WO2016132696A1 - Powder magnetic core and method for producing same, and magnetic member produced using same - Google Patents
Powder magnetic core and method for producing same, and magnetic member produced using same Download PDFInfo
- Publication number
- WO2016132696A1 WO2016132696A1 PCT/JP2016/000582 JP2016000582W WO2016132696A1 WO 2016132696 A1 WO2016132696 A1 WO 2016132696A1 JP 2016000582 W JP2016000582 W JP 2016000582W WO 2016132696 A1 WO2016132696 A1 WO 2016132696A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- soft magnetic
- powder
- glass
- magnetic powder
- dust core
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/20—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/22—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/24—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/255—Magnetic cores made from particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
Definitions
- Embodiments of the present invention relate to a dust core, a manufacturing method thereof, and a magnetic component using the same.
- the dust core is used for magnetic cores of magnetic parts such as transformers, reactors, thyristor valves, noise filters, and choke coils.
- the dust core is required to have low iron loss and high magnetic flux density. Furthermore, it is required that their magnetic characteristics do not deteriorate from a low frequency region to a high frequency region.
- Iron loss includes eddy current loss We and hysteresis loss Wh.
- the eddy current loss We has a large relationship with the specific resistance (specific resistance) of the magnetic core.
- the hysteresis loss Wh is affected by strain in the magnetic powder that occurs during the magnetic powder manufacturing process or the dust core manufacturing process.
- the iron loss W of the dust core can be represented by the sum of eddy current loss We and hysteresis loss Wh.
- the eddy current loss We increases in proportion to the square of the frequency f, and it is essential to suppress the eddy current loss We in order to improve the characteristics particularly in the high frequency region.
- the effective specific resistance value ⁇ In order to lower the eddy current loss We, it is effective to increase the effective specific resistance value ⁇ by confining the eddy current in a small area.
- the magnetic powder When the magnetic powder is compression-molded and the powder magnetic core has a configuration in which individual magnetic powders are insulated, the effective specific resistance value ⁇ increases. In such a dust core, if the insulation is insufficient, the effective specific resistance value ⁇ decreases and the eddy current loss We increases.
- the insulating film is thickened to improve the insulation, the volume ratio of the magnetic powder in the magnetic core is reduced, and the magnetic flux density is reduced.
- the problem to be solved by the present invention is to provide a dust core, a method of manufacturing the same, and a magnetic component using the same, which can maintain a good insulating property while improving the volume ratio of the magnetic powder There is to do.
- the powder magnetic core of the embodiment is a powder magnetic core made of a powder compact including Fe-based soft magnetic powder and glass, and the pore diameter in the powder compact is 20 ⁇ m or less (including zero).
- the occupation ratio of the Fe-based soft magnetic powder in the powder is 88% or more in terms of area ratio.
- the method of manufacturing a dust core includes a step of preparing glass-coated soft magnetic powder by coating glass on Fe-based soft magnetic powder, and a step of preparing a deposit by depositing the glass-coated soft magnetic powder. And pressurizing the deposited body while heating it at a temperature not lower than the softening point and not higher than the melting point of the glass to obtain a dust core.
- the powder magnetic core of the embodiment is made of a powder compact including Fe-based soft magnetic powder and glass.
- the pore diameter in the powder compact is 20 ⁇ m or less (including zero), and the occupation ratio of the Fe-based soft magnetic powder in the powder compact is 88% or more in area ratio.
- FIG. 1 is a cross-sectional view showing a structural example of a dust core 1 according to the embodiment.
- 1 is a powder magnetic core (powder)
- 2 is an Fe-based soft magnetic powder
- 3 is glass
- 4 is a pore.
- the Fe-based soft magnetic powder is made of iron or an iron alloy.
- Fe-based soft magnetic powder Fe x M 100-x (Wherein M is at least one element selected from the group consisting of silicon (Si), chromium (Cr), aluminum (Al), titanium (Ti), antimony (Sb), and tin (Sn); Satisfies 90 ⁇ x ⁇ 100 (mass%).) It is preferable to have the composition represented by these.
- the specific resistance of the Fe-based soft magnetic powder can be increased.
- the x value is more preferably in the range of 90 ⁇ x ⁇ 99.
- the glass 3 preferably has a softening point in the range of 500 to 800 ° C. If the softening point of the glass 3 is less than 500 ° C., it may be difficult to maintain the strength when the operating environment temperature of the dust core 1 becomes high. Further, it may be difficult to raise the temperature of the strain removing heat treatment for reducing residual stress, which will be described later, to a necessary temperature. When the softening point of the glass 3 exceeds 800 ° C., it becomes difficult to coat the soft magnetic powder 2 with the glass 3.
- the softening point of the glass 3 is preferably 500 to 800 ° C, more preferably 600 to 750 ° C.
- the glass 3 is preferably composed mainly of one selected from silicon oxide, lead oxide, bismuth oxide, zinc oxide, vanadium oxide, tin oxide, tellurium oxide, alkali metal oxide, and fluorine.
- the glass 3 is preferably composed mainly of silicon oxide. Silicon oxide glass is excellent in insulation, heat resistance, and bondability.
- the diameter of the pores 4 present in the powder magnetic core (powder) 1 is 20 ⁇ m or less (including zero).
- the occupation ratio of the soft magnetic powder 2 in the dust core (powder) 1 is 88% or more in terms of area ratio.
- the pores 4 are formed in contact with the gap between the soft magnetic powders 2, that is, the glass layer 3. If the pore diameter exceeds 20 ⁇ m, the occupation ratio of the soft magnetic powder 2 cannot be increased.
- the pore diameter is 20 ⁇ m or less, and preferably 10 ⁇ m or less. Most preferred is a state without pores (pore diameter 0 ⁇ m).
- the pore diameter of 20 ⁇ m or less indicates that the maximum diameter of the pores 4 is 20 ⁇ m or less.
- the occupation ratio of the soft magnetic powder 2 can be increased by reducing the pore diameter.
- the occupation ratio of the soft magnetic powder 2 is 88% or more in area ratio.
- the occupation ratio of the soft magnetic powder 2 is more preferably 90% or more, and particularly preferably 92% or more and 97% or less in terms of area ratio.
- the occupation ratio of the soft magnetic powder 2 is preferably 97% or less in terms of area ratio. If the occupation ratio of the soft magnetic powder 2 exceeds 97% in terms of area ratio, the ratio of the glass 3 is relatively decreased, and thus the insulation between the soft magnetic powders 2 may be lowered.
- the soft magnetic powder 2 preferably has an average particle size of 3 ⁇ m or more and 100 ⁇ m or less.
- the average particle size of the soft magnetic powder 2 is less than 3 ⁇ m, it is difficult to control the thickness of the insulating glass coating in the step of preparing a glass-coated soft magnetic powder described later.
- the average particle diameter of the soft magnetic powder 2 exceeds 100 ⁇ m, the gap between the soft magnetic powders 2 tends to be large.
- the average particle diameter of the soft magnetic powder is preferably 3 to 100 ⁇ m, and more preferably 10 to 80 ⁇ m.
- the average particle diameter of the soft magnetic powder 2 is measured as follows. First, an SEM photograph is taken at an arbitrary cross section of the dust core 1. The major axis and minor axis of the soft magnetic powder 2 shown in this SEM photograph are measured, and the value obtained by dividing the total by 2 is defined as the particle diameter. This operation is performed for 50 pieces (50 soft magnetic powders), and the average value is defined as the average particle size.
- the major axis is the longest diameter of the flat body, and the minor axis is the length on the perpendicular at the midpoint of the major axis.
- the magnification of SEM imaging is a magnification that clearly shows the outline of the particle diameter. For example, a 100 ⁇ m ⁇ 100 ⁇ m SEM photograph is taken at a magnification of 1000 times and used.
- the soft magnetic powder 2 preferably has a flat shape.
- the flat shape preferably has an average aspect ratio in the range of 1.5 to 20.
- the aspect ratio is measured by the major axis / minor axis using the above SEM photograph. This operation is performed for 50 pieces, and the average value is defined as the average aspect ratio.
- the average aspect ratio in the flat shape is more preferably in the range of 2-20. According to the soft magnetic powder 2 having a flat shape, the distance between adjacent soft magnetic powders 2 can be easily controlled.
- the shortest distance SD between the adjacent soft magnetic powders 2 is preferably 3 nm or more and 1000 nm or less. Thereby, the occupation ratio of the soft magnetic powder per unit area can be increased.
- the shortest distance between adjacent soft magnetic powders 2 is more preferably 8 nm or more and 200 nm or less, and particularly preferably 8 nm or more and 130 nm or less.
- the occupation rate of the soft magnetic powder 2 per unit area can be further increased by setting the shortest distance between adjacent soft magnetic powders 2 to 10 nm or more and 130 nm or less. By setting the shortest distance between adjacent soft magnetic powders 2 to 10 nm or more, insulation can be ensured more reliably.
- FIG. 2 shows an example of a cross section of the green compact 1.
- 2-1 and 2-2 are soft magnetic powders, and 3 is glass.
- soft magnetic powder 2-2 exists around soft magnetic powder 2-1.
- the shortest distance between adjacent soft magnetic powders 2 means that an SEM photograph (magnification of 10,000 times) is taken at an arbitrary cross section of the green compact 1 and the soft magnetic powder 2 shown in the SEM photograph has an interval between adjacent soft magnetic powders 2. This is a value obtained by measuring the shortest distance.
- FIG. 2 shows the distance between the two soft magnetic powders 2. When a plurality of soft magnetic powders 2 are present in the surroundings, the distance between the soft magnetic powders 2 that is the closest among them is defined as “the shortest distance between adjacent soft magnetic powders”.
- the porosity of the powder magnetic core (powder) 1 can be reduced to 10% or less, and further to 6% or less.
- the glass layer 3 can be formed as an insulating layer between the soft magnetic powders 2 after increasing the occupation ratio of the soft magnetic powders 2. Therefore, it is possible to achieve both the improvement of the magnetic flux density of the dust core 1 and the reduction of the eddy current loss We. Further, the hysteresis loss Wh can be reduced by reducing the residual stress of the dust core 1 by heat treatment or the like to be described later. For this reason, the loss W can be reduced.
- the dust core 1 of the embodiment is suitably used for various magnetic components.
- the magnetic component include a transformer, a reactor, a thyristor valve, a noise filter, and a choke coil. These magnetic components have a dust core.
- the dust core is subjected to a winding process or the like as necessary.
- the magnetic component is suitable for a magnetic component used in a high frequency region having a frequency of 30 kHz or more.
- the magnetic component of the embodiment exhibits excellent magnetic properties because it achieves both improvement in the magnetic flux density of the dust core 1 and low loss. In particular, it is effective for a transformer for a switching power source, an inductor, a reactance, etc. used at a frequency of 100 kHz or more.
- the method for manufacturing a dust core includes, for example, a step of preparing glass-coated soft magnetic powder by coating glass on Fe-based soft magnetic powder, a step of preparing a deposit by depositing glass-coated soft magnetic powder, and a deposit And pressurizing while heating at a temperature not lower than the melting point and not higher than the melting point of the glass.
- the Fe-based soft magnetic powder is made of iron or an iron alloy.
- Fe-based soft magnetic powder Fe x M 100-x (M is at least one element selected from the group consisting of Si, Cr, Al, Ti, Sb, and Sn, and x satisfies 90 ⁇ x ⁇ 100 (mass%).) It is preferable to have the composition represented by these.
- the average particle size of the Fe-based soft magnetic powder is preferably 3 ⁇ m or more and 100 ⁇ m or less.
- the average particle size of the raw material powder is a value determined by D 50.
- the glass preferably has a softening point of 500 ° C. or higher and 800 ° C. or lower.
- the glass preferably contains as a main component at least one selected from the group consisting of silicon oxide, lead oxide, bismuth oxide, zinc oxide, vanadium oxide, tin oxide, tellurium oxide, alkali metal oxide, and fluorine.
- the coating of the Fe-based soft magnetic powder with glass is performed, for example, by a method of forming a film using hydrolysis of a metal alkoxide.
- the coating method using hydrolysis is performed as follows. First, soft magnetic powder and water are mixed and sufficiently stirred. Next, a metal alkoxide is added and stirred to cause a hydrolysis reaction. Thereafter, the glass-coated soft magnetic powder is prepared by sufficiently drying.
- the glass coating thickness is preferably 5 nm or more and 80 nm or less. If the coating thickness of the glass is less than 5 nm, the amount of glass present between the soft magnetic powders is small, so that the insulating property may be lowered. When the glass coating thickness exceeds 80 nm, it is difficult to increase the occupation ratio of the soft magnetic powder. Therefore, the glass coating thickness is preferably 5 nm to 80 nm, and more preferably 10 nm to 50 nm.
- a glass-coated soft magnetic powder is deposited to prepare a deposit.
- the step of preparing the deposit is preferably a mold molding method or a cold spray method.
- the heating and pressing step is performed by hot pressing (HP), HIP (hot isostatic pressing) or the like.
- the pressure in the heating and pressing step is preferably 100 MPa or more, and more preferably 200 MPa or more.
- the upper limit of the pressure is not particularly limited, but is preferably 2000 MPa or less.
- the heating temperature in the heating and pressurizing step of the deposit is preferably equal to or higher than the temperature at which the stress of the Fe-based soft magnetic powder can be relaxed.
- the temperature at which stress relaxation of the Fe-based soft magnetic powder varies depending on the composition of the Fe-based soft magnetic powder, but is about 500 to 800 ° C.
- the heat treatment for stress relaxation of the Fe-based soft magnetic powder may be performed separately from the heating and pressing step.
- FeSi alloy powder (Si content: 3.5 mass%) was prepared as the Fe-based soft magnetic powder.
- silicon oxide glass (Va glass, softening point 600 ° C.) was prepared.
- a glass-coated soft magnetic powder was prepared by coating glass on Fe-based soft magnetic powder.
- the average particle diameter D 50 of the soft magnetic powder and the coating thickness of the glass are as shown in Table 1. The SEM image mentioned above was used for the measurement of the average particle diameter of Fe type soft magnetic powder.
- the occupation ratio of the soft magnetic powder For the obtained green compact, the occupation ratio of the soft magnetic powder, the aspect ratio of the soft magnetic powder, the pore diameter, the porosity, and the shortest distance SD between adjacent soft magnetic powders were determined. The results are shown in Table 3.
- Table 3 For the measurement of the occupation ratio of the soft magnetic powder, when the average particle diameter of the soft magnetic powder is 50 ⁇ m or less, an SEM photograph (unit: 1000 times) having a unit area of 100 ⁇ m ⁇ 100 ⁇ m was used. When the average particle size of the soft magnetic powder exceeded 50 ⁇ m, an SEM photograph (unit: 1000 times) having a unit area of 300 ⁇ m ⁇ 300 ⁇ m was used. The area of the soft magnetic powder shown in the SEM photograph was determined, and the average value for five unit areas was defined as the occupation ratio.
- the aspect ratio, average particle diameter, and pore diameter of the soft magnetic powder were measured using the SEM photograph described above.
- the aspect ratio and average particle diameter of the soft magnetic powder were average values for 50 soft magnetic powders.
- the shortest distance SD between adjacent soft magnetic powders was measured using a SEM photograph with a magnification of 10,000 times.
- the SEM photograph mentioned above was used for the measurement of a pore diameter and a porosity. When it was difficult to confirm the pores in the SEM photograph, TEM observation was used.
- the pore diameter was the maximum diameter of the pores shown in the enlarged photograph.
- the green compacts (powder cores) according to each example had an area ratio of soft magnetic powder of 88% or more and a pore diameter as small as 20 ⁇ m or less.
- FeSi alloy powder (Si content: 3.5 mass%) and FeSiAl alloy powder (Si content: 9.5 mass%, Al content: 5.5 mass%) were prepared as Fe-based soft magnetic powders.
- soda lime glass (softening point 730 ° C.) were prepared. Glass was coated on the soft magnetic powder to prepare a glass-coated soft magnetic powder.
- Table 4 shows the average particle diameter D 50 measured by the SEM image of the soft magnetic powder and the coating thickness of the glass. In Table 4, sodium-based glass was expressed as Na-based, and soda-lime glass was expressed as soda-lime.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Soft Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
A powder magnetic core 1 according to an embodiment comprises a pressed powder composed of a Fe-based soft magnetic powder 2 and a glass 3, wherein the diameter of each pore in the powder magnetic core 1 is 20 μm or less (including zero) and the area occupancy rate of the soft magnetic powder 2 in the powder magnetic core 1 is 88% or more.
Description
本発明の実施形態は、圧粉磁心とその製造方法、およびそれを用いた磁性部品に関する。
Embodiments of the present invention relate to a dust core, a manufacturing method thereof, and a magnetic component using the same.
圧粉磁心は、変圧器、リアクトル、サイリスタバルブ、ノイズフィルタ、チョークコイル等の磁性部品の磁心に用いられている。圧粉磁心には、低鉄損でかつ高磁束密度であることが求められる。さらに、それらの磁気特性が低周波領域から高周波領域においても低下しないことが求められる。鉄損には、渦電流損Weとヒステリシス損Whとがある。渦電流損Weは、磁心の比抵抗(固有抵抗)との関係が大きい。ヒステリシス損Whは、磁性粉末の製造過程または圧粉磁心の製造過程で生じる磁性粉末内の歪みに影響を受ける。圧粉磁心の鉄損Wは、渦電流損Weとヒステリシス損Whの和で示すことができる。渦電流損Weは周波数fの二乗に比例して大きくなり、特に高周波領域での特性を向上させるためには渦電流損Weの抑制が不可欠である。
The dust core is used for magnetic cores of magnetic parts such as transformers, reactors, thyristor valves, noise filters, and choke coils. The dust core is required to have low iron loss and high magnetic flux density. Furthermore, it is required that their magnetic characteristics do not deteriorate from a low frequency region to a high frequency region. Iron loss includes eddy current loss We and hysteresis loss Wh. The eddy current loss We has a large relationship with the specific resistance (specific resistance) of the magnetic core. The hysteresis loss Wh is affected by strain in the magnetic powder that occurs during the magnetic powder manufacturing process or the dust core manufacturing process. The iron loss W of the dust core can be represented by the sum of eddy current loss We and hysteresis loss Wh. The eddy current loss We increases in proportion to the square of the frequency f, and it is essential to suppress the eddy current loss We in order to improve the characteristics particularly in the high frequency region.
渦電流損Weを下げるためには、渦電流を小領域に閉じこめて、実効的な比抵抗値ρを高くすることが効果的である。磁性粉末を圧縮成形し、かつ個々の磁性粉末が絶縁された構成の圧粉磁心とすると、実効的な比抵抗値ρが高くなる。このような圧粉磁心において、絶縁が不十分であると実効的な比抵抗値ρが低下して渦電流損Weが大きくなる。一方、絶縁性を高めるために絶縁被膜を厚くすると、磁心中の磁性粉末の占める容積の割合が低下し、磁束密度が低下する。磁束密度を高めるために、磁性粉末の圧縮成形を高圧で行って圧粉磁心の密度を大きくすると、成形時の磁性粉末の歪みが避けられず、ヒステリシス損Whが大きくなる。特に、低周波領域においては相対的にヒステリシス損Whの影響が大きくなるため、鉄損Wを低減するためにはヒステリシス損Whを減少させることが重要となる。
In order to lower the eddy current loss We, it is effective to increase the effective specific resistance value ρ by confining the eddy current in a small area. When the magnetic powder is compression-molded and the powder magnetic core has a configuration in which individual magnetic powders are insulated, the effective specific resistance value ρ increases. In such a dust core, if the insulation is insufficient, the effective specific resistance value ρ decreases and the eddy current loss We increases. On the other hand, when the insulating film is thickened to improve the insulation, the volume ratio of the magnetic powder in the magnetic core is reduced, and the magnetic flux density is reduced. In order to increase the magnetic flux density, if the magnetic powder is compacted at a high pressure to increase the density of the powder magnetic core, distortion of the magnetic powder during molding cannot be avoided, and the hysteresis loss Wh increases. In particular, since the influence of the hysteresis loss Wh becomes relatively large in the low frequency region, in order to reduce the iron loss W, it is important to reduce the hysteresis loss Wh.
従来の圧粉磁心の製造方法としては、軟磁性粉末と樹脂との混合物を圧縮成形する方法が知られている。樹脂により結着性および絶縁性を保持する方法では、一定量の樹脂の混合が必要である。樹脂を添加すると、磁性粉末の占める容積割合の低下、磁束密度の低下、磁性粉末間の磁気的な結合等が小さくなり、孤立状態に近くなるため、保磁力を大きくするためには、ヒステリシス損Whが大きくなるという欠点がある。磁性粉末の容積割合を上げようとして高圧力で圧縮成形すると、形成された電気絶縁層が破壊されて渦電流損Weが増加したり、磁性粉末に残留する成形時の歪が大きくなり、ヒステリシス損Whの増加を招くことになる。このように、結合材として樹脂成分を用いた圧粉磁心では、渦電流損Weとヒステリシス損Whの低減に限界があった。
As a conventional method for manufacturing a dust core, a method of compression molding a mixture of soft magnetic powder and resin is known. In the method of maintaining the binding and insulating properties with the resin, it is necessary to mix a certain amount of the resin. When resin is added, the volume ratio of the magnetic powder decreases, the magnetic flux density decreases, the magnetic coupling between the magnetic powders decreases, and it becomes close to an isolated state. There is a disadvantage that Wh becomes large. When compression molding is performed at a high pressure in order to increase the volume ratio of the magnetic powder, the formed electrical insulating layer is destroyed and the eddy current loss We increases, or the molding distortion remaining in the magnetic powder increases, resulting in hysteresis loss. This leads to an increase in Wh. As described above, in the dust core using the resin component as the binder, there is a limit in reducing the eddy current loss We and the hysteresis loss Wh.
本発明が解決しようとする課題は、磁性粉末の容積割合を向上させた上で、絶縁性も良好に保つことを可能にした圧粉磁心とその製造方法、およびそれを用いた磁性部品を提供することにある。
The problem to be solved by the present invention is to provide a dust core, a method of manufacturing the same, and a magnetic component using the same, which can maintain a good insulating property while improving the volume ratio of the magnetic powder There is to do.
実施形態の圧粉磁心は、Fe系軟磁性粉末とガラスとを含む圧粉体からなる圧粉磁心であって、前記圧粉体中の気孔径が20μm以下(ゼロ含む)であり、前記圧粉体におけるFe系軟磁性粉末の占有率が面積比で88%以上である。
The powder magnetic core of the embodiment is a powder magnetic core made of a powder compact including Fe-based soft magnetic powder and glass, and the pore diameter in the powder compact is 20 μm or less (including zero). The occupation ratio of the Fe-based soft magnetic powder in the powder is 88% or more in terms of area ratio.
実施形態の圧粉磁心の製造方法は、Fe系軟磁性粉末にガラスを被覆してガラス被覆軟磁性粉末を調製する工程と、前記ガラス被覆軟磁性粉末を堆積して堆積体を調製する工程と、前記堆積体を前記ガラスの軟化点以上融点以下の温度で加熱しつつ加圧し、圧粉磁心を得る工程とを具備する。
The method of manufacturing a dust core according to the embodiment includes a step of preparing glass-coated soft magnetic powder by coating glass on Fe-based soft magnetic powder, and a step of preparing a deposit by depositing the glass-coated soft magnetic powder. And pressurizing the deposited body while heating it at a temperature not lower than the softening point and not higher than the melting point of the glass to obtain a dust core.
以下、本発明の圧粉磁心とその製造方法、およびそれを用いた磁性部品を実施するための形態について説明する。
Hereinafter, a dust core according to the present invention, a manufacturing method thereof, and a form for carrying out a magnetic component using the same will be described.
(圧粉磁心)
実施形態の圧粉磁心は、Fe系軟磁性粉末とガラスとを含む圧粉体からなる。実施形態の圧粉磁心において、圧粉体中の気孔径は20μm以下(ゼロ含む)であり、圧粉体中におけるFe系軟磁性粉末の占有率は面積比で88%以上である。 (Dust core)
The powder magnetic core of the embodiment is made of a powder compact including Fe-based soft magnetic powder and glass. In the powder magnetic core of the embodiment, the pore diameter in the powder compact is 20 μm or less (including zero), and the occupation ratio of the Fe-based soft magnetic powder in the powder compact is 88% or more in area ratio.
実施形態の圧粉磁心は、Fe系軟磁性粉末とガラスとを含む圧粉体からなる。実施形態の圧粉磁心において、圧粉体中の気孔径は20μm以下(ゼロ含む)であり、圧粉体中におけるFe系軟磁性粉末の占有率は面積比で88%以上である。 (Dust core)
The powder magnetic core of the embodiment is made of a powder compact including Fe-based soft magnetic powder and glass. In the powder magnetic core of the embodiment, the pore diameter in the powder compact is 20 μm or less (including zero), and the occupation ratio of the Fe-based soft magnetic powder in the powder compact is 88% or more in area ratio.
図1は実施形態の圧粉磁心1の構造例を示す断面図である。図1において、1は圧粉磁心(圧粉体)、2はFe系軟磁性粉末、3はガラス、4は気孔(ポア)である。Fe系軟磁性粉末は、鉄または鉄合金からなる。Fe系軟磁性粉末は、
FexM100-x
(式中、Mはケイ素(Si)、クロム(Cr)、アルミニウム(Al)、チタン(Ti)、アンチモン(Sb)、および錫(Sn)からなる群より選ばれる少なくとも1つの元素であり、xは90≦x≦100(質量%)を満足する。)
で表される組成を有することが好ましい。M元素を含有させることによって、Fe系軟磁性粉末の比抵抗を高くすることができる。軟磁性粉末の比抵抗を高くすることで、渦電流損を低減することができる。このため、x値は90≦x≦99の範囲がより好ましい。 FIG. 1 is a cross-sectional view showing a structural example of a dust core 1 according to the embodiment. In FIG. 1, 1 is a powder magnetic core (powder), 2 is an Fe-based soft magnetic powder, 3 is glass, and 4 is a pore. The Fe-based soft magnetic powder is made of iron or an iron alloy. Fe-based soft magnetic powder
Fe x M 100-x
(Wherein M is at least one element selected from the group consisting of silicon (Si), chromium (Cr), aluminum (Al), titanium (Ti), antimony (Sb), and tin (Sn); Satisfies 90 ≦ x ≦ 100 (mass%).)
It is preferable to have the composition represented by these. By containing the M element, the specific resistance of the Fe-based soft magnetic powder can be increased. By increasing the specific resistance of the soft magnetic powder, eddy current loss can be reduced. For this reason, the x value is more preferably in the range of 90 ≦ x ≦ 99.
FexM100-x
(式中、Mはケイ素(Si)、クロム(Cr)、アルミニウム(Al)、チタン(Ti)、アンチモン(Sb)、および錫(Sn)からなる群より選ばれる少なくとも1つの元素であり、xは90≦x≦100(質量%)を満足する。)
で表される組成を有することが好ましい。M元素を含有させることによって、Fe系軟磁性粉末の比抵抗を高くすることができる。軟磁性粉末の比抵抗を高くすることで、渦電流損を低減することができる。このため、x値は90≦x≦99の範囲がより好ましい。 FIG. 1 is a cross-sectional view showing a structural example of a dust core 1 according to the embodiment. In FIG. 1, 1 is a powder magnetic core (powder), 2 is an Fe-based soft magnetic powder, 3 is glass, and 4 is a pore. The Fe-based soft magnetic powder is made of iron or an iron alloy. Fe-based soft magnetic powder
Fe x M 100-x
(Wherein M is at least one element selected from the group consisting of silicon (Si), chromium (Cr), aluminum (Al), titanium (Ti), antimony (Sb), and tin (Sn); Satisfies 90 ≦ x ≦ 100 (mass%).)
It is preferable to have the composition represented by these. By containing the M element, the specific resistance of the Fe-based soft magnetic powder can be increased. By increasing the specific resistance of the soft magnetic powder, eddy current loss can be reduced. For this reason, the x value is more preferably in the range of 90 ≦ x ≦ 99.
軟磁性粉末2の粒子間には、ガラス3が存在している。ガラス3は500~800℃の範囲の軟化点を有することが好ましい。ガラス3の軟化点が500℃未満であると、圧粉磁心1の使用環境温度が高くなったときに、強度の維持が困難になるおそれがある。また、後述する残留応力低減のための歪取り熱処理の温度を、必要な温度まで高くすることが困難になるおそれがある。ガラス3の軟化点が800℃を超えると、軟磁性粉末2をガラス3で被覆することが困難になる。ガラス3の軟化点は500~800℃が好ましく、さらに600~750℃であることがより好ましい。
Between the soft magnetic powder 2 particles, glass 3 exists. The glass 3 preferably has a softening point in the range of 500 to 800 ° C. If the softening point of the glass 3 is less than 500 ° C., it may be difficult to maintain the strength when the operating environment temperature of the dust core 1 becomes high. Further, it may be difficult to raise the temperature of the strain removing heat treatment for reducing residual stress, which will be described later, to a necessary temperature. When the softening point of the glass 3 exceeds 800 ° C., it becomes difficult to coat the soft magnetic powder 2 with the glass 3. The softening point of the glass 3 is preferably 500 to 800 ° C, more preferably 600 to 750 ° C.
ガラス3は、酸化珪素、酸化鉛、酸化ビスマス、酸化亜鉛、酸化バナジウム、酸化スズ、酸化テルル、アルカリ金属酸化物、およびフッ素から選ばれる1つを主成分とするものであることが好ましい。ガラス3は、酸化珪素を主成分とすることが好ましい。酸化珪素系ガラスは、絶縁性、耐熱性、および結合性に優れている。
The glass 3 is preferably composed mainly of one selected from silicon oxide, lead oxide, bismuth oxide, zinc oxide, vanadium oxide, tin oxide, tellurium oxide, alkali metal oxide, and fluorine. The glass 3 is preferably composed mainly of silicon oxide. Silicon oxide glass is excellent in insulation, heat resistance, and bondability.
圧粉磁心(圧粉体)1中に存在する気孔4の径は20μm以下(ゼロ含む)である。また、圧粉磁心(圧粉体)1における軟磁性粉末2の占有率は、面積比で88%以上である。気孔4は、軟磁性粉末2同士の隙間、つまりはガラス層3に接して形成される。気孔径が20μmを超えると、軟磁性粉末2の占有率を大きくすることができなくなる。気孔径は20μm以下であり、さらには10μm以下であることが好ましい。最も好ましいのは、気孔がない(気孔径0μm)状態である。気孔径が20μm以下とは、気孔4の最大径が20μm以下であることを示す。
The diameter of the pores 4 present in the powder magnetic core (powder) 1 is 20 μm or less (including zero). The occupation ratio of the soft magnetic powder 2 in the dust core (powder) 1 is 88% or more in terms of area ratio. The pores 4 are formed in contact with the gap between the soft magnetic powders 2, that is, the glass layer 3. If the pore diameter exceeds 20 μm, the occupation ratio of the soft magnetic powder 2 cannot be increased. The pore diameter is 20 μm or less, and preferably 10 μm or less. Most preferred is a state without pores (pore diameter 0 μm). The pore diameter of 20 μm or less indicates that the maximum diameter of the pores 4 is 20 μm or less.
このように、気孔径を小さくすることによって、軟磁性粉末2の占有率を高くすることができる。軟磁性粉末2の占有率は、面積比で88%以上である。軟磁性粉末2の占有率は面積率で90%以上がより好ましく、さらに92%以上97%以下が特に好ましい。軟磁性粉末2の占有率を高くすることによって、磁束密度を高くすることができる。その結果、圧粉磁心1の飽和磁化を高くすることができる。軟磁性粉末2の占有率は面積比で97%以下が好ましい。軟磁性粉末2の占有率が面積比で97%を超えると、ガラス3の割合が相対的に減少することで、軟磁性粉末2間の絶縁性が低下するおそれがある。
Thus, the occupation ratio of the soft magnetic powder 2 can be increased by reducing the pore diameter. The occupation ratio of the soft magnetic powder 2 is 88% or more in area ratio. The occupation ratio of the soft magnetic powder 2 is more preferably 90% or more, and particularly preferably 92% or more and 97% or less in terms of area ratio. By increasing the occupation ratio of the soft magnetic powder 2, the magnetic flux density can be increased. As a result, the saturation magnetization of the dust core 1 can be increased. The occupation ratio of the soft magnetic powder 2 is preferably 97% or less in terms of area ratio. If the occupation ratio of the soft magnetic powder 2 exceeds 97% in terms of area ratio, the ratio of the glass 3 is relatively decreased, and thus the insulation between the soft magnetic powders 2 may be lowered.
軟磁性粉末2の占有率を示す面積比(面積率)の測定は、以下のようにして行う。まず、圧粉磁心1の任意の断面において、単位面積あたりのSEM写真を撮影する。このSEM写真に写る軟磁性粉末2の面積率[=(軟磁性粉末2の合計面積/単位面積)×100]を求める。この作業を任意の単位面積5ヶ所について行い、その平均値を面積率(%)とする。軟磁性粉末2の平均粒径が50μm以下の場合は、単位面積を100μm×100μmとする。軟磁性粉末2の平均粒径が50μmを超える場合は、単位面積を300μm×300μmとする。また、SEM写真の倍率は1000倍とする。
The area ratio (area ratio) indicating the occupation ratio of the soft magnetic powder 2 is measured as follows. First, an SEM photograph per unit area is taken in an arbitrary cross section of the dust core 1. The area ratio [= (total area of soft magnetic powder 2 / unit area) × 100] of the soft magnetic powder 2 shown in the SEM photograph is obtained. This operation is performed for five arbitrary unit areas, and the average value is defined as the area ratio (%). When the average particle size of the soft magnetic powder 2 is 50 μm or less, the unit area is set to 100 μm × 100 μm. When the average particle diameter of the soft magnetic powder 2 exceeds 50 μm, the unit area is set to 300 μm × 300 μm. The magnification of the SEM photograph is 1000 times.
軟磁性粉末2は、3μm以上100μm以下の平均粒径を有することが好ましい。軟磁性粉末2の平均粒径が3μm未満であると、後述するガラス被覆軟磁性粉末を調製する工程において、絶縁ガラス被覆の膜厚制御が難しくなる。軟磁性粉末2の平均粒径が100μmを超えると、軟磁性粉末2間の隙間が大きくなりやすい。軟磁性粉末2同士の隙間が大きくなると、部分的にガラス層3が多くなる領域ができてしまい、単位面積当たりの占有率が範囲外になるおそれがある。そのため、軟磁性粉末の平均粒径は3~100μmが好ましく、さらには10~80μmであることがより好ましい。
The soft magnetic powder 2 preferably has an average particle size of 3 μm or more and 100 μm or less. When the average particle size of the soft magnetic powder 2 is less than 3 μm, it is difficult to control the thickness of the insulating glass coating in the step of preparing a glass-coated soft magnetic powder described later. When the average particle diameter of the soft magnetic powder 2 exceeds 100 μm, the gap between the soft magnetic powders 2 tends to be large. When the gap between the soft magnetic powders 2 becomes large, a region where the glass layer 3 partially increases is formed, and the occupation rate per unit area may be out of the range. Therefore, the average particle diameter of the soft magnetic powder is preferably 3 to 100 μm, and more preferably 10 to 80 μm.
軟磁性粉末2の平均粒径の測定は、以下のようにして行う。まず、圧粉磁心1の任意の断面において、SEM写真を撮影する。このSEM写真に写る軟磁性粉末2の長径と短径を測定し、これらの合計を2で割った値を粒径とする。この作業を50個分(軟磁性粉末50粒)について行い、その平均値を平均粒径とする。ここで、長径はへん平体の最長径とし、短径は長径の中点における垂線上の長さとする。SEM撮影の倍率は、粒径の輪郭がはっきり分かる倍率とする。例えば100μm×100μmのSEM写真を倍率1000倍で撮影して用いるものとする。
The average particle diameter of the soft magnetic powder 2 is measured as follows. First, an SEM photograph is taken at an arbitrary cross section of the dust core 1. The major axis and minor axis of the soft magnetic powder 2 shown in this SEM photograph are measured, and the value obtained by dividing the total by 2 is defined as the particle diameter. This operation is performed for 50 pieces (50 soft magnetic powders), and the average value is defined as the average particle size. Here, the major axis is the longest diameter of the flat body, and the minor axis is the length on the perpendicular at the midpoint of the major axis. The magnification of SEM imaging is a magnification that clearly shows the outline of the particle diameter. For example, a 100 μm × 100 μm SEM photograph is taken at a magnification of 1000 times and used.
軟磁性粉末2は、へん平形状を有することが好ましい。へん平形状としては、平均アスペクト比が1.5~20の範囲であることが好ましい。アスペクト比の測定は、上述のSEM写真を用いて長径/短径にて求めるものとする。この作業を50個分について行い、その平均値を平均アスペクト比とする。へん平形状における平均アスペクト比は2~20の範囲がより好ましい。へん平形状を有する軟磁性粉末2によれば、隣り合う軟磁性粉末2同士の距離を制御しやすくなる。
The soft magnetic powder 2 preferably has a flat shape. The flat shape preferably has an average aspect ratio in the range of 1.5 to 20. The aspect ratio is measured by the major axis / minor axis using the above SEM photograph. This operation is performed for 50 pieces, and the average value is defined as the average aspect ratio. The average aspect ratio in the flat shape is more preferably in the range of 2-20. According to the soft magnetic powder 2 having a flat shape, the distance between adjacent soft magnetic powders 2 can be easily controlled.
圧粉磁心(圧粉体)1の任意の断面において、隣り合う軟磁性粉末2間の最短距離SDは3nm以上1000nm以下が好ましい。これによって、単位面積あたりの軟磁性粉末の占有率を高めることができる。隣り合う軟磁性粉末2間の最短距離は、8nm以上200nm以下がより好ましく、さらに8nm以上130nm以下が特に好ましい。さらに、隣り合う軟磁性粉末2間の最短距離を10nm以上130nm以下とすることで、単位面積あたりの軟磁性粉末2の占有率をさらに大きくすることができる。隣り合う軟磁性粉末2間の最短距離を10nm以上とすることで、より確実に絶縁性を確保できる。
In any cross section of the powder magnetic core (powder compact) 1, the shortest distance SD between the adjacent soft magnetic powders 2 is preferably 3 nm or more and 1000 nm or less. Thereby, the occupation ratio of the soft magnetic powder per unit area can be increased. The shortest distance between adjacent soft magnetic powders 2 is more preferably 8 nm or more and 200 nm or less, and particularly preferably 8 nm or more and 130 nm or less. Furthermore, the occupation rate of the soft magnetic powder 2 per unit area can be further increased by setting the shortest distance between adjacent soft magnetic powders 2 to 10 nm or more and 130 nm or less. By setting the shortest distance between adjacent soft magnetic powders 2 to 10 nm or more, insulation can be ensured more reliably.
図2に圧粉体1の断面の一例を示す。図2において、2-1および2-2は軟磁性粉末であり、3はガラスである。図2では、軟磁性粉末2-1の周囲に軟磁性粉末2-2が存在している。隣り合う軟磁性粉末2間の最短距離とは、圧粉体1の任意の断面においてSEM写真(倍率10000倍)を撮影し、SEM写真に写る軟磁性粉末2において、隣り合う軟磁性粉末2間の最短距離を測定した値である。図2では2個の軟磁性粉末2の距離を示している。周囲に複数の軟磁性粉末2が存在する場合には、その中で最も近い距離にある軟磁性粉末2間の距離を「隣り合う軟磁性粉末間の最短距離」とする。
FIG. 2 shows an example of a cross section of the green compact 1. In FIG. 2, 2-1 and 2-2 are soft magnetic powders, and 3 is glass. In FIG. 2, soft magnetic powder 2-2 exists around soft magnetic powder 2-1. The shortest distance between adjacent soft magnetic powders 2 means that an SEM photograph (magnification of 10,000 times) is taken at an arbitrary cross section of the green compact 1 and the soft magnetic powder 2 shown in the SEM photograph has an interval between adjacent soft magnetic powders 2. This is a value obtained by measuring the shortest distance. FIG. 2 shows the distance between the two soft magnetic powders 2. When a plurality of soft magnetic powders 2 are present in the surroundings, the distance between the soft magnetic powders 2 that is the closest among them is defined as “the shortest distance between adjacent soft magnetic powders”.
さらに、隣り合う軟磁性粉末2間の最短距離を制御することによって、圧粉磁心(圧粉体)1の気孔率を10%以下、さらには6%以下と小さくすることもできる。気孔率の測定は、TEM(Transmission Electron Microscope)分析により行うことが好ましい。また、簡易的には「気孔率=100-軟磁性粉末の占有率(%)」にて求めても良いものとする。隣り合う軟磁性粉末2間の最短距離が130nm以下、さらには50nm以下と近い場合は、このような計算方法が有効である。
Furthermore, by controlling the shortest distance between the adjacent soft magnetic powders 2, the porosity of the powder magnetic core (powder) 1 can be reduced to 10% or less, and further to 6% or less. The measurement of the porosity is preferably performed by TEM (Transmission Electron Microscope) analysis. Further, simply, “porosity = 100−occupancy ratio of soft magnetic powder (%)” may be used. Such a calculation method is effective when the shortest distance between adjacent soft magnetic powders 2 is close to 130 nm or less, or even 50 nm or less.
実施形態の圧粉磁心1においては、軟磁性粉末2の占有率を高めた上で、軟磁性粉末2間に絶縁層としてガラス層3を形成することができる。そのため、圧粉磁心1の磁束密度の向上と渦電流損Weの低減を両立させることができる。また、後述する熱処理等により圧粉磁心1の残留応力を低減することによって、ヒステリシス損Whの低減も可能である。このため、損失Wを低減することができる。
In the powder magnetic core 1 of the embodiment, the glass layer 3 can be formed as an insulating layer between the soft magnetic powders 2 after increasing the occupation ratio of the soft magnetic powders 2. Therefore, it is possible to achieve both the improvement of the magnetic flux density of the dust core 1 and the reduction of the eddy current loss We. Further, the hysteresis loss Wh can be reduced by reducing the residual stress of the dust core 1 by heat treatment or the like to be described later. For this reason, the loss W can be reduced.
(磁性部品)
実施形態の圧粉磁心1は、様々な磁性部品に好適に用いられる。磁性部品としては、変圧器、リアクトル、サイリスタバルブ、ノイズフィルタ、チョークコイル等が挙げられる。これら磁性部品は、圧粉磁心を具備するものである。圧粉磁心には、必要に応じて巻線処理等が施される。磁性部品は、周波数30kHz以上の高周波領域で使用される磁性部品に好適である。実施形態の磁性部品は、圧粉磁心1の磁束密度向上と低損失とを両立しているため、優れた磁気特性を示す。特に、100kHz以上の周波数で用いるスイッチング電源用トランス、インダクタ、リアクタンス等に有効である。 (Magnetic parts)
The dust core 1 of the embodiment is suitably used for various magnetic components. Examples of the magnetic component include a transformer, a reactor, a thyristor valve, a noise filter, and a choke coil. These magnetic components have a dust core. The dust core is subjected to a winding process or the like as necessary. The magnetic component is suitable for a magnetic component used in a high frequency region having a frequency of 30 kHz or more. The magnetic component of the embodiment exhibits excellent magnetic properties because it achieves both improvement in the magnetic flux density of the dust core 1 and low loss. In particular, it is effective for a transformer for a switching power source, an inductor, a reactance, etc. used at a frequency of 100 kHz or more.
実施形態の圧粉磁心1は、様々な磁性部品に好適に用いられる。磁性部品としては、変圧器、リアクトル、サイリスタバルブ、ノイズフィルタ、チョークコイル等が挙げられる。これら磁性部品は、圧粉磁心を具備するものである。圧粉磁心には、必要に応じて巻線処理等が施される。磁性部品は、周波数30kHz以上の高周波領域で使用される磁性部品に好適である。実施形態の磁性部品は、圧粉磁心1の磁束密度向上と低損失とを両立しているため、優れた磁気特性を示す。特に、100kHz以上の周波数で用いるスイッチング電源用トランス、インダクタ、リアクタンス等に有効である。 (Magnetic parts)
The dust core 1 of the embodiment is suitably used for various magnetic components. Examples of the magnetic component include a transformer, a reactor, a thyristor valve, a noise filter, and a choke coil. These magnetic components have a dust core. The dust core is subjected to a winding process or the like as necessary. The magnetic component is suitable for a magnetic component used in a high frequency region having a frequency of 30 kHz or more. The magnetic component of the embodiment exhibits excellent magnetic properties because it achieves both improvement in the magnetic flux density of the dust core 1 and low loss. In particular, it is effective for a transformer for a switching power source, an inductor, a reactance, etc. used at a frequency of 100 kHz or more.
(圧粉磁心の製造方法)
次に、実施形態の圧粉磁心の製造方法について説明する。実施形態の圧粉磁心は、上記した構成を有していれば、その製造方法は特に限定されるものではない。実施形態の圧粉磁心を効率よく得るための方法として、次の方法が挙げられる。圧粉磁心の製造方法は、例えばFe系軟磁性粉末にガラスを被覆してガラス被覆軟磁性粉末を調製する工程と、ガラス被覆軟磁性粉末を堆積して堆積体を調製する工程と、堆積体をガラスの軟化点以上融点以下の温度で加熱しつつ加圧する工程とを具備する。 (Production method of dust core)
Next, the manufacturing method of the powder magnetic core of embodiment is demonstrated. If the powder magnetic core of embodiment has the above-mentioned structure, the manufacturing method will not be specifically limited. The following method is mentioned as a method for efficiently obtaining the dust core of the embodiment. The method for manufacturing a dust core includes, for example, a step of preparing glass-coated soft magnetic powder by coating glass on Fe-based soft magnetic powder, a step of preparing a deposit by depositing glass-coated soft magnetic powder, and a deposit And pressurizing while heating at a temperature not lower than the melting point and not higher than the melting point of the glass.
次に、実施形態の圧粉磁心の製造方法について説明する。実施形態の圧粉磁心は、上記した構成を有していれば、その製造方法は特に限定されるものではない。実施形態の圧粉磁心を効率よく得るための方法として、次の方法が挙げられる。圧粉磁心の製造方法は、例えばFe系軟磁性粉末にガラスを被覆してガラス被覆軟磁性粉末を調製する工程と、ガラス被覆軟磁性粉末を堆積して堆積体を調製する工程と、堆積体をガラスの軟化点以上融点以下の温度で加熱しつつ加圧する工程とを具備する。 (Production method of dust core)
Next, the manufacturing method of the powder magnetic core of embodiment is demonstrated. If the powder magnetic core of embodiment has the above-mentioned structure, the manufacturing method will not be specifically limited. The following method is mentioned as a method for efficiently obtaining the dust core of the embodiment. The method for manufacturing a dust core includes, for example, a step of preparing glass-coated soft magnetic powder by coating glass on Fe-based soft magnetic powder, a step of preparing a deposit by depositing glass-coated soft magnetic powder, and a deposit And pressurizing while heating at a temperature not lower than the melting point and not higher than the melting point of the glass.
まず、Fe系軟磁性粉末にガラスを被覆してガラス被覆軟磁性粉末を調製する。Fe系軟磁性粉末は、鉄または鉄合金からなる。Fe系軟磁性粉末は、
FexM100-x
(MはSi,Cr、Al、Ti、Sb、およびSnからなる群より選ばれる少なくとも1つの元素であり、xは90≦x≦100(質量%)を満足する。)
で表される組成を有することが好ましい。Fe系軟磁性粉末の平均粒径は3μm以上100μm以下であることが好ましい。原料粉末の平均粒径はD50にて求めた値である。 First, glass is coated on Fe-based soft magnetic powder to prepare glass-coated soft magnetic powder. The Fe-based soft magnetic powder is made of iron or an iron alloy. Fe-based soft magnetic powder
Fe x M 100-x
(M is at least one element selected from the group consisting of Si, Cr, Al, Ti, Sb, and Sn, and x satisfies 90 ≦ x ≦ 100 (mass%).)
It is preferable to have the composition represented by these. The average particle size of the Fe-based soft magnetic powder is preferably 3 μm or more and 100 μm or less. The average particle size of the raw material powder is a value determined by D 50.
FexM100-x
(MはSi,Cr、Al、Ti、Sb、およびSnからなる群より選ばれる少なくとも1つの元素であり、xは90≦x≦100(質量%)を満足する。)
で表される組成を有することが好ましい。Fe系軟磁性粉末の平均粒径は3μm以上100μm以下であることが好ましい。原料粉末の平均粒径はD50にて求めた値である。 First, glass is coated on Fe-based soft magnetic powder to prepare glass-coated soft magnetic powder. The Fe-based soft magnetic powder is made of iron or an iron alloy. Fe-based soft magnetic powder
Fe x M 100-x
(M is at least one element selected from the group consisting of Si, Cr, Al, Ti, Sb, and Sn, and x satisfies 90 ≦ x ≦ 100 (mass%).)
It is preferable to have the composition represented by these. The average particle size of the Fe-based soft magnetic powder is preferably 3 μm or more and 100 μm or less. The average particle size of the raw material powder is a value determined by D 50.
ガラスは、500℃以上800℃以下の軟化点を有することが好ましい。ガラスは、酸化珪素、酸化鉛、酸化ビスマス、酸化亜鉛、酸化バナジウム、酸化スズ、酸化テルル、アルカリ金属酸化物、およびフッ素からなる群より選ばれる少なくとも1つを主成分とすることが好ましい。ガラスによるFe系軟磁性粉末の被覆は、例えば金属アルコキシドの加水分解を利用して被膜を形成する方法により実施される。加水分解を利用した被覆方法は、以下のようにして行われる。まず、軟磁性粉末と水とを混合し、十分に撹拌する。次に、金属アルコキシドを添加し、撹拌して加水分解反応を起こさせる。その後、十分に乾燥させることによって、ガラス被覆軟磁性粉末を調製する。
The glass preferably has a softening point of 500 ° C. or higher and 800 ° C. or lower. The glass preferably contains as a main component at least one selected from the group consisting of silicon oxide, lead oxide, bismuth oxide, zinc oxide, vanadium oxide, tin oxide, tellurium oxide, alkali metal oxide, and fluorine. The coating of the Fe-based soft magnetic powder with glass is performed, for example, by a method of forming a film using hydrolysis of a metal alkoxide. The coating method using hydrolysis is performed as follows. First, soft magnetic powder and water are mixed and sufficiently stirred. Next, a metal alkoxide is added and stirred to cause a hydrolysis reaction. Thereafter, the glass-coated soft magnetic powder is prepared by sufficiently drying.
ガラスの被覆厚さは5nm以上80nm以下であることが好ましい。ガラスの被覆厚さが5nm未満であると、軟磁性粉末同士の間に存在するガラスの量が少ないため、絶縁性が低下するおそれがある。ガラスの被覆厚さが80nmを超えると、軟磁性粉末の占有率を大きくすることが困難になる。そのため、ガラスの被覆厚さは5nm以上80nm以下が好ましく、さらには10nm以上50nm以下がより好ましい。
The glass coating thickness is preferably 5 nm or more and 80 nm or less. If the coating thickness of the glass is less than 5 nm, the amount of glass present between the soft magnetic powders is small, so that the insulating property may be lowered. When the glass coating thickness exceeds 80 nm, it is difficult to increase the occupation ratio of the soft magnetic powder. Therefore, the glass coating thickness is preferably 5 nm to 80 nm, and more preferably 10 nm to 50 nm.
次に、ガラス被覆軟磁性粉末を堆積して堆積体を調製する。堆積体の調製工程は、金型成型法やコールドスプレー法であることが好ましい。
Next, a glass-coated soft magnetic powder is deposited to prepare a deposit. The step of preparing the deposit is preferably a mold molding method or a cold spray method.
次に、堆積体をガラスの軟化点以上融点以下の温度で加熱しつつ加圧する工程を行う。加熱加圧工程は、ホットプレス(HP)やHIP(熱間静水圧プレス)等により実施される。加熱加圧工程の圧力は、100MPa以上が好ましく、さらに200MPa以上がより好ましい。圧力の上限は特に限定されるものではないが、2000MPa以下が好ましい。圧力を200MPa以上2000MPa以下に調整することによって、圧粉体の製造と同時に軟磁性粉末のアスペクト比を調整することができる。
Next, a step of pressing the deposited body while heating it at a temperature not lower than the softening point of the glass and not higher than the melting point is performed. The heating and pressing step is performed by hot pressing (HP), HIP (hot isostatic pressing) or the like. The pressure in the heating and pressing step is preferably 100 MPa or more, and more preferably 200 MPa or more. The upper limit of the pressure is not particularly limited, but is preferably 2000 MPa or less. By adjusting the pressure to 200 MPa or more and 2000 MPa or less, the aspect ratio of the soft magnetic powder can be adjusted simultaneously with the production of the green compact.
ガラス被覆軟磁性粉末の堆積体を加熱しつつ加圧することによって、ガラスを軟化させながら圧粉体を作製することができる。これによって、圧粉体内の気孔径を小さくしながら軟磁性粉末の占有率を大きくすることができる。さらに、予めガラスを被覆した軟磁性粉末を用いているため、軟磁性粉末間の絶縁性を確保することができる。堆積体の加熱加圧工程における加熱温度は、Fe系軟磁性粉末の応力を緩和することが可能な温度以上であることが好ましい。Fe系軟磁性粉末の応力緩和が可能な温度は、Fe系軟磁性粉末の組成によっても異なるが、おおよそ500~800℃程度である。Fe系軟磁性粉末の応力緩和のための熱処理は、加熱加圧工程とは別に実施してもよい。
By pressing the glass-coated soft magnetic powder deposit while heating, a green compact can be produced while softening the glass. As a result, the occupation ratio of the soft magnetic powder can be increased while reducing the pore diameter in the green compact. Furthermore, since the soft magnetic powder previously coated with glass is used, insulation between the soft magnetic powders can be ensured. The heating temperature in the heating and pressurizing step of the deposit is preferably equal to or higher than the temperature at which the stress of the Fe-based soft magnetic powder can be relaxed. The temperature at which stress relaxation of the Fe-based soft magnetic powder varies depending on the composition of the Fe-based soft magnetic powder, but is about 500 to 800 ° C. The heat treatment for stress relaxation of the Fe-based soft magnetic powder may be performed separately from the heating and pressing step.
次に、本発明の具体的な実施例およびその評価結果について述べる。
Next, specific examples of the present invention and evaluation results thereof will be described.
(実施例1~7、比較例1~2)
Fe系軟磁性粉末としてFeSi合金粉末(Si含有量:3.5質量%)を用意した。ガラスとして酸化珪素系ガラス(Va系ガラス、軟化点600℃)を用意した。Fe系軟磁性粉末にガラスを被覆してガラス被覆軟磁性粉末を調製した。軟磁性粉末の平均粒径D50、ガラスの被覆厚さは表1に示した通りである。Fe系軟磁性粉末の平均粒径の測定には、前述したSEM像を用いた。 (Examples 1-7, Comparative Examples 1-2)
FeSi alloy powder (Si content: 3.5 mass%) was prepared as the Fe-based soft magnetic powder. As glass, silicon oxide glass (Va glass, softening point 600 ° C.) was prepared. A glass-coated soft magnetic powder was prepared by coating glass on Fe-based soft magnetic powder. The average particle diameter D 50 of the soft magnetic powder and the coating thickness of the glass are as shown in Table 1. The SEM image mentioned above was used for the measurement of the average particle diameter of Fe type soft magnetic powder.
Fe系軟磁性粉末としてFeSi合金粉末(Si含有量:3.5質量%)を用意した。ガラスとして酸化珪素系ガラス(Va系ガラス、軟化点600℃)を用意した。Fe系軟磁性粉末にガラスを被覆してガラス被覆軟磁性粉末を調製した。軟磁性粉末の平均粒径D50、ガラスの被覆厚さは表1に示した通りである。Fe系軟磁性粉末の平均粒径の測定には、前述したSEM像を用いた。 (Examples 1-7, Comparative Examples 1-2)
FeSi alloy powder (Si content: 3.5 mass%) was prepared as the Fe-based soft magnetic powder. As glass, silicon oxide glass (Va glass, softening point 600 ° C.) was prepared. A glass-coated soft magnetic powder was prepared by coating glass on Fe-based soft magnetic powder. The average particle diameter D 50 of the soft magnetic powder and the coating thickness of the glass are as shown in Table 1. The SEM image mentioned above was used for the measurement of the average particle diameter of Fe type soft magnetic powder.
次に、実施例および比較例のガラス被覆軟磁性粉末を用いて金型成型を行った。その後、表2に示す条件でHIP処理を行った。HIP処理により圧粉体を作製した。
Next, mold molding was performed using the glass-coated soft magnetic powders of Examples and Comparative Examples. Thereafter, the HIP treatment was performed under the conditions shown in Table 2. A green compact was produced by HIP treatment.
得られた圧粉体について、軟磁性粉末の占有率、軟磁性粉末のアスペクト比、気孔径、気孔率、隣り合う軟磁性粉末間の最短距離SDを求めた。それらの結果を表3に示す。軟磁性粉末の占有率の測定には、軟磁性粉末の平均粒径が50μm以下の場合は単位面積100μm×100μmのSEM写真(倍率1000倍)を用いた。軟磁性粉末の平均粒径が50μmを超える場合には、単位面積300μm×300μmのSEM写真(倍率1000倍)を用いた。SEM写真に写る軟磁性粉末の面積を求め、単位面積5ヶ所分の平均値を占有率とした。
For the obtained green compact, the occupation ratio of the soft magnetic powder, the aspect ratio of the soft magnetic powder, the pore diameter, the porosity, and the shortest distance SD between adjacent soft magnetic powders were determined. The results are shown in Table 3. For the measurement of the occupation ratio of the soft magnetic powder, when the average particle diameter of the soft magnetic powder is 50 μm or less, an SEM photograph (unit: 1000 times) having a unit area of 100 μm × 100 μm was used. When the average particle size of the soft magnetic powder exceeded 50 μm, an SEM photograph (unit: 1000 times) having a unit area of 300 μm × 300 μm was used. The area of the soft magnetic powder shown in the SEM photograph was determined, and the average value for five unit areas was defined as the occupation ratio.
軟磁性粉末のアスペクト比、平均粒径、気孔径は、前述したSEM写真を用いて測定した。軟磁性粉末のアスペクト比および平均粒径は、軟磁性粉末50粒分の平均値とした。隣り合う軟磁性粉末間の最短距離SDは、倍率10000倍のSEM写真を用いて測定した。気孔径や気孔率の測定には、前述したSEM写真を用いた。SEM写真で気孔が確認し難いときは、TEM観察を利用した。気孔径は拡大写真に写る気孔の最大径とした。
The aspect ratio, average particle diameter, and pore diameter of the soft magnetic powder were measured using the SEM photograph described above. The aspect ratio and average particle diameter of the soft magnetic powder were average values for 50 soft magnetic powders. The shortest distance SD between adjacent soft magnetic powders was measured using a SEM photograph with a magnification of 10,000 times. The SEM photograph mentioned above was used for the measurement of a pore diameter and a porosity. When it was difficult to confirm the pores in the SEM photograph, TEM observation was used. The pore diameter was the maximum diameter of the pores shown in the enlarged photograph.
各実施例による圧粉体(圧粉磁心)は、軟磁性粉末の占有率が面積比で88%以上であり、気孔径についても20μm以下と小さいことが確認された。
It was confirmed that the green compacts (powder cores) according to each example had an area ratio of soft magnetic powder of 88% or more and a pore diameter as small as 20 μm or less.
(実施例8~13、比較例2~4)
Fe系軟磁性粉末として、FeSi合金粉末(Si含有量:3.5質量%)とFeSiAl合金粉末(Si含有量:9.5質量%、Al含有量:5.5質量%)を用意した。ガラスとして、ナトリウム系ガラス(軟化点600℃)とソーダ石灰ガラス(軟化点730℃)を用意した。軟磁性粉末にガラスを被覆してガラス被覆軟磁性粉末を調製した。軟磁性粉末のSEM像で測定する平均粒径D50、ガラスの被覆厚さは表4に示した通りである。なお、表4において、ナトリウム系ガラスはNa系、ソーダ石灰ガラスはソーダ石灰と表記した。 (Examples 8 to 13, Comparative Examples 2 to 4)
FeSi alloy powder (Si content: 3.5 mass%) and FeSiAl alloy powder (Si content: 9.5 mass%, Al content: 5.5 mass%) were prepared as Fe-based soft magnetic powders. As glass, sodium-based glass (softening point 600 ° C.) and soda lime glass (softening point 730 ° C.) were prepared. Glass was coated on the soft magnetic powder to prepare a glass-coated soft magnetic powder. Table 4 shows the average particle diameter D 50 measured by the SEM image of the soft magnetic powder and the coating thickness of the glass. In Table 4, sodium-based glass was expressed as Na-based, and soda-lime glass was expressed as soda-lime.
Fe系軟磁性粉末として、FeSi合金粉末(Si含有量:3.5質量%)とFeSiAl合金粉末(Si含有量:9.5質量%、Al含有量:5.5質量%)を用意した。ガラスとして、ナトリウム系ガラス(軟化点600℃)とソーダ石灰ガラス(軟化点730℃)を用意した。軟磁性粉末にガラスを被覆してガラス被覆軟磁性粉末を調製した。軟磁性粉末のSEM像で測定する平均粒径D50、ガラスの被覆厚さは表4に示した通りである。なお、表4において、ナトリウム系ガラスはNa系、ソーダ石灰ガラスはソーダ石灰と表記した。 (Examples 8 to 13, Comparative Examples 2 to 4)
FeSi alloy powder (Si content: 3.5 mass%) and FeSiAl alloy powder (Si content: 9.5 mass%, Al content: 5.5 mass%) were prepared as Fe-based soft magnetic powders. As glass, sodium-based glass (softening point 600 ° C.) and soda lime glass (softening point 730 ° C.) were prepared. Glass was coated on the soft magnetic powder to prepare a glass-coated soft magnetic powder. Table 4 shows the average particle diameter D 50 measured by the SEM image of the soft magnetic powder and the coating thickness of the glass. In Table 4, sodium-based glass was expressed as Na-based, and soda-lime glass was expressed as soda-lime.
次に、実施例および比較例のガラス被覆軟磁性粉末を用いて金型成型を行った。その後、表5に示す条件でHIP処理を行った。HIP処理により圧粉体を作製した。
Next, mold molding was performed using the glass-coated soft magnetic powders of Examples and Comparative Examples. Thereafter, HIP treatment was performed under the conditions shown in Table 5. A green compact was produced by HIP treatment.
得られた圧粉体について、軟磁性粉末の占有率、軟磁性粉末のアスペクト比、隣り合う軟磁性粉末間の最短距離SD、気孔径、および気孔率を求めた。それぞれの測定方法は、実施例1と同じ方法とした。それらの結果を表6に示す。
For the obtained green compact, the occupation ratio of the soft magnetic powder, the aspect ratio of the soft magnetic powder, the shortest distance SD between adjacent soft magnetic powders, the pore diameter, and the porosity were determined. Each measurement method was the same as that in Example 1. The results are shown in Table 6.
実施例の圧粉体(圧粉磁心)は、いずれも軟磁性粉末の占有率が面積比で88%以上であり、また気孔径についても20μm以下と小さいことが確認された。また、軟磁性材料およびガラスの材質を変えても、軟磁性粉末の占有率の高い圧粉体が得られた。
It was confirmed that all of the green compacts (powder magnetic cores) of the examples had a soft magnetic powder occupancy ratio of 88% or more in area ratio and a small pore diameter of 20 μm or less. Further, even if the soft magnetic material and the glass material were changed, a green compact with a high occupation ratio of the soft magnetic powder was obtained.
次に、実施例および比較例の各圧粉磁心について、飽和磁化および損失を測定した。損失の測定は、初透磁率の範囲における100kHz、0.2T(テスラ)の条件で行った。その結果を表7に示す。
Next, saturation magnetization and loss were measured for each of the dust cores of Examples and Comparative Examples. The loss was measured under the conditions of 100 kHz and 0.2 T (Tesla) in the initial permeability range. The results are shown in Table 7.
表7から分かるように、各実施例の圧粉磁心は優れた磁気特性を有することが確認された。それに対して、比較例1、比較例2、および比較例4の圧粉磁心では、飽和磁化が1.7T以下と低い値しか得られなかった。比較例3の圧粉磁心は、損失が5200kW/m3と高かった。これは気孔径が大きいためである。
As can be seen from Table 7, it was confirmed that the dust cores of the respective examples had excellent magnetic properties. On the other hand, in the dust cores of Comparative Example 1, Comparative Example 2, and Comparative Example 4, only a low value of saturation magnetization of 1.7 T or less was obtained. The dust core of Comparative Example 3 had a high loss of 5200 kW / m 3 . This is because the pore diameter is large.
なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
In addition, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
Claims (15)
- Fe系軟磁性粉末とガラスとを含む圧粉体からなる圧粉磁心であって、
前記圧粉体中の気孔径が20μm以下(ゼロ含む)であり、前記圧粉体におけるFe系軟磁性粉末の占有率が面積比で88%以上である圧粉磁心。 A dust core comprising a powder compact including Fe-based soft magnetic powder and glass,
A dust core in which a pore diameter in the green compact is 20 μm or less (including zero), and an occupation ratio of the Fe-based soft magnetic powder in the green compact is 88% or more in area ratio. - 前記圧粉体の気孔率が10%以下(ゼロ含む)である、請求項1に記載の圧粉磁心。 2. The dust core according to claim 1, wherein a porosity of the powder compact is 10% or less (including zero).
- 前記Fe系軟磁性粉末の平均粒径が3μm以上100μm以下である、請求項1または請求項2に記載の圧粉磁心。 The powder magnetic core according to claim 1 or 2, wherein an average particle diameter of the Fe-based soft magnetic powder is 3 µm or more and 100 µm or less.
- 前記Fe系軟磁性粉末は、
FexM100-x
(式中、MはSi、Cr、Al、Ti、Sb、およびSnからなる群より選ばれる少なくとも1つの元素であり、xは90≦x≦100(質量%)を満足する。)
で表される組成を有する、請求項1ないし請求項3のいずれか1項に記載の圧粉磁心。 The Fe-based soft magnetic powder is
Fe x M 100-x
(In the formula, M is at least one element selected from the group consisting of Si, Cr, Al, Ti, Sb, and Sn, and x satisfies 90 ≦ x ≦ 100 (mass%).)
The dust core according to claim 1, having a composition represented by: - 前記圧粉体の任意の断面において、隣り合う前記Fe系軟磁性粉末間の最短距離が3nm以上1000nm以下である、請求項1ないし請求項4のいずれか1項に記載の圧粉磁心。 The powder magnetic core according to any one of claims 1 to 4, wherein a shortest distance between the adjacent Fe-based soft magnetic powders in an arbitrary cross section of the powder compact is 3 nm or more and 1000 nm or less.
- 前記Fe系軟磁性粉末はへん平形状を有する、請求項1ないし請求項5のいずれか1項に記載の圧粉磁心。 The dust core according to any one of claims 1 to 5, wherein the Fe-based soft magnetic powder has a flat shape.
- 前記ガラスの軟化点が500℃以上800℃以下である、請求項1ないし請求項6のいずれか1項に記載の圧粉磁心。 The dust core according to any one of claims 1 to 6, wherein a softening point of the glass is 500 ° C or higher and 800 ° C or lower.
- 請求項1ないし請求項7のいずれか1項に記載の圧粉磁心を具備する磁性部品。 A magnetic component comprising the dust core according to any one of claims 1 to 7.
- 前記磁性部品は、変圧器、リアクトル、サイリスタバルブ、ノイズフィルタ、またはチョークコイルである、請求項8記載の磁性部品。 The magnetic component according to claim 8, wherein the magnetic component is a transformer, a reactor, a thyristor valve, a noise filter, or a choke coil.
- 前記磁性部品は、周波数30kHz以上の高周波領域で使用されるように構成される、請求項8または請求項9に記載の磁性部品。 The magnetic component according to claim 8 or 9, wherein the magnetic component is configured to be used in a high frequency region having a frequency of 30 kHz or more.
- Fe系軟磁性粉末にガラスを被覆してガラス被覆軟磁性粉末を調製する工程と、
前記ガラス被覆軟磁性粉末を堆積して堆積体を調製する工程と、
前記堆積体を前記ガラスの軟化点以上融点以下の温度で加熱しつつ加圧し、圧粉磁心を得る工程と
を具備する圧粉磁心の製造方法。 Coating Fe-based soft magnetic powder with glass to prepare glass-coated soft magnetic powder;
Depositing the glass-coated soft magnetic powder to prepare a deposit;
A method of producing a dust core, comprising: pressing the deposited body while heating at a temperature not lower than a melting point of the glass and not higher than a melting point to obtain a dust core. - 前記堆積体の調製工程は、金型成型法またはコールドスプレー法により実施される、請求項11記載の圧粉磁心の製造方法。 The method of manufacturing a dust core according to claim 11, wherein the step of preparing the deposit is performed by a mold molding method or a cold spray method.
- 前記堆積体の加熱温度は、前記Fe系軟磁性粉末の応力緩和が可能な温度以上である、請求項11または請求項12に記載の圧粉磁心の製造方法。 The method of manufacturing a dust core according to claim 11 or 12, wherein a heating temperature of the deposit is not less than a temperature at which stress relaxation of the Fe-based soft magnetic powder is possible.
- 前記ガラスの軟化点は500℃以上800℃以下である、請求項11ないし請求項13のいずれか1項に記載の圧粉磁心の製造方法。 The method of manufacturing a dust core according to any one of claims 11 to 13, wherein the glass has a softening point of 500 ° C or higher and 800 ° C or lower.
- 前記ガラスの被覆厚さが5nm以上80nm以下である、請求項11ないし請求項14のいずれか1項に記載の圧粉磁心の製造方法。 The method for manufacturing a dust core according to any one of claims 11 to 14, wherein a coating thickness of the glass is 5 nm or more and 80 nm or less.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680007843.1A CN107210120B (en) | 2015-02-16 | 2016-02-04 | Dust core, method for producing same, and magnetic component using same |
JP2017500499A JP6606162B2 (en) | 2015-02-16 | 2016-02-04 | Dust core, method for manufacturing the same, and magnetic component using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015027240 | 2015-02-16 | ||
JP2015-027240 | 2015-02-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016132696A1 true WO2016132696A1 (en) | 2016-08-25 |
Family
ID=56688744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/000582 WO2016132696A1 (en) | 2015-02-16 | 2016-02-04 | Powder magnetic core and method for producing same, and magnetic member produced using same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6606162B2 (en) |
CN (1) | CN107210120B (en) |
WO (1) | WO2016132696A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019163650A1 (en) * | 2018-02-20 | 2019-08-29 | Dowaエレクトロニクス株式会社 | Silicon oxide-coated soft magnetic powder and method for producing same |
JP2020155674A (en) * | 2019-03-22 | 2020-09-24 | 日本特殊陶業株式会社 | Powder-compact magnetic core |
JP2020155670A (en) * | 2019-03-22 | 2020-09-24 | 日本特殊陶業株式会社 | Powder-compact magnetic core |
JP2020155665A (en) * | 2019-03-22 | 2020-09-24 | 日本特殊陶業株式会社 | Powder-compact magnetic core |
CN112530657A (en) * | 2019-09-18 | 2021-03-19 | 株式会社东芝 | Magnetic material and rotating electrical machine |
US20220262551A1 (en) * | 2019-08-30 | 2022-08-18 | Dowa Electronics Materials Co., Ltd. | SILICON OXIDE-COATED Fe-BASED SOFT MAGNETIC POWDER AND METHOD FOR PRODUCING SAME |
US20220392676A1 (en) * | 2019-11-27 | 2022-12-08 | Dowa Electronics Materials Co., Ltd. | Silicon-oxide-coated soft magnetic powder, and method for manufacturing same |
US12121965B2 (en) * | 2019-11-27 | 2024-10-22 | Dowa Electronics Materials Co., Ltd. | Silicon-oxide-coated soft magnetic powder, and method for manufacturing same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102118955B1 (en) * | 2018-11-26 | 2020-06-04 | 엘지전자 주식회사 | Magnetic powder, compressed powder core and method of preparation thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH056830A (en) * | 1991-06-27 | 1993-01-14 | Furukawa Electric Co Ltd:The | Manufacture of dust core |
JP2010232223A (en) * | 2009-03-25 | 2010-10-14 | Seiko Epson Corp | Insulator coating soft magnetic powder, dust core and magnetic element |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005171350A (en) * | 2003-12-12 | 2005-06-30 | Toyota Central Res & Dev Lab Inc | Insulating film, magnetic core powder, dust magnetic core, and method of manufacturing them |
DE112009000918A5 (en) * | 2008-04-15 | 2011-11-03 | Toho Zinc Co., Ltd | Magnetic composite material and process for its production |
JP5966236B2 (en) * | 2011-03-24 | 2016-08-10 | アルプス・グリーンデバイス株式会社 | Powder magnetic core and manufacturing method thereof |
US9318244B2 (en) * | 2012-02-17 | 2016-04-19 | Tdk Corporation | Soft magnetic powder core |
JP2013204063A (en) * | 2012-03-27 | 2013-10-07 | Ntn Corp | Method for manufacturing powder magnetic core and magnetic core powder |
JP2014207288A (en) * | 2013-04-11 | 2014-10-30 | 株式会社デンソー | Soft magnetic material for magnetic core, powder-compact magnetic core and coil member |
-
2016
- 2016-02-04 CN CN201680007843.1A patent/CN107210120B/en active Active
- 2016-02-04 JP JP2017500499A patent/JP6606162B2/en active Active
- 2016-02-04 WO PCT/JP2016/000582 patent/WO2016132696A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH056830A (en) * | 1991-06-27 | 1993-01-14 | Furukawa Electric Co Ltd:The | Manufacture of dust core |
JP2010232223A (en) * | 2009-03-25 | 2010-10-14 | Seiko Epson Corp | Insulator coating soft magnetic powder, dust core and magnetic element |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210060642A1 (en) * | 2018-02-20 | 2021-03-04 | Dowa Electronics Materials Co., Ltd. | Silicon oxide-coated soft magnetic powder and method for producing same |
JP2019143241A (en) * | 2018-02-20 | 2019-08-29 | Dowaエレクトロニクス株式会社 | Silicon oxide-coated soft magnetic powder and method for producing the same |
WO2019163650A1 (en) * | 2018-02-20 | 2019-08-29 | Dowaエレクトロニクス株式会社 | Silicon oxide-coated soft magnetic powder and method for producing same |
JP7229825B2 (en) | 2019-03-22 | 2023-02-28 | 日本特殊陶業株式会社 | dust core |
JP2020155665A (en) * | 2019-03-22 | 2020-09-24 | 日本特殊陶業株式会社 | Powder-compact magnetic core |
JP2020155670A (en) * | 2019-03-22 | 2020-09-24 | 日本特殊陶業株式会社 | Powder-compact magnetic core |
JP2020155674A (en) * | 2019-03-22 | 2020-09-24 | 日本特殊陶業株式会社 | Powder-compact magnetic core |
JP7277194B2 (en) | 2019-03-22 | 2023-05-18 | 日本特殊陶業株式会社 | dust core |
JP7291506B2 (en) | 2019-03-22 | 2023-06-15 | 日本特殊陶業株式会社 | dust core |
US20220262551A1 (en) * | 2019-08-30 | 2022-08-18 | Dowa Electronics Materials Co., Ltd. | SILICON OXIDE-COATED Fe-BASED SOFT MAGNETIC POWDER AND METHOD FOR PRODUCING SAME |
CN112530657A (en) * | 2019-09-18 | 2021-03-19 | 株式会社东芝 | Magnetic material and rotating electrical machine |
US20220392676A1 (en) * | 2019-11-27 | 2022-12-08 | Dowa Electronics Materials Co., Ltd. | Silicon-oxide-coated soft magnetic powder, and method for manufacturing same |
US12121965B2 (en) * | 2019-11-27 | 2024-10-22 | Dowa Electronics Materials Co., Ltd. | Silicon-oxide-coated soft magnetic powder, and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JP6606162B2 (en) | 2019-11-13 |
JPWO2016132696A1 (en) | 2017-11-24 |
CN107210120A (en) | 2017-09-26 |
CN107210120B (en) | 2020-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6606162B2 (en) | Dust core, method for manufacturing the same, and magnetic component using the same | |
JP6390929B2 (en) | Magnetic core manufacturing method, magnetic core and coil component using the same | |
KR101792088B1 (en) | Method for manufacturing powder magnetic core, powder magnetic core, and coil component | |
WO2018179812A1 (en) | Dust core | |
JP2007019134A (en) | Method of manufacturing composite magnetic material | |
JP5374537B2 (en) | Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for manufacturing dust core | |
JP6545640B2 (en) | Method of manufacturing dust core | |
JP2009302420A (en) | Dust core and manufacturing method thereof | |
JP2015126047A (en) | Dust core, coil component using the same, and method for producing dust core | |
JP4534523B2 (en) | Method for producing composite sintered magnetic material | |
JP2011181624A (en) | High-strength, high-specific-resistance composite soft magnetic material, electromagnetic circuit component, and method of manufacturing high-strength, high-specific-resistance composite soft magnetic material | |
JP6191855B2 (en) | Soft magnetic metal powder and high frequency powder magnetic core | |
JP6460505B2 (en) | Manufacturing method of dust core | |
JP6898057B2 (en) | Powder magnetic core | |
JP4166460B2 (en) | Composite magnetic material, magnetic element using the same, and method of manufacturing the same | |
JP7229825B2 (en) | dust core | |
TW201814738A (en) | Soft magnetic alloy | |
JP2004273564A (en) | Dust core | |
JP6168382B2 (en) | Manufacturing method of dust core | |
JP7529595B2 (en) | Powder core, inductor, and method for manufacturing powder core | |
JP2006089791A (en) | Method for manufacturing composite soft-magnetic sintered material having high density, high strength, high specific resistance and high magnetic flux density | |
WO2021157352A1 (en) | Metallic glass powder magnetic core having high density and high specific resisance, and method for manufacturing same | |
JP2020155670A (en) | Powder-compact magnetic core | |
JP2003124016A (en) | Magnetic material for noise countermeasure and its manufacturing method | |
JP6478141B2 (en) | Magnetic core manufacturing method, magnetic core and coil component using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16752087 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017500499 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16752087 Country of ref document: EP Kind code of ref document: A1 |