WO2016129499A1 - Ocular refractivity measuring device - Google Patents

Ocular refractivity measuring device Download PDF

Info

Publication number
WO2016129499A1
WO2016129499A1 PCT/JP2016/053387 JP2016053387W WO2016129499A1 WO 2016129499 A1 WO2016129499 A1 WO 2016129499A1 JP 2016053387 W JP2016053387 W JP 2016053387W WO 2016129499 A1 WO2016129499 A1 WO 2016129499A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
optical system
measurement
examined
refractive power
Prior art date
Application number
PCT/JP2016/053387
Other languages
French (fr)
Japanese (ja)
Inventor
尋久 寺部
良二 柴田
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Priority to JP2016574767A priority Critical patent/JP6680216B2/en
Publication of WO2016129499A1 publication Critical patent/WO2016129499A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes

Definitions

  • the objective lens 14 and the beam splitter 29 are shared with the fixation target presenting optical system 30, and the half mirror 35, the imaging lens 51, and a two-dimensional imaging element (hereinafter, referred to as an optical imaging system).
  • Imaging device 52 has an imaging surface arranged at a position substantially conjugate with the anterior eye portion of the eye E to be examined. By this two-dimensional imaging element 52, an anterior segment image of the eye E is captured. An output from the two-dimensional imaging device 52 is input to the control unit 100, and as a result, an anterior eye part image of the eye E to be imaged by the two-dimensional imaging device 52 is displayed on the monitor 70.
  • the control unit 100 executes detection processing of reflected light from the eye to be examined based on the imaging signal from the imaging element 52.
  • the reflected light from the eye to be examined may be, for example, reflected light from an alignment index projected onto the eye to be examined (for example, ring index R), or before the anterior segment image is formed by anterior segment illumination. It may be eye part reflected light (anterior eye part image Ea).
  • control unit 100 performs a process of detecting reflected light (for example, a corneal reflection bright spot) by an alignment index projected onto the eye to be examined, and determines whether or not the reflected light is detected. Also good.
  • control unit 100 performs a process of extracting a characteristic part (for example, pupil, iris, etc.) of the eye to be examined illuminated by the anterior segment illumination by image processing, and determines whether or not the characteristic part is detected. May be.
  • the control unit 100 may start detecting the position of the eye to be detected in the process of detecting the reflected light from the eye to be examined (details will be described later).
  • the control unit 100 uses this as a trigger to activate automatic alignment for the eye to be examined and to temporarily measure the eye refractive power by the measurement optical system. And fixation position control is started.
  • the automatic alignment and the temporary measurement may be started at the same time, or one of them may be started first.
  • the control unit 100 controls the driving unit 6 based on the detection result of the alignment state, and moves the measuring unit 3 toward the eye to be examined. More specifically, the control unit 100 detects a positional deviation amount with respect to the eye to be examined based on an imaging signal from the imaging element 52, and controls the driving unit 6 so that the detected positional deviation amount satisfies an allowable range. . In this case, the control unit 100 does not necessarily need to detect the amount of misalignment, and may detect the direction of misalignment and move the measurement unit 3 in the direction in which the misalignment is corrected.
  • the control unit 100 moves the fixation target presentation position according to the eye refraction value of the eye to be examined so that the fixation target is in a position conjugate with the fundus of the eye to be examined. Let This makes it possible to stabilize the fixation state even if the subject has high myopia or hyperopia. For example, the time until completion of automatic alignment can be shortened, and the main measurement of eye refractive power can be performed smoothly.
  • the control unit 100 determines whether or not the alignment state of the measurement unit 3 with respect to the eye to be examined is appropriate depending on whether or not the alignment states in the XYZ directions are within a predetermined allowable range. For example, a trigger signal (measurement start signal) is automatically issued to perform the main measurement of the eye refractive power measurement, and the measurement result of the main measurement is output to the display unit. In this case, the control unit may output the obtained measurement result to an external device (for example, a subjective optometer). Note that a subjective optometer may be a subjective refractor.
  • the measurement optical system of the present embodiment may be provided with a subjective measurement function, and the obtained measurement result may be used as an initial value when performing the subjective measurement.
  • the control unit 100 may display the measurement result with both eyes on the display unit 70.
  • the control unit 100 may output the obtained measurement result of both eyes to an external device (for example, a subjective optometer).
  • a subjective optometer may be a subjective refractor.
  • the measurement optical system of the present embodiment may be provided with a subjective measurement function, and the obtained measurement result may be used as an initial value when performing the subjective measurement.
  • a fixation target is presented in advance to the eye to be examined before the reflection from the eye to be detected is detected.
  • the fixation direction of the subject when looking through the examination window is guided, so that the measurement optical system is smoothly guided into the movable range.
  • a trigger for presenting the fixation target for example, the start or completion of the setting operation can be considered.
  • FIG. 4 is an explanatory diagram showing an example when the interpupillary distance is measured by the apparatus according to the present embodiment.
  • the interpupillary distance can be measured when the eye refractive power of one eye is measured.
  • the control unit 100 may measure the interpupillary distance of the eye to be examined based on the detection result from the position detection sensor 400 and the imaging result from the imaging element 202. Note that the obtained measurement result may be output to the display unit 70 or an external device, similarly to the measurement result of the eye refractive power.
  • the control unit detects the position of the measuring eye based on the detection result from the position detection sensor 400, and detects the position of the other eye based on the imaging result from the image sensor 202.
  • the control unit acquires the position of the measurement unit 3 in a state where the alignment with respect to the eye to be examined is completed by the automatic alignment control.
  • the control unit 100 images the other eye in a state where the alignment with respect to the eye to be examined is completed by the automatic alignment control.
  • the control unit 100 detects the position of the other eye based on the captured image.
  • a method for detecting the position of the other eye a method similar to the method for detecting the relative position of the measurement optical system with respect to the measurement eye can be used.
  • the distance B of the other eye when the other eye is detected at a position closer to the measurement eye than the optical axis of the imaging optical system 200, the distance B is subtracted from the distance A. On the other hand, when another eye is detected at a position farther from the measuring eye than the optical axis of the imaging optical system 200, the distance B is added to the distance A.
  • the interpupillary distance can be measured without using a binocular camera by using the detection result from the position detection sensor and the imaging result from the imaging device that images the other eye.
  • the position of the optical axis of the imaging optical system 200 is used as a reference.
  • the present invention is not limited to this.
  • any reference position may be set in the left-right direction of the subject. That is, if the relative positional relationship between the measurement unit 3 and the imaging optical system 200 is obtained in advance, both detection results can be associated to measure the interpupillary distance.
  • the other eye When obtaining the detection result from the position detection sensor and the imaging result from the image sensor, the other eye may be imaged simultaneously with obtaining the detection result from the position detection sensor with the completion of alignment as a trigger. Deviations in measurement results due to movement of the subject can be prevented.
  • the reflected light from the eye to be examined is detected using the reflected light from the anterior eye part of the eye to be examined looking through the examination window, but the present invention is not limited to this.
  • the reflected light from the eye to be examined may be detected using the reflected light from the fundus of the eye to be examined looking through the examination window.
  • the control unit projects the measurement light beam from the measurement optical system in advance, operates the automatic alignment for the eye to be inspected by using the measurement light beam from the fundus as received by the image sensor 22, and also measures the measurement optical system. Temporary measurement of eye refractive power and fixation position control may be started.
  • the fixation target presenting optical system 30 may include a plurality of fixation targets having different light flux diameters.
  • Fixation target presentation optical system 30 for example, a first projection optical system for projecting a first fixation target formed by a light beam diameter limited from the optical axis direction of the measurement optical system 10 onto the eye to be examined, and a first projection A second projection optical system that projects a second fixation target formed with a larger beam diameter than the optical system onto the eye to be examined.
  • an aperture for limiting the fixation light flux is arranged in the optical path.
  • a laser light source may also be used.
  • the control unit 100 may control the fixation target presenting optical system 30 to switch from the first fixation target to the second fixation target. For example, the control unit 100 switches the fixation target using the detection of eye reflection or an alignment completion signal as a trigger. Thereby, the fixation operation of the eye to be examined can be performed smoothly.
  • an optical system for objectively measuring the eye refractive power of the eye to be examined is used as the measuring optical system 10, but the present invention is not limited to this, and an optical system for examining the eye to be examined is used. If so, the application of this embodiment is possible.

Abstract

Provided is an ocular refractivity measuring device which measures the ocular refractivity of an eye under test and which comprises the following: an examination window for a testee to peer into; a measurement optical system for objectively measuring the ocular refractivity of the eye under test through the examination window; a fixation target presentation optical system for presenting a fixation target to the eye under test through the examination window; a presentation position changing means for changing, in the optical axis direction, the presentation position of the fixation target presented to the eye under test; a relative position detection means for detecting the relative position of the measurement optical system relative to the eye under test; and a drive control means for causing the measurement optical system to move relative to the eye under test on the basis of the detection results from the relative position detection means, and thereby causing auto-alignment to be actuated. The ocular refractivity measuring device is provided with an eye detection means for detecting a reflection from the eye under test, and a control means for initiating the actuation of the auto-alignment by the drive control means, with the detection signal from the eye detection means serving as a trigger therefor.

Description

眼屈折力測定装置Eye refractive power measuring device
 本開示は、被検眼の眼屈折力を他覚的に測定する眼屈折力測定装置に関する。 The present disclosure relates to an eye refractive power measuring apparatus that objectively measures the eye refractive power of a subject's eye.
 被検眼の眼屈折力を他覚的に測定する眼屈折力測定装置において、検者の手間を軽減する試みとして、例えば、特許文献1が知られている。特許文献1は、顎受けに設けられたタッチセンサからの検知信号をトリガとして、被検眼に対するアライメントの動作を開始する。また、特許文献1では、被検眼の瞳孔間距離の測定に際し、両眼撮影可能なカメラを用いている。 For example, Patent Document 1 is known as an attempt to reduce the labor of an examiner in an eye refractive power measuring apparatus that objectively measures the eye refractive power of an eye to be examined. Patent Document 1 starts an alignment operation for an eye to be examined using a detection signal from a touch sensor provided on a chin rest as a trigger. In Patent Document 1, a camera capable of photographing with both eyes is used in measuring the interpupillary distance of the eye to be examined.
特開2006-280612JP 2006-280612 A
 しかしながら、特許文献1の構成の場合、必ず、タッチセンサを設ける必要がある。また、瞳孔間距離の測定において、必ず、両眼撮影可能なカメラが必要となる。 However, in the case of the configuration of Patent Document 1, it is necessary to provide a touch sensor. Further, a camera capable of photographing with both eyes is always required for measuring the distance between pupils.
 本発明は、従来技術の少なくとも一つの問題点を解決することを技術課題とする眼屈折力測定装置を提供することを技術課題とする。 The present invention has as a technical problem to provide an eye refractive power measuring device whose technical problem is to solve at least one problem of the prior art.
 上記課題を解決するために、本開示は、以下のような構成を備えることを特徴とする。 In order to solve the above problems, the present disclosure is characterized by having the following configuration.
 (1) 被検者が覗くための検査窓と、前記検査窓を介して被検眼の眼屈折力を他覚的に測定する測定光学系と、前記検査窓を介して被検眼に対して固視標を呈示する固視標呈示光学系と、被検眼に対して呈示する固視標の呈示位置を光軸方向に変更する呈示位置変更手段と、被検眼に対する前記測定光学系の相対位置を検出する相対位置検出手段と、相対位置検出手段からの検出結果に基づいて前記測定光学系を被検眼に対して移動させることによって自動アライメントを作動させる駆動制御手段と、を備え、被検眼の眼屈折力を測定する眼屈折力測定装置であって、被検眼からの反射を検出する眼検出手段と、前記眼検出手段からの検出信号をトリガとして前記駆動制御手段による自動アライメントの作動を開始する制御手段と、を備えることを特徴とする眼屈折力測定装置。
 (2) 被検者が覗くための検査窓と、前記検査窓を介して被検眼の眼屈折力を他覚的に測定する測定光学系と、前記測定光学系を被検眼に対して移動させる駆動手段と、を備え、被検眼の眼屈折力を測定する眼屈折力測定装置であって、前記検査窓とは異なる位置に配置され、前記測定光学系による測定眼とは異なる他眼を撮像する撮像手段と、前記測定光学の位置を検出する位置検出手段と、前記撮像手段からの撮像結果と、前記位置検出手段からの検出結果と、に基づいて被検眼の瞳孔間距離を測定する瞳孔間距離測定手段、を備えることを特徴とする眼屈折力測定装置。
(1) An examination window for the examinee to peek, a measurement optical system that objectively measures the eye refractive power of the subject's eye through the examination window, and a fixation with respect to the subject's eye through the examination window A fixation target presenting optical system for presenting the optotype, a presenting position changing means for changing the presenting position of the fixed target presented to the eye to be examined in the optical axis direction, and a relative position of the measurement optical system with respect to the eye to be examined. A relative position detecting means for detecting, and a drive control means for operating automatic alignment by moving the measurement optical system with respect to the eye to be examined based on a detection result from the relative position detecting means. An eye refractive power measuring apparatus for measuring refractive power, which starts an automatic alignment operation by an eye detection means for detecting reflection from an eye to be examined and a detection signal from the eye detection means as a trigger. Control means An eye refractive power measuring device.
(2) An examination window for the examinee to peep, a measurement optical system that objectively measures the eye refractive power of the eye to be examined through the examination window, and the measurement optical system is moved with respect to the eye to be examined An eye refractive power measuring device for measuring the eye refractive power of an eye to be examined, which is arranged at a position different from the examination window and images the other eye different from the measurement eye by the measurement optical system A pupil that measures the interpupillary distance of the subject's eye based on the imaging means that performs the detection, the position detection means that detects the position of the measurement optics, the imaging result from the imaging means, and the detection result from the position detection means An eye refractive power measuring device comprising an inter-distance measuring means.
 本開示によれば、従来技術の少なくとも一つの問題点を解決できる。 According to the present disclosure, at least one problem of the prior art can be solved.
本実施形態に係る装置の外観の一例を示す図である。It is a figure which shows an example of the external appearance of the apparatus which concerns on this embodiment. 本実施形態に係る光学系及び制御系の一例を示す図である。It is a figure which shows an example of the optical system and control system which concern on this embodiment. 本実施形態に係る装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the apparatus which concerns on this embodiment. 本実施形態に係る装置にて瞳孔間距離を測定する際の一例を示す説明図であ  る。FIG. 6 is an explanatory diagram showing an example when measuring the interpupillary distance with the apparatus according to the present embodiment.
 本開示の実施形態の一例について図面に基づいて説明する。 An example of an embodiment of the present disclosure will be described based on the drawings.
 図1は、本実施形態に係る装置の外観の一例を示す図である。眼屈折力測定装置(以下、装置)1は、検査窓2と、測定部3と、を少なくとも備える。検査窓2は、被検者の測定眼が覗くための窓であり、例えば、装置1の筐体に対して固定された位置(例えば、被検者側筐体)にて設けられる。 FIG. 1 is a diagram showing an example of the appearance of an apparatus according to this embodiment. An eye refractive power measurement device (hereinafter, device) 1 includes at least an inspection window 2 and a measurement unit 3. The examination window 2 is a window through which the subject's measurement eye can look into, and is provided at a position (for example, the subject-side casing) fixed to the casing of the apparatus 1, for example.
 測定部3は、装置1の内部に設けられ、測定光学系10を内蔵する。駆動部6は、測定部3を被検眼に対して移動するために設けられる。駆動部6は、測定部3を移動させるために、アクチュエータ(例えば、モータ)を備える。駆動部6は、例えば、測定部3を被検眼に対して3次元的に移動させてもよい。この場合、駆動部6は、左右方向(X方向)、前後方向(Z方向)、上下方向(Y方向)に関して、測定部3を移動させる。また、検査窓2が装置筐体に固定された場合、駆動部6は、検査窓2に対して測定部3を移動させる。 The measurement unit 3 is provided inside the apparatus 1 and incorporates a measurement optical system 10. The drive unit 6 is provided to move the measurement unit 3 with respect to the eye to be examined. The drive unit 6 includes an actuator (for example, a motor) in order to move the measurement unit 3. For example, the drive unit 6 may move the measurement unit 3 three-dimensionally with respect to the eye to be examined. In this case, the drive unit 6 moves the measurement unit 3 in the left-right direction (X direction), the front-rear direction (Z direction), and the up-down direction (Y direction). When the inspection window 2 is fixed to the apparatus housing, the drive unit 6 moves the measurement unit 3 relative to the inspection window 2.
 装置1の被検者側筐体面には、検査窓2に加え、他眼撮像光学系200が設けられてもよい。他眼撮像光学系200は、測定光学系10によって測定される測定眼とは異なる他眼を撮像するために設けられる。他眼撮像光学系200は、検査窓2とは異なる位置に配置される。他眼撮像光学系200は、撮像素子202を備えてもよい。 In addition to the inspection window 2, the other-eye imaging optical system 200 may be provided on the subject-side casing surface of the apparatus 1. The other-eye imaging optical system 200 is provided for imaging another eye different from the measurement eye measured by the measurement optical system 10. The other-eye imaging optical system 200 is disposed at a position different from the inspection window 2. The other-eye imaging optical system 200 may include an imaging element 202.
 装置1の被検者側筐体面には、額当4が設けられてもよい。額当4は、例えば、被検者の顔を安定させるために設けられる。なお、本実施形態では、被検者が検査窓2を覗きやすくするために顎受を備えていないが、もちろん顎受が設定されてもよい。 A forehead 4 may be provided on the subject-side casing surface of the apparatus 1. The forehead 4 is provided, for example, to stabilize the subject's face. In the present embodiment, the chin rest is not provided in order to make it easier for the subject to look into the examination window 2, but a chin rest may of course be set.
 装置1の被検者側筐体面には、表示部70が設けられてもよい。表示部70には、例えば、測定光学系10による測定結果が表示される。この場合、表示部(表示画面)70は、測定部3と同じ高さに配置されてもよい。これにより、被検者は、測定光学系10による測定位置に対して、顔の高さを移動させることなく、表示部70の表示画面を見ることができる。なお、表示部70は、タッチパネルであってもよく、被検者からの操作を受け付ける操作受付部として用いられてもよい。 A display unit 70 may be provided on the subject-side casing surface of the apparatus 1. For example, a measurement result by the measurement optical system 10 is displayed on the display unit 70. In this case, the display unit (display screen) 70 may be arranged at the same height as the measurement unit 3. Thereby, the subject can see the display screen of the display unit 70 without moving the height of the face with respect to the measurement position by the measurement optical system 10. The display unit 70 may be a touch panel, and may be used as an operation receiving unit that receives an operation from the subject.
 また、装置1の被検者側筐体面には、操作部300が設けられてもよい。操作部300は、例えば、測定結果が良好か否かを確認するために用いられてもよいし、測定における各種設定を行うために用いられてもよい。 Further, the operation unit 300 may be provided on the subject-side casing surface of the apparatus 1. The operation unit 300 may be used, for example, to confirm whether the measurement result is good or may be used to perform various settings in the measurement.
 図2は、本実施形態に係る光学系及び制御系の一例を示す図である。測定部3には、測定光学系10、固視標呈示光学系30と、が少なくとも設けられる。さらに、測定部3には、被検眼に対するアライメント検出を行うための構成として、リング指標投影光学系45と、作動距離指標投影光学系46と、観察光学系(撮像光学系)50と、が設けられている。 FIG. 2 is a diagram illustrating an example of an optical system and a control system according to the present embodiment. The measurement unit 3 is provided with at least a measurement optical system 10 and a fixation target presenting optical system 30. Further, the measurement unit 3 includes a ring index projection optical system 45, a working distance index projection optical system 46, and an observation optical system (imaging optical system) 50 as a configuration for performing alignment detection on the eye to be examined. It has been.
 測定光学系10は、例えば、検査窓を介して被検眼の眼屈折力を他覚的に測定するために設けられる。測定光学系10は、投影光学系(投光光学系)10aと、受光光学系10bと、を有している。投影光学系10aは、例えば、被検眼(測定眼)Eの瞳孔を介して被検眼Eの眼底Efに測定指標を投光するために設けられる。受光光学系10bは、例えば、投影光学系10aによって投影された測定指標による眼底反射光を受光するために設けられる。なお、測定光学系10の光学配置としては、オートレフラクトメータに用いられる周知の光学系を用いることができる。以下にその一例を示す。 The measurement optical system 10 is provided, for example, for objectively measuring the eye refractive power of the eye to be examined through an examination window. The measurement optical system 10 includes a projection optical system (light projecting optical system) 10a and a light receiving optical system 10b. The projection optical system 10a is provided, for example, for projecting a measurement index to the fundus oculi Ef of the subject eye E through the pupil of the subject eye (measuring eye) E. The light receiving optical system 10b is provided, for example, for receiving fundus reflected light from the measurement index projected by the projection optical system 10a. As the optical arrangement of the measurement optical system 10, a known optical system used for an autorefractometer can be used. An example is shown below.
 より詳細には、投影光学系10aは、測定光学系10の光軸L1上に配置された、測定光源11と、リレーレンズ12と、ホールミラー13と、対物レンズ14と、を含む。 More specifically, the projection optical system 10 a includes a measurement light source 11, a relay lens 12, a hall mirror 13, and an objective lens 14 disposed on the optical axis L 1 of the measurement optical system 10.
 光源11は、被検眼Eの瞳孔中心部を介して眼底Efにスポット状の測定視標を投影するための光源である。光源11は、正視眼の眼底Efと光学的に共役な位置関係となっている。 The light source 11 is a light source for projecting a spot-shaped measurement target on the fundus oculi Ef through the center of the pupil of the eye E to be examined. The light source 11 is optically conjugate with the fundus oculi Ef of the normal eye.
 ホールミラー13は、リレーレンズ12を介した光源11からの光束を通過させる開口が設けられている。ホールミラー13は、眼Eの瞳孔と光学的に共役な位置関係となっている。 The hall mirror 13 is provided with an opening through which the light beam from the light source 11 through the relay lens 12 passes. The hall mirror 13 is optically conjugate with the pupil of the eye E.
 受光光学系10bは、投影光学系10aのホールミラー13と、対物レンズ14と、が投影光学系10aと共用されている。また、受光光学系10bは、ホールミラー13の反射方向の光軸L2上に配置された、リレーレンズ16と、全反射ミラー17と、全反射ミラー17の反射方向の光軸L2上に配置された受光絞り18と、コリメータレンズ19と、リングレンズ20と、エリアCCD等からなる二次元撮像素子22(以下、「撮像素子22」と称す)と、を含む。 In the light receiving optical system 10b, the hall mirror 13 of the projection optical system 10a and the objective lens 14 are shared with the projection optical system 10a. The light receiving optical system 10b is disposed on the optical axis L2 in the reflection direction of the relay lens 16, the total reflection mirror 17, and the total reflection mirror 17, which are disposed on the optical axis L2 in the reflection direction of the Hall mirror 13. And a two-dimensional image pickup device 22 (hereinafter referred to as “image pickup device 22”) composed of an area CCD or the like.
 受光絞り18及び撮像素子22は、眼底Efと光学的に共役な位置関係となっている。リングレンズ20は、眼底反射光をリング状に形成するための光学素子である。リングレンズ20は、リング状に形成されたレンズ部と、レンズ部以外の領域に遮光用のコーティングを施した遮光部と、を有している。また、リングレンズ20は、被検眼Eの瞳孔と光学的に共役な位置関係となっている。リングレンズ20を介したリング状の眼底反射光(即ち、二次元パターン像)は、撮像素子22で受光される。撮像素子22は、受光した二次元パターン像の画像情報を、演算制御部100(以下、制御部100と称す)に出力する。これによって、二次元パターン像を表示部70に表示させたり、二次元パターン像に基づいて被検眼Eの屈折力を算出することが可能となる。 The light receiving diaphragm 18 and the image sensor 22 are in an optically conjugate positional relationship with the fundus oculi Ef. The ring lens 20 is an optical element for forming fundus reflection light in a ring shape. The ring lens 20 has a lens portion formed in a ring shape and a light shielding portion in which a region other than the lens portion is coated with a light shielding coating. The ring lens 20 is optically conjugate with the pupil of the eye E. Ring-shaped fundus oculi reflection light (that is, a two-dimensional pattern image) via the ring lens 20 is received by the image sensor 22. The image sensor 22 outputs image information of the received two-dimensional pattern image to the arithmetic control unit 100 (hereinafter referred to as the control unit 100). As a result, a two-dimensional pattern image can be displayed on the display unit 70, and the refractive power of the eye E can be calculated based on the two-dimensional pattern image.
 なお、測定光学系10は上記のものに限らず、被検眼眼底Efに向けて測定光を投光する投光光学系と、測定光の眼底Efでの反射によって取得される反射光を受光素子によって受光する受光光学系と、を有する測定光学系であればよい。例えば、眼屈折力測定光学系は、シャックハルトマンセンサーを備えた構成であってもよい。もちろん、他の測定方式の装置が利用されてもよい(例えば、スリットを投影する位相差方式の装置)。 The measurement optical system 10 is not limited to the above, and a light projecting optical system that projects measurement light toward the fundus oculi Ef to be examined, and a reflected light acquired by reflection of the measurement light from the fundus oculi Ef is a light receiving element. And a measurement optical system having a light receiving optical system for receiving light. For example, the optical power measurement optical system may be configured to include a Shack-Hartmann sensor. Of course, other measurement type apparatuses may be used (for example, a phase difference type apparatus that projects a slit).
 対物レンズ14とホールミラー13との間には、ビームスプリッタ29が配置されている。ビームスプリッタ29は、後述の固視標呈示光学系30からの光束を被検眼Eに導き、被検眼Eの前眼部Ecからの反射光を観察光学系50に導く。また、ビームスプリッタ29は、光源11から出射され、眼底Efで反射された眼底反射光を透過し、受光光学系10bへと導く。 A beam splitter 29 is disposed between the objective lens 14 and the hall mirror 13. The beam splitter 29 guides a light beam from a fixation target presenting optical system 30 to be described later to the eye E, and guides reflected light from the anterior segment Ec of the eye E to the observation optical system 50. The beam splitter 29 transmits the fundus reflection light emitted from the light source 11 and reflected by the fundus oculi Ef, and guides it to the light receiving optical system 10b.
 固視標呈示光学系30は、検査窓2を介して被検眼に対して固視標を呈示するために設けられる。固視標呈示光学系30は、例えば、可視光源31と、固視標を持つ固視標板32と、投光レンズ33と、ビームスプリッタ29と、対物レンズ14と、を含む。可視光源31が点灯されることで、固視標板32が有する固視標が、被検眼Eに呈示される。可視光源31及び固視標板32は、図示しないスライド機構によって、光軸L3方向に移動可能に構成されている。可視光源31及び固視標板32が光軸L3方向に移動されることによって、被検眼Eの雲霧が行われる。なお、固視標の呈示位置を光軸方向に移動させる場合、レンズ系を移動させるようにしてもよい。 The fixation target presenting optical system 30 is provided for presenting a fixation target to the eye to be examined through the examination window 2. The fixation target presenting optical system 30 includes, for example, a visible light source 31, a fixation target plate 32 having a fixation target, a light projecting lens 33, a beam splitter 29, and an objective lens 14. When the visible light source 31 is turned on, the fixation target of the fixation target plate 32 is presented to the eye E. The visible light source 31 and the fixation target plate 32 are configured to be movable in the direction of the optical axis L3 by a slide mechanism (not shown). As the visible light source 31 and the fixation target plate 32 are moved in the direction of the optical axis L3, clouding of the eye E is performed. When moving the fixation target presentation position in the optical axis direction, the lens system may be moved.
 被検眼Eの前眼部の前方には、リング指標投影光学系45と、作動距離指標投影光学系46とが配置されている。リング指標投影光学系45は、被検眼Eの角膜Ecに対してリング指標を投影するための近赤外光を発する光学系である。なお、角膜Ecに投影するリング指標は、角膜形状測定用の指標としても利用できる。また、リング投影光学系45は、被検眼Eの前眼部を照明する前眼部照明としても用いることもできる。一方、作動距離指標投影光学系46は、被検眼Eの角膜Ecに無限遠指標を投影するための近赤外光を発する光学系である。角膜Ecに対する無限遠指標の位置に基づいて、被検眼Eに対する検眼装置1の位置をアライメントすることができる。 A ring index projection optical system 45 and a working distance index projection optical system 46 are disposed in front of the anterior segment of the eye E. The ring index projection optical system 45 is an optical system that emits near-infrared light for projecting the ring index onto the cornea Ec of the eye E. The ring index projected onto the cornea Ec can also be used as an index for measuring the corneal shape. Further, the ring projection optical system 45 can also be used as anterior segment illumination for illuminating the anterior segment of the eye E. On the other hand, the working distance index projection optical system 46 is an optical system that emits near-infrared light for projecting an infinity index onto the cornea Ec of the eye E. Based on the position of the infinity index with respect to the cornea Ec, the position of the optometry apparatus 1 with respect to the eye E can be aligned.
 観察光学系(撮像光学系)50は、対物レンズ14と、ビームスプリッタ29と、が固視標呈示光学系30と共用され、ハーフミラー35と、撮像レンズ51と、二次元撮像素子(以下、撮像素子)52と、を含む。二次元撮像素子52は、被検眼Eの前眼部と略共役な位置に配置された撮像面を持つ。この二次元撮像素子52によって、被検眼Eの前眼部画像が撮像される。二次元撮像素子52からの出力は、制御部100に入力され、その結果、二次元撮像素子52によって撮像される被検眼Eの前眼部像が、モニタ70上に表示される。なお、本実施形態では、観察光学系50が、作動距離指標投影光学系46によって被検眼Eの角膜に形成されるアライメント指標像を検出する光学系を兼ねている。二次元撮像素子52によるアライメント指標像の撮像結果に基づいてアライメント指標像の位置が検出される。 In the observation optical system (imaging optical system) 50, the objective lens 14 and the beam splitter 29 are shared with the fixation target presenting optical system 30, and the half mirror 35, the imaging lens 51, and a two-dimensional imaging element (hereinafter, referred to as an optical imaging system). Imaging device) 52. The two-dimensional imaging device 52 has an imaging surface arranged at a position substantially conjugate with the anterior eye portion of the eye E to be examined. By this two-dimensional imaging element 52, an anterior segment image of the eye E is captured. An output from the two-dimensional imaging device 52 is input to the control unit 100, and as a result, an anterior eye part image of the eye E to be imaged by the two-dimensional imaging device 52 is displayed on the monitor 70. In this embodiment, the observation optical system 50 also serves as an optical system that detects an alignment index image formed on the cornea of the eye E by the working distance index projection optical system 46. The position of the alignment index image is detected based on the imaging result of the alignment index image by the two-dimensional image sensor 52.
 次に、装置1の制御系について説明する。装置1は、主な制御系として、制御部100を有している。制御部100は、装置1の各部の制御処理と、測定結果の演算処理とを行う電子回路を有する処理装置である。制御部100は、光源11,31、撮像素子22、撮像素子52、撮像素子202と、駆動部6、表示部70、操作部300、メモリ105、位置検出センサ400のそれぞれに電気的に接続されている。 Next, the control system of the device 1 will be described. The apparatus 1 has a control unit 100 as a main control system. The control unit 100 is a processing device having an electronic circuit that performs control processing of each unit of the device 1 and calculation processing of measurement results. The control unit 100 is electrically connected to each of the light sources 11 and 31, the image sensor 22, the image sensor 52, the image sensor 202, and the drive unit 6, the display unit 70, the operation unit 300, the memory 105, and the position detection sensor 400. ing.
 制御部100は、CPU101と、ROM102と、RAM103とを備えている。CPU101は、装置1に関する各種の処理を実行するための処理装置である。ROM102は、CPU101が眼科装置1の各種制御を行うための制御プログラムおよび固定データが格納された、不揮発性の記憶装置である。 The control unit 100 includes a CPU 101, a ROM 102, and a RAM 103. The CPU 101 is a processing device for executing various processes related to the device 1. The ROM 102 is a nonvolatile storage device in which a control program and fixed data for the CPU 101 to perform various controls of the ophthalmologic apparatus 1 are stored.
 RAM103は、書き換え可能な揮発性の記憶装置である。RAM103には、例えば、眼科装置1による被検眼Eの測定に用いる一時データが格納される。 The RAM 103 is a rewritable volatile storage device. In the RAM 103, for example, temporary data used for measurement of the eye E to be examined by the ophthalmologic apparatus 1 is stored.
 メモリ105は、例えば、書き換え可能な不揮発性の記憶装置である。メモリ105には、本装置を動作させるためのプログラムが少なくとも格納されている。 The memory 105 is, for example, a rewritable nonvolatile storage device. The memory 105 stores at least a program for operating the present apparatus.
 位置検出センサ400は、測定部3の位置を検出するためのセンサである。位置検出センサ400は、被検者の瞳孔間距離を測定する際の、左右方向に関する測定眼の位置を検出するために用いられる。位置検出センサ400としては、例えば、測定部3が所定位置にあるか否かを検出する原点センサを駆動部6付近に設け、駆動部6の左右方向に関するアクチュエータとして、回転数の検出が可能なモータを用いることが考えられる。また、これに限定されず、位置検出センサ400としては、ポテンショメータ又はロータリーエンコーダを用いて測定部3の位置を検出するセンサであってもよい。
<動作>
 上記構成を備える装置において、その動作について説明する。図3は、本実施形態に係る装置の動作の一例を示すフローチャートである。
The position detection sensor 400 is a sensor for detecting the position of the measurement unit 3. The position detection sensor 400 is used to detect the position of the measuring eye in the left-right direction when measuring the distance between the pupils of the subject. As the position detection sensor 400, for example, an origin sensor that detects whether or not the measurement unit 3 is in a predetermined position is provided in the vicinity of the drive unit 6, and the rotation speed can be detected as an actuator in the left-right direction of the drive unit 6. It is conceivable to use a motor. In addition, the position detection sensor 400 may be a sensor that detects the position of the measurement unit 3 using a potentiometer or a rotary encoder.
<Operation>
The operation of the apparatus having the above configuration will be described. FIG. 3 is a flowchart showing an example of the operation of the apparatus according to the present embodiment.
 検者は、測定の前準備として、操作部を操作して、各種設定を行う。例えば、被検者を識別するための識別情報を設定する。この場合、制御部100は、報知部を制御し、操作説明を行うようにしてもよい。報知部としては、例えば、表示部400が考えられる。この場合、表示部400の代わりとして、音声発生部を設け、音声による説明を行うようにしてもよい。 The examiner operates the operation unit to make various settings as preparations for measurement. For example, identification information for identifying the subject is set. In this case, the control unit 100 may control the notification unit to explain the operation. As the notification unit, for example, the display unit 400 can be considered. In this case, instead of the display unit 400, an audio generation unit may be provided to explain by voice.
 各種設定が完了されると、制御部100は、検査窓を覗くように、被検者を誘導する(例えば、検査窓を覗いてもらう旨のメッセージを報知する)。被検者が検査窓を覗くことによって、前眼部照明による被検眼からの反射光が、撮像素子52によって検出された状態となる。 When the various settings are completed, the control unit 100 guides the subject to look into the examination window (for example, a message indicating that the examination window is looked at is notified). When the examinee looks into the examination window, the reflected light from the subject eye due to the anterior segment illumination is detected by the image sensor 52.
 <被検眼からの反射光の検出>
 制御部100は、撮像素子52からの撮像信号に基づいて、被検眼からの反射光の検出処理を実行する。被検眼からの反射光としては、例えば、被検眼に投光されたアライメント指標による反射光(例えば、リング指標R)であってもよいし、前眼部照明によって前眼部像を形成する前眼部反射光(前眼部像Ea)であってもよい。
<Detection of reflected light from the eye to be examined>
The control unit 100 executes detection processing of reflected light from the eye to be examined based on the imaging signal from the imaging element 52. The reflected light from the eye to be examined may be, for example, reflected light from an alignment index projected onto the eye to be examined (for example, ring index R), or before the anterior segment image is formed by anterior segment illumination. It may be eye part reflected light (anterior eye part image Ea).
 より詳細には、制御部100は、被検眼に投光されたアライメント指標による反射光(例えば、角膜反射輝点)を検出する処理を実行し、反射光の検出の有無を判定するようにしてもよい。また、制御部100は、前眼部照明によって照明された被検眼の特徴部分(例えば、瞳孔、虹彩等)を画像処理によって抽出する処理を実行し、特徴部分の検出の有無を判定するようにしてもよい。なお、制御部100は、被検眼からの反射光の検出処理に際して、被検眼の位置検出を開始するようにしてもよい(詳しくは、後述する)。 More specifically, the control unit 100 performs a process of detecting reflected light (for example, a corneal reflection bright spot) by an alignment index projected onto the eye to be examined, and determines whether or not the reflected light is detected. Also good. In addition, the control unit 100 performs a process of extracting a characteristic part (for example, pupil, iris, etc.) of the eye to be examined illuminated by the anterior segment illumination by image processing, and determines whether or not the characteristic part is detected. May be. Note that the control unit 100 may start detecting the position of the eye to be detected in the process of detecting the reflected light from the eye to be examined (details will be described later).
 上記検出処理において、制御部100は、被検眼からの反射光が検出されたと判定されると、これをトリガとして、被検眼に対する自動アライメントを作動させると共に、測定光学系による眼屈折力の仮測定及び固視位置制御を開始する。この場合、自動アライメント及び仮測定は、同時に開始されてもよいし、どちらかが最初に開始されてもよい。 In the above detection process, when it is determined that the reflected light from the eye to be examined is detected, the control unit 100 uses this as a trigger to activate automatic alignment for the eye to be examined and to temporarily measure the eye refractive power by the measurement optical system. And fixation position control is started. In this case, the automatic alignment and the temporary measurement may be started at the same time, or one of them may be started first.
 <自動アライメント作動>
 自動アライメントを作動させる場合、制御部100は、所定のアライメント検出手法によって、撮像素子52からの撮像信号に基づいて被検眼に対する測定部3のアライメント状態を検出する。これによって、被検眼に対する測定光学系10の相対位置が検出される。
<Automatic alignment operation>
When the automatic alignment is activated, the control unit 100 detects the alignment state of the measurement unit 3 with respect to the eye to be inspected based on the imaging signal from the imaging element 52 by a predetermined alignment detection method. Thereby, the relative position of the measurement optical system 10 with respect to the eye to be examined is detected.
 より詳細には、制御部100は、例えば、リング指標Rの中心座標に基づいて被検眼に対する上下左右方向のアライメント状態を求めてもよい。また、制御部100は、測定部3が作動距離方向にずれた場合に、前述の無限遠指標Mの間隔がほとんど変化しないのに対して、リング指標Rの所定経線方向の像間隔が変化するという特性を利用して、被検眼に対する作動距離方向のアライメント状態を求めてもよい(例えば、特開平6-46999号参照)。なお、アライメント検出手法は、上記手法に限定されず、被検眼に対するアライメント状態を検出できる手法であればよい。例えば、被検眼の特徴部分の位置を画像処理によって検出するようにしてもよい。また、観察光学系50とは異なる受光素子を設け、受光素子からの受光信号に基づいてアライメント状態を検出してもよい(例えば、被検眼に対して斜め方向からアライメント光を照射し、アライメント光による反射光を斜め反対方向から検出してもよい)。 More specifically, the control unit 100 may obtain the alignment state in the vertical and horizontal directions with respect to the eye to be examined based on, for example, the center coordinates of the ring index R. In addition, when the measuring unit 3 is displaced in the working distance direction, the control unit 100 changes the image interval of the ring index R in the predetermined meridian direction while the interval of the infinity index M hardly changes. The alignment state in the working distance direction with respect to the eye to be examined may be obtained using the above characteristics (see, for example, JP-A-6-46999). The alignment detection method is not limited to the above method, and any method that can detect the alignment state with respect to the eye to be examined may be used. For example, the position of the characteristic part of the eye to be examined may be detected by image processing. Further, a light receiving element different from the observation optical system 50 may be provided, and the alignment state may be detected based on the light reception signal from the light receiving element (for example, the alignment light is irradiated from the oblique direction to the eye to be examined. May be detected from the diagonally opposite direction).
 制御部100は、アライメント状態の検出結果に基づいて駆動部6を制御し、測定部3を被検眼に向けて移動させる。より詳細には、制御部100は、撮像素子52からの撮像信号に基づいて被検眼に対する位置ずれ量を検出し、検出される位置ずれ量が許容範囲を満たすように、駆動部6を制御する。この場合、制御部100は、必ずしも位置ずれ量を検出する必要はなく、アライメントずれの方向を検出し、アライメントずれが補正される方向に測定部3を移動させてもよい。 The control unit 100 controls the driving unit 6 based on the detection result of the alignment state, and moves the measuring unit 3 toward the eye to be examined. More specifically, the control unit 100 detects a positional deviation amount with respect to the eye to be examined based on an imaging signal from the imaging element 52, and controls the driving unit 6 so that the detected positional deviation amount satisfies an allowable range. . In this case, the control unit 100 does not necessarily need to detect the amount of misalignment, and may detect the direction of misalignment and move the measurement unit 3 in the direction in which the misalignment is corrected.
 <仮測定及び固視位置制御>
 仮測定において、制御部100は、反射光検出のトリガ信号に基づき測定光学系を制御し、被検眼の眼屈折力を測定する。より詳細には、制御部100は、反射光検出のトリガ信号に基づき光源11を点灯させてもよい。光源11から出射された測定光は、リレーレンズ12~対物レンズ14を介して、ダイクロイックミラー15を透過したのち、被検眼の瞳孔を介して、被検眼Eの眼底に投影される。そして、眼底からの反射光は、被検眼の瞳孔、ダイクロイックミラー15を介して、対物レンズ14によって集光され、ホールミラー13から全反射ミラー17までを介して受光絞り18の開口上で再び集光され、コリメータレンズ19にて略平行光束(正視眼の場合)とされ、リングレンズ20によってリング状光束として取り出され、リング像として撮像素子22に受光される。そして、制御部70は、撮像素子22によって撮像されたリング像の像位置に基づいて被検眼の眼屈折値を演算する。
<Temporary measurement and fixation position control>
In the temporary measurement, the control unit 100 controls the measurement optical system based on the trigger signal for detecting reflected light, and measures the eye refractive power of the eye to be examined. More specifically, the control unit 100 may turn on the light source 11 based on a trigger signal for detecting reflected light. The measurement light emitted from the light source 11 passes through the dichroic mirror 15 via the relay lens 12 to the objective lens 14, and then is projected onto the fundus of the eye E through the pupil of the eye to be examined. Then, the reflected light from the fundus is collected by the objective lens 14 through the pupil of the eye to be examined and the dichroic mirror 15, and collected again on the aperture of the light receiving diaphragm 18 through the hall mirror 13 to the total reflection mirror 17. The collimator lens 19 generates a substantially parallel light beam (in the case of a normal eye), is extracted as a ring-shaped light beam by the ring lens 20, and is received by the image sensor 22 as a ring image. Then, the control unit 70 calculates the eye refraction value of the eye to be examined based on the image position of the ring image captured by the image sensor 22.
 次に、制御部100は、固視標が被検眼の眼底と共役な位置にくるように、前述のようにして得られた被検眼の眼屈折値に応じて固視標の呈示位置を移動させる。これにより、強度の近視眼や遠視眼の被検者であっても、固視状態を安定させることができる。例えば、自動アライメント完了までの時間を短縮させることができ、眼屈折力の本測定をスムーズに行うことができる。 Next, the control unit 100 moves the fixation target presentation position according to the eye refraction value of the eye to be examined so that the fixation target is in a position conjugate with the fundus of the eye to be examined. Let This makes it possible to stabilize the fixation state even if the subject has high myopia or hyperopia. For example, the time until completion of automatic alignment can be shortened, and the main measurement of eye refractive power can be performed smoothly.
 <眼屈折力の本測定開始>
 ここで、制御部100は、XYZ方向のアライメント状態がそれぞれ所定の許容範囲に入っているか否かによって、被検眼に対する測定部3のアライメント状態が適正であるか否かを判定し、適正であれば、自動的にトリガ信号(測定開始信号)を発して眼屈折力測定の本測定を行い、本測定の測定結果を表示部に出力する。この場合、制御部は、得られた測定結果を、外部の装置(例えば、自覚用検眼器)に出力するようにしてもよい。なお、自覚用検眼器としては、自覚式レフラクター等がありうる。また、本実施形態の測定光学系に自覚測定機能を設け、自覚測定を行う際の初期値として、得られた測定結果が用いられてもよい。
<Start measurement of eye refractive power>
Here, the control unit 100 determines whether or not the alignment state of the measurement unit 3 with respect to the eye to be examined is appropriate depending on whether or not the alignment states in the XYZ directions are within a predetermined allowable range. For example, a trigger signal (measurement start signal) is automatically issued to perform the main measurement of the eye refractive power measurement, and the measurement result of the main measurement is output to the display unit. In this case, the control unit may output the obtained measurement result to an external device (for example, a subjective optometer). Note that a subjective optometer may be a subjective refractor. In addition, the measurement optical system of the present embodiment may be provided with a subjective measurement function, and the obtained measurement result may be used as an initial value when performing the subjective measurement.
 なお、アライメント状態が許容範囲を満たした後、本測定を行う前段階において、制御部100は、眼屈折力の予備測定を再度行ってもよい。この場合、制御部100は、その結果に基づいて固視標が被検眼の眼底と共役な位置にくるように固視標の呈示位置を移動させたのち、さらに、適用なディオプター分だけ、雲霧がかかるように移動させる。制御部は、被検眼に雲霧がかかった状態で、眼屈折力を測定し、その測定結果を表示部に出力する。 In addition, after the alignment state satisfies the allowable range, the control unit 100 may perform preliminary measurement of the eye refractive power again in a stage before performing the main measurement. In this case, the control unit 100 moves the fixation target presentation position based on the result so that the fixation target is located at a position conjugate with the fundus of the eye to be examined, and further, the amount of cloud fog corresponding to the applicable diopter is further increased. Move to take. The control unit measures the eye refractive power in a state where the eye to be examined is clouded and outputs the measurement result to the display unit.
 以上のようにして片眼の測定が完了されると、制御部100は、反対の眼にて検査窓2を覗く旨のメッセージを報知する。その後、片眼と同様に、制御部100は、他方の眼の眼屈折力を測定するための制御を実行する。 When the measurement of one eye is completed as described above, the control unit 100 notifies a message that the opposite eye looks into the examination window 2. Thereafter, as in the case of one eye, the control unit 100 executes control for measuring the eye refractive power of the other eye.
 その後、両眼での眼屈折力の測定結果が得られると、制御部100は、両眼での測定結果を表示部70に表示するようにしてもよい。また、制御部100は、得られた両眼での測定結果を、外部の装置(例えば、自覚用検眼器)に出力するようにしてもよい。なお、自覚用検眼器としては、自覚式レフラクター等がありうる。また、本実施形態の測定光学系に自覚測定機能を設け、自覚測定を行う際の初期値として、得られた測定結果が用いられてもよい。 Thereafter, when the measurement result of the eye refractive power with both eyes is obtained, the control unit 100 may display the measurement result with both eyes on the display unit 70. In addition, the control unit 100 may output the obtained measurement result of both eyes to an external device (for example, a subjective optometer). Note that a subjective optometer may be a subjective refractor. In addition, the measurement optical system of the present embodiment may be provided with a subjective measurement function, and the obtained measurement result may be used as an initial value when performing the subjective measurement.
 上記説明において、被検眼からの反射が検出される前段階において、被検眼に対して固視標が予め呈示されていることが好ましい。これによれば、例えば、検査窓を覗いた際の被検者の固視方向が誘導されるので、測定光学系の移動可能範囲内への誘導がスムーズに行われる。なお、固視標が呈示されるトリガとしては、例えば、上記設定作業の開始又は完了等が考えられる。 In the above description, it is preferable that a fixation target is presented in advance to the eye to be examined before the reflection from the eye to be detected is detected. According to this, for example, the fixation direction of the subject when looking through the examination window is guided, so that the measurement optical system is smoothly guided into the movable range. As a trigger for presenting the fixation target, for example, the start or completion of the setting operation can be considered.
 <瞳孔間距離の測定>
 以下に、追加的動作として、被検者の瞳孔間距離を測定する場合について説明する。図4は、本実施形態に係る装置にて瞳孔間距離を測定する際の一例を示す説明図である。本実施形態では、一方の眼の眼屈折力を測定する際に瞳孔間距離を測定できる構成となっている。
<Measurement of interpupillary distance>
Hereinafter, as an additional operation, a case where the distance between the pupils of the subject is measured will be described. FIG. 4 is an explanatory diagram showing an example when the interpupillary distance is measured by the apparatus according to the present embodiment. In this embodiment, the interpupillary distance can be measured when the eye refractive power of one eye is measured.
 制御部100は、位置検出センサ400からの検出結果と撮像素子202からの撮像結果とに基づいて、被検眼の瞳孔間距離を測定してもよい。なお、得られた測定結果は、眼屈折力の測定結果と同様、表示部70、あるいは外部の装置に出力されてもよい。 The control unit 100 may measure the interpupillary distance of the eye to be examined based on the detection result from the position detection sensor 400 and the imaging result from the imaging element 202. Note that the obtained measurement result may be output to the display unit 70 or an external device, similarly to the measurement result of the eye refractive power.
 より詳細には、制御部は、位置検出センサ400からの検出結果に基づいて測定眼の位置を検出する一方、撮像素子202からの撮像結果に基づいて他眼の位置を検出する。測定眼の位置を検出する場合、例えば、制御部は、上記自動アライメント制御にて被検眼に対するアライメントが完了された状態での測定部3の位置を取得する。他眼の位置を検出する場合、例えば、制御部100は、上記自動アライメント制御にて被検眼に対するアライメントが完了された状態にて他眼を撮像する。制御部100は、撮像された画像に基づいて他眼の位置を検出する。他眼の位置を検出する手法としては、測定眼に対する測定光学系の相対位置を検出する手法と同様の手法を用いることができる。 More specifically, the control unit detects the position of the measuring eye based on the detection result from the position detection sensor 400, and detects the position of the other eye based on the imaging result from the image sensor 202. When detecting the position of the measurement eye, for example, the control unit acquires the position of the measurement unit 3 in a state where the alignment with respect to the eye to be examined is completed by the automatic alignment control. When detecting the position of the other eye, for example, the control unit 100 images the other eye in a state where the alignment with respect to the eye to be examined is completed by the automatic alignment control. The control unit 100 detects the position of the other eye based on the captured image. As a method for detecting the position of the other eye, a method similar to the method for detecting the relative position of the measurement optical system with respect to the measurement eye can be used.
 瞳孔間距離を求める場合、例えば、測定部3の位置と、撮像光学系200の光軸に対する測定部3の距離との対応関係が予め求められ、メモリ105に予め記憶される。これによって、制御部100は、測定部3の位置を取得することによって撮像光学系200の光軸L200に対する測定眼の距離Aを求めることができる。さらに、制御部100は、撮像光学系200の光軸に対する他眼の距離Bを求めることができる。制御部100は、距離Aと距離Bに基づいて瞳孔間距離PDを求めることができる。なお、他眼の距離Bについて、撮像光学系200の光軸よりも測定眼に近い位置に他眼が検出された場合、距離Aに対して距離Bが差し引かれる。一方、撮像光学系200の光軸よりも測定眼に遠い位置に他眼が検出された場合、距離Aに対して距離Bが加算される。 When obtaining the interpupillary distance, for example, the correspondence between the position of the measurement unit 3 and the distance of the measurement unit 3 with respect to the optical axis of the imaging optical system 200 is obtained in advance and stored in the memory 105 in advance. Thus, the control unit 100 can obtain the distance A of the measurement eye with respect to the optical axis L200 of the imaging optical system 200 by acquiring the position of the measurement unit 3. Further, the control unit 100 can obtain the distance B of the other eye with respect to the optical axis of the imaging optical system 200. The control unit 100 can obtain the interpupillary distance PD based on the distance A and the distance B. Regarding the distance B of the other eye, when the other eye is detected at a position closer to the measurement eye than the optical axis of the imaging optical system 200, the distance B is subtracted from the distance A. On the other hand, when another eye is detected at a position farther from the measuring eye than the optical axis of the imaging optical system 200, the distance B is added to the distance A.
 以上示したように、位置検出センサからの検出結果と、他眼を撮像する撮像素子からの撮像結果を用いることによって、両眼カメラを必ずしも設けなくとも、瞳孔間距離を測定できる。 As described above, the interpupillary distance can be measured without using a binocular camera by using the detection result from the position detection sensor and the imaging result from the imaging device that images the other eye.
 また、本実施形態においては、検査窓を覗きこむことによって被検眼に対するラフなアライメントが行われる構成であるので、左右眼の位置が装置に対して変動しやすい。そこで、位置検出センサからの検出結果と撮像素子からの撮像結果を用いることによって、上記状況であっても、両眼の位置が適正に検出され、瞳孔間距離を適正に測定できる。 In this embodiment, since the rough alignment with respect to the eye to be examined is performed by looking into the examination window, the positions of the left and right eyes are likely to fluctuate with respect to the apparatus. Therefore, by using the detection result from the position detection sensor and the imaging result from the image sensor, the position of both eyes can be properly detected and the interpupillary distance can be properly measured even in the above situation.
 撮像素子52と撮像素子202を用いて左右眼の判別するようにしてもよい(これらの位置関係は既知)。また、撮像素子52からの撮像信号に基づいて測定眼の位置を検出し、撮像素子202との撮像信号に基づいて他眼の位置を検出し、これらの検出結果に基づいて瞳孔間距離を測定するようにしてもよい。 The left and right eyes may be discriminated using the image sensor 52 and the image sensor 202 (these positional relationships are known). Further, the position of the measuring eye is detected based on the imaging signal from the imaging device 52, the position of the other eye is detected based on the imaging signal with the imaging device 202, and the interpupillary distance is measured based on the detection result. You may make it do.
 なお、上記説明においては、撮像光学系200の光軸の位置を基準としたが、これに限定されず、例えば、被検者の左右方向に関して、何らかの基準位置が設定されればよい。つまり、測定部3と撮像光学系200との相対的な位置関係が予め求めていれば、双方の検出結果を関連付け、瞳孔間距離を測定できる。 In the above description, the position of the optical axis of the imaging optical system 200 is used as a reference. However, the present invention is not limited to this. For example, any reference position may be set in the left-right direction of the subject. That is, if the relative positional relationship between the measurement unit 3 and the imaging optical system 200 is obtained in advance, both detection results can be associated to measure the interpupillary distance.
 例えば、測定部3の初期位置を基準としてもよい。この場合、制御部100は、測定部3の位置を取得することによって初期位置に対する測定眼の距離Cを求めることができる。さらに、制御部100は、撮像光軸L200に対する他眼の距離Dを求めることができる。ここで、測定部3の初期位置と撮像光学系200の光軸との距離Eは、予め求められ、メモリ105に予め記憶される。そこで、制御部は、距離C、距離D、距離Eに基づいて瞳孔間距離を求めることができる。 For example, the initial position of the measurement unit 3 may be used as a reference. In this case, the control unit 100 can obtain the distance C of the measurement eye with respect to the initial position by acquiring the position of the measurement unit 3. Furthermore, the control unit 100 can obtain the distance D of the other eye with respect to the imaging optical axis L200. Here, the distance E between the initial position of the measurement unit 3 and the optical axis of the imaging optical system 200 is obtained in advance and stored in the memory 105 in advance. Therefore, the control unit can obtain the interpupillary distance based on the distance C, the distance D, and the distance E.
 なお、位置検出センサからの検出結果と撮像素子からの撮像結果を得る場合、アライメント完了をトリガとして、位置検出センサからの検出結果を得ると同時に、他眼を撮像するようにしてもよい。被検者が動くことによる測定結果のずれを防止できる。 When obtaining the detection result from the position detection sensor and the imaging result from the image sensor, the other eye may be imaged simultaneously with obtaining the detection result from the position detection sensor with the completion of alignment as a trigger. Deviations in measurement results due to movement of the subject can be prevented.
 なお、上記説明においては、検査窓を覗く被検眼の前眼部からの反射光を用いて、被検眼からの反射光を検出したが、これに限定されない。例えば、検査窓を覗く被検眼の眼底からの反射光を用いて、被検眼からの反射光を検出してもよい。例えば、制御部は、測定光学系からの測定光束を予め投光し、眼底からの測定光束が撮像素子22に受光されたことをトリガとして、被検眼に対する自動アライメントを作動させると共に、測定光学系による眼屈折力の仮測定及び固視位置制御を開始してもよい。 In the above description, the reflected light from the eye to be examined is detected using the reflected light from the anterior eye part of the eye to be examined looking through the examination window, but the present invention is not limited to this. For example, the reflected light from the eye to be examined may be detected using the reflected light from the fundus of the eye to be examined looking through the examination window. For example, the control unit projects the measurement light beam from the measurement optical system in advance, operates the automatic alignment for the eye to be inspected by using the measurement light beam from the fundus as received by the image sensor 22, and also measures the measurement optical system. Temporary measurement of eye refractive power and fixation position control may be started.
 なお、固視標呈示光学系30は、固視光束の光束径が互いに異なる複数の固視標を備えるようにしてもよい。固視標呈示光学系30、例えば、測定光学系10の光軸方向から限定された光束径によって形成される第1の固視標を被検眼に投影する第1投影光学系と、第1投影光学系よりも大きい光束径によって形成される第2の固視標を被検眼に投影する第2投影光学系と、を備えてもよい。第1の固視標を形成するために構成としては、例えば、固視光束を制限するための絞りが光路中に配置される。また、レーザ光源が用いられてもよい。また、第2の固視標としては、所定の絵柄(図形、文字、マークであってもおい)を形成するための構成(例えば、視標板、ディスプレイ等)が用いられる。さらに、制御部100は、固視標呈示光学系30を制御し、第1の固視標から第2の固視標に切り換えるようにしてもよい。例えば、制御部100は、眼の反射が検出されたこと、或いはアライメント完了信号をトリガとして、固視標を切り換える。これによって、被検眼の固視動作をスムーズに行うができる。 It should be noted that the fixation target presenting optical system 30 may include a plurality of fixation targets having different light flux diameters. Fixation target presentation optical system 30, for example, a first projection optical system for projecting a first fixation target formed by a light beam diameter limited from the optical axis direction of the measurement optical system 10 onto the eye to be examined, and a first projection A second projection optical system that projects a second fixation target formed with a larger beam diameter than the optical system onto the eye to be examined. As a configuration for forming the first fixation target, for example, an aperture for limiting the fixation light flux is arranged in the optical path. A laser light source may also be used. In addition, as the second fixation target, a configuration (for example, a target plate, a display, or the like) for forming a predetermined picture (a figure, a character, or a mark) is used. Further, the control unit 100 may control the fixation target presenting optical system 30 to switch from the first fixation target to the second fixation target. For example, the control unit 100 switches the fixation target using the detection of eye reflection or an alignment completion signal as a trigger. Thereby, the fixation operation of the eye to be examined can be performed smoothly.
 なお、上記構成においては、測定光学系10として、被検眼の眼屈折力を他覚的に測定するための光学系を用いたが、これに限定されず、被検眼を検眼するための光学系であれば、本実施形態の適用は可能である。 In the above configuration, an optical system for objectively measuring the eye refractive power of the eye to be examined is used as the measuring optical system 10, but the present invention is not limited to this, and an optical system for examining the eye to be examined is used. If so, the application of this embodiment is possible.
 2 検査窓
 3 測定部
 10 測定光学系
 30 固視標呈示光学系
 50 観察光学系
 100 制御部
 200 他眼撮像光学系
 400 位置検出センサ
 
2 Inspection Window 3 Measurement Unit 10 Measurement Optical System 30 Fixation Target Presenting Optical System 50 Observation Optical System 100 Control Unit 200 Other Eye Imaging Optical System 400 Position Detection Sensor

Claims (12)

  1.  被検者が覗くための検査窓と、
     前記検査窓を介して被検眼の眼屈折力を他覚的に測定する測定光学系と、
     前記検査窓を介して被検眼に対して固視標を呈示する固視標呈示光学系と、
     被検眼に対して呈示する固視標の呈示位置を光軸方向に変更する呈示位置変更手段と、
     被検眼に対する前記測定光学系の相対位置を検出する相対位置検出手段と、相対位置検出手段からの検出結果に基づいて前記測定光学系を被検眼に対して移動させることによって自動アライメントを作動させる駆動制御手段と、
     を備え、被検眼の眼屈折力を測定する眼屈折力測定装置であって、
     被検眼からの反射を検出する眼検出手段と、
     前記眼検出手段からの検出信号をトリガとして前記駆動制御手段による自動アライメントの作動を開始する制御手段と、
     を備えることを特徴とする眼屈折力測定装置。
    An inspection window for the patient to peek,
    A measurement optical system that objectively measures the eye refractive power of the eye to be examined through the examination window;
    A fixation target presenting optical system for presenting a fixation target to the eye to be examined through the examination window;
    Presenting position changing means for changing the presenting position of the fixation target presented to the eye to be examined in the direction of the optical axis;
    Relative position detection means for detecting the relative position of the measurement optical system with respect to the eye to be examined, and drive for operating automatic alignment by moving the measurement optical system with respect to the eye to be examined based on the detection result from the relative position detection means Control means;
    An eye refractive power measuring device for measuring the eye refractive power of an eye to be examined,
    Eye detection means for detecting reflection from the eye to be examined;
    Control means for starting an automatic alignment operation by the drive control means using a detection signal from the eye detection means as a trigger;
    An eye refractive power measuring device comprising:
  2.  前記制御手段は、さらに、前記眼検出手段からの検出信号をトリガとして、前記自動アライメント手段によるアライメントが完了される前に前記測定光学系によって被検眼の眼屈折力を自動的に測定し、前記測定結果に対応する位置に前記固視標を移動させることを特徴とする請求項1の眼屈折力測定装置。 The control means further uses the detection signal from the eye detection means as a trigger to automatically measure the eye refractive power of the eye to be examined by the measurement optical system before the alignment by the automatic alignment means is completed, The eye refractive power measuring apparatus according to claim 1, wherein the fixation target is moved to a position corresponding to a measurement result.
  3.  前記制御手段は、前記自動アライメント手段によるアライメントが完了された後、前記測定光学系によって被検眼の眼屈折力を自動的に測定し、前記測定結果に基づいて前記固視標の位置を調整すると共に、
     前記調整後での眼屈折力の測定結果に基づいて眼屈折値を出力することを特徴とする請求項1~2のいずれかの眼屈折力測定装置。
    The control means automatically measures the eye refractive power of the eye to be examined by the measurement optical system after the alignment by the automatic alignment means is completed, and adjusts the position of the fixation target based on the measurement result. With
    3. The eye refractive power measuring device according to claim 1, wherein an eye refractive value is output based on the measurement result of the eye refractive power after the adjustment.
  4.  前記固視標呈示光学系は、
     前記測定光学系の光軸方向から限定された光束径によって形成される第1の固視標を被検眼に投影する第1投影光学系と、
     前記第1投影光学系よりも大きい光束径によって形成される第2の固視標を被検眼に投影する第2投影光学系と、を備えることを特徴とする請求項1~3のいずれかの眼屈折力測定装置。
    The fixation target presenting optical system is:
    A first projection optical system that projects a first fixation target formed by a light beam diameter limited from the optical axis direction of the measurement optical system onto the eye to be examined;
    The second projection optical system for projecting a second fixation target formed with a larger beam diameter than the first projection optical system onto the eye to be examined. Eye refractive power measurement device.
  5.  請求項4の眼屈折力測定装置において、
     前記眼位置検出手段及び前記相対位置検出手段の少なくともいずれかからの検出結果に基づいて前記固視標呈示光学系を制御し、前記第1の固視標から前記第2の固視標に切り換えることを特徴とする請求項4の眼屈折力測定装置。
    In the eye refractive power measuring device according to claim 4,
    The fixation target presenting optical system is controlled based on a detection result from at least one of the eye position detection means and the relative position detection means, and is switched from the first fixation target to the second fixation target. The eye refractive power measuring apparatus according to claim 4.
  6.  前記検査窓とは異なる位置に配置され、前記測定光学系による測定眼とは異なる他眼を撮像する撮像手段と、
     前記測定光学の位置を検出する位置検出手段と、
     前記撮像手段からの撮像結果と、前記位置検出手段からの検出結果と、に基づいて被検眼の瞳孔間距離を測定する瞳孔間距離測定手段と、
     を備えることを特徴とする請求項1~5のいずれかの眼屈折力測定装置。
    An imaging unit that is arranged at a position different from the inspection window and that images the other eye different from the measurement eye by the measurement optical system;
    Position detecting means for detecting the position of the measuring optics;
    Interpupillary distance measuring means for measuring the interpupillary distance of the eye to be examined based on the imaging result from the imaging means and the detection result from the position detecting means;
    The ocular refractive power measuring apparatus according to claim 1, further comprising:
  7.  前記瞳孔間距離測定手段は、前記撮像手段からの撮像結果に基づいて前記他眼の位置を検出すると共に、前記自動アライメント手段によるアライメントが完了された状態での前記測定眼の位置を前記位置検出手段からの検出結果に基づいて検出することを特徴とする請求項6の眼屈折力測定装置。
     
    The interpupillary distance measuring means detects the position of the other eye based on the imaging result from the imaging means, and detects the position of the measuring eye in a state where the alignment by the automatic alignment means is completed. 7. The eye refractive power measuring apparatus according to claim 6, wherein detection is performed based on a detection result from the means.
  8.  前記眼検出手段は、前記検査窓を覗く被検眼からの反射を検出することを特徴とする請求項1~7のいずれかの眼屈折力測定装置。 The eye refractive power measuring apparatus according to any one of claims 1 to 7, wherein the eye detecting means detects reflection from an eye to be examined looking into the examination window.
  9.  前記制御手段は、前記眼検出手段によって被検眼からの反射が検出される前段階において、予め被検眼に対して固視標を予め呈示すると共に、
     前記固視標が予め呈示された被検眼に対し、前記眼検出手段からの検出信号をトリガとして前記駆動制御手段によるアライメントを開始することを特徴とする請求項1~8のいずれかの眼屈折力測定装置。
    The control means presents a fixation target in advance to the eye to be examined in advance before the reflection from the eye to be detected is detected by the eye detection means,
    9. The eye refraction according to claim 1, wherein alignment by the drive control unit is started with a detection signal from the eye detection unit as a trigger for an eye to be examined in which the fixation target is presented in advance. Force measuring device.
  10.  前記検査窓は、装置筐体に対して固定された位置に設けられており、
     前記測定光学系を備える測定部は、前記装置筐体の内部に設けられており、前記検査窓に対して移動可能であることを特徴とする請求項1~9のいずれかの眼屈折力測定装置。
    The inspection window is provided at a fixed position with respect to the apparatus housing,
    The eye refractive power measurement according to any one of claims 1 to 9, wherein a measurement unit including the measurement optical system is provided inside the apparatus housing and is movable with respect to the inspection window. apparatus.
  11.  前記測定部は、前眼部を観察するための前眼部観察光学系であって、前記測定光学系と同軸に配置された前眼部観察光学系を、前記眼検出手段として備え、
     前記駆動制御手段は、前記被検眼からの反射が検出される前段階において、前記前眼部観察光学系及び前記測定光学系の光軸が前記検査窓を通過する位置に前記測定部を待機させていることを特徴とする請求項10の眼屈折力測定装置。
    The measurement unit is an anterior ocular segment observation optical system for observing the anterior ocular segment, and includes an anterior ocular segment observation optical system arranged coaxially with the measurement optical system as the eye detection means,
    The drive control means causes the measurement unit to stand by at a position where the optical axes of the anterior ocular segment observation optical system and the measurement optical system pass through the examination window before the reflection from the eye to be examined is detected. The ocular refractive power measuring apparatus according to claim 10, wherein
  12.  被検者が覗くための検査窓と、
     前記検査窓を介して被検眼の眼屈折力を他覚的に測定する測定光学系と、
     前記測定光学系を被検眼に対して移動させる駆動手段と、
     を備え、被検眼の眼屈折力を測定する眼屈折力測定装置であって、
     前記検査窓とは異なる位置に配置され、前記測定光学系による測定眼とは異なる他眼を撮像する撮像手段と、
     前記測定光学の位置を検出する位置検出手段と、
     前記撮像手段からの撮像結果と、前記位置検出手段からの検出結果と、に基づいて被検眼の瞳孔間距離を測定する瞳孔間距離測定手段と、
     を備えることを特徴とする眼屈折力測定装置。
     
     
    An inspection window for the patient to peek,
    A measurement optical system that objectively measures the eye refractive power of the eye to be examined through the examination window;
    Driving means for moving the measurement optical system relative to the eye to be examined;
    An eye refractive power measuring device for measuring the eye refractive power of an eye to be examined,
    An imaging unit that is arranged at a position different from the inspection window and that images the other eye different from the measurement eye by the measurement optical system;
    Position detecting means for detecting the position of the measuring optics;
    Interpupillary distance measuring means for measuring the interpupillary distance of the eye to be examined based on the imaging result from the imaging means and the detection result from the position detecting means;
    An eye refractive power measuring device comprising:

PCT/JP2016/053387 2015-02-09 2016-02-04 Ocular refractivity measuring device WO2016129499A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016574767A JP6680216B2 (en) 2015-02-09 2016-02-04 Eye refractive power measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015023733 2015-02-09
JP2015-023733 2015-02-09

Publications (1)

Publication Number Publication Date
WO2016129499A1 true WO2016129499A1 (en) 2016-08-18

Family

ID=56614351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053387 WO2016129499A1 (en) 2015-02-09 2016-02-04 Ocular refractivity measuring device

Country Status (2)

Country Link
JP (1) JP6680216B2 (en)
WO (1) WO2016129499A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107788946A (en) * 2016-09-05 2018-03-13 尼德克株式会社 Subjective formula optometry equipment and subjective formula optometry program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116090A (en) * 2004-10-21 2006-05-11 Nidek Co Ltd Fundus camera
JP2006280612A (en) * 2005-03-31 2006-10-19 Nidek Co Ltd Ophthalmological device
JP2013031767A (en) * 2012-11-19 2013-02-14 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2014150857A (en) * 2013-02-06 2014-08-25 Nidek Co Ltd Ophthalmologic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116090A (en) * 2004-10-21 2006-05-11 Nidek Co Ltd Fundus camera
JP2006280612A (en) * 2005-03-31 2006-10-19 Nidek Co Ltd Ophthalmological device
JP2013031767A (en) * 2012-11-19 2013-02-14 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2014150857A (en) * 2013-02-06 2014-08-25 Nidek Co Ltd Ophthalmologic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107788946A (en) * 2016-09-05 2018-03-13 尼德克株式会社 Subjective formula optometry equipment and subjective formula optometry program

Also Published As

Publication number Publication date
JPWO2016129499A1 (en) 2017-11-16
JP6680216B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
CN106963335B (en) Subjective eye examination device
JP6613103B2 (en) Ophthalmic equipment
JP6641730B2 (en) Ophthalmic apparatus and ophthalmic apparatus program
JP5101370B2 (en) Fundus photographing device
JP2018110726A (en) Subjective optometry apparatus and subjective optometry program
JP4739795B2 (en) Eye refractive power measuring device
JP2018047049A (en) Subjective optometer and subjective optometric program
JP2017184874A (en) Ophthalmic photographing apparatus
JP4987408B2 (en) Ophthalmic equipment
JP6853496B2 (en) Optometry device and optometry program
JP6736356B2 (en) Ophthalmic equipment
JP2019063265A (en) Subjective optometry apparatus
JP2018171139A (en) Subjective optometric apparatus
JP6421919B2 (en) Ophthalmic imaging equipment
JP7143577B2 (en) ophthalmic equipment
WO2018135175A1 (en) Ophthalmological device
JP6060525B2 (en) Fundus examination device
JP2016049368A (en) Ophthalmological photographing apparatus
JP6604020B2 (en) Fundus imaging apparatus and fundus imaging program
JP7266375B2 (en) Ophthalmic device and method of operation thereof
JP2018143553A (en) Subjective optometry apparatus
JP2018038481A (en) Subjective optometer and subjective optometry program
CN107788946B (en) Subjective optometry device and subjective optometry program
JP2013244363A (en) Fundus photographing apparatus
WO2016129499A1 (en) Ocular refractivity measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574767

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749143

Country of ref document: EP

Kind code of ref document: A1