JPH0372229A - Manufacture of semiconductor pressure sensor - Google Patents

Manufacture of semiconductor pressure sensor

Info

Publication number
JPH0372229A
JPH0372229A JP20808889A JP20808889A JPH0372229A JP H0372229 A JPH0372229 A JP H0372229A JP 20808889 A JP20808889 A JP 20808889A JP 20808889 A JP20808889 A JP 20808889A JP H0372229 A JPH0372229 A JP H0372229A
Authority
JP
Japan
Prior art keywords
resin
semiconductor pressure
center
resin package
silicon pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20808889A
Other languages
Japanese (ja)
Other versions
JP2708905B2 (en
Inventor
Yasuaki Nishida
西田 恭章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP20808889A priority Critical patent/JP2708905B2/en
Publication of JPH0372229A publication Critical patent/JPH0372229A/en
Application granted granted Critical
Publication of JP2708905B2 publication Critical patent/JP2708905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

PURPOSE:To enable accurate detection of a pressure without use of a pedestal by fluidizing a resin almost radially outward from the center of a carrying position with respect to a carrying surface of a semiconductor pressure sensing element. CONSTITUTION:In the molding of a resin package, a pin gate 3 is provided to inject a resin vertical to a silicon pellet carrying surface 1 and toward the center of position 2 of carrying silicon pellet indicated by the broken line. As a result, the resin is fluidized radially outward from the center of the carrying position 2 as indicated by the arrow. When a resin package 4 undergoes a temperature change, a thermal stress is generated parallel with the carrying surface 1 and outward isotropically way on the center of the carrying position 2. Thus, as the thermal stress is applied to a silicon pellet 5 fastened direct on the resin package 4 isotropically way outward on the center of the silicon pellet, there is no distortion caused by the thermal stress in a diaphragm section of the silicon pellet 5. In other words, this eliminates an undesired output otherwise caused by the thermal stress thereby enabling accurate detection of a pressure.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は半導体圧力センサの製造方法に関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to a method for manufacturing a semiconductor pressure sensor.

(ロ)従来の技術 一般に半導体圧力センサの半導体感圧素子は、ダイヤフ
ラム部を持つシリコンペレットのダイヤフラム部にピエ
ゾ抵抗体がブリッジ結合された構造を有している。斯る
半導体圧力センサにおいては、ダイヤフラム部が加圧さ
れ変形するとピエゾ抵抗体の抵抗値が加圧量に応じて夫
々変化するため、ブリッジ結合された斯る抵抗体がらの
出力を測定することによって加圧量が検出される。従っ
て、この種半導体圧力センサでは、被測定圧力以外の要
因によりダイヤフラム部が変形すると不所望なブリッジ
出力が生じるため、正確な圧力検出ができなくなる。
(b) Prior Art Generally, a semiconductor pressure-sensitive element of a semiconductor pressure sensor has a structure in which a piezoresistor is bridge-coupled to a diaphragm portion of a silicon pellet having a diaphragm portion. In such a semiconductor pressure sensor, when the diaphragm section is pressurized and deformed, the resistance value of the piezoresistor changes depending on the amount of pressure applied, so by measuring the output of the bridge-coupled resistors, The amount of pressurization is detected. Therefore, in this type of semiconductor pressure sensor, if the diaphragm portion is deformed due to factors other than the pressure to be measured, an undesirable bridge output will occur, making it impossible to accurately detect pressure.

一方、近年半導体圧力センサの製造の容易性及び低コス
ト化を目的として、シリコンベレットを収納するパッケ
ージに樹脂パッケージが多く採用されている。しかし乍
ら、斯る樹脂パッケージとシリコンペレットとでは熱膨
張係数が異なるため、温度変化によりシリコンペレット
内に不所望な熱応力が加わることとなり正確な圧力検出
ができなくなる。そこで斯るシリコンペレット内に発生
する熱応力を緩和するため、例えば特開昭63− ]、
、 63248号公報に記載されているように、シリコ
ンペレットと樹脂パッケージとの間に、シリコンペレッ
トと略等しい熱膨張率を有する台座が押入される。
On the other hand, in recent years, resin packages have been increasingly used as packages for housing silicon pellets in order to facilitate the manufacture of semiconductor pressure sensors and reduce costs. However, since the resin package and the silicon pellet have different thermal expansion coefficients, undesired thermal stress is applied to the silicon pellet due to temperature changes, making accurate pressure detection impossible. Therefore, in order to alleviate the thermal stress generated within such silicon pellets, for example, JP-A-63-],
As described in Japanese Patent No. 63248, a pedestal having a thermal expansion coefficient substantially equal to that of the silicon pellet is inserted between the silicon pellet and the resin package.

(ハ)発明が解決しようとする課題 しかるに、上述のように台座を用いる場合、半導体圧力
センサの製造の際に、斯る台座を加工し、樹脂パッケー
ジに載置固着する工程やそのための設備が必要と°なり
、さらに台座自身のコストも必要であることから半導体
圧力センサの製造コストの増加を招くといった問題が生
じる。
(c) Problems to be Solved by the Invention However, when using a pedestal as described above, the process of processing such a pedestal, placing and fixing it on a resin package, and the equipment for that process are required when manufacturing a semiconductor pressure sensor. In addition, the cost of the pedestal itself is also required, which poses a problem of increasing the manufacturing cost of the semiconductor pressure sensor.

したがって、本発明は台座を用いなくても正確な圧力検
出が可能な半導体圧力センサを製造することを技術的課
題とする。
Therefore, the technical object of the present invention is to manufacture a semiconductor pressure sensor that can accurately detect pressure without using a pedestal.

(ニ)課題を解決するための手段 本発明は、線膨張率が成型時の流動方向とその直角方向
とで異なる樹脂を用いて樹脂パッケージを底型し、該樹
脂パッケージに半導体感圧素子を載置固着する半導体圧
力センサの製造方法であって、上記課題を解決するため
上記樹脂パッケージを底型する際に、上記樹脂を上記半
導体感圧素子の載置面に対してその載置位置中央から外
側に向けて略放射状に流動させることを特徴とする。
(d) Means for Solving the Problems The present invention provides a bottom mold for a resin package using a resin whose coefficient of linear expansion is different in the flow direction during molding and in the direction perpendicular to the flow direction, and a semiconductor pressure-sensitive element is placed in the resin package. In order to solve the above problem, in order to solve the above problem, when forming a bottom mold of the resin package, the resin is placed at the center of the mounting position of the semiconductor pressure sensitive element with respect to the mounting surface of the semiconductor pressure sensitive element. It is characterized by flowing approximately radially outward from the base.

また本発明は、線膨張率が成型時の流動方向とその直角
方向とで異なる樹脂を用いて円形の樹脂パッケージを底
型し、該樹脂パッケージに半導体感圧素子を載置固着す
る半導体圧力センサの製造方法であって、上記課題を解
決するため上記樹脂を上記e、載置面対して端部からそ
の中心に向けて略渦巻状に流動させることを特徴とする
Further, the present invention provides a semiconductor pressure sensor in which a circular resin package is made of a resin whose coefficient of linear expansion is different in the flow direction during molding and in the direction perpendicular to the flow direction, and a semiconductor pressure-sensitive element is placed and fixed on the resin package. In order to solve the above problem, the manufacturing method is characterized in that the resin is caused to flow in a substantially spiral shape from the end to the center of the mounting surface.

(ホ)作用 一般に、半導体圧力センサの樹脂パッケージに用いられ
るポリフェニレンサルファイド(P P S )樹脂や
ポリブチレンテレフタレート(PBT)樹脂等、エンジ
ニアプラスチックと呼ばれるものの多くはガラス繊維を
含むため配向性を有し、射出成型時の樹脂の流動方向に
対して線膨張係数が小さく、その直角方向に対して線膨
張係数が大きいといった性質を有する。
(E) Function In general, many of the so-called engineering plastics, such as polyphenylene sulfide (PPS) resin and polybutylene terephthalate (PBT) resin used in resin packages for semiconductor pressure sensors, have orientation properties because they contain glass fibers. , the coefficient of linear expansion is small in the flow direction of the resin during injection molding, and the coefficient of linear expansion is large in the direction perpendicular to the flow direction.

本発明方法においては、半導体圧力センサの樹脂パッケ
ージの成型時に樹脂を半導体感圧素子の載置面に対して
、その載置位置中央から外側に向けて略放射状に流動さ
せることによって、また、円形樹脂パッケージの成型時
に樹脂をii2置而の面部からその中心に向けて略渦巻
状に流動させることによって、夫々、載置面での熱応力
が、半導体感圧素子の載置位置中央を中心として等方向
に生じる。
In the method of the present invention, when molding the resin package of the semiconductor pressure sensor, the resin is made to flow approximately radially from the center of the mounting position outward toward the mounting surface of the semiconductor pressure-sensitive element. By causing the resin to flow approximately spirally from the surface of the resin package toward its center during molding of the resin package, the thermal stress on the mounting surface is reduced with respect to the center of the mounting position of the semiconductor pressure-sensitive element. Occurs in equal directions.

(へ)実施例 先ず、本発明の詳細な説明する記述した如く、シリコン
ペレットを樹脂パッケージに直接固着する場合、シリコ
ンペレットと樹脂パッケージとの熱膨張係数の違いによ
り、温度変化時にシリコンペレットに応力が加わるため
、半導体圧力センサから不所望な信号が出力される。本
発明者が、斯る点を詳細に検討したところ、シリコンペ
レットに加わる応力は第6図に示すように、樹脂パッケ
ージの成型時に、樹脂が図中矢印で示すように流動した
場合に多く生じることが判明した。これは、シリコンペ
レット載置面(])の樹脂配向性が偏ると、図中破線内
で示すシリコンペレット載置位置(2)に生じる熱応力
も偏るため、シリコンベじ易くなるものと考えられる。
(f) Example First, as described in the detailed explanation of the present invention, when a silicon pellet is directly fixed to a resin package, stress is applied to the silicon pellet when the temperature changes due to the difference in thermal expansion coefficient between the silicon pellet and the resin package. As a result, an undesired signal is output from the semiconductor pressure sensor. The inventor of the present invention has studied this point in detail and found that stress applied to silicone pellets occurs more often when the resin flows as shown by the arrow in the figure during molding of a resin package, as shown in Figure 6. It has been found. This is thought to be because when the resin orientation of the silicon pellet mounting surface ( ]) is biased, the thermal stress generated at the silicon pellet mounting position (2) indicated by the broken line in the figure is also biased, making the silicon grains more likely to bend.

そこで第1の方発明方法では第1図(a)に示す如く、
樹脂パッケージの底型の際にシリコンペレット載置面(
1)に対して垂直で、且つ破線で示すシリコンペレット
載置位置(2)中央に向けて樹脂を注入するビンゲート
(3)を設ける。これによって、同図(b)に矢印で示
す如く、樹脂はシリコンペレット載置位置(2)中央か
ら外側に向かって放射状に流動することになる。而して
斯る樹脂パッケージが温度変化を受けると、熱応力はシ
リコンペレット載置面(1)に対して平行に、且つジノ
コンペレットfi2H位置(2)の中央を中心に外側に
向かって等方向に生じることとなる。したがって、斯る
樹脂パッケージに直接固着されるシリコンペレットにも
熱応力がシリコンベレット中央を中心として外側に向か
って等方向に加わるため、シリコンペレットのダイヤフ
ラム部は歪むことなく、その平面に対して平行に、且つ
等方向に引っ張られる。
Therefore, in the first method of the invention, as shown in FIG. 1(a),
When forming the bottom mold of the resin package, place the silicone pellet on the surface (
A bin gate (3) for injecting resin is provided perpendicular to 1) and toward the center of the silicon pellet placement position (2) shown by a broken line. As a result, the resin flows radially outward from the center of the silicon pellet mounting position (2), as shown by the arrows in FIG. 2(b). When such a resin package is subjected to a temperature change, thermal stress is generated parallel to the silicon pellet mounting surface (1) and equally outward from the center of the Zinocom pellet fi2H position (2). This will occur in the direction. Therefore, thermal stress is also applied to the silicon pellet directly fixed to the resin package in the same direction outward from the center of the silicon pellet, so the diaphragm part of the silicon pellet is not distorted and is parallel to its plane. and is pulled in the same direction.

第1図では説明のため、便宜上樹脂パッケージのシリコ
ンペレットiT&fi面のみを表し勾が、第2図に示す
例の如く実際の樹脂パッケージ(4)はシリコンペレッ
ト(5)の載置面(1)の他に側壁(6)、導圧管(7
)を有している。斯る形状の樹脂パッケージ(4)を本
発明方法に従って底型するには、第3図に示す如く、樹
脂パッケージ(4)を底型する金型(8)において、シ
リコンペレット載置面に垂直で、シリコンペレット載置
位置中央に通じるピンゲート(3)を設け、ここから樹
脂を注入すればよい。但し、この場合シリコンベレット
載置面は全て樹脂で覆われるので、樹脂パッケージ底型
後シリコンペレット@蓋面に、導圧管に連通する穴を開
ける必要がある。
For convenience of explanation, in Figure 1, only the silicon pellet iT&fi side of the resin package is shown. In addition to the side wall (6), the impulse pipe (7)
)have. In order to mold the bottom of a resin package (4) having such a shape according to the method of the present invention, as shown in FIG. Then, a pin gate (3) leading to the center of the silicon pellet placement position is provided, and the resin is injected from there. However, in this case, since the silicon pellet mounting surface is entirely covered with resin, it is necessary to make a hole in the silicon pellet @ lid surface after the bottom mold of the resin package to communicate with the pressure impulse pipe.

次に、第2の本発明方法は、シリコンペレット載置面が
円形である場合に適用され、第4図(a)及び(b)に
示す如く、樹脂パッケージ底型の際に載置面(1゛)の
接線方向からその端部に向かって樹脂が注入される様に
ピンゲー) (3’)を設けている。これにより、樹脂
は円形載置面(1)内をその中心に向かって渦巻状に流
動する。第5図に斯る方法に用いる金型(8′)の−例
を示す。この場合においても、温度変化時に生じる熱応
力はシリコンペレットの@蓋面(1)に対して平行に且
つ、シリコンペレット載置位置(2)中央を中心にして
外側に向かって等方向に加わることとなる。したがって
、斯る方法で底型された円形樹脂パッケージにおいても
、その載置面上に直接固着されるシリコンペレットのダ
イヤフラム部は熱応力によって歪むことはなく、これに
よる不所望な出力は生じない。
Next, the second method of the present invention is applied when the silicon pellet placement surface is circular, and as shown in FIGS. 4(a) and (b), the placement surface ( A pin gate (3') is provided so that the resin is injected from the tangential direction of 1') toward the end thereof. As a result, the resin flows spirally within the circular mounting surface (1) toward the center thereof. FIG. 5 shows an example of a mold (8') used in such a method. Even in this case, the thermal stress generated when the temperature changes is applied parallel to the silicon pellet @lid surface (1) and in the same direction outward from the center of the silicon pellet placement position (2). becomes. Therefore, even in a circular resin package whose bottom is shaped in this manner, the diaphragm portion of the silicon pellet directly fixed onto the mounting surface will not be distorted by thermal stress, and no undesired output will occur due to this.

(ト)発明の効果 本発明方法によれば、樹脂パッケージ作製の際に、その
半導体感圧素子載置面において樹脂を半導体感圧素子の
載置位置中央を中心として放射状あるいは渦巻状に流動
させることによって、半導体感圧素子を樹脂パッケージ
に直接固着しても、半導体感圧素子のダイヤフラム部に
熱応力による歪みは生じなくなる。即ち、熱応力による
不所望な出力がなくなるため、正確な圧力検出が可能と
なる。したがって、本発明方法を適用すれば、従来の如
く、樹脂パッケージと半導体感圧素子との間に半導体感
圧素子と略熱膨張係数の等しい台座を設ける必要がなく
なり、これによって低コストで正確な圧力検出ができる
半導体圧力センサを製造することができる。
(G) Effects of the Invention According to the method of the present invention, when producing a resin package, the resin is caused to flow radially or spirally on the semiconductor pressure-sensitive element mounting surface centered on the center of the semiconductor pressure-sensitive element mounting position. As a result, even if the semiconductor pressure-sensitive element is directly fixed to the resin package, distortion due to thermal stress will not occur in the diaphragm portion of the semiconductor pressure-sensitive element. That is, since there is no undesirable output due to thermal stress, accurate pressure detection becomes possible. Therefore, if the method of the present invention is applied, there is no need to provide a pedestal between the resin package and the semiconductor pressure-sensitive element, which has a coefficient of thermal expansion approximately equal to that of the semiconductor pressure-sensitive element, as in the conventional method, and this makes it possible to achieve low-cost and accurate A semiconductor pressure sensor capable of detecting pressure can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)及び(b)は本発明方法の一実施例を説明
するための模式図で、同図(a)は斜視図、同図(b)
は上面図、第2図は本発明方法を用いて作製される半導
体圧力センサの断面図、第3図は第1図で示す方法を実
施するための樹脂パッケージの金型を示す1折面図、第
4図(a)及び(b)は本発明方法の他の実施例を説明
するための模式図で、同図(a)は斜視図、同図(b)
は上面図、第5図は第4図に示す方法を実施するための
樹脂パッケージの金型を示す断面図、第6図は本発明方
法とは異なる方法で樹脂パッケージを作製した場合の樹
脂の流動方向を説明する上面図である。 (1)・・・シリコンペレット載置面、(2)・・・シ
リコンペレット載置位置、(3)・・・ピンゲート、(
4)・・・樹脂パッケージ、(5)・・・シリコンペレ
ット。
FIGS. 1(a) and 1(b) are schematic diagrams for explaining an embodiment of the method of the present invention, in which FIG. 1(a) is a perspective view and FIG. 1(b) is a perspective view.
2 is a top view, FIG. 2 is a sectional view of a semiconductor pressure sensor manufactured using the method of the present invention, and FIG. 3 is a folded sectional view showing a mold for a resin package for carrying out the method shown in FIG. 1. , FIGS. 4(a) and 4(b) are schematic diagrams for explaining other embodiments of the method of the present invention, in which FIG. 4(a) is a perspective view and FIG. 4(b) is a perspective view.
5 is a top view, FIG. 5 is a sectional view showing a mold for a resin package for carrying out the method shown in FIG. 4, and FIG. It is a top view explaining a flow direction. (1)... Silicon pellet mounting surface, (2)... Silicon pellet mounting position, (3)... Pin gate, (
4) Resin package, (5) Silicon pellet.

Claims (2)

【特許請求の範囲】[Claims] (1)線膨張率が成型時の流動方向とその直角方向とで
異なる樹脂を用いて樹脂パッケージを成型し、該樹脂パ
ッケージに半導体感圧素子を載置固着する半導体圧力セ
ンサの製造方法において、上記樹脂パッケージを成型す
る際に、上記樹脂を上記半導体感圧素子の載置面に対し
て、その載置位置中央から外側に向けて、略放射状に流
動させることを特徴とする半導体圧力センサの製造方法
(1) A method for manufacturing a semiconductor pressure sensor, in which a resin package is molded using a resin whose coefficient of linear expansion differs in the flow direction during molding and in the direction perpendicular to the flow direction, and a semiconductor pressure-sensitive element is placed and fixed on the resin package, A semiconductor pressure sensor characterized in that, when molding the resin package, the resin is made to flow approximately radially from the center of the mounting position outward toward the mounting surface of the semiconductor pressure-sensitive element. Production method.
(2)線膨張率が成型時の流動方向とその直角方向とで
異なる樹脂を用いて円形の樹脂パッケージを成型し、該
樹脂パッケージに半導体感圧素子を載置固着する半導体
圧力センサの製造方法において、上記樹脂を上記載置面
に対して端部からその中心に向けて略渦巻状に流動させ
ることを特徴とする半導体圧力センサの製造方法。
(2) A method for manufacturing a semiconductor pressure sensor, in which a circular resin package is molded using a resin whose coefficient of linear expansion differs in the flow direction during molding and in the direction perpendicular to the flow direction, and a semiconductor pressure-sensitive element is placed and fixed on the resin package. A method of manufacturing a semiconductor pressure sensor, characterized in that the resin is caused to flow in a substantially spiral shape from an end toward the center of the mounting surface.
JP20808889A 1989-08-11 1989-08-11 Manufacturing method of semiconductor pressure sensor Expired - Lifetime JP2708905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20808889A JP2708905B2 (en) 1989-08-11 1989-08-11 Manufacturing method of semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20808889A JP2708905B2 (en) 1989-08-11 1989-08-11 Manufacturing method of semiconductor pressure sensor

Publications (2)

Publication Number Publication Date
JPH0372229A true JPH0372229A (en) 1991-03-27
JP2708905B2 JP2708905B2 (en) 1998-02-04

Family

ID=16550441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20808889A Expired - Lifetime JP2708905B2 (en) 1989-08-11 1989-08-11 Manufacturing method of semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JP2708905B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132913A1 (en) * 2015-02-16 2016-08-25 コニカミノルタ株式会社 Optical element and method for manufacturing optical element
JP2020088102A (en) * 2018-11-21 2020-06-04 日立オートモティブシステムズ株式会社 Electronic circuit device and pressure sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102263026B1 (en) * 2019-12-30 2021-06-10 주식회사 현대케피코 Device for emasuring pressure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132913A1 (en) * 2015-02-16 2016-08-25 コニカミノルタ株式会社 Optical element and method for manufacturing optical element
JP2020088102A (en) * 2018-11-21 2020-06-04 日立オートモティブシステムズ株式会社 Electronic circuit device and pressure sensor

Also Published As

Publication number Publication date
JP2708905B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
CN1752721B (en) Thermal-type flow rate sensor and manufacturing method thereof
EP2224218B1 (en) A sensor in a moulded package and a method for manufacturing the same
US7404321B2 (en) Sensor device having a buffer element between the molding and the sensing element
US6925885B2 (en) Pressure sensor
US7234358B2 (en) Pressure detecting apparatus
JPH04258176A (en) Semiconductor pressure sensor
JP4867437B2 (en) Temperature sensor
JP5010395B2 (en) Pressure sensor
US7320250B2 (en) Pressure sensing element and sensor incorporating the same
US20150090042A1 (en) Pressure Sensor Package with Integrated Sealing
JP2009505088A (en) Sensor arrangement structure including substrate and casing and method for manufacturing sensor arrangement structure
US8552514B2 (en) Semiconductor physical quantity sensor
JP2002116107A (en) Pressure sensor, its manufacturing mrthod, its usage and internal combustion engine having pressure sensor
CN104395709A (en) Thermal airflow sensor
US20050016289A1 (en) Physical value detecting apparatus and housing for physical value detecting means
JPH0372229A (en) Manufacture of semiconductor pressure sensor
JP2002350260A (en) Semiconductor pressure sensor
US6951136B2 (en) Semiconductor pressure sensor device to detect micro pressure
JP6520636B2 (en) Physical quantity sensor subassembly and physical quantity measuring device
JP2003121269A (en) Temperature-measuring sensor, method of manufacturing temperature-measuring sensor, and molding mold used in manufacture of temperature-measuring sensor
US5591917A (en) Semiconductor pressure sensor with rated pressure specified for desired error of linearity
KR930017126A (en) Semiconductor pressure sensor and manufacturing method
JP3306939B2 (en) Semiconductor strain transducer
JPH0412436Y2 (en)
JP3149678B2 (en) Semiconductor pressure sensor