、かかる場合には、上り通信時の光源波長が単一であり、また下り通信時の光源波長が単一であるという意味である。 The term “single light source wavelength” means that a single light source wavelength is used for a specific purpose. For example, in optical communication, the same light source wavelength is used for upstream communication and downstream communication. In such a case, the light source wavelength at the time of upstream communication is single, and the light source wavelength at the time of downstream communication is single.
 ガラスファイバとしては、汎用的なEガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、石英ガラスなどを用いてもよく、例えば二酸化ケイ素(SiO2)、酸化アルミニウム(Al23)、酸化カルシウム(CaO)、酸化チタン(TiO2)、酸化ホウ素(B23)、酸化マグネシウム(MgO)、酸化亜鉛(ZnO)、酸化バリウム(BaO)、酸化ジルコニウム(ZrO2)、酸化リチウム(Li2O)、酸化ナトリウム(Na2O)、酸化カリウム(K2O)などから選択して、それぞれ比率を適宜調整したものを用いることができる。 As the glass fiber, general-purpose E glass, C glass, A glass, S glass, D glass, NE glass, T glass, quartz glass, and the like may be used. For example, silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), calcium oxide (CaO), titanium oxide (TiO 2 ), boron oxide (B 2 O 3 ), magnesium oxide (MgO), zinc oxide (ZnO), barium oxide (BaO), zirconium oxide (ZrO 2) ), Lithium oxide (Li 2 O), sodium oxide (Na 2 O), potassium oxide (K 2 O), etc., and the ratios of which are appropriately adjusted can be used.
 ガラスファイバは、従来公知のガラス長繊維の紡糸方法を用いて得ることができる。例えば、溶融炉でガラス原料を連続的にガラス化してフォアハースに導き、フォアハースの底部にブッシングを取り付けて紡糸するダイレクトメルト(DM)法、又は、溶融したガラスをマーブル、カレット、棒状に加工してから再溶融して紡糸する再溶融法等の各種の方法を用いてガラスを繊維化することができる。 The glass fiber can be obtained by using a conventionally known method for spinning long glass fibers. For example, the glass raw material is continuously vitrified in a melting furnace, led to fore-haas, and a direct melt (DM) method in which a bushing is attached to the bottom of the fore-heart and spun, or the melted glass is processed into marble, cullet, or rod shape The glass can be made into fiber using various methods such as a remelting method in which it is remelted and spun.
 ガラスファイバの径は特に限定されないが、φ5~50μmのものが好ましく用いられる。φ50μmよりも太い場合には、射出成形時の充填圧力が高くなり、ひいては金型への転写不足に繋がる場合がある。Φ5μmよりも細い場合には、ガラスファイバの分散均一性が低下し製品内で線膨張特性にバラツキが発生する場合がある。 The diameter of the glass fiber is not particularly limited, but a glass fiber having a diameter of 5 to 50 μm is preferably used. If it is thicker than φ50 μm, the filling pressure at the time of injection molding becomes high, which may lead to insufficient transfer to the mold. When it is thinner than Φ5 μm, the dispersion uniformity of the glass fiber is lowered, and the linear expansion characteristic may vary in the product.
 また、これまでも、例えば直径が30nm以下の粒子を混入した樹脂素材を用いて光学素子を成形する試みはあったが、この樹脂素材中では粒子が凝集しやすいという問題や、粒子の表面積が増大して樹脂素材が固くなりがちで成形が困難となるという問題や、更には粒子の表面積が増大して親水性が高まり、成形した光学素子の吸水率が増大して光学特性が変化するという問題があった。一方、ガラスファイバを、φ5~50μmとすることで、かかる課題を解消できる。 In addition, there have been attempts to mold an optical element using a resin material mixed with particles having a diameter of 30 nm or less, for example. The problem is that the resin material tends to become hard due to increase, making it difficult to mold, and further, the surface area of the particles increases to increase the hydrophilicity, the water absorption of the molded optical element increases, and the optical characteristics change. There was a problem. On the other hand, this problem can be solved by setting the glass fiber to φ5 to 50 μm.
 本発明によれば、ガラスファイバを混入させた素材を用いて、所望の線膨張率を得ることができる光学素子及び光学素子の製造方法を提供することができる。 According to the present invention, it is possible to provide an optical element capable of obtaining a desired linear expansion coefficient using a material mixed with glass fiber and a method for manufacturing the optical element.
ガラスファイバの混入した樹脂の線膨張と、ガラスファイバの混入量との関係を示す図である。It is a figure which shows the relationship between the linear expansion | swelling of resin with which glass fiber mixed, and the mixing amount of glass fiber. 光学素子を成形する金型のキャビティCVを模式的に示す図である。It is a figure which shows typically the cavity CV of the metal mold | die which shape | molds an optical element. 本発明の一例となる複数の光学面OPを有する光学素子OEを、光学面OPの光軸側から見た図である。It is the figure which looked at optical element OE which has a plurality of optical surfaces OP which becomes an example of the present invention from the optical axis side of optical surface OP. 本発明の別例となる楕円形の光学面OPを有する光学素子OEを、光学面OPの光軸側から見た図である。It is the figure which looked at the optical element OE which has the elliptical optical surface OP which is another example of this invention from the optical axis side of the optical surface OP. (a)は、本発明の一例となる光学素子を成形する為の金型を型締め状態で示しており、(b)は、(a)の構成をVB-VB線の位置(パーティングライン)で分割して矢印方向に見た図である。(A) shows a mold for molding an optical element as an example of the present invention in a clamped state, and (b) shows the configuration of (a) at the position of the VB-VB line (parting line). ) And viewed in the direction of the arrow. 本実施形態にかかる光結合装置100を分解した状態で示す斜視図である。It is a perspective view shown in the state which decomposed | disassembled the optical coupling device 100 concerning this embodiment. 光結合装置100の1つの光軸に沿った断面図である。2 is a cross-sectional view of the optical coupling device 100 along one optical axis. FIG. 多芯光ファイバ体132の端部を拡大して示す図である。It is a figure which expands and shows the edge part of the multi-core optical fiber body. 光結合装置100に用いる光路変更素子120の斜視図である。3 is a perspective view of an optical path changing element 120 used in the optical coupling device 100. FIG. 光路変更素子120の拡大断面図である。3 is an enlarged sectional view of an optical path changing element 120. FIG. 光路変更素子を形成する金型を示す斜視図である。It is a perspective view which shows the metal mold | die which forms an optical path changing element. 光路変更素子を、ガラスファイバを混入した樹脂により成形する工程を示す図である。It is a figure which shows the process of shape | molding an optical path changing element with resin which mixed glass fiber.
 以下、本発明の実施形態を図面に基づいて説明する。図6は、本実施形態である光学素子としての光路変更素子を有する光結合装置100を分解した状態で示す斜視図である。図7は、光結合装置100の光軸に沿った断面図である。図8は、多芯光ファイバ体132の端部を拡大して示す図である。図9は、光結合装置100に用いる光路変更素子120の斜視図である。図10は、光路変更素子120の拡大断面図である。以下に示す構成は概略図であり、形状や寸法等は実際と異なるものがある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 6 is a perspective view showing the optical coupling device 100 having the optical path changing element as the optical element according to the present embodiment in an exploded state. FIG. 7 is a cross-sectional view of the optical coupling device 100 along the optical axis. FIG. 8 is an enlarged view showing the end portion of the multi-core optical fiber body 132. FIG. 9 is a perspective view of the optical path changing element 120 used in the optical coupling device 100. FIG. 10 is an enlarged cross-sectional view of the optical path changing element 120. The following configuration is a schematic diagram, and some shapes, dimensions, and the like are different from actual ones.
 図6、7に示すように、光結合装置100は、光モジュール110と、光路変更素子120と、光コネクタ130とから構成されている。光モジュール110は、ここでは光を送信する機能を有し、大容量サーバ等の背面に複数枚積層されて差し込まれる基板に設置可能なものである。基板自体を光モジュール110としても良い。光モジュール110は、矩形状であって上面が平面である台板111上に、複数の発光素子であるVCSELタイプの半導体レーザ112を1列に配置してなる。半導体レーザ112の光源波長は、850nm、1310nm、1550nmのいずれかである。台板111上において、半導体レーザ112の並び方向両端近傍には、円筒状のピン113が配置されている。尚、半導体レーザ112の周囲に、光路変更素子120を位置決めするための凹凸等を形成しても良い。光モジュール110のNAは0.1~0.6である。 As shown in FIGS. 6 and 7, the optical coupling device 100 includes an optical module 110, an optical path changing element 120, and an optical connector 130. Here, the optical module 110 has a function of transmitting light, and can be installed on a substrate that is stacked and inserted on the back surface of a large-capacity server or the like. The substrate itself may be the optical module 110. The optical module 110 includes a plurality of VCSEL type semiconductor lasers 112 which are light emitting elements arranged in a row on a base plate 111 having a rectangular shape and a flat upper surface. The light source wavelength of the semiconductor laser 112 is any one of 850 nm, 1310 nm, and 1550 nm. On the base plate 111, cylindrical pins 113 are arranged in the vicinity of both ends of the semiconductor laser 112 in the arrangement direction. Note that unevenness or the like for positioning the optical path changing element 120 may be formed around the semiconductor laser 112. The NA of the optical module 110 is 0.1 to 0.6.
 光コネクタ130は、樹脂で形成される本体部131を備え、多芯光ファイバ体132に連結され、これを保持する機能を有している。 The optical connector 130 includes a main body 131 formed of resin, and is connected to the multi-core optical fiber body 132 and has a function of holding it.
 多芯光ファイバ体132として、例えば、全石英型のマルチモード型光ファイバ、あるいはシングルモード型光ファイバ等を用いることができ、ここでは複数本の光ファイバを有する多芯光ファイバテープ(リボン)が用いられている。多芯光ファイバ体132は、露出した両端を除き樹脂の保護部132aにより被覆されている。一方、多芯光ファイバ体132の端部は、図8に示すように、複数のファイバ素線132bが露出しており、各ファイバ素線132bの周囲を樹脂製であるチューブ状のプライマリー層132cで包囲し、このプライマリー層132cの周囲を一体物のセカンダリー層132dで覆っている。包囲部であるセカンダリー層132dの材質は、グラスファイバを混入したUV硬化性樹脂又はガラスであり、その線膨張率は光学素子の線膨張率に略等しい。 As the multi-core optical fiber body 132, for example, an all-quartz multi-mode optical fiber or a single-mode optical fiber can be used. Here, a multi-core optical fiber tape (ribbon) having a plurality of optical fibers is used. Is used. The multi-core optical fiber body 132 is covered with a resin protection portion 132a except for both exposed ends. On the other hand, as shown in FIG. 8, a plurality of fiber strands 132b are exposed at the end of the multi-core optical fiber body 132, and a tube-shaped primary layer 132c made of resin around each fiber strand 132b. The primary layer 132c is covered with an integral secondary layer 132d. The material of the secondary layer 132d that is the surrounding portion is UV curable resin or glass mixed with glass fiber, and the linear expansion coefficient is substantially equal to the linear expansion coefficient of the optical element.
 本体部131は、厚めの矩形板状に成形され、図6で上方から見て一辺が矩形状に切り欠かれて凹部131aを形成している。本体部131の凹部131aと反対側には、図7に示すように、多芯光ファイバ体132を挿入する挿入孔131bが形成されている。挿入孔131bは、多芯光ファイバ体132の被覆としての保護部132aを収容可能なように幅広の矩形形状断面を持つ。挿入孔131bの底面から凹部131aに向かって、貫通した長孔131cが形成されている。長孔131cには、多芯光ファイバ体132の端部に設けられたセカンダリー層132dが挿通されている。 The main body 131 is formed in a thick rectangular plate shape, and one side is cut out in a rectangular shape when viewed from above in FIG. 6 to form a recess 131a. As shown in FIG. 7, an insertion hole 131 b into which the multicore optical fiber body 132 is inserted is formed on the opposite side of the main body 131 from the recess 131 a. The insertion hole 131b has a wide rectangular cross section so that the protection part 132a as a coating of the multi-core optical fiber body 132 can be accommodated. A long hole 131c penetrating from the bottom surface of the insertion hole 131b toward the recess 131a is formed. A secondary layer 132d provided at the end of the multi-core optical fiber body 132 is inserted through the long hole 131c.
 長孔131cが露出した凹部131aの底面131dは、本体部131の下面131eに対して直交している。又、図6に示すように、凹部131aを挟むようにしてその両側に、ピン113と同径である円形開口131fが一対形成されている。 The bottom surface 131d of the recess 131a where the long hole 131c is exposed is orthogonal to the lower surface 131e of the main body 131. As shown in FIG. 6, a pair of circular openings 131f having the same diameter as the pin 113 are formed on both sides of the recess 131a so as to sandwich the recess 131a.
 図9、10において、光路変更素子120は,後述するようにしてガラスファイバを所定量混入した樹脂により一体的に形成されている。光路変更素子120は、細長い三角プリズム状の形状を有し、第1面121と、第2面122と、第3面123と、を有している。第1面121と第3面123とは直交している。なお、光路変更素子120の光軸方向(OA1、OA2方向)の大きさは、10mm以下であることが小型化の観点で好ましい。又、光ファイバを曲げた際の最小径よりも小型にすることができるという観点から、その大きさを5mm以下にすることが更に好ましい。但し、光学素子内を通る光線経路の長さは1mm程度であることが好ましく。光線経路の長さを1mmより小さくする場合には透過率の低い材料を使うことも可能となるため好ましく、逆に光線経路の長さを1mmよりも大きくする場合には透過率の高い材料を用いることで光路偏光素子として十分な透過率を確保することができる。 9 and 10, the optical path changing element 120 is integrally formed of a resin mixed with a predetermined amount of glass fiber as will be described later. The optical path changing element 120 has an elongated triangular prism shape, and has a first surface 121, a second surface 122, and a third surface 123. The first surface 121 and the third surface 123 are orthogonal to each other. In addition, it is preferable from a viewpoint of size reduction that the magnitude | size of the optical axis direction (OA1, OA2 direction) of the optical path change element 120 is 10 mm or less. Further, from the viewpoint that the optical fiber can be made smaller than the minimum diameter when the optical fiber is bent, the size is more preferably 5 mm or less. However, the length of the light beam path passing through the optical element is preferably about 1 mm. When the length of the light path is smaller than 1 mm, it is possible to use a material having a low transmittance, and conversely, when the length of the light path is larger than 1 mm, a material having a high transmittance is used. By using it, it is possible to ensure a sufficient transmittance as an optical path polarizing element.
 第1面121は平面であって、光モジュール110の半導体レーザ112から出射した光束を入射する機能を有する。第2面122は、複数個一列に並べて設けた反射面122aと、反射面122aの周囲に形成された平面状の繋ぎ面122bと、繋ぎ面122bの周囲を囲むようにして第2面122の外周に形成された矩形枠状の突出部122cとを有する。繋ぎ面122bと突出部122cとの間には斜面122dが形成されていると好ましい。第3面123は平面であって、反射面122aから反射した光束を透過する機能を有する。 The first surface 121 is a flat surface, and has a function of entering a light beam emitted from the semiconductor laser 112 of the optical module 110. The second surface 122 includes a plurality of reflective surfaces 122a arranged in a line, a planar connecting surface 122b formed around the reflecting surface 122a, and an outer periphery of the second surface 122 so as to surround the connecting surface 122b. And a protruding portion 122c having a rectangular frame shape. It is preferable that an inclined surface 122d is formed between the connecting surface 122b and the protruding portion 122c. The third surface 123 is a flat surface and has a function of transmitting the light beam reflected from the reflecting surface 122a.
 反射面122aは,繋ぎ面122bから突出してなる同一形状をそれぞれ有し、具体的には正面から見て楕円形状であって、円錐状の発散光束が入射したときに光軸を90°折り曲げて円錐状の収束光束を反射できるようなアナモフィックな自由曲面を有する。図9の例においては、一方向が楕円形状であるトロイダル面(広義のアナモフィック面)となっている。これにより、収差をほぼなくすことができる。反射面122aの並び間隔は、光モジュール110の半導体レーザ112の並び間隔、及び長孔131c内に挿通されたファイバ素線132bの並び間隔に等しくなっている。反射面122aの並び方向は、1つの反射面122aの2つの光軸を含む面に直交する方向である。なお、反射面122aの外周縁における接平面と光軸とのなす角度(鋭角)は通常75度以下となる。突出部122cと反射面122aとの距離は、結合効率に影響を与えないという観点から0.05mm以上であることが好ましい。 Each of the reflecting surfaces 122a has the same shape protruding from the connecting surface 122b. Specifically, the reflecting surface 122a has an elliptical shape when viewed from the front, and bends the optical axis by 90 ° when a conical divergent light beam is incident. It has an anamorphic free-form surface that can reflect a conical convergent light beam. In the example of FIG. 9, a toroidal surface (an anamorphic surface in a broad sense) having an elliptical shape in one direction is formed. Thereby, the aberration can be almost eliminated. The arrangement interval of the reflecting surfaces 122a is equal to the arrangement interval of the semiconductor lasers 112 of the optical module 110 and the arrangement interval of the fiber strands 132b inserted into the long holes 131c. The arrangement direction of the reflection surfaces 122a is a direction orthogonal to a surface including two optical axes of one reflection surface 122a. The angle (acute angle) formed between the tangential plane at the outer peripheral edge of the reflecting surface 122a and the optical axis is usually 75 degrees or less. The distance between the protrusion 122c and the reflecting surface 122a is preferably 0.05 mm or more from the viewpoint of not affecting the coupling efficiency.
 突出部122cの繋ぎ面122bからの高さは全周において一様であり、反射面122aの突出量よりも大きくなっている。従って、図10に示すように、突出部122cの全周(ここでは平面部)に接するような仮想平面VPを規定したとき、仮想平面VPは反射面122aに接することはない。又、仮想平面VPは反射面122aの任意の点(この例では光軸上の点PTであるが、少なくとも反射面122aの外周縁より内側の点であれば足りる)における接平面に平行となっている。 The height from the connecting surface 122b of the protruding portion 122c is uniform over the entire circumference, and is larger than the protruding amount of the reflecting surface 122a. Therefore, as shown in FIG. 10, when the virtual plane VP that contacts the entire circumference (here, the plane portion) of the protrusion 122c is defined, the virtual plane VP does not contact the reflecting surface 122a. The virtual plane VP is parallel to a tangential plane at an arbitrary point on the reflecting surface 122a (in this example, the point PT on the optical axis is at least a point inside the outer peripheral edge of the reflecting surface 122a). ing.
 図10において、1つの反射面122aにおける、光モジュール110側の光軸をOA1とし、光コネクタ130側の光軸をOA2とすると、光軸OA1,OA2は反射面122a上で直交している。第1面121から反射面122aまでの光軸OA1に沿った距離(又は第3面123から反射面122aまでの光軸に沿った距離)をAとし、反射面122aの光軸OA1上の点PTから仮想平面VPまでの距離をBとしたときに、以下の式を満たす。なお、距離Aは通常0.0625mm以上2.9mm以下となる。
 B/A<1.0   (1)
In FIG. 10, assuming that the optical axis on the optical module 110 side in one reflective surface 122a is OA1, and the optical axis on the optical connector 130 side is OA2, the optical axes OA1 and OA2 are orthogonal on the reflective surface 122a. The distance along the optical axis OA1 from the first surface 121 to the reflective surface 122a (or the distance along the optical axis from the third surface 123 to the reflective surface 122a) is A, and the point on the optical axis OA1 of the reflective surface 122a When the distance from PT to the virtual plane VP is B, the following expression is satisfied. The distance A is usually 0.0625 mm or more and 2.9 mm or less.
B / A <1.0 (1)
 光路変更素子120は、仮想平面VPに重なるようにして、平行平板状のカバー部材125を、突出部122cの全周に接着している。カバー部材125は遮光性の部材であると、光路変更素子120の劣化を抑制でき、外部からの光がレンズ内部に侵入することを防げるため、好ましい。カバー部材125を設けることで反射面122aとの間に隙間が生じ、カバー部材125が反射面122aを傷つけたり、また反射面122aに反射膜が成膜されているような場合にも、それを傷つける恐れがない。加えて、仮想平面VPに重なるようにしてカバー部材125を設けることができるため、光結合装置100を設けた基板を積層するような場合にも積層方向の小型化に貢献することができる。更に、カバー部材125により反射面122aを密閉空間に封止することで、異物の付着等、反射面122aを外部環境の悪影響から保護することができる。また、反射面122aと仮想平面VPとの隙間を樹脂により封止して異物の付着や結露の防止を行っても良い。カバー部材125または樹脂による封止は必ず行わなければならないわけではないが、上述の理由で、カバー部材125または樹脂による封止を行うことが好ましい。図10に示すように、カバー部材125は、光路変更素子120に取り付けたときに、光路変更素子120より外側に突出しない形状であると、光結合装置100を小型化できるので好ましい。 The optical path changing element 120 has a parallel plate-like cover member 125 bonded to the entire periphery of the protruding portion 122c so as to overlap the virtual plane VP. It is preferable that the cover member 125 is a light-shielding member because deterioration of the optical path changing element 120 can be suppressed and light from the outside can be prevented from entering the lens. When the cover member 125 is provided, a gap is formed between the reflective surface 122a and the cover member 125 damages the reflective surface 122a, or a reflective film is formed on the reflective surface 122a. There is no risk of injury. In addition, since the cover member 125 can be provided so as to overlap the virtual plane VP, it is possible to contribute to miniaturization in the stacking direction even when the substrate provided with the optical coupling device 100 is stacked. Furthermore, by sealing the reflective surface 122a in a sealed space with the cover member 125, the reflective surface 122a can be protected from adverse effects of the external environment, such as adhesion of foreign matter. Further, the gap between the reflecting surface 122a and the virtual plane VP may be sealed with a resin to prevent the attachment of foreign matter and condensation. Although sealing with the cover member 125 or resin is not necessarily performed, it is preferable to perform sealing with the cover member 125 or resin for the reasons described above. As shown in FIG. 10, it is preferable that the cover member 125 has a shape that does not protrude outward from the optical path changing element 120 when attached to the optical path changing element 120 because the optical coupling device 100 can be downsized.
(光路変更素子の成形)
 図11は、光路変更素子を形成する金型を示す斜視図であり、図12は、光路変更素子の樹脂による成形工程を示す図である。図に示すように、第1型MD1は、斜面MD1a、MD1bからなるV溝状の転写面と、V溝に接続するゲートGTとを有する。一方、第2型MD2は、光学面転写面MD2aと、繋ぎ面転写面MD2bと、突出部転写面MD2cとを有する。
(Formation of optical path changing element)
FIG. 11 is a perspective view showing a mold for forming the optical path changing element, and FIG. 12 is a diagram showing a molding process of the optical path changing element with resin. As shown in the figure, the first mold MD1 has a V-groove-shaped transfer surface composed of slopes MD1a and MD1b, and a gate GT connected to the V-groove. On the other hand, the second mold MD2 has an optical surface transfer surface MD2a, a joint surface transfer surface MD2b, and a protruding portion transfer surface MD2c.
 ここでは、樹脂に対してガラスファイバ2~40wt%を混入してなる素材を用いて光路変更素子を成形する。細長い棒状のガラスファイバを破砕し、2~40wt%の割合で樹脂材料と混ぜ、混ぜた材料を射出成形機で成形を行う。樹脂の透過率は、厚さ3mmの平行平板に成形した状態で、光源波長において50%以上であると好ましい。尚、ガラスファイバの形状は、断面がφ5~50μmであり、長さが10~500μmである棒状体であると好ましい。また、wt%とは重量%のことを意味する。 Here, the optical path changing element is molded using a material in which 2 to 40 wt% of glass fiber is mixed into the resin. The elongated rod-like glass fiber is crushed and mixed with a resin material at a rate of 2 to 40 wt%, and the mixed material is molded by an injection molding machine. The transmittance of the resin is preferably 50% or more at the light source wavelength in a state where the resin is molded into a parallel plate having a thickness of 3 mm. The glass fiber is preferably a rod-like body having a cross section of 5 to 50 μm and a length of 10 to 500 μm. Moreover, wt% means weight%.
 図12(a)に示すように、第1型MD1の下面と第2型MD2の上面を密着するように型締めし、ゲートGTを介して外部から溶融した樹脂素材を、第1型MD1と第2型MD2のキャビティ内へと流し込む。ゲートGTから流入した樹脂素材は、光学面転写面MD2aの並び方向に沿って流動する。 As shown in FIG. 12A, the mold material is clamped so that the lower surface of the first mold MD1 and the upper surface of the second mold MD2 are in close contact with each other, and the resin material melted from the outside through the gate GT is Pour into the cavity of the second mold MD2. The resin material flowing in from the gate GT flows along the alignment direction of the optical surface transfer surface MD2a.
 第1型MD1の斜面MD1aにより、光路変更素子120の第1面121が転写成形され、斜面MD1bにより第3面123が転写成形される。一方、第2型MD2の光学面転写面MD2aにより、光路変更素子120の反射面122aが転写成形され、繋ぎ面転写面MD2bにより繋ぎ面122bが転写形成され、突出部転写面MD2cにより突出部122cが転写成形される。 The first surface 121 of the optical path changing element 120 is transferred and molded by the inclined surface MD1a of the first mold MD1, and the third surface 123 is transferred and molded by the inclined surface MD1b. On the other hand, the reflecting surface 122a of the optical path changing element 120 is transferred and molded by the optical surface transfer surface MD2a of the second mold MD2, the connecting surface 122b is transferred and formed by the connecting surface transfer surface MD2b, and the protruding portion 122c by the protruding portion transfer surface MD2c. Is transferred and molded.
 樹脂素材の固化後、図12(b)に示すように、第1型MD1と第2型MD2を型開きすることで、成形された光路変更素子120を取り出すことができる。本実施形態によれば、ゲートGTから流入した樹脂素材は、光学面転写面MD2aの並び方向に沿って流動した後固化するので、形成された光路変更素子120において、温度上昇時における反射面122aの並び方向(つまり光路変更素子120の長手方向)の線膨張量を小さく抑えることができる。一方、多芯光ファイバ体132のセカンダリー層132dが、温度上昇時における光ファイバ素線132bの芯間距離を決めているので、光路変更素子120の線膨張量をセカンダリー層132dの線膨張量に近づけることで、光ファイバ素線132bと、それに対応する反射面122aとの位置関係がそれぞれ精度良く保たれるので、温度変化に関わらず良好な光結合を行うことができる。 After solidifying the resin material, as shown in FIG. 12B, the molded optical path changing element 120 can be taken out by opening the first mold MD1 and the second mold MD2. According to the present embodiment, the resin material that has flowed in from the gate GT solidifies after flowing along the alignment direction of the optical surface transfer surface MD2a. Therefore, in the formed optical path changing element 120, the reflection surface 122a when the temperature rises. The linear expansion amount in the arrangement direction (that is, the longitudinal direction of the optical path changing element 120) can be kept small. On the other hand, since the secondary layer 132d of the multi-core optical fiber body 132 determines the inter-core distance of the optical fiber 132b when the temperature rises, the linear expansion amount of the optical path changing element 120 is changed to the linear expansion amount of the secondary layer 132d. By bringing them closer, the positional relationship between the optical fiber 132b and the corresponding reflecting surface 122a can be maintained with high precision, so that good optical coupling can be performed regardless of temperature changes.
 本発明は、本明細書に記載の実施形態に限定されるものではなく、他の実施形態・変形例を含むことは、本明細書に記載された実施形態や技術思想から本分野の当業者にとって明らかである。例えば、本発明の光学素子は、光通信に限らず、複写機に使用するfθレンズとして、或いは小型のプロジェクタのコリメータや光ピックアップ装置にも用いることができる。 The present invention is not limited to the embodiments described in the present specification, and includes other embodiments and modifications based on the embodiments and technical ideas described in the present specification. It is obvious to For example, the optical element of the present invention can be used not only for optical communication but also as an fθ lens used for a copying machine, or for a collimator or an optical pickup device of a small projector.
100      光結合装置
110      光モジュール
111      台板
112      半導体レーザ
113      ピン
120      光路変更素子
121      第1面
122      第2面
123      第3面
125      カバー部材
130      光コネクタ
131      本体部
131a     凹部
131b     挿入孔
131c     長孔
131d     底面
131e     下面
131f     円形開口
132      多芯光ファイバ体
132a     保護部
132b     ファイバ素線
132c     プライマリー層
132d     セカンダリー層
100 optical coupling device 110 optical module 111 base plate 112 semiconductor laser 113 pin 120 optical path changing element 121 first surface 122 second surface 123 third surface 125 cover member 130 optical connector 131 body 131a recess 131b insertion hole 131c long hole 131d bottom 131e Lower surface 131f Circular opening 132 Multi-core optical fiber body 132a Protection part 132b Fiber strand 132c Primary layer 132d Secondary layer

Claims (10)

  1.  単一光源波長を持つ光源から出射した光束を透過する光学素子において、
     前記光学素子は、前記光束が入射もしくは反射する光学面を複数個並べて配置してなり、
     前記光学素子は樹脂とガラスファイバとを混合した素材から成形され、
     前記光学面がマトリクス状に並んでいたときは、行方向の並びと列方向の並びのうち、並び方向両端の光学面間の距離が長い方の並び方向に樹脂流入口が存在することを特徴とする光学素子。
    In an optical element that transmits a light beam emitted from a light source having a single light source wavelength,
    The optical element is formed by arranging a plurality of optical surfaces on which the light flux is incident or reflected,
    The optical element is molded from a mixed material of resin and glass fiber,
    When the optical surfaces are arranged in a matrix, a resin inflow port exists in the arrangement direction in which the distance between the optical surfaces at both ends in the arrangement direction is longer, among the arrangement in the row direction and the arrangement in the column direction. An optical element.
  2.  前記光学素子の樹脂流入口のある面の一辺の長さをαとしたときに、前記一辺の方向における前記樹脂流入口の幅はα/5以上、α以下であり、前記光学素子の厚みをβとしたときに、同方向における前記樹脂流入口の厚さはβ/5以上、β以下である請求項1に記載の光学素子。 When the length of one side of the surface having the resin inlet of the optical element is α, the width of the resin inlet in the direction of the one side is α / 5 or more and α or less, and the thickness of the optical element is 2. The optical element according to claim 1, wherein the thickness of the resin inlet in the same direction is β / 5 or more and β or less.
  3.  前記光学素子の光学面は、複数の光素子と、多芯光ファイバ体とを光結合する為に用いられ、前記多芯光ファイバ体における前記光学素子に対向する複数のファイバ素線を囲う包囲部の線膨張率と、前記光学素子の線膨張率とは略等しい請求項1又は2に記載の光学素子。 The optical surface of the optical element is used to optically couple a plurality of optical elements and a multi-core optical fiber body, and surrounds a plurality of fiber strands facing the optical element in the multi-core optical fiber body. The optical element according to claim 1, wherein a linear expansion coefficient of the portion and a linear expansion coefficient of the optical element are substantially equal.
  4.  単一光源波長を持つ光源から出射した光束を透過する光学素子において、
     前記光学素子は、前記光束が入射もしくは反射する光学面が、その光軸方向に見て長軸と短軸とを持つ楕円形又は矩形となっており、
     前記光学素子は樹脂とガラスファイバとを混合した素材から成形され、
     前記長軸方向に樹脂流入口が存在することを特徴とする光学素子。
    In an optical element that transmits a light beam emitted from a light source having a single light source wavelength,
    In the optical element, an optical surface on which the light beam is incident or reflected is an ellipse or a rectangle having a major axis and a minor axis when viewed in the optical axis direction,
    The optical element is molded from a mixed material of resin and glass fiber,
    An optical element, wherein a resin inflow port exists in the major axis direction.
  5.  前記ガラスファイバの混合量は2~40wt%である請求項1~4のいずれかに記載の光学素子。 5. The optical element according to claim 1, wherein a mixing amount of the glass fiber is 2 to 40 wt%.
  6.  前記樹脂は、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリオレフィン系樹脂、透明ポリアミド(PA)、ポリサルホン(PSU)/ポリフェニレンサルホン(PPSU)、ポリエーテルサルホン(PES)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)のいずれかである請求項1~5のいずれかに記載の光学素子。 The resin is polycarbonate (PC), polymethyl methacrylate (PMMA), polyolefin resin, transparent polyamide (PA), polysulfone (PSU) / polyphenylene sulfone (PPSU), polyethersulfone (PES), polyetherimide ( 6. The optical element according to claim 1, wherein the optical element is any one of PEI) and polyetheretherketone (PEEK).
  7.  前記ガラスファイバの形状は、断面がφ5~50μmであり、長さが10~500μmである棒状体である請求項1~6のいずれかに記載の光学素子。 The optical element according to any one of claims 1 to 6, wherein the glass fiber is a rod-like body having a cross section of 5 to 50 µm and a length of 10 to 500 µm.
  8.  前記光源波長は、850±150nm、1310±150nm、1550±150nmのいずれかである請求項1~3又は5~7のいずれかに記載の光学素子。 8. The optical element according to claim 1, wherein the light source wavelength is any one of 850 ± 150 nm, 1310 ± 150 nm, and 1550 ± 150 nm.
  9.  単一光源波長を持つ光源から出射した光束を透過する光学素子の製造方法において、
     前記光学素子は、前記光束が入射もしくは反射する光学面を複数個並べて配置してなり、
     樹脂とガラスファイバとを混合した素材を流動可能とした状態で、前記光学面の並び方向に沿ってゲートを介して金型内に流動させ、その後に固化させることにより前記光学素子を成形することを特徴とする光学素子の製造方法。
    In the method of manufacturing an optical element that transmits a light beam emitted from a light source having a single light source wavelength,
    The optical element is formed by arranging a plurality of optical surfaces on which the light flux is incident or reflected,
    Molding the optical element by allowing the material mixed with resin and glass fiber to flow in the mold along the direction of alignment of the optical surfaces and then solidifying the mold. A method for producing an optical element, characterized in that
  10.  単一光源波長を持つ光源から出射した光束を透過する光学素子の製造方法において、
     前記光学素子は、前記光束が入射もしくは反射する光学面が、その光軸方向に見て長軸と短軸とを持つ楕円形又は矩形となっており、
     樹脂とガラスファイバとを混合した素材を流動可能とした状態で、前記光学面の長軸方向に沿ってゲートを介して金型内に流動させ、その後に固化させることにより前記光学素子を成形することを特徴とする光学素子の製造方法。
    In the method of manufacturing an optical element that transmits a light beam emitted from a light source having a single light source wavelength,
    In the optical element, an optical surface on which the light beam is incident or reflected is an ellipse or a rectangle having a major axis and a minor axis when viewed in the optical axis direction,
    The optical element is molded by allowing the material mixed with resin and glass fiber to flow in the mold along the major axis direction of the optical surface through the gate and then solidifying the material. A method for manufacturing an optical element.
PCT/JP2016/053311 2015-02-16 2016-02-04 Optical element and method for manufacturing optical element WO2016132913A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-027193 2015-02-16
JP2015027193 2015-02-16

Publications (1)

Publication Number Publication Date
WO2016132913A1 true WO2016132913A1 (en) 2016-08-25

Family

ID=56688922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053311 WO2016132913A1 (en) 2015-02-16 2016-02-04 Optical element and method for manufacturing optical element

Country Status (1)

Country Link
WO (1) WO2016132913A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI737386B (en) * 2019-10-31 2021-08-21 佑勝光電股份有限公司 An optical transceiver module and an optical cable module

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372229A (en) * 1989-08-11 1991-03-27 Sanyo Electric Co Ltd Manufacture of semiconductor pressure sensor
JPH03192301A (en) * 1989-12-22 1991-08-22 Mitsubishi Rayon Co Ltd Substrate for light transmission body array
JPH08220409A (en) * 1995-02-13 1996-08-30 Nikon Corp Optical instrument
JPH081445U (en) * 1995-06-15 1996-10-01 京セラ株式会社 Optical scanning unit
JP2001150487A (en) * 1999-11-24 2001-06-05 Mitsumi Electric Co Ltd Method for producing plastic-molded lens
JP2004102108A (en) * 2002-09-12 2004-04-02 Fujitsu Ltd Collimator array and optical device provided with this collimator array
WO2006064641A1 (en) * 2004-12-14 2006-06-22 Matsushita Electric Industrial Co., Ltd. Optical element, composite optical element having same and optical device
JP2010128027A (en) * 2008-11-26 2010-06-10 Seikoh Giken Co Ltd Image pickup lens
JP2011245735A (en) * 2010-05-26 2011-12-08 Konica Minolta Opto Inc Method of manufacturing led lens
JP2012217128A (en) * 2011-03-28 2012-11-08 Kyocera Optec Co Ltd Image reading optical system unit
WO2014119738A1 (en) * 2013-02-01 2014-08-07 コニカミノルタ株式会社 Compound eye optical system, imaging device, and method for producing compound eye optical system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372229A (en) * 1989-08-11 1991-03-27 Sanyo Electric Co Ltd Manufacture of semiconductor pressure sensor
JPH03192301A (en) * 1989-12-22 1991-08-22 Mitsubishi Rayon Co Ltd Substrate for light transmission body array
JPH08220409A (en) * 1995-02-13 1996-08-30 Nikon Corp Optical instrument
JPH081445U (en) * 1995-06-15 1996-10-01 京セラ株式会社 Optical scanning unit
JP2001150487A (en) * 1999-11-24 2001-06-05 Mitsumi Electric Co Ltd Method for producing plastic-molded lens
JP2004102108A (en) * 2002-09-12 2004-04-02 Fujitsu Ltd Collimator array and optical device provided with this collimator array
WO2006064641A1 (en) * 2004-12-14 2006-06-22 Matsushita Electric Industrial Co., Ltd. Optical element, composite optical element having same and optical device
JP2010128027A (en) * 2008-11-26 2010-06-10 Seikoh Giken Co Ltd Image pickup lens
JP2011245735A (en) * 2010-05-26 2011-12-08 Konica Minolta Opto Inc Method of manufacturing led lens
JP2012217128A (en) * 2011-03-28 2012-11-08 Kyocera Optec Co Ltd Image reading optical system unit
WO2014119738A1 (en) * 2013-02-01 2014-08-07 コニカミノルタ株式会社 Compound eye optical system, imaging device, and method for producing compound eye optical system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI737386B (en) * 2019-10-31 2021-08-21 佑勝光電股份有限公司 An optical transceiver module and an optical cable module

Similar Documents

Publication Publication Date Title
US10191218B2 (en) Optical element and optical connector
US9897763B2 (en) Transceiver interface having staggered cleave positions
JP2016133518A (en) Optical element and method for manufacturing the same
CN108957631B (en) Optical connector
KR20140146647A (en) Hermetic optical fiber alignment assembly having integrated optical element
WO2016114336A1 (en) Optical element and manufacturing method for optical element
EP3423879B1 (en) Optical coupling assembly
JP2009134262A (en) Optical connector
JP2018194670A (en) Optical element and optical connector
WO2016180071A1 (en) Coupled connecting method for optical wave guide plate and optical fibers, optical wave guide plate and telecommunication transmission system
US20030190130A1 (en) Multiple optical pathway fiber optic cable
US10175432B2 (en) Optical path change element and optical coupling device
WO2016132913A1 (en) Optical element and method for manufacturing optical element
EP2641118A1 (en) Optical coupling device, optical communication system and method of manufacture
WO2016114335A1 (en) Optical element and manufacturing method for optical element
WO2018042984A1 (en) Optical connection structure
WO2018181782A1 (en) Light receptacle and light transceiver
US11782222B2 (en) Optical fiber connection component and optical fiber connection structure
Rosenberg et al. Low cost, injection molded 120 Gbps optical backplane
US11372164B2 (en) Optical connector system and optical connection structure
JP6920561B2 (en) Stackable optical ferrules and connectors that use optical ferrules
JP2017161579A (en) Optical receptacle and optical module
US20230090783A1 (en) Optical wiring component
JP5295057B2 (en) Optical transmission board, optical transmission module and optical transmission device
WO2023151270A1 (en) Optical connection apparatus and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16752300

Country of ref document: EP

Kind code of ref document: A1