WO2016127940A1 - 含双碘环碳酸酯单体、由其制备的生物可降解聚合物及应用 - Google Patents

含双碘环碳酸酯单体、由其制备的生物可降解聚合物及应用 Download PDF

Info

Publication number
WO2016127940A1
WO2016127940A1 PCT/CN2016/073743 CN2016073743W WO2016127940A1 WO 2016127940 A1 WO2016127940 A1 WO 2016127940A1 CN 2016073743 W CN2016073743 W CN 2016073743W WO 2016127940 A1 WO2016127940 A1 WO 2016127940A1
Authority
WO
WIPO (PCT)
Prior art keywords
diiodide
biodegradable polymer
side chain
functional group
monomer
Prior art date
Application number
PCT/CN2016/073743
Other languages
English (en)
French (fr)
Inventor
钟志远
邹艳
魏耀华
孟凤华
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510077784.2A external-priority patent/CN104610538B/zh
Priority claimed from CN201510077770.0A external-priority patent/CN104672199B/zh
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US15/550,787 priority Critical patent/US10336720B2/en
Publication of WO2016127940A1 publication Critical patent/WO2016127940A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0433X-ray contrast preparations containing an organic halogenated X-ray contrast-enhancing agent
    • A61K49/0442Polymeric X-ray contrast-enhancing agent comprising a halogenated group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • C08G64/0225Aliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen
    • C08G64/0233Aliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • C08G64/0225Aliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen
    • C08G64/025Aliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers

Definitions

  • the present invention relates to a biodegradable polymer material and an application thereof, and particularly to a biodegradable polymer containing side iodine in a side chain and an application thereof, and belongs to the field of medical materials.
  • Biodegradable polymers have very unique properties. For example, they generally have good biocompatibility and can be degraded in the body. Degradation products can be absorbed by the human body or excreted through the normal physiological pathways of the human body, and are widely used.
  • Various fields of biomedicine such as surgical sutures, bone fixation devices, biological tissue engineering scaffold materials, and drug controlled release carriers.
  • the synthetic biodegradable polymer is particularly attracting attention because of its low immunogenicity and its properties such as degradation property and mechanical properties, which can be easily controlled.
  • the synthetic biodegradable polymers are mainly aliphatic polyesters, polycarbonates, polyamino acids, polyphosphates, polyanhydrides, polyorthoesters and the like. Among them, polycarbonate such as polytrimethylene carbonate
  • PTMC polyglycolide
  • PLA polylactide
  • PLA lactide-glycolide copolymer
  • PCL polycaprolactone
  • biodegradable polymers such as PTMC, PGA, PLA, PLGA, and PCL have relatively simple structures, lacking functional groups that can be used for modification, and are often difficult to meet medical requirements, for example, based on these conventional biodegradable polymerizations.
  • Drug carrier or surface-modified coating has a fatal weakness of poor stability
  • biodegradable polymers have been reported in the literature. Especially for biodegradable polymers containing functional groups such as hydroxyl (OH), carboxyl (COOH), amino (NH 2 ), sulfhydryl (SH), etc., because polymers with these functional groups can be directly Bonding some drugs to achieve controlled release of the drug; or some biologically active molecules attached to the polymer through functional groups can improve the biocompatibility and biological activity of the entire material.
  • Functional biodegradable polymers are typically functionalized cyclic monomers through an anthracene ring, or by deprotection or Get it in one step.
  • the biodegradation products of polycarbonate are mainly carbon dioxide and neutral diols, which do not produce acidic degradation products, wherein functional cyclic carbonate monomers can be combined with many cyclic ester monomers such as glycolide (GA). Lactide (LA), caprolactone ( ⁇ -CL), etc., and other cyclic carbonate monomers are copolymerized to obtain biodegradable polymers of different properties.
  • cyclic ester monomers such as glycolide (GA). Lactide (LA), caprolactone ( ⁇ -CL), etc.
  • the present invention also discloses a preparation method of the above diiodide-containing carbonate monomer, comprising the steps of: reacting dibromo neopentyl glycol with a metal iodide in a solvent having a low boiling point to obtain a compound A; In the atmosphere, the compound A is reacted with ethyl chloroformate or triethylamine in a cyclic ether solvent to obtain a diiodide-containing carbonate compound.
  • the molar ratio of dibromo neopentyl glycol to metal iodide is 1: (2 ⁇ 4); the molar ratio of compound A to ethyl chloroformate and triethylamine is 1: (2 ⁇ 3) : (2 ⁇ 3); the iodide is potassium iodide or sodium iodide; the low boiling point solvent generally means a boiling point of not higher than 80.
  • the organic solvent of C such as acetone, methanol, dichloroethane, butanone or the like, is preferably acetone in the present invention; the cycloether solvent is preferably tetrahydrofuran.
  • the bis-iodocyclocarbonate-containing compound oxime is prepared, and the compound A and ethyl chloroformate are dissolved in a cyclic ether solvent, and then triethylamine is added dropwise.
  • the above preparation method further includes a purification process, specifically: [0013] i, purification of the compound A: after the reaction is completed, the reaction product is filtered; the filtrate is further evaporated to obtain a white solid compound A; ii, purification of the diiodide-containing carbonate compound: after the reaction is completed, the filtrate is rotated Concentration and recrystallization from diethyl ether gave white crystals, i.e., a diiodocyclocarbonate compound.
  • the above-mentioned suction filtration, rotary distillation, rotary concentration and recrystallization are all prior art, and those skilled in the art can select according to their needs.
  • the present invention preferably purifies the hydrazine in the diiodide-containing carbonate compound and recrystallizes it 3-5 times with diethyl ether.
  • the present invention also discloses a biodegradable polymer having a side chain containing a diiodide functional group, which contains a diiodide-containing carbonate unit, which is obtained by polymerization of a diiodide-containing carbonate monomer in the following manner. :
  • the biodegradable polymer having a side chain containing a diiodide functional group has a molecular weight of 3 to 500 kDa.
  • the amount of iodine contained in the molecular chain of the biodegradable polymer containing a diiodide functional group in the above side chain is 5 by mass.
  • the bis-iodocyclocarbonate monomer-containing fluorene using polyethylene glycol, ethylene glycol, isopropanol or propynyl alcohol as an initiator, bis(bistrimethylsilyl)amine Zinc is a catalyst.
  • the above-mentioned biodegradable polymer containing a diiodide functional group in a side chain is obtained by homopolymerization of a guanidine ring containing a diiodocyclocarbonate monomer or by using polyethylene glycol or the like as an initiator, and containing diiodocyclocarbonate.
  • the monomer and other monomers are obtained by an anthracene ring copolymerization reaction.
  • the other monomer includes other carbonate monomers, such as dithiocarbonate-containing, 2,4,6-trimethoxybenzaldehyde pentaerythritol carbonate or trimethylene ring carbonate (TMC); An ester monomer such as glycolide, caprolactone ( ⁇ -CL) or lactide (LA). Since the iodine group does not affect the anthracene ring polymerization, no protection and deprotection processes are required during the polymerization.
  • the polyiodocyclocarbonate monomer has a polymerization temperature of 40 ° C and a polymerization time of 24 to 72 hours.
  • a solvent bis(bistrimethylsilyl)amine zinc as a catalyst, which initiates an anthraquinone copolymerization reaction of the above diiodide-containing carbonate monomer with other other carbonate monomers to form a copolymer;
  • Solvent, bis(bistrimethylsilyl)amine zinc as a catalyst using polyethylene glycol, ethylene glycol, isopropanol or propargyl alcohol as initiator to initiate the above-mentioned diiodide-containing carbonate monomer and cyclic ester
  • the indole ring of the monomer is copolymerized to form a copolymer.
  • the chemical structure of the biodegradable polymer having a side iodine functional group obtained by the method according to the present invention can be as follows:
  • R4 is selected from one of the following groups:
  • R 2 is selected from one of the following groups:
  • R3 is a group:
  • the iodine-containing polymer obtained by ring-polymerization of the cyclic carbonate monomer of the present invention and the side chain chain-containing 5-membered ring functional group carbonate monomer has good biodegradability and can be used in catalytic amount.
  • the reducing agent such as dithiothreitol or glutathione, catalyzes the formation of stable chemical cross-linking, but rapidly decrosslinks in an intracellular reducing environment; it can be used to prepare a pharmaceutical carrier.
  • functional biodegradable polymers containing iodine are useful for CT developers or biological tissue engineering scaffolds because of their special development effects.
  • the biodegradable polymer having a diiodide functional group in the above side chain can be used as a contrast agent to function in the biological diagnosis process.
  • the present invention claims the use of the above-mentioned side chain diiodyl functional group-containing biodegradable polymer in the preparation of a pharmaceutical carrier; the molecular weight of the side chain containing the biodegradable polymer having a diiodide functional group is 3 ⁇ 50 kDa; the molecular chain of the biodegradable polymer having a diiodide functional group in the side chain has an iodine content of 5% ⁇ 65 ⁇ 3 ⁇ 4
  • the present invention claims the use of the above-mentioned side chain diiodyl functional group-containing biodegradable polymer in the preparation of a biological tissue engineering scaffold; the molecular weight of the biodegradable polymer containing a diiodide functional group in the side chain It is 5 to 500 kDa; the molecular chain of the biodegradable polymer having a diiodide functional group in the side chain has an iodine content of 35 ⁇ 3 ⁇ 4 ⁇ 65 ⁇ 3 ⁇ 4.
  • the present invention claims the use of the above-mentioned side chain diiodyl functional group-containing biodegradable polymer in preparing a CT contrast agent; the molecular weight of the biodegradable polymer having a side chain containing a diiodide functional group is 100 ⁇ 50 OkDa; the side chain containing the diiodide functional group has a iodine content of 35% ⁇ 6 5 ⁇ 3 ⁇ 4 on the molecular chain of the biodegradable polymer.
  • the present invention has the following advantages compared with the prior art:
  • the present invention utilizes a cyclic carbonate monomer containing a diiodo functional group to obtain a molecular weight controllable by homopolymerization of an active controllable anthracene ring or copolymerization with other carbonate monomers and cyclic ester monomers.
  • a biodegradable polymer having a narrow molecular weight distribution since the iodine group does not affect the anthracene ring polymerization of the cyclic carbonate monomer, The process eliminates the need for prior art protection and deprotection processes, simplifies the process steps, and overcomes the technical biases of prior art cyclocarbonate polymerization requiring protection and deprotection.
  • the cyclocarbonate monomer of the present invention is simple to prepare, and can be conveniently subjected to anthracene ring polymerization to obtain a polymer having a good biocompatibility comprising a carbonate segment; the polymer can be further self-assembled. It is used to control drug delivery systems, tissue engineering and CT contrast agents, and has good application value in biological materials. Brief description of the drawing
  • Example 1 is a nuclear magnetic spectrum of a diiodide-containing carbonate monomer in Example 1;
  • Example 2 is a nuclear magnetic diagram of a biodegradable polymer containing a diiodide group in a side chain in Example 3;
  • Example 3 is a nuclear magnetic diagram of a biodegradable polymer containing a diiodide group in a side chain in Example 5;
  • FIG. 4 is a particle size distribution diagram of a biodegradable copolymer nanoparticle containing a diiodide group in a side chain of Example 13.
  • Example 5 is a cytotoxicity diagram of a carbon biodegradable polymer nanoparticle containing a diiodide group in a side chain in Example 13;
  • Example 6 is a transmission electron microscope (TEM) image of biodegradable polymer nanoparticles in Example 14.
  • FIG. 7 is a graph showing the cytotoxicity results of a biodegradable polymer containing a diiodide group in a side chain in Example 15;
  • FIG. 8 is a biologically active compound having a diiodide group in the side chain of Example 19. CT imaging of targeted nanoparticles formed by degradable polymers;
  • FIG. 9 is a CT image of a biodegradable polymer nanoparticle having a side chain containing a diiodide group in a cycle of injection through a tail vein in a mouse in Example XX;
  • FIG. 10 is a CT value diagram of a biodegradable polymer nanoparticle having a side chain containing a diiodide group in a cycle of injection through a tail vein in a mouse in Example XX;
  • FIG. 11 is a CT image of a biodegradable polymer nanoparticle having a side chain containing a diiodide group in a body bladder injected into a mouse body through a tail vein in Example XX;
  • FIG. 12 is a CT image of a biodegradable polymer nanoparticle having a side chain containing a diiodo group in a twelfth vein injected into a mouse by a tail vein;
  • Example 13 is a CT diagram of a biodegradable polymer PEG-b-PIC containing a diiodide group in a side chain of Example 21.
  • 14 is an X-ray attenuation coefficient and CT effect in vitro of a biodegradable polymer PEG-b-PIC nanoparticle having a side chain containing a diiodide group in Example 22;
  • Example 16 is a blood routine test in an in vivo acute toxicity test of a biodegradable polymer PEG-b-PIC nanoparticle containing a diiodide group in a side chain according to Example 24;
  • Example 17 is a blood biochemical test in an in vivo acute toxicity laboratory of a biodegradable polymer PEG-b-PIC nanoparticle containing a diiodide group in a side chain of Example 24;
  • Figure 19 is a cRGD with a neovascular targeting molecule cRGD containing a diiodo group in the side chain of Example 26;
  • Example 20 is a cRGd-P carrying a neovascular targeting molecule cRGD with a diiodo group in the side chain of Example 26.
  • Example 21 is a cRGD with a neovascular targeting molecule cRGD containing a diiodo group in a side chain of Example 27.
  • Example 22 is a CT image of SMMC-7721 orthotopic liver cancer with PEG-b-PIC nanoparticles containing a diiodide group in the side chain of Example 28.
  • FIG. 1 is a NMR NMR spectrum of the above product IC (400 MHz, CDC1 3 ): ⁇ 3.62 (s, 4H), 4.43 (s, 4H).
  • the elemental analysis of the IC is: C: 18.43%, H: 2.05 %, O: 12.62 % (theory: C: 18.85 %, H: 2.09 %, O: 12.56 %, I: 66.49%), Mass Spectrum: MS:
  • 5k-b-PIC50k a side chain containing diiodide-containing polymer, is a biodegradable polymer.
  • the (0.34 mmol) side chain containing diiodocarbonate monomer (IC) was dissolved in 1 mL of dichloromethane, added to a sealed reactor, and then added to a molecular weight of 5000 polyethylene glycol 0.022 g (0.0043 mmol) and 0.1 mol. /L of the catalyst bis(bistrimethylsilyl)amine zinc in dichloromethane (0.1 mol/L), sealed the reactor, and placed in 40.
  • Example 9 Synthesis of side chain containing diiodide polymer P(IC-co-CL)(6.21k)-PEG(0.5k)-P(IC-co-CL)(6.21k) [0079] Under a nitrogen atmosphere, 1.5 g (13.2 mmol) ⁇ -CL and 0.0625 g (0.164 mmol) of IC monomer were dissolved in 8 mL of dichloromethane, and added to a sealed reactor, followed by 0.05 g of PEG500 (0.01).
  • n 51.2; molecular weight measured by GPC: 14.6 kDa, molecular weight distribution: 1.38.
  • Example 12 Synthesis of Targeted Two-Block Polymer cNGQ-PEG6.5k-PIC50k [0085]
  • the synthesis of the cyclic polypeptide cNGQGEQc (cNGQ) coupled polymer cNGQ-PEG6.5k-PIC50k is divided into two steps, the first step is to prepare NHS-PEG6.5k-PIC50k as in the fourth embodiment; the second step is cNGQ
  • the amino group is bonded to it by an amidation reaction.
  • the above polymer NHS-PEG6.5k-P was first dissolved in DMF, and twice the molar amount of cNGQ was added.
  • the nuclear magnetic and BCA protein kits calculated the grafting ratio of cNGQ to 92 ⁇ 3 ⁇ 4.
  • a variety of side chain diiodide-containing biodegradable amphiphilic polymers can be prepared by the similar preparation method described above. The proportions and characterization of the raw materials are shown in Table 1.
  • the polymer PEG5k-P (CDC5.6k-co-IC27.2k) nanovesicles were prepared by a dialysis method. The specific process is: 5 mg of polymer PEG5k-P (CDC5.6k-co-IC27.2k) is dissolved in 1 mL of hydrazine, hydrazine dimethylformamide, and stirred at 25 ° C, 4.0 is added dropwise thereto. mL phosphate buffer solution (10 mM, pH 7.4).
  • the solution was stirred for 1 h, it was placed in a pre-prepared dialysis bag (SPECTRA/POR, MWCO: 3500), and dialyzed against phosphate buffer solution (10 mM, pH 7.4) for 24 h to obtain crosslinked nanovesicles.
  • SPECTRA/POR MWCO: 3500
  • phosphate buffer solution 10 mM, pH 7.4
  • the dynamic laser light scattering (DLS) test results show that the nanovesicle has a hydrate diameter of 115 nm and a particle size distribution of 0.11.
  • the cells used were B16 (murine melanoma cells) and L929 (human fibroblasts). Cultured in Dulbecco's modified Eagle medium (DMEM) containing 10% serum at 37 ° C, 5 ⁇ 3 ⁇ 4 carbon dioxide, cell density lxlO 4
  • DMEM Dulbecco's modified Eagle medium
  • the medium was treated with 90 ⁇ g of 10% serum in DMEM and ⁇ in different concentrations of PEG5 kP (CDC5.6k-co-IC27.2k) nanovesicles (concentrations of 0.3, 0.6, 0.9, 1.2, and 1.5 mg, respectively). /mL
  • PEG-b-PIC polymer PEG-b-PIC (PIC molecular weight of 12.3 kg / mol and 22.7 kg / mol, respectively) is dissolved in ImL ⁇ , ⁇ dimethylformamide, stirring at 25 ° C, Add 4.0 mL of phosphate buffer solution (10 mM, pH)
  • Figure 6A, B are the above-mentioned cyclic biodegradable polymers PEG5k-b-PIC12.3k, PEG5k-b
  • TEM transmission electron microscopy
  • Example 15 Cytotoxicity Test of Micellar and Vesicles Prepared by Side Chains Containing Diiodide Polymer PEG-b-PIC
  • the cytotoxicity of PEG5k-b-PIC12.3k nanovesicles and PEG5k-b-PIC7.6k nanomicelles was tested by MTT method.
  • the cells used were MCF-7 (human breast cancer cells), HepG2 ( Human liver cancer cells) and L929 (human fibroblasts).
  • the cells were cultured in Dul becco's modified Eagle medium (DMEM) containing 10% serum at 37 ° C under 5% carbon dioxide at a cell density of 1 x 10 4 /well.
  • DMEM Dul becco's modified Eagle medium
  • the medium was replaced with 90 ⁇ g of DMEM containing 10% serum and PEG-b-PIC nanoparticle solutions of different concentrations (0.3, 0.6, 0.9, 1.2, and 1.5 mg/mL, respectively). 24 ⁇ ; The medium was then replaced with ⁇ fresh DMEM and ⁇ ⁇ solution (5 mg/mL) was added. Continue to train for 4 hours, add ⁇
  • FIG. 7 is a graph showing the survival rate of MCF-7 cells (A), HepG2 cells (B) and L929 cells (C); it can be seen from the figure that the cell viability is found to be greater than 82%, indicating that the polymer PEG-b-PIC The material is biocompatible.
  • Example 16 Loading of hydrophobic anticancer drug doxorubicin by PEG5k-b-PIC7.6k nanoparticle micelles
  • the biodegradable polymer PEG-b-PIC7.6k drug-loaded nanomicelles with side chains containing diiodide was prepared by solvent exchange method. 4 mL of phosphate buffer solution (10 mM, pH 7.4) was added dropwise to SJlmL PEG5k-b-PIC7.6k in DMF solution (5 mg/mL) and ⁇ doxorubicin (DOX, 10%, 5 mg/mL). In a mixture of sulfone solutions, after 1 hour of sonication, it was placed in a dialysis bag (Spectra/Pore®, MWCO 3500) and dialyzed for 12 hours in PB (10 mM, pH 7.4).
  • phosphate buffer solution 10 mM, pH 7.4
  • the ⁇ nanoparticle solution was freeze-dried, and then dissolved in 3.0 mL of DMF solution, and the encapsulation efficiency was calculated by a fluorescence spectrophotometer in combination with a standard curve of doxorubicin. From the results of fluorescence measurement, the theoretical loading of the nanocapsule-loaded hydrophobic drug doxorubicin is 10% ⁇ , the drug loading efficiency is 82%, and the drug loading is 8.07%. From the above results, the side chain contains double The iodine group biodegradable polymer PEG5k-b-PIC7.6k nanoparticles have high encapsulation efficiency against the cancer drug doxorubicin. In the same way, other hydrophobic drugs can be loaded into the polymer micelles.
  • the biodegradable biodegradable polymer containing iodine obtained by the present invention has low cytotoxicity, high encapsulation efficiency against cancer drugs, and can be used as a drug carrier with good compatibility.
  • Example 18 Preparation of a two-block polymer PEG5k-P (CDC5.6k-co-IC46.2k) cross-linked nanovesicles [0101] Take 100 (VL PEG5k-P (CDC5.6k-co-) IC46.2k) DMF solution of polymer (5 mg/mL), 4 mL of phosphate buffer solution (PB, pH 7.4, 10 mM) was added dropwise thereto, and then placed for 2 hours, then dialyzed in PB (MWCO 3500).
  • PB phosphate buffer solution
  • the disulfide five-membered ring contained in the ruthenium vesicle membrane can be self-crosslinked by thiol-disulfide exchange reaction to obtain crosslinked polymer vesicles, labeled as CLPs.
  • DLS test results show The hydrated diameter of the crosslinked nanovesicle CLPs 123
  • FIG. 8 is a CT image of the above nanovesicles. It can be seen that as the vesicle concentration increases, the CT value increases; and there is a good linear relationship between the vesicle concentration and the CT value. Therefore, the polymer vesicle based on the iodine-containing polymerization can be used as a developing material.
  • a CT map of the -PIC 12.3k vesicles and the PEG5k-b-PIC22.7k vesicles is shown in Figure 13. It can be seen that as the molecular weight of PIC in the polymer increases, the development intensity increases. Similarly, PEG5k-b-PIC22.7k nanocapsules have the most obvious development effect compared with water; therefore, The biodegradable polymer nanovesicles and nanomicelles containing a diiodide group in the side chain can be used as a developing substance.
  • FIG. 14 is a CT image of the X-ray attenuation coefficient of PEG-b-PIC and iohexol, respectively.
  • PEG-b-PIC nanovesicles have the same in vitro attenuation coefficient as iohexol under the same iodine content, and the HU value and concentration are linear. Therefore, the nanovesicles formed by PEG-b-PIC have a good X-ray attenuation coefficient and can be used as a developer for CT imaging.
  • FIG. 15 shows the osmotic pressure of PEG-b-PK:, iohexol, and iodixanol in a PBS (7.4, 10 mM) buffer solution as measured by a dew point osmometer (WESCOR Vapro 5600). It can be seen that the osmotic pressure of PEG-b-PIC nanovesicles does not increase with increasing concentration, and is equivalent to the osmotic pressure of blood.
  • the PEG-b-PIC nanovesicles of the present invention do not cause the side effects of osmotic pressure compared to conventional small molecule contrast agents.
  • the CT value in the liver increased to 75 HU in two small ticks, and gradually increased with the increase in sputum, reaching 100 HU enhancement at 10 ⁇ .
  • the enhancement in the spleen was 10 ⁇ to 270 HU.
  • the CT value of 6 hours was enhanced to 50 HU.
  • This nanocapsule can be well targeted to the neovascularization of the U87MG glioma site.
  • the CT value of the MCF-7 tumor-bearing mice was increased by 15H U at 8 hours, and the CT value of the tumor site was increased to 65 HU. This indicates that the nanovesicles can be well targeted to the neovascularization of MCF-7 human breast cancer.
  • Example 27 cNGQRGD-PEG5k-b-PIC50k nanoparticle vesicles with cRGDNGQ targeting as a nano-targeted contrast agent for neovascularization of orthotopic lung cancer
  • cNGQRGD-PEG-b-PIC nanovesicles 50 mg I/mL mixed cNGQRGD-PEG-b-PIC nanovesicles were injected through the tail vein (200 ⁇ into nude mice bearing an orthotopic tumor model of tumor-bearing 549 non-small cell lung cancer. CT images of different intercondylar points were collected. It was collected to demonstrate the targeting ability of the orthotopic tumor. As can be seen from Figure 21, the ⁇ 549 tumor-bearing mice had an enhancement of 2 HU at 4 HU and a boost of more than 400 HU at 7 o'clock. cNGQ-modified nanovesicles can be used as contrast agents for targeting A549 orthotopic lung cancer.
  • PEG-b-PIC nanovesicles 50 mg I/mL were injected through the tail vein (200 ⁇ into nude mice bearing SMMC-7721 orthotopic liver tumors. CT images of different intercondylar points were collected to demonstrate the nanometers.
  • the vesicle acts as a contrast agent for liver cancer in situ. 8 The dark part of the liver is the tumor site. Compared to normal hepatocytes, cancer cells phagocytose less unmodified nanovesicles, so in CT imaging The tumor site is darker than the surrounding normal cells. This shows that PEG-b
  • - PIC nanovesicles can be used as nano-contrast agents for SMMC-7721 orthotopic liver cancer for the diagnosis of liver cancer.
  • Fluorescence spectrometer determined the encapsulation efficiency of DOX.HC1 to be 63 ⁇ 3 ⁇ 4-77 ⁇ 3 ⁇ 4. The same method can efficiently load the hydrophilic anticancer drugs epirubicin hydrochloride, irinotecan hydrochloride and mitoxantrone hydrochloride, and the efficiency is 50-80%.
  • the in vitro release test of DOX.HC1 was carried out in a 37 ° C constant temperature shaker (200 rpm) with three replicates in each group.
  • first group self-crosslinking vesicles containing DOX.HC1 were added to the lOmM GSH simulated intracellular reducing environment PB (10 mM, pH 7.4);
  • second group self-crosslinking vesicles containing DOX.HC1 in PB
  • Example 30 Drug-crosslinked vesicle CLPs and blood circulation of targeted cross-linked vesicles cRGD20/CLPs [0127] DOXX, HC1 cRGD20/CLPs, no target prepared as in Example 29 Cross-linked vesicle CLP containing D0X, HC1, and non-crosslinked vesicle PEG5k-PIC46.2k and free DOX.HCl were injected into Balb/C nude mice via tail vein (DOX dose was 10 mg/kg) , take blood at a fixed point of 0, 0.25, 0.5, 1, 2, 4, 8, 12, and 2 4, and calculate the blood weight accurately by the difference method, plus a 1% Triton and a concentration of 1%.
  • the targeted drug-loaded self-crosslinking vesicles are stable in mice and have a long circulation.
  • the operation and calculation methods of other blood-carrying experiments targeting drug-loaded self-crosslinking vesicles and drug-loaded self-crosslinking vesicles are the same.
  • Example 31 In vivo imaging of cross-linked vesicles CLPs and targeted cross-linked vesicles cRGD20/CLPs in B16 melanoma mice
  • Example 31 Inoculation of tumors and tail vein administration in an in vivo biodistribution experiment are the same as in Example 31.
  • D0X prepared in Example 29, cRGD20/CLPs of HC1, untargeted D0X, cross-linked vesicle CLP of HC1 and free DOX.HCl were injected into mice by tail vein (DOX.HCl: 10 mg/kg) ), after 12 hours, the rats were sacrificed, and the tumor and heart, liver, spleen, lung and kidney tissues were taken out, washed and added to 50 (L 1% Triton was ground by a homogenizer, then 90 (L) was added.
  • DMF extraction containing 20 mM DTT, 1 M HCl).
  • cRGD20/CLPs After centrifugation (20,000 rpm, 20 minutes), the supernatant was taken and the amount of DOX.HC1 at each turn was measured by fluorescence.
  • the amount of DOX.HC1 accumulated in the tumors of cRGD20/CLPs, CLPs, and DOX.HCr injections was 6.68, 2.81, and 0.61 ID ⁇ 3 ⁇ 4/g, respectively (DOX HC1 per gram of tumor or tissue accounted for total DOX HC1 injection).
  • cRGD20/CLPs are 2.4 and 11 times higher than CLPs and DOX HC1, indicating that drug-loaded cRGD20/CLPs accumulate more at the tumor site through active targeting.
  • mice were weighed about 18 ⁇ 20 grams and 4 ⁇ 6 weeks.
  • Single-dose injection of cRGD2 0/CLPs doxorubicin concentrations of 60 and 80 mg/kg
  • empty cRGD20/CLPs polymers 300 and 400 mg/kg
  • free doxorubicin 5 and 10 mg/kg
  • mice in each group the last 10 days, observe the mental state of the mice and measure the body weight every day.
  • the standard for MTD is non-accidental death in mice and mice weighing less than 15 ⁇ 3 ⁇ 4.
  • the MTD of the drug-loaded cross-linked vesicles was greater than 80 mg/kg
  • the MT D of empty cRGD20-CLPs was greater than 400 mg/kg
  • the MTD of DOX was less than 10 mg/kg, which indicates that the drug-loaded targeting cross-linking capsule
  • the vesicles are highly tolerant to mice and greatly enhance the therapeutic window.
  • Example 34 Drug-targeted cross-linked vesicles cRGD20-CLPs and cross-linked vesicles CLPs inhibit tumor growth and body weight in mice bearing B16 tumors
  • experiment body weight of about 18 to 20 grams, of 4 to 6 weeks Ling Balb / C nude mice after subcutaneous injection of B16 cells 5x10 6 th, about two weeks, the tumor size of 30 ⁇ 50mm 3 inches experiment starts its .
  • D0X prepared as in Example 29, cRGD20/CLPs of HC1, no target-loaded DOX, cross-linked vesicle CLP of HC1, free DOX, HC 1 and PBS passed through the tail at 0, 4, 8 and 12 days, respectively.
  • Intravenously injected into mice (DOX dose is 10 mg/kg). On 0 to 18 days, the body weight of the mice was weighed every two days, and the caliper volume was measured by a vernier caliper.
  • the survival of the mice was continuously observed for 45 days. After 19 days in the cRGD20-CLPs treatment group, tumors were significantly inhibited, while tumors in the CLPs group increased. Although DOX.HC1 also inhibited the growth of tumors, the body weight of mice decreased by 20% in 7 days, indicating that the toxic side effects on mice were very large. In contrast, the mice in the c RGD20/CLPS and CLPs groups showed little change in body weight, indicating that the drug-loaded cross-linked vesicles had no toxic side effects on mice. Therefore, the targeted cross-linked vesicles of the present invention can effectively inhibit the growth of tumors after drug loading, and have no toxic side effects on mice.
  • Example 35 CT imaging of drug-targeted cross-linked vesicle cRGD20/CLPs in B16 tumor-bearing mice
  • Example 26 50 mg/m as in Example 30
  • the four samples were injected through the tail vein (2 ⁇ into the B16 tumor-bearing mice.
  • CT images of different intercondylar points were collected to demonstrate tumor targeting ability.
  • the results show that in the tumor site of B16 tumor-bearing mice, 6
  • the CT value of the small sputum increased to 140 HU; the CT value in the heart increased to 200 HU in two small ticks, and there was still an increase of 120 HU in 12 ⁇ .
  • the CT value in the liver increased to 85 HU in two small ticks, and along with the daytime The increase is gradually increasing, reaching at 10 hours 100HU enhancement.
  • the enhancement in the spleen was 10 ⁇ to 270 HU.
  • This nanocapsule can be used for both treatment and tumor imaging.
  • the drug-loaded targeting nanovesicles can also be used for the diagnosis and treatment of lung cancer in situ.

Abstract

本发明公开了一种含双碘环碳酸酯单体、由其制备的生物可降解聚合物及应用。聚合物可以通过含双碘的环碳酸酯单体开环聚合得到,而不影响开环聚合,并且无需保护和脱保护过程;利用本发明所述的环碳酸酯单体开环聚合得到的聚合物可组装成纳米囊泡和胶束做为药物载体、生物组织支架或者CT造影剂。

Description

说明书
发明名称:含双碘环碳酸酯单体、 由其制备的生物可降解聚合物及 应用
技术领域
[0001] 本发明涉及一种生物可降解聚合物材料及其应用, 具体涉及一种侧链含双碘的 生物可降解聚合物及其应用, 属于医药材料领域。
背景技术
[0002] 生物可降解聚合物具有非常独特的性能, 例如它们通常具有良好的生物相容性 , 能在体内降解, 降解产物可被人体吸收或通过人体正常生理途径排出体外, 而被广泛应用于生物医学的各个领域, 如手术缝合线、 骨固定器械、 生物组织 工程支架材料、 和药物控制释放载体等。 其中, 合成的生物可降解聚合物由于 其免疫原性较低、 其性能含如降解性能和机械性能等均可方便得到控制等而尤 其受到关注。 合成的生物可降解聚合物主要有脂肪族聚酯、 聚碳酸酯、 聚氨基 酸、 聚磷酸酯、 聚酸酐、 聚原酸酯等。 其中, 聚碳酸酯如聚三亚甲基环碳酸酯
(PTMC) 和脂肪族聚酯如聚乙交酯 (PGA) 、 聚丙交酯 (PLA) 、 丙交酯 -乙交 酯共聚物 (PLGA) 、 聚己内酯 (PCL) 等是最常用的生物可降解聚合物, 已获 得美国食品药物管理部门 (FDA) 的许可。
[0003] 但是, 现有的生物可降解聚合物如 PTMC、 PGA、 PLA、 PLGA和 PCL等结构比 较单一, 缺乏可用于修饰的官能团, 往往难以满足医学需求, 例如, 基于这些 传统生物可降解聚合物的药物载体或是表面修饰涂层存在稳定性差的致命弱点
[0004] 近年来, 文献报道了许多不同类型的功能性生物可降解聚合物。 人们尤其对含 有羟基 (OH) 、 羧基 (COOH) 、 氨基 (NH 2) 、 巯基 (SH) 等功能基团的生 物可降解聚合物感兴趣, 因为带有这些功能性基团的聚合物可以直接键接一些 药物, 实现药物的可控持续释放; 或者一些具有生物活性的分子通过功能基团 连接到聚合物上, 就可以改善整个材料的生物相容性和生物活性。 功能性生物 可降解聚合物通常是通过幵环聚合功能性的环状单体, 或通过解保护或通过进 一步修饰而得到。 聚碳酸酯的生物降解产物主要是二氧化碳和中性的二元醇, 不产生酸性降解产物, 其中功能性环状碳酸酯单体可以和很多环酯类单体, 如 乙交酯 (GA) 、 丙交酯 (LA) 、 己内酯 (ε-CL) 等, 以及其它环状碳酸酯单体 共聚, 得到不同性能的生物可降解聚合物。
技术问题
[0005] 现有技术中, 由于在幵环聚合过程中, 环碳酸酯单体结构中存在易于反应的基 团, 因此在由单体制备功能性环状生物可降解聚合物吋, 都需要通过保护和脱 保护步骤, 这导致制备过程繁琐。
问题的解决方案
技术解决方案
[0006] 本发明的目的是, 提供一种含双碘环碳酸酯单体及其制备方法。
[0007] 为达到上述目的, 本发明具体的技术方案为: 一种含双碘环碳酸酯单体, 其化 学结构式如下:
Figure imgf000004_0001
[0009] 本发明还公幵了上述含双碘环碳酸酯单体的制备方法, 包括以下步骤: 将二溴 新戊二醇与金属碘化物在低沸点溶剂中反应得到化合物 A; 然后在氮气气氛中, 在环醚类溶剂中, 将化合物 A与氯甲酸乙酯、 三乙胺反应得到含双碘环碳酸酯化 合物。
[0010] 上述技术方案中, 二溴新戊二醇与金属碘化物的摩尔比为 1:(2〜4); 化合物 A与 氯甲酸乙酯、 三乙胺的摩尔比为1:(2〜3) :(2〜3); 碘化物为碘化钾或碘化钠; 所 述低沸点溶剂一般指沸点不高于 80。C的有机溶剂, 比如丙酮、 甲醇、 二氯乙烷、 丁酮等, 本发明优选为丙酮; 环醚类溶剂优选为四氢呋喃。
[0011] 优选的技术方案中, 制备含双碘环碳酸酯化合物吋, 先将化合物 A与氯甲酸乙 酯溶于环醚类溶剂, 再滴加三乙胺。
[0012] 优选的技术方案中, 上述制备方法还包括提纯处理, 具体为: [0013] i、 化合物 A的提纯: 反应结束后, 抽滤反应物; 再旋蒸滤液得到白色固体化合 物 A; ii、 含双碘环碳酸酯化合物的提纯: 反应结束后, 过滤, 滤液经旋转浓缩 , 再用乙醚进行重结晶, 得到白色晶体, 即含双碘环碳酸酯化合物。 上述抽滤 、 旋蒸、 旋转浓缩以及重结晶都属于现有技术, 本领域技术人员可以根据需要 自行选择。 本发明优选在含双碘环碳酸酯化合物提纯吋, 用乙醚重结晶 3-5次。
[0014] 本发明还公幵了一种侧链含双碘功能基团的生物可降解聚合物, 其含有含双碘 环碳酸酯单元, 由含双碘环碳酸酯单体通过以下方式聚合得到:
[0015] (1) 含双碘环碳酸酯单体均聚;
[0016] (2) 含双碘环碳酸酯单体与其它碳酸酯单体共聚;
[0017] (3) 含双碘环碳酸酯单体与环酯单体共聚;
[0018] 所述含双碘环碳酸酯单体为
Figure imgf000005_0001
[0019] 所述侧链含双碘功能基团的生物可降解聚合物的分子量为 3〜500kDa。
[0020] 以质量计, 上述侧链含双碘功能基团的生物可降解聚合物分子链上含碘量为 5
<¾〜65<¾。
[0021] 上述技术方案中, 含双碘环碳酸酯单体聚合吋, 以聚乙二醇、 乙二醇、 异丙醇 或丙炔醇为引发剂, 双 (双三甲基硅基) 胺锌为催化剂。
[0022] 上述侧链含双碘功能基团的生物可降解聚合物由含双碘环碳酸酯单体幵环均聚 聚合得到或者以聚乙二醇等为引发剂, 含双碘环碳酸酯单体和其他单体进行幵 环共聚反应得到。 所述其他单体包括其他碳酸酯单体, 比如含双硫环碳酸酯、 2, 4,6-三甲氧基苯甲缩醛季戊四醇碳酸酯或者三亚甲基环碳酸酯 (TMC); 还包括环 酯单体, 比如乙交酯、 己内酯 (ε-CL)或丙交酯 (LA)。 由于碘基团不影响幵环聚合 , 在聚合过程中无需保护和脱保护过程。 含双碘环碳酸酯单体聚合吋, 聚合温 度为 40°C, 聚合吋间为 24〜72小吋。
[0023] 本发明中, 以聚乙二醇为引发剂, 二氯甲烷作溶剂, 双 (双三甲基硅基) 胺锌 为催化剂, 引发上述含双碘环碳酸酯单体进行幵环聚合反应, 形成两嵌段共聚 物 PEG- b-PIC; 反应式为:
Figure imgf000006_0001
[0024] 还可以二氯甲烷作溶剂, 双 (双三甲基硅基) 胺锌为催化剂, 以聚乙二醇、 乙 二醇、 异丙醇或丙炔醇为引发剂, 二氯甲烷作溶剂, 双 (双三甲基硅基) 胺锌 为催化剂, 引发上述含双碘环碳酸酯单体与其余其它碳酸酯单体进行幵环共聚 合反应, 形成共聚物; 还可以二氯甲烷作溶剂, 双 (双三甲基硅基) 胺锌为催 化剂, 以聚乙二醇、 乙二醇、 异丙醇或丙炔醇为引发剂, 引发上述含双碘环碳 酸酯单体与环酯单体的幵环共聚合反应, 形成共聚物。
[0025] 根据本发明的方法得到的侧链含双碘功能基团的生物可降解聚合物的化学结构 式可以如下所示:
Figure imgf000006_0002
[0026] 其中, Rl选自以下基团中的一种: 一 CH3、 一 CH2-CH3、 — CH(CH 3) 2 — CH「 CH;、 一 CH「 CH2— CH「 CH;、 — CH2— CH=CH2、 — CH 2 — CH=CH2、 —CH「C0CH、
Figure imgf000007_0001
, 式中1^ = 20〜250, R4选自以下基团中的一种:
[0028] —CH3
Figure imgf000007_0002
[0029] R2选自以下基团中的一种:
Figure imgf000007_0003
R3为基团:
Figure imgf000007_0004
Figure imgf000008_0001
; 式中 a = 2、 3、 4; b = 20〜250。
[0031] 由本发明的环碳酸酯单体与侧链含双硫五元环功能基团碳酸酯单体幵环聚合得 到的含有碘的聚合物, 具有良好的生物可降解性, 可以在催化量的还原剂如二 硫代苏糖醇或谷胱甘肽催化下形成稳定的化学交联, 但在细胞内还原环境下会 快速解交联; 可以用于制备药物载体。 并且含有碘的功能生物可降解聚合物由 于其具有特殊的显影效果, 可用于 CT显影剂或者生物组织工程支架。 上述侧链 含双碘功能基团的生物可降解聚合物可以作为造影剂, 在生物体诊断过程中发 挥作用。
[0032] 所以本发明请求保护上述侧链含双碘功能基团的生物可降解聚合物在制备药物 载体中的应用; 所述侧链含双碘功能基团的生物可降解聚合物的分子量为 3〜50 kDa; 所述侧链含双碘功能基团的生物可降解聚合物分子链上含碘量为 5%〜65<¾
[0033] 本发明请求保护上述侧链含双碘功能基团的生物可降解聚合物在制备生物组织 工程支架中的应用; 所述侧链含双碘功能基团的生物可降解聚合物的分子量为 5 〜500kDa; 所述侧链含双碘功能基团的生物可降解聚合物分子链上含碘量为 35 <¾〜65<¾。
[0034] 本发明请求保护上述侧链含双碘功能基团的生物可降解聚合物在制备 CT造影 剂中的应用; 所述侧链含双碘功能基团的生物可降解聚合物的分子量为 100〜50 OkDa; 所述侧链含双碘功能基团的生物可降解聚合物分子链上含碘量为 35%〜6 5<¾。
发明的有益效果
有益效果
[0035] 由于上述方案的实施, 本发明与现有技术相比, 具有以下优点:
[0036] 1.本发明首次利用含双碘功能基团的环状碳酸酯单体通过活性可控幵环均聚合 或与其他碳酸酯单体、 环酯单体的共聚合得到分子量可控、 分子量分布较窄的 生物可降解聚合物, 由于碘基团不影响环碳酸酯单体的幵环聚合, 因此聚合过 程无需现有技术中的保护和脱保护过程, 简化了操作步骤, 克服了现有技术中 环碳酸酯聚合需要保护与脱保护的技术偏见。
[0037] 2.本发明公幵的环碳酸酯单体制备简单, 由其可以方便的幵环聚合得到生物相 容性好的包含碳酸酯链段的聚合物; 该聚合物可进一步进行自组装用于控制药 物释放体系、 组织工程和 CT造影剂, 在生物材料方面, 具有良好的应用价值。 对附图的简要说明
附图说明
[0038] 图 1为实施例一中含双碘环碳酸酯单体的核磁谱图;
[0039] 图 2为实施例三中侧链含双碘基团的生物可降解聚合物的核磁图;
[0040] 图 3为实施例五中侧链含双碘基团的生物可降解聚合物的核磁图;
[0041] 图 4为实施例十三中侧链含双碘基团的生物可降解共聚物纳米粒子粒径分布图
[0042] 图 5为实施例十三中侧链含双碘基团的碳生物可降解聚物纳米粒子细胞毒性结 果图;
[0043] 图 6为实施例十四中生物可降解聚合物纳米粒子的透射电子显微镜 (TEM) 图
[0044] 图 7为实施例十五中侧链含双碘基团的生物可降解聚合物的细胞毒性结果图; [0045] 图 8为实施例十九中侧链含双碘基团的生物可降解聚合物形成的靶向纳米粒子 的 CT造影;
[0046] 图 9为实施例二十中侧链含双碘基团的生物可降解聚合物纳米粒子通过尾静脉 注射在小鼠体内循环的 CT图;
[0047] 图 10为实施例二十中侧链含双碘基团的生物可降解聚合物纳米粒子通过尾静脉 注射在小鼠体内循环的 CT值图;
[0048] 图 11为实施例二十中侧链含双碘基团的生物可降解聚合物纳米粒子通过尾静脉 注射在小鼠体膀胱内的 CT图;
[0049] 图 12为实施例二十中侧链含双碘基团的生物可降解聚合物纳米粒子通过尾静脉 注射在小鼠体内的 CT造影图;
[0050] 图 13为实施例二十一中侧链含双碘基团的生物可降解聚合物 PEG- b-PIC的 CT图 [0051] 图 14为实施例二十二中侧链含双碘基团的生物可降解聚合物 PEG- b-PIC纳米粒 子体外的 X射线衰减系数和体外的 CT效果图;
[0052] 图 15为实施例二十三中侧链含双碘基团的生物可降解聚合物 PEG- b-PIC纳米粒 子的体外渗透压结果;
[0053] 图 16为实施例二十四中侧链含双碘基团的生物可降解聚合物 PEG- b-PIC纳米粒 子的体内急毒性实验中的血常规测试;
[0054] 图 17为实施例二十四中侧链含双碘基团的生物可降解聚合物 PEG- b-PIC纳米粒 子的体内急毒性实验室中的血液生化测试;
[0055] 图 18为实施例二十五中侧链含双碘基团的生物可降解聚合物 PEG- b-PIC纳米粒 子作为血池造影的 CT图像;
[0056] 图 19为实施例二十六中侧链含双碘基团的带有新生血管靶向分子 cRGD的 cRGD
-PEG- b-PIC纳米粒子对于 U87MG脑胶质瘤的 CT成像;
[0057] 图 20为实施例二十六中侧链含双碘基团的带有新血管靶向分子 cRGD的 cRGd-P
EG- b-PIC纳米粒子对于 MCF-7人乳腺癌的 CT成像;
[0058] 图 21为实施例二十七中侧链含双碘基团的带有新生血管靶向分子 cRGD的 cRGD
-PEG- b-PIC纳米粒子对于 A549原位肺癌的 CT成像;
[0059] 图 22为实施例二十八中侧链含双碘基团的 PEG- b-PIC纳米粒子对于 SMMC-7721 原位肝癌的 CT成像。
本发明的实施方式
[0060] 下面结合实施例和附图对本发明作进一步描述:
[0061] 实施例一含双碘环碳酸酯单体 (IC) 的合成:
Figure imgf000010_0001
[0062] 1、 二溴新戊二醇 (20g, 76.4 mmol) 溶在 300mL丙酮中完全溶解, 加入碘化 钾 (25.3 g, 152.4 mmol) , 避光冷凝回流反应 24小吋。 反应物抽滤除去生成的 溴化钾, 然后旋转蒸发得白色固体为化合物 A, 产率: 97.5%;
[0063] 2、 在氮气保护下, 化合物 A (5 g, 14.0mmol) 溶于干燥过的 THF ( 150mL) 中, 搅拌至完全溶解。 接着冷却到 0°C, 加入氯甲酸乙酯 (2.81 mL, 29.5 mmol ) , 然后逐滴加入 Et 3N (4.1 mL, 29.5 mmol) 。 待滴加完毕后, 该体系在冰水 浴条件下继续反应 4h。 反应结束后, 过滤掉产生的 Et 3N.HCl, 滤液经旋转浓缩 , 最后用乙醚进行重结晶, 得到白色晶体, 即含双碘环碳酸酯单体 (IC) , 产 率: 32<¾。 附图 1为上述产物 IC的 Ή NMR核磁图谱(400MHz, CDC1 3): δ 3.62 (s, 4H), 4.43 (s, 4H)。 IC的元素分析为: C: 18.43 %, H: 2.05 %, O: 12.62 % (理论: C: 18.85 %, H: 2.09 %, O: 12.56 % , I: 66.49%) , 质谱: MS:
381.2 (理论分子量: 382) 。
[0064] 实施例二含双碘环碳酸酯单体 (IC) 的合成:
[0065] 二溴新戊二醇 (20g, 76.4 mmol) 溶在 300mL四氢呋喃中完全溶解, 加入碘化 钠 (25.3 g, 152.4 mmol) , 避光冷凝回流反应 24小吋。 反应物抽滤除去生成的 溴化钠, 然后旋转蒸发得白色固体为化合物 A, 产率: 95.5% ; 在氮气保护下, 化合物 A (5 g, 14.0mmol) 溶于干燥过的 1.4-环氧六环 (150mL) 中, 搅拌至完 全溶解。 接着冷却到 0°C, 加入氯甲酸乙酯 (2.81 mL, 29.5 mmol) , 然后逐滴 加入 Et 3N (4.1 mL, 29.5 mmol) 。 待滴加完毕后, 该体系在冰水浴条件下继续 反应 4 h。 反应结束后, 过滤掉产生的 Et 3N.HCl, 滤液经旋转浓缩, 最后用乙醚 进行重结晶, 得到白色晶体, 即含双碘碳酸酯单体 (IC) , 产率: 23%。
[0066] 实施例三两嵌段聚合物 PEG5k- b-PIC22.7k的合成
[0067] 在手套箱里, 0.6 g ( 1.57 mmol) IC单体和 0.1 g (0.02 mmol) 聚乙二醇溶在 3 mL二氯甲烷中, 加入密封反应器里, 然后加入双 (双三甲基硅基) 胺锌的二氯 甲烷溶液 (O. l mol/L) , 密封反应器, 放入 40°C油浴中反应 3天后, 用 2滴冰乙酸 终止反应, 在冰乙醚中进行沉淀, 最终经过过滤、 真空干燥得到产物 PEG5k- b -PIC22.7k。 附图 2为上述侧链含双碘功能基团的生物可降解聚合物的核磁图谱。 Ή NMR (400MHz, CDC1 3): δ 3.30 (-OC H3-), 3.63 (-CCH 2-) , 3.74 (-C H2C H2-), 4.38 (-CH 2CH 2-)。 GPC测的分子量: 32.4 kDa, 分子量分布: 1.42。
[0068] 实施例四两嵌段聚合物 PEG5k- b-PIC50k的合成
[0069] 将实施例三中 IC单体的用量改为 lg (2.61mmol) , 最终经过反应得到产物 PEG
5k- b-PIC50k, 称为侧链含双碘的聚合物, 属于生物可降解聚合物。
[0070] 实施例五侧链含双碘的生物可降解聚合物 PEG5k-P(CDC5.6k- co-IC27.2k)的合 成
[0071] 在氮气环境下, 0.026 g (0.14 mmol) 双硫五元环碳酸酯单体 (CDC) 和 0.13 g
(0.34 mmol) 的侧链含双碘碳酸酯单体 (IC) 溶在 l mL二氯甲烷中, 加入密封 反应器里, 然后加入分子量 5000的聚乙二醇 0.022 g (0.0043 mmol) 和 0.1 mol/L 的催化剂双 (双三甲基硅基) 胺锌的二氯甲烷溶液 (0.1 mol/L) , 密封反应器, 放入 40。C油浴中反应 2天后, 用冰乙酸终止反应, 在冰乙醚中沉淀, 最终经过过 滤、 真空干燥得到两嵌段侧链含双碘基团的生物可降解聚合物 PEG5k-P(CDC5.6k - co-IC27.2k)。 附图 3为上述聚合物的核磁图谱, Ή NMR (400MHz, CDC1 3): 3.08 (s, -CCH 2), 3.64 (s, -CCH 2), 3.30 (m, -OCH 3) , 3.65 (t, -O H 2 CH 20-) , 4.25 m, -CCH 2) , 4.38 (m, -CCH 2); 核磁计算得到 m=l 13.6, x=29.2, y=71.2,
Figure imgf000012_0001
[0072] 实施例六侧链含双碘的生物可降解聚合物 PEG5k-P(IC4.8k- CO-CL14.2k)的合成 [0073] 在氮气环境下, 0.5 g ( 1.3 mmol) IC单体和 1.5 g ( 13.2 mmol) 的己内酯 (ε-CL
) 溶在 10mL二氯甲烷中, 加入密封反应器里, 然后加入分子量 5000的聚乙二醇
0.5 g (0.1 mmol) 和 1
mL的催化剂双 (双三甲基硅基) 胺锌的二氯甲烷溶液 (0.1 mol/L) , 接着把反 应器密封好, 转移出手套箱, 放入 40°C油浴中反应 1天后, 用冰乙酸终止反应, 在冰乙醚中沉淀, 最终经过过滤、 真空干燥得到产物 PEG5k-P(IC4.8k- CO -CL14.2k), 核磁计算得到 m=l 13.6, x=122.8, y=13.1, n=135.9; GPC测的分子量 : 31.3 kDa, 分子量分布: 1.42。
Figure imgf000013_0001
[0074] 实施例七 Alk-PIC3.8k的合成
[0075] g (1.3 mmol) IC单体溶在 1 mL二氯甲烷中, 加入密封反应 器里, 然后加入精制的丙炔醇 l mmol/L和 I mL的催化剂双 (双三甲基硅基) 胺 锌的二氯甲烷溶液 (O.l mol/L) , 密封反应器, 放入 40°C油浴中反应 1天后, 用 冰乙酸终止反应, 在冰乙醚中沉淀, 最终过滤、 真空干燥得到产物侧链含双碘 基团的碳酸酯均聚物 Alk-PIC4.8k, 核磁计算得到 x=12.6, GPC测的分子量: 0.62 kDa, 分子量分布: 1.28。
:©
I»賺
Figure imgf000013_0002
[0076] 实施例八侧链含双碘的生物可降解聚合物 iPr-P(IC0.7k - CO-CL90k)的合成
[0077] 在氮气环境下, 0.1 g (0.26 mmol) IC单体和 10g (87.7
mmol) 的己内酯单体 (CL) 溶在 10mL二氯甲烷中, 加入密封反应器里, 然后 加入异丙醇 6 mg (0.1 mmol) 和 ImL的催化剂双 (双三甲基硅基) 胺锌的二氯甲 烷溶液 (O.l mol/L) , 接着把反应器密封好, 转移出手套箱, 放入 40°C油浴中反 应 2天后, 用冰乙酸终止反应, 在冰乙醚中沉淀, 最终经过过滤、 真空干燥得到 产物 iPr-P(IC0.7k - co-CL90k), 核磁计算得到 x=1.8, y=78.9, n=80.7; GPC测的分
Figure imgf000013_0003
[0078] 实施例九侧链含双碘聚合物 P(IC- co-CL)(6.21k)-PEG(0.5k)-P(IC- co-CL)(6.21k) 的合成 [0079] 在氮气环境下, 1.5 g (13.2 mmol) ε-CL和 0.0625 g (0.164 mmol) IC单体溶在 8 mL二氯甲烷中, 加入密封反应器里, 后加入 0.05 g的 PEG500 (0.01 mmol) 和 1 mL的催化剂双 (双三甲基硅基) 胺锌的二氯甲烷溶液 (O.l mol/L) , 40°C油浴 中反应一天后, 用冰乙酸终止反应, 在冰乙醚中沉淀, 最终经过过滤、 真空干 燥得到聚合物 P(IC- co-CL)(6.21k)-PEG(0.5k)-P(IC- co-CL)(6.21k)。 Ή NMR (400MHz, CDCl 3): 1.40 (m, -COCH 2CH 2CH 2CH 2CH 2-), 1.65 (m, -COCH 2CH 2CH 2CH 2CH 2-), 2.30 (t, -COCH 2CH 2CH 2CH 2CH 2-), 3.63 (s, -CCH 2), 4.03 (t, -COCH 2 CH 2CH 2CH 2CH 20-), 4.05 (s, -CH 2OCOCHCH 2-), 4.07 (s, -OCH 2CCH 20-), 4.38 (m, -CCH 2); 核磁计算得到 m=11.4, x=6.3 , y=43.9,
n=51.2; GPC测的分子量: 14.6 kDa, 分子量分布: 1.38。
Figure imgf000014_0001
[0080] 实施例十两嵌段侧链含双碘聚合物 NHS-PEG6.5k-PIC50k的合成
[0081] 在氮气环境下, lg (2.61mmol) IC溶在 3 mL二氯甲烷中, 加入密封反应器里 , 然后加入 0.065 g (O.Olmmol) NHS-PEG6500和 0.5 mL的催化剂双 (双三甲基 硅基) 胺锌的二氯甲烷溶液 (O.l mol/L) , 接着把反应器密封好, 转移出手套箱 , 40。C油浴反应 2天后, 冰乙酸终止反应, 冰乙醚中沉淀, 最终经过过滤、 真空 干燥得到 NHS-PEG6.5k-PIC50k。
[0082] 实施例十一两嵌段侧链含双碘聚合物 Mal-PEG6k-PIC50k的合成
[0083] 在氮气环境下, l g (2.61 mmol) IC溶在 3 mL二氯甲烷中, 加入密封反应器里 , 然后加入 0.06 g (0.01 mmol) Mal-PEG6000和 0.1 mol/L的催化剂双 (双三甲基 硅基) 胺锌的二氯甲烷溶液 (0.1 mL) 40°C油浴反应 2天, 后处理同实施例二, 得到 Mal-PEG6k-PIC50k。
[0084] 实施例十二靶向两嵌段聚合物 cNGQ-PEG6.5k-PIC50k的合成 [0085] 环状多肽 cNGQGEQc (cNGQ) 偶联的聚合物 cNGQ-PEG6.5k-PIC50k的合成分 为两步, 第一步如实施例四制备 NHS-PEG6.5k-PIC50k; 第二步为 cNGQ的氨基 与其通过酰胺化反应键合。 先将上述聚合物 NHS-PEG6.5k-P溶在 DMF中, 加入 两倍摩尔量的 cNGQ, 30°C反应两天后, 透析除去游离 cNGQ, 冷冻干燥得到 cN GQ-PEG6.5k-P, 通过核磁和 BCA蛋白试剂盒计算 cNGQ接枝率为 92<¾。
[0086] 采用上述类似的制备方法可以制备多种侧链含双碘的生物可降解双亲性聚合物 , 原料比例以及表征见表 1。
[0087] 表 1各个聚合物制备条件、 产物的核磁及 GPC表征结果
Figure imgf000015_0001
[0088] 实施例十三 MTT测试 PEG5k-P(CDC5.6k- co-IC27.2k)囊泡的细胞毒性
[0089] 聚合物 PEG5k-P(CDC5.6k- co-IC27.2k)纳米囊泡通过透析方法制备。 具体过程 是: 将 5 mg聚合物 PEG5k-P(CDC5.6k- co-IC27.2k)溶在 1 mL Ν,Ν二甲基甲酰胺中 , 在 25°C搅拌条件下, 向其中滴加 4.0mL磷酸盐缓冲溶液 (10mM, pH 7.4) 。 得 到的溶液搅拌 l h后, 装入预先准备好的透析袋中 (SPECTRA/POR, MWCO: 3500) , 用磷酸盐缓冲溶液 (10mM, pH 7.4) 透析 24 h得到交联的纳米囊泡。 由 图 4可知, 动态激光光散射 (DLS) 测试结果显示该纳米囊泡的水合直径 115nm , 粒径分布 0.11。
[0090] 采用 MTT法对 PEG5k-P(CDC5.6k- co-IC27.2k)纳米囊泡的细胞毒性进行测试。
使用到的细胞为 B16 (鼠黑色素瘤细胞) 和 L929 (人成纤维细胞) 。 在 37°C, 5 <¾二氧化碳条件下, 在含有 10%血清的 Dulbecco's modified Eagle培养基 (DMEM ) 中培养, 细胞密度为 lxlO 4
个 /孔。 24小吋后, 培养基用 90μί含有 10%血清的 DMEM和 ΙΟμί不同浓度的 PEG5 k-P(CDC5.6k- co-IC27.2k)纳米囊泡 (浓度分别为 0.3、 0.6、 0.9、 1.2和 1.5 mg/mL
) 替换, 细胞继续培养 24小吋; 接着培养基用 ΙΟΟμί新鲜的 DMEM替换, 并加入 1(VL MTT溶液 (5 mg/mL) 。 继续培养 4小吋, 加入 10( L DMSO溶解生成的结 晶子。 样品的光学密度用 BioTek微盘测量仪在 570nm处测定。 细胞单独在 10%血 清的 DMEM培养基中培养的结果作为标准, 记为 100%存活。 附图 5为 B16细胞 ( A) 和 L929细胞 (B) 存活率图; 从图中可以看出, 发现 B16细胞和 L929细胞存 活率在纳米囊泡浓度达到 1.2 mg/mL吋仍然大于 83%, 说明聚合物生物相容性很 好。
[0091] 实施例十四侧链含双碘的生物可降解聚合物 PEG- b-PIC纳米囊泡的制备
[0092] 聚合物 PEG- b
-PIC纳米囊泡通过透析方法制备。 具体过程是: 将 5mg聚合物 PEG- b-PIC (PIC分 子量分别为 12.3 kg/mol和 22.7 kg/mol)溶在 ImL Ν,Ν二甲基甲酰胺中, 在 25°C搅拌 条件下, 向其中滴加 4.0mL磷酸盐缓冲溶液 (10mM, pH
7.4) 。 得到的溶液搅拌 lh后, 装入预先准备好的透析袋中 (SPECTRA/POR, MWCO: 3500) , 用磷酸盐缓冲溶液 (10mM, pH 7.4) 透析 24除去有机溶剂。 附 图 6A, B分别为上述环生物可降解聚合物 PEG5k- b-PIC12.3k、 PEG5k- b
-PIC22.7k自组装形成纳米粒子的透射电子显微镜 (TEM) 图, 可以看出该纳米 粒子为中空囊泡结构。
[0093] 实施例十五侧链含双碘聚合物 PEG- b-PIC制备的胶束和囊泡的细胞毒性测试 [0094] 采用 MTT法对 PEG5k- b-PIC12.3k纳米囊泡、 PEG5k- b-PIC7.6k纳米胶束的细胞 毒性进行测试, 使用的细胞为 MCF-7 (人乳腺癌细胞) , HepG2 (人肝癌细胞) 和 L929 (人成纤维细胞) 。 在 37°C, 5%二氧化碳条件下, 在含有 10%血清的 Dul becco's modified Eagle培养基 (DMEM) 中培养, 细胞密度为 1x10 4个 /孔。 24小 吋后, 培养基用 90μί含有 10%血清的 DMEM和 ΙΟμί不同浓度的 PEG -b-PIC纳米 粒子溶液 (浓度分别为 0.3、 0.6、 0.9、 1.2和 1.5mg/mL) 替换, 细胞继续培养 24 小吋; 接着培养基用 ΙΟΟμί新鲜的 DMEM替换, 并加入 ΙΟμί ΜΤΤ溶液 (5mg/mL ) 。 继续培养 4小吋, 加入 ΙΟΟμί
DMSO溶解生成的结晶子。 样品的光学密度用 BioTek微盘测量仪在 570nm处测定 。 细胞单独在 10%血清的 DMEM培养基中培养的结果作为标准, 记为 100%存活 。 附图 7为 MCF-7细胞 (A) , HepG2细胞 (B) 和 L929细胞 (C) 存活率图; 从 图中可以看出, 发现细胞存活率大于 82%, 说明聚合物 PEG- b-PIC材料生物相容 性很好。
[0095] 实施例十六 PEG5k- b-PIC7.6k纳米粒子胶束对疏水抗癌药物阿霉素的装载
[0096] 采用溶剂交换法制备侧链含双碘的生物可降解聚合物 PEG- b-PIC7.6k载药纳米 胶束。 4 mL磷酸缓冲溶液 (10mM, pH 7.4) 逐滴加入 SJlmL PEG5k- b-PIC7.6k 的 DMF溶液 (5 mg/mL) 和 ΙΟΟμί阿霉素 (DOX, 10% , 5mg/mL) 的二甲亚砜 溶液的混合液中, 超声 1小吋后装入透析袋 (Spectra/Pore ®, MWCO 3500) 中, 在 PB (lOmM, pH 7.4) 中透析 12小吋。 将 ΙΟΟμί纳米粒子溶液冷冻干燥, 然后 溶解于 3.0mL的 DMF溶液中, 利用荧光分光光谱仪测试, 结合阿霉素的标准曲 线计算包封率。 从荧光测得结果可算出, 该纳米胶束载疏水药物阿霉素理论载 药量为 10%吋, 载药效率为 82%, 载药量为 8.07%, 由以上结果可知, 侧链含双 碘基团的生物可降解聚合物 PEG5k- b-PIC7.6k纳米粒子对抗癌药物阿霉素有很高 的包裹效率。 用同样的方法可以装载其他的疏水药物到聚合物胶束中。
[0097] 由本发明的得到的含有碘的生物可降解生物可降解聚合物对细胞毒性小, 对抗 癌药物有很高的包裹效率, 可以作为相容性好的药物载体。
[0098] 实施例十七合成二嵌段聚合物 PEG5k-P(CDC5.6k- co-IC46.2k)
[0099] 在氮气环境下, 0.026 g (0.14 mmol) CDC和 0.22 g (0.68 mmol) IC溶在 1 mL 二氯甲烷中, 加入密封反应器里, 然后加入分子量 5000的甲氧基聚乙二醇 0.022 g (0.0043 mmol) 和 0.1 mol/L的催化剂双 (双三甲基硅基) 胺锌的二氯甲烷溶 液 (0.1 mol/L) , 反应器密封好后转移出手套箱, 放入 40°C油浴中反应 2天后, 用冰乙酸终止反应, 在冰乙醚中沉淀, 最终经过过滤、 真空干燥得到两嵌段生 物可降解聚合物 PEG5k-P(CDC5.6k- co-IC46.2k)。 GPC测的分子量: 72.2 kDa, 分 子量分布: 1.42。
[0100] 实施例十八制备两嵌段聚合物 PEG5k-P(CDC5.6k- co-IC46.2k)交联纳米囊泡 [0101] 取 100(VL的 PEG5k-P(CDC5.6k- co-IC46.2k)聚合物的 DMF溶液 (5 mg/mL) , 向其中逐滴加入 4 mL磷酸盐缓冲溶液 (PB, pH 7.4, 10mM) , 后放置 2小吋, 然 后在 PB中透析 (MWCO 3500) 24小吋, 除去有机溶剂同吋囊泡膜内含有的双硫 五元环可以通过巯基-双硫交换反应而自行交联, 得到交联聚合物囊泡, 标记为 CLPs。 DLS测试结果显示该交联纳米囊泡 CLPs的水合直径 123
nm, 粒径分布 0.13。
[0102] 实施例十九靶向聚合物的制备及其与 PEG5k-P(CDC5.6k- co-IC46.2k)制备的靶 向纳米囊泡 (cRGD20/CLPs) 用于 CT造影
[0103] 在氮气环境下, 0.026 g (0.14 mmol) CDC和 0.22 g (0.68 mmol) 的 IC溶在 1 mL二氯甲烷中, 加入密封反应器里, 然后加入分子量 6000的末端用 Ν,Ν羟基琥 珀酰亚胺 (NHS) 活化的聚乙二醇 0.026 g (0.0043 mmol) 和 0.1 mol/L的催化剂 双 (双三甲基硅基) 胺锌的二氯甲烷溶液 (0.1 mol/L) , 接着把反应器密封好, 转移出手套箱, 放入 40。C油浴中反应 2天后, 用冰乙酸终止反应, 在冰乙醚中沉 淀, 最终经过过滤、 真空干燥得到两嵌段聚合物 NHS-PEG6k-P(CDC5.6k- co -IC46.2k)。 该聚合物和短肽 cRGD的氨基发生的酰胺化反应在 30°C进行, 该聚合 物 0.2 g (0.00035 mmol) 和 cRGD 5.61 mg (0.0007 mmol) 在氮气保护下反应 48 小吋后, 水中透析两天, 得到最终靶向聚合物 cRGD-PEG6k-P(CDC5.6k- co -IC46.2k)。
[0104] 取 80( L的 PEG5k-P(CDC5.6k- co-IC46.2k)聚合物的 DMF溶液 (5
mg/mL) 和 20( L cRGD-PEG6k-P(CDC5.6k- co-IC46.2k)聚合物的 DMF溶液 (5 mg/mL) 混合均匀后, 向其中逐滴加入 4 mL磷酸盐缓冲溶液 (PB, pH 7.4, 10mM) , 后放置 2小吋, 然后在 PB中透析 (MWCO 3500) 24小吋除去有机溶 剂, 同吋囊泡膜内含有的双硫五元环可以通过巯基-双硫交换反应而自行交联, 得到含有 20%cRGD的交联靶向囊泡, 标记为 cRGD20/CLPs。 附图 8为上述纳米囊 泡的 CT图, 可以看出, 随着囊泡浓度的增大, CT值随之增大; 并且囊泡浓度与 CT值之间有很好的线性关系。 所以, 基于该含碘聚合的聚合物囊泡可以做为显 影物质。
[0105] 实施例二十靶向纳米囊泡 cRGD20/CLPs在体外和小鼠体内的 CT造影
[0106] 配置三组溶液, 显示其在小鼠体内的 CT造影效果: 第一组为靶向交联纳米囊 泡 cRGD20/CLPs (实施例十九) 、 第二组为没有靶向的纳米囊泡 CLPs (实施例 十八) 、 第三组为对照组碘海醇 (Iohexol)溶液; 三组注射的碘的含量一致。 通过 尾静脉注射溶液到小鼠体内, 观察不同吋间点得 CT造影图, 从图 9中可以观察到 , cRGD20/CLPs在小鼠体内经过 4个小吋的循环, CT图显示有明显的显影效果, 说明 cRGD20/CLPs可以有效在肿瘤部位积累, CLPs在肿瘤部位聚集稍弱, 而对 照组碘海醇却没有显影现象。 通过图 10中 CT值的变化可以看出, 经过 4小吋的循 环, cRGD20/CLPs的 CT变化值最高, CLPs其次, 对照组最低, 经过 7小吋的循 环, cRGD20/CLPs的 CT是其他两组的 2倍和 10倍。 从图 11中可看出, 循环 40分钟 后, 碘海醇对照组在膀胱里有很强的造影信号, 而 cRGD20/CLPs组则很弱, 可 知 cRGD20/CLPs在小鼠体内循环相对于小分子碘海醇造影剂更不容易被体内清 除, 并且有很长的循环吋间。 图 12为直接在小鼠肿瘤部位注射 cRGD20/CLPs, 经过 1小吋的循环, 相对于未注射前有很强的造影信号。
[0107] 实施例二十一侧链含双碘的生物可降解 PEG- b-PIC纳米粒子的 CT造影
[0108] 生物可降解聚合物 PEG- b-PIC纳米粒 (PEG5k- b-PIC7.6k胶束、 PEG5k- b
-PIC 12.3k囊泡和 PEG5k- b-PIC22.7k囊泡) 的 CT图如附图 13所示。 可以看出, 随 着聚合物中 PIC分子量的增大, 显影强度随之增大; 同吋, 和水相比, PEG5k- b -PIC22.7k纳米囊泡具有最明显的显影效果; 所以, 该侧链含双碘基团的生物可 降解聚合物纳米囊泡和纳米胶束可以作为显影物质。
[0109] 实施例二十二 PEG5k- b-PIC50k纳米囊泡的体外 X射线衰减系数的测试
[0110] 不同含碘量的 PEG-b-PIC纳米囊泡浓缩后得到含碘量分别为 50, 20, 10, 5, 2. 5 mg/mL的纳米囊泡溶液。 附图 14中分别为 PEG-b-PIC和碘海醇的体夕卜 X射线衰 减系数的 CT图。 如图所示, 在相同碘量下, PEG-b-PIC纳米囊泡与碘海醇有相同 的体外衰减系数, 且 HU值和浓度呈线性关系。 因此, 由 PEG-b-PIC所形成的纳 米囊泡具有很好的 X射线衰减系数, 可以用来作为 CT成像的显影剂。
[0111] 实施例二十三 PEG5k- b-PIC50k纳米囊泡的体外渗透压测试
[0112] 不同含碘量的 PEG-b-PIC纳米囊泡浓缩得到含碘量分别为 80, 50, 40, 30, 20 mg/mL的纳米囊泡溶液。 附图 15中分别为 PEG-b-PK:、 碘海醇、 碘克沙醇通过露 点渗透压仪 (WESCOR Vapro 5600)测得的在 PBS (7.4, 10mM) 缓冲溶液中的 渗透压。 可知, PEG-b-PIC纳米囊泡的渗透压不随浓度的增加而增加, 都和血液 的渗透压相当。 比起传统的小分子造影剂, 本发明的 PEG-b-PIC纳米囊泡不会产 生渗透压带来的副作用的问题。
[0113] 实施例二十四 PEG5k- b-PIC50k纳米囊泡的体内急毒性实验
[0114] 50mgI/mL聚合物纳米囊泡通过尾静脉注射 (200μϋ 到小鼠体内 24小吋后, 采 集血液后将小鼠牺牲。 测定的血常规和血生化的数据如附图 16, 17。 数据显示 , 该造影剂在给药剂量为 500mgI/mL的吋候在体内并没有显示出急毒性, 而且对 肝脏和肾脏的功能并没有产生影响。
[0115] 实施例二十五 PEG5k-b-PIC50k纳米囊泡作为血池造影剂的体内成像
[0116] 50mgI/mL聚合物纳米囊泡通过尾静脉注射 (200μϋ 至 ljC57/BL6小鼠体内, 收 集不同吋间间隔的 CT图像, 分别选取 0小吋, 、 15分钟, 、 60分钟, 、 80分钟、 , 和 100分钟来观测 PEG -b-PIC纳米作为血池造影的效果。 如附图 18所示, 在 0小 吋从冠状面可以看出, 主动脉和下腔静脉有明显的增强, 从失状面观察, 60分 钟吋, 可以从 CT图像上看到明显且清晰的血管图像。 经过计算, CT值增强有 22 0, 并且持续到 100分钟吋, CT值增强大于 200。 由此结果说明, 该纳米囊泡可以 用于血池的长吋间和高效造影。
[0117] 实施例二十六 cRGD靶向的 cRGD-PEG5k- b-PIC50k纳米囊泡作为肿瘤新生血 管靶向的纳米造影剂
[0118] 50mgI/mL混有 cRGD-PEG- b-PIC纳米囊泡通过尾静脉注射 (200μί) 到荷瘤裸 鼠体内, U87MG脑胶质瘤和 MCF-7人乳腺癌两种恶性肿瘤的皮下模型被选用作 为新生血管靶向的模型的 CT成像。 不同吋间点的 CT图像被收集用来证明肿瘤新 生血管的靶向能力。 由附图 19可知, U87MG荷瘤小鼠在心脏部位的 CT值增强在 两小吋达到 150HU, 并且在 10小吋候仍然有 100HU的增强。 在肝脏部位的 CT值 增强在两小吋达到 75HU, 并且随着吋间的增加逐步的增加, 在 10小吋的吋候达 到 100HU的增强。 在脾脏部位的增强 10小吋达到 270HU。 在肿瘤部位, 6小吋 CT 值增强达到 50HU。 说明该纳米囊泡可以很好靶向到 U87MG脑胶质瘤部位的新生 血管。 由附图 20可知, MCF-7荷瘤小鼠在心脏部位的 CT值增强 8小吋候仍有 150H U, 而肿瘤部位的 CT值增强达到 65HU。 说明该纳米囊泡可以很好的靶向到 MCF- 7人乳腺癌的新生血管。
[0119] 实施例二十七 带有 cRGDNGQ靶向的 cNGQRGD-PEG5k- b-PIC50k纳米粒子囊 泡作为原位肺癌新生血管靶向诊断的纳米靶向造影剂
[0120] 50mgI/mL混有 cNGQRGD-PEG-b-PIC纳米囊泡通过尾静脉注射 (200μϋ 到荷 瘤 Α549非小细胞肺癌的原位肿瘤模型的裸鼠体内。 收集不同吋间点的 CT图像被 收集用来证明原位肿瘤的靶向能力。 由附图 21可知, Α549荷瘤小鼠在 2小吋 CT 的增强达到 400HU并且到 7小吋候扔有大于 400HU的增强。 可以说明, 用 cNGQ 修饰的纳米囊泡可以用来作为靶向 A549原位肺癌的造影剂。
[0121] 实施例二十八 PEG5k- b-PIC50k纳米囊泡作为原位肝癌的纳米造影剂
[0122] 50mgI/mL的 PEG- b-PIC纳米囊泡用过尾静脉注射 (200μϋ 到荷 SMMC-7721原 位肝癌瘤的裸鼠体内。 不同吋间点的 CT图像被收集用来证明该纳米囊泡的作为 原位肝癌造影剂。 8小吋肝脏部位深色部位是肿瘤部位。 相比于正常的肝细胞, 癌症细胞会吞噬较少的没有经过修饰的纳米囊泡, 所以在 CT成像中肿瘤部位相 比周围的正常细胞较暗。 由此可以说明, PEG- b
-PIC纳米囊泡可以用来作为 SMMC-7721原位肝癌的纳米造影剂, 用于肝癌的诊 断。
[0123] 实施例二十九
靶向交联纳米囊泡 cRGD20/CLPs装载亲水药盐酸多柔比星 (D0X HC1) 及体外 释放
[0124] 采用溶剂置换法制备聚合物囊泡, D0X HC1的装载采用 pH梯度法, 利用囊泡 内外 pH的不同来包裹亲水药物 DOX.HCl。 取 80( L的 PEG5k-P(CDC5.6k- co -IC46.2k)聚合物的 DMF溶液 (5 mg/mL) 和 200μΙ^ cRGD-PEG6k-P(CDC5.6k- co -IC46.2k)聚合物的 DMF溶液 (5 mg/mL) 混合均匀后, 滴加到 4000μί柠檬酸钠 / 柠檬酸缓冲溶液 (10mM, pH 4.0) 中, 在 37°C (200rmp) 摇床中放置 5小吋形成 囊泡, 然后加入 0.05 mL的 PB (4 M, pH
8.1 ) 建立 pH梯度, 随后立即加入 DOX.HC1的 PB溶液, 摇床中放置 5- 10小吋允许 药物进入囊泡中。 最后装入透析袋 (MWCO 7000) 中对 PB ( lOmM , pH 7.4) 透析 24小吋, 出去有机溶剂和自由药同吋囊泡自动交联, 换五次水, 得到载 DO X-HC1的 cRGD20-CLPs。 载不同比例的药 (ΙΟ^^Ο^) 的囊泡的粒径在 105- 124 nm, 粒径分布在 0.10-0.15。 荧光光谱仪测定 DOX.HC1的包裹效率为 63<¾-77<¾。 同此法可以高效装载亲水抗癌药盐酸表阿霉素、 盐酸伊利替康和盐酸米托蒽醌 , 效率在 50-80%。
[0125] DOX.HC1的体外释放实验是在 37°C恒温摇床中震荡 (200rpm) 进行, 每组各有 三个平行样。 第一组, 载 DOX.HC1的自交联囊泡在加入 lOmM GSH模拟细胞内 还原环境 PB ( 10mM, pH 7.4)中; 第二组, 载 DOX.HC1的自交联囊泡在 PB
( lOmM, pH 7.4); 载药自交联囊泡的浓度为 30mg/L, 取 0.6 mL
放入透析袋 (MWCO: 12,000) 中, 每个试管中加入相应的透析溶剂 25 mL, 在 预定的吋间间隔, 取出 5.0mL透析袋外部介质用作测试, 同吋向试管中补加 5.0m L相应介质。 使用荧光仪测定溶液中药物浓度。 D0X,HC1累积释放量与吋间的关 系图可以看出, 加入模拟肿瘤细胞内 GSH后, 其释放明显要快于没加 GSH的样 本, 说明载药自交联囊泡在 lOmM的 GSH的存在下, 能有效释放药物。
[0126] 实施例三十载药的交联囊泡 CLPs和靶向交联囊泡 cRGD20/CLPs的血液循环 [0127] 如实施例二十九制备的载 D0X,HC1的 cRGD20/CLPs、 无靶向装 D0X,HC1的交联 囊泡 CLP、 以及不交联的囊泡 PEG5k-PIC46.2k和自由的 DOX.HCl通过尾静脉注射 入 Balb/C裸鼠中 (DOX药量为 10mg/kg) , 在 0、 0.25、 0.5、 1、 2、 4、 8、 12和 2 4小吋定点取血约 10μί, 通过差量法准确计算血液重量, 再加如 ΙΟΟμί浓度为 1 % 的曲拉通和 50(VL DMF萃取 (其中含有 20mM的 DTT, 1 M的 HC1) ; 然后离心 (20000转 /分钟, 20分钟) 后, 取上层清液, 通过荧光测得每个吋间点 DOX.HC1 的量。 由计算可知, 靶向载药交联囊泡、 载药交联囊泡和载药不交联囊泡在小 鼠体内的消除半衰期分别为 6.84、 6.46和 3.73小吋, 而 D0X,HC1的仅为 0.13小吋
, 所以靶向载药自交联囊泡在小鼠体内稳定, 有较长循环吋间。 其他载药靶向 自交联囊泡、 载药自交联囊泡的血液循环实验的操作和计算方法相同。
[0128] 实施例三十一 交联囊泡 CLPs和靶向交联囊泡 cRGD20/CLPs在荷 B16黑色素瘤 小鼠的活体成像
[0129] 活体成像实验选用体重为 18~20克左右, 4~6周齢的 Balb/C裸鼠, 在皮下注射 5x 10 6个 B16黑色素瘤细胞, 大约 3~4周后, 肿瘤大小为 100~200mm 3吋幵始实验。 以如实施例二十九制备的载 DOX.HC1的 cRGD20/CLPs、 无靶向载 DOX.HC1的自 交联囊泡 CLP和自由的 D0X,HC1为例。 将荧光物质 cy-7标记的 cRGD20/CLPs和无 靶向的 CLPs通过尾静脉注射小鼠体内, 然后在不同吋间点 1、 2、 4、 6、 8、 12 、 24、 48小吋用小动物活体成像仪来追踪囊泡的去向。 实验结果可知, CRGD20- CLPs在肿瘤部位很快积累, 且在 48小吋后荧光仍然很强。 说明 cRGD20-CLPs能 主动靶向及富集到肿瘤部位。 其他靶向交联囊泡、 交联囊泡的活体成像实验的 操作和计算方法相同。
[0130] 实施例三十二 载药交联囊泡 CLPs和靶向交联囊泡 cRGD20/CLPs在荷 SKOV3卵 巢癌小鼠的体内生物分布
[0131] 体内生物分布实验中肿瘤的接种以及尾静脉给药同实施例三十一。 如实施例二 十九制备的载 D0X,HC1的 cRGD20/CLPs、 无靶向载 D0X,HC1的交联囊泡 CLP和 自由 DOX.HCl通过尾静脉注射小鼠体内 (DOX.HCl: 10mg/kg) , 12小吋后处死 老鼠, 将肿瘤及心, 肝, 脾, 肺和肾组织取出, 清洗称重后加入 50( L 1%的曲 拉通通过匀浆机磨碎, 再加入 90( L DMF萃取 (其中含有 20mM的 DTT, 1 M的 HC1) 。 离心 (20000转 /分钟, 20分钟) 后, 取上层清液, 通过荧光测得每 个吋间点 DOX.HC1的量。 结果得出, cRGD20/CLPs、 CLPs和 DOX.HCr注射 12小 吋在肿瘤积累的 DOX.HC1量分别为 6.68、 2.81和 0.61 ID<¾/g (每克肿瘤或组织中 的 DOX HC1占总 DOX HC1注射量) , cRGD20/CLPs是 CLPs和 DOX HC1的 2.4和 11 倍, 说明载药 cRGD20/CLPs通过主动靶向在肿瘤部位积累较多。
[0132] 实施例三十三 载药靶向交联囊泡 cRGD20/CLPs和空靶向交联囊泡对 Balb/C小 鼠的最大耐受剂量 (MTD)
[0133] 实验选用体重为 18~20克左右, 4~6周齢的 Balb/C裸鼠。 单剂量注射载药 cRGD2 0/CLPs (阿霉素的浓度为 60和 80mg/kg) 、 空的 cRGD20/CLPs (聚合物 300和 400 mg/kg) 和自由阿霉素 (5和 10mg/kg) , 每组小鼠五只, 最后的 10天, 每天观察 小鼠的精神状态及测量体重。 MTD的标准为小鼠非意外性死亡及小鼠体重低于 1 5<¾。 结果可知, 载药靶向交联囊泡的 MTD大于 80mg/kg, 空 cRGD20-CLPs的 MT D大于 400mg/kg, 而 DOX的 MTD小于 10mg/kg, 由此可知, 载药靶向交联囊泡对 小鼠有很高的耐受能力, 大大的提高了治疗窗。
[0134] 实施例三十四 载药靶向交联囊泡 cRGD20-CLPs和交联囊泡 CLPs在荷 B16瘤的 小鼠中的抑瘤效果、 体重变化
[0135] 实验选用体重为 18~20克左右, 4~6周齢的 Balb/C裸鼠, 在皮下注射 5x10 6个 B16 细胞, 大约两周后, 肿瘤大小为 30~50mm 3吋幵始实验。 如实施例二十九制备的 载 D0X,HC1的 cRGD20/CLPs、 无靶向载 D0X,HC1的交联囊泡 CLP、 自由 DOX,HC 1以及 PBS分别在 0、 4、 8和 12天通过尾静脉注射小鼠体内 (DOX药量为 10mg/kg ) 。 在 0~18天, 每两天称量小鼠的体重, 游标卡尺测量肿瘤体积, 肿瘤体积计 算方法为: V= (LxWxH) 12, (其中 L为肿瘤的长度, W为肿瘤的宽度, H为肿 瘤的厚度) 。 持续观察小鼠的生存到 45天。 cRGD20-CLPs治疗组 19天吋, 肿瘤 得到明显抑制, 而 CLPs组肿瘤有一定的增长。 DOX.HC1虽然也能抑制肿瘤的增 长, 但其小鼠体重在 7天吋降低了 20%, 说明对小鼠的毒副作用很大。 相比之下 c RGD20/CLPS和 CLPs组的小鼠体重几乎没有改变, 说明载药交联囊泡对小鼠没有 毒副作用。 因此, 本发明的靶向交联囊泡载药后可有效抑制肿瘤的增长, 对小 鼠没有毒副作用。
[0136] 实施例三十五载药靶向交联囊泡 cRGD20/CLPs在荷 B16瘤小鼠中的 CT成像 [0137] 如实施例二十六, 将含 50mgl/m的如实施例三十四中的样品通过尾静脉注射 (2 ΟΟμϋ 到荷 B16瘤小鼠中。 不同吋间点的 CT图像被收集用来证明肿瘤靶向能力 。 结果可知, 在 B16荷瘤小鼠的肿瘤部位, 6小吋 CT值增强达到 140HU; 在心脏 的 CT值增强在两小吋达到 200HU, 并且在 12小吋仍然有 120HU的增强。 在肝脏 的 CT值增强在两小吋达到 85HU, 并且随着吋间的增加逐步增加, 在 10小吋达到 100HU的增强。 在脾脏部位的增强 10小吋达到 270HU。 说明该纳米囊泡既可以用 于治疗, 也可以很好靶向肿瘤成像。 该载药靶向纳米囊泡还可以用于原位肺癌 的诊断和治疗。
以上这些结果均说明本发明的含碘聚合物形成的靶向纳米囊泡可以在体内造影 , 用于制备显影剂, 在肿瘤及其他疾病的诊断方面有广泛的应用前景。

Claims

权利要求书
[权利要求 1] 一种含双碘环碳酸酯单体, 其特征在于: 所述含双碘环碳酸酯单体的 化学结构式如下:
Figure imgf000026_0001
[权利要求 2] 权利要求 1所述含双碘环碳酸酯单体的制备方法, 其特征在于, 包括 以下步骤: 将二溴新戊二醇与金属碘化物在低沸点溶剂中反应得到化 合物 A; 然后在氮气气氛中, 在环醚类溶剂中, 将化合物 A与氯甲酸 乙酯、 三乙胺反应得到含双碘环碳酸酯单体。
[权利要求 3] 一种侧链含双碘功能基团的生物可降解聚合物, 其含有含双碘环碳酸 酯单元, 其特征在于: 所述侧链含双碘功能基团的生物可降解聚合物 由含双碘环碳酸酯单体通过以下方式聚合得到:
( 1) 含双碘环碳酸酯单体均聚;
(2) 含双碘环碳酸酯单体与其它碳酸酯单体共聚;
(3) 含双碘环碳酸酯单体与环酯单体共聚;
所述含双碘环碳酸酯单体为
Figure imgf000026_0002
所述侧链含双碘功能基团的生物可降解聚合物的分子量为 3〜500 kDa
[权利要求 4] 根据权利要求 3所述侧链含双碘功能基团的生物可降解聚合物, 其特 征在于: 所述侧链含双碘功能基团的生物可降解聚合物分子链上含碘 量为 5<¾〜65<¾。
[权利要求 5] 根据权利要求 3所述侧链含双碘功能基团的生物可降解聚合物, 其特 征在于: 所述环酯单体为己内酯、 丙交酯或者乙交酯; 所述其它碳酸 酯单体为含双硫环碳酸酯、 2,4,6-三甲氧基苯甲缩醛季戊四醇碳酸酯 或者三亚甲基环碳酸酯。
[权利要求 6] 根据权利要求 3所述侧链含双碘功能基团的生物可降解聚合物, 其特 征在于: 含双碘环碳酸酯单体聚合吋, 以聚乙二醇、 乙二醇、 异丙醇 或丙炔醇为引发剂, 双 (双三甲基硅基) 胺锌为催化剂。
[权利要求 7] 根据权利要求 3所述侧链含双碘功能基团的生物可降解聚合物, 其特 征在于: 含双碘环碳酸酯单体聚合吋, 聚合温度为 40°C, 聚合吋间为 24〜72小吋。
[权利要求 8] 权利要求 3所述侧链含双碘功能基团的生物可降解聚合物在制备药物 载体中的应用; 所述侧链含双碘功能基团的生物可降解聚合物的分子 量为 3〜50 kDa; 所述侧链含双碘功能基团的生物可降解聚合物分子 链上含碘量为 5<¾〜65<¾。
[权利要求 9] 权利要求 3所述侧链含双碘功能基团的生物可降解聚合物在制备生物 组织工程支架中的应用; 所述侧链含双碘功能基团的生物可降解聚合 物的分子量为 5〜500 kDa; 所述侧链含双碘功能基团的生物可降解聚 合物分子链上含碘量为 35%〜65<¾。
[权利要求 10] 权利要求 3所述侧链含双碘功能基团的生物可降解聚合物在制备 CT造 影剂中的应用; 所述侧链含双碘功能基团的生物可降解聚合物的分子 量为 100〜500 kDa; 所述侧链含双碘功能基团的生物可降解聚合物分 子链上含碘量为 35<¾〜65<¾。
PCT/CN2016/073743 2015-02-13 2016-02-12 含双碘环碳酸酯单体、由其制备的生物可降解聚合物及应用 WO2016127940A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/550,787 US10336720B2 (en) 2015-02-13 2016-02-12 Cyclic carbonate monomer containing double iodine, biodegradable polymer prepared thereby and use

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510077770.0 2015-02-13
CN201510077784.2 2015-02-13
CN201510077784.2A CN104610538B (zh) 2015-02-13 2015-02-13 一种侧链含双碘功能基团的生物可降解聚合物及其应用
CN201510077770.0A CN104672199B (zh) 2015-02-13 2015-02-13 一种含双碘环碳酸酯化合物及其制备方法

Publications (1)

Publication Number Publication Date
WO2016127940A1 true WO2016127940A1 (zh) 2016-08-18

Family

ID=56614153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073743 WO2016127940A1 (zh) 2015-02-13 2016-02-12 含双碘环碳酸酯单体、由其制备的生物可降解聚合物及应用

Country Status (2)

Country Link
US (1) US10336720B2 (zh)
WO (1) WO2016127940A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106905519B (zh) * 2015-12-22 2019-07-12 博瑞生物医药(苏州)股份有限公司 生物可降解双亲性聚合物、由其制备的聚合物囊泡及在制备肺癌靶向治疗药物中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102090392A (zh) * 2011-01-14 2011-06-15 浙江大学 一种季胺化的可降解抗菌剂的制备方法
CN104610538A (zh) * 2015-02-13 2015-05-13 苏州大学 一种侧链含双碘功能基团的生物可降解聚合物及其应用
CN104672199A (zh) * 2015-02-13 2015-06-03 苏州大学 一种含双碘环碳酸酯化合物及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103255A (en) * 1999-04-16 2000-08-15 Rutgers, The State University Porous polymer scaffolds for tissue engineering
US9388276B2 (en) * 2011-02-25 2016-07-12 University Of Massachusetts Monomers and polymers for functional polycarbonates and poly(ester-carbonates) and PEG-co-polycarbonate hydrogels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102090392A (zh) * 2011-01-14 2011-06-15 浙江大学 一种季胺化的可降解抗菌剂的制备方法
CN104610538A (zh) * 2015-02-13 2015-05-13 苏州大学 一种侧链含双碘功能基团的生物可降解聚合物及其应用
CN104672199A (zh) * 2015-02-13 2015-06-03 苏州大学 一种含双碘环碳酸酯化合物及其制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHOPIN, S. ET AL.: "60]Fullerene Diol Issued from Pentaerythritol Derivatives", TETRAHEDRON LETTERS, vol. 46, 31 December 2005 (2005-12-31), pages 373 - 376 *
GOU, PENGFEI ET AL.: "Drug-Grafted Seven-Arm Amphiphilic Star Poly(Caprolactone-co-tonerbonate)-B-Poly (Ethylene Glycol)s Based on a Cyclodextrin Core: Synthesis and Self-Assembly Behavior in Water", POLYM. CHEM., vol. 1, no. 8, 31 December 2010 (2010-12-31), pages 1205 - 1214 *
GOU, PENGFEI ET AL.: "Drug-Grafted Seven-Arm Amphiphilic Star Poly(Caprolactone-co-tonerbonate)-B-Poly (Ethylene Glycol)s Based on a Cyclodextrin Core: Synthesis and Self-Assembly Behavior in Water", POLYM.CHEM., vol. 1, no. 8, 31 December 2010 (2010-12-31), pages 1205 - 1214 *
SHI, QUAN ET AL.: "Synthesis and Characterization of Azido- and Amino-bearing Aliphatic Polyesters", CHEMICAL JOURNAL OF CHINESE UNIVERSITIES, vol. 29, no. 7, 31 July 2008 (2008-07-31), pages 1492 - 1494 *
SHI, QUAN ET AL.: "Synthesis and Characterization ot Azido- and Amino-bearing Aliphatic Polyesters", CHEMICAL JOURNAL OF CHINESE UNIVERSITIES, vol. 29, no. 7, 31 July 2008 (2008-07-31), pages 1492 - 1494 *
WANG, YING ET AL.: "Reductively and Hydrolytically Dual Degradable Nanoparticles by ''Click'' Crosslinking of a Multifunctional Diblock Copolymer", POLYM. CHEM., vol. 4, no. 5, 31 December 2013 (2013-12-31), pages 1657 - 1663 *
ZHANG, QIUJIN ET AL.: "Synthesis and Characterization of Biodegradable Amphiphilic PEG-Grafted Poly (DTC-co-CL", CHINESE CHEMICAL LETTERS, 31 December 2010 (2010-12-31), pages 1255 - 1258 *

Also Published As

Publication number Publication date
US10336720B2 (en) 2019-07-02
US20180044315A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
US9821078B2 (en) Branched amphipathic block polymer and molecular aggregate and drug delivery system using same
US20190105412A1 (en) Novel molecular assembly, molecular probe for molecular imaging and molecular probe for drug delivery system using the same, and molecular imaging system and drug delivery system
EP3392289B1 (en) Biodegradable amphiphilic polymer, polymer vesicle prepared therefrom and use in preparing target therapeutic medicine for lung cancer
JP6246421B2 (ja) 側鎖にジチオ五員環官能基を有するカーボネートポリマー及びその応用
JP6677914B2 (ja) 卵巣癌用の特異的に標的化された生分解性両親媒性ポリマー、それから製造されたポリマーベシクル及びその使用
WO2005120585A1 (en) Dual function polymer micelles
CN104610538A (zh) 一种侧链含双碘功能基团的生物可降解聚合物及其应用
EP2893924B1 (en) Molecular assembly using branched amphiphilic block polymer, and drug transportation system
JP2014105161A (ja) 金属イオン含有両親媒性ブロックポリマー及び金属イオン含有ナノ粒子、並びに前記ナノ粒子を用いた分子イメージング用プローブ及び薬剤搬送システム
WO2016127940A1 (zh) 含双碘环碳酸酯单体、由其制备的生物可降解聚合物及应用
CN107337653B (zh) 四碘甲腺原氨酸-n-羧基内酸酐、聚四碘甲腺原氨酸及其制备方法与应用
WO2015182577A1 (ja) 分岐型両親媒性ブロックポリマーを用いた分子集合体及び薬剤搬送システム
CN117327262A (zh) 一种响应性纳米药物载体及其制备和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748741

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15550787

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16748741

Country of ref document: EP

Kind code of ref document: A1