WO2016129206A1 - センサー用ゲルおよびセンサー - Google Patents

センサー用ゲルおよびセンサー Download PDF

Info

Publication number
WO2016129206A1
WO2016129206A1 PCT/JP2016/000142 JP2016000142W WO2016129206A1 WO 2016129206 A1 WO2016129206 A1 WO 2016129206A1 JP 2016000142 W JP2016000142 W JP 2016000142W WO 2016129206 A1 WO2016129206 A1 WO 2016129206A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
stimulus
gel
responsive
conductive
Prior art date
Application number
PCT/JP2016/000142
Other languages
English (en)
French (fr)
Inventor
佐登美 吉岡
浩 八木
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to US15/548,000 priority Critical patent/US20180024083A1/en
Publication of WO2016129206A1 publication Critical patent/WO2016129206A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/443Evaluating skin constituents, e.g. elastin, melanin, water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/14Coupling media or elements to improve sensor contact with skin or tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor

Definitions

  • the present invention relates to a sensor gel and a sensor.
  • a biochemical test for examining a composition in blood obtained by blood sampling is usually performed. This test is often performed at a medical institution. Among them, the blood glucose level sensor is prevalent in diabetic patients, and the simple lactic acid sensor is prevalent in athletes. However, these are all inspection methods using an invasive method by blood collection.
  • Non-Patent Document 1 sensor research targeting sweat components has been conducted as a non-invasive technique (see, for example, Non-Patent Document 1 and Non-Patent Document 2).
  • the enzyme used in such a method is generally expensive, is easily affected by temperature, humidity, etc., has a problem that it does not exhibit stable characteristics, and has low reliability in quantitative performance. Furthermore, the enzyme has a problem that the quality varies greatly between production lots and manufacturers, and the characteristics change over time.
  • An object of the present invention is to provide a sensor capable of easily and stably detecting the intensity of stimulation (concentration of a predetermined component, etc.) in a wide range, and the strength of stimulation (concentration of a predetermined component in a wide range). It is an object of the present invention to provide a sensor gel that can be suitably used for a sensor capable of easily and stably performing detection.
  • the sensor gel of the present invention is a stimulus-responsive gel that expands or contracts by responding to a predetermined stimulus, Conductive particles dispersed in the stimulus-responsive gel.
  • the sensor gel of the present invention preferably contains conductive particles dispersed in the stimulus-responsive gel as the conductive substance.
  • the conductive particles are preferably subjected to a surface treatment that improves dispersibility in the stimulus-responsive gel.
  • the conductive particles preferably have an average particle diameter of 10 nm to 1000 ⁇ m.
  • the content of the conductive particles with respect to 100 parts by volume of the stimulus-responsive gel in a state where the stimulus-responsive gel is expanded may be 0.1 to 65 parts by volume. preferable.
  • a concave portion is provided at a site in contact with the electrode.
  • the conductive particles and the electrode are in contact with each other in the recess.
  • the electrical resistivity of the conductive substance is preferably 1.0 ⁇ 10 ⁇ 4 ⁇ ⁇ m or less.
  • the conductive substance is a material containing one or more selected from the group consisting of metal materials, conductive metal oxides, carbon materials, and conductive polymer materials. It is preferable that it is comprised.
  • the sensor of the present invention comprises a stimulus-responsive gel, A conductive substance contained in the stimulus-responsive gel; And an electrode.
  • the sensor gel of the present invention In the sensor of the present invention, the sensor gel of the present invention, And an electrode.
  • FIG. 1 is a schematic longitudinal sectional view for explaining the sensor of the first embodiment.
  • the case where the upper side in FIG. 1 is the observer side (viewpoint side) and the lower side in FIG. 1 is the side to which the specimen is supplied will be mainly described.
  • the sensor (gel sensor) 100 includes a sensor gel 10, a first electrode (electrode) 30, and a second electrode (electrode) 40.
  • the sensor gel 10 includes a stimulus-responsive gel 1 that expands and contracts by reacting to a predetermined stimulus, and a conductive substance 2 included in the stimulus-responsive gel 1.
  • the distance of the conductive substance 2 contained in the stimulus-responsive gel 1 (in the sensor gel 10) can be made different according to the expansion / contraction state of the stimulus-responsive gel 1, As a result, the resistance value between the first electrode 30 and the second electrode 40 can be different. That is, in a state where the stimulus-responsive gel 1 (sensor gel 10) is expanded (or a state where the degree of expansion is large), compared to a state where the stimulus-responsive gel 1 is contracted (or a state where the degree of expansion is small), Since the distance between the conductive substances 2 is increased, the resistance value of the sensor gel 10 connected to the electrodes (the first electrode 30 and the second electrode 40) is increased.
  • the expansion and contraction state of the stimulus-responsive gel 1 that is, the strength of stimulation (concentration of a predetermined component, etc.) can be easily achieved. And can be performed stably.
  • the sensor (gel sensor) 100 can easily and stably detect the intensity of stimulation in a wide range.
  • the stimulus-responsive gel 1 expands and contracts by responding to a predetermined stimulus.
  • the electrodes correspond to the reaction (expansion and contraction) of the stimulus-responsive gel 1.
  • the resistance value of the sensor gel 10 connected to the electrode 40 can be changed. As a result, by measuring the resistance value, it is possible to detect the presence / absence of a stimulus, strength (amount, concentration), and the like.
  • the predetermined stimulus to which the stimulus-responsive gel 1 reacts varies depending on the constituent material of the stimulus-responsive gel 1, but for example, various substances such as protein, sugar, uric acid, lactic acid, various hormones, various ionic substances, various metals, , Heat, light and the like.
  • the stimulus-responsive gel 1 and the sensor gel 10 are in the form of a sheet.
  • the amount of the stimulus-responsive gel 1 and the amount of the conductive substance 2 can be made relatively small, and the sample can be contacted efficiently, and a predetermined stimulus can be easily detected.
  • Volume stimuli responsive gel 1 sensor 100 is provided is preferably at 0.1 mm 3 or more 3600 mm 3 or less, more preferably 0.2 mm 3 or more 900 mm 3 or less.
  • the senor 100 can be miniaturized and the stimulus detection accuracy can be further improved. It is also preferable from the viewpoint of resource saving.
  • the electrical resistivity of the stimulus-responsive gel 1 alone is preferably 1.0 ⁇ 10 ⁇ 2 ⁇ ⁇ m or more, and more preferably 1.0 ⁇ 10 ⁇ 1 ⁇ ⁇ m or more.
  • the effect of including the conductive substance 2 is more remarkably exhibited, and the detection accuracy of the intensity of stimulation (concentration of a predetermined component, etc.) can be further improved in a wide range.
  • the electrical resistivity of the stimulus-responsive gel 1 alone preferably satisfies the above conditions in any of the expanded and contracted states of the stimulus-responsive gel 1, but the stimulus-responsive gel 1 It is preferable that the above-described conditions are satisfied both in the contracted state 1 and in the expanded state of the stimulus-responsive gel 1. Thereby, the effect mentioned above is exhibited more notably.
  • the stimulus-responsive gel 1 contains a conductive substance 2.
  • the distance between the conductive substances 2 changes in response to the stimulus-responsive gel 1 responding to the predetermined stimulus (expansion and contraction), and the electrodes (the first electrode 30 and the second electrode 40).
  • the resistance value of the sensor gel 10 connected to () can be changed. As a result, by measuring the resistance value, it is possible to detect the presence / absence of a stimulus, strength (amount, concentration), and the like.
  • the conductive material 2 may be any material made of a conductive material.
  • the material of the conductive material 2 include metal materials (for example, Au, Ag, Pt, Cu, and the like). Alloys containing at least one type), conductive metal oxides (for example, ITO), carbon materials (for example, carbon black), conductive polymer materials (for example, PEDOT / PSS, polythiophene, polyacetylene, etc.) Etc.
  • the conductive substance 2 made of such a material, the sensor 100 has excellent durability, and the rate of change of the resistance value accompanying expansion and contraction of the stimulus-responsive gel 1 is increased. It is possible to improve the accuracy of stimulus detection. Moreover, since these materials are relatively inexpensive and can be obtained stably, they are advantageous from the viewpoint of suppressing the production cost of the sensor 100 and providing a stable supply.
  • the electrical resistivity of the conductive material 2 is preferably 1.0 ⁇ 10 ⁇ 4 ⁇ ⁇ m or less, more preferably 1.0 ⁇ 10 ⁇ 5 ⁇ ⁇ m or less, and 5.0 ⁇ 10. More preferably, it is ⁇ 6 ⁇ ⁇ m or less.
  • the rate of change of the resistance value accompanying the expansion and contraction of the stimulus-responsive gel 1 can be increased, and the detection accuracy of the stimulus can be further improved.
  • the conductive substance 2 includes a plurality of conductive particles dispersed in the stimulus-responsive gel 1.
  • the conductive particles 2 may have a core part made of the first material and at least one layer of coating provided on the outer surface side of the core part.
  • the conductive substance (conductive particles) 2 may be subjected to a surface treatment that improves dispersibility in the stimulus-responsive gel 1.
  • Examples of the surface treatment agent that can be used for the surface treatment include those having a partial structure having a hydroxyl group, a carboxyl group, a sulfonic acid group, or a salt thereof.
  • the electroconductive particle 2 when the electroconductive particle 2 has a part of a different composition, the electroconductive particle 2 should just have the electroconductivity of the grade which can exhibit the effect as mentioned above as a whole.
  • a part of the conductive particles 2 may be made of an insulating material.
  • the portion formed by the surface treatment is made of an insulating material. It may be.
  • the average particle diameter of the conductive particles 2 is not particularly limited, but is preferably 10 nm or more and 1000 ⁇ m or less, and more preferably 20 nm or more and 500 ⁇ m or less.
  • the conductive particles 2 can be more uniformly dispersed in the stimulus-responsive gel 1 (in the sensor gel 10), and the detection accuracy of the stimulus can be further improved.
  • the average particle size of the conductive particles 2 is relatively small (for example, 10 nm or more and 1000 nm or less)
  • the colloid Since the structural color or the change of the structural color due to the crystal is easily visually recognized, it is possible to detect the stimulus optically (visually) together with the detection of the stimulus by measuring the resistance value as described above.
  • the structural color or change in structural color due to the colloidal crystal is easily visually recognized. For example, quantification of a specific stimulus (for example, a specific component) can be performed more easily and more accurately by the color tone. Can do.
  • the average particle diameter means a volume-based average particle diameter.
  • a dispersion obtained by adding a sample to methanol and dispersing for 3 minutes with an ultrasonic disperser is a Coulter counter particle size distribution measuring instrument. It can be determined by measuring with a 50 ⁇ m aperture in (COULTER ELECTRONICS INC, TA-II type).
  • the sensor 100 may include a plurality of types of conductive substances 2.
  • the content of the conductive substance 2 with respect to 100 parts by volume of the stimulus-responsive gel 1 in the expanded state of the stimulus-responsive gel is preferably 0.1 parts by volume or more and 50 parts by volume or less, and 0.5 parts by volume or more. More preferably, it is 40 parts by volume or less.
  • the amount of change in electrical resistivity due to the state of the stimulus-responsive gel 1 can be increased, and the detection accuracy and detection sensitivity of the stimulus can be further improved.
  • the content rate of the electroconductive particle 2 with respect to the 100 volume part stimulus responsive gel 1 in the state which the stimulus responsive gel contracted is 30 volume part or more and 98 volume part or less, 45 volume part or more and 90 volume part. More preferably, it is less than or equal to parts.
  • the amount of change in electrical resistivity due to the state of the stimulus-responsive gel 1 can be increased, and the detection accuracy and detection sensitivity of the stimulus can be further improved.
  • the difference between the electrical resistivity in the expanded state (maximum electrical resistivity) and the electrical resistivity in the contracted state (minimum electrical resistivity) of the sensor gel 10 is 1.0 ⁇ 10 ⁇ 5 ⁇ ⁇ m or more. It is preferable that it is 1.0 ⁇ 10 ⁇ 2 ⁇ ⁇ m or more. Thereby, the detection accuracy of the stimulus can be further improved.
  • the thickness of the sensor gel 10 in a state where the stimulus-responsive gel 1 is expanded is not particularly limited, but is preferably 5 ⁇ m or more and 5000 ⁇ m or less, and more preferably 7 ⁇ m or more and 1000 ⁇ m or less.
  • the thickness and size of the sensor 100 can be reduced while sufficiently improving the durability and reliability of the sensor 100. Further, the flexibility of the sensor 100 can be further improved. For example, even when the sensor 100 is used in close contact with a living body or the like, the adhesiveness of the sensor 100 can be suitably maintained. The detection accuracy of the stimulus can be stably improved.
  • a first electrode 30 (electrode) and a second electrode (electrode) 40 are connected to the sensor gel 10 including the stimulus-responsive gel 1 and the conductive particles 2.
  • the resistance value of the sensor gel 10 can be suitably measured, and the presence / absence and strength of the predetermined stimulus received by the stimulus-responsive gel 1 can be obtained from the individual measurement results.
  • the electrodes 30 and 40 are made of a conductive material.
  • the constituent material of the electrodes 30 and 40 include metal materials (for example, Au, Ag, Pt, Cu and alloys containing at least one of them), conductive metal oxides (for example, ITO), carbon, and the like.
  • metal materials for example, Au, Ag, Pt, Cu and alloys containing at least one of them
  • conductive metal oxides for example, ITO
  • carbon and the like.
  • examples thereof include materials (for example, carbon black), conductive polymer materials (for example, PEDOT / PSS, polythiophene-based, polyacetylene-based, etc.).
  • the appearance of the sensor gel 10 can be preferably observed.
  • the thickness of the electrodes 30 and 40 is not particularly limited, but is preferably 5 ⁇ m or more and 5000 ⁇ m or less, and more preferably 7 ⁇ m or more and 1000 ⁇ m or less.
  • the thickness and size of the sensor 100 can be reduced while sufficiently improving the durability and reliability of the sensor 100. Further, the flexibility of the sensor 100 can be further improved. For example, even when the sensor 100 is used in close contact with a living body or the like, the adhesiveness of the sensor 100 can be suitably maintained. The detection accuracy of the stimulus can be stably improved.
  • the concave portion 11 is provided at a portion that contacts the electrodes 30 and 40 of the sensor gel 10.
  • the alignment between the sensor gel 10 and the electrodes 30 and 40 is facilitated, and the stability of the stimulus detection and the reliability of the sensor 100 can be further improved.
  • the electrodes 30 and 40 are provided so as to be in contact with the conductive particles 2 exposed on the surface of the sensor gel 10.
  • the electrodes 30 and 40 are provided on the surface of the sensor gel 10 opposite to the side to which the specimen is supplied.
  • the detection reliability can be made more excellent.
  • the distance between the electrode 30 and the electrode 40 indicated by L in the drawing is preferably 0.1 mm or more and 50 mm or less, and more preferably 0.2 mm or more and 30 mm or less.
  • the senor 100 may include an absorption member (not shown) that absorbs the specimen.
  • the excessive sample when an excessive sample exists outside the sensor gel 10, the excessive sample can be absorbed by the absorbing member, and the sample is a liquid having conductivity such as sweat.
  • the occurrence of a short circuit can be more effectively prevented, and the reliability of stimulus detection can be further improved.
  • samples are sequentially supplied (when supplied continuously or intermittently), the previously supplied sample is discharged, and the newly supplied sample is supplied to the stimulus-responsive gel 1. Therefore, it is possible to know changes in the amount of stimulation over time. That is, it can be prevented that the specimen that has been supplied first and the newly supplied specimen are mixed and the detection of the exact stimulus amount is hindered.
  • the drying of the stimulus-responsive gel 1 can be suppressed. it can. As a result, it is possible to stably detect a predetermined stimulus with high reliability over a relatively long time even in an environment where the stimulus-responsive gel 1 is likely to be dried.
  • the absorbing member may be disposed at any site, but is preferably disposed at a site different from the surface of the sensor gel 10 on which the specimen is supplied.
  • the absorbing member is disposed on the surface of the sensor gel 10 opposite to the side on which the specimen is supplied.
  • the effects as described above are more remarkably exhibited.
  • the previously supplied sample is discharged, and a new one is discharged.
  • the specimen supplied to can be suitably supplied to the stimulus-responsive gel 1, and the change of the stimulus amount with time can be suitably known.
  • the absorbing member is arranged so as not to contact the plurality of electrodes.
  • the short circuit is caused by the specimen existing outside the sensor gel 10 while exhibiting the above-described effects. It can prevent effectively and can make the detection of a stimulus more reliable.
  • the absorbing member examples include those made of cloth-like materials such as woven fabric, non-woven fabric, and felt, and porous materials.
  • the absorbent member include cellulose materials and water-absorbing polymers, but cellulose materials are particularly preferred. Since such a material has moderate hydrophilicity, for example, when the specimen contains water (for example, body fluid such as sweat), it absorbs the specimen suitably, and in the absorbed specimen The contained water can be suitably evaporated.
  • water for example, body fluid such as sweat
  • FIG. 2 is a schematic longitudinal sectional view for explaining the sensor of the second embodiment.
  • differences from the above-described embodiment will be mainly described, and description of similar matters will be omitted.
  • the sensor (gel sensor) 100 of this embodiment has the same configuration as that of the above-described embodiment except that the installation sites of the electrodes 30 and 40 are different. That is, in the above-described embodiment, the electrodes 30 and 40 are provided on the surface opposite to the surface to which the specimen of the sensor gel 10 is supplied, whereas the sensor (gel sensor) 100 of the present embodiment. Then, the electrodes 30 and 40 are provided in the side part of the gel 10 for sensors. Thus, the electrode installation site may be any site. In particular, as in the present embodiment, the electrodes 30 and 40 are provided on the side surface portion of the sheet-like sensor gel 10 including the stimulus-responsive gel 1 and the conductive substance 2, so that the sensor 100 is thin. Can be achieved.
  • the electrodes 30 and 40 are provided only in a part in the thickness direction of the sensor gel 10, but the electrodes 30 and 40 extend over the entire thickness direction of the sensor gel 10. It may be provided.
  • the stimulus-responsive gel may be composed of any material as long as it responds to a predetermined stimulus, but is usually a material containing a polymer material having a crosslinked structure and a solvent. It is configured.
  • the polymer material constituting the stimulus-responsive gel is an important component for detecting a specific stimulus, and its structure varies depending on the type of stimulus to be detected.
  • the polymer material constituting the stimulus-responsive gel is not particularly limited and can be selected depending on the stimulus to be detected.
  • the polymer material constituting the stimulus-responsive gel for example, a material obtained by reacting a monomer, a polymerization initiator, a crosslinking agent, or the like can be used.
  • Examples of the monomer include acrylamide, N-methylacrylamide, N-isopropylacrylamide, N, N-dimethylacrylamide, N, N-dimethylaminopropylacrylamide, N, N-dimethylaminopropylacrylamide, various quaternary salts, and acryloyl.
  • examples of the functional group capable of interacting with sugar include boronic acid groups (particularly phenylboronic acid groups), and therefore monomers having boronic acid groups may be used.
  • examples of such a boronic acid group-containing monomer include acryloylaminobenzeneboronic acid, methacryloylaminobenzeneboronic acid, 4-vinylbenzeneboronic acid, and the like.
  • an ionic substance such as sodium chloride as a stimulus (specific component) when detecting an ionic substance such as sodium chloride as a stimulus (specific component), as monomers, 3-acrylamidophenylboronic acid, vinylphenylboronic acid, acryloyloxyphenylboronic acid, N-isopropylacrylamide ( NIPAAm), ethylenebisacrylamide, N-hydroxyethylacrylamide and the like can be preferably used.
  • the monomer is selected from the group consisting of 3-acrylamidophenylboronic acid, vinylphenylboronic acid and acryloyloxyphenylboronic acid.
  • a combination of one or more monomers and one or more monomers selected from the group consisting of N-isopropylacrylamide (NIPAAm), ethylenebisacrylamide and N-hydroxyethylacrylamide Are preferably used.
  • monomers such as 3-acrylamidophenylboronic acid, vinylphenylboronic acid, acryloyloxyphenylboronic acid, N-isopropylacrylamide (NIPAAm), ethylene bis Acrylamide, N-hydroxyethylacrylamide and the like can be preferably used.
  • the monomer is one or two selected from the group consisting of 3-acrylamidophenylboronic acid, vinylphenylboronic acid and acryloyloxyphenylboronic acid. It is preferable to use a combination of at least one monomer and one or more monomers selected from the group consisting of N-isopropylacrylamide (NIPAAm), ethylenebisacrylamide and N-hydroxyethylacrylamide. .
  • the polymerization initiator can be appropriately selected depending on, for example, the polymerization mode. Specifically, hydrogen peroxide, persulfate such as potassium persulfate, sodium persulfate, ammonium persulfate, etc. Agents such as 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis (N, N′-dimethyleneisobutylamidine) dihydrochloride, 2,2′-azobis ⁇ 2-methyl -N- [1,1, -bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 4, 4′-azobis (4-cyanovaleric acid), 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4′-dimethylvaleronitrile), benzophenone, 2,2- Methoxy-1,2-diphenylethane-1-one, 1-
  • Hydrogen peroxide or persulfate includes, for example, reducing substances such as sulfite and L-ascorbic acid, amine salts, and the like. In combination, it can also be used as a redox initiator.
  • crosslinking agent a compound having two or more polymerizable functional groups can be used. Specifically, ethylene glycol, propylene glycol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, polyglycerin.
  • the stimulus-responsive gel may include a plurality of different polymer materials.
  • the content of the polymer material in the stimulus-responsive gel is preferably 0.7% by mass or more and 36.0% by mass or less, and more preferably 2.4% by mass or more and 27.0% by mass or less. .
  • the stimulus-responsive gel contains a solvent
  • the above-described polymer material can be suitably gelled.
  • various organic solvents and inorganic solvents can be used. More specifically, for example, water; various alcohols such as methanol and ethanol; ketones such as acetone; ethers such as tetrahydrofuran and diethyl ether; dimethylformamide Amides such as: Chain aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane and n-octane; Cycloaliphatic hydrocarbons such as cyclohexane and methylcyclohexane; Aromatics such as benzene, toluene and xylene In particular, those containing water are preferable.
  • the stimulus-responsive gel may include a plurality of different components as a solvent.
  • the content of the solvent in the stimulus-responsive gel is preferably 30% by mass or more and 95% by mass or less, and more preferably 50% by mass or more and 90% by mass or less.
  • the stimulus-responsive gel may contain components other than those described above (other components).
  • it may contain insulating particles of a predetermined size.
  • a specific stimulus for example, when a specific component is taken in
  • the structural color or the change of the structural color due to the colloidal crystal is easily visually recognized.
  • the stimulus can also be detected optically (visually).
  • the structural color or change in structural color due to the colloidal crystal is easily visually recognized.
  • quantification of a specific stimulus for example, a specific component
  • Insulating particles are composed of inorganic materials such as silica and titanium oxide; polystyrene, polyester, polyimide, polyolefin, methyl poly (meth) acrylate, polyethylene, polypropylene, polyethersulfone, nylon, polyurethane, polyvinyl chloride, Examples thereof include organic materials (polymers) such as polyvinylidene chloride, but the insulating particles are preferably silica fine particles. Thereby, the stability of the shape of the insulating particles can be made particularly excellent, and the durability and reliability of the stimulus-responsive gel can be made particularly excellent. In addition, silica fine particles are relatively easy to obtain as those having a sharp particle size distribution (monodispersed fine particles), which is advantageous from the viewpoint of stable production and supply of stimulus-responsive gels.
  • inorganic materials such as silica and titanium oxide
  • polystyrene polyester, polyimide, polyolefin, methyl poly (meth) acrylate, polyethylene, polypropylene, poly
  • the shape of the insulating particles is not particularly limited, but is preferably spherical. Thereby, the structural color or the change of the structural color due to the colloidal crystal is visually recognized, and the specific stimulus can be detected more easily.
  • the average particle diameter of the insulating particles is not particularly limited, but is preferably 10 nm or more and 1000 nm or less, and more preferably 20 nm or more and 500 nm or less.
  • the structural color or the change of the structural color due to the colloidal crystal is more easily visually recognized, the optical (visual) detection of a specific stimulus can be performed more easily and more reliably.
  • the structural color or the structural color change due to the colloidal crystal is more easily visually recognized, for example, depending on the degree of the change in the color tone, the quantification of a specific stimulus can be performed more easily and more accurately. it can.
  • the stimulus-responsive gel may include a plurality of different types of insulating particles.
  • the content of the insulating particles in the stimulus-responsive gel is preferably 1.6% by mass to 36% by mass, and more preferably 4.0% by mass to 24% by mass.
  • the senor can easily detect a predetermined stimulus (for example, a specific component), for example, whether or not a specific substance is included in the test object (specimen) or included in the test object. It can be used as a sensor for measuring the concentration of a specific substance.
  • a predetermined stimulus for example, a specific component
  • a specific substance for example, whether or not a specific substance is included in the test object (specimen) or included in the test object. It can be used as a sensor for measuring the concentration of a specific substance.
  • the amount of the specific component incorporated into the stimulus-responsive gel can be easily detected, it can be suitably used as a separation / extraction means for separating / extracting the specific substance contained in the test object. That is, when the amount of the specific component incorporated into the stimulus-responsive gel is saturated or is likely to be saturated, the contact with the test object can be stopped and replaced with another sensor as necessary. As a result, the specific component can be recovered from the test object without waste.
  • sensors for biological substances for example, various cells such as cancer cells and blood cells, proteins such as antibodies (including glycoproteins), etc.
  • body fluids or exocrine secretions for example, a sensor for components (for example, lactic acid, uric acid, sugar, etc.) contained in blood, saliva, sweat, urine, etc., separation / extraction means for biological substances (especially trace biological substances such as hormones), metal ( In particular, rare metals, precious metals, etc.) separation / extraction means, pollen and other antigens (allergens) sensors, poisons, harmful substances, environmental pollutants separation / extraction means, viruses, bacteria, etc. sensors, contained in soil Sensor for components contained in waste liquid (including wastewater), sensor for components contained in food, and components contained in water (for example, salt contained in brackish waters, rivers, paddy fields, etc.) Sir, and the cell culture monitoring and the like.
  • biological substances for example, various cells such as cancer cells and blood cells, proteins such as antibodies (including glycoproteins), etc.
  • a sensor for components for example,
  • the sensor is preferably used in close contact with the skin of a living body.
  • the living body skin generally has a complicated uneven shape, but as described above, the sensor is excellent in conformity to the shape, and thus can be suitably brought into close contact with the living body skin.
  • a large external force such as vibration or impact
  • the specific component predetermined stimulus
  • the senor can be suitably adapted to miniaturization and weight reduction. Therefore, it is suitable for use in the method as described above.
  • the sensor 100 is prepared in a state where the stimulus-responsive gel 1 is not receiving a predetermined stimulus (for example, when the predetermined stimulus is a specific component, the stimulus-responsive gel 1 does not include the specific component). .
  • the electrodes 30 and 40 are electrically connected to an electrical resistance measuring unit, and the resistance value in a state where a predetermined stimulus is not received is measured (initialization).
  • the predetermined stimulus is a specific substance
  • calibration may be performed using a standard solution containing the specific substance at a predetermined concentration. Thereby, the detection accuracy of the stimulus can be further increased.
  • stimulation is detected in a state where the specimen can contact the sensor 100.
  • the sensor 100 preferably constitutes a part of the wearable device or is used by being connected to the wearable device.
  • the burden on the user accompanying the detection of the stimulus can be reduced, and for example, it can be suitably used even during exercise.
  • the user etc. can confirm suitably the detection result displayed on the display part. It is also preferable from the viewpoint of fashion.
  • the wearable device include a wristwatch type device.
  • the sensor gel 10 may be washed as necessary.
  • the gel 10 for sensors can be reused suitably and the lifetime of the gel 10 for sensors and the sensor 100 can be extended.
  • the sensor gel 10 can be washed using, for example, a liquid that does not contain a specific component (predetermined stimulus).
  • the sensor gel 10 may be stored in a state of being in contact with a liquid not containing a specific component (predetermined stimulus).
  • the gel 10 for sensors can be preserve
  • the senor may have a configuration other than that described above.
  • the electrode is described as being in contact with the sensor gel.
  • at least one intermediate layer may be provided between the electrode and the sensor gel. Thereby, for example, the adhesion between the sensor gel and the electrode can be further improved.
  • the senor may have a partition that divides the sensor gel into a plurality of cells.
  • the senor may include a housing member that houses the sensor gel.
  • the sensor gel can be suitably protected from external force or the like, and stimulation can be detected more stably.
  • the stimulus-responsive gel is in the form of a sheet, and the case where the sensor as a whole is in the form of a sheet has been representatively described.
  • the stimulus-responsive gel has a shape other than the sheet.
  • the shape of the sensor may be any shape such as a block shape, a string shape, or a cylindrical shape.
  • the conductive material is a spherical particle (conductive particle)
  • the conductive material may have any shape.
  • the conductive substance may be dissolved in the stimulus-responsive gel.
  • the senor may be configured such that a part of the constituent members is configured to be replaceable, or configured to be removable and remountable.
  • the absorbent member may be replaceable or configured to be removable and remountable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Optics & Photonics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

 所定の刺激に反応することにより、膨張または収縮する刺激応答性ゲルと、前記刺激応答性ゲル中に含まれる導電性物質と、を備えることを特徴とするセンサー用ゲル。

Description

センサー用ゲルおよびセンサー
 本発明は、センサー用ゲルおよびセンサーに関する。
 現在、体内生体情報を取得する方法として、採血により得られた血液中の組成を調べる生化学検査が通常行われている。この検査は、医療機関にて実施されることがほとんどである。そのなかで、血糖値センサーは、糖尿病患者に普及しており、また簡易乳酸センサーは、アスリートに普及しつつある。
 しかし、これらは、いずれも採血による侵襲的手法を用いた検査手法である。
 これに対し、非侵襲的手法を適用したものとして、汗中成分を対象とするセンサー研究が行われている(例えば、非特許文献1、非特許文献2参照)。
 しかし、このような方法で用いる酵素は、一般に、高価であり、温度、湿度等の影響を受けやすく、安定した特性を発揮しにくく、定量性の信頼性が低いという問題がある。さらに、酵素は、製造ロット間やメーカーによる品質のばらつきが大きく、また、特性の経時的変化が大きいという問題がある。
Wearable Technology for Bio-Chemical Analysis of Body Fluids During Exercise 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada, August 20-24, 2008 Novel lactate and pH biosensor for skin and sweat analysis based on single walled carbon nanotubes /Sensors and Actuators B 117 (2006) 308-313
 本発明の目的は、幅広い領域で刺激の強さ(所定成分の濃度等)の検出を容易かつ安定的に行うことができるセンサーを提供すること、幅広い領域で刺激の強さ(所定成分の濃度等)の検出を容易かつ安定的に行うことができるセンサーに好適に用いることができるセンサー用ゲルを提供することにある。
 本発明のセンサー用ゲルは、所定の刺激に反応することにより、膨張または収縮する刺激応答性ゲルと、
 前記刺激応答性ゲル中に分散した導電性粒子と、を備えることを特徴とする。
 これにより、幅広い領域で刺激の強さ(所定成分の濃度等)の検出を容易かつ安定的に行うことができるセンサーに好適に用いることができるセンサー用ゲルを提供することができる。
 本発明のセンサー用ゲルは、前記導電性物質として、前記刺激応答性ゲル中に分散した導電性粒子を含むものであることが好ましい。
 本発明のセンサー用ゲルでは、前記導電性粒子は、前記刺激応答性ゲルへの分散性が向上する表面処理が施されたものであることが好ましい。
 本発明のセンサー用ゲルでは、前記導電性粒子の平均粒径は、10nm以上1000μm以下であることが好ましい。
 本発明のセンサー用ゲルでは、前記刺激応答性ゲルが膨張した状態における前記刺激応答性ゲル100体積部に対する前記導電性粒子の含有率は、0.1体積部以上65体積部以下であることが好ましい。
 本発明のセンサー用ゲルには、電極と接触する部位に凹部が設けられていることが好ましい。
 本発明のセンサー用ゲルでは、前記凹部において、前記導電性粒子と前記電極とが接触していることが好ましい。
 本発明のセンサー用ゲルでは、前記導電性物質の電気抵抗率は、1.0×10-4Ω・m以下であることが好ましい。
 本発明のセンサー用ゲルでは、前記導電性物質は、金属材料、導電性金属酸化物、炭素材料、および、導電性高分子材料よりなる群から選択される1種または2種以上を含む材料で構成されたものであることが好ましい。
 本発明のセンサーは、刺激応答性ゲルと、
 前記刺激応答性ゲル中に含まれる導電性物質と、
 電極と、を備えることを特徴とする。
 これにより、幅広い領域で刺激の強さ(所定成分の濃度等)の検出を容易かつ安定的に行うことができるセンサーを提供することができる。
 本発明のセンサーでは、本発明のセンサー用ゲルと、
 電極と、を備えることを特徴とする。
 これにより、幅広い領域で刺激の強さ(所定成分の濃度等)の検出を容易かつ安定的に行うことができるセンサーを提供することができる。
第1実施形態のセンサーを説明するための模式的な縦断面図である。 第2実施形態のセンサーを説明するための模式的な縦断面図である。
 以下、添付する図面を参照しつつ、好適な実施形態について詳細な説明をする。
 《センサー、センサー用ゲル》
 以下、センサー(ゲルセンサー)およびセンサー用ゲルについて説明する。
 [第1実施形態]
 まず、第1実施形態のセンサーおよびセンサー用ゲルについて説明する。
 図1は、第1実施形態のセンサーを説明するための模式的な縦断面図である。なお、以下の説明では、図1中の上側を観察者側(視点側)、図1中の下側を検体が供給される側である場合について中心的に説明する。
 図1に示すように、センサー(ゲルセンサー)100は、センサー用ゲル10と、第1の電極(電極)30と、第2の電極(電極)40とを備えている。そして、センサー用ゲル10は、所定の刺激に対して反応することにより、膨張、収縮する刺激応答性ゲル1と、刺激応答性ゲル1中に含まれる導電性物質2とを備えている。
 このような構成により、刺激応答性ゲル1の膨張収縮状態に応じて、刺激応答性ゲル1中(センサー用ゲル10中)に含まれる導電性物質2の距離を異なるものとすることができ、その結果、第1の電極30と第2の電極40との間の抵抗値を異なるものとすることができる。すなわち、刺激応答性ゲル1(センサー用ゲル10)が膨張した状態(または膨張の程度が大きい状態)では、刺激応答性ゲル1が収縮した状態(または膨張の程度が小さい状態)に比べて、導電性物質2同士の距離が大きくなるため、電極(第1の電極30および第2の電極40)に接続するセンサー用ゲル10の抵抗値が大きくなる。したがって、第1の電極30と第2の電極40との間の抵抗値を測定することにより、刺激応答性ゲル1の膨張収縮状態、すなわち、刺激の強さ(所定成分の濃度等)を容易かつ安定的に行うことができる。特に、センサー(ゲルセンサー)100では、幅広い領域で、刺激の強さの検出を容易かつ安定的に行うことができる。
 <刺激応答性ゲル>
 刺激応答性ゲル1は、所定の刺激に反応することにより、膨張、収縮するものである。
 このように、刺激応答性ゲル1が所定の刺激に対して反応するものであることにより、刺激応答性ゲル1の反応(膨張収縮)に応じて、電極(第1の電極30および第2の電極40)に接続するセンサー用ゲル10の抵抗値を変化させることができる。その結果、抵抗値を測定することにより、刺激の有無、強さ(量、濃度)等を検出することができる。
 刺激応答性ゲル1が反応する所定の刺激は、刺激応答性ゲル1の構成材料等により異なるが、例えば、タンパク質、糖、尿酸、乳酸、各種ホルモン、各種イオン物質、各種金属等の各種物質や、熱、光等が挙げられる。
 図示の構成では、刺激応答性ゲル1、センサー用ゲル10は、シート状をなすものである。
 これにより、刺激応答性ゲル1の量、導電性物質2の量を比較的少ないものとしつつ、効率よく検体と接触させることができ、所定の刺激の検出も容易に行うことができる。
 センサー100が備える刺激応答性ゲル1の体積は、0.1mm3以上3600mm3以下であるのが好ましく、0.2mm3以上900mm3以下であるのがより好ましい。
 これにより、センサー100の小型化を図りつつ、刺激の検出精度をより優れたものとすることができる。また、省資源の観点からも好ましい。
 刺激応答性ゲル1単独での電気抵抗率は、1.0×10-2Ω・m以上であるのが好ましく、1.0×10-1Ω・m以上であるのがより好ましい。
 これにより、導電性物質2を含むことによる効果がより顕著に発揮され、幅広い領域で刺激の強さ(所定成分の濃度等)の検出精度をより優れたものとすることができる。
 刺激応答性ゲル1単独での電気抵抗率は、刺激応答性ゲル1の膨張収縮状態のうちいずれかの状態において、上記のような条件を満足するものであるのが好ましいが、刺激応答性ゲル1が収縮した状態および刺激応答性ゲル1が膨張した状態のいずれにおいても、上記のような条件を満足するものであるのが好ましい。
 これにより、前述した効果がより顕著に発揮される。
 <導電性物質>
 刺激応答性ゲル1中には、導電性物質2が含まれている。
 これにより、刺激応答性ゲル1が所定の刺激に対して反応(膨張収縮)することに応じて、導電性物質2間の距離が変化し、電極(第1の電極30および第2の電極40)に接続するセンサー用ゲル10の抵抗値を変化させることができる。その結果、抵抗値を測定することにより、刺激の有無、強さ(量、濃度)等を検出することができる。
 導電性物質2は、導電性を有する材料で構成されたものであればよいが、導電性物質2の構成材料としては、例えば、金属材料(例えば、Au、Ag、Pt、Cuやこれらのうち少なくとも1種を含む合金等)、導電性金属酸化物(例えば、ITO等)、炭素材料(例えば、カーボンブラック等)、導電性高分子材料(例えば、PEDOT/PSS、ポリチオフェン系、ポリアセチレン系等)等が挙げられる。
 このような材料で構成された導電性物質2を含むことにより、センサー100の耐久性を優れたものとしつつ、刺激応答性ゲル1の膨張収縮に伴う前記抵抗値の変化率をより大きいものとすることができ、刺激の検出精度をより優れたものとすることができる。また、これらの材料は、比較的安価で、安定的に入手することが可能なので、センサー100の生産コストの抑制、安定供給の点からも有利である。
 導電性物質2の電気抵抗率は、1.0×10-4Ω・m以下であるのが好ましく、1.0×10-5Ω・m以下であるのがより好ましく、5.0×10-6Ω・m以下であるのがさらに好ましい。
 これにより、刺激応答性ゲル1の膨張収縮に伴う前記抵抗値の変化率をより大きいものとすることができ、刺激の検出精度をより優れたものとすることができる。
 本実施形態では、導電性物質2として、刺激応答性ゲル1中に分散した複数個の導電性粒子を含んでいる。
 これにより、刺激の検出精度を容易かつより安定的に優れたものとすることができる。また、導電性物質2の構成材料の選択を広げることができる。
 導電性粒子2は、各部位で均一な組成を有するものであってもよいし、異なる組成の部位を有するものであってもよい。
 例えば、導電性粒子2は、第1の材料で構成されたコア部と、コア部の外表面側に設けられた少なくとも1層の被膜を有するもの等であってもよい。
 また、導電性物質(導電性粒子)2は、刺激応答性ゲル1への分散性が向上する表面処理が施されたものであってもよい。
 これにより、電極(第1の電極30および第2の電極40)に接続するセンサー用ゲル10の各部位での不本意な組成のばらつきを抑制することができ、刺激の検出精度の安定性をより優れたものとすることができる。
 表面処理に用いることのできる表面処理剤としては、例えば、水酸基、カルボキシル基、スルホン酸基やこれらの塩等を部分構造に有するもの等が挙げられる。
 上記のように、導電性粒子2が異なる組成の部位を有するものである場合、導電性粒子2は、全体として、前述したような効果を発揮し得る程度の導電性を有するものであればよく、導電性粒子2の一部は、絶縁性の材料で構成されていてもよい。例えば、導電性粒子2の母粒子の少なくとも一部が導電性を有する材料で構成されたものである場合、表面処理により形成された部位(表面処理部)は絶縁性の材料で構成されたものであってもよい。
 導電性粒子2の平均粒径は、特に限定されないが、10nm以上1000μm以下であるのが好ましく、20nm以上500μm以下であるのがより好ましい。
 これにより、刺激応答性ゲル1中(センサー用ゲル10中)において、導電性粒子2をより均一分散させることができ、刺激の検出精度をより優れたものとすることができる。また、導電性粒子2の平均粒径が比較的小さい場合(例えば、10nm以上1000nm以下である場合)、特定の刺激を受けた際に(例えば、特定の成分が取り込まれた際に)、コロイド結晶による構造色または構造色の変化が容易に視認されるため、前述したような抵抗値の測定による刺激の検出とともに、光学的(視覚的)にも刺激を検出することができる。また、コロイド結晶による構造色または構造色の変化が容易に視認されるため、例えば、その色調により、特定の刺激(例えば、特定成分)の定量も、より容易に、また、より正確に行うことができる。
 なお、本明細書において、平均粒径とは、体積基準の平均粒径を言い、例えば、サンプルをメタノールに添加し、超音波分散器で3分間分散した分散液をコールターカウンター法粒度分布測定器(COULTER ELECTRONICS INC製TA-II型)にて、50μmのアパチャーを用いて測定することにより求めることができる。
 センサー100は、複数種の導電性物質2を含むものであってもよい。
 刺激応答性ゲルが膨張した状態における100体積部の刺激応答性ゲル1に対する導電性物質2の含有率は、0.1体積部以上50体積部以下であるのが好ましく、0.5体積部以上40体積部以下であるのがより好ましい。
 これにより、刺激応答性ゲル1の状態(膨張収縮状態)による電気抵抗率の変化量をより大きいものとし、刺激の検出精度、検出感度をより優れたものとすることができる。
 また、刺激応答性ゲルが収縮した状態における100体積部の刺激応答性ゲル1に対する導電性粒子2の含有率は、30体積部以上98体積部以下であるのが好ましく、45体積部以上90体積部以下であるのがより好ましい。
 これにより、刺激応答性ゲル1の状態(膨張収縮状態)による電気抵抗率の変化量をより大きいものとし、刺激の検出精度、検出感度をより優れたものとすることができる。
 センサー用ゲル10についての、膨張状態での電気抵抗率(最大電気抵抗率)と収縮状態での電気抵抗率(最小電気抵抗率)との差は、1.0×10-5Ω・m以上であるのが好ましく、1.0×10-2Ω・m以上であるのがより好ましい。
 これにより、刺激の検出精度をより優れたものとすることができる。
 刺激応答性ゲル1が膨張した状態でのセンサー用ゲル10の厚さは、特に限定されないが、5μm以上5000μm以下であるのが好ましく、7μm以上1000μm以下であるのがより好ましい。
 これにより、センサー100の耐久性、信頼性を十分に優れたものとしつつ、センサー100の薄型化、小型化を図ることができる。また、センサー100の柔軟性をより優れたものとすることができ、例えば、センサー100を生体等に密着させて用いる場合等であっても、センサー100の密着性を好適に保持することができ、刺激の検出精度を安定的に優れたものとすることができる。
 <電極>
 刺激応答性ゲル1と導電性粒子2とを含むセンサー用ゲル10には、第1の電極30(電極)および第2の電極(電極)40が接続されている。
 これにより、センサー用ゲル10についての抵抗値を好適に測定することができ、個の測定結果から、刺激応答性ゲル1が受けている所定の刺激の有無、強さを求めることができる。
 電極30、40は、導電性を有する材料で構成されたものである。
 電極30、40の構成材料としては、例えば、金属材料(例えば、Au、Ag、Pt、Cuやこれらのうち少なくとも1種を含む合金等)、導電性金属酸化物(例えば、ITO等)、炭素材料(例えば、カーボンブラック等)、導電性高分子材料(例えば、PEDOT/PSS、ポリチオフェン系、ポリアセチレン系等)等が挙げられる。
 中でも、ITO等の導電性金属酸化物は、透明性を有するとともに、耐久性にも優れているため、センサー用ゲル10の様子を好適に観察することができる。
 電極30、40の厚さは、特に限定されないが、5μm以上5000μm以下であるのが好ましく、7μm以上1000μm以下であるのがより好ましい。
 これにより、センサー100の耐久性、信頼性を十分に優れたものとしつつ、センサー100の薄型化、小型化を図ることができる。また、センサー100の柔軟性をより優れたものとすることができ、例えば、センサー100を生体等に密着させて用いる場合等であっても、センサー100の密着性を好適に保持することができ、刺激の検出精度を安定的に優れたものとすることができる。
 本実施形態では、センサー用ゲル10の電極30、40と接触する部位に凹部11が設けられている。
 これにより、センサー用ゲル10と電極30、40との位置合わせが容易となり、刺激の検出の安定性、センサー100の信頼性をさらに優れたものとすることができる。
 また、図示の構成では、電極30、40が、センサー用ゲル10の表面に露出している導電性粒子2と接触するように設けられている。
 これにより、刺激の検出の安定性、センサー100の信頼性をより優れたものとすることができる。
 また、本実施形態では、センサー用ゲル10の検体が供給される側とは反対側の面に、電極30、40が設けられている。
 これにより、例えば、検体が汗等の導電性を有する液体である場合であっても、センサー用ゲル10の外部に存在する検体により短絡が生じることをより効果的に防止することができ、刺激の検出の信頼性をより優れたものとすることができる。
 また、図中Lで示す電極30と電極40との間の距離(電極間距離)は、0.1mm以上50mm以下であるのが好ましく、0.2mm以上30mm以下であるのがより好ましい。
 これにより、センサー100の大型化を抑制しつつ、刺激の検出の信頼性をより優れたものとすることができる。
 また、センサー100は、検体を吸収する吸収部材(図示せず)を備えるものであってもよい。
 これにより、例えば、過剰な検体がセンサー用ゲル10の外部に存在する場合に、当該過剰な検体を吸収部材に吸収させることができ、検体が汗等の導電性を有する液体である場合であっても、短絡が生じることをより効果的に防止することができ、刺激の検出の信頼性をより優れたものとすることができる。また、検体が順次供給される場合(連続的または断続的に供給される場合)に、先に供給されていた検体を排出し、新たに供給された検体を刺激応答性ゲル1に供給することができるため、経時的な刺激量の変化を知ることができる。すなわち、先に供給されていた検体と、新たに供給された検体とが混合し、正確な刺激量の検出が妨害されてしまうことを抑制することができる。また、例えば、液状の検体の供給が停止した場合や検体の供給量が著しく低下した場合、センサー100の使用環境が低湿度である場合等に、刺激応答性ゲル1の乾燥を抑制することができる。その結果、刺激応答性ゲル1が乾燥しやすい環境下においても、比較的長時間にわたって、高い信頼性で所定の刺激の検出を安定的に行うことができる。
 吸収部材は、いかなる部位に配されていてもよいが、センサー用ゲル10の検体が供給される側の面とは異なる部位に配されているのが好ましい。
 これにより、刺激応答性ゲル1への検体の供給が阻害されることをより好適に防止しつつ、前述したような効果を発揮させることができる。
 特に、吸収部材は、センサー用ゲル10の検体が供給される側とは反対側の面に配されているのが好ましい。
 これにより、前述したような効果がより顕著に発揮され、特に、検体が順次供給される場合(連続的または断続的に供給される場合)に、先に供給されていた検体を排出し、新たに供給された検体を好適に刺激応答性ゲル1に供給することができ、経時的な刺激量の変化を好適に知ることができる。
 また、吸収部材は、複数の電極に接触しないように配されているのが好ましい。
 これにより、上述したような効果を発揮しつつ、例えば、検体が汗等の導電性を有する液体である場合であっても、センサー用ゲル10の外部に存在する検体により短絡が生じることをより効果的に防止することができ、刺激の検出の信頼性をより優れたものとすることができる。
 吸収部材としては、例えば、織物、不織布、フェルト等の布状材料や、多孔質材料等で構成されたものが挙げられる。
 吸収部材の好ましい構成成分としては、セルロース材料や吸水性ポリマー等が挙げられるが、セルロース材料が特に好ましい。このような材料は、適度な親水性を有しているため、例えば、検体が水を含むもの(例えば、汗等の体液)である場合、検体を好適に吸収するとともに、吸収した検体中に含まれる水を好適に蒸発させることができる。
 [第2実施形態]
 次に、第2実施形態のセンサーについて説明する。
 図2は、第2実施形態のセンサーを説明するための模式的な縦断面図である。以下の説明では、前述した実施形態との相違点について中心的に説明し、同様の事項についての説明は省略する。
 本実施形態のセンサー(ゲルセンサー)100は、電極30、40の設置部位が異なる以外は、前述した実施形態と同様の構成を有している。すなわち、前述した実施形態では、電極30、40が、センサー用ゲル10の検体が供給される面とは反対側の面に設けられていたのに対し、本実施形態のセンサー(ゲルセンサー)100では、電極30、40が、センサー用ゲル10の側面部に設けられている。このように、電極の設置部位はいかなる部位であってもよい。特に、本実施形態のように、電極30、40が、刺激応答性ゲル1と導電性物質2とを含むシート状のセンサー用ゲル10の側面部に設けられていることにより、センサー100の薄型化を図ることができる。
 なお、図2に示す構成では、電極30、40は、センサー用ゲル10の厚さ方向の一部のみに設けられているが、電極30、40は、センサー用ゲル10の厚さ方向全体にわたって設けられていてもよい。
 《刺激応答性ゲルの構成材料》
 次に、センサーを構成する刺激応答性ゲルの構成材料について説明する。
 刺激応答性ゲルは、所定の刺激に対して反応するものであれば、いかなる材料で構成されたものであってもよいが、通常、架橋構造を有する高分子材料と、溶媒とを含む材料で構成されたものである。
 (高分子材料)
 刺激応答性ゲルを構成する高分子材料は、特定の刺激を検出するうえで重要な成分であり、その構造は、検出すべき刺激の種類によって異なる。
 刺激応答性ゲルを構成する高分子材料は、特に限定されず、検出すべき刺激によって、選択することができる。
 以下、刺激応答性ゲルを構成する高分子材料の具体例について説明する。
 刺激応答性ゲルを構成する高分子材料としては、例えば、単量体(モノマー)、重合開始剤、架橋剤等を反応させることにより得られたものを用いることができる。
 単量体としては、例えば、アクリルアミド、N-メチルアクリルアミド、N-イソプロピルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド各種四級塩、アクリロイルモルホリン、N,N-ジメチルアミノエチルアクリレート各種四級塩、アクリル酸、各種アルキルアクリレート、メタクリル酸、各種アルキルメタクリレート、2-ヒドロキシエチルメタクリレート、グリセロールモノメタクリレート、N-ビニルピロリドン、アクリロニトリル、スチレン、ポリエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、2,2-ビス〔4-(アクリロキシジエトキシ)フェニル〕プロパン、2,2-ビス〔4-(アクリロキシポリエトキシ)フェニル〕プロパン、2-ヒドロキシ-1-アクリロキシ-3-メタクリロキシプロパン、2,2-ビス〔4-(アクリロキシポリプロポキシ)フェニル〕プロパン、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、1,3-ブチレングリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、2-ヒドロキシ-1,3-ジメタクリロキシプロパン、2,2-ビス〔4-(メタクリロキシエトキシ)フェニル〕プロパン、2,2-ビス〔4-(メタクリロキシエトキシジエトキシ)フェニル〕プロパン、2,2-ビス〔4-(メタクリロキシエトキシポリエトキシ)フェニル〕プロパン、トリメチロールプロパントリメタクリレート、テトラメチロールメタントリメタクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、N,N’-メチレンビスアクリルアミド、N,N’-メチレンビスメタクリルアミド、ジエチレングリコールジアリルエーテル、ジビニルベンゼン等が挙げられる。
 また、糖と相互作用可能な官能基としては、例えば、ボロン酸基(特に、フェニルボロン酸基)が挙げられるため、ボロン酸基を有する単量体を用いてもよい。このようなボロン酸基含有モノマーとしては、例えば、アクリロイルアミノベンゼンボロン酸、メタクリロイルアミノベンゼンボロン酸、4-ビニルベンゼンボロン酸等が挙げられる。
 また、イオン物質(特に、カルシウムイオンを含むもの)を刺激(特定成分)として検出する場合には、単量体として、4-アクリルアミドベンゾ18-クラウン-6-エーテル、アクリロイルアミノベンゾクラウンエーテル、メタクリロイルアミノベンゾクラウンエーテル、4-ビニルベンゾクラウンエーテル等のクラウンエーテル基含有モノマー(特に、ベンゾクラウンエーテル基含有モノマー)を好適に用いることができる。
 また、塩化ナトリウム等のイオン物質を刺激(特定成分)として検出する場合には、単量体として、3-アクリルアミドフェニルボロン酸、ビニルフェニルボロン酸、アクリロイロキシフェニルボロン酸、N-イソプロピルアクリルアミド(NIPAAm)、エチレンビスアクリルアミド、N-ヒドロキシエチルアクリルアミド等を好適に用いることができる。特に、塩化ナトリウム等のイオン物質を刺激(特定成分)として検出する場合には、単量体として、3-アクリルアミドフェニルボロン酸、ビニルフェニルボロン酸およびアクリロイロキシフェニルボロン酸よりなる群から選択される1種または2種以上の単量体と、N-イソプロピルアクリルアミド(NIPAAm)、エチレンビスアクリルアミドおよびN-ヒドロキシエチルアクリルアミドよりなる群から選択される1種または2種以上の単量体とを組み合わせて用いるのが好ましい。
 また、乳酸を刺激(特定成分)として検出する場合には、単量体として、3-アクリルアミドフェニルボロン酸、ビニルフェニルボロン酸、アクリロイロキシフェニルボロン酸、N-イソプロピルアクリルアミド(NIPAAm)、エチレンビスアクリルアミド、N-ヒドロキシエチルアクリルアミド等を好適に用いることができる。特に、乳酸を刺激(特定成分)として検出する場合には、単量体として、3-アクリルアミドフェニルボロン酸、ビニルフェニルボロン酸およびアクリロイロキシフェニルボロン酸よりなる群から選択される1種または2種以上の単量体と、N-イソプロピルアクリルアミド(NIPAAm)、エチレンビスアクリルアミドおよびN-ヒドロキシエチルアクリルアミドよりなる群から選択される1種または2種以上の単量体とを組み合わせて用いるのが好ましい。
 重合開始剤としては、例えば、その重合様式によって、適宜選択することができるが、具体的には、過酸化水素、過硫酸塩、例えば過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等、アゾ系開始剤、例えば2,2’-アゾビス(2-アミジノプロパン)2塩酸塩、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)2塩酸塩、2,2’-アゾビス{2-メチル-N-〔1,1,-ビス(ヒドロキシメチル)-2-ヒドロキシエチル〕プロピオンアミド}、2,2’-アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕2塩酸塩、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4’-ジメチルバレロニトリル)、ベンゾフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン等の紫外光によってラジカルを発生する化合物、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシプロポキシ)-3,4-ジメチル-9H-チオキサントン-9-オンメソクロライド、2-メチル-1[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、ビス(シクロペンタジエニル)-ビス(2,6-ジフルオロ-3-(ピル-1-イル)チタニウム、1,3-ジ(t-ブチルペルオキシカルボニル)ベンゼンや3,3’,4,4’-テトラ-(t-ブチルペルオキシカルボニル)ベンゾフェノン等のパーオキシエステルに、チオピリリウム塩、メロシアニン、キノリン、スチリルキノリン系色素を混合した物質等の360nm以上の波長の光によってラジカルを発生する化合物等が挙げられる。また、過酸化水素あるいは過硫酸塩は、例えば、亜硫酸塩、L-アスコルビン酸等の還元性物質やアミン塩等を組み合わせてレドックス系の開始剤としても使用することができる。
 架橋剤としては、重合性官能基を2個以上有する化合物を用いることができ、具体的には、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン、N,N’-メチレンビスアクリルアミド、N,N-メチレン-ビス-N-ビニルアセトアミド、N,N-ブチレン-ビス-N-ビニルアセトアミド、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、アリル化デンプン、アリル化セルロース、ジアリルフタレート、テトラアリロキシエタン、ペンタエリストールトリアリルエーテル、トリメチロールプロパントリアリルエーテル、ジエチレングリコールジアリルエーテル、トリアリルトリメリテート等が挙げられる。
 刺激応答性ゲルは、異なる複数種の高分子材料を含むものであってもよい。
 刺激応答性ゲル中における高分子材料の含有率は、0.7質量%以上36.0質量%以下であるのが好ましく、2.4質量%以上27.0質量%以下であるのがより好ましい。
 (溶媒)
 刺激応答性ゲルが、溶媒を含むものであることにより、前述した高分子材料を好適にゲル化させることができる。
 溶媒としては、各種有機溶媒や無機溶媒を用いることができ、より具体的は、例えば、水;メタノール、エタノール等の各種アルコール;アセトン等のケトン類;テトラヒドロフラン、ジエチルエーテル等のエーテル類;ジメチルホルムアミド等のアミド類;n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン等の鎖状脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族類等が挙げられるが、特に、水を含むものであるのが好ましい。
 刺激応答性ゲルは、溶媒として異なる複数種の成分を含むものであってもよい。
 刺激応答性ゲル中における溶媒の含有率は、30質量%以上95質量%以下であるのが好ましく、50質量%以上90質量%以下であるのがより好ましい。
 (その他の成分)
 刺激応答性ゲルは、前述した以外の成分(その他の成分)を含むものであってもよい。
 例えば、所定の大きさの絶縁性粒子を含むものであってもよい。これにより、特定の刺激を受けた際に(例えば、特定の成分が取り込まれた際に)、コロイド結晶による構造色または構造色の変化が容易に視認されるため、前述したような抵抗値の測定による刺激の検出とともに、光学的(視覚的)にも刺激を検出することができる。また、コロイド結晶による構造色または構造色の変化が容易に視認されるため、例えば、その色調により、特定の刺激(例えば、特定成分)の定量も、より容易に、また、より正確に行うことができる。
 絶縁性粒子の構成材料としては、シリカ、酸化チタン等の無機材料;ポリスチレン、ポリエステル、ポリイミド、ポリオレフィン、ポリ(メタ)アクリル酸メチル、ポリエチレン、ポリプロピレン、ポリエーテルスルフォン、ナイロン、ポリウレタン、ポリ塩化ビニル、ポリ塩化ビニリデン等の有機材料(ポリマー)等が挙げられるが、絶縁性粒子は、シリカ微粒子であるのが好ましい。これにより、絶縁性粒子の形状の安定性等を特に優れたものとし、刺激応答性ゲルの耐久性、信頼性等を特に優れたものとすることができる。また、シリカ微粒子は、粒度分布がシャープなもの(単分散微粒子)として入手が比較的容易であるため、刺激応答性ゲルの安定的な生産、供給の観点からも有利である。
 絶縁性粒子の形状は、特に限定されないが、球状であるのが好ましい。これにより、コロイド結晶による構造色または構造色の変化が視認され、特定の刺激の検出をより容易に行うことができる。
 絶縁性粒子の平均粒子径は、特に限定されないが、10nm以上1000nm以下であるのが好ましく、20nm以上500nm以下であるのがより好ましい。
 これにより、コロイド結晶による構造色または構造色の変化がより容易に視認されるため、特定の刺激の光学的(視覚的)な検出をさらに容易に、また、さらに確実に行うことができる。また、コロイド結晶による構造色または構造色の変化がより容易に視認されるため、例えば、その色調の変化の程度により、特定の刺激の定量も、さらに容易に、また、さらに正確に行うことができる。
 刺激応答性ゲルは、異なる複数種の絶縁性粒子を含むものであってもよい。
 刺激応答性ゲル中における絶縁性粒子の含有率は、1.6質量%以上36質量%以下であるのが好ましく、4.0質量%以上24質量%以下であるのがより好ましい。
 《センサーの用途》
 センサーは、所定の刺激(例えば、特定成分)を容易に検出することができるため、例えば、被検物(検体)中に特定物質が含まれるか否か、または、被検物中に含まれる特定物質の濃度を測定するセンサーとして用いることができる。
 また、刺激応答性ゲルに取り込まれた特定成分の量を容易に検出することができるので、被検物中に含まれる特定物質を分離・抽出する分離・抽出手段として好適に用いることもできる。すなわち、刺激応答性ゲルに取り込まれた特定成分の量が飽和した段階または飽和しそうな段階で、被検物との接触を中止し、必要に応じて別のセンサーに交換することができる。これにより、被検物から、無駄なく特定成分を回収することができる。
 センサーのより具体的な用途としては、例えば、生体物質(例えば、がん細胞、血液細胞等の各種細胞、抗体等のタンパク質(糖タンパク質等を含む)等)のセンサー、体液または体外分泌物(例えば、血液、唾液、汗、尿等)中に含まれる成分(例えば、乳酸、尿酸、糖等)のセンサー、生体物質(特に、ホルモン等の微量生体物質等)の分離・抽出手段、金属(特に、希少金属、貴金属等)の分離・抽出手段、花粉等の抗原(アレルギー物質)のセンサー、毒物、有害物質、環境汚染物質等の分離・抽出手段、ウイルス、細菌等のセンサー、土壌に含まれる成分のセンサー、廃液(排水を含む)に含まれる成分のセンサー、食品に含まれる成分のセンサー、水中に含まれる成分(例えば、汽水域、河川、水田等に含まれる塩分等)のセンサー、細胞培養モニター等が挙げられる。
 また、センサーは、生体の皮膚に密着させて用いるものであるのが好ましい。
 生体の皮膚は、一般に複雑な凹凸形状を有しているが、前述したように、センサーは、形状の追従性に優れているため、生体の皮膚に好適に密着させることができる。また、生体の皮膚に密着して用いる場合(例えば、運動時の汗に含まれる成分を刺激(特定成分)として検出する場合等)、センサーに振動や衝撃等の大きな外力が加わることが想定されるが、このような比較的大きな外力が加わった場合であっても、正確に特定成分(所定の刺激)を検出することができる。したがって、センサーが生体の皮膚に密着させて用いられるものである場合に、効果がより顕著に発揮される。
 また、センサーは、小型化、軽量化にも好適に対応可能である。したがって、上記のような方法での使用に適している。
 《センサーの使用方法》
 以下、センサーの使用方法の一例について具体的に説明する。
 まず、刺激応答性ゲル1が所定の刺激を受けていない状態(例えば、所定の刺激が特定成分である場合には、刺激応答性ゲル1が特定成分を含まない状態)のセンサー100を用意する。
 次に、電極30、40を電気抵抗の測定手段に電気的に接続し、所定の刺激を受けていない状態での抵抗値を測定する(イニシャライズ)。このとき、所定の刺激が特定物質である場合には、例えば、当該特定物質を所定の濃度で含む標準液を用いて、校正を行ってもよい。これにより、刺激の検出精度をさらに高めることができる。
 その後、検体がセンサー100と接触し得る状態において、刺激の検出を行う。
 このような方法で、測定を行うことにより、幅広い領域で刺激の強さ(所定成分の濃度等)の検出を容易かつ安定的に行うことができる。
 センサー100は、ウェアラブル装置の一部を構成するもの、または、ウェアラブル装置に接続して用いられるものであるのが好ましい。
 これにより、例えば、刺激の検出に伴う使用者の負担を軽減することができ、例えば、運動時等においても、好適に用いることができる。また、使用者等が、表示部に表示された検出結果を好適に確認することができる。また、ファッション性の観点等からも好ましい。
 ウェアラブル装置としては、例えば、腕時計型の装置等が挙げられる。
 また、例えば、刺激の検出後、必要に応じて、センサー用ゲル10の洗浄を行ってもよい。これにより、センサー用ゲル10を好適に再利用することができ、センサー用ゲル10、センサー100の長寿命化を図ることができる。センサー用ゲル10の洗浄は、例えば、特定成分(所定の刺激)を含まない液体を用いて行うことができる。
 また、センサー100の不使用時には、センサー用ゲル10を、特定成分(所定の刺激)を含まない液体に接触させた状態で保存してもよい。れにより、センサー用ゲル10を好適に保存することができ、センサー用ゲル10、センサー100の長寿命化を図ることができる。
 以上、好適な実施形態について説明したが、これらに限定されるものではない。
 例えば、センサーは、前述した以外の構成を備えるものであってもよい。
 例えば、所定の位置に貼着するための粘着剤層を備えるものであってもよい。
 また、前述した実施形態では、電極が、センサー用ゲルに接触しているものとして説明したが、電極とセンサー用ゲルとの間には、少なくとも1層の中間層が設けられていてもよい。これにより、例えば、センサー用ゲルと電極との密着性をより優れたものとすることができる。
 また、センサーは、センサー用ゲルを複数のセルに分割する隔壁を有するものであってもよい。
 また、センサーは、センサー用ゲルを収容する収容部材を備えるものであってもよい。これにより、例えば、外力等からセンサー用ゲルを好適に保護することができ、より安定的に刺激の検出を行うことができる。
 また、前述した実施形態では、刺激応答性ゲルがシート状をなすものであり、センサー全体としてもシート状をなす場合について代表的に説明したが、刺激応答性ゲルは、シート状以外の形状をなすものであってもよく、また、センサーの形状も、例えば、ブロック状、紐状、筒状等、いかなる形状であってもよい。
 また、前述した実施形態では、導電性物質が、球形をなす粒子(導電性粒子)である場合について中心的に説明したが、導電性物質の形状はいかなるものであってもよい。また、導電性物質は、刺激応答性ゲルに溶解して含まれるものであってもよい。
 また、センサーは、構成部材の一部が、交換可能に構成されたものや、取り外しおよび再装着が可能に構成されたものであってもよい。例えば、吸収部材が、交換可能、または、取り外しおよび再装着が可能に構成されたものであってもよい。これにより、吸収部材に多量の固形分(例えば、特定成分等)が付着した場合であっても、吸収部材を交換したり、取り外し洗浄すること等により、センサーを使用することができる。このようなことから、センサーの長寿命化を図ることができる。
 100…センサー(ゲルセンサー)
 10…センサー用ゲル
 1…刺激応答性ゲル
 11…凹部
 2…導電性物質(導電性粒子)
 30…電極(第1の電極)
 40…電極(第2の電極)

Claims (11)

  1.  所定の刺激に反応することにより、膨張または収縮する刺激応答性ゲルと、
     前記刺激応答性ゲル中に含まれる導電性物質と、を備えることを特徴とするセンサー用ゲル。
  2.  前記導電性物質として、前記刺激応答性ゲル中に分散した導電性粒子を含むものである請求項1に記載のセンサー用ゲル。
  3.  前記導電性粒子は、前記刺激応答性ゲルへの分散性が向上する表面処理が施されたものである請求項2に記載のセンサー用ゲル。
  4.  前記導電性粒子の平均粒径は、10nm以上1000μm以下である請求項2または3に記載のセンサー用ゲル。
  5.  前記刺激応答性ゲルが膨張した状態における前記刺激応答性ゲル100体積部に対する前記導電性粒子の含有率は、0.1体積部以上65体積部以下である請求項2ないし4のいずれか1項に記載のセンサー用ゲル。
  6.  センサー用ゲルには、電極と接触する部位に凹部が設けられている請求項1ないし5のいずれか1項に記載のセンサー用ゲル。
  7.  前記凹部において、前記導電性物質と前記電極とが接触している請求項6に記載のセンサー用ゲル。
  8.  前記導電性物質の電気抵抗率は、1.0×10-4Ω・m以下である請求項1ないし7のいずれか1項に記載のセンサー用ゲル。
  9.  前記導電性物質は、金属材料、導電性金属酸化物、炭素材料、および、導電性高分子材料よりなる群から選択される1種または2種以上を含む材料で構成されたものである請求項1ないし8のいずれか1項に記載のセンサー用ゲル。
  10.  刺激応答性ゲルと、
     前記刺激応答性ゲル中に含まれる導電性物質と、
     電極と、を備えることを特徴とするセンサー。
  11.  請求項1ないし9のいずれか1項に記載のセンサー用ゲルと、
     電極と、を備えることを特徴とするセンサー。
PCT/JP2016/000142 2015-02-12 2016-01-13 センサー用ゲルおよびセンサー WO2016129206A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/548,000 US20180024083A1 (en) 2015-02-12 2016-01-13 Gel for sensor and sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015025557A JP2016148589A (ja) 2015-02-12 2015-02-12 センサー用ゲルおよびセンサー
JP2015-025557 2015-02-12

Publications (1)

Publication Number Publication Date
WO2016129206A1 true WO2016129206A1 (ja) 2016-08-18

Family

ID=56614516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000142 WO2016129206A1 (ja) 2015-02-12 2016-01-13 センサー用ゲルおよびセンサー

Country Status (3)

Country Link
US (1) US20180024083A1 (ja)
JP (1) JP2016148589A (ja)
WO (1) WO2016129206A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3098604A1 (en) * 2015-05-22 2016-11-30 Seiko Epson Corporation Gel for sensor and sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6958258B2 (ja) * 2017-11-08 2021-11-02 富士通株式会社 センサデバイス及びその製造方法、ガスセンサ、情報処理システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137287A (ja) * 1974-07-27 1976-03-29 Bayer Ag
JPH02195239A (ja) * 1989-01-24 1990-08-01 Matsushita Electric Ind Co Ltd 結露センサ
JPH03154301A (ja) * 1989-11-13 1991-07-02 Matsushita Electric Ind Co Ltd 結露感応素子
JPH063465A (ja) * 1992-06-19 1994-01-11 Sony Corp 入力装置
JP2002509609A (ja) * 1997-07-02 2002-03-26 デュラセル、インコーポレーテッド 有機溶媒蒸気検出器
JP2011523704A (ja) * 2008-05-20 2011-08-18 カンタイマー,インコーポレイティド イオン交換によって生体液試料を分析するための方法、システム、及び装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137287A (ja) * 1974-07-27 1976-03-29 Bayer Ag
JPH02195239A (ja) * 1989-01-24 1990-08-01 Matsushita Electric Ind Co Ltd 結露センサ
JPH03154301A (ja) * 1989-11-13 1991-07-02 Matsushita Electric Ind Co Ltd 結露感応素子
JPH063465A (ja) * 1992-06-19 1994-01-11 Sony Corp 入力装置
JP2002509609A (ja) * 1997-07-02 2002-03-26 デュラセル、インコーポレーテッド 有機溶媒蒸気検出器
JP2011523704A (ja) * 2008-05-20 2011-08-18 カンタイマー,インコーポレイティド イオン交換によって生体液試料を分析するための方法、システム、及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANG, Q ET AL.: "Design and Electrical Conductivity of Poly(acrylic acid-g-gelatin)/ Graphite Conducting Gel", POLYMER ENGINEERING AND SCIENCE, vol. 49, 2009, pages 1871 - 1878 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3098604A1 (en) * 2015-05-22 2016-11-30 Seiko Epson Corporation Gel for sensor and sensor

Also Published As

Publication number Publication date
JP2016148589A (ja) 2016-08-18
US20180024083A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
Pundir et al. Determination of urea with special emphasis on biosensors: A review
Karimian et al. An ultrasensitive molecularly-imprinted human cardiac troponin sensor
Gholivand et al. Fabrication of a highly selective and sensitive voltammetric ganciclovir sensor based on electropolymerized molecularly imprinted polymer and gold nanoparticles on multiwall carbon nanotubes/glassy carbon electrode
US11076786B2 (en) Wound monitoring sensors and use thereof
Khosrokhavar et al. Screen-printed carbon electrode (SPCE) modified by molecularly imprinted polymer (MIP) nanoparticles and graphene nanosheets for determination of sertraline antidepressant drug
JP2017080245A (ja) 液体採取装置および測定装置
Li et al. Electrochemical biosensor for sensitively simultaneous determination of dopamine, uric acid, guanine, and adenine based on poly-melamine and nano Ag hybridized film-modified electrode
Anand et al. Individual and simultaneous voltammetric sensing of norepinephrine and tyramine based on poly (L-arginine)/reduced graphene oxide composite film modified glassy carbon electrode
Charithra et al. Electrochemical sensing of adrenaline using surface modified carbon nanotube paste electrode
CN102735734A (zh) 一种非介入式葡萄糖传感器
JP2018029696A (ja) ゲルセンサーおよび成分濃度推定方法
Mugo et al. A biomimetric lactate imprinted smart polymers as capacitive sweat sensors
WO2020099560A1 (en) Electrochemical sensor system comprising molecularly imprinted polymer for early warning of urinary tract infections
JP2018023665A (ja) 汗回収装置およびゲルセンサー
EP3098604A1 (en) Gel for sensor and sensor
JP7253230B2 (ja) 汗成分センサ
WO2016129206A1 (ja) センサー用ゲルおよびセンサー
JP2009517682A (ja) センサ
Li et al. A portable electrochemical platform integrated with a 3D AuNPs/CNTs sponge for point-of-care testing of neurotransmitters
EP3098603A1 (en) Gel for sensor and sensor
JP2017063929A (ja) ゲルセンサーおよび測定装置
JP2015140411A (ja) 刺激応答性ゲル材料および刺激応答性ゲル材料の製造方法
JP2017187358A (ja) 液体採取装置および測定装置
JP2015151427A (ja) 刺激応答性ゲル材料および刺激応答性ゲル材料の製造方法
WO2018117067A1 (ja) 分子インプリント高分子を表面に有する粒子を用いたセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748858

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15548000

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16748858

Country of ref document: EP

Kind code of ref document: A1