WO2016129415A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2016129415A1
WO2016129415A1 PCT/JP2016/052692 JP2016052692W WO2016129415A1 WO 2016129415 A1 WO2016129415 A1 WO 2016129415A1 JP 2016052692 W JP2016052692 W JP 2016052692W WO 2016129415 A1 WO2016129415 A1 WO 2016129415A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
state
semiconductor switching
time
reactor
Prior art date
Application number
PCT/JP2016/052692
Other languages
French (fr)
Japanese (ja)
Inventor
健志 網本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016574727A priority Critical patent/JP6531767B2/en
Publication of WO2016129415A1 publication Critical patent/WO2016129415A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a power conversion device.
  • One stone type booster circuit is one of the circuits of a power conversion device that converts a DC voltage output from a power source into a DC voltage having a different value and supplies it to a load.
  • a general one-stone booster circuit includes a first capacitor for smoothing the voltage on the input side of the circuit, a reactor for storing energy, and an on-state when charging the reactor with energy.
  • the first semiconductor switching element includes a first semiconductor switching element for protecting the first semiconductor switching element from a high voltage applied to the first semiconductor switching element when the first semiconductor switching element is turned off. Rectifier elements are connected in antiparallel.
  • the second rectifying element that releases the energy charged in the reactor to the output side and prevents backflow from the output side of the circuit, and the voltage on the output side of the circuit And a second capacitor for smoothing.
  • the second semiconductor switching element is connected in antiparallel to the second rectifying element of such a general one-stone booster circuit, and the second semiconductor switching element is connected during a period in which current flows through the second rectifying element.
  • There is a one-stone type booster circuit that enables a synchronous rectification operation in which a current flows through a second semiconductor switching element in an on state.
  • the second semiconductor switching element is maintained in the OFF state, and One semiconductor switching element performs a first switching to switch between a first on state and a first off state, and does not perform synchronous rectification (this operation is referred to as asynchronous rectification).
  • the second semiconductor switching element When the voltage supplied from the power source is lower than a preset voltage threshold, the second semiconductor switching element changes between the second on state and the second off state in synchronization with the first switching. Synchronous rectification for performing the second switching is performed (for example, Patent Document 1).
  • the threshold voltage is set so that no backflow from the output side occurs.
  • the first semiconductor switching element is maintained in the off state, and the first semiconductor switching element repeats the first switching for switching between the first on state and the first off state, and the first on state time is increased.
  • the first on-time shown is shorter than the first off-time showing the time of the first off state, and less energy is stored in the reactor.
  • the current flowing through the reactor may become discontinuous.
  • the amount of current that flows in the reverse direction that is, the direction from the load to the power source increases when the state of asynchronous rectification is shifted to the state of synchronous rectification.
  • the state where the power to be supplied to the load cannot be supplied to the load occurs. That is, the power converter cannot supply the power to be supplied to the load, and the power supplied to the load by the power converter varies.
  • the present invention has been made to solve the above-described problems, and provides a power conversion device that suppresses fluctuations in power supplied to a load when the state of asynchronous rectification is shifted to the state of synchronous rectification. With the goal.
  • the power converter according to the present invention includes a reactor having a first terminal and a second terminal, the first terminal being connected to the positive electrode of the power source, and the second terminal of the reactor and the negative electrode of the power source.
  • a first semiconductor switching element connected between the rectifier and a rectifier connected between the second terminal of the reactor and the positive side of the load to rectify the current sent from the second terminal to the load
  • a control device for sending a control signal for controlling the driving of the second semiconductor switching element to the driving device, wherein the second semiconductor switching device is maintained in the OFF state, and the first semiconductor
  • the second semiconductor switching element is switched to the second ON state in synchronization with the first switching from the asynchronous rectification state in which the switching element performs the first switching to switch between the first ON state and the first OFF state.
  • the control device is configured to change the second switching state between the first semiconductor switching element and the second OFF state.
  • the second semiconductor switching element is controlled to be in the second on state with a second on time shorter than the first off time indicating the time of one off state.
  • the power conversion device can suppress fluctuations in the power supplied to the load when the asynchronous rectification state is shifted to the synchronous rectification state. This is because the control device controls the on-time of the second semiconductor switching element to be shorter than the off-time of the first semiconductor switching element, so that the time during which the current flows in the reverse direction is shortened.
  • FIG. 1 is a schematic diagram illustrating a power conversion system 31 configured using the power conversion device 30 according to the first embodiment of the present invention.
  • the power conversion device 30 according to the first exemplary embodiment of the present invention configures a power conversion system 31 that boosts a DC voltage output from a power supply 301 and supplies the boosted DC voltage to a load 309.
  • the power conversion device 30 according to the first embodiment of the present invention has a one-stone booster circuit capable of synchronous rectification.
  • the power conversion device 30 according to the first exemplary embodiment of the present invention includes a first capacitor 302, a first terminal, and a second terminal, and the first terminal is a positive side of the first capacitor 302. And a connected reactor 303.
  • the 1st terminal of the reactor 303 is connected with the 1st capacitor
  • the left end of the reactor 303 is shown in FIG.
  • the second terminal is the right end of the reactor 303.
  • the power conversion device 30 further includes a first semiconductor switching element 304 connected between the second terminal of the reactor 303 and the negative side of the first capacitor 302,
  • the first rectifying element 305 is connected in reverse parallel to the first semiconductor switching element 304 and protects the first semiconductor switching element 304 when the first semiconductor switching element 304 is turned off. That is, the first semiconductor switching element 304 has a positive terminal connected to the second terminal of the reactor 303 and a negative terminal connected to the negative side of the first capacitor 302.
  • the first rectifying element 305 has an anode connected to the negative side of the first capacitor 302 and a cathode connected to the second terminal of the reactor 303.
  • a second rectifier element 306 that is connected to the second terminal of the reactor 303 and rectifies the current sent from the second terminal, and a second semiconductor connected in antiparallel to the second rectifier element 306.
  • the switching element 307 includes a second rectifying element 306 and a second capacitor 308 connected to the negative side of the first capacitor 302 at a position where the current rectified by the second rectifying element 306 flows. . That is, the second rectifying element 306 has an anode side connected to the second terminal of the reactor 303 and a cathode side connected to the positive side of the load 309.
  • the second semiconductor switching element 307 has a negative terminal connected to the second terminal of the reactor 303 and a positive terminal connected to the positive side of the second capacitor 308 and the positive side of the load 309.
  • the positive side of the first capacitor 302 indicates the upper end of the first capacitor 302 in FIG. Therefore, the negative side of the first capacitor 302 is the lower end of the first capacitor 302 in FIG.
  • the direction of rectification from left to right is the forward direction
  • the direction from right to left is the reverse direction.
  • the power supply 301 has two poles, the positive electrode is connected to the first terminal of the reactor 303, and the negative electrode is connected to the first semiconductor switching element 304. Furthermore, a first capacitor 302 is connected to the power supply 301 in parallel. The load 309 is connected so that the current rectified by the second rectifying element 306 is input to the positive side.
  • the power conversion device 30 includes a one-stone booster circuit configured as described above and capable of synchronous rectification, a first semiconductor switching element 304, and a second semiconductor switching element.
  • a driving device 320 for sending a driving signal for driving 307; and a control device 321 for sending a control signal for controlling the driving of the first semiconductor switching element 304 and the second semiconductor switching element 307 to the driving device 320. Yes.
  • the driving device 320 sends a driving signal 315 for driving the first semiconductor switching element 304 to the control terminal of the first semiconductor switching element 304, and sends it to the control terminal of the second semiconductor switching element 307.
  • the control device 321 sends a control signal 312 for controlling the first semiconductor switching element 304, a control signal 314 for controlling the second semiconductor switching element 307, and a synchronous rectification operation switching signal 313 to the driving device 320.
  • the drive device 320 that receives the control signal 312 of the first semiconductor switching element 304 generated by the control device 321 turns on the first semiconductor switching element 304. By switching between the state and the off state, a voltage higher than the voltage output from the power supply 301 is output to the load 309.
  • the power conversion apparatus 30 further includes an input side voltage detector 310 and an output side voltage detector 311.
  • the input side voltage detector 310 measures the value of the voltage applied to both ends of the first capacitor 302.
  • the output side voltage detector 311 measures the value of the voltage applied to both ends of the second capacitor 308.
  • the power supply 301 will be described assuming that a DC stabilized power supply is used in the first embodiment of the present invention, but may be a storage battery, a solar battery, or the like.
  • the load 309 is described assuming an AC load via an inverter in the first embodiment of the present invention, but the load 309 to which the power conversion device 30 according to the first embodiment of the present invention is connected is an inverter.
  • a pure resistance load, a constant power load, or the like may be used instead of the AC load via the.
  • the second semiconductor switching element 307 is a metal oxide semiconductor field effect transistor (MOSFET) capable of flowing a current in both directions (MOSFET: Metal Oxide Semiconductor Field Effect Transistor).
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the first semiconductor switching element 304 is a MOSFET in the first embodiment of the present invention, but may be an IGBT.
  • an IGBT is used for the first semiconductor switching element 304, the current flows through the IGBT only in one direction, so the collector electrode side is connected to the second terminal of the reactor 303.
  • the second semiconductor switching element 307 is maintained in the off state, and the first semiconductor switching element 304 is in the first on state and the first off state.
  • the second switching in which the second semiconductor switching element 307 switches between the second on state and the second off state in synchronization with the first switching from the asynchronous rectification state in which the first switching is performed.
  • the control device 321 indicates the first off-state time when the first semiconductor switching element 304 is set to the first off state in the state of synchronous rectification.
  • the second semiconductor switching element 307 is controlled to be in the second on state with a second on time shorter than the off time. That is, the power conversion device 30 according to the first embodiment of the present invention is characterized by the control signal that the control device 321 sends out to the main circuit of the power conversion device 30 according to the first embodiment of the present invention. Yes.
  • the power conversion device 30 according to the first exemplary embodiment of the present invention solves a problem that occurs when a single-step boost circuit capable of synchronous rectification shifts from an asynchronous rectification state to a synchronous rectification state.
  • FIG. 2 is a diagram for explaining a problem to be solved by the power conversion device 30 according to the first exemplary embodiment of the present invention.
  • the control signal waveform and the reactor 303 transmitted by the control device of the power conversion device of the comparative example are illustrated in FIG. It is the schematic which showed the waveform of the electric current which flows.
  • FIG. 2 shows a waveform of a control signal sent out by the control device of the power conversion device of the comparative example and a waveform of a current flowing through the reactor.
  • the waveform of the control signal for controlling the driving of the first semiconductor switching element 304 is shown as the switching signal waveform 5201 of the first semiconductor switching element 304.
  • a waveform of a control signal that controls driving of the second semiconductor switching element 307 is shown as a switching signal waveform 5202 of the second semiconductor switching element 307.
  • FIG. 2 shows a synchronous rectification operation switching signal waveform 5204 and a current waveform 5203 of the reactor 303.
  • the current waveform 5203 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
  • the first ON time indicating the time of the first ON state is indicated as T1 in FIG. 2, and the first OFF time indicating the time of the first OFF state is indicated as T2.
  • the switching period in FIG. 2 is shown as T and is one period of the first switching.
  • the second semiconductor switching element 307 is maintained in the off state, and the first semiconductor switching element 304 is in the first on state and the first off state.
  • the asynchronous rectification state in which the first switching for switching between states is repeated for example, consider a case where the first on-time T1 is shorter than the first off-time T2 and less energy is stored in the reactor 303. .
  • region A1 shows the range of the state where asynchronous rectification is performed.
  • the region A1 is sent to the first semiconductor switching element 304 of the one-stone booster circuit capable of synchronous rectification.
  • the control signal waveform has a short energy stored in the reactor 303 because the first on-time T1 is short.
  • the state of asynchronous rectification in which the second semiconductor switching element 307 is maintained in the off state and the first semiconductor switching element 304 performs the first switching for switching between the first on state and the first off state is: Before the synchronous rectification operation switching signal waveform 5204 is turned on.
  • the current flowing through the reactor 303 temporarily becomes zero.
  • the current may be discontinuous.
  • an operation in which a current flows discontinuously due to the first on-time T1 being shorter than the first off-time T2 is referred to as a discontinuous mode.
  • the power conversion device of the comparative example that performs the operation of FIG. 2 accumulates energy in the reactor 303 while the first semiconductor switching element 304 is turned on, and the first semiconductor switching element 304 Is in the off state, the energy stored in the reactor 303 is supplied to the load 309 through the second rectifying element 306. At this time, a voltage drop occurs in the second rectifier element 306 due to the current that has passed through the second rectifier element 306. The product of the current flowing through the second rectifier element 306 and the voltage that has dropped is the power loss generated in the second rectifier element 306.
  • the second semiconductor switching element 307 when no current flows through the reactor 303, the voltage applied to both ends of the second capacitor 308 is higher than the voltage applied to both ends of the first capacitor 302. Therefore, if the second semiconductor switching element 307 is in an on state, a current flows from the second capacitor 308 side to the first capacitor 302 side. However, in the state of the region A1, the second semiconductor switching element 307 is in the off state, and the second rectifier element 306 prevents the current in the reverse direction. No current flows to the capacitor 302 side. Therefore, no current flows from the second capacitor 308 to the first capacitor 302, that is, from the second terminal of the reactor 303 to the first terminal.
  • the direction in which current flows from the first terminal to the second terminal of the reactor 303 is referred to as a positive direction (forward direction), and the direction in which current flows from the second terminal to the first terminal is negative ( We will call it the reverse direction.
  • Synchronous rectification starts when the synchronous rectification operation switching signal is turned on.
  • the timing at which the synchronous rectification operation switching signal is turned on is the same as the timing at which the control device 321 turns the first semiconductor switching element 304 on, so that the control device 321 performs the first semiconductor switching.
  • the element 304 is turned off, the second semiconductor switching element 307 is turned on. While the first semiconductor switching element 304 is in the on state, energy is stored in the reactor 303, and the control device 321 turns off the first semiconductor switching element 304 and turns on the second semiconductor switching element 307.
  • the energy stored in the reactor 303 is supplied to the load 309 through the second semiconductor switching element 307.
  • the current flowing in the positive direction becomes zero
  • the voltage applied to both ends of the second capacitor 308 is higher than the voltage applied to both ends of the first capacitor 302. Therefore, next, a current flows in the negative direction through the second semiconductor switching element 307.
  • the current flowing through the first capacitor 302 flows through the reactor 303. Therefore, a rapid current increase to the first capacitor 302 is suppressed.
  • the amount of increase in the current flowing in the negative direction is determined by the voltage value at both ends of the first capacitor 302, the voltage value at both ends of the second capacitor 308, and the inductance value of the reactor 303.
  • the control device 321 turns off the second semiconductor switching element 307 and turns on the first semiconductor switching element 305 in the next switching cycle T, the second capacitor 308 side to the first capacitor 302 side There is no longer a path for current to flow. Therefore, there is no increase in current in the negative direction, and the current flowing in the negative direction becomes zero. Furthermore, the current is in the positive direction. Since the current waveform 5203 of the reactor 303 in FIG. 2 is a schematic diagram, the slope of the current waveform when the current flowing in the negative direction approaches 0 and the current when the current flows from 0 to the positive direction are shown. The waveform is shown with the same slope.
  • the current waveform 5203 of the reactor 303 is not originally represented only by such a straight line, and thus the current that has flowed in the negative direction as described above is not necessarily zero.
  • the current waveform and the current waveform when current flows from 0 to the positive direction are not the same shape.
  • the control device 321 turns off the first semiconductor switching element 304 and turns on the second semiconductor switching element 307, the current flowing in the positive direction of the reactor 303 becomes 0, and the current flows in the negative direction. Begins to flow. Then, in the next switching cycle T, the control device 321 turns off the second semiconductor switching element 307 and turns on the first semiconductor switching element 305 again.
  • the control signal of the second semiconductor switching element 307 is an inverted signal of the control signal of the first semiconductor switching element 304 from the time when the state is shifted to the synchronous rectification state.
  • the value is a negative value because the amount of current flowing in the negative direction is large. It becomes.
  • the first on-time T1 in FIG. 2 is obtained so that the current flowing through the reactor 303 is in a positive direction and is shorter than the first off-time T2 and can cover the power consumed by the load. Is. Accordingly, when the amount of current flowing in the reverse direction through the reactor 303 increases and the average value of the current flowing through the reactor 303 within one switching cycle T becomes a negative value, the reactor 303 is charged in the first on-time T1. Alone will not be able to cover the power consumed by the load.
  • the load is a power system or an AC load.
  • a photovoltaic power conditioner having a booster circuit and an inverter between the solar cell and the load, and the power converter corresponds to a booster circuit of the photovoltaic power conditioner.
  • the power conversion device is in the discontinuous mode, for example, when the output power of the solar cell is low and the current flowing through the power conversion device is small, or when the power conditioner for solar power generation is connected.
  • the solar cell has a characteristic that the voltage of the solar cell increases when the output current is small.
  • the power conversion device is in the discontinuous mode, the voltage of the first capacitor is similarly increased because the first capacitor is connected in parallel with the solar cell.
  • the power conversion device is a bidirectional DC-DC converter.
  • the power source is a storage battery
  • the protection function operates so as not to overcharge and the power converter is stopped.
  • the control device uses the first on-time T1 as the on-time of the first semiconductor switching element 304 necessary for sufficiently charging the reactor 303. It may be adjusted. After the region P in FIG. 2, the control device changes the on-time of the first semiconductor switching element 304 while obtaining the necessary first on-time T1, and flows to the reactor 303 within one switching cycle T. It shows a state where the average value of the current is adjusted so as to be a positive value.
  • An object of this invention is to obtain the power converter device which suppressed the electric current amount which flows into a reverse direction.
  • the control device 321 maintains the second semiconductor switching element 307 in the off state, and sets the first semiconductor switching element 304 in the first on state and the first on state.
  • the second semiconductor switching element 307 is switched from the second on-state to the second off-state in synchronization with the first switching from the asynchronous rectification state in which the first switching to the off-state is performed. The problem which arises when shifting to the state of the synchronous rectification which switches 2 is solved.
  • FIG. 3 is a schematic diagram illustrating a waveform of a control signal transmitted by the control device 321 of the power conversion device 30 according to the first embodiment of the present invention and a waveform of a current flowing through the reactor 303.
  • FIG. 3 shows a synchronous rectification operation switching signal waveform 6204 and a current waveform 6203 of the reactor 303.
  • the current waveform 6203 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
  • the signal waveform and the current waveform shown in the region A1 are the same as the signal waveform and the current waveform in the region A1 in FIG. Therefore, in the region A1 of FIG. 3, the control device 321 maintains the second semiconductor switching element 307 in the off state and switches the first semiconductor switching element 304 between the first on state and the first off state.
  • the state of asynchronous rectification for performing the first switching is shown.
  • the state of this area A1 shifts to the state of synchronous rectification.
  • the switching period T is also one period of the second switching. That is, since one cycle of the first switching and one cycle of the second switching are the same, the switching frequency of the first semiconductor switching element 304 and the switching frequency of the second semiconductor switching element 307 are equal.
  • the control device 321 of the power conversion device 30 shifts from the state of the region A1 to the synchronous rectification state, the control device 321 performs the first semiconductor switching element 304 in the synchronous rectification state. Is maintained in the first off state, the second semiconductor switching element 307 is turned on in the second on time T3 that is shorter than the first off time T2 indicating the time of the first off state. It is characterized by controlling to be in a state.
  • the second on-time T3 is shorter than the time obtained by subtracting the dead time period (about 1 ⁇ s to 5 ⁇ s) from the first off-time T2.
  • the control device 321 outputs a signal for switching the first semiconductor switching element 304 to the off state and a signal for switching the second semiconductor switching 307 to the on state at the same time.
  • the control device 321 outputs a signal for switching the first semiconductor switching element 304 to the off state and a signal for switching the second semiconductor switching 307 to the on state at the same time.
  • the first semiconductor switching element 304 and the second semiconductor switching element 307 are turned on simultaneously.
  • the second capacitor 308 may be short-circuited between the positive electrode and the negative electrode by the second semiconductor switching element 307 and the first semiconductor switching element 304.
  • a short-circuit current flows through the first semiconductor switching element 304 and the second semiconductor switching element 307, and there is a possibility that the first semiconductor switching element 304 and the second semiconductor switching element 307 are destroyed. Therefore, a dead time period is usually provided when the first semiconductor switching element 304 and the second semiconductor switching element 307 are switched between the on state and the off state.
  • Synchronous rectification starts when the synchronous rectification operation switching signal 313 is turned on. Since the synchronous rectification is enabled by the synchronous rectification switching signal 313, the second semiconductor switching element 307 can be turned on.
  • the power conversion device 30 according to the first embodiment of the present invention can suppress the amount of current flowing through the reactor 303 in the reverse direction. That is, the power conversion device according to the first embodiment of the present invention can suppress fluctuations in the power supplied to the load 309.
  • the second switching to turn on the second semiconductor switching element 307 at the second on-time T3 shorter than the first off-time T2 is performed a plurality of times, so that the current further reverses the reactor 303.
  • the amount flowing in the direction can be suppressed.
  • the control signal 314 of the second semiconductor switching element 307 sent out by the control device 321 has a waveform as shown in the switching signal waveform 6202 of the second semiconductor switching element 307 in FIG. Further, there is a feature that the ON time of the second semiconductor switching element 307, which is shorter than the first OFF time T2, is gradually increased. Finally, the ON time of the second semiconductor switching element 307 is set to be the same length as the first OFF time T2 of the first semiconductor switching element 304. That is, the second on-time in the second and subsequent second switching after the transition to the synchronous rectification state is made longer than the second on-time in the first second switching after the transition.
  • the on-time of the second semiconductor switching element 307 in the second switching for the first time after shifting to the synchronous rectification state is set as a second on-time T3.
  • the second on-time T3 is shorter than the off-time T2 of the first semiconductor switching element 304.
  • the on-time of the second semiconductor switching element 307 in the second switching period T that is, the second switching after the transition to the synchronous rectification state, is an on-time T5 longer than the second on-time T3.
  • the on-time of the second semiconductor switching element 307 in the next switching period T is an on-time T7 longer than the on-time T5.
  • the on-time of the second semiconductor switching element 307 in the next switching period T is an on-time T9 longer than the on-time T7.
  • the ON time of the second semiconductor switching element 307 is gradually increased, and finally the same length as the first OFF time T2 of the first semiconductor switching element 304 is set. That is, finally, the control signal 312 for controlling the driving of the second semiconductor switching element 307 becomes an inverted signal of the control signal 314 for controlling the driving of the first semiconductor switching element 304.
  • the ON time of the second semiconductor switching element 307 which is shorter than the OFF time T2 of the first semiconductor switching element 304, is gradually increased, and finally the first OFF If the length is the same as the time T2, the amount of current flowing in the reverse direction can be suppressed, and power loss, which is the original purpose of performing synchronous rectification, can be suppressed. This is because the first semiconductor switching element 304 and the second semiconductor switching element 307 are in the off state, and the current does not flow in the positive direction in the end.
  • the amount of increase in increasing the on-time of the second semiconductor switching element 307 is considered to be an appropriate amount depending on the circuit configuration and control response speed.
  • a method of increasing in a quadratic function in 0.5 seconds is also conceivable.
  • the method is not limited thereto, and the second semiconductor switching element is detected by detecting the current and voltage flowing in the circuit. It is also conceivable to reduce the ON time of the second semiconductor switching element 307 again while increasing the ON time of 307.
  • the timing for turning on the second semiconductor switching element 307 is set while the current flowing through the reactor 303 is flowing in the positive direction.
  • the second semiconductor switching element 307 is symmetrical about the center between the ON signal of the first semiconductor switching element 304 and the ON signal of the first semiconductor switching element 304 in the next switching period T. ON signal is provided.
  • a current in the positive direction is included in the current passing through the second semiconductor switching element 307 while the second semiconductor switching element 307 is on. Therefore, the amount of current flowing in the reverse direction can be further suppressed.
  • the first semiconductor switching element 304 When the second semiconductor switching element 307 that has been turned on by making the on time shorter than the first off time T2 is turned off, the first semiconductor switching element 304 is also in the second state until the next switching period T.
  • the semiconductor switching element 307 is also in the off state. As shown in FIG. 3, if the current flowing through the reactor 303 is positive when the second semiconductor switching element 307 is turned off, the reactor is turned off even if the second semiconductor switching element 307 is turned off.
  • the energy stored in 303 passes through the second rectifying element 306, and the current flows to the load 309. If the current flowing through the reactor 303 is negative when the second semiconductor switching element 307 is turned off, the current becomes 0 after the second semiconductor switching element 307 is turned off.
  • the power converter 30 according to the first embodiment of the present invention can suppress the amount of current flowing in the reverse direction. That is, it turns out that the fluctuation
  • FIG. 4 is a schematic diagram illustrating a waveform of a control signal transmitted by a modification of the control device 321 of the power conversion device 30 according to the first embodiment of the present invention and a waveform of a current flowing through the reactor.
  • the waveform of the control signal 312 of the first semiconductor switching element 304 is the switching signal waveform 7101 of the first semiconductor switching element 304.
  • the waveform of the second semiconductor switching element 307 control signal 314 is the switching signal waveform 7102 of the second semiconductor switching element 307.
  • FIG. 4 shows a synchronous rectification operation switching signal waveform 7104 and a current waveform 7103 of the reactor 303.
  • the current waveform 7103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
  • the switching signal waveform 7101 in FIG. 4 is the same as the switching signal waveform 6201 in FIG. Only the difference between the switching signal waveform 7102 of FIG. 4 and the switching signal waveform 6202 of FIG. 3 will be described.
  • the timing at which the second semiconductor switching element 307 is turned on is the same as the timing at which the first semiconductor switching element 304 is turned off.
  • the second semiconductor switching element 307 is turned on in the meaning that the timing when the second semiconductor switching element 307 is turned on is the same as the timing when the first semiconductor switching element 304 is turned off.
  • a dead time period (about 1 ⁇ s to 5 ⁇ s) is provided between the timing of switching and the timing of turning off the first semiconductor switching element 304, that is, they are not exactly the same, but are about several ⁇ s apart. This is also included.
  • the time for turning on the second semiconductor switching element 307 is gradually increased, the time for the current to flow through the reactor 303 in the negative direction is also gradually increased. Therefore, the average value of the current flowing through the reactor 303 within one switching cycle T gradually decreases.
  • the switching signal waveform 7102 as shown in FIG. 4 when the current flows through the reactor 303 in the negative direction, the energy stored in the reactor 303 is performed following the flow of the current supplied to the load 309.
  • the rate at which the average value of the current flowing through the reactor 303 within one switching cycle T decreases can be smaller than in the case of FIG. Therefore, it is also suitable when the switching speed of the second semiconductor switching element 307 is not high.
  • the current waveform 7103 of the reactor 303 in FIG. 4 is a schematic waveform, but it can be seen that the power converter 30 according to the first embodiment of the present invention can suppress the amount of current flowing in the reverse direction. That is, it turns out that the fluctuation
  • FIG. 5 is a schematic diagram illustrating a waveform of a control signal sent out by another modification of the control device 321 of the power conversion device 30 according to the first embodiment of the present invention and a waveform of a current flowing through the reactor.
  • the waveform of the control signal 312 of the first semiconductor switching element 304 becomes the switching signal waveform 7201 of the first semiconductor switching element 304.
  • the waveform of the control signal 314 of the second semiconductor switching element 307 becomes the switching signal waveform 7202 of the second semiconductor switching element 307.
  • FIG. 5 shows a synchronous rectification operation switching signal waveform 7204 and a current waveform 7203 of the reactor 303.
  • the current waveform 7203 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
  • the switching signal waveform 7201 in FIG. 5 is the same as the switching signal waveform 6201 in FIG. Only a difference between the switching signal waveform 7202 of FIG. 5 and the switching signal waveform 6202 of FIG. 3 will be described.
  • the timing for turning the second semiconductor switching element 307 off and the timing for turning the first semiconductor switching element 304 on are the same.
  • the power conversion device 30 can suppress the amount of current flowing in the reverse direction.
  • the second semiconductor switching element 307 has a switching signal waveform 7202 as shown in FIG. 5, a semiconductor switching element that operates at high speed is used for the first semiconductor switching element 304 and the second semiconductor switching element 307. desirable.
  • the timing at which synchronous rectification is started is described as being the same as the timing at which the switching period T is switched.
  • the timing for starting the synchronous rectification may be in the middle of the switching cycle T, but the timing for starting the synchronous rectification is preferably the same as the timing for switching the switching cycle T.
  • FIG. 2 In the second embodiment of the present invention, portions that are different from the first embodiment of the present invention will be described, and descriptions of the same or corresponding portions will be omitted.
  • a power source 301 is disposed on the input side of a one-stone booster circuit capable of synchronous rectification, and a load 309 that consumes power is disposed on the output side. Yes, power was transmitted in one direction.
  • a power conversion device and a power conversion system in a case where power is transmitted bidirectionally instead of unidirectionally will be described.
  • the load 309 of the power conversion device 30 according to the first embodiment of the present invention is the power source 809.
  • FIG. 6 is a schematic diagram showing a power conversion system 81 configured using the power conversion device 80 according to the second embodiment of the present invention.
  • the circuit included in the power conversion device 80 according to the second embodiment of the present invention is a one-stone booster circuit capable of synchronous rectification, and is the same as the circuit included in the power conversion device 30 according to the first embodiment of the present invention. is there.
  • the circuit included in the power conversion device 80 according to the second embodiment of the present invention is connected to the power source 801 and the power source 809.
  • One pole of the power source 801 is connected to the first terminal of the reactor 303, and the other pole is connected to the first semiconductor switching element 304.
  • a first capacitor 302 is connected to the power source 801 in parallel.
  • the cathode side of the second rectifier element 306 is connected to the pole side having the same polarity as the pole connected to the first terminal of the reactor 303 of the power source 801.
  • the power conversion device 80 includes a detection device 810 that detects the average value of the current of the reactor 303 within one switching cycle, the first semiconductor switching element 304, and the second And a driving device 820 for sending a driving signal for driving the semiconductor switching element 307. Further, a control device 821 for sending a control signal for controlling driving of the first semiconductor switching element 304 and the second semiconductor switching element 307 to the driving device 820 is provided.
  • the drive device 820 sends a drive signal 816 of the first semiconductor switching element 304 to the control terminal of the first semiconductor switching element 304, and to the control terminal of the second semiconductor switching element 307. A drive signal 817 for the second semiconductor switching element 307 is transmitted.
  • Control device 821 determines whether one of first semiconductor switching element 304 and second semiconductor switching element 307 is in an OFF state based on the average value of current in reactor 303 within one switching cycle detected by detection device 810. And the third switching that switches between the third on-state and the third off-state, either the first semiconductor switching element 304 or the second semiconductor switching element 307
  • the synchronous switching element determination signal 812 is sent to the driving device 820.
  • the operation is a booster circuit supplying power from the power source 801 to the power source 809.
  • the synchronous switching element maintained in the OFF state is the second semiconductor switching element 307, and the asynchronous switching element that performs the third switching for switching between the third ON state and the third OFF state is the first semiconductor.
  • This is a switching element 304.
  • the synchronous switching element maintained in the OFF state is the first semiconductor switching element 304, and the asynchronous switching element that performs the third switching for switching between the third ON state and the third OFF state is the second semiconductor.
  • control device 821 includes a control signal 813 for controlling driving of the first semiconductor switching element 304, a control signal 815 for controlling driving of the second semiconductor switching element 307, and a synchronous rectification switching signal 814. Send to 820.
  • the control signal of the first semiconductor switching element 304 generated by the control device 821 when the asynchronous switching element is the first semiconductor switching element 304, the control signal of the first semiconductor switching element 304 generated by the control device 821.
  • the driving device 820 that has received 813 can transmit a voltage higher than the voltage output from the power source 801 to the power source 809 by switching between the on state and the off state of the first semiconductor switching element 304.
  • the driving device 820 that has received the control signal 815 of the second semiconductor switching element 307 generated by the control device 821 is connected to the second semiconductor switching element 307. By switching between the on state and the off state, a voltage lower than the voltage output from the power source 809 can be transmitted to the power source 801.
  • the power conversion device 80 according to the second embodiment of the present invention further includes an input side voltage detector 310 and an output side voltage detector 311. I have.
  • the input side voltage detector 310 measures the value of the voltage applied to both ends of the first capacitor 302.
  • the output side voltage detector 311 measures the value of the voltage applied to both ends of the second capacitor 308.
  • the power is transmitted from the power source 801 to the power source 809 and bidirectional when the power is transmitted from the power source 809 to the power source 801.
  • the power source 801 is a storage battery and the power source 809 is a DC system
  • power is supplied from the power source 809 to the power source 801 when the storage battery is charged.
  • the power of the storage battery is sent to the DC system
  • the power is transmitted from the power source 801 to the power source 809.
  • the case where the power sources 801 and 809 include an electric motor / generator may be considered.
  • the power sources 801 and 809 are not specified in particular and the power converter 80 has a bidirectional power flow.
  • the direction in which current flows from the first terminal of the reactor 303 to the second terminal is referred to as a positive direction (forward direction), and the first terminal from the second terminal
  • the direction in which the current flows to the terminal is called the negative direction (reverse direction). Therefore, when power is transmitted from power supply 809 to power supply 801, the direction of current flow is opposite to that of Embodiment 1 of the present invention, and therefore the object is to suppress the amount of current flowing in the positive direction. . It is an object to obtain a power conversion device that suppresses fluctuations in the power supplied (transmitted) by both the first embodiment and the second embodiment of the present invention even when the direction of current flow is reversed.
  • FIG. 7 is a schematic diagram showing the waveform of the control signal sent out by the control device 821 of the power conversion device 80 according to the second embodiment of the present invention and the waveform of the current flowing through the reactor 303.
  • the signal waveform and the current waveform shown in the region A ⁇ b> 2 indicate that the control device 821 keeps the second semiconductor switching element 307 in the off state and the first semiconductor switching element 304 in the third on state and the third on state.
  • the state of the asynchronous rectification which performs the 3rd switching switched to an OFF state is shown.
  • the third on-state time is defined as a third on-time T11
  • the third off-state time is defined as a third off-time T12.
  • the current flowing through the reactor 303 is discontinuous, and the third off time T12 is longer than the third on time T11. Moreover, the switching period in FIG. 7 is indicated as T10 and is one period of the third switching. The state of this area A2 shifts to the state of synchronous rectification.
  • the average value of the current flowing through the reactor 303 within one switching period T10 detected by the detection device 810 is a positive value, and power is transmitted from the power source 801 to the power source 809.
  • the waveform of the control signal sent out by the control device 821 and the waveform of the current flowing through the reactor 303 are shown.
  • the control device 821 determines the power supply direction from the average value of the current flowing through the reactor 303 within one switching cycle T10 detected by the detection device 810, and this is driven by the synchronous switching element determination signal 812. To the device 820.
  • the synchronous switching element maintained in the OFF state before the transition to the synchronous rectification state is the second semiconductor switching element 307, and the third ON state
  • the first switching element 304 is the asynchronous switching element that performs the third switching to switch between the first semiconductor switching element 304 and the third OFF state.
  • the driving device 820 determines which of the first semiconductor switching element 304 and the second semiconductor switching element 307 is a synchronous switching element maintained in an off state, and the first semiconductor It can be seen which of the switching element 304 and the second semiconductor switching element 307 is an asynchronous switching element that performs a third switching to switch between a third on state and a third off state.
  • the power supply direction is determined by detecting the average value of the current flowing through the reactor 303 in one switching cycle T10 by the detector 810, and the value is positive or negative.
  • the instantaneous current value flowing through the reactor 303 is detected by the detector 810, and the control device 821 that has acquired the current value information calculates the average value of the current flowing through the reactor 303 in one switching cycle T10.
  • the direction of power supply may be determined based on whether the power is negative or negative.
  • the control device 821 of the power conversion device 80 has one switching cycle T10 detected by the detection device 810 before shifting to the synchronous rectification state, that is, in the state of the region A2.
  • Which of the first semiconductor switching element 304 and the second semiconductor switching element 307 is a synchronous switching element maintained in the OFF state, and the first semiconductor switching It is determined which of the element 304 and the second semiconductor switching element 307 is an asynchronous switching element that performs the third switching for switching between the third on state and the third off state.
  • the control device 821 has the asynchronous switching element in the synchronous rectification state. Controlling the synchronous switching element to be in the fourth on state at a fourth on time T13 that is shorter than the third off time T12 indicating the time of the third off state in the third off state. It is a feature.
  • one cycle of the fourth switching is also T10. That is, since one cycle of the third switching is the same as one cycle of the fourth switching, the switching frequency of the synchronous switching element and the switching frequency of the asynchronous switching element are equal.
  • FIG. 7 shows a synchronous rectification operation switching signal waveform 9104, a current waveform 9103 of the reactor 303, and a synchronous switching element determination signal waveform 9105.
  • the current waveform 7103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
  • the synchronous switching element determination signal waveform 9105 is shown in FIG. It is a straight line like this.
  • the control device 821 of the power conversion device 80 shifts from the state of the region A2 to the synchronous rectification state
  • the first semiconductor switching element 304 is in the third OFF state
  • the second semiconductor switching element 307 is controlled to be in the fourth on state at the fourth on time T13 that is shorter than the third off time T12 indicating the time of the third off state.
  • the fourth on-time T13 is shorter than the time obtained by subtracting the dead time period (about 1 ⁇ s to about 5 ⁇ s) from the third off-time T12.
  • Synchronous rectification starts when the synchronous rectification operation switching signal 814 is turned on. Since the synchronous rectification is enabled by the synchronous rectification switching signal 814, the second semiconductor switching element 307 can be turned on.
  • the power converter device 80 concerning Embodiment 2 of this invention can suppress the quantity which an electric current flows through the reactor 303 to a reverse direction. That is, when power is supplied from the power source 801 to the power source 809, the power conversion device 80 according to the second embodiment of the present invention can suppress fluctuations in the power supplied to the power source 809.
  • the fourth switching for turning on the second semiconductor switching element 307 at the fourth on-time T13 shorter than the third off-time T12 is performed a plurality of times, so that the current further reverses the reactor 303. The amount flowing in the direction can be suppressed.
  • the control signal 815 of the second semiconductor switching element 307 sent out by the control device 821 has a waveform as shown in the switching signal waveform 9102 of the second semiconductor switching element 307 in FIG. Further, there is a feature that the ON time of the second semiconductor switching element 307, which is shorter than the OFF time T12 of the first semiconductor switching element 304, is gradually increased. Finally, the ON time of the second semiconductor switching element 307 is set to be the same as the OFF time T12 of the first semiconductor switching element 304. That is, the fourth on time in the fourth switching after the second time after the transition to the synchronous rectification state is made longer than the fourth on time in the first fourth switching after the transition.
  • the switching signal waveform 9102 of the second semiconductor switching element 307 in FIG. 7 will be described in more detail.
  • the on-time of the second semiconductor switching element 307 in the second switching for the first time after shifting to the synchronous rectification state is set as a fourth on-time T13.
  • the fourth on-time T13 is shorter than the third off-time T12 of the first semiconductor switching element 304.
  • the on-time of the second semiconductor switching element 307 in the second switching period T10 that is, the second switching after the transition to the synchronous rectification state, is an on-time T15 longer than the fourth on-time T13.
  • the on-time of the second semiconductor switching element 307 in the next switching period T10 is an on-time T17 longer than the on-time T15. Furthermore, the on-time of the second semiconductor switching element 307 in the next switching period T10 is an on-time T19 longer than the on-time T17. In this way, the ON time of the second semiconductor switching element 307 is gradually increased, and finally the same length as the first OFF time T12 of the first semiconductor switching element 304 is set. That is, finally, the control signal 815 of the second semiconductor switching element 307 becomes an inverted signal of the control signal 812 of the first semiconductor switching element 304.
  • the amount of increase in increasing the on-time of the second semiconductor switching element 307 is considered to be an appropriate amount depending on the response speed of the circuit configuration control.
  • the first semiconductor switching element 304 can be increased in one second.
  • a method of increasing in a quadratic function in 0.5 seconds is also conceivable.
  • the method is not limited thereto, and the second semiconductor switching element is detected by detecting the current and voltage flowing in the circuit. It is also conceivable to reduce the ON time of the second semiconductor switching element 307 again while increasing the ON time of 307.
  • the timing when the second semiconductor switching element 307 is turned on is the same as the timing when the first semiconductor switching element 304 is turned off. Since the timing at which the first semiconductor switching element 304 is turned off and the timing at which the second semiconductor switching element 307 is turned on are the same, when current flows in the reactor 303 in the negative direction, This is performed following the flow of current for supplying the stored energy to the power source 809.
  • the time for turning on the second semiconductor switching element 307 is gradually increased, the time for the current to flow through the reactor 303 in the negative direction is also gradually increased. Therefore, the average value of the current flowing through reactor 303 within one switching cycle T10 gradually decreases.
  • the second semiconductor switching element 307 switching signal waveform 9102 as shown in FIG. 7 when the current flows through the reactor 303 in the negative direction, the current flow for supplying the energy stored in the reactor 303 to the power source 809. Therefore, the rate at which the average value of the current flowing through the reactor 303 in one switching cycle T10 decreases can be reduced. Therefore, it is also suitable when the switching speed of the second semiconductor switching element 307 is not high.
  • the power converter 80 according to the second embodiment of the present invention can suppress the amount of current flowing in the reverse direction. That is, when power is supplied from the power source 801 to the power source 809, it can be seen that the power conversion device 80 according to the second embodiment of the present invention can suppress fluctuations in the power supplied to the power source 809.
  • FIG. 7 is the same as FIG. 4 in the first embodiment of the present invention in the waveform of the control signal sent out by the control device 821 and the waveform of the current flowing through the reactor 303 shown in FIG. This is because when the power is transmitted from the power source 801 to the power source 809, the synchronous switching element maintained in the off state in the asynchronous rectification state is the second semiconductor switching element 307, and the third on state This is because the asynchronous switching element that performs the third switching for switching to the third OFF state is the first semiconductor switching element 304. Accordingly, FIG. 7 is the same as FIG. 4 with the addition of the synchronous switching element determination signal waveform 9105.
  • the switching signal waveform 9102 of the second semiconductor switching element 307 shown in FIG. 7 can be modified as shown in FIGS.
  • FIG. 8 is a schematic diagram showing a waveform of a control signal sent out by a modification of the control device 821 of the power conversion device 80 according to the second embodiment of the present invention and a waveform of a current flowing through the reactor 303.
  • the signal waveform and the current waveform shown in the region A3 indicate that the first semiconductor switching element 304 is maintained in the off state, and the second semiconductor switching element 307 is in the third on state and the third off state.
  • the state of the asynchronous rectification which performs the 3rd switching which switches is shown.
  • the third on-state time is defined as a third on-time T11
  • the third off-state time is defined as a third off-time T12.
  • FIG. 8 shows that in the region A3, the average value of the current flowing through the reactor 303 in one switching cycle T10 is a negative value, and the control device 821 sends power from the power source 809 to the power source 801. The waveform of the control signal to be performed and the waveform of the current flowing through the reactor are shown.
  • the waveform of the control signal 813 of the first semiconductor switching element 304 is shown as the switching signal waveform 9201 of the first semiconductor switching element 304.
  • the waveform of the control signal 815 of the second semiconductor switching element 307 is shown as the switching signal waveform 9202 of the second semiconductor switching element 307.
  • FIG. 8 shows a synchronous rectification operation switching signal waveform 9204, a current waveform 9203 of the reactor 303, and a synchronous switching element determination signal waveform 9205.
  • the current waveform 9103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
  • the synchronous switching element determination signal waveform 9105 is shown in FIG. It is a straight line like this.
  • the synchronous switching element maintained in the OFF state before the transition to the synchronous rectification state is the first semiconductor switching element 304, and the third ON state
  • the second semiconductor switching element 307 is the asynchronous switching element that performs the third switching to switch between the third semiconductor switching element 307 and the third OFF state. Therefore, in FIG. 8, the signal sent to the first semiconductor switching element 304 in FIG. 7 and the signal sent to the second semiconductor switching element 307 are interchanged.
  • the ON signal of the first semiconductor switching element 304 is between the ON signal of the second semiconductor switching element 307 and the ON signal of the second semiconductor switching element 307 in the next switching period T10. At the center of the off signal of the second semiconductor switching element 307.
  • FIG. 8 is a schematic diagram
  • the power conversion device 80 according to the second exemplary embodiment of the present invention can suppress the amount of current flowing in the positive direction when transmitting power from the power source 809 to the power source 801. I understand. That is, when power is supplied from the power source 809 to the power source 801, it can be seen that the power conversion device 80 according to the second embodiment of the present invention can suppress fluctuations in the power supplied to the power source 801.
  • the waveform of the control signal sent out by the control device 821 and the waveform of the current flowing through the reactor 303 shown in FIG. 8 are those when power is transmitted from the power supply 301 to the power supply 309, the first semiconductor switching is performed.
  • the signal transmitted to the element 304 and the signal transmitted to the second semiconductor switching element 307 are interchanged, and the characteristic portion is not different from FIG. 3 in the first embodiment of the present invention.
  • the synchronous switching element determination signal waveform 9105 is added to FIG. 3, and only the signal sent to the first semiconductor switching element 304 and the signal sent to the second semiconductor switching element 307 are replaced. It is.
  • the switching signal waveform 9201 of the first semiconductor switching element 304 shown in FIG. 8 can be modified like the switching signal waveform of the second semiconductor switching element 307 of FIGS.
  • the synchronous switching element is the first semiconductor switching element 304 or the second semiconductor switching element 307, and is asynchronous.
  • shifting from the rectification state to the synchronous rectification state when the asynchronous switching element is in the third OFF state, it is synchronized with a fourth ON time shorter than the third OFF time indicating the time of the third OFF state.
  • the switching element By controlling the switching element to be in the fourth ON state, the amount of current flowing in the reverse direction can be suppressed. That is, in Embodiment 2 of the present invention, it is possible to obtain a power conversion device 80 that suppresses fluctuations in supplied power.
  • the timing for starting the synchronous rectification is described as being the same as the timing for switching the switching cycle T10.
  • the timing for starting the synchronous rectification may be in the middle of the switching cycle T10, but the timing for starting the synchronous rectification is preferably the same as the timing for switching the switching cycle T10.
  • Embodiment 3 In the third embodiment of the present invention, portions that are different from the first embodiment of the present invention and the second embodiment of the present invention will be described, and description of the same or corresponding portions will be omitted.
  • the first embodiment and the second embodiment of the present invention the case of shifting from the asynchronous rectification state to the synchronous rectification state has been described, but in the third embodiment of the present invention, the asynchronous rectification state is changed to the asynchronous rectification state. A case of shifting to the state will be described.
  • the power transmission direction is one direction in the third embodiment of the present invention, as in the first embodiment of the present invention.
  • FIG. 1 is also a power conversion system 31 configured using the power conversion device 30 according to the third embodiment of the present invention. Therefore, in the third embodiment of the present invention, from the state of synchronous rectification to the state of asynchronous rectification, using the same names and symbols as those constituting the power conversion system 31 according to the first embodiment of the present invention. A case of migration will be described.
  • the power conversion device 30 solves a problem that occurs when a single rectifier booster circuit capable of synchronous rectification shifts from a synchronous rectification state to an asynchronous rectification state. First, the problem which the power converter device 30 concerning Embodiment 3 of this invention solves is demonstrated.
  • FIG. 9 is a diagram for explaining a problem to be solved by the power conversion device 30 according to the third embodiment of the present invention.
  • the control signal waveform and the reactor 303 sent out by the control device of the power conversion device of the comparative example are shown in FIG. It is the schematic which showed the waveform of the electric current which flows.
  • FIG. 9 shows a switching signal waveform 8101 of the first semiconductor switching element 304, a switching signal waveform 8102 of the second semiconductor switching element 307, a synchronous rectification operation switching signal waveform 8104, and a current waveform 8103 of the reactor 303. Indicated.
  • the current waveform 8103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
  • Region A4 in FIG. 9 repeats the first switching in which the first semiconductor switching element 304 switches between the first on-state and the first off-state, and the second semiconductor switching element 307 is in the second on-state. And a synchronous rectification state in which the second switching for switching between the second off state and the second off state is repeated.
  • the first semiconductor switching element 307 Prior to the region A4 in FIG. 9, the first semiconductor switching element 307 is maintained in the OFF state, and the first switching is performed so that the first semiconductor switching element 304 switches between the first ON state and the first OFF state. Shows the state of asynchronous rectification.
  • the power conversion device of the comparative example that performs the operation of FIG.
  • the first on-time is indicated as T21
  • the first off-time is indicated as T22
  • the switching period in FIG. 9 is indicated as T20 and is one period of the first switching of the first semiconductor switching element 304 and the second switching of the second semiconductor switching element 307. That is, the switching frequency of the first semiconductor switching element 304 and the switching frequency of the second semiconductor switching element 307 are equal.
  • the switching signal waveform 8102 of the second semiconductor switching element 307 is an inverted signal of the first semiconductor switching element 304.
  • the first on-time T21 of the first semiconductor switching element 304 is shorter than the first off-time T22, and the energy stored in the reactor 303 is Consider the case of few.
  • the current flowing through the reactor 303 increases in the positive direction while the first semiconductor switching element 304 is on, and flows into the reactor 303 when the first semiconductor switching element 304 is turned off. The current decreases and becomes zero.
  • the second semiconductor switching element 307 is in the on state, so the current flowing through the reactor 303 flows in the negative direction as it is.
  • the synchronous rectification operation switching signal 313 is turned off at the timing when the second semiconductor switching element 307 is turned off. That is, the state is shifted from the synchronous rectification state to the asynchronous rectification state. Even after the transition to the asynchronous rectification state, the current flowing through the reactor 303 remains in the synchronous rectification state until the current flowing through the reactor 303 decreases to zero after the first semiconductor switching element 304 is turned off. It is the same. However, in the asynchronous rectification state, since the second semiconductor switching element 307 is always in the off state, there is no path for current to flow through the reactor 303 in the negative direction. For this reason, after the first semiconductor switching element 304 is turned off, the current flowing through the reactor 303 that has decreased to 0 remains temporarily 0, and the current flowing through the reactor 303 may become discontinuous. is there.
  • the control device requires the first on-state of the first semiconductor switching element 304 on the assumption that there is a period in which the current flows through the reactor 303 in the negative direction within one switching cycle T20.
  • Time T21 was determined. However, since the current does not flow negatively through the reactor 303 immediately after canceling the synchronous rectification state, the first on-time of the first semiconductor switching element 304 is the same as that immediately before canceling the synchronous rectification state. If T21 is provided, the average value of the current in one switching cycle T20 flowing through the reactor 303 will increase more than expected. As a result, a current greater than expected may be supplied to the load 309 or the voltage of the load 309 increases, the protection function operates, and the power conversion device of the comparative example in FIG. 9 stops. there is a possibility.
  • the control device may adjust the first on-time T21 to the originally required on-time of the first semiconductor switching element 304 from there.
  • FIG. 10 is a schematic diagram illustrating a waveform of a control signal sent out by the control device 321 of the power conversion device 30 according to the third embodiment of the present invention and a waveform of a current flowing through the reactor 303.
  • FIG. 10 shows a switching signal waveform 10101 of the first semiconductor switching element 304, a switching signal waveform 10102 of the second semiconductor switching element 307, a synchronous rectification operation switching signal waveform 10104, and a current waveform 6203 of the reactor 303. Indicated.
  • the current waveform 10103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
  • the signal waveform and current waveform shown in region A4 are the same as the signal waveform and current waveform in region A4 in FIG.
  • the first semiconductor switching element 304 is in the first OFF state during the transition from the state of the region A4 in FIG. 10 to the asynchronous rectification state.
  • the state of asynchronous rectification is changed from the state of synchronous rectification to the state of asynchronous rectification immediately after the state of synchronous rectification is canceled, instead of the state of asynchronous rectification immediately after the state of synchronous rectification is eliminated.
  • a period for shifting to (hereinafter referred to as a transition period) is provided.
  • the second on-time T23 is shorter than the time obtained by subtracting the dead time period (about 1 ⁇ s to 5 ⁇ s) from the first off-time T22.
  • the second ON time of the second semiconductor switching element that is shorter than the first OFF time T22 of the first semiconductor switching element 304 It is preferable that the second switching for turning on the second semiconductor switching element at T23 is performed a plurality of times. Thereby, when it transfers to the state of asynchronous rectification from the state of synchronous rectification, the raise of the average value of the electric current which flows into the reactor 30 in one switching period T20 can further be suppressed.
  • the control signal 314 of the second semiconductor switching element 307 sent out by the control device 321 is the second on-state of the second semiconductor switching element 307 in the transition period as shown in FIG.
  • the time T23 is gradually shortened.
  • the second on-time T23 of the second semiconductor switching element 307 becomes 0, the second semiconductor switching element 307 is always turned off, the transition period ends, and the state of asynchronous rectification is entered.
  • the amount of change when reducing the on-time of the second semiconductor switching element 307 is considered to be an appropriate amount depending on the circuit configuration and control response speed.
  • the second semiconductor switching element 307 is always set in 1 s.
  • the on-time of the second semiconductor switching element 307 is linearly reduced to the state of asynchronous rectification to be turned off.
  • a method of reducing it by a quadratic function at 0.5 s is also conceivable.
  • the method is not limited to these, and the second semiconductor switching element 307 is detected by detecting the current and voltage flowing in the circuit. It is also conceivable to increase the on-time of the second semiconductor switching element 307 again while the on-time is being reduced.
  • the timing for turning on the second semiconductor switching element 307 is delayed and the timing at which the second semiconductor switching element 307 is turned off. There is a way to speed up as much.
  • the first semiconductor switching element 304 is turned on symmetrically around the center between the ON signal of the first semiconductor switching element 304 and the ON signal of the first semiconductor switching element 304 in the next switching period T20. An ON signal of the second semiconductor switching element 307 is provided.
  • the power conversion device 30 according to the third embodiment of the present invention can further suppress fluctuations in the power supplied to the load 309.
  • the control device 321 can quickly adjust the amount of power supplied to the load 309.
  • the transition from the synchronous rectification state to the asynchronous rectification state is performed when the power supplied from the power supply 301 to the load 309 is small. For example, when considering the power loss that occurs when the current flows through the second rectifying element 306 and the magnitude of the electromotive force of the second semiconductor switching element 307 when the current flows in the positive direction through the reactor 303 When it is determined that the current should pass through the second rectifier element 306, the state shifts from the synchronous rectification state to the asynchronous rectification state.
  • FIG. 11 is a schematic diagram illustrating a waveform of a control signal sent by a modification of the control device 321 of the power conversion device 30 according to the third embodiment of the present invention and a waveform of a current flowing through the reactor 303.
  • FIG. 11 shows a switching signal waveform 11101 of the first semiconductor switching element 304, a switching signal waveform 11102 of the second semiconductor switching element 307, a synchronous rectification operation switching signal waveform 11104, and a current waveform 11103 of the reactor 303. Indicated.
  • the current waveform 11103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
  • the timing for turning on the second semiconductor switching element 307 is different between FIG. 10 and FIG. 11 in the transition period immediately after the cancellation of the synchronous rectification state.
  • FIG. 10 Only differences from FIG. 10 will be described with reference to FIG.
  • the timing when the second semiconductor switching element 307 is turned on is the same as the timing when the first semiconductor switching element 304 is turned off.
  • the timing for turning on the second semiconductor switching element 307 is the same as the timing for turning on the first semiconductor switching element 304 in the meaning that the timing at which the second semiconductor switching element 307 is turned on.
  • a dead time period (about 1 ⁇ s to 5 ⁇ s) is provided between the first semiconductor switching element 304 and the timing at which the first semiconductor switching element 304 is turned off, that is, not exactly the same, but there is a gap of about several ⁇ s. It is included.
  • the timing for turning the second semiconductor switching element 307 OFF is gradually advanced. Also in the modified example as shown in FIG. 11, the fluctuation of the power supplied to the load 309 is suppressed by providing a period in which the current can flow negatively through the reactor 303 after the synchronous rectification state is canceled. Can do.
  • FIG. 11 and FIG. 10 are compared, it is known that the current flowing through the reactor 303 shown in FIG. 11 is faster in reducing the current flowing in the negative direction. Therefore, when the switching signal waveform 11102 of the second semiconductor switching element 307 as shown in FIG. 11 is used, it is preferable to use the second semiconductor switching element 307 having a high switching speed.
  • FIG. 12 is a schematic diagram illustrating a waveform of a control signal sent out by another modification of the control device 321 of the power conversion device 30 according to the third embodiment of the present invention and a waveform of a current flowing through the reactor 303.
  • FIG. 12 shows a switching signal waveform 12101 of the first semiconductor switching element 304, a switching signal waveform 12102 of the second semiconductor switching element 307, a synchronous rectification operation switching signal waveform 12104, and a current waveform 12103 of the reactor 303. Indicated.
  • the current waveform 12103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
  • the switching signal waveform 12102 of the second semiconductor switching element 307 has the same timing when the second semiconductor switching element 307 is turned off as the timing when the first semiconductor switching element 304 is turned on.
  • the timing at which the second semiconductor switching element 307 is turned off means that the timing at which the second semiconductor switching element 307 is turned off is the same as the timing at which the first semiconductor switching element 304 is turned on.
  • a dead time period (about 1 ⁇ s to 5 ⁇ s) is provided between the first semiconductor switching element 304 and the timing at which the first semiconductor switching element 304 is turned on, that is, not exactly the same, but there is a gap of about several ⁇ s. It is included.
  • the timing for turning on the second semiconductor switching element 307 is gradually delayed.
  • the current always flows in the negative direction through the reactor 303 while the second semiconductor switching element 307 is in the ON state. Therefore, even in the modified example as shown in FIG. 12, the fluctuation of the power supplied to the load 309 is suppressed by providing a period in which the current can flow in the negative direction through the reactor 303 after the synchronous rectification state is canceled. can do.
  • the timing for canceling the synchronous rectification state is described as being the same as the timing for switching the switching cycle T20.
  • the timing for canceling the synchronous rectification state may be in the middle of the switching cycle T20, but the timing for canceling the synchronous rectification state is preferably the same as the timing for switching the switching cycle T20.
  • Embodiment 4 FIG.
  • parts different from the first to third embodiments of the present invention will be described, and description of the same or corresponding parts will be omitted.
  • the case of shifting from the asynchronous rectification state to the synchronous rectification state has been described.
  • the third embodiment of the present invention is described.
  • a case where the state is shifted from the synchronous rectification state to the asynchronous rectification state will be described.
  • the power transmission direction is bidirectional in the fourth embodiment of the present invention, as in the second embodiment of the present invention.
  • FIG. 6 is also a power conversion system 81 configured using the power conversion device 80 according to the fourth embodiment of the present invention. Therefore, in the fourth embodiment of the present invention, from the state of synchronous rectification to the state of asynchronous rectification, using the same names and symbols as those constituting the power conversion system 81 according to the second embodiment of the present invention. A case of migration will be described.
  • bidirectional operation is performed when power is transmitted from the power source 801 to the power source 809 and when power is transmitted from the power source 809 to the power source 801.
  • the direction in which current flows from the first terminal of the reactor 303 to the second terminal is referred to as the positive direction (forward direction) as in the first to third embodiments of the present invention.
  • the direction in which current flows from the second terminal to the first terminal is referred to as the negative direction (reverse direction).
  • the average value of the current flowing through reactor 303 decreases (the average value of the current flowing through reactor 303 in the negative direction).
  • the purpose is to suppress the rise).
  • the object is to obtain a power conversion device that suppresses fluctuations in the power that is supplied (transmitted) in the fourth embodiment of the present invention even when the direction in which the power is transmitted is reversed. This is the same as Embodiment 1 to Embodiment 3 of the present invention.
  • FIG. 13 is a schematic diagram illustrating a waveform of a control signal sent out by the control device 821 of the power conversion device 80 according to the fourth embodiment of the present invention and a waveform of a current flowing through the reactor 303.
  • FIG. 13 includes a switching signal waveform 13101 of the first semiconductor switching element 304, a switching signal waveform 13102 of the second semiconductor switching element 307, a synchronous rectification operation switching signal waveform 13104, a current waveform 13103 of the reactor 303, A synchronous switching element determination signal waveform 13105 is shown.
  • the current waveform 13103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
  • the signal waveform and the current waveform shown in the region A5 cause the control device 821 to repeat the third switching for switching the first semiconductor switching element 304 between the third on state and the third off state, and
  • the state of synchronous rectification in which the fourth switching for switching the second semiconductor switching element 307 between the fourth on state and the fourth off state is repeated in synchronization with the third switching is shown.
  • the third on-time is shown as T31
  • the third off-time is shown as T32.
  • the switching period in FIG. 13 is shown as T30, and is one period of the third switching and the fourth switching. That is, the frequency of the first semiconductor switching element 304 and the frequency of the second semiconductor switching element 307 are equal.
  • a switching signal waveform 13102 of the second semiconductor switching element 307 is an inverted signal of the first semiconductor switching element 304.
  • FIG. 13 shows that in region A5, the average value of the current flowing through the reactor 303 within one switching cycle T30 detected by the detection device 810 is a positive value, so that power is transmitted from the power source 801 to the power source 809. 6 shows a waveform of a control signal sent out by the control device 821 and a waveform of a current flowing through the reactor 303. That is, the synchronous switching element determination signal waveform 13105 in FIG. 13 outputs 1 as the synchronous switching element determination signal 812.
  • the control device 821 when the power is supplied from the power source 801 to the power source 809, the control device 821 outputs 1 as the synchronous switching element determination signal 812, and the power source 809 This is because 0 is output as the synchronous switching element determination signal 812 when power is supplied from the power source 801 to the power source 801.
  • the state of the region A5 which is the state of synchronous rectification is shifted to the state of asynchronous rectification.
  • the first semiconductor switching element 304 and the second semiconductor are set in order to cancel the synchronous rectification state and enter the asynchronous rectification state. It is determined which switching signal waveform of the switching element 307 is to be changed.
  • the switching signal waveform of the first semiconductor switching element 304 and the second semiconductor switching element 307 is changed.
  • the synchronous switching element is the second semiconductor switching element 307
  • the asynchronous switching element is the first semiconductor switching element 304.
  • the detection device 810 of the power conversion device 80 detects the average value of the current flowing through the reactor 303 within one switching cycle T30.
  • Control device 821 transmits the average value of the current flowing through reactor 303 within one switching cycle T30 to drive device 820.
  • the driving device 820 determines which one of the first semiconductor switching element 304 and the second semiconductor switching element 307 is an asynchronous switching element, and the first semiconductor switching element 304 and the second semiconductor switching element. It is determined which of 307 is a synchronous switching element.
  • drive device 820 also determines the direction of power supply from the average value of the current flowing through reactor 303 within one switching cycle T30.
  • the power supply direction can be determined by, for example, detecting the average value of the current flowing through the reactor 303 in one switching cycle T10 by the detector 810 and determining whether the value is positive or negative. A discrimination method may be used.
  • the instantaneous current value flowing through the reactor 303 is detected by the detector 810, and the average of the current flowing through the reactor 303 in one switching cycle T10 is detected by the control device 821 that has acquired the current value information. A value is calculated, and the power supply direction is determined depending on whether the value is positive or negative.
  • the means for determining which of the first semiconductor switching element 304 and the second semiconductor switching element 307 is an asynchronous switching element and which is a synchronous switching element is performed in the same manner as the determination of the power supply direction. .
  • the contents are not limited to those described above.
  • the second semiconductor switching element 307 that is a synchronous switching element is maintained in an off state, and the first semiconductor switching element 304 that is an asynchronous switching element is in a third on state and a third off state.
  • the third switching for switching is repeated.
  • the control device 821 of the power conversion device 80 operates when the asynchronous switching element is in the third OFF state during the transition from the state of the region A5 in FIG. 13 to the asynchronous rectification state.
  • a period (transition period) is provided in which the synchronous switching element is controlled to be in the fourth on state at a fourth on time T33 that is shorter than the third off time T32 indicating the time of three off states. That is, it indicates that the transition period is provided immediately after the state of the synchronous rectification is canceled, not the state of the asynchronous rectification immediately after the state of the synchronous rectification is canceled.
  • the fourth on-time T33 is shorter than the time obtained by subtracting the dead time period (about 1 ⁇ s to about 5 ⁇ s) from the third off-time T32.
  • the transition period is provided so that the time during which the current flows in the negative direction of the reactor 303 is created immediately after the state of the synchronous rectification is eliminated. That is, part of the time during which the current flows in the negative direction of the reactor 303 is continued following the synchronous rectification state.
  • the power conversion device 80 when the transition from the synchronous rectification state to the asynchronous rectification state is made, if a transition period as shown in FIG. 13 is provided, the current flowing through the reactor 303 within one switching cycle T30 Therefore, the power conversion device 80 according to the fourth embodiment of the present invention can suppress fluctuations in supplied (transmitted) power.
  • the fourth ON state of the second semiconductor switching element 307 that is shorter than the third OFF time T32 of the first semiconductor switching element 304 is set. It is preferable that the fourth switching for turning on the second semiconductor switching element at time T33 is performed a plurality of times. Thereby, when it transfers to the state of asynchronous rectification from the state of synchronous rectification, the raise of the average value of the electric current which flows into the reactor 30 in one switching period T30 can further be suppressed.
  • the control signal 815 of the second semiconductor switching element 307 sent out by the control device 821 has a waveform as shown in the switching signal waveform 13102 of the second semiconductor switching element 307 in FIG.
  • the fourth on-time T33 of the second semiconductor switching element 307 which is shorter than the third off-time T32 of the first semiconductor switching element 304, is gradually shortened.
  • the fourth on-time T33 of the second semiconductor switching element 307 becomes 0, the second semiconductor switching element 307 is always turned off, the transition period ends, and the state of asynchronous rectification is entered.
  • the ON signal of the first semiconductor switching element 304 and the next The ON signal of the second semiconductor switching element 307 is provided symmetrically about the center between the ON signal of the first semiconductor switching element 304 and the switching period T30.
  • the switching signal waveform 13102 of the second semiconductor switching element 307 shown in FIG. 13 can be modified as shown in FIGS.
  • FIG. 14 is a schematic diagram illustrating a waveform of a control signal sent by a modification of the control device 821 of the power conversion device 80 according to the fourth embodiment of the present invention and a waveform of a current flowing through the reactor 303.
  • a modification of the fourth embodiment of the present invention is a case where the average value of the current flowing through reactor 303 in one switching cycle T30 is a negative value, and power is transmitted from power supply 809 to power supply 801.
  • a synchronous switching element determination signal waveform 14105 is shown.
  • the current waveform 14103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
  • FIG. 13 Only differences from FIG. 13 will be described with reference to FIG
  • the signal waveform and current waveform shown in region A5 indicate the state of synchronous rectification, as in FIG. 13.
  • FIG. 14 shows that in region A5, the average value of the current flowing through the reactor 303 within one switching cycle T30 detected by the detection device 810 is a negative value, so that power is transmitted from the power source 809 to the power source 801.
  • the waveform of the control signal sent out by the control device 821 and the current waveform flowing through the reactor 303 are shown. That is, the synchronous switching element determination signal waveform 14105 in FIG. 14 outputs 0 as the synchronous switching element determination signal 812.
  • the asynchronous switching element that repeats the third switching for switching between the third on state and the third off state is the second semiconductor switching element 307.
  • the synchronous switching element that repeats the fourth switching that switches between the fourth on state and the fourth off state in synchronization with the third switching is the first semiconductor switching element 304. That is, in FIG. 14, the signal sent to the first semiconductor switching element 304 in FIG. 13 and the signal sent to the second semiconductor switching element 307 are switched.
  • the control device 821 of the power conversion device 80 also changes the state of the region A5 in FIG. 14 to the asynchronous rectification state in the modified example of the fourth exemplary embodiment of the present invention.
  • the synchronous switching element is set to the fourth ON state at a fourth ON time T33 that is shorter than the third OFF time T32 indicating the time of the third OFF state.
  • a control period (transition period) is provided. That is, it indicates that the transition period is provided immediately after the state of the synchronous rectification is canceled, not the state of the asynchronous rectification immediately after the state of the synchronous rectification is canceled.
  • the fourth on-time T33 is shorter than the time obtained by subtracting the dead time period (about 1 ⁇ s to about 5 ⁇ s) from the third off-time T32.
  • a transition period is provided immediately after the cancellation of the synchronous rectification state. Continue part of the time flowing in the direction.
  • the power conversion device 80 can suppress fluctuations in the supplied (transmitted) power.
  • various timings for turning on the first semiconductor switching element 304 can be considered.
  • the timing at which the semiconductor switching element 307 is turned off is the same.
  • the switching signal waveform 14101 of the first semiconductor switching element 304 shown in FIG. 14 can be modified like the switching signal waveform of the second semiconductor switching element 307 of FIGS.
  • the power conversion device 80 that can supply power bidirectionally, first, it is determined whether the synchronous switching element is the first semiconductor switching element 304 or the second semiconductor switching element 307. . Then, in the transition from the synchronous rectification state to the asynchronous rectification state, after the synchronous rectification state is canceled, the asynchronous switching element is switched to the third off state during the transition from the synchronous rectification state to the asynchronous rectification state. At this time, a period for controlling the synchronous switching element to be in the fourth on-state with a fourth on-time shorter than the third off-time indicating the time of the third off-state is provided. Thereby, in Embodiment 4 of this invention, the power converter device 80 which suppressed the fluctuation
  • the timing for canceling the synchronous rectification state is described as being the same as the timing for switching the switching cycle T20.
  • the timing for canceling the synchronous rectification state may be in the middle of the switching cycle T20, but the timing for canceling the synchronous rectification state is preferably the same as the timing for switching the switching cycle T20.
  • FIG. 7 to 5, FIG. 7, FIG. 8, and FIG. 10 to FIG. 14 are schematic diagrams. In FIG. 3 to FIG. 5, FIG. 7, FIG. It is omitted.
  • the first semiconductor switching element 304, the second semiconductor switching element 307, the first rectifying element 305, and the second rectifying element 306 are elements formed of a wide band gap semiconductor. When is applied, switching loss and conduction loss are further reduced. Thus, it goes without saying that the power supply of the power converter can be made more efficient.
  • wide band gap semiconductors include silicon carbide, gallium nitride-based materials, and diamond.
  • An element formed of such a wide band gap semiconductor has high voltage resistance and high allowable current density, and thus can be miniaturized.
  • a semiconductor module incorporating these elements can be miniaturized.
  • the heat resistance is also high, it is possible to reduce the size of the radiating fin and further reduce the size of the semiconductor module.
  • the power loss is low, it is possible to increase the efficiency of the characteristics of the element itself, and further increase the efficiency of the semiconductor module.
  • the embodiments can be freely combined within the scope of the invention, and the embodiments can be appropriately modified or omitted.

Abstract

A power conversion device (30) is equipped with a monolithic booster circuit that can perform a synchronous rectification. When the power conversion device (30) starts to shift from an asynchronous rectification state during which first switching is performed in which a second semiconductor switching element (307) is maintained in an off-state and a first semiconductor switching element (304) is switched between a first on-state and a first off-state to a synchronous rectification state during which second switching is performed in which the second semiconductor switching element (307) is switched between a second on-state and a second off-state in synchronization with the first switching, a control device (321) is characterized by performing control so that when the first semiconductor switching element (304) is in the first off-state in the synchronous rectification state, the second semiconductor switching element (307) is brought into the second on-state during a second on-time shorter than a first off-time indicating the time frame of the first off-state.

Description

電力変換装置Power converter
 本発明は、電力変換装置に関するものである。 The present invention relates to a power conversion device.
 電源から出力された直流電圧を値の異なる直流電圧に変換して負荷に供給する電力変換装置が有する回路の一つに、1石型昇圧回路がある。一般的な1石型昇圧回路は、回路の入力側の電圧を平滑化するための第1のコンデンサーと、エネルギーを蓄積させるためのリアクトルと、リアクトルにエネルギーを充電する際にオン状態となる第1の半導体スイッチング素子とを備えている。そして、第1の半導体スイッチング素子には、第1の半導体スイッチング素子がオフ状態となる時に第1の半導体スイッチング素子に印加される高電圧から第1の半導体スイッチング素子を保護するための第1の整流素子が逆並列に接続されている。さらに、第1の半導体スイッチング素子がオフ状態のときにリアクトルに充電されたエネルギーを出力側に放出すると共に回路の出力側からの逆流を防止する第2の整流素子と、回路の出力側の電圧を平滑化するための第2のコンデンサーとを備えている。 One stone type booster circuit is one of the circuits of a power conversion device that converts a DC voltage output from a power source into a DC voltage having a different value and supplies it to a load. A general one-stone booster circuit includes a first capacitor for smoothing the voltage on the input side of the circuit, a reactor for storing energy, and an on-state when charging the reactor with energy. 1 semiconductor switching elements. The first semiconductor switching element includes a first semiconductor switching element for protecting the first semiconductor switching element from a high voltage applied to the first semiconductor switching element when the first semiconductor switching element is turned off. Rectifier elements are connected in antiparallel. Furthermore, when the first semiconductor switching element is in the OFF state, the second rectifying element that releases the energy charged in the reactor to the output side and prevents backflow from the output side of the circuit, and the voltage on the output side of the circuit And a second capacitor for smoothing.
 このような一般的な1石型昇圧回路の第2の整流素子に、第2の半導体スイッチング素子を逆並列に接続し、第2の整流素子に電流が流れる期間に第2の半導体スイッチング素子をオン状態として第2の半導体スイッチング素子に電流を流す同期整流の動作を可能にした1石型昇圧回路がある。このような同期整流可能な1石型昇圧回路において、電源から供給される電圧が予め設定された電圧の閾値よりも高い電圧のときには、第2の半導体スイッチング素子をオフ状態に維持し、かつ第1の半導体スイッチング素子が第1のオン状態と第1のオフ状態とを切り替える第1の切り替えを行い、同期整流を行わない(この動作を非同期整流と呼ぶ。)。そして、電源から供給される電圧が予め設定された電圧の閾値よりも低いときには、第1の切り替えに同期して、第2の半導体スイッチング素子が第2のオン状態と第2のオフ状態とを切り替える第2の切り替えを行う同期整流を行う(例えば、特許文献1)。ここで、閾値電圧は、出力側からの逆流が生じないように設定されている。 The second semiconductor switching element is connected in antiparallel to the second rectifying element of such a general one-stone booster circuit, and the second semiconductor switching element is connected during a period in which current flows through the second rectifying element. There is a one-stone type booster circuit that enables a synchronous rectification operation in which a current flows through a second semiconductor switching element in an on state. In such a one-step booster circuit capable of synchronous rectification, when the voltage supplied from the power supply is higher than a preset voltage threshold, the second semiconductor switching element is maintained in the OFF state, and One semiconductor switching element performs a first switching to switch between a first on state and a first off state, and does not perform synchronous rectification (this operation is referred to as asynchronous rectification). When the voltage supplied from the power source is lower than a preset voltage threshold, the second semiconductor switching element changes between the second on state and the second off state in synchronization with the first switching. Synchronous rectification for performing the second switching is performed (for example, Patent Document 1). Here, the threshold voltage is set so that no backflow from the output side occurs.
特開2006-149128号公報JP 2006-149128 A
 しかしながら、このような非同期整流と同期整流との切り替えを行うことがある同期整流が可能な1石型昇圧回路においては、実際には非同期整流から同期整流へ切り替える際に問題が起きることがあった。 However, in such a one-step booster circuit capable of synchronous rectification that may be switched between asynchronous rectification and synchronous rectification, there may actually be a problem when switching from asynchronous rectification to synchronous rectification. .
 第2の半導体スイッチング素子をオフ状態に維持し、かつ第1の半導体スイッチング素子が第1のオン状態と第1のオフ状態とを切り替える第1の切り替えを繰り返し、第1のオン状態の時間を示す第1のオン時間の方が第1のオフ状態の時間を示す第1のオフ時間よりも短く、リアクトルに蓄えられるエネルギーが少ない場合を考える。このとき、リアクトルに流れる電流が不連続となることがある。このリアクトルに流れる電流が不連続の場合に、非同期整流の状態から同期整流の状態へ移行すると、逆方向、すなわち負荷から電源へ向かう方向に流れてしまう電流量が多くなり、電力変換装置が負荷に供給したい電力を負荷に供給出来ていない状態が発生してしまう。つまり、電力変換装置は負荷に供給するべき電力を負荷に供給することが出来ず、電力変換装置が負荷に供給する電力に変動が発生してしまう。 The first semiconductor switching element is maintained in the off state, and the first semiconductor switching element repeats the first switching for switching between the first on state and the first off state, and the first on state time is increased. Consider a case in which the first on-time shown is shorter than the first off-time showing the time of the first off state, and less energy is stored in the reactor. At this time, the current flowing through the reactor may become discontinuous. When the current flowing through the reactor is discontinuous, the amount of current that flows in the reverse direction, that is, the direction from the load to the power source increases when the state of asynchronous rectification is shifted to the state of synchronous rectification. The state where the power to be supplied to the load cannot be supplied to the load occurs. That is, the power converter cannot supply the power to be supplied to the load, and the power supplied to the load by the power converter varies.
 本発明は、上述のような問題を解決するためになされたもので、非同期整流の状態から同期整流の状態へ移行したときに、負荷に供給する電力の変動を抑制した電力変換装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and provides a power conversion device that suppresses fluctuations in power supplied to a load when the state of asynchronous rectification is shifted to the state of synchronous rectification. With the goal.
 本発明にかかる電力変換装置は、第1の端子と第2の端子とを有し、第1の端子が電源の正極と接続されたリアクトルと、リアクトルの第2の端子と電源の負極との間に接続された第1の半導体スイッチング素子と、リアクトルの第2の端子と負荷の正側との間に接続され、第2の端子から送出された電流を負荷に送出するように整流する整流素子と、整流素子に並列に接続された第2の半導体スイッチング素子と、第1の半導体スイッチング素子及び第2の半導体スイッチング素子を駆動させる駆動信号を送出する駆動装置と、第1の半導体スイッチング素子及び第2の半導体スイッチング素子の駆動を制御する制御信号を駆動装置へ送出する制御装置とを備え、第2の半導体スイッチング素子がオフ状態に維持され、かつ第1の半導体スイッチング素子が第1のオン状態と第1のオフ状態とを切り替える第1の切り替えを行う非同期整流の状態から、第1の切り替えに同期して、第2の半導体スイッチング素子が第2のオン状態と第2のオフ状態とを切り替える第2の切り替えを行う同期整流の状態へ移行する場合に、制御装置は、同期整流の状態において第1の半導体スイッチング素子が第1のオフ状態の時に、第1のオフ状態の時間を示す第1のオフ時間よりも短い第2のオン時間で第2の半導体スイッチング素子を第2のオン状態とするように制御することを特徴とする。 The power converter according to the present invention includes a reactor having a first terminal and a second terminal, the first terminal being connected to the positive electrode of the power source, and the second terminal of the reactor and the negative electrode of the power source. A first semiconductor switching element connected between the rectifier and a rectifier connected between the second terminal of the reactor and the positive side of the load to rectify the current sent from the second terminal to the load An element, a second semiconductor switching element connected in parallel to the rectifying element, a drive device for sending a drive signal for driving the first semiconductor switching element and the second semiconductor switching element, and the first semiconductor switching element And a control device for sending a control signal for controlling the driving of the second semiconductor switching element to the driving device, wherein the second semiconductor switching device is maintained in the OFF state, and the first semiconductor The second semiconductor switching element is switched to the second ON state in synchronization with the first switching from the asynchronous rectification state in which the switching element performs the first switching to switch between the first ON state and the first OFF state. And when the first semiconductor switching element is in the first OFF state in the synchronous rectification state, the control device is configured to change the second switching state between the first semiconductor switching element and the second OFF state. The second semiconductor switching element is controlled to be in the second on state with a second on time shorter than the first off time indicating the time of one off state.
 本発明にかかる電力変換装置は、非同期整流の状態から同期整流の状態へ移行したときに、負荷に供給する電力の変動を抑制することができる。制御装置は、第2の半導体スイッチング素子のオン時間を、第1の半導体スイッチング素子のオフ時間よりも短くなるように制御しているので、電流が逆方向に流れる時間が短くなるからである。 The power conversion device according to the present invention can suppress fluctuations in the power supplied to the load when the asynchronous rectification state is shifted to the synchronous rectification state. This is because the control device controls the on-time of the second semiconductor switching element to be shorter than the off-time of the first semiconductor switching element, so that the time during which the current flows in the reverse direction is shortened.
本発明の実施の形態1にかかる電力変換装置を用いて構成された電力変換システムを示す概略図である。It is the schematic which shows the power conversion system comprised using the power converter device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電力変換装置が解決する課題を説明するための図である。It is a figure for demonstrating the subject which the power converter device concerning Embodiment 1 of this invention solves. 本発明の実施の形態1にかかる電力変換装置の制御装置が送出する制御信号の波形とリアクトルに流れる電流の波形を示した概略図である。It is the schematic which showed the waveform of the control signal which the control apparatus of the power converter device concerning Embodiment 1 of this invention sends out, and the waveform of the electric current which flows into a reactor. 本発明の実施の形態1にかかる電力変換装置の制御装置の変形例が送出する制御信号の波形とリアクトルに流れる電流の波形を示した概略図である。It is the schematic which showed the waveform of the control signal which the modification of the control apparatus of the power converter device concerning Embodiment 1 of this invention sends out, and the waveform of the electric current which flows into a reactor. 本発明の実施の形態1にかかる電力変換装置の制御装置の別の変形例が送出する制御信号の波形とリアクトルに流れる電流の波形を示した概略図である。It is the schematic which showed the waveform of the control signal which another modification of the control apparatus of the power converter device concerning Embodiment 1 of this invention sends out, and the waveform of the electric current which flows into a reactor. 本発明の実施の形態2にかかる電力変換装置を用いて構成された電力変換システムを示す概略図である。It is the schematic which shows the power conversion system comprised using the power converter device concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる電力変換装置の制御装置が送出する制御信号の波形とリアクトルに流れる電流の波形を示した概略図である。It is the schematic which showed the waveform of the control signal which the control apparatus of the power converter device concerning Embodiment 2 of this invention sends out, and the waveform of the electric current which flows into a reactor. 本発明の実施の形態2にかかる電力変換装置の制御装置の変形例が送出する制御信号の波形とリアクトルに流れる電流の波形を示した概略図である。It is the schematic which showed the waveform of the control signal which the modification of the control apparatus of the power converter device concerning Embodiment 2 of this invention sends out, and the waveform of the electric current which flows into a reactor. 本発明の実施の形態3にかかる電力変換装置が解決する課題を説明するための図である。It is a figure for demonstrating the subject which the power converter device concerning Embodiment 3 of this invention solves. 本発明の実施の形態3にかかる電力変換装置の制御装置が送出する制御信号の波形とリアクトルに流れる電流の波形を示した概略図である。It is the schematic which showed the waveform of the control signal which the control apparatus of the power converter device concerning Embodiment 3 of this invention sends out, and the waveform of the electric current which flows into a reactor. 本発明の実施の形態3にかかる電力変換装置の制御装置の変形例が送出する制御信号の波形とリアクトルに流れる電流の波形を示した概略図である。It is the schematic which showed the waveform of the control signal which the modification of the control apparatus of the power converter device concerning Embodiment 3 of this invention sends out, and the waveform of the electric current which flows into a reactor. 本発明の実施の形態3にかかる電力変換装置の制御装置の別の変形例が送出する制御信号の波形とリアクトルに流れる電流の波形を示した概略図である。It is the schematic which showed the waveform of the control signal which the another modification of the control apparatus of the power converter device concerning Embodiment 3 of this invention sends out, and the waveform of the electric current which flows into a reactor. 本発明の実施の形態4にかかる電力変換装置の制御装置が送出する制御信号の波形とリアクトルに流れる電流の波形を示した概略図である。It is the schematic which showed the waveform of the control signal which the control apparatus of the power converter device concerning Embodiment 4 of this invention sends out, and the waveform of the electric current which flows into a reactor. 本発明の実施の形態4にかかる電力変換装置の制御装置の変形例が送出する制御信号の波形とリアクトルに流れる電流の波形を示した概略図である。It is the schematic which showed the waveform of the control signal which the modification of the control apparatus of the power converter device concerning Embodiment 4 of this invention sends out, and the waveform of the electric current which flows into a reactor.
実施の形態1.
 本発明の実施の形態1にかかる電力変換装置の構成を説明する。図1は、本発明の実施の形態1にかかる電力変換装置30を用いて構成された電力変換システム31を示す概略図である。図1において、本発明の実施の形態1にかかる電力変換装置30は、電源301から出力された直流電圧を、昇圧して、負荷309に供給する電力変換システム31を構成する。
Embodiment 1 FIG.
The structure of the power converter device concerning Embodiment 1 of this invention is demonstrated. FIG. 1 is a schematic diagram illustrating a power conversion system 31 configured using the power conversion device 30 according to the first embodiment of the present invention. In FIG. 1, the power conversion device 30 according to the first exemplary embodiment of the present invention configures a power conversion system 31 that boosts a DC voltage output from a power supply 301 and supplies the boosted DC voltage to a load 309.
 本発明の実施の形態1にかかる電力変換装置30は、同期整流が可能な1石型昇圧回路を有する。本発明の実施の形態1にかかる電力変換装置30は、第1のコンデンサー302と、第1の端子と第2の端子とを有し第1の端子が第1のコンデンサーの302の正側と接続されたリアクトル303とを有する。ここで、リアクトル303の第1の端子は、第1のコンデンサー302と接続されるので、図1において、リアクトル303の左端を示している。第2の端子は、リアクトル303の右端である。 The power conversion device 30 according to the first embodiment of the present invention has a one-stone booster circuit capable of synchronous rectification. The power conversion device 30 according to the first exemplary embodiment of the present invention includes a first capacitor 302, a first terminal, and a second terminal, and the first terminal is a positive side of the first capacitor 302. And a connected reactor 303. Here, since the 1st terminal of the reactor 303 is connected with the 1st capacitor | condenser 302, the left end of the reactor 303 is shown in FIG. The second terminal is the right end of the reactor 303.
 本発明の実施の形態1にかかる電力変換装置30は、さらに、リアクトル303の第2の端子と第1のコンデンサー302の負側との間に接続された第1の半導体スイッチング素子304と、第1の半導体スイッチング素子304と逆並列に接続され、第1の半導体スイッチング素子304がオフ状態となったときに第1の半導体スイッチング素子304を保護する第1の整流素子305とを有する。すなわち、第1の半導体スイッチング素子304は、正端子がリアクトル303の第2の端子に接続し、負端子が第1のコンデンサー302の負側に接続している。第1の整流素子305は、アノード側が第1のコンデンサー302の負側に接続し、カソード側がリアクトル303の第2の端子に接続している。 The power conversion device 30 according to the first exemplary embodiment of the present invention further includes a first semiconductor switching element 304 connected between the second terminal of the reactor 303 and the negative side of the first capacitor 302, The first rectifying element 305 is connected in reverse parallel to the first semiconductor switching element 304 and protects the first semiconductor switching element 304 when the first semiconductor switching element 304 is turned off. That is, the first semiconductor switching element 304 has a positive terminal connected to the second terminal of the reactor 303 and a negative terminal connected to the negative side of the first capacitor 302. The first rectifying element 305 has an anode connected to the negative side of the first capacitor 302 and a cathode connected to the second terminal of the reactor 303.
 さらに、リアクトル303の第2の端子に接続され、第2の端子から送出された電流を整流する第2の整流素子306と、第2の整流素子306に逆並列に接続された第2の半導体スイッチング素子307と、第2の整流素子306によって整流された電流が流れる位置であって、第2の整流素子306と第1のコンデンサー302の負側に接続された第2のコンデンサー308とを有する。すなわち、第2の整流素子306は、アノード側がリアクトル303の第2の端子に接続し、カソード側が負荷309の正側に接続している。第2の半導体スイッチング素子307は、負端子がリアクトル303の第2の端子に接続し、正端子が第2のコンデンサー308の正側及び負荷309の正側に接続している。 Further, a second rectifier element 306 that is connected to the second terminal of the reactor 303 and rectifies the current sent from the second terminal, and a second semiconductor connected in antiparallel to the second rectifier element 306. The switching element 307 includes a second rectifying element 306 and a second capacitor 308 connected to the negative side of the first capacitor 302 at a position where the current rectified by the second rectifying element 306 flows. . That is, the second rectifying element 306 has an anode side connected to the second terminal of the reactor 303 and a cathode side connected to the positive side of the load 309. The second semiconductor switching element 307 has a negative terminal connected to the second terminal of the reactor 303 and a positive terminal connected to the positive side of the second capacitor 308 and the positive side of the load 309.
 ここで、第1のコンデンサー302の正側とは、図1において第1のコンデンサー302の上端を示している。したがって、第1のコンデンサー302の負側とは、図1において第1のコンデンサー302の下端である。なお、第2の整流素子306は、図1に示されているように整流方向が左から右へ向かう方向が順方向で、右から左へ向かう方向が逆方向となっている。 Here, the positive side of the first capacitor 302 indicates the upper end of the first capacitor 302 in FIG. Therefore, the negative side of the first capacitor 302 is the lower end of the first capacitor 302 in FIG. In the second rectifying element 306, as shown in FIG. 1, the direction of rectification from left to right is the forward direction, and the direction from right to left is the reverse direction.
 電源301は二極を有し、正極はリアクトル303の第1の端子と接続し、負極は第1の半導体スイッチング素子304と接続されている。さらに、電源301には、第1のコンデンサー302が並列に接続されている。負荷309は、正側に第2の整流素子306によって整流された電流が入力されるように接続されている。 The power supply 301 has two poles, the positive electrode is connected to the first terminal of the reactor 303, and the negative electrode is connected to the first semiconductor switching element 304. Furthermore, a first capacitor 302 is connected to the power supply 301 in parallel. The load 309 is connected so that the current rectified by the second rectifying element 306 is input to the positive side.
 本発明の実施の形態1にかかる電力変換装置30は、上述したような構成となっている同期整流が可能な1石型昇圧回路と、第1の半導体スイッチング素子304及び第2の半導体スイッチング素子307を駆動させる駆動信号を送出する駆動装置320と、第1の半導体スイッチング素子304及び第2の半導体スイッチング素子307の駆動を制御する制御信号を駆動装置320へ送出する制御装置321とを備えている。 The power conversion device 30 according to the first exemplary embodiment of the present invention includes a one-stone booster circuit configured as described above and capable of synchronous rectification, a first semiconductor switching element 304, and a second semiconductor switching element. A driving device 320 for sending a driving signal for driving 307; and a control device 321 for sending a control signal for controlling the driving of the first semiconductor switching element 304 and the second semiconductor switching element 307 to the driving device 320. Yes.
 駆動装置320は、第1の半導体スイッチング素子304の制御端子に対しては、第1の半導体スイッチング素子304を駆動する駆動信号315を送出し、第2の半導体スイッチング素子307の制御端子に対しては、第2の半導体スイッチング素子307を駆動する駆動信号316を送出する。制御装置321は、第1の半導体スイッチング素子304を制御する制御信号312と、第2の半導体スイッチング素子307を制御する制御信号314と、同期整流動作切り替え信号313とを駆動装置320へ送出する。 The driving device 320 sends a driving signal 315 for driving the first semiconductor switching element 304 to the control terminal of the first semiconductor switching element 304, and sends it to the control terminal of the second semiconductor switching element 307. Sends a drive signal 316 for driving the second semiconductor switching element 307. The control device 321 sends a control signal 312 for controlling the first semiconductor switching element 304, a control signal 314 for controlling the second semiconductor switching element 307, and a synchronous rectification operation switching signal 313 to the driving device 320.
 本発明の実施の形態1にかかる電力変換装置30は、制御装置321によって生成された第1の半導体スイッチング素子304の制御信号312を受けた駆動装置320が、第1の半導体スイッチング素子304のオン状態とオフ状態を切り替えることによって、電源301から出力された電圧よりも高い電圧を負荷309に出力する。 In the power conversion device 30 according to the first exemplary embodiment of the present invention, the drive device 320 that receives the control signal 312 of the first semiconductor switching element 304 generated by the control device 321 turns on the first semiconductor switching element 304. By switching between the state and the off state, a voltage higher than the voltage output from the power supply 301 is output to the load 309.
 本発明の実施の形態1にかかる電力変換装置30は、さらに、入力側電圧検出器310と、出力側電圧検出器311とを備えている。入力側電圧検出器310は、第1のコンデンサー302の両端にかかる電圧の値を測定している。出力側電圧検出器311は、第2のコンデンサー308の両端にかかる電圧の値を測定している。 The power conversion apparatus 30 according to the first embodiment of the present invention further includes an input side voltage detector 310 and an output side voltage detector 311. The input side voltage detector 310 measures the value of the voltage applied to both ends of the first capacitor 302. The output side voltage detector 311 measures the value of the voltage applied to both ends of the second capacitor 308.
 ここで電源301は、本発明の実施の形態1では、直流安定化電源を使用した場合を想定して説明するが、蓄電池、太陽光電池などであってもよい。また、負荷309は、本発明の実施の形態1ではインバータを介した交流負荷を想定して説明するが、本発明の実施の形態1にかかる電力変換装置30が接続される負荷309は、インバータを介した交流負荷に替えて、純抵抗負荷、定電力負荷などであってもよい。 Here, the power supply 301 will be described assuming that a DC stabilized power supply is used in the first embodiment of the present invention, but may be a storage battery, a solar battery, or the like. The load 309 is described assuming an AC load via an inverter in the first embodiment of the present invention, but the load 309 to which the power conversion device 30 according to the first embodiment of the present invention is connected is an inverter. A pure resistance load, a constant power load, or the like may be used instead of the AC load via the.
 第1の整流素子305は、第1の半導体スイッチング素子304がオフ状態となったときに第1の半導体スイッチング素子304を保護するものであるので、還流ダイオード、フリーホイールダイオード(FWD:Free Wheel Diode)などと呼ばれるものである。 Since the first rectifying element 305 protects the first semiconductor switching element 304 when the first semiconductor switching element 304 is turned off, a free wheel diode (FWD: Free Wheel Diode) is used. ) Etc.
 第2の半導体スイッチング素子307は、本発明の実施の形態1では、双方向に電流を流すことができる金属酸化物半導体電界効果トランジスタ(MOSFET:Metal Oxide Semiconductor Field Effect Transistor)としている。これに限ることはなく、絶縁ゲート型バイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)であってもよい。第2の半導体スイッチング素子307にIGBTを使用する場合は、IGBTは片方向にのみ電流が流れるので、コレクタ電極側を第2のコンデンサー308の正側と接続する。 In the first embodiment of the present invention, the second semiconductor switching element 307 is a metal oxide semiconductor field effect transistor (MOSFET) capable of flowing a current in both directions (MOSFET: Metal Oxide Semiconductor Field Effect Transistor). However, the present invention is not limited to this, and an insulated gate bipolar transistor (IGBT: Insulated Gate Bipolar Transistor) may be used. When an IGBT is used for the second semiconductor switching element 307, the current flows in only one direction of the IGBT, so the collector electrode side is connected to the positive side of the second capacitor 308.
 第1の半導体スイッチング素子304は、本発明の実施の形態1では、MOSFETとしているが、IGBTであってもよい。第1の半導体スイッチング素子304にIGBTを使用する場合は、IGBTは片方向にのみ電流が流れるので、コレクタ電極側をリアクトル303の第2の端子と接続する。 The first semiconductor switching element 304 is a MOSFET in the first embodiment of the present invention, but may be an IGBT. When an IGBT is used for the first semiconductor switching element 304, the current flows through the IGBT only in one direction, so the collector electrode side is connected to the second terminal of the reactor 303.
 本発明の実施の形態1にかかる電力変換装置30は、第2の半導体スイッチング素子307がオフ状態に維持され、かつ第1の半導体スイッチング素子304が第1のオン状態と第1のオフ状態とを切り替える第1の切り替えを行う非同期整流の状態から、第1の切り替えに同期して、第2の半導体スイッチング素子307が第2のオン状態と第2のオフ状態とを切り替える第2の切り替えを行う同期整流の状態へ移行する場合に、制御装置321は、同期整流の状態において第1の半導体スイッチング素子304を第1のオフ状態とする時に、第1のオフ状態の時間を示す第1のオフ時間よりも短い第2のオン時間で第2の半導体スイッチング素子307を第2のオン状態とするように制御することを特徴としている。すなわち、本発明の実施の形態1にかかる電力変換装置30は、制御装置321が本発明の実施の形態1にかかる電力変換装置30の主回路に対して送出する制御信号に特徴を有している。 In the power conversion device 30 according to the first exemplary embodiment of the present invention, the second semiconductor switching element 307 is maintained in the off state, and the first semiconductor switching element 304 is in the first on state and the first off state. The second switching in which the second semiconductor switching element 307 switches between the second on state and the second off state in synchronization with the first switching from the asynchronous rectification state in which the first switching is performed. In the case of shifting to the state of synchronous rectification to be performed, the control device 321 indicates the first off-state time when the first semiconductor switching element 304 is set to the first off state in the state of synchronous rectification. The second semiconductor switching element 307 is controlled to be in the second on state with a second on time shorter than the off time. That is, the power conversion device 30 according to the first embodiment of the present invention is characterized by the control signal that the control device 321 sends out to the main circuit of the power conversion device 30 according to the first embodiment of the present invention. Yes.
 本発明の実施の形態1にかかる電力変換装置30は、同期整流が可能な1石型昇圧回路において、非同期整流の状態から同期整流の状態へ移行する際に起きる課題を解決する。本発明の実施の形態1にかかる電力変換装置30についてさらに詳細な説明をする前に、まず、本発明の実施の形態1にかかる電力変換装置30が解決するその課題について説明する。 The power conversion device 30 according to the first exemplary embodiment of the present invention solves a problem that occurs when a single-step boost circuit capable of synchronous rectification shifts from an asynchronous rectification state to a synchronous rectification state. Before describing the power conversion device 30 according to the first embodiment of the present invention in more detail, first, the problem to be solved by the power conversion device 30 according to the first embodiment of the present invention will be described.
 図2は、本発明の実施の形態1にかかる電力変換装置30が解決する課題を説明するための図であり、比較例の電力変換装置の制御装置が送出する制御信号の波形とリアクトル303に流れる電流の波形を示した概略図である。 FIG. 2 is a diagram for explaining a problem to be solved by the power conversion device 30 according to the first exemplary embodiment of the present invention. The control signal waveform and the reactor 303 transmitted by the control device of the power conversion device of the comparative example are illustrated in FIG. It is the schematic which showed the waveform of the electric current which flows.
 本発明の実施の形態1にかかる電力変換装置30が有する主回路と、比較例の電力変換装置が有する主回路は同じ構成であるため、構成の図示は省略する。そのため、比較例の電力変換装置が有する主回路を構成しているものも、本発明の実施の形態1にかかる電力変換装置30が有する主回路を構成しているものと同じ名称及び符号を使用して図2を説明するが、図2は比較例の電力変換装置の制御装置が送出する制御信号の波形とリアクトルに流れる電流の波形である。 Since the main circuit included in the power conversion device 30 according to the first embodiment of the present invention and the main circuit included in the power conversion device of the comparative example have the same configuration, illustration of the configuration is omitted. Therefore, what constitutes the main circuit of the power conversion device of the comparative example uses the same name and code as those of the main circuit of the power conversion device 30 according to the first embodiment of the present invention. 2 will be described. FIG. 2 shows a waveform of a control signal sent out by the control device of the power conversion device of the comparative example and a waveform of a current flowing through the reactor.
 図2では、第1の半導体スイッチング素子304の駆動を制御する制御信号の波形が、第1の半導体スイッチング素子304のスイッチング信号波形5201として示されている。第2の半導体スイッチング素子307の駆動を制御する制御信号の波形は、第2の半導体スイッチング素子307のスイッチング信号波形5202として示されている。他に図2には、同期整流動作切り替え信号波形5204と、リアクトル303の電流波形5203とが示されている。リアクトル303の電流波形5203は、リアクトル303に流れる電流の波形を示しているが、これは概略波形であって、本来はこのように直線のみで表されるものではない。 In FIG. 2, the waveform of the control signal for controlling the driving of the first semiconductor switching element 304 is shown as the switching signal waveform 5201 of the first semiconductor switching element 304. A waveform of a control signal that controls driving of the second semiconductor switching element 307 is shown as a switching signal waveform 5202 of the second semiconductor switching element 307. In addition, FIG. 2 shows a synchronous rectification operation switching signal waveform 5204 and a current waveform 5203 of the reactor 303. Although the current waveform 5203 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
 第1のオン状態の時間を示す第1のオン時間は、図2ではT1として示し、第1のオフ状態の時間を示す第1のオフ時間はT2として示す。また、図2におけるスイッチング周期は、Tとして示され、第1の切り替えの1周期である。図2の動作を行う比較例の電力変換装置が備える回路において、第2の半導体スイッチング素子307をオフ状態に維持し、かつ第1の半導体スイッチング素子304が第1のオン状態と第1のオフ状態とを切り替える第1の切り替えを繰り返している非同期整流の状態において、例えば、第1のオン時間T1の方が第1のオフ時間T2よりも短く、リアクトル303に蓄えられるエネルギーが少ない場合を考える。図2において、領域A1は非同期整流を行っている状態の範囲を示しているが、領域A1では、同期整流が可能な1石型昇圧回路の第1の半導体スイッチング素子304に対して送出されている制御信号の波形は、図2のスイッチング信号波形5201に示されるように、第1のオン時間T1が短いためにリアクトル303に蓄えられるエネルギーが少ない。第2の半導体スイッチング素子307をオフ状態に維持し、かつ第1の半導体スイッチング素子304が第1のオン状態と第1のオフ状態とを切り替える第1の切り替えを行う非同期整流の状態とは、同期整流動作切り替え信号波形5204がオンになる前である。 The first ON time indicating the time of the first ON state is indicated as T1 in FIG. 2, and the first OFF time indicating the time of the first OFF state is indicated as T2. Moreover, the switching period in FIG. 2 is shown as T and is one period of the first switching. In the circuit included in the power conversion device of the comparative example that performs the operation of FIG. 2, the second semiconductor switching element 307 is maintained in the off state, and the first semiconductor switching element 304 is in the first on state and the first off state. In the asynchronous rectification state in which the first switching for switching between states is repeated, for example, consider a case where the first on-time T1 is shorter than the first off-time T2 and less energy is stored in the reactor 303. . In FIG. 2, region A1 shows the range of the state where asynchronous rectification is performed. In region A1, the region A1 is sent to the first semiconductor switching element 304 of the one-stone booster circuit capable of synchronous rectification. As shown in the switching signal waveform 5201 of FIG. 2, the control signal waveform has a short energy stored in the reactor 303 because the first on-time T1 is short. The state of asynchronous rectification in which the second semiconductor switching element 307 is maintained in the off state and the first semiconductor switching element 304 performs the first switching for switching between the first on state and the first off state is: Before the synchronous rectification operation switching signal waveform 5204 is turned on.
 図2に示すように、第1のオン時間T1の方が第1のオフ時間T2よりも短く、リアクトル303に蓄えられるエネルギーが少ないとき、リアクトル303に流れる電流が、一時的に0となって電流が不連続となることがある。このように、第1のオン時間T1が第1のオフ時間T2よりも短くするなどしたことで、電流が不連続に流れる状態する動作を、不連続モードと呼ぶことにする。 As shown in FIG. 2, when the first on-time T1 is shorter than the first off-time T2 and less energy is stored in the reactor 303, the current flowing through the reactor 303 temporarily becomes zero. The current may be discontinuous. As described above, an operation in which a current flows discontinuously due to the first on-time T1 being shorter than the first off-time T2 is referred to as a discontinuous mode.
 領域A1の状態では、図2の動作を行う比較例の電力変換装置は、第1の半導体スイッチング素子304をオン状態にしている間はリアクトル303にエネルギーを蓄積し、第1の半導体スイッチング素子304をオフ状態としている間ではリアクトル303に蓄えられたエネルギーを第2の整流素子306を通過させて負荷309へと供給している。このとき、第2の整流素子306を通過した電流によって第2の整流素子306で電圧降下が発生する。第2の整流素子306に流れる電流と電圧降下した電圧の積が第2の整流素子306で発生する電力損失となる。 In the state of the region A1, the power conversion device of the comparative example that performs the operation of FIG. 2 accumulates energy in the reactor 303 while the first semiconductor switching element 304 is turned on, and the first semiconductor switching element 304 Is in the off state, the energy stored in the reactor 303 is supplied to the load 309 through the second rectifying element 306. At this time, a voltage drop occurs in the second rectifier element 306 due to the current that has passed through the second rectifier element 306. The product of the current flowing through the second rectifier element 306 and the voltage that has dropped is the power loss generated in the second rectifier element 306.
 ここで、リアクトル303に電流が流れなくなると、第2のコンデンサー308の両端にかかる電圧の方が、第1のコンデンサー302の両端にかかる電圧よりも高くなっている。そのため、第2の半導体スイッチング素子307がオン状態であれば、第2のコンデンサー308側から第1のコンデンサー302側へと電流が流れる。しかしながら、領域A1の状態では第2の半導体スイッチング素子307はオフ状態であり、かつ第2の整流素子306が逆方向への電流を防止しているので、第2のコンデンサー308側から第1のコンデンサー302側へと電流は流れない。したがって、第2のコンデンサー308から第1のコンデンサー302へ、すなわちリアクトル303の第2の端子から第1の端子へと電流が流れることはない。なお、以下では、リアクトル303の第1の端子から第2の端子へ電流が流れる方向を正方向(順方向)と呼び、第2の端子から第1の端子へ電流が流れる方向を負方向(逆方向)と呼ぶことにする。 Here, when no current flows through the reactor 303, the voltage applied to both ends of the second capacitor 308 is higher than the voltage applied to both ends of the first capacitor 302. Therefore, if the second semiconductor switching element 307 is in an on state, a current flows from the second capacitor 308 side to the first capacitor 302 side. However, in the state of the region A1, the second semiconductor switching element 307 is in the off state, and the second rectifier element 306 prevents the current in the reverse direction. No current flows to the capacitor 302 side. Therefore, no current flows from the second capacitor 308 to the first capacitor 302, that is, from the second terminal of the reactor 303 to the first terminal. Hereinafter, the direction in which current flows from the first terminal to the second terminal of the reactor 303 is referred to as a positive direction (forward direction), and the direction in which current flows from the second terminal to the first terminal is negative ( We will call it the reverse direction.
 領域A1の非同期整流を行っている状態から、同期整流の状態へ移行する。同期整流は、同期整流動作切り替え信号がオン状態になることによって始まる。図2では、同期整流動作切り替え信号がオン状態となるタイミングと、制御装置321が第1の半導体スイッチング素子304をオン状態とするタイミングとが同じであるので、制御装置321が第1の半導体スイッチング素子304をオフ状態にする時に第2の半導体スイッチング素子307をオン状態とする。第1の半導体スイッチング素子304をオン状態にしている間はリアクトル303にエネルギーを蓄積し、制御装置321が第1の半導体スイッチング素子304をオフ状態とし、第2の半導体スイッチング素子307をオン状態とする間ではリアクトル303に蓄えられたエネルギーを第2の半導体スイッチング素子307を通過させて負荷309へと供給する。正方向に流れていた電流が0となると、第2のコンデンサー308の両端にかかる電圧の方が、第1のコンデンサー302の両端にかかる電圧よりも高くなっている。そのため、次は第2の半導体スイッチング素子307を通って負方向に電流が流れる。 Transition from the state of performing asynchronous rectification in the area A1 to the state of synchronous rectification. Synchronous rectification starts when the synchronous rectification operation switching signal is turned on. In FIG. 2, the timing at which the synchronous rectification operation switching signal is turned on is the same as the timing at which the control device 321 turns the first semiconductor switching element 304 on, so that the control device 321 performs the first semiconductor switching. When the element 304 is turned off, the second semiconductor switching element 307 is turned on. While the first semiconductor switching element 304 is in the on state, energy is stored in the reactor 303, and the control device 321 turns off the first semiconductor switching element 304 and turns on the second semiconductor switching element 307. In the meantime, the energy stored in the reactor 303 is supplied to the load 309 through the second semiconductor switching element 307. When the current flowing in the positive direction becomes zero, the voltage applied to both ends of the second capacitor 308 is higher than the voltage applied to both ends of the first capacitor 302. Therefore, next, a current flows in the negative direction through the second semiconductor switching element 307.
 第1のコンデンサー302に流れる電流は、リアクトル303を通過して流れる。したがって、第1のコンデンサー302への急激な電流増加は抑制される。負方向に流れる電流の増加量は、第1のコンデンサー302の両端の電圧の値と第2のコンデンサー308の両端の電圧の値とリアクトル303のインダクタンスの値によって決まるものである。 The current flowing through the first capacitor 302 flows through the reactor 303. Therefore, a rapid current increase to the first capacitor 302 is suppressed. The amount of increase in the current flowing in the negative direction is determined by the voltage value at both ends of the first capacitor 302, the voltage value at both ends of the second capacitor 308, and the inductance value of the reactor 303.
 その後、制御装置321が次のスイッチング周期Tで第2の半導体スイッチング素子307をオフ状態とし、第1の半導体スイッチング素子305をオン状態とすると、第2のコンデンサー308側から第1のコンデンサー302側へ電流が流れる経路は無くなる。そのため、負方向への電流増加はなくなり、負方向に流れていた電流は0となる。さらには正方向への電流となる。図2におけるリアクトル303の電流波形5203は概略図であるので、負方向に流れていた電流が0に近づいていくときの電流波形の傾きと、0から正方向へ電流が流れていくときの電流波形の傾きとを同じにして示している。しかしながら、上述したように、リアクトル303の電流波形5203は、本来はこのような直線のみで表されるものではないので、必ずしもこのように負方向に流れていた電流が0に近づいていくときの電流波形と、0から正方向へ電流が流れていくときの電流波形が同じ形状ではない。 After that, when the control device 321 turns off the second semiconductor switching element 307 and turns on the first semiconductor switching element 305 in the next switching cycle T, the second capacitor 308 side to the first capacitor 302 side There is no longer a path for current to flow. Therefore, there is no increase in current in the negative direction, and the current flowing in the negative direction becomes zero. Furthermore, the current is in the positive direction. Since the current waveform 5203 of the reactor 303 in FIG. 2 is a schematic diagram, the slope of the current waveform when the current flowing in the negative direction approaches 0 and the current when the current flows from 0 to the positive direction are shown. The waveform is shown with the same slope. However, as described above, the current waveform 5203 of the reactor 303 is not originally represented only by such a straight line, and thus the current that has flowed in the negative direction as described above is not necessarily zero. The current waveform and the current waveform when current flows from 0 to the positive direction are not the same shape.
 さらにその後、制御装置321が第1の半導体スイッチング素子304をオフ状態とし、第2の半導体スイッチング素子307をオン状態とすると、リアクトル303の正方向へ流れていた電流は0となり、負方向へ電流が流れ始める。そして、制御装置321が次のスイッチング周期Tで、再び第2の半導体スイッチング素子307をオフ状態とし、第1の半導体スイッチング素子305をオン状態とする。比較例の電力変換装置では、第2の半導体スイッチング素子307の制御信号は、同期整流の状態へ移行した時点から、第1の半導体スイッチング素子304の制御信号の反転信号である。 After that, when the control device 321 turns off the first semiconductor switching element 304 and turns on the second semiconductor switching element 307, the current flowing in the positive direction of the reactor 303 becomes 0, and the current flows in the negative direction. Begins to flow. Then, in the next switching cycle T, the control device 321 turns off the second semiconductor switching element 307 and turns on the first semiconductor switching element 305 again. In the power conversion device of the comparative example, the control signal of the second semiconductor switching element 307 is an inverted signal of the control signal of the first semiconductor switching element 304 from the time when the state is shifted to the synchronous rectification state.
 ここで、同期整流を開始した直後の2回目のスイッチング周期Tである領域Pにおけるリアクトル303に流れる電流の平均値を求めると、その値は、負方向に流れる電流量が多いため、負の値となる。 Here, when the average value of the current flowing through the reactor 303 in the region P that is the second switching cycle T immediately after the start of the synchronous rectification is obtained, the value is a negative value because the amount of current flowing in the negative direction is large. It becomes.
 図2における第1のオン時間T1は、リアクトル303に流れる電流が正方向の状態で、第1のオフ時間T2よりも短く、負荷で消費される電力分を賄うことができるように求められたものである。したがって、リアクトル303に流れる逆方向の電流量が多くなり、1回のスイッチング周期T内におけるリアクトル303に流れる電流の平均値が負の値となると、第1のオン時間T1でリアクトル303を充電しただけでは、負荷で消費する電力を賄うことができなくなる。 The first on-time T1 in FIG. 2 is obtained so that the current flowing through the reactor 303 is in a positive direction and is shorter than the first off-time T2 and can cover the power consumed by the load. Is. Accordingly, when the amount of current flowing in the reverse direction through the reactor 303 increases and the average value of the current flowing through the reactor 303 within one switching cycle T becomes a negative value, the reactor 303 is charged in the first on-time T1. Alone will not be able to cover the power consumed by the load.
 リアクトル303に流れる電流が負方向のとき、第2のコンデンサー308から第1のコンデンサー302へと電力が供給されている。1回のスイッチング周期T内にリアクトル303に流れる電流が負方向となるような状況が含まれていても、負荷に供給したい電力は、リアクトル303に流れる電流の平均値が正の値である限り、負荷に供給されている。しかしながら、1回のスイッチング周期T内におけるリアクトル303に流れる電流の平均値が負の値であるということは、第2のコンデンサー308から第1のコンデンサー302へと供給される電力が多く、負荷に供給したい電力が供給されていないということを表す。すなわち、図2の動作を行う比較例の電力変換装置が出力した電力の値は、領域Pにおいて図2の動作を行う比較例の電力変換装置が負荷に供給したい電力の値より低くなっていることになる。つまり、図2の動作を行う比較例の電力変換装置は、負荷が必要とする電力を供給出来ていないことになる。 When the current flowing through the reactor 303 is negative, power is supplied from the second capacitor 308 to the first capacitor 302. Even if a situation in which the current flowing through the reactor 303 is in the negative direction within one switching cycle T is included, as long as the average value of the current flowing through the reactor 303 is a positive value, Is being supplied to the load. However, the average value of the current flowing through the reactor 303 within one switching period T is a negative value, which means that a large amount of power is supplied from the second capacitor 308 to the first capacitor 302, and is applied to the load. This indicates that the power to be supplied is not supplied. That is, the value of the power output by the power converter of the comparative example that performs the operation of FIG. 2 is lower than the value of power that the power converter of the comparative example that performs the operation of FIG. It will be. That is, the power conversion device of the comparative example that performs the operation of FIG. 2 cannot supply the power required by the load.
 さらに、第1の半導体スイッチング素子304及び第2の半導体スイッチング素子307のスイッチング速度が低速である場合、かつ第2の半導体スイッチング素子307のオン時間が長い場合においては、リアクトル303に流れる負方向の電流が多くなってしまう。そのため、想定以上の電流が電源へ回生するということが発生したり、第1のコンデンサー302の両端の電圧が想定以上に大きくなったり、第2のコンデンサー308の両端の電圧が想定以下に小さくなったりする。その結果、図2の動作を行う比較例の電力変換装置の保護機能による動作停止など、望ましくない動作が生じてしまう可能性がある。 Furthermore, when the switching speed of the first semiconductor switching element 304 and the second semiconductor switching element 307 is low and when the ON time of the second semiconductor switching element 307 is long, the negative direction of the current flowing through the reactor 303 is reduced. The current will increase. For this reason, it may occur that a current larger than expected is regenerated to the power supply, the voltage across the first capacitor 302 becomes larger than expected, or the voltage across the second capacitor 308 becomes smaller than expected. Or As a result, there is a possibility that an undesirable operation such as an operation stop by the protection function of the power conversion device of the comparative example that performs the operation of FIG. 2 may occur.
 例えば、電源が太陽電池である場合は、負荷は電力系統や交流負荷である。太陽電池と負荷との間には、昇圧回路とインバータとを有する太陽光発電用パワーコンディショナーがあり、電力変換装置は、太陽光発電用パワーコンディショナーの昇圧回路に相当する。電源が太陽電池である場合に、電力変換装置が不連続モードになるのは、例えば、太陽電池の出力電力が低く電力変換装置に流れる電流が少ない場合や、太陽光発電用パワーコンディショナーが接続する電力系統の状態によって太陽電池の出力電力が抑制されて電力変換装置に流れる電流が少ない場合などが考えられる。太陽電池は、出力する電流が小さい場合、太陽電池の電圧が高くなる特性を持っている。電力変換装置が不連続モードになる場合は、第1のコンデンサーが太陽電池と並列に接続されているために同じように第1のコンデンサーの電圧が高くなる。 For example, when the power source is a solar battery, the load is a power system or an AC load. There is a photovoltaic power conditioner having a booster circuit and an inverter between the solar cell and the load, and the power converter corresponds to a booster circuit of the photovoltaic power conditioner. When the power source is a solar cell, the power conversion device is in the discontinuous mode, for example, when the output power of the solar cell is low and the current flowing through the power conversion device is small, or when the power conditioner for solar power generation is connected The case where the output electric power of a solar cell is suppressed by the state of an electric power system, and the electric current which flows into a power converter device is few etc. can be considered. The solar cell has a characteristic that the voltage of the solar cell increases when the output current is small. When the power conversion device is in the discontinuous mode, the voltage of the first capacitor is similarly increased because the first capacitor is connected in parallel with the solar cell.
 このとき、非同期整流の状態であれば、第2のコンデンサーから第1のコンデンサーへ流れる電流はない。しかしながら、非同期整流の状態から同期整流の状態へ移行した場合には、第1のコンデンサーへの電流の流入があり、第1のコンデンサーの電圧が上昇する。太陽電池は、電池の特性上、ある一定以上の電圧の値以上に電圧の値は上がらないため、第1のコンデンサーの電圧が、太陽電池の電圧よりも高くなった場合は、太陽電池へ電流が流入する可能性がある。 At this time, there is no current flowing from the second capacitor to the first capacitor in the asynchronous rectification state. However, when the asynchronous rectification state is changed to the synchronous rectification state, there is an inflow of current to the first capacitor, and the voltage of the first capacitor rises. Since the voltage of the solar cell does not increase beyond a certain voltage value due to the characteristics of the battery, if the voltage of the first capacitor becomes higher than the voltage of the solar cell, the current flows to the solar cell. May flow in.
 太陽電池にとって電流の逆流は非常に望ましくないため、太陽電池と直列にダイオードが挿入される場合が多いが、第1のコンデンサーの電圧の値が太陽電池の電圧よりも高い場合には、太陽光発電用パワーコンディショナーの動作を停止させるなどの保護機能が動作してしまい、電力変換装置を停止することが考えられる。 Since the reverse current of the current is very undesirable for the solar cell, a diode is often inserted in series with the solar cell. However, if the voltage value of the first capacitor is higher than the voltage of the solar cell, It is conceivable that a protective function such as stopping the operation of the power conditioner for power generation is activated and the power converter is stopped.
 また、例えば、電源が蓄電池である場合は、電力変換装置は双方向の直流-直流変換器である。電源が蓄電池である場合に、例えば蓄電池が十分に充電されている状態で、上記のような非同期整流の状態から同期整流の状態へ移行して、電流が逆流してくると、充電過多となることが考えられる。さらに、充電過多とならないように保護機能が動作して、電力変換装置を停止することも考えられる。 For example, when the power source is a storage battery, the power conversion device is a bidirectional DC-DC converter. When the power source is a storage battery, for example, when the storage battery is sufficiently charged and the current shifts from the asynchronous rectification state to the synchronous rectification state as described above and the current flows backward, overcharging occurs. It is possible. Furthermore, it is conceivable that the protection function operates so as not to overcharge and the power converter is stopped.
 図2の動作を行う比較例の電力変換装置では、1回のスイッチング周期T内におけるリアクトル303に流れる電流の平均値が負の値となったとき、すなわち負荷に供給したい電力の値よりも出力した電力の値の方が低くなってしまったとき、そこから制御装置が、第1のオン時間T1を、リアクトル303を十分に充電するために必要な第1の半導体スイッチング素子304のオン時間に調整していくこともある。図2の領域P以降は、制御装置が、必要な第1のオン時間T1を求めながら、第1の半導体スイッチング素子304のオン時間を変化させ、1回のスイッチング周期T内におけるリアクトル303に流れる電流の平均値が正の値となるように調整している様子を示している。 In the power conversion device of the comparative example that performs the operation of FIG. 2, when the average value of the current flowing through the reactor 303 in one switching cycle T becomes a negative value, that is, the output is larger than the value of the power that is desired to be supplied to the load. When the value of the generated power becomes lower, the control device uses the first on-time T1 as the on-time of the first semiconductor switching element 304 necessary for sufficiently charging the reactor 303. It may be adjusted. After the region P in FIG. 2, the control device changes the on-time of the first semiconductor switching element 304 while obtaining the necessary first on-time T1, and flows to the reactor 303 within one switching cycle T. It shows a state where the average value of the current is adjusted so as to be a positive value.
 しかしながら、1回のスイッチング周期T内におけるリアクトル303に流れる電流の平均値が負の値となっている状況をすぐに改善することは困難である。以上のように、図2の動作を行う比較例の電力変換装置では、非同期整流の状態から同期整流の状態に移行する際に、逆方向に流れる電流量が多くなり、負荷309に供給したい電力を負荷309に供給出来ていない状態が発生してしまうという課題があった。すなわち、図2の動作を行う比較例の電力変換装置は負荷309に供給するべき電力を負荷309に供給することが出来ず、図2の比較例の電力変換装置が負荷309に供給する電力に変動が発生してしまうという課題があった。 However, it is difficult to immediately improve the situation where the average value of the current flowing through the reactor 303 in one switching cycle T is a negative value. As described above, in the power conversion device of the comparative example that performs the operation of FIG. 2, the amount of current flowing in the reverse direction increases when shifting from the asynchronous rectification state to the synchronous rectification state, and the power to be supplied to the load 309 There is a problem that a state where the power cannot be supplied to the load 309 occurs. That is, the power converter of the comparative example that performs the operation of FIG. 2 cannot supply the power to be supplied to the load 309 to the load 309, and the power that is supplied to the load 309 by the power converter of the comparative example of FIG. There was a problem that fluctuations would occur.
 次に、以下では、本発明の実施の形態1にかかる電力変換装置30について詳細な説明をする。本発明は、逆方向に流れる電流量を抑制した電力変換装置を得ることを目的としている。本発明の実施の形態1にかかる電力変換装置30は、制御装置321が第2の半導体スイッチング素子307をオフ状態に維持し、かつ第1の半導体スイッチング素子304を第1のオン状態と第1のオフ状態とに切り替える第1の切り替えを行う非同期整流の状態から、第1の切り替えに同期して、第2の半導体スイッチング素子307を第2のオン状態と第2のオフ状態とに切り替える第2の切り替えを行う同期整流の状態へ移行する場合に起きる課題を解決する。 Next, the power converter 30 according to the first embodiment of the present invention will be described in detail below. An object of this invention is to obtain the power converter device which suppressed the electric current amount which flows into a reverse direction. In the power conversion device 30 according to the first exemplary embodiment of the present invention, the control device 321 maintains the second semiconductor switching element 307 in the off state, and sets the first semiconductor switching element 304 in the first on state and the first on state. The second semiconductor switching element 307 is switched from the second on-state to the second off-state in synchronization with the first switching from the asynchronous rectification state in which the first switching to the off-state is performed. The problem which arises when shifting to the state of the synchronous rectification which switches 2 is solved.
 図3は、本発明の実施の形態1にかかる電力変換装置30の制御装置321が送出する制御信号の波形とリアクトル303に流れる電流の波形を示した概略図である。図3では、第1の半導体スイッチング素子304の制御信号312の波形が、第1の半導体スイッチング素子304のスイッチング信号波形6201として示されている第2の半導体スイッチング素子307の制御信号314の波形は、第2の半導体スイッチング素子307のスイッチング信号波形6202として示されている。他に図3には、同期整流動作切り替え信号波形6204と、リアクトル303の電流波形6203とが示されている。リアクトル303の電流波形6203は、リアクトル303に流れる電流の波形を示しているが、これは概略波形であって、本来はこのように直線のみで表されるものではない。 FIG. 3 is a schematic diagram illustrating a waveform of a control signal transmitted by the control device 321 of the power conversion device 30 according to the first embodiment of the present invention and a waveform of a current flowing through the reactor 303. In FIG. 3, the waveform of the control signal 314 of the second semiconductor switching element 307 in which the waveform of the control signal 312 of the first semiconductor switching element 304 is shown as the switching signal waveform 6201 of the first semiconductor switching element 304 is , Shown as a switching signal waveform 6202 of the second semiconductor switching element 307. In addition, FIG. 3 shows a synchronous rectification operation switching signal waveform 6204 and a current waveform 6203 of the reactor 303. Although the current waveform 6203 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
 図3において、領域A1に示す信号波形及び電流波形は、図2の領域A1の信号波形及び電流波形と同じである。したがって、図3の領域A1は、制御装置321が第2の半導体スイッチング素子307をオフ状態に維持し、かつ第1の半導体スイッチング素子304を第1のオン状態と第1のオフ状態とに切り替える第1の切り替えを行う非同期整流の状態を示している。この領域A1の状態から、同期整流の状態へ移行する。ここで、スイッチング周期Tは、第2の切り替えの1周期でもある。すなわち、第1の切り替えの1周期と第2の切り替えの1周期は同じであるので、第1の半導体スイッチング素子304のスイッチング周波数と第2の半導体スイッチング素子307のスイッチング周波数は等しい。 In FIG. 3, the signal waveform and the current waveform shown in the region A1 are the same as the signal waveform and the current waveform in the region A1 in FIG. Therefore, in the region A1 of FIG. 3, the control device 321 maintains the second semiconductor switching element 307 in the off state and switches the first semiconductor switching element 304 between the first on state and the first off state. The state of asynchronous rectification for performing the first switching is shown. The state of this area A1 shifts to the state of synchronous rectification. Here, the switching period T is also one period of the second switching. That is, since one cycle of the first switching and one cycle of the second switching are the same, the switching frequency of the first semiconductor switching element 304 and the switching frequency of the second semiconductor switching element 307 are equal.
 本発明の実施の形態1にかかる電力変換装置30の制御装置321は、領域A1の状態から同期整流の状態へ移行する場合に、同期整流の状態において制御装置321が第1の半導体スイッチング素子304を第1のオフ状態を維持している時に、第1のオフ状態の時間を示す第1のオフ時間T2よりも短い第2のオン時間T3で第2の半導体スイッチング素子307を第2のオン状態とするように制御することを特徴としている。第2のオン時間T3は、第1のオフ時間T2からデッドタイム期間(1μsから5μs程度)を引いた時間よりも短いものである。 When the control device 321 of the power conversion device 30 according to the first exemplary embodiment of the present invention shifts from the state of the region A1 to the synchronous rectification state, the control device 321 performs the first semiconductor switching element 304 in the synchronous rectification state. Is maintained in the first off state, the second semiconductor switching element 307 is turned on in the second on time T3 that is shorter than the first off time T2 indicating the time of the first off state. It is characterized by controlling to be in a state. The second on-time T3 is shorter than the time obtained by subtracting the dead time period (about 1 μs to 5 μs) from the first off-time T2.
 通常、第1の半導体スイッチング素子304及び第2の半導体スイッチング素子307がオン状態からオフ状態に切り替わるためには数百ns程度の時間を要する。また、オフ状態からオン状態に切り替わる場合も同様であり、制御装置321が第1の半導体スイッチング素子304をオフ状態に切り換える信号と第2の半導体スイッチング307をオン状態に切り替える信号を同時に出力した場合、駆動装置320内部の信号伝達遅延によっては第1の半導体スイッチング素子304と第2の半導体スイッチング素子307が同時にオン状態となる期間が発生することがある。そして、第2のコンデンサー308は第2の半導体スイッチング素子307と第1の半導体スイッチング素子304によって正極と負極を短絡させられることがある。この場合、第1の半導体スイッチング素子304及び第2の半導体スイッチング素子307には短絡電流が流れ、第1の半導体スイッチング素子304及び第2の半導体スイッチング素子307を破壊する恐れがある。そのため、通常、第1の半導体スイッチング素子304及び第2の半導体スイッチング素子307のオン状態とオフ状態を切り替える場合にはデッドタイム期間を設ける。 Usually, it takes about several hundreds of ns for the first semiconductor switching element 304 and the second semiconductor switching element 307 to switch from the on state to the off state. The same applies to the case of switching from the off state to the on state, where the control device 321 outputs a signal for switching the first semiconductor switching element 304 to the off state and a signal for switching the second semiconductor switching 307 to the on state at the same time. Depending on the signal transmission delay in the driving device 320, there may occur a period in which the first semiconductor switching element 304 and the second semiconductor switching element 307 are turned on simultaneously. The second capacitor 308 may be short-circuited between the positive electrode and the negative electrode by the second semiconductor switching element 307 and the first semiconductor switching element 304. In this case, a short-circuit current flows through the first semiconductor switching element 304 and the second semiconductor switching element 307, and there is a possibility that the first semiconductor switching element 304 and the second semiconductor switching element 307 are destroyed. Therefore, a dead time period is usually provided when the first semiconductor switching element 304 and the second semiconductor switching element 307 are switched between the on state and the off state.
 同期整流は、同期整流動作切り替え信号313がオン状態になることによって始まる。同期整流切り替え信号313によって同期整流が可能となったところから、第2の半導体スイッチング素子307をオン状態にできるようになる。 Synchronous rectification starts when the synchronous rectification operation switching signal 313 is turned on. Since the synchronous rectification is enabled by the synchronous rectification switching signal 313, the second semiconductor switching element 307 can be turned on.
 制御装置321が第2の半導体スイッチング素子307をオン状態にしている期間のみ、電流がリアクトル303を負方向に流れる。この期間は、本発明の実施の形態1では、第2の半導体スイッチング素子307のオン時間は、第1の半導体スイッチング素子304のオフ時間よりも短くなっている。この動作によって、本発明の実施の形態1にかかる電力変換装置30は、電流がリアクトル303を逆方向に流れる量を抑制することができる。すなわち、本発明の実施の形態1にかかる電力変換装置は、負荷309に供給する電力の変動を抑制することができる。第1のオフ時間T2よりも短くした第2のオン時間T3で第2の半導体スイッチング素子307をオン状態とする第2の切り替えは複数回あることが好ましく、それによってさらに電流がリアクトル303を逆方向に流れる量を抑制することができる。 Only during the period when the control device 321 turns on the second semiconductor switching element 307, the current flows through the reactor 303 in the negative direction. During this period, in the first embodiment of the present invention, the on-time of the second semiconductor switching element 307 is shorter than the off-time of the first semiconductor switching element 304. By this operation, the power conversion device 30 according to the first embodiment of the present invention can suppress the amount of current flowing through the reactor 303 in the reverse direction. That is, the power conversion device according to the first embodiment of the present invention can suppress fluctuations in the power supplied to the load 309. It is preferable that the second switching to turn on the second semiconductor switching element 307 at the second on-time T3 shorter than the first off-time T2 is performed a plurality of times, so that the current further reverses the reactor 303. The amount flowing in the direction can be suppressed.
 本発明の実施の形態1では、制御装置321が送出する第2の半導体スイッチング素子307の制御信号314は、図3の第2の半導体スイッチング素子307のスイッチング信号波形6202に示すような波形であって、さらに、第1のオフ時間T2よりも短くした第2の半導体スイッチング素子307のオン時間を徐々に長くするという特徴がある。最終的には第2の半導体スイッチング素子307のオン時間は、第1の半導体スイッチング素子304の第1のオフ時間T2と同じ長さにする。すなわち、同期整流の状態に移行後の2回目以降の第2の切り替えにおける第2のオン時間を、移行後の1回目の第2の切り替えにおける第2のオン時間よりも長くする。 In the first embodiment of the present invention, the control signal 314 of the second semiconductor switching element 307 sent out by the control device 321 has a waveform as shown in the switching signal waveform 6202 of the second semiconductor switching element 307 in FIG. Further, there is a feature that the ON time of the second semiconductor switching element 307, which is shorter than the first OFF time T2, is gradually increased. Finally, the ON time of the second semiconductor switching element 307 is set to be the same length as the first OFF time T2 of the first semiconductor switching element 304. That is, the second on-time in the second and subsequent second switching after the transition to the synchronous rectification state is made longer than the second on-time in the first second switching after the transition.
 図3の第2の半導体スイッチング素子307のスイッチング信号波形6202について、さらに詳しく説明する。まず、図3に示すように、同期整流の状態に移行後の1回目の第2の切り替えにおける第2の半導体スイッチング素子307のオン時間を第2のオン時間T3とする。もちろん、第2のオン時間T3は、第1の半導体スイッチング素子304のオフ時間T2より短くなる。次のスイッチング周期T、すなわち同期整流の状態に移行後の2回目の第2の切り替えにおける第2の半導体スイッチング素子307のオン時間は、第2のオン時間T3よりも長いオン時間T5とする。そして、次のスイッチング周期Tにおける第2の半導体スイッチング素子307のオン時間は、オン時間T5よりも長いオン時間T7とする。さらに、次のスイッチング周期Tにおける第2の半導体スイッチング素子307のオン時間は、オン時間T7よりも長いオン時間T9とする。このようにして、第2の半導体スイッチング素子307のオン時間を徐々に長くし、最終的には、第1の半導体スイッチング素子304の第1のオフ時間T2と同じ長さにする。すなわち、最終的には、第2の半導体スイッチング素子307の駆動を制御する制御信号312は、第1の半導体スイッチング素子304の駆動を制御する制御信号314の反転信号となる。 The switching signal waveform 6202 of the second semiconductor switching element 307 in FIG. 3 will be described in more detail. First, as shown in FIG. 3, the on-time of the second semiconductor switching element 307 in the second switching for the first time after shifting to the synchronous rectification state is set as a second on-time T3. Of course, the second on-time T3 is shorter than the off-time T2 of the first semiconductor switching element 304. The on-time of the second semiconductor switching element 307 in the second switching period T, that is, the second switching after the transition to the synchronous rectification state, is an on-time T5 longer than the second on-time T3. The on-time of the second semiconductor switching element 307 in the next switching period T is an on-time T7 longer than the on-time T5. Further, the on-time of the second semiconductor switching element 307 in the next switching period T is an on-time T9 longer than the on-time T7. In this way, the ON time of the second semiconductor switching element 307 is gradually increased, and finally the same length as the first OFF time T2 of the first semiconductor switching element 304 is set. That is, finally, the control signal 312 for controlling the driving of the second semiconductor switching element 307 becomes an inverted signal of the control signal 314 for controlling the driving of the first semiconductor switching element 304.
 第1の半導体スイッチング素子304と第2の半導体スイッチング素子307とがオフ状態で、電流が正方向に流れるときは、電流は第2の整流素子306を通るため、電圧降下が大きく、電力損失が大きくなってしまう。しかしながら、図3に示したように、第1の半導体スイッチング素子304のオフ時間T2よりも短くした第2の半導体スイッチング素子307のオン時間を徐々に長くし、最終的には、第1のオフ時間T2と同じ長さにすれば、逆方向に流れる電流量を抑制することができ、かつ同期整流を行う本来の目的である電力損失を抑えることができる。第1の半導体スイッチング素子304も第2の半導体スイッチング素子307もオフ状態で、電流が正方向に流れるということが、最終的にはなくなるからである。 When the first semiconductor switching element 304 and the second semiconductor switching element 307 are in the OFF state and the current flows in the positive direction, the current flows through the second rectifier element 306, so that the voltage drop is large and the power loss is large. It gets bigger. However, as shown in FIG. 3, the ON time of the second semiconductor switching element 307, which is shorter than the OFF time T2 of the first semiconductor switching element 304, is gradually increased, and finally the first OFF If the length is the same as the time T2, the amount of current flowing in the reverse direction can be suppressed, and power loss, which is the original purpose of performing synchronous rectification, can be suppressed. This is because the first semiconductor switching element 304 and the second semiconductor switching element 307 are in the off state, and the current does not flow in the positive direction in the end.
 第2の半導体スイッチング素子307のオン時間を増加させる際の増加量は、回路構成や制御の応答速度によって適切な量があると考えられるが、例えば、1秒で第1の半導体スイッチング素子304のオフ時間T2と同じ長さまで線形的に、第2の半導体スイッチング素子307のオン時間を増加させる方法がある。他にも、0.5秒で2次関数的に増加させる方法なども考えられるが、これらだけに限定されるものではなく、回路に流れる電流や電圧を検出して、第2の半導体スイッチング素子307のオン時間を増加させている途中で、第2の半導体スイッチング素子307のオン時間を再度減少させることも考えられる。 The amount of increase in increasing the on-time of the second semiconductor switching element 307 is considered to be an appropriate amount depending on the circuit configuration and control response speed. There is a method of increasing the ON time of the second semiconductor switching element 307 linearly up to the same length as the OFF time T2. In addition, a method of increasing in a quadratic function in 0.5 seconds is also conceivable. However, the method is not limited thereto, and the second semiconductor switching element is detected by detecting the current and voltage flowing in the circuit. It is also conceivable to reduce the ON time of the second semiconductor switching element 307 again while increasing the ON time of 307.
 さらに、図3に示すように、第2の半導体スイッチング素子307のオン状態にするタイミングは、リアクトル303に流れる電流が正方向に流れている間とする。特にここでは、第1の半導体スイッチング素子304のオン信号と、次のスイッチング周期Tの第1の半導体スイッチング素子304のオン信号との間の中央を中心に対称に、第2の半導体スイッチング素子307のオン信号を設けている。 Furthermore, as shown in FIG. 3, the timing for turning on the second semiconductor switching element 307 is set while the current flowing through the reactor 303 is flowing in the positive direction. In particular, here, the second semiconductor switching element 307 is symmetrical about the center between the ON signal of the first semiconductor switching element 304 and the ON signal of the first semiconductor switching element 304 in the next switching period T. ON signal is provided.
 これによって、本発明の実施の形態1にかかる電力変換装置30は、第2の半導体スイッチング素子307がオンしている期間に第2の半導体スイッチング素子307を通る電流に、正方向の電流が含まれるので、逆方向に流れる電流量をさらに抑制することができている。 As a result, in the power conversion device 30 according to the first exemplary embodiment of the present invention, a current in the positive direction is included in the current passing through the second semiconductor switching element 307 while the second semiconductor switching element 307 is on. Therefore, the amount of current flowing in the reverse direction can be further suppressed.
 第1のオフ時間T2よりもオン時間を短くしてオン状態にしていた第2の半導体スイッチング素子307がオフ状態になると、次のスイッチング周期Tまでは、第1の半導体スイッチング素子304も第2の半導体スイッチング素子307もオフ状態である。図3に示すように、第2の半導体スイッチング素子307がオフ状態となるときに、リアクトル303に流れる電流が正方向であれば、第2の半導体スイッチング素子307がオフ状態となっても、リアクトル303に蓄えられたエネルギーは、第2の整流素子306を通って、電流は負荷309へ流れる。第2の半導体スイッチング素子307がオフ状態となるときに、リアクトル303に流れる電流が負方向であれば、その電流は、第2の半導体スイッチング素子307がオフ状態となったあと0となる。 When the second semiconductor switching element 307 that has been turned on by making the on time shorter than the first off time T2 is turned off, the first semiconductor switching element 304 is also in the second state until the next switching period T. The semiconductor switching element 307 is also in the off state. As shown in FIG. 3, if the current flowing through the reactor 303 is positive when the second semiconductor switching element 307 is turned off, the reactor is turned off even if the second semiconductor switching element 307 is turned off. The energy stored in 303 passes through the second rectifying element 306, and the current flows to the load 309. If the current flowing through the reactor 303 is negative when the second semiconductor switching element 307 is turned off, the current becomes 0 after the second semiconductor switching element 307 is turned off.
 図3におけるアクトル303の電流波形6203は概略波形であるが、本発明の実施の形態1にかかる電力変換装置30が逆方向に流れる電流量を抑制できていることは分かる。すなわち、本発明の実施の形態1にかかる電力変換装置30が負荷309に供給する電力の変動を抑制できていることは分かる。 3 is a schematic waveform, it can be seen that the power converter 30 according to the first embodiment of the present invention can suppress the amount of current flowing in the reverse direction. That is, it turns out that the fluctuation | variation of the electric power which the power converter device 30 concerning Embodiment 1 of this invention supplies to the load 309 can be suppressed.
 図4は、本発明の実施の形態1にかかる電力変換装置30の制御装置321の変形例が送出する制御信号の波形とリアクトルに流れる電流の波形を示した概略図である。ここでは、第1の半導体スイッチング素子304の制御信号312の波形が、第1の半導体スイッチング素子304のスイッチング信号波形7101となる。第2の半導体スイッチング素子307制御信号314の波形は、第2の半導体スイッチング素子307のスイッチング信号波形7102となる。他に図4には、同期整流動作切り替え信号波形7104と、リアクトル303の電流波形7103とが示されている。リアクトル303の電流波形7103は、リアクトル303に流れる電流の波形を示しているが、これは概略波形であって、本来はこのように直線のみで表されるものではない。 FIG. 4 is a schematic diagram illustrating a waveform of a control signal transmitted by a modification of the control device 321 of the power conversion device 30 according to the first embodiment of the present invention and a waveform of a current flowing through the reactor. Here, the waveform of the control signal 312 of the first semiconductor switching element 304 is the switching signal waveform 7101 of the first semiconductor switching element 304. The waveform of the second semiconductor switching element 307 control signal 314 is the switching signal waveform 7102 of the second semiconductor switching element 307. In addition, FIG. 4 shows a synchronous rectification operation switching signal waveform 7104 and a current waveform 7103 of the reactor 303. Although the current waveform 7103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
 図4のスイッチング信号波形7101は、図3のスイッチング信号波形6201と同じである。図4のスイッチング信号波形7102に関して、図3のスイッチング信号波形6202と異なるところのみを説明する。第2の半導体スイッチング素子307のスイッチング信号波形7202は、第2の半導体スイッチング素子307をオン状態にするタイミングが、第1の半導体スイッチング素子304をオフ状態にするタイミングと同じである。本明細書において、第2の半導体スイッチング素子307をオン状態にするタイミングが、第1の半導体スイッチング素子304をオフ状態にしたタイミングと同じという意味には、第2の半導体スイッチング素子307をオン状態にするタイミングと第1の半導体スイッチング素子304をオフ状態にするタイミングとの間に、デットタイム期間(1μsから5μs程度)を設けた場合、すなわち、厳密に同じではなく、間が数μs程度空いた場合も含まれるものである。 The switching signal waveform 7101 in FIG. 4 is the same as the switching signal waveform 6201 in FIG. Only the difference between the switching signal waveform 7102 of FIG. 4 and the switching signal waveform 6202 of FIG. 3 will be described. In the switching signal waveform 7202 of the second semiconductor switching element 307, the timing at which the second semiconductor switching element 307 is turned on is the same as the timing at which the first semiconductor switching element 304 is turned off. In this specification, the second semiconductor switching element 307 is turned on in the meaning that the timing when the second semiconductor switching element 307 is turned on is the same as the timing when the first semiconductor switching element 304 is turned off. When a dead time period (about 1 μs to 5 μs) is provided between the timing of switching and the timing of turning off the first semiconductor switching element 304, that is, they are not exactly the same, but are about several μs apart. This is also included.
 第1の半導体スイッチング素子304をオフ状態にしたタイミングと第2の半導体スイッチング素子307のオン状態にするタイミングが同じであるので、電流がリアクトル303を負方向に流れる場合、それは必ず、リアクトル303に蓄えられたエネルギーを負荷309へ供給する電流の流れに引き続いて行われる。 Since the timing at which the first semiconductor switching element 304 is turned off and the timing at which the second semiconductor switching element 307 is turned on are the same, when current flows through the reactor 303 in the negative direction, This is performed following the flow of current that supplies the stored energy to the load 309.
 第2の半導体スイッチング素子307をオン状態にする時間が徐々に長くなっていくと、電流がリアクトル303を負方向に流れる時間も徐々に長くなってくる。そのため、1回のスイッチング周期T内におけるリアクトル303に流れる電流の平均値は、徐々に低下する。このとき、図4のようなスイッチング信号波形7102とすると、電流がリアクトル303を負方向に流れる場合は、リアクトル303に蓄えられたエネルギーを負荷309へ供給する電流の流れに引き続いて行われるので、1回のスイッチング周期T内におけるリアクトル303に流れる電流の平均値が低下していく割合が図3の場合に比べて小さくて済む。そのため、第2の半導体スイッチング素子307のスイッチング速度が高速でない場合にも適している。 As the time for turning on the second semiconductor switching element 307 is gradually increased, the time for the current to flow through the reactor 303 in the negative direction is also gradually increased. Therefore, the average value of the current flowing through the reactor 303 within one switching cycle T gradually decreases. At this time, when the switching signal waveform 7102 as shown in FIG. 4 is used, when the current flows through the reactor 303 in the negative direction, the energy stored in the reactor 303 is performed following the flow of the current supplied to the load 309. The rate at which the average value of the current flowing through the reactor 303 within one switching cycle T decreases can be smaller than in the case of FIG. Therefore, it is also suitable when the switching speed of the second semiconductor switching element 307 is not high.
 図4におけるリアクトル303の電流波形7103は概略波形であるが、本発明の実施の形態1にかかる電力変換装置30が逆方向に流れる電流量を抑制できていることは分かる。すなわち、本発明の実施の形態1にかかる電力変換装置30が負荷309に供給する電力の変動を抑制できていることは分かる。 The current waveform 7103 of the reactor 303 in FIG. 4 is a schematic waveform, but it can be seen that the power converter 30 according to the first embodiment of the present invention can suppress the amount of current flowing in the reverse direction. That is, it turns out that the fluctuation | variation of the electric power which the power converter device 30 concerning Embodiment 1 of this invention supplies to the load 309 can be suppressed.
 図5は、本発明の実施の形態1にかかる電力変換装置30の制御装置321の別の変形例が送出する制御信号の波形とリアクトルに流れる電流の波形を示した概略図である。ここでは、第1の半導体スイッチング素子304の制御信号312の波形が、第1の半導体スイッチング素子304のスイッチング信号波形7201となる。第2の半導体スイッチング素子307の制御信号314の波形は、第2の半導体スイッチング素子307のスイッチング信号波形7202となる。他に図5には、同期整流動作切り替え信号波形7204と、リアクトル303の電流波形7203とが示されている。リアクトル303の電流波形7203は、リアクトル303に流れる電流の波形を示しているが、これは概略波形であって、本来はこのように直線のみで表されるものではない。 FIG. 5 is a schematic diagram illustrating a waveform of a control signal sent out by another modification of the control device 321 of the power conversion device 30 according to the first embodiment of the present invention and a waveform of a current flowing through the reactor. Here, the waveform of the control signal 312 of the first semiconductor switching element 304 becomes the switching signal waveform 7201 of the first semiconductor switching element 304. The waveform of the control signal 314 of the second semiconductor switching element 307 becomes the switching signal waveform 7202 of the second semiconductor switching element 307. In addition, FIG. 5 shows a synchronous rectification operation switching signal waveform 7204 and a current waveform 7203 of the reactor 303. Although the current waveform 7203 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
 図5のスイッチング信号波形7201は、図3のスイッチング信号波形6201と同じである。図5のスイッチング信号波形7202に関して、図3のスイッチング信号波形6202と異なるところのみを説明する。第2の半導体スイッチング素子307のスイッチング信号波形7202は、第2の半導体スイッチング素子307のオフ状態にするタイミングと第1の半導体スイッチング素子304をオン状態にするタイミングとが同じである。 The switching signal waveform 7201 in FIG. 5 is the same as the switching signal waveform 6201 in FIG. Only a difference between the switching signal waveform 7202 of FIG. 5 and the switching signal waveform 6202 of FIG. 3 will be described. In the switching signal waveform 7202 of the second semiconductor switching element 307, the timing for turning the second semiconductor switching element 307 off and the timing for turning the first semiconductor switching element 304 on are the same.
 図5におけるリアクトル303の電流波形7203は概略波形であるが、本発明の実施の形態1にかかる電力変換装置30は、逆方向に流れる電流量を抑制できる。ただし、図5のような第2の半導体スイッチング素子307スイッチング信号波形7202とするときは、高速で動作する半導体スイッチング素子を第1の半導体スイッチング素子304と第2の半導体スイッチング素子307に用いることが望ましい。 Although the current waveform 7203 of the reactor 303 in FIG. 5 is a schematic waveform, the power conversion device 30 according to the first embodiment of the present invention can suppress the amount of current flowing in the reverse direction. However, when the second semiconductor switching element 307 has a switching signal waveform 7202 as shown in FIG. 5, a semiconductor switching element that operates at high speed is used for the first semiconductor switching element 304 and the second semiconductor switching element 307. desirable.
 本発明の実施の形態1では、同期整流を開始するタイミングはスイッチング周期Tが切り替わるタイミングと同じとして説明した。同期整流を開始するタイミングはスイッチング周期Tの途中であってもよいが、同期整流を開始するタイミングはスイッチング周期Tが切り替わるタイミングと同じであることが好ましい。 In the first embodiment of the present invention, the timing at which synchronous rectification is started is described as being the same as the timing at which the switching period T is switched. The timing for starting the synchronous rectification may be in the middle of the switching cycle T, but the timing for starting the synchronous rectification is preferably the same as the timing for switching the switching cycle T.
実施の形態2.
 本発明の実施の形態2では、本発明の実施の形態1と相違する部分について説明し、同一又は対応する部分についての説明は省略する。本発明の実施の形態1で示した電力変換システム31は、同期整流可能な1石型昇圧回路の入力側に電源301が配置され、出力側に電力を消費する負荷309が配置されたものであり、電力が一方向に伝達されるものであった。本発明の実施の形態2では、一方方向ではなく双方向に電力が伝達される場合の電力変換装置及び電力変換システムについて説明する。本発明の実施の形態2にかかる電力変換装置は、本発明の実施の形態1にかかる電力変換装置30の負荷309が電源809となっている。
Embodiment 2. FIG.
In the second embodiment of the present invention, portions that are different from the first embodiment of the present invention will be described, and descriptions of the same or corresponding portions will be omitted. In the power conversion system 31 shown in the first embodiment of the present invention, a power source 301 is disposed on the input side of a one-stone booster circuit capable of synchronous rectification, and a load 309 that consumes power is disposed on the output side. Yes, power was transmitted in one direction. In the second embodiment of the present invention, a power conversion device and a power conversion system in a case where power is transmitted bidirectionally instead of unidirectionally will be described. In the power conversion device according to the second embodiment of the present invention, the load 309 of the power conversion device 30 according to the first embodiment of the present invention is the power source 809.
 図6は、本発明の実施の形態2にかかる電力変換装置80を用いて構成された電力変換システム81を示す概略図である。本発明の実施の形態2にかかる電力変換装置80が有する回路は、同期整流が可能な1石型昇圧回路であり、本発明の実施の形態1にかかる電力変換装置30が有する回路と同じである。本発明の実施の形態2にかかる電力変換装置80が備える回路は、電源801と電源809とに接続されている。電源801の一方の極は、リアクトル303の第1の端子と接続され、他方の極は第1の半導体スイッチング素子304と接続している。さらに、電源801には、第1のコンデンサー302が並列に接続されている。電源809は、電源801のリアクトル303の第1の端子と接続している方の極と同じ極性の極側に、第2の整流素子306のカソード側が接続されている。 FIG. 6 is a schematic diagram showing a power conversion system 81 configured using the power conversion device 80 according to the second embodiment of the present invention. The circuit included in the power conversion device 80 according to the second embodiment of the present invention is a one-stone booster circuit capable of synchronous rectification, and is the same as the circuit included in the power conversion device 30 according to the first embodiment of the present invention. is there. The circuit included in the power conversion device 80 according to the second embodiment of the present invention is connected to the power source 801 and the power source 809. One pole of the power source 801 is connected to the first terminal of the reactor 303, and the other pole is connected to the first semiconductor switching element 304. Further, a first capacitor 302 is connected to the power source 801 in parallel. In the power source 809, the cathode side of the second rectifier element 306 is connected to the pole side having the same polarity as the pole connected to the first terminal of the reactor 303 of the power source 801.
 本発明の実施の形態2にかかる電力変換装置80は、その他に、1回のスイッチング周期内におけるリアクトル303の電流の平均値を検出する検出装置810と、第1の半導体スイッチング素子304及び第2の半導体スイッチング素子307を駆動させる駆動信号を送出する駆動装置820とを備えている。さらに、第1の半導体スイッチング素子304及び第2の半導体スイッチング素子307の駆動を制御する制御信号を駆動装置820へ送出する制御装置821とを備えている。駆動装置820は、第1の半導体スイッチング素子304の制御端子に対しては、第1の半導体スイッチング素子304の駆動信号816を送出し、第2の半導体スイッチング素子307の制御端子に対しては、第2の半導体スイッチング素子307の駆動信号817を送出する。 In addition, the power conversion device 80 according to the second exemplary embodiment of the present invention includes a detection device 810 that detects the average value of the current of the reactor 303 within one switching cycle, the first semiconductor switching element 304, and the second And a driving device 820 for sending a driving signal for driving the semiconductor switching element 307. Further, a control device 821 for sending a control signal for controlling driving of the first semiconductor switching element 304 and the second semiconductor switching element 307 to the driving device 820 is provided. The drive device 820 sends a drive signal 816 of the first semiconductor switching element 304 to the control terminal of the first semiconductor switching element 304, and to the control terminal of the second semiconductor switching element 307. A drive signal 817 for the second semiconductor switching element 307 is transmitted.
 制御装置821は、検出装置810によって検出された1回のスイッチング周期内におけるリアクトル303の電流の平均値から、第1の半導体スイッチング素子304と第2の半導体スイッチング素子307とのうちいずれがオフ状態に維持された同期スイッチング素子であるか、及び第1の半導体スイッチング素子304と第2の半導体スイッチング素子307とのうちいずれが第3のオン状態と第3のオフ状態とを切り替える第3の切り替えを行う非同期スイッチング素子であるかを判断し、同期スイッチング素子判定信号812を駆動装置820へ送出する。ここで、検出装置810によって検出された1回のスイッチング周期内におけるリアクトル303の電流の平均値が正の値のときは、電源801から電源809へと電力を供給している昇圧回路動作であって、オフ状態に維持された同期スイッチング素子は第2の半導体スイッチング素子307であり、第3のオン状態と第3のオフ状態とを切り替える第3の切り替えを行う非同期スイッチング素子は第1の半導体スイッチング素子304である。逆に、検出装置810によって検出された1回のスイッチング周期内におけるリアクトル303の電流の平均値が負の値のときは、電源809から電源801へと電力を供給している降圧回路動作であって、オフ状態に維持された同期スイッチング素子は第1の半導体スイッチング素子304であり、第3のオン状態と第3のオフ状態とを切り替える第3の切り替えを行う非同期スイッチング素子は第2の半導体スイッチング素子307である。 Control device 821 determines whether one of first semiconductor switching element 304 and second semiconductor switching element 307 is in an OFF state based on the average value of current in reactor 303 within one switching cycle detected by detection device 810. And the third switching that switches between the third on-state and the third off-state, either the first semiconductor switching element 304 or the second semiconductor switching element 307 The synchronous switching element determination signal 812 is sent to the driving device 820. Here, when the average value of the current of the reactor 303 within a single switching cycle detected by the detection device 810 is a positive value, the operation is a booster circuit supplying power from the power source 801 to the power source 809. Thus, the synchronous switching element maintained in the OFF state is the second semiconductor switching element 307, and the asynchronous switching element that performs the third switching for switching between the third ON state and the third OFF state is the first semiconductor. This is a switching element 304. On the contrary, when the average value of the current of the reactor 303 in one switching cycle detected by the detection device 810 is a negative value, it is the operation of the step-down circuit supplying power from the power source 809 to the power source 801. Thus, the synchronous switching element maintained in the OFF state is the first semiconductor switching element 304, and the asynchronous switching element that performs the third switching for switching between the third ON state and the third OFF state is the second semiconductor. This is a switching element 307.
 さらに、制御装置821は、第1の半導体スイッチング素子304の駆動を制御する制御信号813と、第2の半導体スイッチング素子307の駆動を制御する制御信号815と、同期整流切り替え信号814とを駆動装置820へ送出する。 Further, the control device 821 includes a control signal 813 for controlling driving of the first semiconductor switching element 304, a control signal 815 for controlling driving of the second semiconductor switching element 307, and a synchronous rectification switching signal 814. Send to 820.
 すなわち、本発明の実施の形態2にかかる電力変換装置80は、非同期スイッチング素子が第1の半導体スイッチング素子304である場合は、制御装置821によって生成された第1の半導体スイッチング素子304の制御信号813を受けた駆動装置820が、第1の半導体スイッチング素子304のオン状態とオフ状態を切り替えることによって、電源801から出力された電圧よりも高い電圧を電源809に伝達することができる。非同期スイッチング素子が第2の半導体スイッチング素子307である場合は、制御装置821によって生成された第2の半導体スイッチング素子307の制御信号815を受けた駆動装置820が、第2の半導体スイッチング素子307のオン状態とオフ状態を切り替えることによって、電源809から出力された電圧よりも低い電圧を電源801に伝達することができる。 That is, in the power conversion device 80 according to the second exemplary embodiment of the present invention, when the asynchronous switching element is the first semiconductor switching element 304, the control signal of the first semiconductor switching element 304 generated by the control device 821. The driving device 820 that has received 813 can transmit a voltage higher than the voltage output from the power source 801 to the power source 809 by switching between the on state and the off state of the first semiconductor switching element 304. When the asynchronous switching element is the second semiconductor switching element 307, the driving device 820 that has received the control signal 815 of the second semiconductor switching element 307 generated by the control device 821 is connected to the second semiconductor switching element 307. By switching between the on state and the off state, a voltage lower than the voltage output from the power source 809 can be transmitted to the power source 801.
 本発明の実施の形態2にかかる電力変換装置80は、本発明の実施の形態1にかかる電力変換装置30と同様に、さらに、入力側電圧検出器310と、出力側電圧検出器311とを備えている。入力側電圧検出器310は、第1のコンデンサー302の両端にかかる電圧の値を測定している。出力側電圧検出器311は、第2のコンデンサー308の両端にかかる電圧の値を測定している。 Similar to the power conversion device 30 according to the first embodiment of the present invention, the power conversion device 80 according to the second embodiment of the present invention further includes an input side voltage detector 310 and an output side voltage detector 311. I have. The input side voltage detector 310 measures the value of the voltage applied to both ends of the first capacitor 302. The output side voltage detector 311 measures the value of the voltage applied to both ends of the second capacitor 308.
 本発明の実施の形態2では、電力が電源801から電源809へと伝達される場合と、電源809から電源801へと伝達される場合の双方向を想定している。例えば、電源801が蓄電池で電源809が直流系統のような場合は、蓄電池を充電する場合には電源809から電源801へ電力を供給する。また、蓄電池の電力を直流系統へ送る場合は、電源801から電源809へと電力を伝達する。さらに、電源801及び809が電動機兼発電機を含むような場合なども考えられる。ここでは特に電源801及び809が何かについては指定せず、電力変換装置80に双方向に電力の流れがあることとする。また、以下でも、本発明の実施の形態1と同様に、リアクトル303の第1の端子から第2の端子へ電流が流れる方向を正方向(順方向)と呼び、第2の端子から第1の端子へ電流が流れる方向を負方向(逆方向)と呼ぶことにする。したがって、電力が電源809から電源801へと伝達される場合は、本発明の実施の形態1とは電流の流れる向きが逆であるので、正方向に流れる電流量を抑制することが目的となる。電流の流れる向きが逆であっても、本発明の実施の形態1も本発明の実施の形態2も供給する(伝達する)電力の変動を抑制した電力変換装置を得ることが目的である。 In the second embodiment of the present invention, it is assumed that the power is transmitted from the power source 801 to the power source 809 and bidirectional when the power is transmitted from the power source 809 to the power source 801. For example, when the power source 801 is a storage battery and the power source 809 is a DC system, power is supplied from the power source 809 to the power source 801 when the storage battery is charged. Further, when the power of the storage battery is sent to the DC system, the power is transmitted from the power source 801 to the power source 809. Furthermore, the case where the power sources 801 and 809 include an electric motor / generator may be considered. Here, it is assumed that the power sources 801 and 809 are not specified in particular and the power converter 80 has a bidirectional power flow. Also, in the following, as in the first embodiment of the present invention, the direction in which current flows from the first terminal of the reactor 303 to the second terminal is referred to as a positive direction (forward direction), and the first terminal from the second terminal The direction in which the current flows to the terminal is called the negative direction (reverse direction). Therefore, when power is transmitted from power supply 809 to power supply 801, the direction of current flow is opposite to that of Embodiment 1 of the present invention, and therefore the object is to suppress the amount of current flowing in the positive direction. . It is an object to obtain a power conversion device that suppresses fluctuations in the power supplied (transmitted) by both the first embodiment and the second embodiment of the present invention even when the direction of current flow is reversed.
 図7は、本発明の実施の形態2にかかる電力変換装置80の制御装置821が送出する制御信号の波形とリアクトル303に流れる電流の波形を示した概略図である。図7において、領域A2に示す信号波形及び電流波形は、制御装置821が第2の半導体スイッチング素子307をオフ状態に維持し、かつ第1の半導体スイッチング素子304を第3のオン状態と第3のオフ状態とに切り替える第3の切り替えを行う非同期整流の状態を示している。そして、第3のオン状態の時間を第3のオン時間T11、第3のオフ状態の時間を第3のオフ時間T12としている。ここで、リアクトル303に流れる電流は不連続であり、第3のオン時間T11よりも第3のオフ時間T12の方が長い。また、図7におけるスイッチング周期は、T10として示され、第3の切り替えの1周期である。この領域A2の状態から、同期整流の状態へ移行する。 FIG. 7 is a schematic diagram showing the waveform of the control signal sent out by the control device 821 of the power conversion device 80 according to the second embodiment of the present invention and the waveform of the current flowing through the reactor 303. In FIG. 7, the signal waveform and the current waveform shown in the region A <b> 2 indicate that the control device 821 keeps the second semiconductor switching element 307 in the off state and the first semiconductor switching element 304 in the third on state and the third on state. The state of the asynchronous rectification which performs the 3rd switching switched to an OFF state is shown. The third on-state time is defined as a third on-time T11, and the third off-state time is defined as a third off-time T12. Here, the current flowing through the reactor 303 is discontinuous, and the third off time T12 is longer than the third on time T11. Moreover, the switching period in FIG. 7 is indicated as T10 and is one period of the third switching. The state of this area A2 shifts to the state of synchronous rectification.
 図7は、領域A2において、検出装置810によって検出された1回のスイッチング周期T10内におけるリアクトル303に流れる電流の平均値が正の値であり、電源801から電源809へ電力を伝達しているときの制御装置821が送出する制御信号の波形とリアクトル303に流れる電流の波形を示している。ここでは、検出装置810によって検出された1回のスイッチング周期T10内におけるリアクトル303に流れる電流の平均値から、電力の供給方向を制御装置821で判断し、それを同期スイッチング素子判定信号812によって駆動装置820に送ることとしている。 In FIG. 7, in the region A2, the average value of the current flowing through the reactor 303 within one switching period T10 detected by the detection device 810 is a positive value, and power is transmitted from the power source 801 to the power source 809. The waveform of the control signal sent out by the control device 821 and the waveform of the current flowing through the reactor 303 are shown. Here, the control device 821 determines the power supply direction from the average value of the current flowing through the reactor 303 within one switching cycle T10 detected by the detection device 810, and this is driven by the synchronous switching element determination signal 812. To the device 820.
 電源801から電源809へ電力を供給しているとき、同期整流の状態へ移行する前に、オフ状態に維持されている同期スイッチング素子は第2の半導体スイッチング素子307であり、第3のオン状態と第3のオフ状態とを切り替える第3の切り替えを行う非同期スイッチング素子は第1の半導体スイッチング素子304である。 When power is supplied from the power source 801 to the power source 809, the synchronous switching element maintained in the OFF state before the transition to the synchronous rectification state is the second semiconductor switching element 307, and the third ON state The first switching element 304 is the asynchronous switching element that performs the third switching to switch between the first semiconductor switching element 304 and the third OFF state.
 例えば、電源801から電源809へ電力を供給している場合には、同期スイッチング素子判定信号812として1を出力し、電源809から電源801へ電力を供給している場合には、同期スイッチング素子判定信号812として0を出力するなどして判別結果を伝達させることができる。判別結果を伝達することによって、駆動装置820は、第1の半導体スイッチング素子304と第2の半導体スイッチング素子307のうちいずれがオフ状態に維持された同期スイッチング素子であるか、及び第1の半導体スイッチング素子304と第2の半導体スイッチング素子307のうちいずれが第3のオン状態と第3のオフ状態とを切り替える第3の切り替えを行う非同期スイッチング素子であるかが分かる。電力の供給方向の判別は、例えば、本発明の実施の形態2のように、検出器810によって1回のスイッチング周期T10におけるリアクトル303に流れる電流の平均値を検出し、その値が正か負かによって判断することができるが、この限りではない。検出器810によってリアクトル303に流れる瞬時の電流値を検出し、その電流値情報を取得した制御装置821で1回のスイッチング周期T10におけるリアクトル303に流れる電流の平均値を算出し、その値が正か負かによって電力の供給方向を判別するなどしてもよい。 For example, when power is supplied from the power source 801 to the power source 809, 1 is output as the synchronous switching element determination signal 812, and when power is supplied from the power source 809 to the power source 801, the synchronous switching element determination is performed. The determination result can be transmitted by outputting 0 as the signal 812. By transmitting the determination result, the driving device 820 determines which of the first semiconductor switching element 304 and the second semiconductor switching element 307 is a synchronous switching element maintained in an off state, and the first semiconductor It can be seen which of the switching element 304 and the second semiconductor switching element 307 is an asynchronous switching element that performs a third switching to switch between a third on state and a third off state. For example, as in the second embodiment of the present invention, the power supply direction is determined by detecting the average value of the current flowing through the reactor 303 in one switching cycle T10 by the detector 810, and the value is positive or negative. However, this is not a limitation. The instantaneous current value flowing through the reactor 303 is detected by the detector 810, and the control device 821 that has acquired the current value information calculates the average value of the current flowing through the reactor 303 in one switching cycle T10. The direction of power supply may be determined based on whether the power is negative or negative.
 本発明の実施の形態2にかかる電力変換装置80の制御装置821は、同期整流の状態へ移行する前、すなわち領域A2の状態のときに、検出装置810によって検出された1回のスイッチング周期T10内におけるリアクトル303に流れる電流の平均値から、第1の半導体スイッチング素子304と第2の半導体スイッチング素子307のうちいずれがオフ状態に維持された同期スイッチング素子であるか、及び第1の半導体スイッチング素子304と第2の半導体スイッチング素子307のうちいずれが第3のオン状態と第3のオフ状態とを切り替える第3の切り替えを行う非同期スイッチング素子であるかを判断する。そして、同期スイッチング素子がオフ状態に維持され、かつ非同期スイッチング素子が第3のオン状態と第3のオフ状態とを切り替える第3の切り替えを行う非同期整流の状態から、第3の切り替えに同期して、同期スイッチング素子が第4のオン状態と第4のオフ状態とを切り替える第4の切り替えを行う同期整流の状態へ移行する場合に、制御装置821は、同期整流の状態における非同期スイッチング素子が第3のオフ状態の時に、第3のオフ状態の時間を示す第3のオフ時間T12よりも短い第4のオン時間T13で同期スイッチング素子を第4のオン状態とするように制御することを特徴としている。ここで、第4の切り替えの1周期もT10である。すなわち、第3の切り替えの1周期と第4の切り替えの1周期は同じであるので、同期スイッチング素子のスイッチング周波数と非同期スイッチング素子のスイッチング周波数は等しい。 The control device 821 of the power conversion device 80 according to the second exemplary embodiment of the present invention has one switching cycle T10 detected by the detection device 810 before shifting to the synchronous rectification state, that is, in the state of the region A2. Which of the first semiconductor switching element 304 and the second semiconductor switching element 307 is a synchronous switching element maintained in the OFF state, and the first semiconductor switching It is determined which of the element 304 and the second semiconductor switching element 307 is an asynchronous switching element that performs the third switching for switching between the third on state and the third off state. Then, the synchronous switching element is maintained in the OFF state, and the asynchronous switching element is synchronized with the third switching from the asynchronous rectification state in which the third switching is performed to switch between the third ON state and the third OFF state. Thus, when the synchronous switching element shifts to the synchronous rectification state in which the fourth switching for switching between the fourth on state and the fourth off state is performed, the control device 821 has the asynchronous switching element in the synchronous rectification state. Controlling the synchronous switching element to be in the fourth on state at a fourth on time T13 that is shorter than the third off time T12 indicating the time of the third off state in the third off state. It is a feature. Here, one cycle of the fourth switching is also T10. That is, since one cycle of the third switching is the same as one cycle of the fourth switching, the switching frequency of the synchronous switching element and the switching frequency of the asynchronous switching element are equal.
 図7では、第1の半導体スイッチング素子304の制御信号813の波形が、第1の半導体スイッチング素子304のスイッチング信号波形9101として示される。第2の半導体スイッチング素子307の制御信号815の波形は、第2の半導体スイッチング素子307のスイッチング信号波形9102として示されている。他に図7には、同期整流動作切り替え信号波形9104と、リアクトル303の電流波形9103、同期スイッチング素子判定信号波形9105とが示される。リアクトル303の電流波形7103は、リアクトル303に流れる電流の波形を示すが、これは概略波形であって、本来はこのように直線のみで表されるものではない。ここで例えば、電源801から電源809へ電力を供給している場合には、同期スイッチング素子判定信号812に1を出力することにしているので、同期スイッチング素子判定信号波形9105は、図7に示すような直線となっている。 7, the waveform of the control signal 813 of the first semiconductor switching element 304 is shown as the switching signal waveform 9101 of the first semiconductor switching element 304. The waveform of the control signal 815 of the second semiconductor switching element 307 is shown as the switching signal waveform 9102 of the second semiconductor switching element 307. In addition, FIG. 7 shows a synchronous rectification operation switching signal waveform 9104, a current waveform 9103 of the reactor 303, and a synchronous switching element determination signal waveform 9105. Although the current waveform 7103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line. Here, for example, when power is being supplied from the power source 801 to the power source 809, 1 is output to the synchronous switching element determination signal 812. Therefore, the synchronous switching element determination signal waveform 9105 is shown in FIG. It is a straight line like this.
 本発明の実施の形態2にかかる電力変換装置80の制御装置821は、領域A2の状態から同期整流の状態へ移行する場合に、第1の半導体スイッチング素子304が第3のオフ状態の時に、第3のオフ状態の時間を示す第3のオフ時間T12よりも短い第4のオン時間T13で第2の半導体スイッチング素子307を第4のオン状態とするように制御することを特徴としている。第4のオン時間T13は、第3のオフ時間T12からデッドタイム期間(1μsから5μs程度)を引いた時間よりも短いものである。 When the control device 821 of the power conversion device 80 according to the second exemplary embodiment of the present invention shifts from the state of the region A2 to the synchronous rectification state, when the first semiconductor switching element 304 is in the third OFF state, The second semiconductor switching element 307 is controlled to be in the fourth on state at the fourth on time T13 that is shorter than the third off time T12 indicating the time of the third off state. The fourth on-time T13 is shorter than the time obtained by subtracting the dead time period (about 1 μs to about 5 μs) from the third off-time T12.
 同期整流は、同期整流動作切り替え信号814がオン状態になることによって始まる。同期整流切り替え信号814によって同期整流が可能となったところから、第2の半導体スイッチング素子307をオン状態にできるようになる。 Synchronous rectification starts when the synchronous rectification operation switching signal 814 is turned on. Since the synchronous rectification is enabled by the synchronous rectification switching signal 814, the second semiconductor switching element 307 can be turned on.
 第2の半導体スイッチング素子307をオン状態にしている期間のみ、電流がリアクトル303を負方向に流れる。この期間は、本発明の実施の形態2では、第1の半導体スイッチング素子304のオフ時間よりも短くなっている。これにより、本発明の実施の形態2にかかる電力変換装置80は、電流がリアクトル303を逆方向に流れる量を抑制することができる。すなわち、電源801から電源809へ電力を供給する場合、本発明の実施の形態2にかかる電力変換装置80は、電源809に供給する電力の変動を抑制することができる。第3のオフ時間T12よりも短くした第4のオン時間T13で第2の半導体スイッチング素子307をオン状態とする第4の切り替えは複数回あることが好ましく、それによってさらに電流がリアクトル303を逆方向に流れる量を抑制することができる。 Only during the period when the second semiconductor switching element 307 is in the ON state, the current flows through the reactor 303 in the negative direction. This period is shorter than the off time of the first semiconductor switching element 304 in the second embodiment of the present invention. Thereby, the power converter device 80 concerning Embodiment 2 of this invention can suppress the quantity which an electric current flows through the reactor 303 to a reverse direction. That is, when power is supplied from the power source 801 to the power source 809, the power conversion device 80 according to the second embodiment of the present invention can suppress fluctuations in the power supplied to the power source 809. It is preferable that the fourth switching for turning on the second semiconductor switching element 307 at the fourth on-time T13 shorter than the third off-time T12 is performed a plurality of times, so that the current further reverses the reactor 303. The amount flowing in the direction can be suppressed.
 本発明の実施の形態2では、制御装置821が送出する第2の半導体スイッチング素子307の制御信号815は、図7の第2の半導体スイッチング素子307のスイッチング信号波形9102に示すような波形であって、さらに、第1の半導体スイッチング素子304のオフ時間T12よりも短くした第2の半導体スイッチング素子307のオン時間を徐々に長くするという特徴がある。最終的には第2の半導体スイッチング素子307のオン時間は、第1の半導体スイッチング素子304のオフ時間T12と同じ長さにする。すなわち、同期整流の状態に移行後の2回目以降の第4の切り替えにおける第4のオン時間を、移行後の1回目の第4の切り替えにおける第4のオン時間よりも長くする。 In the second embodiment of the present invention, the control signal 815 of the second semiconductor switching element 307 sent out by the control device 821 has a waveform as shown in the switching signal waveform 9102 of the second semiconductor switching element 307 in FIG. Further, there is a feature that the ON time of the second semiconductor switching element 307, which is shorter than the OFF time T12 of the first semiconductor switching element 304, is gradually increased. Finally, the ON time of the second semiconductor switching element 307 is set to be the same as the OFF time T12 of the first semiconductor switching element 304. That is, the fourth on time in the fourth switching after the second time after the transition to the synchronous rectification state is made longer than the fourth on time in the first fourth switching after the transition.
 図7の第2の半導体スイッチング素子307のスイッチング信号波形9102について、さらに詳しく説明する。まず、図7に示すように、同期整流の状態に移行後の1回目の第2の切り替えにおける第2の半導体スイッチング素子307のオン時間を第4のオン時間T13とする。もちろん、第4のオン時間T13は、第1の半導体スイッチング素子304の第3のオフ時間T12より短くなる。次のスイッチング周期T10、すなわち同期整流の状態に移行後の2回目の第2の切り替えにおける第2の半導体スイッチング素子307のオン時間は、第4のオン時間T13よりも長いオン時間T15とする。そして、また次のスイッチング周期T10における第2の半導体スイッチング素子307のオン時間は、オン時間T15よりも長いオン時間T17とする。さらに、また次のスイッチング周期T10における第2の半導体スイッチング素子307のオン時間は、オン時間T17よりも長いオン時間T19とする。このようにして、第2の半導体スイッチング素子307のオン時間を徐々に長くし、最終的には、第1の半導体スイッチング素子304の第1のオフ時間T12と同じ長さにする。すなわち、最終的には、第2の半導体スイッチング素子307の制御信号815は、第1の半導体スイッチング素子304の制御信号812の反転信号となる。 The switching signal waveform 9102 of the second semiconductor switching element 307 in FIG. 7 will be described in more detail. First, as shown in FIG. 7, the on-time of the second semiconductor switching element 307 in the second switching for the first time after shifting to the synchronous rectification state is set as a fourth on-time T13. Of course, the fourth on-time T13 is shorter than the third off-time T12 of the first semiconductor switching element 304. The on-time of the second semiconductor switching element 307 in the second switching period T10, that is, the second switching after the transition to the synchronous rectification state, is an on-time T15 longer than the fourth on-time T13. The on-time of the second semiconductor switching element 307 in the next switching period T10 is an on-time T17 longer than the on-time T15. Furthermore, the on-time of the second semiconductor switching element 307 in the next switching period T10 is an on-time T19 longer than the on-time T17. In this way, the ON time of the second semiconductor switching element 307 is gradually increased, and finally the same length as the first OFF time T12 of the first semiconductor switching element 304 is set. That is, finally, the control signal 815 of the second semiconductor switching element 307 becomes an inverted signal of the control signal 812 of the first semiconductor switching element 304.
 第1の半導体スイッチング素子304も第2の半導体スイッチング素子307もオフ状態で、電流が正方向に流れるときは、電流は第2の整流素子306を通るため、電圧降下が大きく、電力損失が大きくなってしまう。しかしながら、図7に示したように、第3のオフ時間T12よりも短くした第2の半導体スイッチング素子307のオン時間を徐々に長くし、最終的には、第3のオフ時間T12と同じ長さにすれば、逆方向に流れる電流量を抑制することができ、かつ同期整流を行う本来の目的である電力損失を抑えることができる。第1の半導体スイッチング素子304も第2の半導体スイッチング素子307もオフ状態で、電流が正方向に流れるということが、最終的にはなくなるからである。 When both the first semiconductor switching element 304 and the second semiconductor switching element 307 are in the OFF state and the current flows in the positive direction, the current flows through the second rectifier element 306, so that the voltage drop is large and the power loss is large. turn into. However, as shown in FIG. 7, the on-time of the second semiconductor switching element 307, which is shorter than the third off-time T12, is gradually lengthened, and finally the same length as the third off-time T12. By so doing, it is possible to suppress the amount of current flowing in the reverse direction and to suppress power loss that is the original purpose of performing synchronous rectification. This is because the first semiconductor switching element 304 and the second semiconductor switching element 307 are in the off state, and the current does not flow in the positive direction in the end.
 第2の半導体スイッチング素子307のオン時間を増加させる際の増加量は、回路構成制御の応答速度によって適切な量があると考えられるが、例えば、1秒で第1の半導体スイッチング素子304の第3のオフ時間T12と同じ長さまで線形的に増加させる方法がある。他にも、0.5秒で2次関数的に増加させる方法なども考えられるが、これらだけに限定されるものではなく、回路に流れる電流や電圧を検出して、第2の半導体スイッチング素子307のオン時間を増加させている途中で、第2の半導体スイッチング素子307のオン時間を再度減少させることも考えられる。 The amount of increase in increasing the on-time of the second semiconductor switching element 307 is considered to be an appropriate amount depending on the response speed of the circuit configuration control. For example, the first semiconductor switching element 304 can be increased in one second. There is a method of increasing linearly up to the same length as the off time T12 of 3. In addition, a method of increasing in a quadratic function in 0.5 seconds is also conceivable. However, the method is not limited thereto, and the second semiconductor switching element is detected by detecting the current and voltage flowing in the circuit. It is also conceivable to reduce the ON time of the second semiconductor switching element 307 again while increasing the ON time of 307.
 第2の半導体スイッチング素子307のスイッチング信号波形7202は、第2の半導体スイッチング素子307のオン状態にするタイミングが、第1の半導体スイッチング素子304をオフ状態にするタイミングと同じである。第1の半導体スイッチング素子304をオフ状態にするタイミングと第2の半導体スイッチング素子307のオン状態にするタイミングが同じであるので、電流がリアクトル303を負方向に流れる場合、それは必ず、リアクトル303に蓄えられたエネルギーを電源809へ供給する電流の流れに引き続いて行われる。 In the switching signal waveform 7202 of the second semiconductor switching element 307, the timing when the second semiconductor switching element 307 is turned on is the same as the timing when the first semiconductor switching element 304 is turned off. Since the timing at which the first semiconductor switching element 304 is turned off and the timing at which the second semiconductor switching element 307 is turned on are the same, when current flows in the reactor 303 in the negative direction, This is performed following the flow of current for supplying the stored energy to the power source 809.
 第2の半導体スイッチング素子307をオン状態にする時間が徐々に長くなっていくと、電流がリアクトル303を負方向に流れる時間も徐々に長くなってくる。そのため、1回のスイッチング周期T10内におけるリアクトル303に流れる電流の平均値は、徐々に低下する。このとき、図7のような第2の半導体スイッチング素子307スイッチング信号波形9102とすると、電流がリアクトル303を負方向に流れる場合は、リアクトル303に蓄えられたエネルギーを電源809へ供給する電流の流れに引き続いて行われるので、1回のスイッチング周期T10内におけるリアクトル303に流れる電流の平均値が低下していく割合を小さくすることができる。そのため、第2の半導体スイッチング素子307のスイッチング速度が高速でない場合にも適している。 As the time for turning on the second semiconductor switching element 307 is gradually increased, the time for the current to flow through the reactor 303 in the negative direction is also gradually increased. Therefore, the average value of the current flowing through reactor 303 within one switching cycle T10 gradually decreases. At this time, when the second semiconductor switching element 307 switching signal waveform 9102 as shown in FIG. 7 is used, when the current flows through the reactor 303 in the negative direction, the current flow for supplying the energy stored in the reactor 303 to the power source 809. Therefore, the rate at which the average value of the current flowing through the reactor 303 in one switching cycle T10 decreases can be reduced. Therefore, it is also suitable when the switching speed of the second semiconductor switching element 307 is not high.
 図7におけるアクトル303の電流波形9103は概略波形であるが、本発明の実施の形態2にかかる電力変換装置80が逆方向に流れる電流量を抑制できていることは分かる。つまり、電源801から電源809へ電力を供給する場合、本発明の実施の形態2にかかる電力変換装置80は、電源809に供給する電力の変動を抑制することができていることは分かる。 7 is a schematic waveform, it can be seen that the power converter 80 according to the second embodiment of the present invention can suppress the amount of current flowing in the reverse direction. That is, when power is supplied from the power source 801 to the power source 809, it can be seen that the power conversion device 80 according to the second embodiment of the present invention can suppress fluctuations in the power supplied to the power source 809.
 図7で示している制御装置821が送出する制御信号の波形とリアクトル303に流れる電流の波形は、本発明の実施の形態1における図4と特徴部分は変わらない。これは、電源801から電源809へ電力を伝達しているとき、非同期整流の状態で、オフ状態に維持されている同期スイッチング素子は第2の半導体スイッチング素子307であり、第3のオン状態と第3のオフ状態とを切り替える第3の切り替えを行う非同期スイッチング素子は第1の半導体スイッチング素子304であるからである。したがって、図7は、図4に同期スイッチング素子判定信号波形9105が加わったものと同様である。図7に示した第2の半導体スイッチング素子307のスイッチング信号波形9102を、図3及び図5のように変形することも可能である。 7 is the same as FIG. 4 in the first embodiment of the present invention in the waveform of the control signal sent out by the control device 821 and the waveform of the current flowing through the reactor 303 shown in FIG. This is because when the power is transmitted from the power source 801 to the power source 809, the synchronous switching element maintained in the off state in the asynchronous rectification state is the second semiconductor switching element 307, and the third on state This is because the asynchronous switching element that performs the third switching for switching to the third OFF state is the first semiconductor switching element 304. Accordingly, FIG. 7 is the same as FIG. 4 with the addition of the synchronous switching element determination signal waveform 9105. The switching signal waveform 9102 of the second semiconductor switching element 307 shown in FIG. 7 can be modified as shown in FIGS.
 図8は、本発明の実施の形態2にかかる電力変換装置80の制御装置821の変形例が送出する制御信号の波形とリアクトル303に流れる電流の波形を示した概略図である。図8において、領域A3に示す信号波形及び電流波形は、第1の半導体スイッチング素子304がオフ状態に維持され、かつ第2の半導体スイッチング素子307が第3のオン状態と第3のオフ状態とを切り替える第3の切り替えを行う非同期整流の状態を示す。そして、第3のオン状態の時間を第3のオン時間T11、第3のオフ状態の時間を第3のオフ時間T12としている。ここで、リアクトル303に流れる電流は不連続であり、第3のオン時間T11よりも第3のオフ時間T12の方が長い。この領域A3の状態から、同期整流の状態へ移行する。図8は、領域A3において、1回のスイッチング周期T10内におけるリアクトル303に流れる電流の平均値が負の値であり、電源809から電源801へ電力を伝達しているときの制御装置821が送出する制御信号の波形とリアクトルに流れる電流の波形を示す。 FIG. 8 is a schematic diagram showing a waveform of a control signal sent out by a modification of the control device 821 of the power conversion device 80 according to the second embodiment of the present invention and a waveform of a current flowing through the reactor 303. In FIG. 8, the signal waveform and the current waveform shown in the region A3 indicate that the first semiconductor switching element 304 is maintained in the off state, and the second semiconductor switching element 307 is in the third on state and the third off state. The state of the asynchronous rectification which performs the 3rd switching which switches is shown. The third on-state time is defined as a third on-time T11, and the third off-state time is defined as a third off-time T12. Here, the current flowing through the reactor 303 is discontinuous, and the third off time T12 is longer than the third on time T11. The state of this area A3 shifts to the state of synchronous rectification. FIG. 8 shows that in the region A3, the average value of the current flowing through the reactor 303 in one switching cycle T10 is a negative value, and the control device 821 sends power from the power source 809 to the power source 801. The waveform of the control signal to be performed and the waveform of the current flowing through the reactor are shown.
 図8では、第1の半導体スイッチング素子304の制御信号813の波形が、第1の半導体スイッチング素子304のスイッチング信号波形9201として示される。第2の半導体スイッチング素子307の制御信号815の波形は、第2の半導体スイッチング素子307のスイッチング信号波形9202として示される。他に図8には、同期整流動作切り替え信号波形9204と、リアクトル303の電流波形9203、同期スイッチング素子判定信号波形9205とが示されている。リアクトル303の電流波形9103は、リアクトル303に流れる電流の波形を示すが、これは概略波形であって、本来はこのように直線のみで表されるものではない。ここで例えば、電源809から電源801へ電力を供給している場合には、同期スイッチング素子判定信号812に0を出力することにしているので、同期スイッチング素子判定信号波形9105は、図8に示すような直線となっている。 8, the waveform of the control signal 813 of the first semiconductor switching element 304 is shown as the switching signal waveform 9201 of the first semiconductor switching element 304. The waveform of the control signal 815 of the second semiconductor switching element 307 is shown as the switching signal waveform 9202 of the second semiconductor switching element 307. In addition, FIG. 8 shows a synchronous rectification operation switching signal waveform 9204, a current waveform 9203 of the reactor 303, and a synchronous switching element determination signal waveform 9205. Although the current waveform 9103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line. Here, for example, when power is supplied from the power source 809 to the power source 801, 0 is output to the synchronous switching element determination signal 812. Therefore, the synchronous switching element determination signal waveform 9105 is shown in FIG. It is a straight line like this.
 電源809から電源801へ電力を供給しているとき、同期整流の状態へ移行する前に、オフ状態に維持されている同期スイッチング素子は第1の半導体スイッチング素子304であり、第3のオン状態と第3のオフ状態とを切り替える第3の切り替えを行う非同期スイッチング素子は第2の半導体スイッチング素子307である。したがって、図8では、図7において第1の半導体スイッチング素子304に対して送出していた信号と、第2の半導体スイッチング素子307に対して送出していた信号とが入れ替わる。 When power is supplied from the power source 809 to the power source 801, the synchronous switching element maintained in the OFF state before the transition to the synchronous rectification state is the first semiconductor switching element 304, and the third ON state The second semiconductor switching element 307 is the asynchronous switching element that performs the third switching to switch between the third semiconductor switching element 307 and the third OFF state. Therefore, in FIG. 8, the signal sent to the first semiconductor switching element 304 in FIG. 7 and the signal sent to the second semiconductor switching element 307 are interchanged.
 図8の第1の半導体スイッチング素子304のスイッチング信号波形9201に関して、図7の第2の半導体スイッチング素子307のスイッチング信号波形9102と異なるところのみを説明する。図8に示すように、第1の半導体スイッチング素子304のオン信号は、第2の半導体スイッチング素子307のオン信号と、次のスイッチング周期T10の第2の半導体スイッチング素子307のオン信号との間の中央、すなわち、第2の半導体スイッチング素子307のオフ信号の中央に設けている。 Only the difference between the switching signal waveform 9201 of the first semiconductor switching element 304 in FIG. 8 and the switching signal waveform 9102 of the second semiconductor switching element 307 in FIG. 7 will be described. As shown in FIG. 8, the ON signal of the first semiconductor switching element 304 is between the ON signal of the second semiconductor switching element 307 and the ON signal of the second semiconductor switching element 307 in the next switching period T10. At the center of the off signal of the second semiconductor switching element 307.
 図8において、第2の半導体スイッチング素子307をオン状態にしてリアクトル303にエネルギーを蓄積しているとき、リアクトル303に蓄積したエネルギーを電源301へ伝達しているとき、及び第2の半導体スイッチング素子307がオン状態でリアクトル303に負方向の電流が流れるとき、これらのときのリアクトル303の電流波形6203の傾きも、必ずしも図3に図示した傾きではない。図8は、概略図であるが、本発明の実施の形態2にかかる電力変換装置80は、電源809から電源801へ電力を伝達するとき、正方向に流れる電流量を抑制できていることは分かる。つまり、電源809から電源801へ電力を供給する場合、本発明の実施の形態2にかかる電力変換装置80は、電源801に供給する電力の変動を抑制することができていることは分かる。 In FIG. 8, when the second semiconductor switching element 307 is turned on to store energy in the reactor 303, when the energy stored in the reactor 303 is transmitted to the power supply 301, and the second semiconductor switching element When a current in the negative direction flows through the reactor 303 when 307 is on, the slope of the current waveform 6203 of the reactor 303 at this time is not necessarily the slope shown in FIG. Although FIG. 8 is a schematic diagram, the power conversion device 80 according to the second exemplary embodiment of the present invention can suppress the amount of current flowing in the positive direction when transmitting power from the power source 809 to the power source 801. I understand. That is, when power is supplied from the power source 809 to the power source 801, it can be seen that the power conversion device 80 according to the second embodiment of the present invention can suppress fluctuations in the power supplied to the power source 801.
 図8で示している制御装置821が送出する制御信号の波形とリアクトル303に流れる電流の波形は、電源301から電源309へ電力を伝達しているときのものであるので、第1の半導体スイッチング素子304に対して送出していた信号と、第2の半導体スイッチング素子307に対して送出していた信号とが入れ替わるものであり、本発明の実施の形態1における図3と特徴部分は変わらない。図3に同期スイッチング素子判定信号波形9105が加わり、第1の半導体スイッチング素子304に対して送出していた信号と、第2の半導体スイッチング素子307に対して送出していた信号とを入れ替えたのみである。図8に示した第1の半導体スイッチング素子304のスイッチング信号波形9201を、図4及び図5の第2の半導体スイッチング素子307のスイッチング信号波形のように変形することも可能である。 Since the waveform of the control signal sent out by the control device 821 and the waveform of the current flowing through the reactor 303 shown in FIG. 8 are those when power is transmitted from the power supply 301 to the power supply 309, the first semiconductor switching is performed. The signal transmitted to the element 304 and the signal transmitted to the second semiconductor switching element 307 are interchanged, and the characteristic portion is not different from FIG. 3 in the first embodiment of the present invention. . The synchronous switching element determination signal waveform 9105 is added to FIG. 3, and only the signal sent to the first semiconductor switching element 304 and the signal sent to the second semiconductor switching element 307 are replaced. It is. The switching signal waveform 9201 of the first semiconductor switching element 304 shown in FIG. 8 can be modified like the switching signal waveform of the second semiconductor switching element 307 of FIGS.
 以上のように、双方向に電力を供給することが出来る電力変換装置80においても、同期スイッチング素子が第1の半導体スイッチング素子304であるか第2の半導体スイッチング素子307であるかを見極め、非同期整流の状態から同期整流の状態へ移行する場合に、非同期スイッチング素子が第3のオフ状態の時に、第3のオフ状態の時間を示す第3のオフ時間よりも短い第4のオン時間で同期スイッチング素子を第4のオン状態とするように制御することで、逆方向に流れる電流量を抑制することができる。すなわち、本発明の実施の形態2では、供給する電力の変動を抑制した電力変換装置80を得ることができる。 As described above, also in the power conversion device 80 that can supply power bidirectionally, it is determined whether the synchronous switching element is the first semiconductor switching element 304 or the second semiconductor switching element 307, and is asynchronous. When shifting from the rectification state to the synchronous rectification state, when the asynchronous switching element is in the third OFF state, it is synchronized with a fourth ON time shorter than the third OFF time indicating the time of the third OFF state. By controlling the switching element to be in the fourth ON state, the amount of current flowing in the reverse direction can be suppressed. That is, in Embodiment 2 of the present invention, it is possible to obtain a power conversion device 80 that suppresses fluctuations in supplied power.
 本発明の実施の形態2では、同期整流を開始するタイミングはスイッチング周期T10が切り替わるタイミングと同じとして説明した。同期整流を開始するタイミングはスイッチング周期T10の途中であってもよいが、同期整流を開始するタイミングはスイッチング周期T10が切り替わるタイミングと同じであることが好ましい。 In the second embodiment of the present invention, the timing for starting the synchronous rectification is described as being the same as the timing for switching the switching cycle T10. The timing for starting the synchronous rectification may be in the middle of the switching cycle T10, but the timing for starting the synchronous rectification is preferably the same as the timing for switching the switching cycle T10.
実施の形態3.
 本発明の実施の形態3では、本発明の実施の形態1及び本発明の実施の形態2と相違する部分について説明し、同一又は対応する部分についての説明は省略する。本発明の実施の形態1及び本発明の実施の形態2では、非同期整流の状態から同期整流の状態へ移行する場合について説明したが、本発明の実施の形態3では同期整流の状態から非同期整流の状態へ移行する場合について説明する。電力の伝達方向は、本発明の実施の形態3では本発明の実施の形態1と同様に、一方向である。
Embodiment 3 FIG.
In the third embodiment of the present invention, portions that are different from the first embodiment of the present invention and the second embodiment of the present invention will be described, and description of the same or corresponding portions will be omitted. In the first embodiment and the second embodiment of the present invention, the case of shifting from the asynchronous rectification state to the synchronous rectification state has been described, but in the third embodiment of the present invention, the asynchronous rectification state is changed to the asynchronous rectification state. A case of shifting to the state will be described. The power transmission direction is one direction in the third embodiment of the present invention, as in the first embodiment of the present invention.
 本発明の実施の形態3では、本発明の実施の形態1で示した電力変換システム31と同じ図1の電力変換システム31が使用される。したがって、図1は、本発明の実施の形態3にかかる電力変換装置30を用いて構成された電力変換システム31でもある。そのため、本発明の実施の形態3では、本発明の実施の形態1にかかる電力変換システム31を構成している物と同じ名称及び符号を使用して、同期整流の状態から非同期整流の状態へ移行する場合について説明する。 In the third embodiment of the present invention, the same power conversion system 31 of FIG. 1 as the power conversion system 31 shown in the first embodiment of the present invention is used. Therefore, FIG. 1 is also a power conversion system 31 configured using the power conversion device 30 according to the third embodiment of the present invention. Therefore, in the third embodiment of the present invention, from the state of synchronous rectification to the state of asynchronous rectification, using the same names and symbols as those constituting the power conversion system 31 according to the first embodiment of the present invention. A case of migration will be described.
 本発明の実施の形態3にかかる電力変換装置30は、同期整流が可能な1石型昇圧回路において、同期整流の状態から非同期整流の状態へ移行する際に起きる課題を解決する。まず、本発明の実施の形態3にかかる電力変換装置30が解決する課題について説明する。 The power conversion device 30 according to the third embodiment of the present invention solves a problem that occurs when a single rectifier booster circuit capable of synchronous rectification shifts from a synchronous rectification state to an asynchronous rectification state. First, the problem which the power converter device 30 concerning Embodiment 3 of this invention solves is demonstrated.
 図9は、本発明の実施の形態3にかかる電力変換装置30が解決する課題を説明するための図であり、比較例の電力変換装置の制御装置が送出する制御信号の波形とリアクトル303に流れる電流の波形を示した概略図である。なお以下では、本発明の実施の形態1にかかる電力変換システム31を構成している物と同じ名称及び符号を使用して説明する。図9には、第1の半導体スイッチング素子304のスイッチング信号波形8101と、第2の半導体スイッチング素子307のスイッチング信号波形8102と、同期整流動作切り替え信号波形8104と、リアクトル303の電流波形8103とが示される。リアクトル303の電流波形8103は、リアクトル303に流れる電流の波形を示しているが、これは概略波形であって、本来はこのように直線のみで表されるものではない。 FIG. 9 is a diagram for explaining a problem to be solved by the power conversion device 30 according to the third embodiment of the present invention. The control signal waveform and the reactor 303 sent out by the control device of the power conversion device of the comparative example are shown in FIG. It is the schematic which showed the waveform of the electric current which flows. In addition, below, it demonstrates using the same name and code | symbol as the thing which comprises the power conversion system 31 concerning Embodiment 1 of this invention. FIG. 9 shows a switching signal waveform 8101 of the first semiconductor switching element 304, a switching signal waveform 8102 of the second semiconductor switching element 307, a synchronous rectification operation switching signal waveform 8104, and a current waveform 8103 of the reactor 303. Indicated. Although the current waveform 8103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
 図9の領域A4は、第1の半導体スイッチング素子304が第1のオン状態と第1のオフ状態とを切り替える第1の切り替えを繰り返し、かつ第2の半導体スイッチング素子307が第2のオン状態と第2のオフ状態とを切り替える第2の切り替えを繰り返す同期整流の状態を示す。図9の領域A4より先は、第2の半導体スイッチング素子307がオフ状態に維持され、かつ第1の半導体スイッチング素子304が第1のオン状態と第1のオフ状態とを切り替える第1の切り替えを繰り返す非同期整流の状態を示す。図9の動作を行う比較例の電力変換装置では、同期整流動作切り替え信号313がオフ状態になると、第2の半導体スイッチング素子307がオフ状態に維持され、かつ第1の半導体スイッチング素子304が第1のオン状態と第1のオフ状態とを切り替える第1の切り替えを繰り返す非同期整流の状態になる。 Region A4 in FIG. 9 repeats the first switching in which the first semiconductor switching element 304 switches between the first on-state and the first off-state, and the second semiconductor switching element 307 is in the second on-state. And a synchronous rectification state in which the second switching for switching between the second off state and the second off state is repeated. Prior to the region A4 in FIG. 9, the first semiconductor switching element 307 is maintained in the OFF state, and the first switching is performed so that the first semiconductor switching element 304 switches between the first ON state and the first OFF state. Shows the state of asynchronous rectification. In the power conversion device of the comparative example that performs the operation of FIG. 9, when the synchronous rectification operation switching signal 313 is turned off, the second semiconductor switching element 307 is maintained in the off state, and the first semiconductor switching element 304 is in the first state. Asynchronous rectification is performed by repeating the first switching for switching between the ON state of 1 and the first OFF state.
 図9では第1のオン時間はT21として示し、第1のオフ時間はT22として示す。また、図9におけるスイッチング周期は、T20として示され、第1の半導体スイッチング素子304の第1の切り替え及び第2の半導体スイッチング素子307の第2の切り替えの1周期である。つまり、第1の半導体スイッチング素子304のスイッチング周波数と第2の半導体スイッチング素子307のスイッチング周波数は等しい。同期整流の状態において、第2の半導体スイッチング素子307のスイッチング信号波形8102は、第1の半導体スイッチング素子304の反転信号である。 In FIG. 9, the first on-time is indicated as T21, and the first off-time is indicated as T22. Further, the switching period in FIG. 9 is indicated as T20 and is one period of the first switching of the first semiconductor switching element 304 and the second switching of the second semiconductor switching element 307. That is, the switching frequency of the first semiconductor switching element 304 and the switching frequency of the second semiconductor switching element 307 are equal. In the state of synchronous rectification, the switching signal waveform 8102 of the second semiconductor switching element 307 is an inverted signal of the first semiconductor switching element 304.
 図9の動作を行う比較例の電力変換装置において、例えば、第1の半導体スイッチング素子304の第1のオン時間T21の方が第1のオフ時間T22よりも短く、リアクトル303に蓄えられるエネルギーが少ない場合を考える。図9の領域A4では、第1の半導体スイッチング素子304がオン状態の間に、リアクトル303に流れる電流は正方向に増加し、第1の半導体スイッチング素子304をオフ状態にすると、リアクトル303に流れる電流は減少し0となる。図9の領域A4では、リアクトル303に流れる電流が0となった時、第2の半導体スイッチング素子307がオン状態であるので、リアクトル303に流れる電流は、そのまま負方向に流れる。図9の領域A4では、1回のスイッチング周期T20の間に、リアクトル303に流れる電流は、正方向と負方向の双方に流れる期間があるが、図9では、電力を電源301から負荷309へと供給しているので、第1の切り替えの1周期の間にリアクトル303に流れる電流の平均値は正である。 In the power conversion device of the comparative example that performs the operation of FIG. 9, for example, the first on-time T21 of the first semiconductor switching element 304 is shorter than the first off-time T22, and the energy stored in the reactor 303 is Consider the case of few. In the region A4 of FIG. 9, the current flowing through the reactor 303 increases in the positive direction while the first semiconductor switching element 304 is on, and flows into the reactor 303 when the first semiconductor switching element 304 is turned off. The current decreases and becomes zero. In the region A4 of FIG. 9, when the current flowing through the reactor 303 becomes 0, the second semiconductor switching element 307 is in the on state, so the current flowing through the reactor 303 flows in the negative direction as it is. In the region A4 in FIG. 9, there is a period in which the current flowing through the reactor 303 flows in both the positive direction and the negative direction during one switching cycle T20. In FIG. 9, power is supplied from the power source 301 to the load 309. Therefore, the average value of the current flowing through the reactor 303 during one cycle of the first switching is positive.
 ここで、図9の動作を行う比較例の電力変換装置において、第2の半導体スイッチング素子307がオフ状態となるタイミングで同期整流動作切り替え信号313がオフ状態になるとする。すなわち、同期整流の状態から非同期整流の状態に移行する。非同期整流の状態に移行後も、第1の半導体スイッチング素子304がオフ状態になってからリアクトル303に流れる電流は減少し0となるまでは、リアクトル303に流れる電流は同期整流の状態のときと同様である。しかしながら、非同期整流の状態では、第2の半導体スイッチング素子307が常にオフ状態であるので、電流がリアクトル303を負方向に流れる経路が無い。そのため、第1の半導体スイッチング素子304がオフ状態となった後、減少し0となったリアクトル303に流れる電流は、一時的に0のままとなり、リアクトル303に流れる電流が不連続となることがある。 Here, in the power conversion device of the comparative example that performs the operation of FIG. 9, it is assumed that the synchronous rectification operation switching signal 313 is turned off at the timing when the second semiconductor switching element 307 is turned off. That is, the state is shifted from the synchronous rectification state to the asynchronous rectification state. Even after the transition to the asynchronous rectification state, the current flowing through the reactor 303 remains in the synchronous rectification state until the current flowing through the reactor 303 decreases to zero after the first semiconductor switching element 304 is turned off. It is the same. However, in the asynchronous rectification state, since the second semiconductor switching element 307 is always in the off state, there is no path for current to flow through the reactor 303 in the negative direction. For this reason, after the first semiconductor switching element 304 is turned off, the current flowing through the reactor 303 that has decreased to 0 remains temporarily 0, and the current flowing through the reactor 303 may become discontinuous. is there.
 図9の領域A4では、制御装置が、1回のスイッチング周期T20内においてリアクトル303に電流が負方向に流れる期間があることを前提に、第1の半導体スイッチング素子304の必要な第1のオン時間T21を決定していた。しかしながら、同期整流の状態を解消した直後は、電流はリアクトル303を負方向に流れないため、第1の半導体スイッチング素子304に、同期整流の状態を解消する直前と同じ時間の第1のオン時間T21を設けると、リアクトル303に流れる1回のスイッチング周期T20における電流の平均値が想定よりも増加してしまう。その結果、想定以上の電流を負荷309へ供給することが発生したり、負荷309の電圧が増加したりしてしまい、保護機能が動作して、図9の比較例の電力変換装置が停止する可能性がある。 In the region A4 of FIG. 9, the control device requires the first on-state of the first semiconductor switching element 304 on the assumption that there is a period in which the current flows through the reactor 303 in the negative direction within one switching cycle T20. Time T21 was determined. However, since the current does not flow negatively through the reactor 303 immediately after canceling the synchronous rectification state, the first on-time of the first semiconductor switching element 304 is the same as that immediately before canceling the synchronous rectification state. If T21 is provided, the average value of the current in one switching cycle T20 flowing through the reactor 303 will increase more than expected. As a result, a current greater than expected may be supplied to the load 309 or the voltage of the load 309 increases, the protection function operates, and the power conversion device of the comparative example in FIG. 9 stops. there is a possibility.
 もちろん、本発明の実施の形態1で説明したように、1回のスイッチング周期T20内におけるリアクトル303に流れる電流の平均値が想定よりも増加したとき、すなわち負荷309に供給したい電力の値よりも出力した電力が高くなってしまったとき、そこから制御装置が、第1のオン時間T21を、本来必要な第1の半導体スイッチング素子304のオン時間に調整していくこともある。しかしながら、このような1回のスイッチング周期T20内におけるリアクトル303に流れる電流の平均値が想定よりも増加した状況をすぐに改善することは困難である。 Of course, as described in the first embodiment of the present invention, when the average value of the current flowing through the reactor 303 within one switching cycle T20 is larger than expected, that is, more than the value of the electric power to be supplied to the load 309. When the output power becomes high, the control device may adjust the first on-time T21 to the originally required on-time of the first semiconductor switching element 304 from there. However, it is difficult to immediately improve the situation in which the average value of the current flowing through the reactor 303 within the single switching period T20 has increased more than expected.
 以上のように、同期整流の状態から非同期整流の状態に移行する場合においても、1回のスイッチング周期T20内における正方向の電流量が多くなり、想定以上の電流を負荷309へ供給することが発生してしまうという課題があった。そのため、図9の動作を行う比較例の電力変換装置は負荷309に供給すべき電力を負荷309に供給することが出来ず、図9の動作を行う比較例の電力変換装置が負荷309に供給する電力に変動が発生してしまうという課題があった。 As described above, even in the case of shifting from the synchronous rectification state to the asynchronous rectification state, the amount of current in the positive direction within one switching cycle T20 increases, and a current larger than expected can be supplied to the load 309. There was a problem that it would occur. Therefore, the power conversion device of the comparative example that performs the operation of FIG. 9 cannot supply the load 309 with the power to be supplied to the load 309, and the power conversion device of the comparative example that performs the operation of FIG. There is a problem that fluctuations occur in the power to be generated.
 次に、本発明の実施の形態3にかかる電力変換装置30について説明する。図10は、本発明の実施の形態3にかかる電力変換装置30の制御装置321が送出する制御信号の波形とリアクトル303に流れる電流の波形を示した概略図である。図10には、第1の半導体スイッチング素子304のスイッチング信号波形10101と、第2の半導体スイッチング素子307のスイッチング信号波形10102と、同期整流動作切り替え信号波形10104と、リアクトル303の電流波形6203とが示される。リアクトル303の電流波形10103は、リアクトル303に流れる電流の波形を示すが、これは概略波形であって、本来はこのように直線のみで表されるものではない。図10において領域A4に示す信号波形及び電流波形は図9の領域A4の信号波形及び電流波形と同じである。 Next, the power conversion device 30 according to the third embodiment of the present invention will be described. FIG. 10 is a schematic diagram illustrating a waveform of a control signal sent out by the control device 321 of the power conversion device 30 according to the third embodiment of the present invention and a waveform of a current flowing through the reactor 303. FIG. 10 shows a switching signal waveform 10101 of the first semiconductor switching element 304, a switching signal waveform 10102 of the second semiconductor switching element 307, a synchronous rectification operation switching signal waveform 10104, and a current waveform 6203 of the reactor 303. Indicated. Although the current waveform 10103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line. In FIG. 10, the signal waveform and current waveform shown in region A4 are the same as the signal waveform and current waveform in region A4 in FIG.
 この領域A4の状態から、非同期整流の状態へ移行する。本発明の実施の形態3にかかる電力変換装置30の制御装置321は、図10の領域A4の状態から非同期整流の状態へ移行する間に、第1の半導体スイッチング素子304が第1のオフ状態の時に、第1のオフ状態の時間を示す第1のオフ時間T22よりも短い第2のオン時間T23で第2の半導体スイッチング素子307を第2のオン状態とするように制御する期間を設ける。つまり、本発明の実施の形態3では、同期整流の状態を解消した後すぐに非同期整流の状態とするのではなく、同期整流の状態を解消した直後に、同期整流の状態から非同期整流の状態へと移行する期間(以下、移行期間と呼ぶ。)が設けられる。ここで、第2のオン時間T23は、第1のオフ時間T22からデッドタイム期間(1μsから5μs程度)を引いた時間よりも短いものである。 [Transition from the state of this area A4 to the state of asynchronous rectification. In the control device 321 of the power conversion device 30 according to the third exemplary embodiment of the present invention, the first semiconductor switching element 304 is in the first OFF state during the transition from the state of the region A4 in FIG. 10 to the asynchronous rectification state. At this time, there is provided a period for controlling the second semiconductor switching element 307 to be in the second on state at the second on time T23 shorter than the first off time T22 indicating the time of the first off state. . In other words, in the third embodiment of the present invention, the state of asynchronous rectification is changed from the state of synchronous rectification to the state of asynchronous rectification immediately after the state of synchronous rectification is canceled, instead of the state of asynchronous rectification immediately after the state of synchronous rectification is eliminated. A period for shifting to (hereinafter referred to as a transition period) is provided. Here, the second on-time T23 is shorter than the time obtained by subtracting the dead time period (about 1 μs to 5 μs) from the first off-time T22.
 同期整流の状態を解消した直後から第2の半導体スイッチング素子307を常時オフ状態にするのではなく、同期整流の状態を解消した直後に移行期間を設けることによって、同期整流の状態に引き続いて、電流がリアクトル303の負方向に流れる時間を一部継続させる。 Instead of always turning off the second semiconductor switching element 307 immediately after canceling the state of synchronous rectification, following the state of synchronous rectification by providing a transition period immediately after canceling the state of synchronous rectification, Part of the time during which the current flows in the negative direction of reactor 303 is continued.
 同期整流の状態を解消した後すぐに非同期整流の状態にすると、1回のスイッチング周期T20内におけるリアクトル303に流れる電流の平均値は、同期整流の状態を解消する前よりも急激に上昇する。一方、同期整流の状態から非同期整流の状態へ移行する場合に、本発明の実施の形態3のような移行期間を設けると、1回のスイッチング周期T20内におけるリアクトル303に流れる電流の平均値の上昇を抑制することができる。同期整流の状態を解消しても、電流がリアクトル303の負方向に流れる時間を一部継続してから、非同期整流の状態となるからである。よって、本発明の実施の形態3にかかる電力変換装置30は、供給する電力の変動を抑制することができる。 When the state of asynchronous rectification is made immediately after the state of synchronous rectification is eliminated, the average value of the current flowing through the reactor 303 within one switching cycle T20 increases more rapidly than before the state of synchronous rectification is eliminated. On the other hand, when shifting from the state of synchronous rectification to the state of asynchronous rectification, if a transition period as in the third embodiment of the present invention is provided, the average value of the current flowing through the reactor 303 in one switching cycle T20 The rise can be suppressed. This is because even if the state of the synchronous rectification is eliminated, the state where the current flows in the negative direction of the reactor 303 is partially continued before the state of the asynchronous rectification is entered. Therefore, the power conversion device 30 according to the third embodiment of the present invention can suppress fluctuations in the supplied power.
 移行期間において、第1の半導体スイッチング素子304が第1のオフ状態の時に、第1の半導体スイッチング素子304の第1のオフ時間T22よりも短くした第2の半導体スイッチング素子の第2のオン時間T23で第2の半導体スイッチング素子をオン状態とする第2の切り替えは複数回あることが好ましい。これにより、同期整流の状態から非同期整流の状態へ移行するときに、1回のスイッチング周期T20内におけるリアクトル30に流れる電流の平均値の上昇をさらに抑制することができる。 In the transition period, when the first semiconductor switching element 304 is in the first OFF state, the second ON time of the second semiconductor switching element that is shorter than the first OFF time T22 of the first semiconductor switching element 304 It is preferable that the second switching for turning on the second semiconductor switching element at T23 is performed a plurality of times. Thereby, when it transfers to the state of asynchronous rectification from the state of synchronous rectification, the raise of the average value of the electric current which flows into the reactor 30 in one switching period T20 can further be suppressed.
 本発明の実施の形態3では、制御装置321が送出する第2の半導体スイッチング素子307の制御信号314は、図10に示すような移行期間において、第2の半導体スイッチング素子307の第2のオン時間T23を徐々に短くする。最終的には、第2の半導体スイッチング素子307の第2オン時間T23は0となり、第2の半導体スイッチング素子307が常にオフ状態となって、移行期間が終了し、非同期整流の状態となる。 In the third embodiment of the present invention, the control signal 314 of the second semiconductor switching element 307 sent out by the control device 321 is the second on-state of the second semiconductor switching element 307 in the transition period as shown in FIG. The time T23 is gradually shortened. Eventually, the second on-time T23 of the second semiconductor switching element 307 becomes 0, the second semiconductor switching element 307 is always turned off, the transition period ends, and the state of asynchronous rectification is entered.
 第2の半導体スイッチング素子307のオン時間を減少させる際の変化量は、回路構成や制御の応答速度によって適切な量があると考えられるが、例えば、1sで第2の半導体スイッチング素子307を常にオフ状態とする非同期整流の状態まで線形的に、第2の半導体スイッチング素子307のオン時間を減少させる方法がある。他にも、0.5sで2次関数的に減少させる方法なども考えられるが、これらだけに限定されるものではなく、回路に流れる電流や電圧を検出して、第2の半導体スイッチング素子307のオン時間を減少させている途中で、第2の半導体スイッチング素子307のオン時間を再度増加させることも考えられる。 The amount of change when reducing the on-time of the second semiconductor switching element 307 is considered to be an appropriate amount depending on the circuit configuration and control response speed. For example, the second semiconductor switching element 307 is always set in 1 s. There is a method in which the on-time of the second semiconductor switching element 307 is linearly reduced to the state of asynchronous rectification to be turned off. In addition, a method of reducing it by a quadratic function at 0.5 s is also conceivable. However, the method is not limited to these, and the second semiconductor switching element 307 is detected by detecting the current and voltage flowing in the circuit. It is also conceivable to increase the on-time of the second semiconductor switching element 307 again while the on-time is being reduced.
 さらに、図10に示すように、第2の半導体スイッチング素子307のオン状態にするタイミングも種々考えられ、例えば第2の半導体スイッチング素子307のオン状態とするタイミングを遅らせ、かつオフ状態とするタイミングを同じだけ早める方法がある。特に本発明の実施の形態3では、第1の半導体スイッチング素子304のオン信号と、次のスイッチング周期T20の第1の半導体スイッチング素子304のオン信号との間の中央を中心に対称に、第2の半導体スイッチング素子307のオン信号を設ける。 Furthermore, as shown in FIG. 10, there are various timings for turning on the second semiconductor switching element 307. For example, the timing for turning on the second semiconductor switching element 307 is delayed and the timing at which the second semiconductor switching element 307 is turned off. There is a way to speed up as much. In particular, in the third embodiment of the present invention, the first semiconductor switching element 304 is turned on symmetrically around the center between the ON signal of the first semiconductor switching element 304 and the ON signal of the first semiconductor switching element 304 in the next switching period T20. An ON signal of the second semiconductor switching element 307 is provided.
 また、本発明の実施の形態3では、図10に示すように、同期整流の状態を解消した後、第2の半導体スイッチング素子307のオン時間は徐々に短くする。したがって、1回のスイッチング周期T20内のリアクトル303に流れる電流の平均値の上昇は緩やかになる。よって、本発明の実施の形態3にかかる電力変換装置30は、負荷309に供給する電力の変動をさらに抑制することができる。また、1回のスイッチング周期T20内のリアクトル303に流れる電流の平均値の上昇が緩やかになると、制御装置321によって、迅速に負荷309への電力の供給量を調整することが可能となる。 Further, in the third embodiment of the present invention, as shown in FIG. 10, after the state of the synchronous rectification is eliminated, the on-time of the second semiconductor switching element 307 is gradually shortened. Therefore, the increase in the average value of the current flowing through reactor 303 within one switching cycle T20 is moderate. Therefore, the power conversion device 30 according to the third embodiment of the present invention can further suppress fluctuations in the power supplied to the load 309. In addition, when the average value of the current flowing through the reactor 303 within one switching cycle T20 gradually increases, the control device 321 can quickly adjust the amount of power supplied to the load 309.
 同期整流の状態から非同期整流の状態への移行は、電源301から負荷309へ供給する電力が少ない場合などに行う。例えば、電流がリアクトル303を正方向に流れるときに、電流が第2の整流素子306を通ったときに生じる電力損失と、第2の半導体スイッチング素子307の起電力の大きさとを考慮した際に、電流は第2の整流素子306を通った方が良いと判断されると、同期整流の状態から非同期整流の状態へと移行する。 The transition from the synchronous rectification state to the asynchronous rectification state is performed when the power supplied from the power supply 301 to the load 309 is small. For example, when considering the power loss that occurs when the current flows through the second rectifying element 306 and the magnitude of the electromotive force of the second semiconductor switching element 307 when the current flows in the positive direction through the reactor 303 When it is determined that the current should pass through the second rectifier element 306, the state shifts from the synchronous rectification state to the asynchronous rectification state.
 図11は、本発明の実施の形態3にかかる電力変換装置30の制御装置321の変形例が送出する制御信号の波形とリアクトル303に流れる電流の波形を示した概略図である。図11には、第1の半導体スイッチング素子304のスイッチング信号波形11101と、第2の半導体スイッチング素子307のスイッチング信号波形11102と、同期整流動作切り替え信号波形11104と、リアクトル303の電流波形11103とが示される。リアクトル303の電流波形11103は、リアクトル303に流れる電流の波形を示すが、これは概略波形であって、本来はこのように直線のみで表されるものではない。 FIG. 11 is a schematic diagram illustrating a waveform of a control signal sent by a modification of the control device 321 of the power conversion device 30 according to the third embodiment of the present invention and a waveform of a current flowing through the reactor 303. FIG. 11 shows a switching signal waveform 11101 of the first semiconductor switching element 304, a switching signal waveform 11102 of the second semiconductor switching element 307, a synchronous rectification operation switching signal waveform 11104, and a current waveform 11103 of the reactor 303. Indicated. Although the current waveform 11103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
 同期整流の状態を解消した直後の移行期間において、第2の半導体スイッチング素子307をオン状態にするタイミングが、図10と図11とでは異なる。以下、図11については、図10との相違点のみ説明する。 The timing for turning on the second semiconductor switching element 307 is different between FIG. 10 and FIG. 11 in the transition period immediately after the cancellation of the synchronous rectification state. Hereinafter, only differences from FIG. 10 will be described with reference to FIG.
 図11では、第2の半導体スイッチング素子307のスイッチング信号波形11102は、第2の半導体スイッチング素子307をオン状態にするタイミングが、第1の半導体スイッチング素子304をオフ状態とするタイミングと同じである。なお、第2の半導体スイッチング素子307をオン状態にするタイミングが、第1の半導体スイッチング素子304をオフ状態にするタイミングと同じという意味には、第2の半導体スイッチング素子307をオン状態にするタイミングと第1の半導体スイッチング素子304をオフ状態にするタイミングとの間に、デットタイム期間(1μsから5μs程度)を設けた場合、すなわち、厳密に同じではなく、間が数μs程度空いた場合も含まれるものである。 In FIG. 11, in the switching signal waveform 11102 of the second semiconductor switching element 307, the timing when the second semiconductor switching element 307 is turned on is the same as the timing when the first semiconductor switching element 304 is turned off. . The timing for turning on the second semiconductor switching element 307 is the same as the timing for turning on the first semiconductor switching element 304 in the meaning that the timing at which the second semiconductor switching element 307 is turned on. When a dead time period (about 1 μs to 5 μs) is provided between the first semiconductor switching element 304 and the timing at which the first semiconductor switching element 304 is turned off, that is, not exactly the same, but there is a gap of about several μs. It is included.
 図11において、第2の半導体スイッチング素子307のオン時間を徐々に短くするにあたっては、第2の半導体スイッチング素子307をオフ状態にするタイミングを徐々に早める。図11のような変形例の場合も、同期整流の状態を解消した後に、電流がリアクトル303を負方向に流れることができる期間を設けることで、負荷309に供給する電力の変動を抑制することができる。 In FIG. 11, in order to gradually shorten the ON time of the second semiconductor switching element 307, the timing for turning the second semiconductor switching element 307 OFF is gradually advanced. Also in the modified example as shown in FIG. 11, the fluctuation of the power supplied to the load 309 is suppressed by providing a period in which the current can flow negatively through the reactor 303 after the synchronous rectification state is canceled. Can do.
 ただし、図11と図10とを比較すると、図11に示すリアクトル303に流れる電流の方が、負方向に流れる電流を減少させる速度が速くなることが分かっている。したがって、図11に示すような第2の半導体スイッチング素子307のスイッチング信号波形11102を使用するときは、スイッチング速度が高速である第2の半導体スイッチング素子307を用いることが好ましい。 However, when FIG. 11 and FIG. 10 are compared, it is known that the current flowing through the reactor 303 shown in FIG. 11 is faster in reducing the current flowing in the negative direction. Therefore, when the switching signal waveform 11102 of the second semiconductor switching element 307 as shown in FIG. 11 is used, it is preferable to use the second semiconductor switching element 307 having a high switching speed.
 図12は、本発明の実施の形態3にかかる電力変換装置30の制御装置321の別の変形例が送出する制御信号の波形とリアクトル303に流れる電流の波形を示した概略図である。図12には、第1の半導体スイッチング素子304のスイッチング信号波形12101と、第2の半導体スイッチング素子307のスイッチング信号波形12102と、同期整流動作切り替え信号波形12104と、リアクトル303の電流波形12103とが示される。リアクトル303の電流波形12103は、リアクトル303に流れる電流の波形を示すが、これは概略波形であって、本来はこのように直線のみで表されるものではない。 FIG. 12 is a schematic diagram illustrating a waveform of a control signal sent out by another modification of the control device 321 of the power conversion device 30 according to the third embodiment of the present invention and a waveform of a current flowing through the reactor 303. FIG. 12 shows a switching signal waveform 12101 of the first semiconductor switching element 304, a switching signal waveform 12102 of the second semiconductor switching element 307, a synchronous rectification operation switching signal waveform 12104, and a current waveform 12103 of the reactor 303. Indicated. Although the current waveform 12103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
 同期整流の状態を解消した直後、移行期間において、第2の半導体スイッチング素子307をオン状態にするタイミングが、図12は図10及び図11とでは異なる。以下、図12については、図10及び図11との相違点のみ説明する。 Immediately after the state of synchronous rectification is canceled, the timing for turning on the second semiconductor switching element 307 in the transition period is different from that in FIGS. Hereinafter, only differences from FIG. 10 and FIG. 11 will be described with reference to FIG.
 図12では、第2の半導体スイッチング素子307のスイッチング信号波形12102は、第2の半導体スイッチング素子307をオフ状態にするタイミングが、第1の半導体スイッチング素子304をオン状態とするタイミングと同じである。なお、第2の半導体スイッチング素子307をオフ状態にするタイミングが、第1の半導体スイッチング素子304をオン状態にするタイミングと同じという意味には、第2の半導体スイッチング素子307をオフ状態にするタイミングと第1の半導体スイッチング素子304をオン状態にするタイミングとの間に、デットタイム期間(1μsから5μs程度)を設けた場合、すなわち、厳密に同じではなく、間が数μs程度空いた場合も含まれるものである。 In FIG. 12, the switching signal waveform 12102 of the second semiconductor switching element 307 has the same timing when the second semiconductor switching element 307 is turned off as the timing when the first semiconductor switching element 304 is turned on. . Note that the timing at which the second semiconductor switching element 307 is turned off means that the timing at which the second semiconductor switching element 307 is turned off is the same as the timing at which the first semiconductor switching element 304 is turned on. When a dead time period (about 1 μs to 5 μs) is provided between the first semiconductor switching element 304 and the timing at which the first semiconductor switching element 304 is turned on, that is, not exactly the same, but there is a gap of about several μs. It is included.
 図12において、第2の半導体スイッチング素子307のオン時間を徐々に短くするにあたっては、第2の半導体スイッチング素子307をオン状態にするタイミングを徐々に遅くする。図12のスイッチング信号12102によれば、第2の半導体スイッチング素子307がオン状態である間は必ず電流がリアクトル303を負方向に流れるようになる。したがって、図12のような変形例の場合も、同期整流の状態を解消した後に、電流がリアクトル303を負方向に流れることができる期間を設けることで、負荷309に供給する電力の変動を抑制することができる。 In FIG. 12, in order to gradually shorten the ON time of the second semiconductor switching element 307, the timing for turning on the second semiconductor switching element 307 is gradually delayed. According to the switching signal 12102 in FIG. 12, the current always flows in the negative direction through the reactor 303 while the second semiconductor switching element 307 is in the ON state. Therefore, even in the modified example as shown in FIG. 12, the fluctuation of the power supplied to the load 309 is suppressed by providing a period in which the current can flow in the negative direction through the reactor 303 after the synchronous rectification state is canceled. can do.
 さらに、図12と図10とを比較すると、図12に示すリアクトル303に流れる電流の方が、負方向に流れる電流を減少させる速度が遅くなることが分かっている。したがって、図12に示すような第2の半導体スイッチング素子307のスイッチング信号波形12102を使用するときは、スイッチング速度が低速である第2の半導体スイッチング素子307を用いることができる。 Further, comparing FIG. 12 with FIG. 10, it is known that the current flowing through the reactor 303 shown in FIG. 12 is slower in reducing the current flowing in the negative direction. Therefore, when the switching signal waveform 12102 of the second semiconductor switching element 307 as shown in FIG. 12 is used, the second semiconductor switching element 307 having a low switching speed can be used.
 本発明の実施の形態3では、同期整流の状態を解消するタイミングは、スイッチング周期T20が切り替わるタイミングと同じとして説明した。同期整流の状態を解消するタイミングはスイッチング周期T20の途中であってもよいが、同期整流の状態を解消するタイミングはスイッチング周期T20が切り替わるタイミングと同じであることが好ましい。 In the third embodiment of the present invention, the timing for canceling the synchronous rectification state is described as being the same as the timing for switching the switching cycle T20. The timing for canceling the synchronous rectification state may be in the middle of the switching cycle T20, but the timing for canceling the synchronous rectification state is preferably the same as the timing for switching the switching cycle T20.
実施の形態4.
 本発明の実施の形態4では、本発明の実施の形態1から本発明の実施の形態3と相違する部分について説明し、同一又は対応する部分についての説明は省略する。本発明の実施の形態1及び本発明の実施の形態2では、非同期整流の状態から同期整流の状態へ移行する場合について説明したが、本発明の実施の形態4では本発明の実施の形態3と同様に、同期整流の状態から非同期整流の状態へ移行する場合について説明する。電力の伝達方向は、本発明の実施の形態4では本発明の実施の形態2と同様に双方向である。
Embodiment 4 FIG.
In the fourth embodiment of the present invention, parts different from the first to third embodiments of the present invention will be described, and description of the same or corresponding parts will be omitted. In the first embodiment and the second embodiment of the present invention, the case of shifting from the asynchronous rectification state to the synchronous rectification state has been described. However, in the fourth embodiment of the present invention, the third embodiment of the present invention is described. Similarly, a case where the state is shifted from the synchronous rectification state to the asynchronous rectification state will be described. The power transmission direction is bidirectional in the fourth embodiment of the present invention, as in the second embodiment of the present invention.
 本発明の実施の形態4では、本発明の実施の形態2で示した電力変換システム81と同じ図6の電力変換システム81が使用される。したがって、図6は、本発明の実施の形態4にかかる電力変換装置80を用いて構成された電力変換システム81でもある。そのため、本発明の実施の形態4では、本発明の実施の形態2にかかる電力変換システム81を構成している物と同じ名称及び符号を使用して、同期整流の状態から非同期整流の状態へ移行する場合について説明する。 In the fourth embodiment of the present invention, the same power conversion system 81 of FIG. 6 as the power conversion system 81 shown in the second embodiment of the present invention is used. Therefore, FIG. 6 is also a power conversion system 81 configured using the power conversion device 80 according to the fourth embodiment of the present invention. Therefore, in the fourth embodiment of the present invention, from the state of synchronous rectification to the state of asynchronous rectification, using the same names and symbols as those constituting the power conversion system 81 according to the second embodiment of the present invention. A case of migration will be described.
 本発明の実施の形態4では、本発明の実施の形態2と同様に、電力が電源801から電源809へと伝達される場合と、電源809から電源801へと伝達される場合の双方向を想定している。また、以下でも、本発明の実施の形態1から本発明の実施の形態3と同様に、リアクトル303の第1の端子から第2の端子へ電流が流れる方向を正方向(順方向)と呼び、第2の端子から第1の端子へ電流が流れる方向を負方向(逆方向)と呼ぶことにする。したがって、電力が電源809から電源801へと伝達される場合においては、同期整流の状態を解消した後、リアクトル303に流れる電流の平均値の下降(リアクトル303を負方向に流れる電流の平均値の上昇)を抑制することが目的となる。しかしながら、電力を伝達する向きが逆方向となることがあっても、本発明の実施の形態4も供給する(伝達する)電力の変動を抑制した電力変換装置を得ることが目的であることは、本発明の実施の形態1から本発明の実施の形態3と同じである。 In the fourth embodiment of the present invention, as in the second embodiment of the present invention, bidirectional operation is performed when power is transmitted from the power source 801 to the power source 809 and when power is transmitted from the power source 809 to the power source 801. Assumed. In the following, the direction in which current flows from the first terminal of the reactor 303 to the second terminal is referred to as the positive direction (forward direction) as in the first to third embodiments of the present invention. The direction in which current flows from the second terminal to the first terminal is referred to as the negative direction (reverse direction). Therefore, in the case where power is transmitted from power source 809 to power source 801, after the state of synchronous rectification is canceled, the average value of the current flowing through reactor 303 decreases (the average value of the current flowing through reactor 303 in the negative direction). The purpose is to suppress the rise). However, the object is to obtain a power conversion device that suppresses fluctuations in the power that is supplied (transmitted) in the fourth embodiment of the present invention even when the direction in which the power is transmitted is reversed. This is the same as Embodiment 1 to Embodiment 3 of the present invention.
 図13は、本発明の実施の形態4にかかる電力変換装置80の制御装置821が送出する制御信号の波形とリアクトル303に流れる電流の波形を示した概略図である。図13には、第1の半導体スイッチング素子304のスイッチング信号波形13101と、第2の半導体スイッチング素子307のスイッチング信号波形13102と、同期整流動作切り替え信号波形13104と、リアクトル303の電流波形13103と、同期スイッチング素子判定信号波形13105とが示される。リアクトル303の電流波形13103は、リアクトル303に流れる電流の波形を示すが、これは概略波形であって、本来はこのように直線のみで表されるものではない。 FIG. 13 is a schematic diagram illustrating a waveform of a control signal sent out by the control device 821 of the power conversion device 80 according to the fourth embodiment of the present invention and a waveform of a current flowing through the reactor 303. FIG. 13 includes a switching signal waveform 13101 of the first semiconductor switching element 304, a switching signal waveform 13102 of the second semiconductor switching element 307, a synchronous rectification operation switching signal waveform 13104, a current waveform 13103 of the reactor 303, A synchronous switching element determination signal waveform 13105 is shown. Although the current waveform 13103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line.
 図13において、領域A5に示す信号波形及び電流波形は、制御装置821が第1の半導体スイッチング素子304を第3のオン状態と第3のオフ状態とに切り替える第3の切り替えを繰り返させ、かつ第3の切り替えに同期して、第2の半導体スイッチング素子307を第4のオン状態と第4のオフ状態とを切り替える第4の切り替えを繰り返させる同期整流の状態を示す。図13では、第3のオン時間をT31、第3のオフ時間をT32として示す。また、図13におけるスイッチング周期は、T30として示され、第3の切り替え及び第4の切り替えの1周期である。つまり、第1の半導体スイッチング素子304の周波数と第2の半導体スイッチング素子307の周波数は等しい。第2の半導体スイッチング素子307のスイッチング信号波形13102は、第1の半導体スイッチング素子304の反転信号である。 In FIG. 13, the signal waveform and the current waveform shown in the region A5 cause the control device 821 to repeat the third switching for switching the first semiconductor switching element 304 between the third on state and the third off state, and The state of synchronous rectification in which the fourth switching for switching the second semiconductor switching element 307 between the fourth on state and the fourth off state is repeated in synchronization with the third switching is shown. In FIG. 13, the third on-time is shown as T31, and the third off-time is shown as T32. Moreover, the switching period in FIG. 13 is shown as T30, and is one period of the third switching and the fourth switching. That is, the frequency of the first semiconductor switching element 304 and the frequency of the second semiconductor switching element 307 are equal. A switching signal waveform 13102 of the second semiconductor switching element 307 is an inverted signal of the first semiconductor switching element 304.
 図13は、領域A5において、検出装置810によって検出された1回のスイッチング周期T30内におけるリアクトル303に流れる電流の平均値が正の値であるので、電源801から電源809へ電力を伝達しているときの制御装置821が送出する制御信号の波形とリアクトル303に流れる電流の波形を示す。つまり、図13の同期スイッチング素子判定信号波形13105は、同期スイッチング素子判定信号812として1を出力する。本発明の実施の形態2において説明したように、例えば、制御装置821は、電源801から電源809へ電力を供給している場合には、同期スイッチング素子判定信号812として1を出力し、電源809から電源801へ電力を供給している場合には、同期スイッチング素子判定信号812として0を出力するからである。 FIG. 13 shows that in region A5, the average value of the current flowing through the reactor 303 within one switching cycle T30 detected by the detection device 810 is a positive value, so that power is transmitted from the power source 801 to the power source 809. 6 shows a waveform of a control signal sent out by the control device 821 and a waveform of a current flowing through the reactor 303. That is, the synchronous switching element determination signal waveform 13105 in FIG. 13 outputs 1 as the synchronous switching element determination signal 812. As described in Embodiment 2 of the present invention, for example, when the power is supplied from the power source 801 to the power source 809, the control device 821 outputs 1 as the synchronous switching element determination signal 812, and the power source 809 This is because 0 is output as the synchronous switching element determination signal 812 when power is supplied from the power source 801 to the power source 801.
 本発明の実施の形態4では、同期整流の状態である領域A5の状態から、非同期整流の状態へ移行する。本発明の実施の形態4のように電力の伝達が双方向である場合、まず、同期整流の状態を解消し非同期整流の状態とするために、第1の半導体スイッチング素子304と第2の半導体スイッチング素子307のいずれのスイッチング信号波形を変更させるか判断する。本発明の実施の形態4では、同期整流の状態から非同期整流の状態へ移行するときに、第1の半導体スイッチング素子304と第2の半導体スイッチング素子307のうちスイッチング信号波形が変更される方を、同期スイッチング素子と呼び、他方を、非同期スイッチング素子と呼ぶ。図13において、同期スイッチング素子は第2の半導体スイッチング素子307であり、非同期スイッチング素子は第1の半導体スイッチング素子304である。 In the fourth embodiment of the present invention, the state of the region A5 which is the state of synchronous rectification is shifted to the state of asynchronous rectification. When power is transmitted bidirectionally as in the fourth embodiment of the present invention, first, the first semiconductor switching element 304 and the second semiconductor are set in order to cancel the synchronous rectification state and enter the asynchronous rectification state. It is determined which switching signal waveform of the switching element 307 is to be changed. In the fourth embodiment of the present invention, when switching from the synchronous rectification state to the asynchronous rectification state, the switching signal waveform of the first semiconductor switching element 304 and the second semiconductor switching element 307 is changed. Are called synchronous switching elements, and the other is called asynchronous switching elements. In FIG. 13, the synchronous switching element is the second semiconductor switching element 307, and the asynchronous switching element is the first semiconductor switching element 304.
 本発明の実施の形態4にかかる電力変換装置80の検出装置810は、1回のスイッチング周期T30内におけるリアクトル303に流れる電流の平均値を検出する。制御装置821は、1回のスイッチング周期T30内におけるリアクトル303に流れる電流の平均値を駆動装置820に伝達する。この動作によって、駆動装置820は、第1の半導体スイッチング素子304と第2の半導体スイッチング素子307のうちいずれが非同期スイッチング素子であるか、及び第1の半導体スイッチング素子304と第2の半導体スイッチング素子307のうちいずれが同期スイッチング素子であるか判断する。さらに、駆動装置820は、1回のスイッチング周期T30内におけるリアクトル303に流れる電流の平均値から、電力の供給方向も判断する。 The detection device 810 of the power conversion device 80 according to the fourth embodiment of the present invention detects the average value of the current flowing through the reactor 303 within one switching cycle T30. Control device 821 transmits the average value of the current flowing through reactor 303 within one switching cycle T30 to drive device 820. By this operation, the driving device 820 determines which one of the first semiconductor switching element 304 and the second semiconductor switching element 307 is an asynchronous switching element, and the first semiconductor switching element 304 and the second semiconductor switching element. It is determined which of 307 is a synchronous switching element. Further, drive device 820 also determines the direction of power supply from the average value of the current flowing through reactor 303 within one switching cycle T30.
 電力の供給方向の判別は、例えば、検出器810によって1回のスイッチング周期T10におけるリアクトル303に流れる電流の平均値を検出し、その値が正か負かによって判断することができるが、他の判別方法でも構わない。本発明の実施の形態4では、検出器810によってリアクトル303に流れる瞬時の電流値を検出し、その電流値情報を取得した制御装置821で1回のスイッチング周期T10におけるリアクトル303に流れる電流の平均値を算出し、その値が正か負かによって電力の供給方向を判別する。第1の半導体スイッチング素子304と第2の半導体スイッチング素子307のうち、いずれが非同期スイッチング素子であるか、及びいずれが同期スイッチング素子であるか判断する手段も電力の供給方向の判別と同様に行う。ただし、上述した内容に限られることはない。 The power supply direction can be determined by, for example, detecting the average value of the current flowing through the reactor 303 in one switching cycle T10 by the detector 810 and determining whether the value is positive or negative. A discrimination method may be used. In the fourth embodiment of the present invention, the instantaneous current value flowing through the reactor 303 is detected by the detector 810, and the average of the current flowing through the reactor 303 in one switching cycle T10 is detected by the control device 821 that has acquired the current value information. A value is calculated, and the power supply direction is determined depending on whether the value is positive or negative. The means for determining which of the first semiconductor switching element 304 and the second semiconductor switching element 307 is an asynchronous switching element and which is a synchronous switching element is performed in the same manner as the determination of the power supply direction. . However, the contents are not limited to those described above.
 非同期整流の状態では、同期スイッチング素子である第2の半導体スイッチング素子307がオフ状態に維持され、非同期スイッチング素子である第1の半導体スイッチング素子304が第3のオン状態と第3のオフ状態とを切り替える第3の切り替えを繰り返す。 In the state of asynchronous rectification, the second semiconductor switching element 307 that is a synchronous switching element is maintained in an off state, and the first semiconductor switching element 304 that is an asynchronous switching element is in a third on state and a third off state. The third switching for switching is repeated.
 本発明の実施の形態4にかかる電力変換装置80の制御装置821は、図13の領域A5の状態から非同期整流の状態へ移行する間に、非同期スイッチング素子が第3のオフ状態の時に、第3のオフ状態の時間を示す第3のオフ時間T32よりも短い第4のオン時間T33で同期スイッチング素子を第4のオン状態とするように制御する期間(移行期間)を設ける。つまり、同期整流の状態を解消した後すぐに非同期整流の状態とするのではなく、同期整流の状態を解消した直後に、移行期間が設けられていることを示す。ここで、第4のオン時間T33は、第3のオフ時間T32からデッドタイム期間(1μsから5μs程度)を引いた時間よりも短いものである。 The control device 821 of the power conversion device 80 according to the fourth exemplary embodiment of the present invention operates when the asynchronous switching element is in the third OFF state during the transition from the state of the region A5 in FIG. 13 to the asynchronous rectification state. A period (transition period) is provided in which the synchronous switching element is controlled to be in the fourth on state at a fourth on time T33 that is shorter than the third off time T32 indicating the time of three off states. That is, it indicates that the transition period is provided immediately after the state of the synchronous rectification is canceled, not the state of the asynchronous rectification immediately after the state of the synchronous rectification is canceled. Here, the fourth on-time T33 is shorter than the time obtained by subtracting the dead time period (about 1 μs to about 5 μs) from the third off-time T32.
 同期整流を解消した直後から非同期スイッチング素子を常時オフ状態にするのではなく、移行期間を設けることによって、電流がリアクトル303の負方向に流れる時間を同期整流の状態を解消した直後に作る。つまり、同期整流の状態に引き続いて、電流がリアクトル303の負方向に流れる時間を一部継続させる。本発明の実施の形態3と同様に、同期整流の状態から非同期整流の状態へ移行する場合に、図13のような移行期間を設けると、1回のスイッチング周期T30内におけるリアクトル303に流れる電流の平均値の上昇を抑制することができるため、本発明の実施の形態4にかかる電力変換装置80は、供給する(伝達する)電力の変動を抑制することができる。 Instead of always turning off the asynchronous switching element immediately after eliminating the synchronous rectification, the transition period is provided so that the time during which the current flows in the negative direction of the reactor 303 is created immediately after the state of the synchronous rectification is eliminated. That is, part of the time during which the current flows in the negative direction of the reactor 303 is continued following the synchronous rectification state. Similarly to the third embodiment of the present invention, when the transition from the synchronous rectification state to the asynchronous rectification state is made, if a transition period as shown in FIG. 13 is provided, the current flowing through the reactor 303 within one switching cycle T30 Therefore, the power conversion device 80 according to the fourth embodiment of the present invention can suppress fluctuations in supplied (transmitted) power.
 移行期間において、第1の半導体スイッチング素子304が第3のオフ状態の時に、第1の半導体スイッチング素子304の第3のオフ時間T32よりも短くした第2の半導体スイッチング素子307の第4のオン時間T33で第2の半導体スイッチング素子をオン状態とする第4の切り替えは複数回あることが好ましい。これにより、同期整流の状態から非同期整流の状態へ移行するときに、1回のスイッチング周期T30内におけるリアクトル30に流れる電流の平均値の上昇をさらに抑制することができる。 In the transition period, when the first semiconductor switching element 304 is in the third OFF state, the fourth ON state of the second semiconductor switching element 307 that is shorter than the third OFF time T32 of the first semiconductor switching element 304 is set. It is preferable that the fourth switching for turning on the second semiconductor switching element at time T33 is performed a plurality of times. Thereby, when it transfers to the state of asynchronous rectification from the state of synchronous rectification, the raise of the average value of the electric current which flows into the reactor 30 in one switching period T30 can further be suppressed.
 本発明の実施の形態4では、制御装置821が送出する第2の半導体スイッチング素子307の制御信号815は、図13の第2の半導体スイッチング素子307のスイッチング信号波形13102に示すような波形であって、第1の半導体スイッチング素子304の第3のオフ時間T32よりも短くした第2の半導体スイッチング素子307の第4のオン時間T33を徐々に短くする。最終的には、第2の半導体スイッチング素子307の第4オン時間T33は0となり、第2の半導体スイッチング素子307が常にオフ状態となって、移行期間が終了し、非同期整流の状態となる。 In Embodiment 4 of the present invention, the control signal 815 of the second semiconductor switching element 307 sent out by the control device 821 has a waveform as shown in the switching signal waveform 13102 of the second semiconductor switching element 307 in FIG. Thus, the fourth on-time T33 of the second semiconductor switching element 307, which is shorter than the third off-time T32 of the first semiconductor switching element 304, is gradually shortened. Eventually, the fourth on-time T33 of the second semiconductor switching element 307 becomes 0, the second semiconductor switching element 307 is always turned off, the transition period ends, and the state of asynchronous rectification is entered.
 第2の半導体スイッチング素子307のオン時間を減少させる際の変化量は、回路構成や制御の応答速度によって適切な量があると考えられる。例としては、本発明の実施の形態3において上述した通りである。 It is considered that there is an appropriate amount of change when the on-time of the second semiconductor switching element 307 is decreased depending on the circuit configuration and control response speed. An example is as described above in the third embodiment of the present invention.
 さらに、実施の形態3と同様に、第2の半導体スイッチング素子307のオン状態にするタイミングも種々考えられ、本発明の実施の形態4では、第1の半導体スイッチング素子304のオン信号と、次のスイッチング周期T30の第1の半導体スイッチング素子304のオン信号との間の中央を中心として対称に、第2の半導体スイッチング素子307のオン信号を設ける。図13に示した第2の半導体スイッチング素子307のスイッチング信号波形13102は、図11及び図12のように変形することも可能である。 Further, similarly to the third embodiment, various timings for turning on the second semiconductor switching element 307 can be considered. In the fourth embodiment of the present invention, the ON signal of the first semiconductor switching element 304 and the next The ON signal of the second semiconductor switching element 307 is provided symmetrically about the center between the ON signal of the first semiconductor switching element 304 and the switching period T30. The switching signal waveform 13102 of the second semiconductor switching element 307 shown in FIG. 13 can be modified as shown in FIGS.
 図14は、本発明の実施の形態4にかかる電力変換装置80の制御装置821の変形例が送出する制御信号の波形とリアクトル303に流れる電流の波形を示した概略図である。本発明の実施の形態4の変形例は、1回のスイッチング周期T30内におけるリアクトル303に流れる電流の平均値が負の値であり、電源809から電源801へ電力を伝達する場合である。図14には、第1の半導体スイッチング素子304のスイッチング信号波形14101と、第2の半導体スイッチング素子307のスイッチング信号波形14102と、同期整流動作切り替え信号波形14104と、リアクトル303の電流波形14103と、同期スイッチング素子判定信号波形14105とが示される。リアクトル303の電流波形14103は、リアクトル303に流れる電流の波形を示すが、これは概略波形であって、本来はこのように直線のみで表されるものではない。以下、図14については、図13との相違点のみ説明する。 FIG. 14 is a schematic diagram illustrating a waveform of a control signal sent by a modification of the control device 821 of the power conversion device 80 according to the fourth embodiment of the present invention and a waveform of a current flowing through the reactor 303. A modification of the fourth embodiment of the present invention is a case where the average value of the current flowing through reactor 303 in one switching cycle T30 is a negative value, and power is transmitted from power supply 809 to power supply 801. In FIG. 14, the switching signal waveform 14101 of the first semiconductor switching element 304, the switching signal waveform 14102 of the second semiconductor switching element 307, the synchronous rectification operation switching signal waveform 14104, the current waveform 14103 of the reactor 303, A synchronous switching element determination signal waveform 14105 is shown. Although the current waveform 14103 of the reactor 303 shows the waveform of the current flowing through the reactor 303, this is a schematic waveform and is not originally represented by only a straight line. Hereinafter, only differences from FIG. 13 will be described with reference to FIG.
 図14において、領域A5に示す信号波形及び電流波形は、図13と同様に、同期整流の状態を示す。図14は、領域A5において、検出装置810によって検出された1回のスイッチング周期T30内におけるリアクトル303に流れる電流の平均値が負の値であるので、電源809から電源801へ電力を伝達しているときの制御装置821が送出する制御信号の波形とリアクトル303に流れる電流波形を示す。つまり、図14の同期スイッチング素子判定信号波形14105は、同期スイッチング素子判定信号812として0を出力する。 14, the signal waveform and current waveform shown in region A5 indicate the state of synchronous rectification, as in FIG. 13. FIG. 14 shows that in region A5, the average value of the current flowing through the reactor 303 within one switching cycle T30 detected by the detection device 810 is a negative value, so that power is transmitted from the power source 809 to the power source 801. The waveform of the control signal sent out by the control device 821 and the current waveform flowing through the reactor 303 are shown. That is, the synchronous switching element determination signal waveform 14105 in FIG. 14 outputs 0 as the synchronous switching element determination signal 812.
 図14において、第3のオン状態と第3のオフ状態とを切り替える第3の切り替えを繰り返す非同期スイッチング素子は、第2の半導体スイッチング素子307である。第3の切り替えに同期して、第4のオン状態と第4のオフ状態とを切り替える第4の切り替えを繰り返す同期スイッチング素子は、第1の半導体スイッチング素子304である。つまり、図14では、図13において第1の半導体スイッチング素子304に対して送出していた信号と、第2の半導体スイッチング素子307に対して送出していた信号とが入れ替わる。 In FIG. 14, the asynchronous switching element that repeats the third switching for switching between the third on state and the third off state is the second semiconductor switching element 307. The synchronous switching element that repeats the fourth switching that switches between the fourth on state and the fourth off state in synchronization with the third switching is the first semiconductor switching element 304. That is, in FIG. 14, the signal sent to the first semiconductor switching element 304 in FIG. 13 and the signal sent to the second semiconductor switching element 307 are switched.
 本発明の実施の形態4にかかる電力変換装置80の制御装置821は、本発明の実施の形態4の変形例においても、図14の領域A5の状態から非同期整流の状態へ移行する間に、非同期スイッチング素子が第3のオフ状態の時に、第3のオフ状態の時間を示す第3のオフ時間T32よりも短い第4のオン時間T33で同期スイッチング素子を第4のオン状態とするように制御する期間(移行期間)を設ける。つまり、同期整流の状態を解消した後すぐに非同期整流の状態とするのではなく、同期整流の状態を解消した直後に、移行期間が設けられていることを示す。ここで、第4のオン時間T33は、第3のオフ時間T32からデッドタイム期間(1μsから5μs程度)を引いた時間よりも短いものである。 The control device 821 of the power conversion device 80 according to the fourth exemplary embodiment of the present invention also changes the state of the region A5 in FIG. 14 to the asynchronous rectification state in the modified example of the fourth exemplary embodiment of the present invention. When the asynchronous switching element is in the third OFF state, the synchronous switching element is set to the fourth ON state at a fourth ON time T33 that is shorter than the third OFF time T32 indicating the time of the third OFF state. A control period (transition period) is provided. That is, it indicates that the transition period is provided immediately after the state of the synchronous rectification is canceled, not the state of the asynchronous rectification immediately after the state of the synchronous rectification is canceled. Here, the fourth on-time T33 is shorter than the time obtained by subtracting the dead time period (about 1 μs to about 5 μs) from the third off-time T32.
 同期整流を解消した直後から非同期スイッチング素子を常時オフ状態にするのではなく、同期整流の状態を解消した直後に移行期間を設けることによって、同期整流の状態に引き続いて、電流がリアクトル303の正方向に流れる時間を一部継続させる。 Instead of always turning off the asynchronous switching element immediately after the cancellation of the synchronous rectification, a transition period is provided immediately after the cancellation of the synchronous rectification state. Continue part of the time flowing in the direction.
 同期整流の状態を解消した後すぐに非同期整流の状態にすると、1回のスイッチング周期T30内におけるリアクトル303に流れる電流の平均値は、同期整流の状態を解消する前よりも急激に下降する。一方、同期整流の状態から非同期整流の状態へ移行する場合に、図14のような移行期間を設けると、1回のスイッチング周期T30内におけるリアクトル303に流れる電流の平均値の下降を抑制することができる。同期整流の状態を解消しても、電流がリアクトル303の正方向に流れる時間を一部継続してから、非同期整流の状態となるからである。よって、本発明の実施の形態4にかかる電力変換装置80は、供給する(伝達する)電力の変動を抑制することができる。 When the state of asynchronous rectification is made immediately after the state of synchronous rectification is eliminated, the average value of the current flowing through the reactor 303 within one switching cycle T30 falls more rapidly than before the state of synchronous rectification is eliminated. On the other hand, when shifting from the state of synchronous rectification to the state of asynchronous rectification, if a transition period as shown in FIG. 14 is provided, the decrease in the average value of the current flowing through the reactor 303 within one switching cycle T30 is suppressed. Can do. This is because even if the state of the synchronous rectification is canceled, a part of the time during which the current flows in the positive direction of the reactor 303 is continued before the state of asynchronous rectification is entered. Therefore, the power conversion device 80 according to the fourth embodiment of the present invention can suppress fluctuations in the supplied (transmitted) power.
 本発明の実施の形態4の変形例においても、第1の半導体スイッチング素子304のオン状態にするタイミングは種々考えられ、図14では、第1の半導体スイッチング素子304をオン状態とするタイミングと第2の半導体スイッチング素子307をオフ状態とするタイミングとを同じとする。図14に示した第1の半導体スイッチング素子304のスイッチング信号波形14101は、図10及び図12の第2の半導体スイッチング素子307のスイッチング信号波形のように変形することも可能である。 Also in the modification of the fourth embodiment of the present invention, various timings for turning on the first semiconductor switching element 304 can be considered. In FIG. The timing at which the semiconductor switching element 307 is turned off is the same. The switching signal waveform 14101 of the first semiconductor switching element 304 shown in FIG. 14 can be modified like the switching signal waveform of the second semiconductor switching element 307 of FIGS.
 以上のように、双方向に電力を供給することが出来る電力変換装置80においても、まず、同期スイッチング素子が第1の半導体スイッチング素子304であるか第2の半導体スイッチング素子307であるかを見極める。そして、同期整流の状態から非同期整流の状態へ移行する場合において、同期整流の状態を解消した後、同期整流の状態から非同期整流の状態へ移行する間に、非同期スイッチング素子が第3のオフ状態の時に、第3のオフ状態の時間を示す第3のオフ時間よりも短い第4のオン時間で同期スイッチング素子を第4のオン状態とするように制御する期間を設ける。これにより、本発明の実施の形態4では、供給する電力の変動を抑制した電力変換装置80を得ることができる。 As described above, also in the power conversion device 80 that can supply power bidirectionally, first, it is determined whether the synchronous switching element is the first semiconductor switching element 304 or the second semiconductor switching element 307. . Then, in the transition from the synchronous rectification state to the asynchronous rectification state, after the synchronous rectification state is canceled, the asynchronous switching element is switched to the third off state during the transition from the synchronous rectification state to the asynchronous rectification state. At this time, a period for controlling the synchronous switching element to be in the fourth on-state with a fourth on-time shorter than the third off-time indicating the time of the third off-state is provided. Thereby, in Embodiment 4 of this invention, the power converter device 80 which suppressed the fluctuation | variation of the electric power to supply can be obtained.
 本発明の実施の形態4では、同期整流の状態を解消するタイミングは、スイッチング周期T20が切り替わるタイミングと同じとして説明した。同期整流の状態を解消するタイミングはスイッチング周期T20の途中であってもよいが、同期整流の状態を解消するタイミングはスイッチング周期T20が切り替わるタイミングと同じであることが好ましい。 In the fourth embodiment of the present invention, the timing for canceling the synchronous rectification state is described as being the same as the timing for switching the switching cycle T20. The timing for canceling the synchronous rectification state may be in the middle of the switching cycle T20, but the timing for canceling the synchronous rectification state is preferably the same as the timing for switching the switching cycle T20.
 なお、図3から図5、図7、図8、図10から図14は、概略図であり、図3から図5、図7、図8、図10から図14において、デッドタイム期間は図示省略されている。 3 to 5, FIG. 7, FIG. 8, and FIG. 10 to FIG. 14 are schematic diagrams. In FIG. 3 to FIG. 5, FIG. 7, FIG. It is omitted.
 また、上記の各実施の形態において、第1の半導体スイッチング素子304、第2の半導体スイッチング素子307、第1の整流素子305及び第2の整流素子306として、ワイドバンドギャップ半導体によって形成された素子を適用すると、さらにスイッチング損失や導通損失が低減する。これにより、電力変換装置の電力供給を一層の高効率にできることは言うまでもない。ワイドバンドギャップ半導体としては、例えば、炭化珪素、窒化ガリウム系材料、ダイヤモンドなどがある。 In each of the above embodiments, the first semiconductor switching element 304, the second semiconductor switching element 307, the first rectifying element 305, and the second rectifying element 306 are elements formed of a wide band gap semiconductor. When is applied, switching loss and conduction loss are further reduced. Thus, it goes without saying that the power supply of the power converter can be made more efficient. Examples of wide band gap semiconductors include silicon carbide, gallium nitride-based materials, and diamond.
 このようなワイドバンドギャップ半導体によって形成された素子は、耐電圧性が高く、許容電流密度も高いため、小型化が可能である。これら小型化された素子を用いることにより、これらの素子を組み込んだ半導体モジュールの小型化が可能となる。また、耐熱性も高いため、放熱フィンの小型化、半導体モジュールの一層の小型化が可能になる。さらに電力損失が低いため、素子自身の特性の高効率化が可能であり、延いては半導体モジュールの高効率化が可能になる。 An element formed of such a wide band gap semiconductor has high voltage resistance and high allowable current density, and thus can be miniaturized. By using these miniaturized elements, a semiconductor module incorporating these elements can be miniaturized. Further, since the heat resistance is also high, it is possible to reduce the size of the radiating fin and further reduce the size of the semiconductor module. Furthermore, since the power loss is low, it is possible to increase the efficiency of the characteristics of the element itself, and further increase the efficiency of the semiconductor module.
 なお、本発明は、発明の範囲内において、各実施の形態を自由に組み合わせることや、各実施の形態を適宜、変形、省略することが可能である。 In the present invention, the embodiments can be freely combined within the scope of the invention, and the embodiments can be appropriately modified or omitted.
30,80 電力変換装置
31,81 電力変換システム
301,801,809 電源
302 第1のコンデンサー
303 リアクトル
304 第1の半導体スイッチング素子
305 第1の整流素子
306 第2の整流素子
307 第2の半導体スイッチング素子
308 第2のコンデンサー
309 負荷
310 入力側電圧検出器
311 出力側電圧検出器
312,812 第1の半導体スイッチング素子の制御信号
313,814 同期整流動作切り替え信号
314,815 第2の半導体スイッチング素子の制御信号
315,816 第1の半導体スイッチング素子の駆動信号
316,817 第2の半導体スイッチング素子の駆動信号
320,820 駆動装置
321,821 制御装置
810 検出装置
5201,6201,7101,7201,8101,9101,9201,10101,11101,12101,13101,14101 第1の半導体スイッチング素子のスイッチング信号波形
5202,6202,7102,7202,8102,9102,9202,10102,11102,12102,13102,14102 第2の半導体スイッチング素子のスイッチング信号波形
5203,6203,7103,7203,8103,9103,9203,10103,11103,12103,13103,14103 リアクトルの電流波形
5204,6204,7104,7204,8104,9104,9204,10104,11104,12104,13104,14104 同期整流動作切り替え信号波形
9105,9205,13105,14105 同期スイッチング素子判定信号波形
30, 80 Power conversion device 31, 81 Power conversion system 301, 801, 809 Power supply 302 First capacitor 303 Reactor 304 First semiconductor switching element 305 First rectifier element 306 Second rectifier element 307 Second semiconductor switching Element 308 Second capacitor 309 Load 310 Input side voltage detector 311 Output side voltage detectors 312 and 812 Control signal 313 and 814 of first semiconductor switching element Synchronous rectification operation switching signal 314 and 815 of second semiconductor switching element Control signals 315, 816 Drive signals 316, 817 for the first semiconductor switching elements Drive signals 320, 820 for the second semiconductor switching elements Drive devices 321, 821 Control device 810 Detection devices 5201, 6201, 7101, 7201, 8101 9101, 9201, 10101, 11101, 12101, 13101, 14101 Switching signal waveforms of the first semiconductor switching element 5202, 6202, 7102, 7202, 8102, 9102, 9202, 10102, 11102, 12102, 13102, 14102 Second semiconductor Switching signal waveform 5203, 6203, 7103, 7203, 8103, 9103, 9203, 10103, 11103, 12103, 13103, 14103 of the switching element Current waveform 5204, 6204, 7104, 7204, 8104, 9104, 9204, 10104, 11104 of the reactor , 12104, 13104, 14104 Synchronous rectification operation switching signal waveform 9105, 9205, 13105, 14105 Ching element judgment signal waveform

Claims (14)

  1.  第1の端子と第2の端子とを有し、前記第1の端子が電源の正極と接続されたリアクトルと、
     前記リアクトルの前記第2の端子と前記電源の負極との間に接続された第1の半導体スイッチング素子と、
     前記リアクトルの前記第2の端子と負荷の正側との間に接続され、前記第2の端子から送出された電流を前記負荷に送出するように整流する整流素子と、
     前記整流素子に並列に接続された第2の半導体スイッチング素子と、
     前記第1の半導体スイッチング素子及び前記第2の半導体スイッチング素子を駆動させる駆動信号を送出する駆動装置と、
     前記第1の半導体スイッチング素子及び前記第2の半導体スイッチング素子の駆動を制御する制御信号を前記駆動装置へ送出する制御装置と、
     を備え、
     前記第2の半導体スイッチング素子がオフ状態に維持され、かつ前記第1の半導体スイッチング素子が第1のオン状態と第1のオフ状態とを切り替える第1の切り替えを行う非同期整流の状態から、前記第1の切り替えに同期して、前記第2の半導体スイッチング素子が第2のオン状態と第2のオフ状態とを切り替える第2の切り替えを行う同期整流の状態へ移行する場合に、
     前記制御装置は、前記同期整流の状態において前記第1の半導体スイッチング素子が前記第1のオフ状態の時に、前記第1のオフ状態の時間を示す第1のオフ時間よりも短い第2のオン時間で前記第2の半導体スイッチング素子を前記第2のオン状態とするように制御すること、
     を特徴とした電力変換装置。
    A reactor having a first terminal and a second terminal, wherein the first terminal is connected to a positive electrode of a power source;
    A first semiconductor switching element connected between the second terminal of the reactor and a negative electrode of the power source;
    A rectifying element connected between the second terminal of the reactor and a positive side of a load and rectifying the current sent from the second terminal so as to send the current to the load;
    A second semiconductor switching element connected in parallel to the rectifying element;
    A driving device for transmitting a driving signal for driving the first semiconductor switching element and the second semiconductor switching element;
    A control device for sending a control signal for controlling driving of the first semiconductor switching element and the second semiconductor switching element to the driving device;
    With
    From the state of asynchronous rectification in which the second semiconductor switching element is maintained in an off state and the first semiconductor switching element performs a first switching to switch between a first on state and a first off state, In synchronization with the first switching, when the second semiconductor switching element shifts to a synchronous rectification state in which a second switching is performed to switch between a second on state and a second off state.
    When the first semiconductor switching element is in the first off state in the synchronous rectification state, the control device has a second on time shorter than a first off time indicating a time of the first off state. Controlling the second semiconductor switching element to be in the second ON state over time;
    The power converter characterized by this.
  2.  第1の端子と第2の端子とを有し、前記第1の端子が電源の正極と接続されたリアクトルと、
     前記リアクトルの前記第2の端子と前記電源の負極との間に接続された第1の半導体スイッチング素子と、
     前記リアクトルの前記第2の端子と負荷の正側との間に接続され、前記第2の端子から送出された電流を前記負荷に送出するように整流する整流素子と、
     前記整流素子に並列に接続された第2の半導体スイッチング素子と、
     前記第1の半導体スイッチング素子及び前記第2の半導体スイッチング素子を駆動させる駆動信号を送出する駆動装置と、
     前記第1の半導体スイッチング素子及び前記第2の半導体スイッチング素子の駆動を制御する制御信号を前記駆動装置へ送出する制御装置と、
     を備え、
     前記第1の半導体スイッチング素子が第1のオン状態と第1のオフ状態とを切り替える第1の切り替えを繰り返し、かつ前記第1の切り替えに同期して、前記第2の半導体スイッチング素子が第2のオン状態と第2のオフ状態とを切り替える第2の切り替えを繰り返す同期整流の状態から、前記第2の半導体スイッチング素子がオフ状態に維持され、かつ前記第1の半導体スイッチング素子が前記第1の切り替えを繰り返す非同期整流の状態へ移行する間に、
     前記制御装置は、前記第1の半導体スイッチング素子が前記第1のオフ状態の時に、前記第1のオフ状態の時間を示す第1のオフ時間よりも短い第2のオン時間で前記第2の半導体スイッチング素子を前記第2のオン状態とするように制御する期間を設けること、
     を特徴とした電力変換装置。
    A reactor having a first terminal and a second terminal, wherein the first terminal is connected to a positive electrode of a power source;
    A first semiconductor switching element connected between the second terminal of the reactor and a negative electrode of the power source;
    A rectifying element connected between the second terminal of the reactor and a positive side of a load and rectifying the current sent from the second terminal so as to send the current to the load;
    A second semiconductor switching element connected in parallel to the rectifying element;
    A driving device for transmitting a driving signal for driving the first semiconductor switching element and the second semiconductor switching element;
    A control device for sending a control signal for controlling driving of the first semiconductor switching element and the second semiconductor switching element to the driving device;
    With
    The first semiconductor switching element repeats the first switching for switching between the first on state and the first off state, and the second semiconductor switching element is second in synchronization with the first switching. The second semiconductor switching element is maintained in the OFF state from the synchronous rectification state in which the second switching for switching between the ON state and the second OFF state is repeated, and the first semiconductor switching element is the first semiconductor switching element. During the transition to the state of asynchronous rectification that repeats switching,
    When the first semiconductor switching element is in the first OFF state, the control device has a second ON time shorter than a first OFF time indicating a time of the first OFF state. Providing a period for controlling the semiconductor switching element to be in the second ON state;
    The power converter characterized by this.
  3.  前記第2のオン時間は、前記第1のオフ時間からデッドタイム期間を引いた時間よりも短いこと、
     を特徴とした請求項1又は請求項2に記載の電力変換装置。
    The second on time is shorter than the first off time minus a dead time period;
    The power converter according to claim 1 or 2, characterized by the above.
  4.  さらに前記制御装置は、前記移行後に、前記第1のオフ状態の時間を示す第1のオフ時間よりも短い第2のオン時間で前記第2の半導体スイッチング素子を前記第2のオン状態とする前記第2の切り替えが、複数回あるように制御すること、
     を特徴とした請求項1から請求項3のいずれか1項に記載の電力変換装置。
    Further, after the transition, the control device sets the second semiconductor switching element to the second on state with a second on time shorter than the first off time indicating the time of the first off state. Controlling the second switching to be performed a plurality of times,
    The power conversion device according to any one of claims 1 to 3, wherein:
  5.  さらに前記制御装置は、前記移行後の2回目以降の前記第2の切り替えにおける前記第2のオン時間を、前記移行後の1回目の前記第2の切り替えにおける前記第2のオン時間よりも長くするように制御すること、
     を特徴とした請求項4に記載の電力変換装置。
    Further, the control device makes the second on-time in the second switching after the second time after the transition longer than the second on-time at the first second switching after the transition. To control,
    The power converter according to claim 4 characterized by things.
  6.  さらに前記制御装置は、前記第2の半導体スイッチング素子をオン状態にするタイミングを、前記リアクトルに流れる電流が前記第1の端子から前記第2の端子の向きに流れている間になるように制御すること、
     を特徴とした請求項1から請求項5のいずれか1項に記載の電力変換装置。
    Further, the control device controls the timing for turning on the second semiconductor switching element so that the current flowing through the reactor flows from the first terminal to the second terminal. To do,
    The power conversion device according to any one of claims 1 to 5, wherein:
  7.  さらに前記制御装置は、前記第2の半導体スイッチング素子のオン状態にするタイミングが、前記第1の半導体スイッチング素子がオフ状態にしたタイミングと同じになるように制御すること、
     を特徴とした請求項1から請求項5のいずれか1項に記載の電力変換装置。
    Further, the control device performs control so that a timing at which the second semiconductor switching element is turned on is the same as a timing at which the first semiconductor switching element is turned off,
    The power conversion device according to any one of claims 1 to 5, wherein:
  8.  第1の端子と第2の端子とを有し、前記第1の端子が第1の電源の一方の極と接続されたリアクトルと、
     前記リアクトルの前記第2の端子と前記第1の電源の他方の極との間に接続された第1の半導体スイッチング素子と、
     前記リアクトルの前記第2の端子と第2の電源の前記第1の電源の一方の極と同じ極性の極側との間に接続され、前記第2の端子から送出された電流を前記負荷に送出するように整流する整流素子と、
     前記整流素子に並列に接続された第2の半導体スイッチング素子と、
     前記リアクトルに流れる電流値を検出する検出装置と、
     前記第1の半導体スイッチング素子及び前記第2の半導体スイッチング素子を駆動させる駆動信号を送出する駆動装置と、
     前記第1の半導体スイッチング素子及び前記第2の半導体スイッチング素子の駆動を制御する制御信号を前記駆動装置へ送出する制御装置と、
     を備え、
     前記制御装置は、
     前記電流値から、前記第1の半導体スイッチング素子と前記第2の半導体スイッチング素子とのうちいずれがオフ状態に維持された同期スイッチング素子であるか、及び前記第1の半導体スイッチング素子と前記第2の半導体スイッチング素子とのうちいずれが第3のオン状態と第3のオフ状態とを切り替える第3の切り替えを行う非同期スイッチング素子であるかを判断し、
     前記同期スイッチング素子がオフ状態に維持され、かつ前記非同期スイッチング素子が第3のオン状態と第3のオフ状態とを切り替える第3の切り替えを行う非同期整流の状態から、前記第3の切り替えに同期して、前記同期スイッチング素子が第4のオン状態と第4のオフ状態とを切り替える第4の切り替えを行う同期整流の状態へ移行する場合に、
     前記制御装置は、前記同期整流の状態において前記非同期スイッチング素子が前記第3のオフ状態の時に、前記第3のオフ状態の時間を示す第3のオフ時間よりも短い第4のオン時間で前記同期スイッチング素子を前記第4のオン状態とするように制御すること、
     を特徴とした電力変換装置。
    A reactor having a first terminal and a second terminal, wherein the first terminal is connected to one pole of a first power source;
    A first semiconductor switching element connected between the second terminal of the reactor and the other pole of the first power source;
    Connected between the second terminal of the reactor and a pole side of the same polarity as one pole of the first power source of a second power source, the current sent from the second terminal to the load A rectifying element that rectifies so as to be sent out;
    A second semiconductor switching element connected in parallel to the rectifying element;
    A detection device for detecting a current value flowing through the reactor;
    A driving device for transmitting a driving signal for driving the first semiconductor switching element and the second semiconductor switching element;
    A control device for sending a control signal for controlling driving of the first semiconductor switching element and the second semiconductor switching element to the driving device;
    With
    The controller is
    Based on the current value, which of the first semiconductor switching element and the second semiconductor switching element is a synchronous switching element maintained in an OFF state, and the first semiconductor switching element and the second semiconductor switching element Which of the semiconductor switching elements is an asynchronous switching element that performs a third switching to switch between the third on-state and the third off-state,
    The synchronous switching element is maintained in the OFF state, and the asynchronous switching element is synchronized with the third switching from the asynchronous rectification state in which the asynchronous switching element performs the third switching for switching between the third ON state and the third OFF state. When the synchronous switching element shifts to a synchronous rectification state in which a fourth switching is performed to switch between a fourth on state and a fourth off state,
    When the asynchronous switching element is in the third OFF state in the synchronous rectification state, the control device has a fourth ON time shorter than a third OFF time indicating a time of the third OFF state. Controlling the synchronous switching element to be in the fourth ON state;
    The power converter characterized by this.
  9.  第1の端子と第2の端子とを有し、前記第1の端子が第1の電源の一方の極と接続されたリアクトルと、
     前記リアクトルの前記第2の端子と前記第1の電源の他方の極との間に接続された第1の半導体スイッチング素子と、
     前記リアクトルの前記第2の端子と第2の電源の前記第1の電源の一方の極と同じ極性の極側との間に接続され、前記第2の端子から送出された電流を前記負荷に送出するように整流する整流素子と、
     前記整流素子に並列に接続された第2の半導体スイッチング素子と、
     前記リアクトルに流れる電流値を検出する検出装置と、
     前記第1の半導体スイッチング素子及び前記第2の半導体スイッチング素子を駆動させる駆動信号を送出する駆動装置と、
     前記第1の半導体スイッチング素子及び前記第2の半導体スイッチング素子の駆動を制御する制御信号を前記駆動装置へ送出する制御装置と、
     を備え、
     前記制御装置は、
     前記電流値から、前記第1の半導体スイッチング素子と前記第2の半導体スイッチング素子とのうちいずれが第3のオン状態と第3のオフ状態とを切り替える第3の切り替えを繰り返す非同期スイッチング素子であるか、及び前記第1の半導体スイッチング素子と前記第2の半導体スイッチング素子とのうちいずれが第4のオン状態と第4のオフ状態とを切り替える第4の切り替えを繰り返す同期スイッチング素子であるかを判断し、
     前記非同期スイッチング素子が前記第3の切り替えを繰り返し、かつ前記第3の切り替えに同期して、前記同期スイッチング素子が前記第4の切り替えを繰り返す同期整流の状態から、前記非同期スイッチング素子が前記第3の切り替えを繰り返し、かつ前記同期スイッチング素子がオフ状態に維持される非同期整流の状態へ移行する間に、
     前記制御装置は、前記非同期スイッチング素子が前記第3のオフ状態の時に、前記第3のオフ状態の時間を示す第3のオフ時間よりも短い第4のオン時間で前記同期スイッチング素子を前記第4のオン状態とするように制御する期間を設けること、
     を特徴とした電力変換装置。
    A reactor having a first terminal and a second terminal, wherein the first terminal is connected to one pole of a first power source;
    A first semiconductor switching element connected between the second terminal of the reactor and the other pole of the first power source;
    Connected between the second terminal of the reactor and a pole side of the same polarity as one pole of the first power source of a second power source, the current sent from the second terminal to the load A rectifying element that rectifies so as to be sent out;
    A second semiconductor switching element connected in parallel to the rectifying element;
    A detection device for detecting a current value flowing through the reactor;
    A driving device for transmitting a driving signal for driving the first semiconductor switching element and the second semiconductor switching element;
    A control device for sending a control signal for controlling driving of the first semiconductor switching element and the second semiconductor switching element to the driving device;
    With
    The controller is
    Any one of the first semiconductor switching element and the second semiconductor switching element is an asynchronous switching element that repeats a third switching to switch between a third on state and a third off state based on the current value. And which of the first semiconductor switching element and the second semiconductor switching element is a synchronous switching element that repeats a fourth switching that switches between a fourth on-state and a fourth off-state. Judgment
    From the state of synchronous rectification in which the asynchronous switching element repeats the third switching and is synchronized with the third switching, and the synchronous switching element repeats the fourth switching, the asynchronous switching element is And switching to the asynchronous rectification state in which the synchronous switching element is maintained in the off state,
    When the asynchronous switching element is in the third OFF state, the control device causes the synchronous switching element to be in the fourth OFF time, which is shorter than a third OFF time indicating the time of the third OFF state. Providing a period of control so as to be in the ON state of 4,
    The power converter characterized by this.
  10.  前記第4のオン時間は、前記第3のオフ時間からデッドタイム期間を引いた時間よりも短いこと、
     を特徴とした請求項8又は請求項9に記載の電力変換装置。
    The fourth on-time is shorter than a time obtained by subtracting a dead time period from the third off-time;
    The power converter according to claim 8 or 9, characterized by the above.
  11.  さらに前記制御装置は、前記移行後に、前記第3のオフ状態の時間を示す第3のオフ時間よりも短い第4のオン時間で前記同期スイッチング素子を前記第4のオン状態とする前記第4の切り替えが、複数回あるように制御すること、
     を特徴とした請求項8から請求項10のいずれか1項に記載の電力変換装置。
    Further, after the transition, the control device sets the synchronous switching element to the fourth on state with a fourth on time shorter than a third off time indicating the time of the third off state. Control to switch multiple times,
    The power conversion device according to any one of claims 8 to 10, wherein:
  12.  さらに前記制御装置は、前記移行後の2回目以降の前記第4の切り替えにおける前記第4のオン時間は、前記移行後の1回目の前記第4の切り替えにおける前記第4のオン時間よりも長くするように制御すること、
     を特徴とした請求項11に記載の電力変換装置。
    Further, the control device has a fourth on-time in the fourth switching after the second time after the transition is longer than the fourth on-time in the first switching after the transition. To control,
    The power converter according to claim 11 characterized by things.
  13.  さらに前記制御装置は、前記同期スイッチング素子のオン状態にするタイミングが、前記リアクトルに流れる電流が前記第1の端子と前記第2の端子との間に流れている間になるように制御すること、
     を特徴とした請求項8から請求項12のいずれか1項に記載の電力変換装置。
    Further, the control device controls the timing to turn on the synchronous switching element so that the current flowing through the reactor is between the first terminal and the second terminal. ,
    The power conversion device according to any one of claims 8 to 12, characterized by:
  14.  さらに前記制御装置は、前記同期スイッチング素子のオン状態にするタイミングが、前記非同期スイッチング素子がオフ状態にしたタイミングと同じになるように制御すること、
     を特徴とした請求項8から請求項12のいずれか1項に記載の電力変換装置。
    Further, the control device performs control so that the timing when the synchronous switching element is turned on is the same as the timing when the asynchronous switching element is turned off,
    The power conversion device according to any one of claims 8 to 12, characterized by:
PCT/JP2016/052692 2015-02-13 2016-01-29 Power conversion device WO2016129415A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016574727A JP6531767B2 (en) 2015-02-13 2016-01-29 Power converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015025984 2015-02-13
JP2015-025984 2015-02-13

Publications (1)

Publication Number Publication Date
WO2016129415A1 true WO2016129415A1 (en) 2016-08-18

Family

ID=56614646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052692 WO2016129415A1 (en) 2015-02-13 2016-01-29 Power conversion device

Country Status (2)

Country Link
JP (1) JP6531767B2 (en)
WO (1) WO2016129415A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079929A1 (en) * 2016-11-25 2018-05-03 주식회사 지니틱스 Dc-dc converter having stable output properties over wide range of input voltages and having device dealing with change in input voltage
JP2019080363A (en) * 2017-10-19 2019-05-23 本田技研工業株式会社 Electrical power system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149128A (en) * 2004-11-22 2006-06-08 Funai Electric Co Ltd Switching regulator
WO2009072245A1 (en) * 2007-12-06 2009-06-11 Panasonic Corporation Power supply apparatus for vehicles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688194U (en) * 1993-05-21 1994-12-22 東光株式会社 Synchronous rectifier circuit
JP2002064974A (en) * 2000-08-17 2002-02-28 Taiyo Yuden Co Ltd Drive control method of power supply circuit and power supply circuit
JP5428713B2 (en) * 2009-09-30 2014-02-26 サンケン電気株式会社 DC-DC converter and control method thereof
JP5586088B2 (en) * 2010-06-07 2014-09-10 ローム株式会社 STEP-UP DC / DC CONVERTER AND ELECTRONIC DEVICE HAVING THE SAME
JP2013247766A (en) * 2012-05-25 2013-12-09 Toshiba Corp Dc-dc converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149128A (en) * 2004-11-22 2006-06-08 Funai Electric Co Ltd Switching regulator
WO2009072245A1 (en) * 2007-12-06 2009-06-11 Panasonic Corporation Power supply apparatus for vehicles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079929A1 (en) * 2016-11-25 2018-05-03 주식회사 지니틱스 Dc-dc converter having stable output properties over wide range of input voltages and having device dealing with change in input voltage
JP2019080363A (en) * 2017-10-19 2019-05-23 本田技研工業株式会社 Electrical power system

Also Published As

Publication number Publication date
JP6531767B2 (en) 2019-06-19
JPWO2016129415A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
US9531250B2 (en) Power conversion device and refrigeration/air-conditioning system
US9160242B2 (en) Electric power conversion device
CN107408889B (en) Power converter
JP5556852B2 (en) Bidirectional DCDC converter
JP5558631B2 (en) Power conversion device and in-vehicle power supply device including the same
US10097043B2 (en) Contactless power transmission device and power transfer system
WO2013114758A1 (en) Control device for resonance-type dc-dc converter
US10110064B2 (en) Contactless power transmission device and power transfer system
JP5162685B2 (en) DC / DC voltage converter
JP6185860B2 (en) Bidirectional converter
CN112005484A (en) Power conversion device
JP5849599B2 (en) Forward type DC-DC converter
JP2018046674A (en) Switching power source device
US10003264B2 (en) DC/DC converter
US11050353B2 (en) Power conversion device that generates switching signals
WO2016129415A1 (en) Power conversion device
JP5646070B2 (en) Gate driving circuit for power semiconductor device and method for driving power semiconductor device
JP2010213366A (en) Switching power supply
JP2010004728A (en) Power conversion apparatus
JP2009142061A (en) Dc-dc converter
JP2005354781A (en) Uninterruptible power supply device
JP2016046838A (en) Switching power supply
JP2014138427A (en) Dc/dc converter
JP6455406B2 (en) Power converter
JP6567234B1 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574727

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749059

Country of ref document: EP

Kind code of ref document: A1