WO2016131228A1 - 机床多源能耗系统多信息在线检测系统 - Google Patents

机床多源能耗系统多信息在线检测系统 Download PDF

Info

Publication number
WO2016131228A1
WO2016131228A1 PCT/CN2015/086473 CN2015086473W WO2016131228A1 WO 2016131228 A1 WO2016131228 A1 WO 2016131228A1 CN 2015086473 W CN2015086473 W CN 2015086473W WO 2016131228 A1 WO2016131228 A1 WO 2016131228A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
machine tool
time
module
machine
Prior art date
Application number
PCT/CN2015/086473
Other languages
English (en)
French (fr)
Inventor
刘飞
刘高君
谢俊
吴鹏飞
刘霜
Original Assignee
重庆大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆大学 filed Critical 重庆大学
Publication of WO2016131228A1 publication Critical patent/WO2016131228A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4063Monitoring general control system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to an online detection system for energy consumption and energy efficiency parameters of machine tools in mechanical manufacturing.
  • CNC machine real-time energy consumption monitoring system (ZL201120320637.0) discloses a real-time energy consumption monitoring system for CNC machine tools. Through flexible transformer technology, it can supply power to all levels without changing the normal circuit of CNC machine tools. The circuit increases the current transformer, monitors the working current of each stage of the transmission mechanism and then calculates the input electric power for the production control personnel to view in real time.
  • Invention patent Online detection method for energy consumption information of machine tool main drive system processing
  • ZL201110095627.6 According to the established mathematical model of the main drive system energy flow and main energy consumption information of the machine tool processing process, and the previously acquired machine tool is in the spindle Basic data such as no-load power and additional load loss factor at the processing speed, rated power of the spindle motor, rated efficiency of the spindle motor, no-load power of the spindle motor, etc., during the machining process, the total input power of the machine tool at the production site is taken to obtain the spindle.
  • Real-time data on energy consumption information of the main drive system of the machine such as motor loss power, spindle motor output power, mechanical transmission system loss power, and cutting power.
  • the disclosed invention patent "Method for obtaining energy efficiency of electromechanical main drive system in CNC machine tool processing” discloses a new method for energy efficiency acquisition of electromechanical main drive system in CNC machine tool processing.
  • the method is based on the mathematical model of the energy efficiency of the electromechanical main drive system during the machining process of the machine tool, and the relationship between the no-load power and the rotational speed of the machine tool prepared in one-time preparation, and the additional load loss coefficient of the single-interval speed machine tool or the additional load loss coefficient of the multi-interval speed machine tool.
  • the table function; the energy efficiency of the electromechanical main drive system in the machining process of the machine tool is calculated from the mathematical model by recording the motor input power process data of the machine main drive system during the machining process.
  • the disclosed invention patent "a method and system for configurable energy consumption online monitoring of a multi-energy source of a machine tool” (201410200886.4), respectively installing a power sensor for monitoring multiple energy sources of a machine tool, and processing the electric power data of each power sensor to obtain The real-time electric power value of the multi-energy source is analyzed by the processing process to obtain the corresponding energy consumption information, and the real-time online monitoring of the multi-energy source energy consumption state of the machine tool can be performed.
  • the multi-energy source detection technology for CNC machine tools is also limited to the use of multiple power sensors to collect each energy source.
  • the electric power value is used to obtain a simple analysis of the energy consumption of each energy source.
  • These technologies are unable to obtain the effective energy, transient efficiency, energy utilization rate and energy specific energy efficiency of the multi-energy source machine tool and workpiece processing process, and the equipment is effective. Key parameters of energy efficiency in machining processes such as utilization rate; and lack of multi-information online detection system for machine multi-source energy consumption system.
  • the object of the present invention is to provide a multi-information online detection system for a multi-source energy consumption system of a machine tool, which realizes on-line detection of energy consumption and energy efficiency information of a multi-energy source of a machine tool; Dynamic energy consumption information of the main power system and all or specific auxiliary systems. At the same time, it can also detect and monitor the input energy, effective energy, transient power, transient efficiency, energy utilization rate and energy ratio of the workpiece processing process. Energy efficiency and effective utilization of equipment.
  • the present invention adopts the following technical solutions:
  • the utility model relates to an on-line detection system for multi-energy source efficiency of a machine tool, which is composed of a hardware part and a software system;
  • the hardware part comprises a related power sensor, a transmission conversion interface and a host computer terminal for receiving information;
  • the software system comprises an energy-efficient real-time detection module, a system parameter configuration module, Energy efficiency analysis module, energy efficiency analysis result history query module;
  • the energy efficiency real-time detection module comprises a multi-energy source data acquisition sub-module, a multi-energy source data processing sub-module and a multi-energy source data display and storage sub-module; the multi-energy source data acquisition sub-module is mainly used for reading and installing on the machine to be inspected
  • the data information obtained by the power sensor on each energy source the data information is compiled and decoded to obtain the real-time electric power value of each energy source; and is used to record the machine running start time, the machine tool running end time, the machining workpiece start detection time, and the machining workpiece end Detection time and other information; the above information will be transmitted to the data processing sub-module, and the electric power value and other required data of the system are calculated according to the parameter configuration module and then transmitted to the display and storage sub-module; the data display and storage sub-module will be obtained.
  • the data information is stored, and can be provided to the real-time query record and the analysis result and the power curve playback of the whole process of the workpiece processing; the multi-energy source data processing sub-module analyzes, verifies, converts and calculates the received data, and needs to be parsed after being parsed. Electrical power data; the system parameter configuration The block is used for the management of the type of machine to be inspected, the corresponding machine name and the additional load loss coefficient information management, and the matching calculation of the correlation coefficient is realized by initializing the parameters of different machine tools; the power sensors of different machine tools adopt a unified installation mode for electric power.
  • the data is acquired and compiled into a data message according to the specified communication protocol;
  • the energy efficiency analysis result history query module includes a historical query of the result of each machine tool detection process, provides a query function for each analysis result of the machine tool, and queries the workpiece in real time. Real-time detection of power curve playback during the entire process.
  • the energy consumption analysis module calculates the following energy consumption and energy efficiency parameters according to the following calculation model:
  • E w represents the total energy consumption of the machine tool
  • P w (t) represents the total input real-time power value of the machine tool
  • t ws represents the start time of the detected machining process
  • t we represents the end time of the machining process
  • E eff represents the cutting of the machine tool Effective energy consumption
  • P c (t) indicates the instantaneous power of the cutting machine
  • P mu (t) indicates the air cutting power of the machine tool power system
  • P aux (t) indicates the power of the machine-specific auxiliary system
  • indicates the machine cutting time.
  • Additional load factor k represents the kth cutting process
  • t kcs represents the kth cutting process start time
  • t kce represents the kth cutting process end time
  • ⁇ E represents the energy utilization rate of the whole process of machine tool processing.
  • the method for measuring the specific energy efficiency (input total energy/number of workpieces) of the workpiece processing process is to obtain the specific energy efficiency of the processed workpiece according to the theoretical formula (4).
  • ⁇ s represents the specific energy efficiency of the machine tool
  • N represents the number of workpieces.
  • the measuring method of the effective utilization rate (processing time/detection time) of the machine tool is to obtain the effective utilization rate of the machine tool according to the theoretical formula (5);
  • T c represents the cutting processing time
  • T d represents the detection time
  • the software system runs on the intelligent terminal, and the parameter setting module provided can set the detected multi-energy source machine type and the corresponding additional load coefficient required for calculating the relevant energy efficiency parameter.
  • the invention groups the energy sources of the machine tool to be tested into machine tool total system, processing power system and other detection systems (all or specific), and the power sensor separately collects the electric power information data, and then completes the processing by the analysis module.
  • On-line detection of energy efficiency parameters of various machine tools The details are as follows:
  • the power value is obtained by the power sensor, and the energy source data of the machine tool total system, the processing system and other detection systems are respectively collected.
  • the raw data collected is:
  • Processing power system power P m , machining power system detection running time t m
  • the machine tool system detects the total input energy:
  • E w represents the total energy consumption of the machine tool
  • P w (t) represents the total input real-time power value of the machine tool
  • t ws represents the machine tool start time
  • t we represents the machine tool end time
  • E eff represents the machine tool cutting Effective energy consumption
  • P c (t) represents the instantaneous power of the machine tool
  • P mu (t) represents the air cutting power of the machine's main power system
  • represents the coefficient of the additional load caused by the machine cutting
  • k represents the kth cutting process.
  • t kcs denotes the start time of the kth cutting process
  • t kce denotes the end time of the kth cutting process
  • ⁇ E denotes the energy utilization rate of the whole process of the machine tool
  • ⁇ s denotes the specific energy efficiency of the machine tool
  • N denotes the number of workpieces processed
  • ⁇ M represents the effective utilization of the machine tool
  • T c represents the machining time
  • T d represents the detection time.
  • the system comprises a multi-energy source power sensor, a signal protocol conversion interface, an intelligent terminal and a software system; wherein the software system provides a detection machine tool related parameter setting module, an energy consumption and energy efficiency analysis module, an energy efficiency data real time display module and a historical data query module.
  • the multi-energy source power sensor can collect according to the plurality of energy source grouping power information of the detecting machine tool; and compile the collected packet energy source power information into a data message to a signal conversion interface by using a fixed communication protocol.
  • the signal conversion interface is a converter interface required to enable the data of the multi-energy source power sensor to be connected to the intelligent terminal.
  • the energy consumption and energy efficiency analysis module analyzes the collected machine tool operation information and the power data message, records and calculates the running time of the machine tool, the total input energy, the effective energy, the transient efficiency, the energy utilization rate of the processing process, and Equipment effective utilization information.
  • the analysis data is separately transmitted to the display interface for presentation and data storage modules for recording.
  • the real-time display module can present the following energy-related information, including detecting real-time power graphs and corresponding real-time numerical information of each energy source of the machine tool system, operating schedules of the energy sources, input energy consumption information tables, and calculating energy efficiency parameters including the machine tool system Total input energy, effective energy, transient efficiency, energy utilization, and equipment effective utilization information.
  • the real-time power curve diagram of each energy source of the machine tool system is a waveform diagram of the power curve that is transmitted by the acquisition module to the analysis calculation module and converted to the output display module.
  • the historical data query module can perform the query according to the selected time period, and the query result of the energy efficiency related parameter is presented in a form in the form of a list, select a certain detection data, and can perform real time data playback by means of drawing, and display detection Full-process real-time power data curve.
  • the present invention has the following beneficial effects:
  • the invention is a set of online energy consumption and energy efficiency information detection system for multi-energy source of portable machine tool with software and hardware integration; the system can detect the energy consumption dynamics of the machine tool total system, the main power system and all or specific auxiliary systems online. Information, as well as online detection and monitoring of input energy, effective energy, transient power, transient efficiency, energy utilization of the workpiece processing process, energy specific energy efficiency, and effective utilization of equipment.
  • the multi-energy source of the machine tool is grouped into a machine tool total system, a machining power system and a specific auxiliary system;
  • the multi-channel power sensor is connected with the machine multi-energy source group to realize the machine tool total system, the processing power system and Measurement and real-time analysis of all or specific auxiliary system energy consumption data to detect various energy efficiency information of the machine tool.
  • it can analyze the parameters such as energy consumption and energy utilization of a single workpiece or a batch of workpiece processing. This information helps producers understand the energy consumption of the entire process and formulate energy-saving solutions.
  • the system of the invention adopts the double discriminant mode of human-computer interaction and power information automatic discrimination to realize the cutting start-stop point discrimination in the workpiece machining process, and ensures that it has high discriminating precision and reliability.
  • the invention adopts the latest sensing technology, and a single power sensor can realize real-time data collection of multiple energy sources, and the connection is convenient, simple and easy, operability is good, easy to expand, convenient and practical; detection and theoretical calculation are realized by an optimized method
  • the invention acquires the information of detecting the power and energy consumption of each energy source of the machine tool, and analyzes and calculates the energy consumption of each energy source and the energy efficiency parameter of the machine tool, and the method can be the machine flow characteristic, the machine tool energy quota and optimization, the machine tool It provides basic support for technical research such as energy consumption prediction and evaluation, machine tool energy saving and cutting parameter optimization, and has broad application prospects.
  • FIG. 1 is a framework of an on-line detection system for multi-energy source efficiency of a machine tool according to the present invention.
  • FIG. 2 is a connection structure of an online detection system and a numerical control machine tool according to the present invention.
  • FIG. 3 is a graph showing the real-time power curve of each energy source in Embodiment 1.
  • the multi-source energy efficiency on-line detection system of the machine tool can conveniently realize the parameters of energy flow, energy utilization rate and specific energy efficiency of multiple energy sources of different types of machine tools, and perform certain analysis and output results, and specific Proceed as follows:
  • the power related data of each packet energy source is obtained by the power sensor installed on the machine tool to be tested, transmitted by a certain protocol and decoded into useful power information data according to the protocol. . At the same time, it can also record the running start time of each energy source of the machine tool, the running end time of each energy source, the starting time of the machine to be tested and the ending running time of the machine to be tested.
  • the energy consumption information of the machine tool to be tested and the energy consumption information of each group energy source are analyzed and calculated mainly for the real-time power value obtained in the above step 2.
  • the main energy consumption information includes: total energy consumption of the machine tool, energy consumption of the workpiece processing process, energy utilization rate of the workpiece processing process, workpiece processing specific energy efficiency, machine tool running start time, machine tool running end time, total machine running time, other energy sources or Information on specific energy source energy consumption, energy source runtime, and more. among them:
  • the energy utilization rate of the workpiece processing process refers to the ratio of the effective output energy consumption of the machine tool spindle system energy source to the total machine tool energy consumption during the total processing time of the workpiece machining process.
  • the energy consumption of other energy sources includes auxiliary energy consumption to support the completion of processing tasks, and basic energy consumption of the machine itself.
  • Support auxiliary energy consumption for processing tasks such as energy consumption of cooling system energy source, energy source energy consumption of chip evacuation system, energy source energy consumption of hydraulic auxiliary system, etc.; basic energy consumption of machine tools, such as machine tool control electrical energy consumption, cooling fan energy Consumption, general lighting energy consumption, electrical cabinet air conditioning (intermittent) energy consumption.
  • the multi-information online detection system of the multi-source energy consumption system of the machine tool can complete and realize the above-mentioned online detection of the efficiency of the multi-energy source of the machine tool to be inspected, and the hardware part of the system includes the relevant power sensor, the transmission conversion interface and the receiving information.
  • the upper computer terminal is used; the software part system includes an energy efficiency real-time detection module, a system parameter configuration module, and an energy efficiency analysis result history query module.
  • the energy efficiency detecting module described in the above system comprises a multi-energy source data acquisition sub-module, a multi-energy source data processing sub-module, and a multi-energy source data display and storage sub-module.
  • the multi-energy source data acquisition sub-module is mainly used for reading the data information obtained by the power sensor installed on each energy source of the machine tool to be detected, and the data information is compiled and decoded to obtain the real-time electric power value of each energy source; and is used for recording the machine tool operation. Start time, machine tool end time, machining workpiece start detection time, machining workpiece end detection time and other information.
  • the above information will be transmitted to the data processing sub-module, and the electric power value and other required data of the system are calculated and transmitted to the display and storage sub-module according to the parameter configuration information; the data display and storage sub-module will store the obtained data information. It can be used to provide real-time query records and analysis results and power curve playback for the entire process of workpiece machining.
  • the system parameter configuration module is used for the management of the type of the machine to be inspected, the corresponding machine name and the additional load loss coefficient information management, and the matching calculation of the correlation coefficient is realized by initializing the parameters of different machine tools.
  • Different machine tools use power sensors to take a unified installation method to obtain data of electric power, and compile into data messages according to the specified communication protocol.
  • the energy efficiency analysis result history query module includes a historical query of the result of each machine tool detection process, provides a query function for each analysis result of the machine tool, and performs real-time detection power curve playback in real time on the whole process of querying the workpiece processing.
  • the real-time detection curve of the electric power in the real-time energy-saving detection module can be displayed by a check method. Red indicates the total power supply curve of the machine tool, green indicates the electric power curve of the machine cutting system, and yellow indicates other
  • the auxiliary power curve can be adapted to the user's needs as needed.
  • the multi-energy source processing sub-module parses, verifies, and converts the received data to obtain electrical power data required for parsing.
  • Data analysis is used to match the communication protocol between the power sensor and obtain the real-time electric power value of the transmitted message; the check is used for error analysis of the data analysis of the real-time electric power value, and the signal is filtered due to various external disturbances during the transmission process. Error data generated by distortion; conversion is used to format the acquired real-time power value data.
  • the energy efficiency analysis module includes an energy consumption information processing sub-module and a display sub-module, and the processing of the energy consumption information is used to combine the analytical data of the acquisition module with the machine tool additional load system in the parameter configuration module for analysis and calculation. It can get the total input energy consumption of the machine after starting up, the input energy consumption of the machine tool processing system, the accumulated energy consumption of other machine auxiliary systems, the effective energy of the computer bed, the transient efficiency, the real-time energy utilization value, and the record of the boot time and running time. Statistics, the machine tool equipment utilization rate and the equipment effective utilization value are calculated; the specific energy efficiency value of the workpiece is calculated by the user inputting the number of workpieces processed during the whole running process. The analysis calculation result is transmitted to the display sub-module for presentation.
  • the machine tool system detects the total input energy:
  • E w represents the total energy consumption of the machine tool
  • P w (t) represents the total input real-time power value of the machine tool
  • t ws represents the machine tool start time
  • t we represents the machine tool end time
  • E eff represents the machine tool cutting Effective energy consumption
  • P c (t) represents the instantaneous power of the machine tool
  • P mu (t) represents the air cutting power of the machine's main power system
  • represents the coefficient of the additional load caused by the machine cutting
  • k represents the kth cutting process.
  • t kcs denotes the start time of the kth cutting process
  • t kce denotes the end time of the kth cutting process
  • ⁇ E denotes the energy utilization rate of the whole process of the machine tool
  • ⁇ s denotes the specific energy efficiency of the machine tool
  • N denotes the number of workpieces processed
  • ⁇ M represents the effective utilization of the machine tool
  • T c represents the machining time
  • T d represents the detection time.
  • the machine tool start time t ws refers to the time when the machine power data is started to be collected.
  • the machine tool end time t we refers to the end of the machine tool power data time.
  • FIG. 3 is a graph showing electric power of a current period of time detected by each energy source generated by each energy source according to the real-time power data of each energy source.
  • the machine to be tested is the PL700 machining center of Chengdu Prius Machine Tool Co., Ltd., and the following is an example of milling a certain box plane on the PL700 machining center.
  • the method and system of the present invention are used for testing. The process is as follows:
  • Step 1 Analyze the energy source of the PL700 machining center. Each independent machine tool energy consumption component has a corresponding energy source.
  • the main energy source of the PL700 machining center is shown in Table 1.
  • the tool magazine system and the air conditioning system are intermittent working parts in the process of processing. They have been incorporated into the total energy consumption of the machine tool in the energy consumption system. Therefore, this example mainly tests the cooling system that the machine tool has been using during the processing. Consumption.
  • Step 2 Install a power sensor in the electrical control box of the above machine tool, and connect the transformer coil to each of the energy sources to be detected, as shown in FIG. 2 .
  • Step 3 the real-time detection module will use the parameters used in the previous detection by default. If it is the first detection or the current detection is different from the previous one, the parameter configuration module needs to select the additional load factor for the specific machine tool to be tested. If the PL700 is not found in the system, it can be added via the machine type management module. Create or select the machining center type, select the additional load factor of the machine name PL700 (no new), and analyze the calculation process according to the energy source.
  • step 4 energy efficiency testing is performed.
  • the multi-source energy consumption system multi-information online detection system acquisition sub-module of the machine tool will receive the real-time electric power data of the sensor installed on the machine tool to be inspected, and decode, inspect and convert the data through the analysis processing module to obtain the multi-source energy electric power value of the machine tool; At the same time, according to the energy consumption, the various time of the machine operation is recorded and used for parameter calculation.
  • the processing result is presented to the user through the display and storage module, and the data is stored in a combination of the database and the Excel form.
  • Step 5 The energy efficiency parameter analysis calculation module obtains the real-time electric power value of the received multi-energy source and the machine tool obtains the total input energy consumption value of the machine tool by the formula (1), and obtains the effective energy consumption value of the detected machine tool by the formula (2), by the formula ( 3)
  • the energy utilization rate of the whole process of the machine tool is obtained, and the specific energy efficiency of the machined workpiece is obtained by the formula (4), and the effective utilization rate of the machine tool is obtained by the formula (5).
  • the machine tool system detects the total input energy:
  • Step 6 The storage module stores the energy efficiency and the parameter data values in a database and a text table manner.
  • the history query module provides the detection process data and the parameter result query function, and can query and detect the energy consumption of the machine tool running process. See Table 2 for details of analysis and detection of energy consumption information and energy efficiency parameters of multi-energy sources of CNC machine tools.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Factory Administration (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

一种机床多能量源效率在线检测系统,由硬件部分和软件系统组成;硬件部分包括相关功率传感器、传输转换接口和接收并处理信息用上位机终端;软件系统包括能效实时检测模块、系统参数配置模块、能效分析模块、能效分析结果历史查询模块;该系统能在线检测和监测机床主动力系统和全部辅助系统的能量消耗动态信息,能在线检测和监测工件机械加工全过程的输入能量、有效能量、过程功率、瞬态效率、工件加工过程能量利用率以及能量比能效率、设备有效利用率。该检测系统的一体化设计,方便实用,并为提高量大面广的机械加工系统能量效率各项参数提供了一种检测分析系统,为加强机械加工过程能量消耗与能量效率的状态分析、管理控制和节能优化提供了一种支持工具。

Description

机床多源能耗系统多信息在线检测系统 技术领域
本发明涉及一种机械制造业机床能耗及能效参数在线检测系统。
背景技术
我国机械加工机床量大面广,拥有量世界第一,能量消耗总量巨大。多方面研究表明机床有效能量利用率很低;并且机床能量消耗所带来的等量环境排放也是很大的。因而,如何提高机床的有效能量利用率,降低机床能量消耗所带来的等量排放也成为当前研究的重点,这同时也提出了对机床能量源能耗状态相关技术参数在线检测方法及系统的要求。
近年来国内外研究人员针对机床能耗及检测也进行了大量研究。实用新型专利“数控机床实时能耗监测系统”(ZL201120320637.0)公开了一种数控机床实时能耗监测系统,通过柔性互感器技术,可以在不改变数控机床正常电路情况下,给各级供电回路增加电流互感器,监测出各级传动机构的工作电流进而测算出输入电功率,供生产控制人员实时查看。发明专利“机床主传动系统加工过程能耗信息在线检测方法”(ZL201110095627.6)根据所建立的机床加工过程主传动系统能量流和主要能耗信息的数学模型,及事先获取的机床在主轴处于加工转速下的空载功率和附加载荷损耗系数、主轴电机的额定功率、主轴电机的额定效率、主轴电机空载功率等基础数据,加工过程中通过测取生产现场机床的输入总功率求取出主轴电机损耗功率、主轴电机输出功率、机械传动系统损耗功率、切削功率等机床主传动系统能耗信息实时数据。已公开的发明专利“数控机床加工过程机电主传动系统能量效率获取的方法”(201210127826.5)公布了一种数控机床加工过程机电主传动系统能量效率获取的新方法。该方法依据机床加工过程机电主传动系统能量效率数学模型,和一次性前期准备的机床空载功率与转速的关系函数,以及单区间转速机床的附加载荷损耗系数或多区间转速机床附加载荷损耗系数的表格函数;通过记录加工过程中机床主传动系统电机输入功率过程数据而从数学模型中计算出机床加工过程机电主传动系统的能量效率。已公开的发明专利“一种机床多能量源的可配置能耗在线监测方法及系统”(201410200886.4),对监测机床多个能量源分别安装功率传感器,通过各功率传感器的电功率数据进行处理,获得多能量源实时电功率值再分析加工过程而得到相应能耗信息,能对机床多能量源能耗状态进行实时在线监测。
综上所述,现有技术大都集中在针对机床主传动系统的能耗分析和能量信息及能量效率获取方法方面,对数控机床多能量源检测技术也仅限于采用多个功率传感器采集各能量源电功率值从而得出各能量源能耗的简单分析,这些技术都无法获取多能量源机床及工件加工全过程的有效能量、瞬态效率、工件加工过程能量利用率以及能量比能效率、设备有效利用率等机械加工过程能效关键参数;而且也缺乏机床多源能耗系统多信息在线检测系统。
发明内容
针对机床能耗检测存在上述的不足,本发明的目的是提供一种机床多源能耗系统多信息在线检测系统,实现机床多能量源能耗及能效信息在线检测;能在线检测机床总系统、主动力系统和全部或特定辅助系统的能量消耗动态信息,同时还能在线检测和监测工件加工全过程的输入能量、有效能量、瞬态功率、瞬态效率、工件加工过程能量利用率以及能量比能效率、设备有效利用率。
实现上述目的,本发明采用如下技术方案:
一种机床多能量源效率在线检测系统,由硬件部分和软件系统组成;硬件部分包括相关功率传感器、传输转换接口和接收信息用上位机终端;软件系统包括能效实时检测模块、系统参数配置模块、能效分析模块、能效分析结果历史查询模块;
所述能效实时检测模块包括多能量源数据采集子模块、多能量源数据处理子模块及多能量源数据显示与存储子模块;多能量源数据采集子模块主要用于读取安装在待检测机床的各能量源上的功率传感器获得的数据信息,数据信息经过编译解码后得到各能量源的实时电功率值;并用于记录机床运行开始时间、机床运行结束时间、加工工件开始检测时间、加工工件结束检测时间等信息;上述信息将传输至数据处理子模块中,根据参数配置模块计算得到电功率数值和系统其他所需数据再传入到显示与存储子模块中;数据显示与存储子模块将得到的数据信息进行存储,并可提供给实时查询记录与分析结果和工件加工全过程的功率曲线回放;多能量源数据处理子模块对所接收的数据解析、校验、转换计算,得到解析后所需要的电功率数据;所述系统参数配置模块用于待检测机床的类型的管理、对应机床名称及附加载荷损耗系数信息管理,通过对不同机床的参数初始化,实现相关系数的匹配计算;不同机床使用功率传感器采取统一的安装方式进行电功率的数据获取,并根据规定的通信协议编译成数据报文;所述能效分析结果历史查询模块包括了对各机床检测过程的结果历史查询,提供对机床各分析结果的查询功能,并实时对查询工件加工全过程进行实时检测功率曲线回放。
进一步,检测过程中只需检测上述各分组中的输入功率,由能效分析模块根据以下计算模型计算出以下能耗和能效参数:
加工过程的输入能量:
Figure PCTCN2015086473-appb-000001
有效能量:
Figure PCTCN2015086473-appb-000002
能量利用率:
Figure PCTCN2015086473-appb-000003
其中,Ew表示检测机床的总能耗,Pw(t)表示检测机床总输入实时功率值,tws表示检测的加工过程开始时间,twe表示加工过程结束时间;Eeff表示检测机床切削有效能耗,Pc(t)表示检测机床切削瞬时功率,Pmu(t)表示机床加工动力系统的空切功率,Paux(t)表示机床特定辅助系统的功率,α表示机床切削时的附加载荷系数,k表示第k个切削过程,tkcs表示第k个切削过程开始时间,tkce表示第k个切削过程结束时间;ηE表示机床加工全过程的能量利用率。
进一步,所述工件加工过程比能效率(输入总能量/工件数量)的测取方法为根据理论公式(4)得到加工工件比能效率。
加工工件比能效率:
Figure PCTCN2015086473-appb-000004
其中,ηs表示机床加工工件比能效率,N表示加工工件数量。
机床设备有效利用率(加工时间/检测时间)的测取方法为根据理论公式(5)得到机床设备有效利用率;
机床设备有效利用率:
Figure PCTCN2015086473-appb-000005
其中,ηM表示机床设备有效利用率,Tc表示切削加工时间,Td表示检测时间。
所述软件系统运行于智能终端上,其提供的参数设置模块可对检测的多能量源机床类型及计算相关能效参数所需相应的附加载荷系数进行设置。
本发明将待检测机床的各能量源进行分组,分别为机床总系统、加工动力系统及其他检测系统(全部或特定),由功率传感器分别进行电功率信息数据的采集,再经过分析模块处理完成对各类机床能效参数在线检测。具体内容如下:
1、确定机床多能量源类型、数量和位置等信息并进行能量源分组:由于功率传感器具有采集多个能量源通道,在检测之前先分析并确认机床能量源的实际位置,按照机床总 系统、加工动力系统及其他检测系统能量源分组,进行相应的连接。
2、待检测机床能量源数据分析与处理:通过功率传感器获得相应功率值,分别采集机床总系统、加工系统及其他检测系统能量源功率数据。
采集的原始数据有:
机床总系统功率:Pw,机床总系统检测运行时间tw
加工动力系统功率:Pm,加工动力系统检测运行时间tm
其他检测系统功率:Paux,其他检测系统检测运行时间taux
3、待检测机床能量效率分析计算:
机床系统检测总输入能量:
Figure PCTCN2015086473-appb-000006
机床系统有效能量:
Figure PCTCN2015086473-appb-000007
加工全过程能量利用率:
Figure PCTCN2015086473-appb-000008
加工工件比能效率:
Figure PCTCN2015086473-appb-000009
机床设备有效利用率:
Figure PCTCN2015086473-appb-000010
其中,Ew表示检测机床的总能耗,Pw(t)表示检测机床总输入实时功率值,tws表示检测机床运行开始时间,twe表示检测机床运行结束时间;Eeff表示检测机床切削有效能耗,Pc(t)表示检测机床切削瞬时功率,Pmu(t)表示机床主动力系统的空切功率,α表示机床切削时引起附加载荷的系数,k表示第k个切削过程,tkcs表示第k个切削过程开始时间,tkce表示第k个切削过程结束时间;ηE表示机床加工全过程的能量利用率;ηs表示机床加工工件比能效率,N表示加工工件数量;ηM表示机床设备有效利用率,Tc表示切削加工时间,Td表示检测时间。
该系统包括多能量源功率传感器、信号协议转换接口、智能终端以及软件系统;其中软件系统提供了检测机床相关参数设置模块、能耗与能效分析模块、能效数据实时显示模块和历史数据查询模块。多能量源功率传感器器可根据检测机床的多个能量源分组功率信息进行采集;并将采集的分组能量源功率信息以固定的通信协议编译成数据报文向信号转换接口传送。信号转换接口是能够使多能量源功率传感器的数据与智能终端进行连接所需要转换器接口。
所述的能耗与能效分析模块是将采集的机床运行信息和功率数据报文进行分析,记录并计算检测机床的运行时间、总输入能量、有效能量、瞬态效率、加工过程能量利用率以及设备有效利用率信息。将分析数据分别传送到显示界面进行呈现和数据存储模块用于记录。
所述的实时显示模块可呈现以下能耗相关信息,包括检测机床系统各能量源实时功率曲线图和对应实时数值信息、各能量源运行时间表、输入能耗信息表,计算能效参数包括机床系统总输入能量、有效能量、瞬态效率、能量利用率、设备有效利用率信息。所述的机床系统各能量源实时功率曲线图是由采集模块将功率信息报文传送到分析计算模块经转换转到输出显示模块并呈现出来的功率曲线波形图。
所述的历史数据查询模块可根据选择的时间段进行查询,能效相关参数的查询结果以列表的形式呈现在表格中,选择某条检测数据并可通过绘图的方式进行检测实时数据回放,呈现检测全过程实时功率数据曲线。
相比现有技术,本发明具有如下有益效果:
1、本发明是一套软、硬件一体化的便携式机床多能量源在线能量消耗与能量效率信息检测系统;该系统能在线检测机床总系统、主动力系统和全部或特定辅助系统的能量消耗动态信息,同时还能在线检测和监测工件加工全过程的输入能量、有效能量、瞬态功率、瞬态效率、工件加工过程能量利用率以及能量比能效率、设备有效利用率。
将机床尤其是数控机床的多能量源进行分组,分别为机床总系统、加工动力系统及特定辅助系统;采用多通道功率传感器与机床多能量源分组进行连接,实现机床总系统、加工动力系统以及全部或特定辅助系统能耗数据的测取和实时分析计算检测机床的各项能效信息。根据加工情况能分析单个工件或一批工件加工过程能量消耗及能量利用率等参数,这些信息有助于生产者了解整个加工能耗情况并制定节能方案。
2、本发明系统采用人机交互和功率信息自动判别的双判别模式来实现工件加工过程切削启停点判别,确保其具有较高判别精度和可靠性。
3、本发明采用最新传感技术,单个功率传感器可实现多能量源实时数据采集,连接方便、简单易行,可操作性好,易于扩展,方便实用;检测及理论计算以最优化的方法实现以上功能,计算模型精度好;实现了能耗与能效多个参数的分析计算,为设备有效利用及加工过程节能优化方法研究提供有效参考。
4、本发明获取检测机床各能量源的功率及能耗信息,并进行各能量源能耗与机床能效参数的分析与计算,该方法可为机床能流特征、机床能耗定额及优化、机床能耗预测与评价、机床节能、切削参数优化等技术研究提供基础支持,具有较广阔的应用前景。
附图说明
图1为本发明机床多能量源效率在线检测系统框架。
图2为本发明在线检测系统与数控机床连接结构。
图3为实施例1显示各能耗源的实时功率曲线。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。
本发明提供的机床多源能量效率在线检测系统,可方便实现检测不同种类机床的多个能量源分组能流,能量利用率及比能效率等参数,并进行一定的分析和输出结果,其具体步骤如下:
1)首先分析待检测机床需要检测能量源分组所在的位置(根据机床而定);并对其分组在输入总线安装功率传感器(功率传感器与机床分组能量源进行连线);检测系统仅需要一次性配置好接口,测试前根据能量源与功率传感器的配置关系布置测试系统结构。
2)待检测机床能量源的数据采集与处理方法:通过安装在待检测机床的功率传感器获取各分组能量源处的功率相关数据,通过一定的协议进行传输并根据协议解码成有用的功率信息数据。同时还可记录机床设备各能量源的运行开始时间,各能量源的运行结束时间,以及待检测机床开始运行时间和待检测机床结束运行时间。
3)待检测机床各能量源能耗情况及状态分析:主要针对上述步骤2中获得的实时功率值而分析计算得到的待检测机床能耗信息及各分组能量源的能耗信息。主要能耗信息包括:机床总能耗、工件加工过程能耗、工件加工过程能量利用率、工件加工比能效率、机床运行开始时间、机床运行结束时间、机床运行总时间、其他各能量源或特定能量源能耗、能量源运行时间等信息。其中:
工件加工过程能量利用率是指工件加工过程总时间段的机床主轴系统能量源的有效输出能耗与机床总能耗的比值。
其他各能量源能耗包括支持完成加工任务的辅助能耗,机床自身基本能耗。支持完成加工任务的辅助能耗,如冷却系统能量源能耗、排屑系统能量源能耗、液压辅助系统能量源能耗等;机床自身基本能耗,如机床控制电器能耗、散热风机能耗、普通照明能耗、电器柜空调(断续)能耗等。
参考图1,机床多源能耗系统多信息在线检测系统能够完成和实现上述的待检测机床多能量源的效率在线检测,系统硬件部分包括相关功率传感器、传输转换接口和接收信息 用上位机终端;软件部分系统包括能效实时检测模块、系统参数配置模块、能效分析结果历史查询模块。
上述系统所述的能效检测模块包括多能量源数据采集子模块、多能量源数据处理子模块及多能量源数据显示与存储子模块。
多能量源数据采集子模块主要用于读取安装在待检测机床的各能量源上的功率传感器获得的数据信息,数据信息经过编译解码后得到各能量源的实时电功率值;并用于记录机床运行开始时间、机床运行结束时间、加工工件开始检测时间、加工工件结束检测时间等信息。上述信息将传输至数据处理子模块中,根据参数配置信息计算得到电功率数值和系统其他所需数据再传入到显示与存储子模块中;数据显示与存储子模块将得到的数据信息进行存储,并可提供给实时查询记录与分析结果和工件加工全过程的功率曲线回放。
该系统参数配置模块用于待检测机床的类型的管理、对应机床名称及附加载荷损耗系数信息管理,通过对不同机床的参数初始化,实现相关系数的匹配计算。不同机床使用功率传感器采取统一的安装方式进行电功率的数据获取,并根据规定的通信协议编译成数据报文。
所述的能效分析结果历史查询模块包括了对各机床检测过程的结果历史查询,提供对机床各分析结果的查询功能,并实时对查询工件加工全过程进行实时检测功率曲线回放。
为了更清楚显示多能量源电功率数据实时曲线,能效实时检测模块中的电功率实时检测曲线可通过勾选方式进行显示,红色表示机床总电源功率曲线,绿色表示机床切削系统电功率曲线,黄色表示其他某辅助电源功率曲线,用户可根据观察需要随时变化来适应。
多能量源处理子模块对所接收的数据解析、校验、转换计算,得到解析后所需要的电功率数据。数据解析用于与功率传感器之间的通讯协议匹配,获取传输报文的实时电功率值;校验用于对实时电功率值的数据解析进行差错检验,过滤在传输过程中因各种外界干扰造成信号失真而产生的错误数据;转换用于对采集的实时功率值数据进行格式转化。
能效分析模块包括能耗信息处理子模块和显示子模块,能耗信息的处理用于将采集模块的解析数据与参数配置模块中的机床附加载荷系统相结合进行分析计算。可得到开机后机床总输入能耗、机床加工系统输入能耗、其他机床辅助系统能耗累积值,计算机床有效能量、瞬态效率、实时能量利用率值,通过对开机时间、运行时间的记录统计,计算得到机床设备利用率及设备有效利用率数值;由用户输入整个运行过程加工工件数量而计算得到工件比能效率值。再将分析计算结果传输到显示子模块进行呈现。
能耗信息及能效参数子模块的计算处理过程如下:
机床系统检测总输入能量:
Figure PCTCN2015086473-appb-000011
机床系统有效能量:
Figure PCTCN2015086473-appb-000012
加工全过程能量利用率:
Figure PCTCN2015086473-appb-000013
加工工件比能效率:
Figure PCTCN2015086473-appb-000014
机床设备有效利用率:
Figure PCTCN2015086473-appb-000015
其中,Ew表示检测机床的总能耗,Pw(t)表示检测机床总输入实时功率值,tws表示检测机床运行开始时间,twe表示检测机床运行结束时间;Eeff表示检测机床切削有效能耗,Pc(t)表示检测机床切削瞬时功率,Pmu(t)表示机床主动力系统的空切功率,α表示机床切削时引起附加载荷的系数,k表示第k个切削过程,tkcs表示第k个切削过程开始时间,tkce表示第k个切削过程结束时间;ηE表示机床加工全过程的能量利用率;ηs表示机床加工工件比能效率,N表示加工工件数量;ηM表示机床设备有效利用率,Tc表示切削加工时间,Td表示检测时间。
检测机床运行开始时间tws指开始采集机床功率数据时间,检测机床运行结束时间twe指结束采集机床功率数据时间,通过检测机床运行持续时间tw(tw=twe-tws)对检测机床输入瞬时功率与时间乘积进行积分可得检测机床运行全过程能耗Ew。其他参数计算类似。
结果显示与存储模块将分析计算的能耗数据及参数进行实时显示和存储。图3是显示模块根据接收到各能量源的实时功率数据而生成的各能量源在整个运行过程检测的当前某时段电功率曲线图。
实施例:
待检测机床为成都普瑞斯机床有限公司PL700加工中心,下面在PL700加工中心上铣削加工某箱体平面为例,采用本发明方法和系统进行检测,其过程如下:
步骤1,分析PL700加工中心能量源情况,每个独立机床能耗部件都有相应的能耗源,PL700加工中心主要能量源如表1所示。
表1 PL700加工中心能量源
部件 能量源
切削系统 主轴变频电机及3个进给轴电机
刀库系统 刀库电机
冷却系统 冷却泵电机
空调系统 主电控箱空调
其中刀库系统和空调系统在加工过程中都是间歇性工作部件,在能耗系统中已经将其纳入到机床总能耗中,所以对本实例主要检测机床在加工过程中一直使用的冷却系统能耗。
步骤2,在上述机床电控箱中安装功率传感器,并将其互感器线圈接入到各待检测分组能量源处,具体参见图2。
步骤3,实时检测模块默认会使用上一次检测所用到的参数,如果是第一次检测或本次检测与上一次不同,则需在参数配置模块对检测的具体机床进行附加载荷系数选择配置,如果在系统中没有找到PL700,则可通过机床类型管理模块进行增加。新建或选择加工中心类型,选择机床名称为PL700(没有则新增)的附加载荷系数,并根据能量源情况分析计算过程。
步骤4,进行能效检测。机床多源能耗系统多信息在线检测系统采集子模块将接收安装在待检测机床的传感器实时电功率数据,并通过分析处理模块对数据进行解码、检验和转换处理,得到机床多源能量电功率值;同时根据能耗情况记录机床运行的各类时间并用于参数计算。处理结果通过显示与存储模块呈现给用户,并以数据库和Excel表单结合的方式进行数据存储。
当系统开启时勾选需要实时观察的电功率曲线即可查看当前机床各能量源瞬时功率值,机床启动情况下有实时功率显示并开始记录机床的实际运行时间,这表示系统及系统工作正常,随后便可开始进行检测,点击“开始检测”按钮相关能效参数开始按设置计算并实时更新存储数据。操作人员在检测过程中可随时勾选与取消功率曲线波形图便于观察趋势。
步骤5,能效参数分析计算模块对接收到的多能量源实时电功率值和机床由公式(1)得到检测机床总输入能耗值,由公式(2)得到检测机床有效能耗值,由公式(3)得到检测机床加工全过程能量利用率,由公式(4)得到加工工件比能效率,由公式(5)得到机床设备有效利用率。
机床系统检测总输入能量:
Figure PCTCN2015086473-appb-000016
机床系统有效能量:
Figure PCTCN2015086473-appb-000017
加工全过程能量利用率:
Figure PCTCN2015086473-appb-000018
加工工件比能效率:
Figure PCTCN2015086473-appb-000019
机床设备有效利用率:
Figure PCTCN2015086473-appb-000020
步骤6,存储模块对得到的能效及参数数据值以数据库和文本表格方式进行存储,历史查询模块提供了检测过程数据及参数结果查询功能,可查询检测机床运行过程能耗情况。分析检测数控机床多能量源能耗信息及能效参数详情参见表2。
表2 数控加工中心PL700能耗信息与能效参数
Figure PCTCN2015086473-appb-000021
以上实例仅作为本发明方法及系统的解决方案之一,本领域的技术人员仍可以在本案例基础上进行修改调整,尤其在能量源的选择上根据待检测机床实际情况来考虑,但始终不脱离本发明技术方案的范围,其均涵盖在本发明的权利要求范围中。

Claims (4)

  1. 一种机床多能量源效率在线检测系统,其特征在于,由硬件部分和软件系统组成;硬件部分包括相关功率传感器、传输转换接口和接收信息用上位机终端;软件系统包括能效实时检测模块、系统参数配置模块、能效分析模块、能效分析结果历史查询模块;
    所述能效实时检测模块包括多能量源数据采集子模块、多能量源数据处理子模块及多能量源数据显示与存储子模块;多能量源数据采集子模块主要用于读取安装在待检测机床的各分组能量源上的功率传感器获得的数据信息,数据信息经过编译解码后得到各分组能量源的实时电功率值;并用于记录机床运行开始时间、机床运行结束时间、加工工件开始检测时间、加工工件结束检测时间等信息;上述信息将传输至数据处理子模块中,根据参数配置模块计算得到电功率数值和系统其他所需数据再传入到显示与存储子模块中;数据显示与存储子模块将得到的数据信息进行存储,并可提供给实时查询记录与分析结果和工件加工全过程的功率曲线回放;多能量源数据处理子模块对所接收的数据解析、校验、转换计算,得到解析后所需要的电功率数据;
    所述系统参数配置模块用于待检测机床的类型的管理、对应机床名称及附加载荷损耗系数信息管理,通过对不同机床的参数初始化,实现相关系数的匹配计算;不同机床使用功率传感器采取统一的安装方式进行电功率的数据获取,并根据规定的通信协议编译成数据报文;
    所述能效分析结果历史查询模块包括了对各机床检测过程的结果历史查询,提供对机床各分析结果的查询功能,并实时对查询工件加工全过程进行实时检测功率曲线回放。
  2. 根据权利要求1所述机床多能量源效率在线检测系统,其特征在于,检测过程中只需检测上述各分组中的输入功率,由能效分析模块根据以下计算模型计算出以下能耗和能效参数:
    加工过程的输入能量:
    Figure PCTCN2015086473-appb-100001
    有效能量:
    Figure PCTCN2015086473-appb-100002
    能量利用率:
    Figure PCTCN2015086473-appb-100003
    其中,Ew表示检测机床的总能耗,Pw(t)表示检测机床总输入实时功率值,tws表示检 测的加工过程开始时间,twe表示加工过程结束时间;Eeff表示检测机床切削有效能耗,Pc(t)表示检测机床切削瞬时功率,Pmu(t)表示机床加工动力系统的空切功率,Paux(t)表示机床特定辅助系统的功率,α表示机床切削时的附加载荷系数,k表示第k个切削过程,tkcs表示第k个切削过程开始时间,tkce表示第k个切削过程结束时间;ηE表示机床加工全过程的能量利用率。
  3. 根据权利要求1所述的机床多源能量效率在线检测系统,其特征在于,所述工件加工过程比能效率(输入总能量/工件数量)的测取方法为根据理论公式(4)得到加工工件比能效率。
    加工工件比能效率:
    Figure PCTCN2015086473-appb-100004
    其中,ηs表示机床加工工件比能效率,N表示加工工件数量。
  4. 根据权利要求1所述的机床多源能量效率在线检测系统,其特征在于,机床设备有效利用率(加工时间/检测时间)的测取方法为根据理论公式(5)得到机床设备有效利用率;
    机床设备有效利用率:
    Figure PCTCN2015086473-appb-100005
    其中,ηM表示机床设备有效利用率,Tc表示切削加工时间,Td表示检测时间。
PCT/CN2015/086473 2015-02-17 2015-08-10 机床多源能耗系统多信息在线检测系统 WO2016131228A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510085643.5 2015-02-17
CN201510085643.5A CN104808584B (zh) 2015-02-17 2015-02-17 机床多源能耗系统多信息在线检测系统

Publications (1)

Publication Number Publication Date
WO2016131228A1 true WO2016131228A1 (zh) 2016-08-25

Family

ID=53693511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086473 WO2016131228A1 (zh) 2015-02-17 2015-08-10 机床多源能耗系统多信息在线检测系统

Country Status (2)

Country Link
CN (1) CN104808584B (zh)
WO (1) WO2016131228A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109333155A (zh) * 2018-10-25 2019-02-15 山东理工大学 水环真空泵转子轴数控车削加工中能量效率在线检测方法
CN111898855A (zh) * 2020-06-19 2020-11-06 电子科技大学 零件成形原理选择决策支持模型的建立方法
CN111898854A (zh) * 2020-06-19 2020-11-06 电子科技大学 基于lca的通用能耗模型建立方法
CN111948978A (zh) * 2019-05-17 2020-11-17 湖北欧安电气股份有限公司 一种基于数控机床用数据采集、监控系统
CN111999552A (zh) * 2020-08-31 2020-11-27 上海控软网络科技有限公司 能耗监控方法、因子确定方法、监控装置、设备及介质
IT201900009465A1 (it) * 2019-06-19 2020-12-19 Camozzi Digital S R L Metodo di ottimizzazione e regolazione di un parametro di funzionamento di una macchina industriale e relativo sistema
CN112258021A (zh) * 2020-10-20 2021-01-22 西安交通大学 用于家庭燃料电池热电联供建筑的能效评估方法及系统
CN112966215A (zh) * 2021-02-01 2021-06-15 杭州博联智能科技股份有限公司 能耗估算方法和系统
CN113344244A (zh) * 2021-04-29 2021-09-03 武汉科技大学 一种数字孪生驱动的工件加工能耗预测装置
CN113704974A (zh) * 2021-08-03 2021-11-26 西安交通大学 一种面向铣削过程的碳排放量化计算方法及系统
CN113967529A (zh) * 2021-10-21 2022-01-25 万洲电气股份有限公司 一种基于辊压机能效分析模块的智能优化节能系统
CN114415595A (zh) * 2021-11-05 2022-04-29 山东科技大学 一种车削优化方法、系统、计算机设备和存储介质

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808584B (zh) * 2015-02-17 2017-12-19 重庆大学 机床多源能耗系统多信息在线检测系统
CN105654240A (zh) * 2015-12-30 2016-06-08 江南大学 机床产品制造系统能效分析方法
CN105841991B (zh) * 2016-05-23 2018-03-27 哈尔滨工业大学 一种机床能效快速定量测试方法
CN106154977B (zh) * 2016-09-27 2018-03-27 重庆大学 一种数控机床切削工步全过程中关键时刻的判断方法
CN109933002A (zh) * 2019-03-28 2019-06-25 河海大学常州校区 一种面向节能的机械加工过程数控机床能耗建模方法
CN110244654A (zh) * 2019-04-29 2019-09-17 福建省嘉泰智能装备有限公司 一种传感器监测机床加工过程各种情形有效加工段标示方法
CN110262392A (zh) * 2019-07-09 2019-09-20 重庆大学 一种基于虚拟样件的机床固有能效属性测量系统与方法
CN112255968A (zh) * 2020-11-10 2021-01-22 苏州艾汇格物联科技有限公司 一种机床能耗监测系统及方法
CN112858751B (zh) * 2021-01-08 2021-10-15 唐旸 无接触式获取加工设备设备利用率的监测系统及方法
CN113050541B (zh) * 2021-03-24 2023-04-28 武汉科技大学 一种数控机床能耗与加工状态在线监测系统
CN113050542B (zh) * 2021-03-24 2023-01-03 武汉科技大学 一种数控机床加工状态判别方法
CN113110292B (zh) * 2021-04-29 2022-03-18 浙江陀曼云计算有限公司 基于时序功率数据的机床工作状态预测方法及系统
CN113721550B (zh) * 2021-09-08 2022-08-30 重庆大学 面向通用数控机床能效标签制定的固有能量效率分级方法
CN115689095B (zh) * 2022-12-30 2023-04-14 广东美的制冷设备有限公司 设备能耗分析方法、装置、生产系统及存储介质
CN117873299B (zh) * 2024-01-02 2024-08-13 江苏锦花电子股份有限公司 一种基于大数据的设备供能数据监测方法及系统
CN117608230B (zh) * 2024-01-23 2024-04-16 魁伯恩重工(兰陵)有限公司 一种矿山设备控制系统和方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070655A (en) * 1990-11-30 1991-12-10 Aggarwal Trilok R Machining process monitor
US6526359B1 (en) * 1999-12-10 2003-02-25 Growth Financial Ag Apparatus and method for measuring small increases in machine tool drive motor power
CN102179727A (zh) * 2011-04-15 2011-09-14 重庆大学 机床主传动系统加工过程能耗信息在线检测方法
CN102637014A (zh) * 2012-04-27 2012-08-15 重庆大学 数控机床加工过程机电主传动系统能量效率获取的方法
CN103235554A (zh) * 2013-03-29 2013-08-07 重庆大学 一种基于nc代码的数控车床加工工件能耗获取方法
CN103676782A (zh) * 2013-12-18 2014-03-26 山东理工大学 数控铣床加工过程中能量效率在线检测方法
CN103941081A (zh) * 2014-05-13 2014-07-23 重庆大学 一种机床多能量源的可配置能耗在线监测方法及系统
CN104808584A (zh) * 2015-02-17 2015-07-29 重庆大学 机床多源能耗系统多信息在线检测系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070655A (en) * 1990-11-30 1991-12-10 Aggarwal Trilok R Machining process monitor
US6526359B1 (en) * 1999-12-10 2003-02-25 Growth Financial Ag Apparatus and method for measuring small increases in machine tool drive motor power
CN102179727A (zh) * 2011-04-15 2011-09-14 重庆大学 机床主传动系统加工过程能耗信息在线检测方法
CN102637014A (zh) * 2012-04-27 2012-08-15 重庆大学 数控机床加工过程机电主传动系统能量效率获取的方法
CN103235554A (zh) * 2013-03-29 2013-08-07 重庆大学 一种基于nc代码的数控车床加工工件能耗获取方法
CN103676782A (zh) * 2013-12-18 2014-03-26 山东理工大学 数控铣床加工过程中能量效率在线检测方法
CN103941081A (zh) * 2014-05-13 2014-07-23 重庆大学 一种机床多能量源的可配置能耗在线监测方法及系统
CN104808584A (zh) * 2015-02-17 2015-07-29 重庆大学 机床多源能耗系统多信息在线检测系统

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109333155A (zh) * 2018-10-25 2019-02-15 山东理工大学 水环真空泵转子轴数控车削加工中能量效率在线检测方法
CN111948978A (zh) * 2019-05-17 2020-11-17 湖北欧安电气股份有限公司 一种基于数控机床用数据采集、监控系统
IT201900009465A1 (it) * 2019-06-19 2020-12-19 Camozzi Digital S R L Metodo di ottimizzazione e regolazione di un parametro di funzionamento di una macchina industriale e relativo sistema
CN111898855A (zh) * 2020-06-19 2020-11-06 电子科技大学 零件成形原理选择决策支持模型的建立方法
CN111898854A (zh) * 2020-06-19 2020-11-06 电子科技大学 基于lca的通用能耗模型建立方法
CN111999552A (zh) * 2020-08-31 2020-11-27 上海控软网络科技有限公司 能耗监控方法、因子确定方法、监控装置、设备及介质
CN112258021B (zh) * 2020-10-20 2023-06-06 西安交通大学 用于家庭燃料电池热电联供建筑的能效评估方法及系统
CN112258021A (zh) * 2020-10-20 2021-01-22 西安交通大学 用于家庭燃料电池热电联供建筑的能效评估方法及系统
CN112966215A (zh) * 2021-02-01 2021-06-15 杭州博联智能科技股份有限公司 能耗估算方法和系统
CN113344244A (zh) * 2021-04-29 2021-09-03 武汉科技大学 一种数字孪生驱动的工件加工能耗预测装置
CN113344244B (zh) * 2021-04-29 2023-04-07 武汉科技大学 一种数字孪生驱动的工件加工能耗预测装置
CN113704974A (zh) * 2021-08-03 2021-11-26 西安交通大学 一种面向铣削过程的碳排放量化计算方法及系统
CN113704974B (zh) * 2021-08-03 2024-04-02 西安交通大学 一种面向铣削过程的碳排放量化计算方法及系统
CN113967529A (zh) * 2021-10-21 2022-01-25 万洲电气股份有限公司 一种基于辊压机能效分析模块的智能优化节能系统
CN113967529B (zh) * 2021-10-21 2023-06-09 万洲电气股份有限公司 一种基于辊压机能效分析模块的智能优化节能系统
CN114415595A (zh) * 2021-11-05 2022-04-29 山东科技大学 一种车削优化方法、系统、计算机设备和存储介质
CN114415595B (zh) * 2021-11-05 2024-05-10 山东科技大学 一种车削优化方法、系统、计算机设备和存储介质

Also Published As

Publication number Publication date
CN104808584A (zh) 2015-07-29
CN104808584B (zh) 2017-12-19

Similar Documents

Publication Publication Date Title
WO2016131228A1 (zh) 机床多源能耗系统多信息在线检测系统
CN103235555B (zh) 基于功率信息的机床设备利用状态在线监测方法及装置
CN103941081B (zh) 一种机床多能量源的可配置能耗在线监测方法及系统
CN103838202A (zh) 参数控制方法和参数控制系统
CN207457811U (zh) 一种数控机床智能故障诊断装置
TW201837830A (zh) 應用電力用量特徵之製造管理方法及其系統
JP6176377B1 (ja) 設備管理システム、設備管理方法およびプログラム
CN106909125A (zh) 一种电机加工性能指标的监测系统及方法
CN1321328C (zh) 电动机早期故障小波诊断系统及其诊断电动机故障的方法
JP4958936B2 (ja) 空気調和システム診断装置
CN205593761U (zh) 一种智能化电动汽车驱动系统测试平台
CN209148845U (zh) 一种基于力控的电机驱动控制系统能效检测试验台架
CN205080419U (zh) 一种设备运行状态自动采集记录查询装置
CN112901546B (zh) 电控硅油风扇性能间接测量方法及装置
CN113050541A (zh) 一种数控机床能耗与加工状态在线监测系统
CN109784719A (zh) 一种大数据驱动的针对既有建筑综合性能的监测系统
CN109374287A (zh) 一种液力缓速器控制阀检测系统及方法
CN104834787A (zh) 轴承磨床生产车间能耗的感知和分析方法
CN103921173B (zh) 变频调速数控机床主轴电机输出功率的在线检测方法
CN201867615U (zh) 一种单片微机纺织机械温度压力检测仪
CN101846117A (zh) 液压缸性能测试装置
CN108527002B (zh) 一种数控机床主轴生热量内置式检测系统
CN211042673U (zh) 一种基于智能手机的便携信号诊断仪
CN203595751U (zh) 基于单片机的机床主轴电流监测仪
CN201707578U (zh) 机床运行环境实时监控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882367

Country of ref document: EP

Kind code of ref document: A1