JPH03192301A - Substrate for light transmission body array - Google Patents

Substrate for light transmission body array

Info

Publication number
JPH03192301A
JPH03192301A JP1331014A JP33101489A JPH03192301A JP H03192301 A JPH03192301 A JP H03192301A JP 1331014 A JP1331014 A JP 1331014A JP 33101489 A JP33101489 A JP 33101489A JP H03192301 A JPH03192301 A JP H03192301A
Authority
JP
Japan
Prior art keywords
substrate
resin
array
light transmission
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1331014A
Other languages
Japanese (ja)
Inventor
Yoshihiko Mishina
三品 義彦
Kazunori Koike
和權 小池
Yoshihiro Uozu
吉弘 魚津
Nobuhiko Toyoda
豊田 暢彦
Masaaki Oda
正昭 小田
Yoshihiko Hoshiide
芳彦 星出
Naoki Takei
武居 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP1331014A priority Critical patent/JPH03192301A/en
Publication of JPH03192301A publication Critical patent/JPH03192301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Facsimile Heads (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To obtain the substrate for a light transmission body array having excellent workability and good heat resistance by providing grooves for carrying light transmission bodies on a surface of a rectangular plate body made of a resin compsn. consisting of a thermoplastic resin and light shieldable particles. CONSTITUTION:The resin compsn. formed by adding a flame-retardant at need to the thermoplastic resin and the light shieldable particles is worked into an array substrate by an injection molding method, extrusion molding method, etc. The thermoplastic resin is not deformed in spite of heating to 80 deg.C and has fire retardance. Polyamide, polyester, polycarbonate, ABS, alpha-methylated styrene/AN copolymer, AAS, AES, polymethyl methacrylate, etc., are used for this resin. A carbon black, iron oxide powder, blackened resin powder, etc., are usable for the light shieldable particles. The grooves for disposing the light transmission bodies are formed on this array substrate in order to dispose the light transmission bodies thereon. The array shape is formed by arranging 240 pieces of distributed index circular cylindrical lenses between two sheets of such substrates and crimping the lenses in the state of coating the substrates with a two-pack mixing type epoxy adhesive.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光伝送体アレイ用基板、特に加工性に優れた熱
可塑性樹脂を用いた光伝送体アレイ用基板に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a substrate for an optical transmitter array, and particularly to a substrate for an optical transmitter array using a thermoplastic resin with excellent workability.

[従来の技術] 光伝送体、とくに光ファイバや屈折率分布型棒状レンズ
の配列体よりなる光伝送体アレイは光通信分野、或いは
複写機用センサ、電子黒板用センサ、ファクシミリ用セ
ンサとして近年大きくその用途を広げてきている。これ
らの用途に使われる光伝送体アレイのうち、屈折率分布
型棒状レンズの配列体は画像伝送用装置のセンサとして
特に有用であるが、従来用いられてきた屈折率分布型光
伝送体は、無機ガラスをイオン交換法にて処理すること
により作られているため、その製造コストが高いばかり
でなく、もろいという難点もあり、光伝送体アレイへの
加工が極めて難しいため高価になるためその用途拡大の
ネックとなっている。
[Prior Art] Optical transmitters, especially optical transmitter arrays consisting of optical fibers and gradient index rod-shaped lenses, have been widely used in the field of optical communications, as well as sensors for copiers, electronic blackboards, and facsimile machines in recent years. Its uses are expanding. Among the optical transmission body arrays used for these applications, arrays of gradient index rod-shaped lenses are particularly useful as sensors for image transmission devices, but the gradient index optical transmission bodies that have been used in the past are Since it is made by processing inorganic glass using an ion exchange method, it is not only expensive to manufacture, but also has the disadvantage of being brittle, and it is extremely difficult to process into optical transmitter arrays, making it expensive. This has become a bottleneck for expansion.

[発明が解決しようとする課題] 近年になり、無機ガラス系の屈折率分布型棒状レンズに
代え、プラスチック製屈折率分布型棒状レンズの開発が
進められており、その加工性の良さ、比較的低コストで
作り得るという利点が注目され、その用途開発が急展開
しようとしている。
[Problem to be solved by the invention] In recent years, instead of inorganic glass-based gradient index rod lenses, development of plastic gradient index rod lenses has been progressing, and their workability is relatively high. The advantage of being able to produce it at low cost has attracted attention, and the development of its applications is rapidly expanding.

従来、開発されてきた光伝送体アレイの基板は、これら
アレイが60℃以上の熱が加わる雰囲気下で使われるた
め、アレイの長手方向への熱膨張を極力抑える必要のた
め、ガラス繊維強化樹脂や炭素繊維強化樹脂にて作られ
ており、アレイの共役長をそろえるための切削加工が極
めて難しいという難点があった。
Conventionally, the substrates for optical transmitter arrays that have been developed are made of glass fiber-reinforced resin because these arrays are used in an atmosphere where heat of 60°C or higher is applied, and it is necessary to suppress thermal expansion in the longitudinal direction of the array as much as possible. They are made of carbon fiber-reinforced resin and have the disadvantage that cutting to align the conjugate lengths of the arrays is extremely difficult.

[課題を解決すべき手段1 そこで本発明者等は加工性に優れ耐熱性の良好な光伝送
体アレイ用基板を得るべく鋭意検討した結果、基板素材
として熱可塑性樹脂と光遮断材とを用いたものを用いる
ことによりその目的を達成しうることを見出し本発明を
完成した。
[Means to Solve the Problem 1] Therefore, the inventors of the present invention conducted intensive studies to obtain a substrate for an optical transmitter array with excellent workability and good heat resistance, and as a result, they decided to use a thermoplastic resin and a light shielding material as the substrate material. The present invention was completed based on the discovery that the object could be achieved by using the same method.

本発明の要旨とするところは、熱可塑性樹脂と光遮断性
粒子とよりなる樹脂組成物から作られた矩形状板状体で
あり、その−面に光伝送体担持用溝を備えたことを特徴
とする光伝送体アレイ用基板にある。
The gist of the present invention is to provide a rectangular plate-like body made from a resin composition comprising a thermoplastic resin and light-shielding particles, and a rectangular plate-like body provided with a groove for supporting a light transmitting body on its negative side. This is a characteristic feature of a substrate for an optical transmitter array.

本発明を実施するに際して用いる熱可塑性樹脂としては
80°Cに加熱されても変形せず、難燃性を備えたもの
であり、例えば、ポリアミド、ポリエステル、ポリカー
ボネート、ABS 、αメチル化スチレン/ANコポリ
マー、^^S1^ES。
The thermoplastic resin used in carrying out the present invention is one that does not deform even when heated to 80°C and is flame retardant, such as polyamide, polyester, polycarbonate, ABS, α-methylated styrene/AN Copolymer, ^^S1^ES.

ポリメチルメタクリレートなどをその具体例として挙げ
ることができるが、基板を押出成形により成形した際の
成形性、形態保持性、該成形体への押出成形法による光
伝送体挟持用溝の賦形性、接着剤による光伝送体アレイ
への接合性、及びアレイ組立体の共役長を設定するため
の切削加工性を考慮すると、とくに、^BS、^AS、
 AESより選ばれた熱可塑性樹脂であることが好まし
い。
Specific examples include polymethyl methacrylate, but the moldability and shape retention when the substrate is molded by extrusion molding, and the ability to form grooves for holding the optical transmitter into the molded body by extrusion molding. , considering bondability to the optical transmitter array with adhesive and machinability for setting the conjugate length of the array assembly, especially ^BS, ^AS,
Preferably, it is a thermoplastic resin selected from AES.

また、本発明の基板は、60°C以上の熱雰囲気下で使
われることもあるため難燃化しておくことが必要な場合
もある。この難燃剤としては水酸化アルミニウム、水酸
化マグネシウム、三酸化アンチモン、五酸化アンチモン
、リン系化合物等の無機系難燃剤、ハロゲン化ポリスチ
レン、ハロゲン化ポリカーボネーI・オリゴマーハロゲ
ン化エポキシ、ポリ塩化ビニル、ハロゲン化ポリエチレ
ンの有機系難燃剤を単独で或いは併用した型で用いるこ
とが可能である。
Further, since the substrate of the present invention is sometimes used in a hot atmosphere of 60° C. or higher, it may be necessary to make it flame retardant. Examples of the flame retardant include aluminum hydroxide, magnesium hydroxide, antimony trioxide, antimony pentoxide, inorganic flame retardants such as phosphorus compounds, halogenated polystyrene, halogenated polycarbonate I/oligomer halogenated epoxy, polyvinyl chloride, It is possible to use organic flame retardants such as halogenated polyethylene alone or in combination.

また光遮断材としてはカーボンブラック、酸化鉄粉や黒
色化樹脂粉末などを用いることができるが、出来るだけ
軽い光遮断材を用いるのがよい。
Further, as the light blocking material, carbon black, iron oxide powder, blackened resin powder, etc. can be used, but it is preferable to use a light blocking material that is as light as possible.

本発明の光伝送体アレイ基板を作るには上述した樹脂と
光遮断材、必要により難燃材を加えた樹脂組成物を射出
成形法、押出成形法等によりアレイ基板に加工すること
ができる。アレイ基板に光伝送体を配設するために光伝
送体配設用溝を形成することが非常に有効となる。本発
明のアレイ基板は熱可塑性樹脂にて作られていることか
ら、この光伝送体配設用溝を容易に加工することが可能
である。この光伝送体配役用溝は半球状、U型、V型等
の形状のものが用いられる。
To make the optical transmitter array substrate of the present invention, a resin composition containing the above-mentioned resin, a light shielding material, and, if necessary, a flame retardant added thereto, can be processed into an array substrate by injection molding, extrusion molding, or the like. It is very effective to form a groove for arranging an optical transmitter in order to arrange the optical transmitter on the array substrate. Since the array substrate of the present invention is made of thermoplastic resin, it is possible to easily process the groove for arranging the optical transmission body. The groove for arranging the optical transmission body is hemispherical, U-shaped, V-shaped, or the like.

射出成型法によってこの基板を形成するには溝付きの金
型を用いるのがよい。この金型の精度によって得られる
基板の溝ピッチの精度がでてくるために、精度の高い金
型を用いることにより基板の溝ピッチの精度のよい基板
が容易に得られてくる。但しこの射出成型法ではランナ
ーの部分を充填するための樹脂が余計に必要となりコス
トアップにつながってくるという問題がある。
A grooved mold is preferably used to form this substrate by injection molding. Since the precision of the groove pitch of the substrate is determined by the precision of the mold, a substrate with a high precision of the groove pitch of the substrate can be easily obtained by using a highly accurate mold. However, this injection molding method has the problem that extra resin is required to fill the runner portion, leading to an increase in cost.

一方、押出成型法では、一方のロールが半球柱状体又は
V型柱状体を多数設けたロールを用いたニップロールに
より溝付は加工することができる。この方法では余分な
樹脂の使用を極力押えることができコストメリットがあ
る。また連続的に製造が可能である。
On the other hand, in the extrusion molding method, grooves can be formed using a nip roll using a roll in which one roll has a large number of hemispherical columns or V-shaped columns. This method can minimize the use of excess resin and has cost advantages. Moreover, continuous production is possible.

本発明のアレイ基板は熱可塑性樹脂にて作られており、
特にファクシミリや複写機等の短尺型光伝送体アレイ基
板として用いた場合、アレイの伸びやソリによる伝送画
像のいずれを生ずることな(利用することができる。
The array substrate of the present invention is made of thermoplastic resin,
In particular, when used as a short optical transmitter array substrate for facsimiles, copying machines, etc., the array can be used without causing any of the transmitted images due to elongation or warping of the array.

特にイメージセンサ−ユニットに組み込み、他の部品と
一体となったときはまったく問題を生じない。
Especially when it is incorporated into an image sensor unit and integrated with other parts, no problems arise.

以下実施例により本発明を更に詳細に説明する。The present invention will be explained in more detail with reference to Examples below.

実施例1 射出成形機に長さ228mm、幅12mm、厚さ0、7
 tramで表面に曲率半径0.475mmの半円柱状
凸部を0.95mmピッチで240本設けた金型を取り
付け、スクリュ一部温度250°C1金型温度50°C
、サイクルタイム60秒に設定した後、黒色へBS樹脂
を投入し基板を得た。
Example 1 An injection molding machine with a length of 228 mm, a width of 12 mm, and a thickness of 0.7
Attach a mold with 240 semi-cylindrical convex parts with a radius of curvature of 0.475 mm at a pitch of 0.95 mm on the surface using a tram, and set the screw temperature at 250°C and the mold temperature at 50°C.
After setting the cycle time to 60 seconds, BS resin was added to the black color to obtain a substrate.

得られた成形基板よりランナーの部分をとり、長さ22
8m、幅12鴫、厚さ0.7園、溝ピッチ0.95mm
、溝の深さ0.3鵬なる基板を得た。
Take the runner part from the obtained molded substrate and measure it to a length of 22 mm.
8m, width 12mm, thickness 0.7mm, groove pitch 0.95mm
A substrate with a groove depth of 0.3 mm was obtained.

この基板2枚間に直径920−1屈折率分布定数g値が
0.54mm−’、中心屈折率1.515であるレンズ
長20閣の屈折率分布型円柱状レンズ240本配列し、
二液混合型エポキシ系接着剤を塗布した状態で挟持し、
アレイ形状を形成した。このアレイを基板側からプレス
(2kgf/cffl)して60″Cに10分間放置し
た。その後このアレイのレンズの突出している面を切削
してレンズ長7. Otmのアレイとした。更にこのア
レイをジペンタエリスリトールへキサアクリレート、ト
リメチロールプロパントリアクリレート20重量部、2
−プロパツール60重量部、1−ヒドロキシシクロへキ
シルフェニルケトン3重量部、光重合開始剤1重量部と
からなる光重合性組成物中に浸漬し、その後2−プロパ
ツールを揮散させた後に40−ケミカルランプで光硬化
し、平滑な面を形成した。このレンズアレイはレンズ長
が7.0−で共役長14.4閣であった。
Between these two substrates, 240 gradient index cylindrical lenses with a diameter of 920-1, a refractive index distribution constant g value of 0.54 mm, a center refractive index of 1.515, and a lens length of 20 mm are arranged,
Clamp with a two-component mixed epoxy adhesive applied,
An array shape was formed. This array was pressed from the substrate side (2 kgf/cffl) and left at 60''C for 10 minutes.Then, the protruding surface of the lens of this array was cut to obtain an array with a lens length of 7.0m. to dipentaerythritol, 20 parts by weight of hexaacrylate, trimethylolpropane triacrylate, 2
- Immersion in a photopolymerizable composition consisting of 60 parts by weight of propatool, 3 parts by weight of 1-hydroxycyclohexyl phenyl ketone, and 1 part by weight of a photopolymerization initiator, and then volatilizing the 2-propatool; - Photocured with a chemical lamp to form a smooth surface. This lens array had a lens length of 7.0 mm and a conjugate length of 14.4 mm.

又、解像度(MTF)は41P/mの空間周波数で0°
Cで61%、25°Cで63%、60″Cで62%と使
用温度による解像度の変化はなかった。
Also, the resolution (MTF) is 0° at a spatial frequency of 41P/m.
There was no change in resolution depending on the operating temperature: 61% at C, 63% at 25°C, and 62% at 60''C.

又、特に熱膨張等で問題をおこすことはなかった。これ
を実際のイメージセンサ−ユニットに組み込んだ結果、
画像伝送に充分用いることができた。
Furthermore, no problems were caused by thermal expansion or the like. As a result of incorporating this into an actual image sensor unit,
It could be used satisfactorily for image transmission.

実施例2 黒色ABS樹脂をバレル部220°C1ダイス部190
″Cに加熱した一軸押出機(バレル30mnφX800
m、ダイススリット10閣×1閤)に投入し、毎分90
0mmの速度で連続的に幅11論、厚さ0.9mのシー
ト状物を得た。このシート状物を半円柱状凸部を0.9
5mピッチで表面に有する直径100請の金属加熱ロー
ルと直径100薗の金属製平ロールとの間にはさみ込み
、毎分1000−の速度で連続的に移送し、幅11.5
mm、厚さ0.6 amの溝付シート状物を得、このシ
ート状物を3.4秒間隔で連続的にカットしアレイ基板
を得た。
Example 2 Black ABS resin barrel part 220°C1 die part 190
Single screw extruder heated to ``C'' (barrel 30mmφX800
m, dice slit 10 times x 1), 90 per minute
A sheet-like material having a width of 11 mm and a thickness of 0.9 m was continuously obtained at a speed of 0 mm. This sheet-like material has a semi-cylindrical convex portion of 0.9
It was sandwiched between a metal heating roll with a diameter of 100 mm and a metal flat roll with a diameter of 100 mm, which had a pitch of 5 m on the surface, and was continuously transferred at a speed of 1,000 mm per minute.
A grooved sheet having a diameter of 0.6 mm and a thickness of 0.6 am was obtained, and this sheet was continuously cut at intervals of 3.4 seconds to obtain an array substrate.

基板の形状は長さ296鵬、幅11.5閣、厚さ0.6
皿、溝ピッチ0.96mm、溝の深さ0.19胴であっ
た。この基板を用い、実施例1と同じレンズを用い実施
例1と同様にしてレンズアレイを得た。このレンズアレ
イでは押出し成形によって溝ピッチのフレがあるために
実施例1のレンズアレイより若干解像度が悪<1!P/
閣の空間周波数での解像度(MTF)は25°Cで58
%、0°Cで57%、60℃で57%であり、使用温度
による解像度の変化はなかった。これを実際のイメージ
センサ−ユニットに組み込んだ結果、画像伝送に充分用
いることができた。
The shape of the board is 296 mm long, 11.5 mm wide, and 0.6 mm thick.
The plate had a groove pitch of 0.96 mm and a groove depth of 0.19 mm. Using this substrate and using the same lenses as in Example 1, a lens array was obtained in the same manner as in Example 1. In this lens array, the resolution is slightly worse than the lens array of Example 1 because the groove pitch fluctuates due to extrusion molding <1! P/
The spatial frequency resolution (MTF) of the cabinet is 58 at 25°C.
%, 57% at 0°C and 57% at 60°C, and there was no change in resolution depending on the operating temperature. As a result of incorporating this into an actual image sensor unit, it was able to be used satisfactorily for image transmission.

実施例3 黒色アクリル系樹脂を用い、実施例1と同様にして同じ
金型を用いて射出成型によって基板を得た。その基板の
形状は長さ301mm、幅12閣、厚さ0.7薗、溝ピ
ッチ0.95m、溝の深さ0.3−であった。この基板
を用い実施例1と同じレンズを用い、実施例1と同様に
してレンズアレイを得た。このレンズアレイは共役長1
4.4鵬で解像度(MTF)は41P/IIIIlの空
間周波数で0℃で62%、25°Cで64%、70°C
で63%と使用温度による解像度の変化はなかった。、
これを実際のイメージセンサ−ユニットに組み込んだ結
果、画像伝送に用いることができた。
Example 3 A substrate was obtained by injection molding using the same mold as in Example 1 using black acrylic resin. The substrate had a length of 301 mm, a width of 12 mm, a thickness of 0.7 mm, a groove pitch of 0.95 m, and a groove depth of 0.3 mm. Using this substrate and using the same lenses as in Example 1, a lens array was obtained in the same manner as in Example 1. This lens array has a conjugate length of 1
At 4.4 Peng, the resolution (MTF) is 62% at 0°C, 64% at 25°C, and 70°C at a spatial frequency of 41P/IIIl.
The resolution was 63%, and there was no change in resolution depending on the operating temperature. ,
As a result of incorporating this into an actual image sensor unit, it was possible to use it for image transmission.

比較例1 ガラス繊維強化ABSを用い、実施例1と同様にして同
じ金型を用いて射出成型によって基板を得た。その基板
の形状は長さ301M、幅12■、厚さ0.7m、溝ピ
ッチ0.95m、溝の深さ0、3 mであった。この基
板を用いて実施例1と同じレンズを用い、実施例1と同
様にしてレンズアレイを作成した。
Comparative Example 1 A substrate was obtained by injection molding using the same mold as in Example 1 using glass fiber reinforced ABS. The shape of the substrate was 301 m long, 12 mm wide, 0.7 m thick, groove pitch 0.95 m, and groove depth 0.3 m. Using this substrate and using the same lenses as in Example 1, a lens array was created in the same manner as in Example 1.

その時レンズ長7.0 mのアレイに切削する工程で切
削する刃の消耗が非常に早いという問題点がでてきた。
At that time, a problem arose in that the cutting blades were worn out very quickly in the process of cutting into an array with a lens length of 7.0 m.

Claims (1)

【特許請求の範囲】[Claims] 熱可塑性樹脂と光遮断性粒子との樹脂組成物から作られ
た矩形状板状体であり、その片面に光伝送体挟持用溝を
設けたことを特徴とする光伝送体アレイ用基板。
1. A substrate for an optical transmitter array, characterized in that it is a rectangular plate made of a resin composition of a thermoplastic resin and light-blocking particles, and has grooves for holding the optical transmitter provided on one side thereof.
JP1331014A 1989-12-22 1989-12-22 Substrate for light transmission body array Pending JPH03192301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1331014A JPH03192301A (en) 1989-12-22 1989-12-22 Substrate for light transmission body array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1331014A JPH03192301A (en) 1989-12-22 1989-12-22 Substrate for light transmission body array

Publications (1)

Publication Number Publication Date
JPH03192301A true JPH03192301A (en) 1991-08-22

Family

ID=18238863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1331014A Pending JPH03192301A (en) 1989-12-22 1989-12-22 Substrate for light transmission body array

Country Status (1)

Country Link
JP (1) JPH03192301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132913A1 (en) * 2015-02-16 2016-08-25 コニカミノルタ株式会社 Optical element and method for manufacturing optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132913A1 (en) * 2015-02-16 2016-08-25 コニカミノルタ株式会社 Optical element and method for manufacturing optical element

Similar Documents

Publication Publication Date Title
CN101144865B (en) Optical element array, display device, and method of manufacturing display device, optical element array and optical element array molding die
WO2002056071A3 (en) Method for fabrication of plastic fiber optic blocks and large flat panel displays
Harvey Replication techniques for micro-optics
KR100750843B1 (en) Method for producing optical sheet, optical sheet, and method for producing lenticular lens sheet
CN101473250A (en) Birefringent structured film for LED color mixing in a backlight
KR20050054910A (en) Method for producing optical sheet and optical sheet
CN101874213A (en) Improved optical diffuser
WO2009028226A1 (en) Method for manufacturing optical member, parent material for manufacture of optical member, transfer mold, lighting system for display device, display device, and television receiver
JPH03192301A (en) Substrate for light transmission body array
TWI359710B (en) A mold, and a replica made therefrom
US5400182A (en) Composite glass and resin optical element with an aspheric surface
US20040026824A1 (en) Method for producing embossed sheet and embossed sheet
US7753673B2 (en) Device for forming optical lenses
KR20100015584A (en) Retardation film, retardation film laminate, and their production methods
CN110494779A (en) Polarizing film and image display device
JPH07248404A (en) Resin lens array and its production
US5258873A (en) Image-reading device
JP2023131250A (en) Method for manufacturing optical element, optical element, aerial picture display device, and aerial input device
JP3307000B2 (en) Manufacturing die apparatus and manufacturing method for bonded optical components
JPH01167802A (en) Production of microlens array
JPS5646728A (en) Preparation of polyester film
JPH01273002A (en) Double refractive lens array
JP2007137058A (en) Method of manufacturing embossed sheet
JPH11295817A (en) Lenticular screen
CN101419910B (en) Apparatus for fabricating semiconductor device and method thereof