WO2016127747A1 - 一种下行多用户信息发送、接收方法和对应装置 - Google Patents

一种下行多用户信息发送、接收方法和对应装置 Download PDF

Info

Publication number
WO2016127747A1
WO2016127747A1 PCT/CN2016/070484 CN2016070484W WO2016127747A1 WO 2016127747 A1 WO2016127747 A1 WO 2016127747A1 CN 2016070484 W CN2016070484 W CN 2016070484W WO 2016127747 A1 WO2016127747 A1 WO 2016127747A1
Authority
WO
WIPO (PCT)
Prior art keywords
constellation
symbol
modulation
symbols
superimposed
Prior art date
Application number
PCT/CN2016/070484
Other languages
English (en)
French (fr)
Inventor
戴建强
袁志锋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016127747A1 publication Critical patent/WO2016127747A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • This document relates to, but is not limited to, the field of wireless communications, and in particular, to a method and an apparatus for transmitting and receiving downlink multi-user information.
  • multi-user information transmission is divided into uplink transmission and downlink transmission.
  • Downlink multi-user information transmission is also commonly referred to as downlink broadcast, which means that the transmitter simultaneously transmits the respective required information to multiple receivers.
  • Downlink multi-user information transmission including Orthogonal Multiple Access (OMA) and Non-Orthogonal Multiple Access (NOMA) multiple access methods, such as positive Both CDMA and OFDMA are in the category of non-orthogonal access technologies.
  • each user uses a strictly "sub-channel" that is mutually orthogonal to communicate, so that there is no mutual interference between each user information during demodulation, and thus it is easier to separate user information.
  • each user's information is transmitted on the "full channel".
  • the NOMA mode can achieve a larger system capacity than the OMA mode. In particular, it enables the edge user's capacity to approach the single-user capacity limit while ensuring that the center user capacity is considerable.
  • each user information interferes with each other during demodulation, so it is cumbersome to separate user information.
  • each user receives signals that all users have superimposed together, and then solves their own information. Usually, they can be divided into two demodulation methods: the first one, each user carries out interference demodulation with other users. This is simpler to implement, but the performance is detrimental. Second, use interference cancellation techniques.
  • SIC Serial Interference Cancellation
  • H1 the channel between User 1 and the base station
  • H2 The channel with the base station
  • H1 is worse than H2, which is expressed as H1 ⁇ H2.
  • User 1 solves the problem with user 2 when solving his own information.
  • user 2 solves his own information, he needs to demodulate user 1 information first, and then subtract the user 1 information (which may need to be reconstructed), and then demodulate his own information. In this way, the user 2 information can be greatly improved because the interference can be removed.
  • K-1 SIC needs to be done, the user 1 information is solved in turn, and after the user 1 information is removed, the user 2 information is solved, and after the user information is removed, the user K-1 information is solved. After it is removed, the user K information is finally solved.
  • Multi-user (greater than two users) signals are directly added together to be the simplest "superimposed code", as shown in Fig. 1a and Fig. 1b are schematic diagrams of direct superimposition coding of three user signals according to the related art, two QPSK symbols (The first and second symbols in the left of Fig. 1a) and one 16QAM symbol (the first symbol in the right of Fig. 1a) are directly superimposed.
  • the superimposed symbols are as shown in Fig. 1b, and the constellation points formed by the superimposed symbols are shown.
  • the Gray map the neighboring constellation points of the Gray map have only one bit different, so the performance of the modulation is optimal), the system performance is not high.
  • the multi-user (greater than two users) signals in the related art are directly added, and the superimposed symbol constellation points have no Gray mapping attribute, and the central user needs to perform multiple SICs to cause low performance or complexity, delay. Big.
  • the embodiment of the invention provides a method and a device for transmitting downlink multi-user information, so that the transmitting end is multi-purpose
  • the constellation points formed by the superimposed symbols of the modulation symbols of the household information have a Gray mapping property to improve the modulation performance.
  • the embodiment of the invention provides a method for transmitting downlink multi-user information, including:
  • the obtained m modulation symbols are sequentially superimposed and superimposed.
  • the remaining m-1 modulation symbols are image-optimized before being superimposed;
  • the sequentially superimposed symbols are sequentially formed into a transmission signal and transmitted through a transmitter.
  • the obtained m modulation symbols are sequentially superimposed and superimposed.
  • the remaining m-1 modulation symbols are image-optimized before being superimposed, including:
  • the second modulation symbol is image-optimized, and the first modulation symbol is superimposed with the image-optimized second modulation symbol to obtain a symbol s1, and the third modulation symbol is mirror-optimized, and the symbol s1 and the image are optimized.
  • the third modulation symbol is superimposed to obtain s2, and so on, until all m modulation symbols are superimposed.
  • the remaining m-1 modulation symbols are image optimized before being superimposed, including:
  • the constellation points formed by the kth modulation symbol are mirrored according to the constellation points formed by the pre-superimposed symbols, and the pre-superimposed symbols are the first And a symbol obtained by sequentially superimposing the modulation symbols and the first k-1 modulation symbols of the m-1 modulation symbols.
  • the constellation points formed by the kth modulation symbol are mirrored according to the constellation points formed by the pre-superimposed symbols, and include:
  • Determining a mirroring operation manner of the kth modulation symbol according to a constellation point position of the constellation point formed by the pre-superimposed symbol in a virtual constellation coordinate, forming the k-th modulation symbol in a determined mirror operation manner The constellation point performs a mirroring operation; the virtual constellation coordinates are obtained by constellation points formed by the pre-superimposed symbols, and each constellation area in the virtual constellation coordinates corresponds to a mirror operation mode.
  • the virtual constellation coordinates are obtained by a constellation point formed by the pre-superimposed symbols, and each constellation region in the virtual constellation coordinates corresponds to a mirroring operation manner, including:
  • the virtual constellation coordinates coincide with the coordinates of the constellation formed by the pre-superimposed symbols, the virtual constellation coordinates including a plurality of equal-sized constellation regions, and the positions of the constellation points formed by the pre-superimposed symbols in the virtual constellation coordinates For the center point of one of the constellation regions, each constellation region does not overlap each other;
  • the constellation area of a constellation area is a second fixed constellation area, and so on;
  • the mirroring operation mode of all fixed constellation areas is not flipping, and the mirroring operation modes of other constellation areas include: horizontally adjacent constellation areas of the fixed constellation area
  • the mirroring operation mode is horizontal flipping
  • the mirroring operation mode of the vertically adjacent constellation area of the fixed constellation area is vertical flipping
  • the mirroring operation modes of the diagonal adjacent constellation areas of the fixed constellation area are horizontal flipping and vertical flipping.
  • the separately preparing the m pieces of information to be sent includes:
  • the first to-be-transmitted information is modulated by one of the following modulation modes to obtain the first modulation symbol: BPSK, QPSK, QAM, and the modulation scheme for modulating other information to be transmitted includes one of the following: QPSK, QAM.
  • the m pieces of information to be sent correspond to m user equipments, where each information to be sent corresponds to one user equipment, and the m user equipments belong to different categories, and the categories are based on the user equipment and the same network side device.
  • the distance is far and near;
  • the obtained m modulation symbols are sequentially superimposed and superimposed according to the distance between the user equipment corresponding to the modulation symbol and the network side device in a far and near manner;
  • the first modulation symbol is a modulation symbol corresponding to a user equipment that is farthest from the network side device.
  • the embodiment of the invention further provides a downlink multi-user information sending apparatus, which comprises a modulation module, an optimization superposition module and a transmission module, wherein:
  • the modulation module is configured to separately modulate m pieces of information to be sent to obtain m modulation symbols, where m is a positive integer greater than two;
  • the optimized superposition module is configured to sequentially superimpose and superimpose the obtained m modulation symbols. In the process of superposition, except for the first modulation symbol, the remaining m-1 modulation symbols are performed before superposition.
  • the transmitting module is configured to form the transmitted signal by sequentially accumulating the superposed symbols, and send the signal through a transmitter.
  • the embodiment of the invention further provides a downlink multi-user information receiving method and device, which only needs to perform SIC once to improve the performance of multiple access and reduce the complexity.
  • the embodiment of the invention provides a downlink multi-user information receiving method, including:
  • the directly demodulating the symbol carried by the transmitting signal includes:
  • Interference with other m-1 modulation symbols demodulates the symbols carried by the transmitted signals to directly obtain the first modulation symbols.
  • the symbol when demodulating the remaining m-1 modulation symbols, the symbol is first demodulated from the symbol carried by the transmission signal, and the part symbol is removed from the symbol carried by the transmission signal, and then demodulated once and obtained.
  • Optimization symbols including:
  • the interference carried by the transmission signal is demodulated by the interference of the kth modulation symbol to the m-1th modulation symbol, to obtain a pre-superimposition.
  • a symbol, wherein the pre-superimposed symbol is a symbol obtained by sequentially accumulating the first modulation symbol and the first k-1 modulation symbols of the m-1 modulation symbols, and removing the symbol carried by the transmission signal.
  • performing the inverse mirroring on the to-be-optimized symbol to obtain an original modulation symbol including:
  • determining a mirror operation mode of the kth modulation symbol according to a constellation location of the constellation point formed by the pre-superimposed symbol in the virtual constellation coordinates according to Determining a mirror operation mode to perform an anti-mirror operation on a constellation point formed by the kth modulation symbol; the virtual constellation coordinate is obtained by a constellation point formed by the pre-superimposed symbol, each constellation in the virtual constellation coordinates The area corresponds to a mirror operation mode.
  • the virtual constellation coordinates are obtained by a constellation point formed by the pre-superimposed symbols, and each constellation region in the virtual constellation coordinates corresponds to a mirroring operation manner, including:
  • the virtual constellation coordinates coincide with the coordinates of the constellation formed by the pre-superimposed symbols, the virtual constellation coordinates including a plurality of equal-sized constellation regions, and the positions of the constellation points formed by the pre-superimposed symbols in the virtual constellation coordinates For the center point of one of the constellation regions, each of the divided constellation regions does not overlap each other;
  • the constellation area of a constellation area is a second fixed constellation area, and so on;
  • the mirroring operation mode of all fixed constellation areas is not flipping, and the mirroring operation modes of other constellation areas include: horizontally adjacent constellation areas of the fixed constellation area
  • the mirroring operation mode is horizontal flipping
  • the mirroring operation mode of the vertically adjacent constellation area of the fixed constellation area is vertical flipping
  • the mirroring operation modes of the diagonal adjacent constellation areas of the fixed constellation area are horizontal flipping and vertical flipping.
  • the demodulation information includes a modulation mode and a power allocation factor of the first modulation symbol and the first k-1 modulation symbols of the m-1 modulation symbols.
  • the m modulation symbols respectively correspond to m user equipments, where each modulation symbol corresponds to one user equipment, and the m user equipments belong to different categories, and the categories are based on user equipment and the same network side device.
  • Distance division
  • the superimposing and superimposing the m modulation symbols includes: the m modulation symbols are sequentially superimposed and superimposed according to the distance between the user equipment corresponding to the modulation symbol and the network side device;
  • the first modulation symbol is a modulation symbol corresponding to a user equipment that is farthest from the network side device.
  • the embodiment of the invention further provides a downlink multi-user information receiving device, comprising: a receiving module, a first demodulating module and a second demodulating module, wherein:
  • the receiving module is configured to receive a transmission signal, and the symbol carried by the transmission signal is sequentially superimposed and superposed by m modulation symbols. In the superposition process, except for the first modulation symbol, the remaining m-1 modulation symbols are superimposed.
  • the first demodulation module is configured to demodulate the first modulation symbol, and when demodulating, directly demodulate the symbol carried by the transmission signal to obtain an original modulation symbol;
  • the second demodulation module is configured to demodulate the remaining m-1 modulation symbols.
  • the partial symbols are demodulated from the symbols carried by the transmission signal, and the partial symbols are removed from the symbols carried by the transmission signal. And demodulating once again to obtain a symbol to be optimized, and performing inverse mirroring on the to-be-optimized symbol to obtain an original modulation symbol.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • the embodiment of the invention provides a modulation symbol optimized superposition coding technology for multi-user information, and a single symbol level SIC demodulation technique corresponding to the receiving end.
  • the modulation symbols of the multi-user information are transmitted on the "full channel" after being superimposed by the image, the edge receiver is demodulated with interference from all other users, and the other users are demodulated with a single symbol level SIC.
  • the downlink multi-user information transmission method proposed by the embodiment of the present invention enables the constellation points formed by the symbols superimposed by the modulation symbols of the multi-user information at the transmitting end to have the Gray mapping attribute, and the center user of the receiving end only needs to do the SIC once, which can improve The performance of multiple access, reducing complexity and latency.
  • 1a-b are schematic diagrams showing direct superimposition coding of three user signals in the related art
  • FIG. 2 is a flowchart of a sending method according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a transmitting apparatus according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a receiving method according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a receiving apparatus according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a wireless broadcast communication system according to an application example of the present invention.
  • FIG. 7 is a schematic diagram of operations performed by a base station according to an application example of the present invention.
  • 8a-b are two-symbol constellation diagrams to be superimposed and constellation diagrams of symbols after superposition of two symbols;
  • 9a-b are constellation diagrams of symbols to be superimposed and superimposed symbols after image optimization
  • 10a-c are diagrams of the symbol constellation after optimizing the superposition according to the application example of the present invention.
  • FIG. 11 is a schematic structural diagram of a receiver of an application example 2 of the present invention.
  • 12a-c are symbol constellations of the application example three optimized overlay of the present invention.
  • This embodiment describes a downlink multi-user information sending method, as shown in FIG. 2, including the following steps:
  • Step 110 separately modulate m pieces of information to be sent to obtain m modulation symbols, where m is a positive integer greater than 2.
  • the first to-be-transmitted information is modulated by one of the following modulation modes to obtain a first modulation symbol: BPSK, QPSK, QAM, and the modulation scheme for modulating other information to be transmitted includes one of the following: QPSK, QAM.
  • the m pieces of information to be sent correspond to m user equipments, wherein each of the to-be-sent information corresponds to one user equipment, and the m user equipments belong to different categories, and the categories are divided according to the distance between the user equipment and the same network side device.
  • the network side device is a base station
  • the base station-centric coverage is divided into m-level areas according to the distance from the base station
  • the user equipment in each level 1 area is a type of user equipment.
  • it can be divided into three levels, including: edge area, middle area, and center area.
  • a type of user equipment located in the edge area is an edge user equipment
  • a type of user equipment located in the middle area is an intermediate user equipment
  • a type of user equipment located in a central area is a central user equipment.
  • the m to-be-sent information includes an information to be sent of an edge user equipment, information to be transmitted of an intermediate user equipment, and information to be transmitted of a central user equipment.
  • Step 120 The obtained m modulation symbols are sequentially superimposed and superimposed. In the process of superposition, except for the first modulation symbol, the remaining m-1 modulation symbols are image-optimized before being superimposed;
  • the sequentially superimposing and superimposing comprises: performing image optimization on the second modulation symbol, superimposing the first modulation symbol and the image-optimized second modulation symbol to obtain a symbol s1, and performing image optimization on the third modulation symbol.
  • the symbol s1 is superimposed with the image-optimized third modulation symbol to obtain s2, and so on, until all m modulation symbols are superimposed.
  • the m modulation symbols are sequentially superimposed and superimposed according to the distance between the user equipment corresponding to each modulation symbol and the network side device, for example, the first modulation symbol is a modulation symbol corresponding to the user equipment that is farthest from the network side device, the second modulation symbol is a modulation symbol corresponding to the user equipment that is farthest from the network side device, and so on.
  • the first modulation symbol is a modulation symbol corresponding to the edge user equipment
  • the second modulation symbol is a modulation symbol corresponding to the intermediate user equipment
  • the third modulation symbol is a modulation symbol corresponding to the central user equipment.
  • the image optimization performed includes: a constellation formed by superimposing the symbols before the constellation points formed by the kth modulation symbol. Click to mirror.
  • the pre-superimposed symbol is a symbol in which the first modulation symbol and the first k-1 modulation symbols of the m-1 modulation symbols are sequentially superimposed, wherein: the first modulation symbol is the first one of m modulation symbols.
  • the modulation symbol; the first k-1 modulation symbols of the m-1 modulation symbols refer to the first modulation symbol to the k-1th modulation symbol of the m-1 modulation symbols.
  • the first modulation symbol described herein refers to the first modulation symbol among m modulation symbols.
  • the constellation points formed by the modulation symbols are mirrored.
  • the virtual constellation coordinates are obtained by constellation points formed by the pre-superimposed symbols, and each constellation region in the virtual constellation coordinates corresponds to a mirror operation mode. Determining a constellation point formed by the pre-superimposed symbol in a virtual constellation coordinate, and a mirroring operation manner of the constellation region is a mirroring operation on the k-th modulation symbol Way of doing things.
  • the virtual constellation coordinates and the mirroring operation mode corresponding to each of the constellation regions in the virtual constellation coordinates are determined in the following manner:
  • the virtual constellation coordinates coincide with the coordinates of the constellation formed by the pre-superimposed symbols, and the virtual constellation coordinates are divided into a plurality of equal-sized constellation regions, and the constellation points formed by the pre-superimposed symbols are in virtual constellation coordinates.
  • the location is the center point of one of the constellation regions, and each constellation region does not overlap each other;
  • any one of the constellation regions of the virtual constellation coordinates may be used as an initial fixed constellation region, a constellation region of a constellation region spaced apart from a horizontal direction of the initial fixed constellation region, and a constellation region with a constellation region vertically separated by a first fixed constellation.
  • a constellation area in which a constellation area is horizontally spaced from the first fixed constellation area and a constellation area in which a constellation area is vertically separated is a second fixed constellation area, and so on; a mirror operation mode of all fixed constellation areas is not Flipping, the mirroring operation mode of other constellation areas is determined according to the following image operation mode determining principle: the mirroring operation mode of the horizontal adjacent constellation area of the fixed constellation area is horizontal flipping, and the mirroring operation mode of the vertical adjacent constellation area of the fixed constellation area is vertical Inverted, the mirroring operation of the diagonal adjacent constellation regions of the fixed constellation area is horizontal flipping and vertical flipping.
  • the diagonal adjacent constellation area of the fixed constellation area includes: a constellation area in the upper left corner of the fixed constellation area, a constellation area in the upper right corner of the fixed constellation area, a constellation area in the lower left corner of the fixed constellation area, and a constellation area in the lower right corner of the fixed constellation area.
  • Step 130 The sequentially superimposed superposed symbols form a transmission signal and are sent by a transmitter.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • the transmitting device that implements the foregoing method includes a modulation module 210, an optimization overlay module 220, and a transmitting module 230, where:
  • the modulation module 210 is configured to separately modulate m pieces of information to be sent, to obtain m Modulation symbol, m is a positive integer greater than 2;
  • the optimization superposition module 220 is configured to sequentially superimpose and superimpose the obtained m modulation symbols. In the process of superposition, except for the first modulation symbol, the remaining m-1 modulation symbols are image-optimized before being superimposed;
  • the transmitting module 230 is configured to form the transmitted symbols by sequentially superimposing the superposed symbols, and send them through a transmitter.
  • the m pieces of information to be sent correspond to m user equipments, wherein each information to be transmitted corresponds to one user equipment, that is, each information to be sent is information sent to a corresponding one of the user equipments.
  • the m user equipments belong to different categories, and the categories are divided according to the distance between the user equipment and the same network side device.
  • the optimization superposition module 220 is configured to sequentially superimpose and superimpose the obtained m modulation symbols according to the distance between the user equipment corresponding to the modulation symbol and the network side device in a far and near manner.
  • the first modulation symbol is a modulation symbol corresponding to a user equipment that is farthest from the network side device
  • the second modulation symbol is a modulation symbol corresponding to a user equipment that is farthest from the network side device
  • the modulation module 210 is configured to modulate the first to-be-transmitted information by using one of the following modulation modes to obtain the first modulation symbol: BPSK, QPSK, QAM, and the modulation module modulates other information to be transmitted.
  • the modulation method includes one of the following: QPSK, QAM.
  • the optimization superposition module 220 divides the constellation points formed by the kth modulation symbol according to the pre-superposition.
  • the constellation point formed by the symbol performs a mirroring operation, and the pre-superimposed symbol is a symbol obtained by sequentially superimposing and superimposing the first modulation symbol and the first k-1 modulation symbols of the m-1 modulation symbols.
  • the optimization superposition module 220 is configured to determine, according to the constellation location of the constellation point formed by the pre-superimposed symbol in the virtual constellation coordinates, a mirroring operation manner on the k-th modulation symbol, to determine The mirroring operation mode mirrors the constellation points formed by the kth modulation symbol. a manner of determining the virtual constellation coordinates and a mirroring operation corresponding to each of the constellation regions in the virtual constellation coordinates The way the method is determined is described in the same method.
  • the superimposed symbols have the Gray mapping property, which greatly improves the modulation performance.
  • This embodiment describes a downlink multi-user information receiving method corresponding to the sending method of the foregoing embodiment. As shown in FIG. 4, the method includes:
  • Step 310 Receive a transmit signal, where the symbols carried by the transmit signal are cumulatively superimposed by m modulation symbols. In the superimposition process, except for the first modulation symbol, the remaining m-1 modulation symbols are image optimized before being superimposed. , m is a positive integer greater than 2;
  • the m modulation symbols respectively correspond to m user equipments, where each modulation symbol corresponds to one user equipment, that is, each modulation symbol is a modulation symbol sent to the corresponding user equipment.
  • the m user equipments belong to different categories, and the categories are divided according to the distance between the user equipment and the same network side device.
  • the superimposing and superimposing the m modulation symbols includes: the m modulation symbols are sequentially superimposed and superimposed according to the distance between the user equipment corresponding to the modulation symbol and the network side device.
  • the first modulation symbol is a modulation symbol corresponding to a user equipment that is farthest from the network side device.
  • Step 320 demodulating the received symbols
  • the symbol carried by the direct demodulation transmission signal includes: interference with the other m-1 modulation symbols to demodulate the symbol carried by the transmission signal, and directly obtains The first modulation symbol.
  • step 320 when demodulating the remaining m-1 modulation symbols, the symbol is first demodulated from the symbol carried by the transmission signal, and the partial symbol is removed from the symbol carried by the transmission signal, and then demodulated once.
  • Get the symbols to be optimized including:
  • the interference with the kth modulation symbol to the m-1th modulation symbol demodulates the symbol carried by the transmission signal And obtaining, according to the demodulation information, a pre-superimposed symbol, that is, the first modulation symbol and the first k-1 modulation symbols of the m-1 modulation symbols are sequentially superimposed and superimposed, and are carried from the transmission signal.
  • the pre-superimposed symbol is removed from the symbol, and the symbol is removed and demodulated once.
  • the demodulation carries the interference demodulation from the k+1th symbol to the m-1th symbol to obtain the k-th symbol. Optimize the symbol.
  • the demodulation information includes a modulation mode and a power allocation factor of the first modulation symbol and the first k-1 modulation symbols of the m-1 modulation symbols. Demodulation information is obtained by signaling.
  • the constellation point performs an anti-mirror operation.
  • the manner of determining the virtual constellation coordinates and the manner of determining the mirroring operation mode corresponding to each of the constellation regions in the virtual constellation coordinates are the same as those in the first embodiment, and details are not described herein again.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • the receiving device that implements the foregoing receiving method includes: a receiving module 410, a first demodulating module 420, and a second demodulating module 430, where:
  • the receiving module 410 is configured to receive a transmit signal, where the symbols carried by the transmit signal are sequentially superimposed and superposed by m modulation symbols. In the superimposition process, except for the first modulation symbol, the remaining m-1 modulation symbols are superimposed. Image optimization is performed before, m is a positive integer greater than 2;
  • the first demodulation module 420 is configured to demodulate the first modulation symbol, and when demodulating, directly demodulate the symbol carried by the transmission signal to obtain an original modulation symbol;
  • the second demodulation module 430 is configured to demodulate the remaining m-1 modulation symbols. When demodulating, first demodulate a partial symbol from the symbol carried by the transmission signal, and remove the partial symbol from the symbol carried by the transmission signal. After demodulating once again, the symbol to be optimized is obtained, and the symbol to be optimized is inversely mirrored. To the original modulation symbol.
  • the first demodulation module 420 is configured to demodulate the symbols carried by the transmit signal with interference of other m-1 modulation symbols for the first modulation symbol, and directly obtain the first modulation symbol.
  • the modulation symbols sequentially accumulate the superimposed symbols, remove the pre-superimposed symbols from the symbols carried by the transmitted signals, and perform demodulation on the removed symbols to obtain the to-be-optimized symbols of the k-th symbol.
  • the demodulation information includes a modulation scheme and a power allocation factor of the first modulation symbol and the first k-1 modulation symbols of the m-1 modulation symbols.
  • the demodulation information is transmitted to the receiving device by signaling.
  • the second demodulation module 430 is configured to reverse the to-be-optimized symbol in the following manner.
  • Mirroring to obtain an original modulation symbol determining, according to the determined mirror operation mode, the mirroring operation mode of the constellation region in the virtual constellation coordinates according to the constellation point formed by the pre-superimposed symbol
  • the constellation points formed by the k modulation symbols are subjected to an anti-mirror operation.
  • the manner of determining the virtual constellation coordinates and the manner of determining the mirroring operation mode corresponding to each of the constellation regions in the virtual constellation coordinates are the same as those in the first embodiment.
  • the m modulation symbols in the transmission signal respectively correspond to m user equipments, wherein each modulation symbol corresponds to one user equipment, and the m user equipments belong to different categories, and the categories are according to the distance between the user equipment and the same network side device.
  • the user at the receiving end since some symbols are first demodulated during demodulation, the user at the receiving end only needs to perform SIC once, which can improve the performance of multiple access, reduce complexity and delay.
  • FIG. 6 is a schematic diagram of a wireless broadcast communication system for implementing a downlink multi-user information transmission method according to an embodiment of the present invention.
  • the multi-user information is broadcasted by the base station BS to a plurality of user equipments.
  • the three types of user information modulation symbols are optimized and superimposed to form a transmission signal, which is simultaneously sent to the three types of users UE1, UE2, and UE3, and the three types of users are respectively an edge user UE1, an intermediate user UE2, and a central user UE3.
  • the transmitted signals pass through the channels H1, H2, and H3, respectively.
  • the channel between UE1 and BS to the channel between UE3 and BS becomes better in turn, expressed as H1 ⁇ H2 ⁇ H3.
  • the operation performed at the transmitting end of the wireless broadcast communication system, that is, at the base station, as shown in FIG. 7, includes the following steps:
  • the multi-user information bit stream is code modulated into a modulation symbol having a certain power.
  • the encoding method includes Turbo encoding (encoding as an optional operation).
  • the first type of modulation symbol Sym1 is obtained by the QPSK modulation method of the information bit stream of the UE1
  • the second type of modulation symbol Sym2 is obtained by the information bit stream of the UE2 by the QPSK modulation method
  • the third type of the information bit stream of the UE3 is obtained by the 16QAM modulation method.
  • Sym1 is The power adjustment factor of Sym2 is The power adjustment factor of Sym3 is Then Sym1 can be expressed as Sym2 can be expressed as Sym3 can be expressed as Among them, (x+y ⁇ i) is a plural expression.
  • step two the first two types of modulation symbols are optimally superimposed, that is, the first type of modulation symbols and the image-optimized second type of modulation symbols are superimposed to obtain an optimized superimposed symbol S2.
  • the constellation points formed by the optimized superimposed symbol S2 have a Gray mapping attribute.
  • Figures 8a and 8b show the unmapped optimized symbol constellation and the superimposed symbol constellation, where the two symbols in Figure 8a are added to obtain the symbols in Figure 8b.
  • the constellation diagram in this paper contains constellation diagrams for all possible cases. As shown in Figure 8b, the symbol constellation obtained after superposition has no Gray property.
  • Figures 9a and 9b show the symbol constellation of the optimized superposition, wherein the symbol 1 in Figure 9a (the symbol constellation on the left side of Figure 9a) is superimposed with the symbol 2 (the symbol constellation on the right side of Figure 9a) to obtain the symbol in Figure 9b, and the symbol 2 is Mirror optimized symbol.
  • the symbol 1 is 01
  • the virtual constellation coordinates and the star of the symbol 1 The coordinates of the coordinates are coincident.
  • the fixed constellation area is the first quadrant of the symbol 1 constellation in this example
  • the symbol 1 is 01 in the second quadrant, that is, the horizontal adjacent constellation area of the fixed constellation area
  • the mirror flip mode is horizontal flip.
  • the symbol 2 is horizontally flipped, and flipped as shown in the constellation diagram on the right side of Figure 9a.
  • the constellation formed by the symbol obtained by superimposing the symbol 1 with the mirror-optimized symbol 2 is as shown in Fig. 9b.
  • the symbol constellation obtained after superposition has a Gray mapping property, including all possible cases.
  • step 3 the first three types of modulation symbols are optimally superimposed to obtain an optimized superimposed symbol S3.
  • This includes first optimizing the third type of modulation symbol according to S2 (as shown in FIG. 10a) to obtain a constellation as shown in FIG. 10b, and then directly superimposing with S2 to obtain an optimized superimposed symbol S3, as shown in FIG. 10c.
  • the constellation points formed by the optimized superimposed symbol S3 have Gray mapping attributes.
  • the Type 3 modulation symbol is optimized according to S2. That is, according to the position of the constellation in the virtual constellation coordinates of the current time constellation point of the symbol S2, the mirror operation mode is determined (the mirror operation mode corresponding to the constellation area is determined in advance), and the third type of modulation symbol is horizontally flipped and/or vertically flipped to obtain mirror image optimization. After the third type of modulation symbol.
  • the horizontal flip or vertical flip refers to symmetrical changes of the third type of modulation symbol, that is, the 16QAM constellation, on the virtual constellation coordinates, with the vertical center line or the horizontal center line of the constellation area as a symmetry line.
  • Figure 10a shows S2 after optimization superposition. All possible cases are listed in the figure. There is only one constellation point at any time. Take the constellation point “0101” in the figure as an example.
  • the dotted line coordinates in Figure 10b are the S2 constellation.
  • the virtual constellation coordinates of the coincidence of the central coordinates, each small coordinate in the figure is regarded as a constellation area.
  • the initial fixed constellation area is the first constellation area in the upper left corner.
  • the corresponding constellation area can be determined by the location of “0101” as the second constellation area in the first row of FIG. 10b, that is, the first shadow area in the figure, and the corresponding mirror operation of the constellation area is horizontal flip, then the third type modulation The symbol is flipped horizontally.
  • the first shaded area in Figure 10b shows the inverted constellation.
  • S2 is superimposed with the mirror-optimized type 3 modulation symbol to obtain the symbol of the first shaded area of Figure 10c.
  • the initial fixed constellation region may also be the first constellation region in the upper right corner.
  • S2 is "1101" in FIG. 10a, corresponding to the second shaded portion in FIG. 10b, the shadow portion.
  • the corresponding mirroring operation is horizontal flipping, and the third type of modulation symbol is horizontally flipped.
  • the second shaded area in FIG. 10b shows the inverted constellation, and S2 is superimposed with the mirror-optimized third type of modulation symbol to obtain FIG. 10c.
  • the symbol of the second shaded area is S3.
  • Step 4 The optimized superposed symbol S3 forms a transmission signal and is simultaneously transmitted to the first type of user UE1, the second type of user UE2, and the third type of user UE3.
  • the superimposed symbol S3 is Gray-mapped according to the method of the present embodiment, and, more importantly, the third type is optimized even if the symbol S2 is misjudged at the receiver due to noise. After the modulation symbol is demodulated and then mirrored, the third type of modulation symbol can still be correctly demodulated, so the performance of the central user is significantly improved.
  • FIG. 11 is a block diagram showing the structure of a receiver. As shown in FIG. 11, the receiver includes: a receiving module, a demodulation module, and a decoding module (optional). (The dotted line in Figure 11 indicates that this part is an optional module)
  • the operations performed by the receiver include:
  • the modulation symbol corresponding to UE1 is the first type of modulation symbol
  • the modulation symbol corresponding to UE2 is the second type of modulation symbol
  • the modulation symbol corresponding to UE3 is the third type of modulation symbol.
  • Step two including:
  • a user UE1 receiver through the demodulation module 1, with interference demodulation of all modulation symbols except the first type of modulation symbols, to obtain a modulation symbol of the user UE1 information;
  • a user UE2 receiver through the demodulation module 1, with interference demodulation of all other modulation symbols except the first type of modulation symbols, to obtain a modulation symbol of the user UE1 information;
  • the user UE3 receiver through the demodulation module 1, carries out the interference demodulation of the modulation symbols of the user UE3 information, and then according to the modulation modes and power allocation factors of the first two types of symbols (for determining the first two types of modulation symbols, the cumulative superposition is sequentially performed)
  • the position of the constellation point formed by the symbol in the coordinates) demodulates the modulation symbol of the user UE1 information and the optimized superposition symbol S' of the modulation symbol of the user UE2 information.
  • the modulation scheme and power allocation factor can be signaled to the UE3 receiver.
  • Step three including:
  • the user UE2 receiver performs a single symbol level SIC through the demodulation module 2, and removes the modulation symbol of the user UE1 information, that is, removes the QPSK symbol with the largest average power, and separates the modulation symbol of the user UE2 information and the modulation symbol of the user UE3 information.
  • the optimized superposition symbol which can be seen as a QPSK symbol with 16QAM symbol interference.
  • the intermediate user UE2 receives the interference demodulation of the modulation symbol of the UE3 information, and then performs mirroring according to the modulation symbol of the user UE1 information solved in the second step, and the mirroring method is consistent with the mirroring method in the transmitter;
  • the user UE3 receiver through the demodulation module 2, performs a single symbol level SIC, and removes the symbol S', that is, the optimized superposition symbol of the modulation symbol of the user UE1 information and the modulation symbol of the user UE2 information, that is, the 16-point constellation symbol is removed.
  • the 16-point constellation symbol includes a 16QAM constellation symbol.
  • the central user UE3 receiver then mirrors the symbol S', which is consistent with the mirroring method in the transmitter.
  • Step four decoding (or not decoding) to obtain a user information bit stream.
  • the UE1 receiver may also have the capabilities of the UE2 and UE3 receivers, and the UE2 receiver may also have the UE1 and UE3 receivers.
  • the demodulation information includes a modulation mode and a power allocation factor
  • interference demodulation with a modulation symbol d obtaining S2, and removing S2 from S3
  • get d' and then do the anti-mirror to get the modulation symbol d.
  • the modulation symbol c is demodulated, according to the demodulation information of a and b, the interference demodulation with the modulation symbols c and d, S1 is obtained, S1 is removed from S3, and the interference with the modulation symbol d is used to remove the symbol after S1.
  • the modulation symbol b is demodulated, the interference demodulation with modulation symbols b, c and d is obtained, the modulation symbol a is obtained, the modulation symbol a is removed from S3, and the interference with the modulation symbols c and d is used to solve the symbol after removing a. Adjust b' to do anti-mirror To the modulation symbol b.
  • the modulation symbol a is demodulated, the interference demodulation of the modulation symbols b, c and d is directly performed to obtain the modulation symbol a.
  • the central user UE3 receiver needs to do two symbol level SICs (K-1 times for K users), and according to the method of the embodiment, the receiving center user only needs to do one symbol level SIC. It can improve the performance of multiple access, reduce complexity and delay.
  • a transmission signal is formed and simultaneously transmitted to the three types of users, and the three types of users are assumed to be the edge user UE1, the intermediate user UE2, and the central user UE3.
  • the transmitted signals pass through the channels H1, H2, and H3, respectively.
  • the channel between UE1 and BS to the channel between UE3 and BS becomes better in turn, expressed as H1 ⁇ H2 ⁇ H3.
  • Step 1 is consistent with step 1 of the application example 1.
  • the UE1 information bit is obtained by using the BPSK modulation method to obtain the first type modulation symbol Sym1
  • the UE2 information bit is obtained by the QPSK modulation method to obtain the second type modulation symbol Sym2
  • the UE3 information bit is obtained by the QPSK modulation method.
  • Sym1 can be expressed as Sym2 can be expressed as Sym3 can be expressed as
  • Step 2 is consistent with step 2 of the application example 1.
  • the first two types of modulation symbols that is, the first type of modulation symbols and the image-optimized type 2 modulation symbols are superimposed to obtain an optimized superimposed symbol S2, as shown in FIG. 12a. .
  • Step 3 is consistent with step 3 of the application example 1.
  • the first three types of modulation symbols are optimally superimposed to obtain an optimized superimposed symbol S3, as shown in FIG. 12c.
  • the Type 3 modulation symbol is optimized according to S2. That is, according to the mirror image position operation mode of the constellation point of the symbol S2 at the current time in the virtual constellation coordinates, the third type of modulation symbol is horizontally flipped and/or vertically inverted to obtain the mirror-optimized type 3 modulation symbol.
  • the horizontal flip or vertical flip refers to symmetrically changing the third type of modulation symbol, that is, the QPSK constellation, on the virtual constellation coordinates by using the vertical center line or the horizontal center line of the constellation area as a symmetry line.
  • the constellation regions shown in the two shades in Figure 12b are the image optimization results in the two examples, respectively, the initial fixed constellation regions in the two examples are different, and the third type of optimized modulation symbols in the two examples are respectively shown in Figure 12a.
  • Medium The constellation formed by the symbols obtained after S2 superposition is as shown in the two shades in Fig. 12c.
  • Step 4 Consistent with step four of the application example 1, the optimized superposed symbol S3 forms a transmission signal and is simultaneously transmitted to the first type of user UE1, the second type of user UE2, and the third type of user UE3.
  • the superimposed symbol S3 is Gray-mapped according to the method of the present embodiment, and, more importantly, the third type is optimized even if the symbol S2 is misjudged at the receiver due to noise. After the modulation symbol is demodulated and then mirrored, the third type of modulation symbol can still be correctly demodulated, so the performance of the central user is significantly improved.
  • the embodiment of the invention provides a modulation symbol optimized superposition coding technology for multi-user information, and a single symbol level SIC demodulation technique corresponding to the receiving end.
  • the purpose is that in the downlink multi-user information transmission system, the constellation points formed by the superimposed symbols of the multi-user information of the transmitting end have the Gray mapping attribute, and each user at the receiving end only needs to do the symbol level SIC once, so as to improve The performance of multiple access, reducing complexity and latency.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • the invention is not limited to any specific form of combination of hardware and software.
  • the constellation points formed by the symbols superimposed by the modulation symbols of the multi-user information at the transmitting end have the Gray mapping attribute, and the center user of the receiving end only needs to do the SIC once, which can improve the performance of the multiple access and reduce the complexity. Time delay.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

一种下行多用户信息发送、接收方法和对应装置。发送方法包括:对m个待发送信息分别进行调制,得到m个调制符号,m为大于2的正整数;将得到的m个调制符号依次累计叠加,叠加的过程中,除第1个调制符号外,其余m-1个调制符号在叠加前先进行镜像优化;将依次累计叠加后的符号形成发射信号通过发射机发送。接收方法包括:接收发射信号;解调第1个调制符号时,直接解调发射信号携带的符号得到原始调制符号;解调其余m-1个调制符号时,先解调并去除部分符号,再解调一次得到待优化符号,对待优化符号进行反镜像得到原始调制符号。上述技术方案使发送端叠加后符号形成的星座点具有格雷映射属性,且接收端只需要做1次SIC。

Description

一种下行多用户信息发送、接收方法和对应装置 技术领域
本文涉及但不限于无线通信领域,特别涉及一种下行多用户信息发送、接收方法和装置。
背景技术
在无线通信系统中,多用户信息传输分为上行传输和下行传输。下行多用户信息传输通常也被称为下行广播,其指的是发射机同时向多个接收机发送各自所需信息。下行多用户信息传输,有正交多址接入(Orthogonal Multiple Access,简称为OMA)和非正交多址接入(None Orthogonal Multiple Access,简称为NOMA)两种多址接入方式,如正交CDMA和OFDMA均属于非正交接入技术的范畴。
在正交多址接入技术中,每个用户使用严格相互正交的“子通道”来进行通信,因而在解调时每个用户信息之间没有相互干扰,进而分离用户信息较容易。相对地,在非正交多址接入技术中,每个用户的信息都是在“整个通道”上传输的。NOMA方式能够取得比OMA方式更大的系统容量,特别地,它能使边缘用户的容量逼近单用户容量限的同时保证中心用户容量比较可观。但是,在解调时每个用户信息之间是相互干扰的,所以分离用户信息较为麻烦。
在NOMA广播发送之前,要将多用户的信号直接叠加到一起,然后在相同的时频资源上进行发送。将多用户信号进行叠加的过程又称为“叠加编码”。在接收端,每个用户接收到所有用户叠加在一起的信号,再解出自己的信息,通常可以分为两种解调方法:第一种,每个用户都带着其他用户的干扰解调,这样实现较为简单,但性能是有损的。第二种,使用干扰消除技术。
下面对串行干扰消除(Successive Interference Cancellation,简称为SIC)过程进行说明,以两个用户为例,假设用户1与基站间的信道为H1,用户2 与基站间的信道为H2,H1较H2更差,表示为H1<H2。用户1在解自己信息时,带着用户2的干扰来解。而用户2在解自己信息时,需要先解调用户1信息,再将解出来的用户1信息(可能需要重构)减去,然后才解调出自己的信息。这样用户2信息因为可以除去了干扰,所以性能可以有较大提升。
当SIC过程有K个用户时(K为大于2的整数),假设用户k与基站间的信道为Hk(k=1,2,…K),用户1与基站间的信道至用户K与基站间的信道依次变得更好,表示为H1<H2<…<HK。用户1在解自己信息时,带着其他所有用户信息干扰来解调。用户2在解自己信息时,需要先解调用户1信息,再将解出来的用户1信息(可能需要重构)减去,然后带着用户3信息至用户K信息的干扰解调出用户2信息。依此类推,解用户K信息时,需要做K-1次SIC,依次解出用户1信息,将其除去后,解出用户2信息,将其除去后,解出用户K-1信息,将其除去后,最终解出用户K信息。
多用户(大于两个用户)信号直接相加起来即为一种最简单的“叠加编码”,如图1a和图1b是根据相关技术的3个用户信号直接叠加编码的示意图,2个QPSK符号(图1a中左数第1、2个符号)和1个16QAM符号(图1a中右数第1个符号)直接叠加,叠加后的符号如图1b所示,叠加后的符号形成的星座点没有格雷映射(所述格雷映射的相邻星座点仅存在1个比特不同,这样调制的性能最优)的属性,导致系统性能不高。对于离基站最近的中心用户而言,要做多次(K个用户时需做K-1次)SIC,如果采用码块级SIC接收,复杂度、功耗,时延均很大,如果采用简单的符号级SIC接收,解调性能下降较大,时延大,同时都有误差传播风险。
综上所述,相关技术中的多用户(大于两个用户)信号直接相加,叠加后符号星座点没有格雷映射属性,且中心用户需要做多次SIC导致性能不高或者复杂度、时延大。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种下行多用户信息发送方法和装置,使发送端多用 户信息的调制符号叠加后的符号形成的星座点具有格雷映射属性,提高调制性能。
本发明实施例提供了一种下行多用户信息发送方法,包括:
对m个待发送信息分别进行调制,得到m个调制符号,m为大于2的正整数;
将所述得到的m个调制符号依次累计叠加,叠加的过程中,除第1个调制符号外,其余m-1个调制符号在叠加前先进行镜像优化;
将所述依次累计叠加后的符号形成发射信号,通过发射机发送。
可选地,所述将所述得到的m个调制符号依次累计叠加,叠加的过程中,除第1个调制符号外,其余m-1个调制符号在叠加前先进行镜像优化,包括:
对第2个调制符号进行镜像优化,将第1个调制符号与镜像优化后的第2个调制符号叠加得到符号s1,对第3个调制符号进行镜像优化,将所述符号s1与镜像优化后的第3个调制符号叠加得到s2,以此类推,直到所有m个调制符号都叠加完。
可选地,所述其余m-1个调制符号在叠加前先进行镜像优化,包括:
对于其余m-1个调制符号中的第k个调制符号,将所述第k个调制符号形成的星座点依据前叠加符号形成的星座点进行镜像操作,所述前叠加符号为所述第1个调制符号与所述m-1个调制符号中前k-1个调制符号依次累计叠加后得到的符号。
可选地,将所述第k个调制符号形成的星座点依据前叠加符号形成的星座点进行镜像操作,包括:
根据所述前叠加符号形成的星座点在虚拟星座坐标中的星座区位置确定对所述第k个调制符号的镜像操作方式,以所确定的镜像操作方式对所述第k个调制符号形成的星座点进行镜像操作;所述虚拟星座坐标由所述前叠加符号形成的星座点得到,所述虚拟星座坐标中的每个星座区对应一种镜像操作方式。
可选地,所述虚拟星座坐标由所述前叠加符号形成的星座点得到,所述虚拟星座坐标中的每个星座区对应一种镜像操作方式,包括:
所述虚拟星座坐标与所述前叠加符号形成的星座图的坐标重合,所述虚拟星座坐标中包含多个大小相等的星座区,所述前叠加符号形成的星座点在虚拟星座坐标中的位置为其中一个星座区的中心点,每个星座区互不重叠;
与初始固定星座区水平方向间隔一个星座区的星座区以及垂直方向间隔一个星座区的星座区为第一固定星座区,与所述第一固定星座区水平方向间隔一个星座区的星座区以及垂直方向间隔一个星座区的星座区为第二固定星座区,以此类推;所有固定星座区的镜像操作方式为不翻转,其他星座区的镜像操作方式包括:固定星座区的水平相邻星座区的镜像操作方式为水平翻转,固定星座区的垂直相邻星座区的镜像操作方式为垂直翻转,固定星座区的对角相邻星座区的镜像操作方式为水平翻转和垂直翻转。
可选地,所述对m个待发送信息分别调制,包括:
对第1个待发送信息采用以下调制方式之一进行调制得到所述第1个调制符号:BPSK、QPSK、QAM,对其他待发送信息进行调制的调制方式包括以下之一:QPSK、QAM。
可选地,所述m个待发送信息对应m个用户设备,其中每个待发送信息对应一个用户设备,所述m个用户设备分别属于不同类别,所述类别依据用户设备与同一网络侧设备的距离远近划分;
在累计叠加时,将所述得到的m个调制符号按照所述调制符号对应的用户设备与所述网络侧设备距离由远及近的顺序依次累计叠加;
所述第1个调制符号为与所述网络侧设备距离最远的用户设备对应的调制符号。
本发明实施例还提供了一种下行多用户信息发送装置,包括调制模块、优化叠加模块、发射模块,其中:
所述调制模块,设置为对m个待发送信息分别进行调制,得到m个调制符号,m为大于2的正整数;
所述优化叠加模块,设置为将所述得到的m个调制符号依次累计叠加,叠加的过程中,除第1个调制符号外,其余m-1个调制符号在叠加前先进行 镜像优化;
所述发射模块,设置为将所述依次累计叠加后的符号形成发射信号,通过发射机发送。
本发明实施例还提供一种下行多用户信息接收方法和装置,只需做1次SIC,提高多址接入的性能,降低复杂度。
本发明实施例提供了一种下行多用户信息接收方法,包括:
接收发射信号,所述发射信号携带的符号由m个调制符号依次累计叠加得到,叠加过程中,除第1个调制符号外,其余m-1个调制符号在叠加前先进行镜像优化,m为大于2的正整数;
解调第1个调制符号时,直接解调发射信号携带的符号得到原始调制符号;解调其余m-1个调制符号时,先从发射信号携带的符号解调出部分符号,从发射信号携带的符号中去除所述部分符号后,再解调一次得到待优化符号,对所述待优化符号进行反镜像得到原始调制符号。
可选地,解调第1个调制符号时,所述直接解调发射信号携带的符号,包括:
带其他m-1个调制符号的干扰解调所述发射信号携带的符号,直接得到所述第1个调制符号。
可选地,解调其余m-1个调制符号时,所述先从发射信号携带的符号解调出部分符号,从发射信号携带的符号中去除所述部分符号后,再解调一次得到待优化符号,包括:
对于其余m-1个调制符号中的第k个调制符号,根据解调信息,带第k个调制符号至第m-1个调制符号的干扰解调所述发射信号携带的符号,得到前叠加符号,所述前叠加符号为所述第1个调制符号与所述m-1个调制符号中前k-1个调制符号依次累计叠加后的符号,从所述发射信号携带的符号中除去所述前叠加符号,对除去后得到的符号再进行一次解调,得到第k个符号的待优化符号。
可选地,所述对所述待优化符号进行反镜像得到原始调制符号,包括:
对于其余m-1个调制符号中的第k个调制符号,根据所述前叠加符号形成的星座点在虚拟星座坐标中的星座区位置确定对所述第k个调制符号的镜像操作方式,根据所确定的镜像操作方式对所述第k个调制符号形成的星座点进行反镜像操作;所述虚拟星座坐标由所述前叠加符号形成的星座点得到,所述虚拟星座坐标中的每个星座区对应一种镜像操作方式。
可选地,所述虚拟星座坐标由所述前叠加符号形成的星座点得到,所述虚拟星座坐标中的每个星座区对应一种镜像操作方式,包括:
所述虚拟星座坐标与所述前叠加符号形成的星座图的坐标重合,所述虚拟星座坐标中包含多个大小相等的星座区,所述前叠加符号形成的星座点在虚拟星座坐标中的位置为其中一个星座区的中心点,划分的每个星座区互不重叠;
与初始固定星座区水平方向间隔一个星座区的星座区以及垂直方向间隔一个星座区的星座区为第一固定星座区,与所述第一固定星座区水平方向间隔一个星座区的星座区以及垂直方向间隔一个星座区的星座区为第二固定星座区,以此类推;所有固定星座区的镜像操作方式为不翻转,其他星座区的镜像操作方式包括:固定星座区的水平相邻星座区的镜像操作方式为水平翻转,固定星座区的垂直相邻星座区的镜像操作方式为垂直翻转,固定星座区的对角相邻星座区的镜像操作方式为水平翻转和垂直翻转。
可选地,所述解调信息包括所述第1个调制符号与所述m-1个调制符号中前k-1个调制符号的调制方式和功率分配因子。
可选地,所述m个调制符号分别对应m个用户设备,其中每个调制符号对应一个用户设备,所述m个用户设备分别属于不同类别,所述类别依据用户设备与同一网络侧设备的距离远近划分;
所述m个调制符号依次累计叠加包括:所述m个调制符号按照所述调制符号对应的用户设备与所述网络侧设备距离由远及近的顺序依次累计叠加;
所述第1个调制符号为与所述网络侧设备距离最远的用户设备对应的调制符号。
本发明实施例还提供了一种下行多用户信息接收装置,包括:接收模块,第一解调模块,第二解调模块,其中:
所述接收模块,设置为接收发射信号,所述发射信号携带的符号由m个调制符号依次累计叠加得到,叠加过程中,除第1个调制符号外,其余m-1个调制符号在叠加前先进行镜像优化,m为大于2的正整数;
所述第一解调模块,设置为解调第1个调制符号,解调时,直接解调发射信号携带的符号得到原始调制符号;
所述第二解调模块,设置为解调其余m-1个调制符号,解调时,先从发射信号携带的符号解调出部分符号,从发射信号携带的符号中去除所述部分符号后,再解调一次得到待优化符号,对所述待优化符号进行反镜像得到原始调制符号。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
本发明实施例提出了一种多用户信息的调制符号优化叠加编码技术,以及接收端对应的单次符号级SIC解调技术。多用户信息的调制符号通过镜像叠加后在“整个通道”上传输,最边缘的接收机带着其他所有用户的干扰解调,其他用户采用单次符号级SIC解调。本发明实施例提出的下行多用户信息传输方法,使发送端多用户信息的调制符号叠加后的符号形成的星座点具有格雷映射属性,且使接收端中心用户只需要做1次SIC,可提高多址接入的性能,降低复杂度、时延。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1a-b为相关技术中3个用户信号直接叠加编码的示意图;
图2为本发明实施例一发送方法流程图;
图3为本发明实施例一发送装置结构示意图;
图4为本发明实施例二接收方法流程图;
图5为本发明实施例二接收装置结构示意图;
图6为本发明应用示例一无线广播通信系统示意图;
图7为本发明应用示例一基站完成的操作示意图;
图8a-b为待叠加的两符号星座图及两符号叠加后符号的星座图;
图9a-b为进行镜像优化后的待叠加符号及叠加后符号的星座图;
图10a-c为本发明应用示例一优化叠加后的符号星座图;
图11为本发明应用示例二接收机结构示意图;
图12a-c为本发明应用示例三优化叠加后的符号星座图。
本发明的实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
实施例一
本实施例描述下行多用户信息发送方法,如图2所示,包括以下步骤:
步骤110,对m个待发送信息分别进行调制,得到m个调制符号,m为大于2的正整数;
对第1个待发送信息采用以下调制方式之一进行调制得到第1个调制符号:BPSK、QPSK、QAM,对其他待发送信息进行调制的调制方式包括以下之一:QPSK、QAM。
m个待发送信息对应m个用户设备,其中每个待发送信息对应一个用户设备,该m个用户设备分别属于不同类别,所述类别依据用户设备与同一网络侧设备的距离远近划分。例如网络侧设备为基站,以基站为中心的覆盖范围按照与基站的距离远近划分为m级区域,每1级区域中的用户设备为一类用户设备。例如可以划分3级区域,包括:边缘区域、中间区域、中心区域, 位于边缘区域的一类用户设备为边缘用户设备,位于中间区域的一类用户设备为中间用户设备,位于中心区域的一类用户设备为中心用户设备。此时,m个待发送信息包括一个边缘用户设备的待发送信息,一个中间用户设备的待发送信息和一个中心用户设备的待发送信息。
步骤120,将所述得到的m个调制符号依次累计叠加,叠加的过程中,除第1个调制符号外,其余m-1个调制符号在叠加前先进行镜像优化;
具体地,上述依次累计叠加包括:对第2个调制符号进行镜像优化,将第1个调制符号与镜像优化后的第2个调制符号叠加得到符号s1,对第3个调制符号进行镜像优化,将所述符号s1与镜像优化后的第3个调制符号叠加得到s2,以此类推,直到所有m个调制符号都叠加完。可选地,在累计叠加时,将m个调制符号按照每个调制符号对应的用户设备与所述网络侧设备距离由远及近的顺序依次累计叠加,例如,所述第1个调制符号为与所述网络侧设备距离最远的用户设备对应的调制符号,第2个调制符号为与所述网络侧设备距离次远的用户设备对应的调制符号,以此类推。以m=3为例,第1个调制符号为边缘用户设备对应的调制符号,第2个调制符号为中间用户设备对应的调制符号,第3个调制符号为中心用户设备对应的调制符号。
以其余m-1个调制符号中的第k个调制符号为例(k=1,…m-1),进行的镜像优化包括:将第k个调制符号形成的星座点前叠加符号形成的星座点进行镜像操作。前叠加符号为所述第1个调制符号与m-1个调制符号中前k-1个调制符号依次累计叠加后的符号,其中:第1个调制符号为m个调制符号中的第1个调制符号;m-1个调制符号中前k-1个调制符号是指m-1个调制符号中的第1个调制符号至第k-1个调制符号。除特别说明外,文中所述第1调制符号均指m个调制符号中的第1个调制符号。
可选地,根据所述前叠加符号形成的星座点在虚拟星座坐标中的星座区位置确定对所述第k个调制符号的镜像操作方式,以所确定的镜像操作方式对所述第k个调制符号形成的星座点进行镜像操作。所述虚拟星座坐标由所述前叠加符号形成的星座点得到,所述虚拟星座坐标中的每个星座区对应一种镜像操作方式。确定了所述前叠加符号形成的星座点位于虚拟星座坐标中的星座区位置,该星座区的镜像操作方式即为对该第k个调制符号的镜像操 作方式。
所述虚拟星座坐标以及所述虚拟星座坐标中的每个星座区对应的镜像操作方式采用以下方式确定:
(1)先确定虚拟星座坐标,并将虚拟星座坐标划分为多个星座区
所述虚拟星座坐标与所述前叠加符号形成的星座图的坐标重合,将所述虚拟星座坐标划分为多个大小相等的星座区,所述前叠加符号形成的星座点在虚拟星座坐标中的位置为其中一个星座区的中心点,每个星座区互不重叠;
(2)确定每个星座区的镜像操作方式
所述虚拟星座坐标中的任意一个星座区均可以作为初始固定星座区,与所述初始固定星座区水平方向间隔一个星座区的星座区以及垂直方向间隔一个星座区的星座区为第一固定星座区,与所述第一固定星座区水平方向间隔一个星座区的星座区以及垂直方向间隔一个星座区的星座区为第二固定星座区,以此类推;所有固定星座区的镜像操作方式为不翻转,其他星座区的镜像操作方式根据以下镜像操作方式确定原则确定:固定星座区的水平相邻星座区的镜像操作方式为水平翻转,固定星座区的垂直相邻星座区的镜像操作方式为垂直翻转,固定星座区的对角相邻星座区的镜像操作方式为水平翻转和垂直翻转。
固定星座区的对角相邻星座区包括:固定星座区左上角的星座区,固定星座区右上角的星座区,固定星座区左下角的星座区,固定星座区右下角的星座区。
步骤130,将所述依次累计叠加后的符号形成发射信号,通过发射机发送。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
实现上述方法的发送装置如图3所示,包括调制模块210、优化叠加模块220、发射模块230,其中:
所述调制模块210,设置为对m个待发送信息分别进行调制,得到m个 调制符号,m为大于2的正整数;
所述优化叠加模块220,设置为将所述得到的m个调制符号依次累计叠加,叠加的过程中,除第1个调制符号外,其余m-1个调制符号在叠加前先进行镜像优化;
所述发射模块230,设置为将所述依次累计叠加后的符号形成发射信号,通过发射机发送。
所述m个待发送信息对应m个用户设备,其中每个待发送信息对应一个用户设备,即每个待发送信息为发送给对应的一个用户设备的信息。所述m个用户设备分别属于不同类别,所述类别依据用户设备与同一网络侧设备的距离远近划分。在累计叠加时,所述优化叠加模块220是设置为将所述得到的m个调制符号按照所述调制符号对应的用户设备与所述网络侧设备距离由远及近的顺序依次累计叠加。例如所述第1个调制符号为与所述网络侧设备距离最远的用户设备对应的调制符号,第2个调制符号为与所述网络侧设备距离次远的用户设备对应的调制符号,以此类推。所述优化叠加模块在累计叠加时,对第2个调制符号进行镜像优化,将第1个调制符号与镜像优化后的第2个调制符号叠加得到符号s1,对第3个调制符号进行镜像优化,将所述符号s1与镜像优化后的第3个调制符号叠加得到s2,以此类推,直到所有m个调制符号都叠加完。
所述调制模块210是设置为对第1个待发送信息可以采用以下调制方式之一进行调制得到所述第1个调制符号:BPSK、QPSK、QAM,所述调制模块对其他待发送信息进行调制的调制方式包括以下之一:QPSK、QAM。
以其余m-1个调制符号中的第k个调制符号为例,k=1,…m-1,所述优化叠加模块220将所述第k个调制符号形成的星座点依据所述前叠加符号形成的星座点进行镜像操作,所述前叠加符号为所述第1个调制符号与所述m-1个调制符号中前k-1个调制符号依次累计叠加后得到的符号。可选地,所述优化叠加模块220是设置为根据所述前叠加符号形成的星座点在虚拟星座坐标中的星座区位置确定对所述第k个调制符号的镜像操作方式,以所确定的镜像操作方式对所述第k个调制符号形成的星座点进行镜像操作。所述虚拟星座坐标的确定方式以及所述虚拟星座坐标中的每个星座区对应的镜像操作 方式的确定方式同方法中描述。
采用本实施例的发送方法和装置,由于在叠加前先对调制符号进行了镜像处理,因此使得叠加后的符号具有了格雷映射属性,大大提高了调制性能。
实施例二
本实施例描述对应于上述实施例发送方法的下行多用户信息接收方法,如图4所示,包括:
步骤310,接收发射信号,所述发射信号携带的符号由m个调制符号依次累计叠加得到,叠加过程中,除第1个调制符号外,其余m-1个调制符号在叠加前先进行镜像优化,m为大于2的正整数;
所述m个调制符号分别对应m个用户设备,其中每个调制符号对应一个用户设备,即每个调制符号为发送给对应用户设备的调制符号。所述m个用户设备分别属于不同类别,所述类别依据用户设备与同一网络侧设备的距离远近划分。所述m个调制符号依次累计叠加包括:所述m个调制符号按照所述调制符号对应的用户设备与所述网络侧设备距离由远及近的顺序依次累计叠加。所述第1个调制符号为与所述网络侧设备距离最远的用户设备对应的调制符号。
步骤320,解调接收的符号;
解调第1个调制符号时,直接解调发射信号携带的符号得到原始调制符号;解调其余m-1个调制符号时,先从发射信号携带的符号解调出部分符号,从发射信号携带的符号中去除所述部分符号后,再解调一次得到待优化符号,对所述待优化符号进行反镜像得到原始调制符号。
在上述步骤320中,解调第1个调制符号时,所述直接解调发射信号携带的符号,包括:带其他m-1个调制符号的干扰解调所述发射信号携带的符号,直接得到所述第1个调制符号。
在上述步骤320中,解调其余m-1个调制符号时,所述先从发射信号携带的符号解调出部分符号,从发射信号携带的符号中去除所述部分符号后,再解调一次得到待优化符号,包括:
对于其余m-1个调制符号中的第k个调制符号,k=1,…m-1,带第k个调制符号至第m-1个调制符号的干扰解调所述发射信号携带的符号,再根据解调信息,得到前叠加符号,即所述第1个调制符号与所述m-1个调制符号中前k-1个调制符号依次累计叠加后的符号,从所述发射信号携带的符号中除去所述前叠加符号,对去除后得到符号再进行一次解调,解调时携带第k+1个符号至第m-1个符号的干扰解调,得到第k个符号的待优化符号。所述解调信息包括所述第1个调制符号与所述m-1个调制符号中前k-1个调制符号的调制方式和功率分配因子。解调信息通过信令获得。
以其余m-1个调制符号中的第k个调制符号为例,k=1,…m-1,说明如何对所述待优化符号进行反镜像得到原始调制符号:
根据所述前叠加符号形成的星座点在虚拟星座坐标中的星座区位置确定对所述第k个调制符号的镜像操作方式,根据所确定的镜像操作方式对所述第k个调制符号形成的星座点进行反镜像操作。所述虚拟星座坐标的确定方式以及所述虚拟星座坐标中的每个星座区对应的镜像操作方式的确定方式同实施例一中描述,此处不再赘述。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
实现上述接收方法的接收装置如图5所示,包括:接收模块410,第一解调模块420,第二解调模块430,其中:
所述接收模块410,设置为接收发射信号,所述发射信号携带的符号由m个调制符号依次累计叠加得到,叠加过程中,除第1个调制符号外,其余m-1个调制符号在叠加前先进行镜像优化,m为大于2的正整数;
所述第一解调模块420,设置为解调第1个调制符号,解调时,直接解调发射信号携带的符号得到原始调制符号;
所述第二解调模块430,设置为解调其余m-1个调制符号,解调时,先从发射信号携带的符号解调出部分符号,从发射信号携带的符号中去除所述部分符号后,再解调一次得到待优化符号,对所述待优化符号进行反镜像得 到原始调制符号。
所述第一解调模块420,是设置为对于第1个调制符号,带其他m-1个调制符号的干扰解调所述发射信号携带的符号,直接得到所述第1个调制符号。
所述第二解调模块430,是设置为对于其余m-1个调制符号,以其中的第k个调制符号为例,k=1,…m-1,根据解调信息,带第k个调制符号至第m-1个调制符号的干扰解调所述发射信号携带的符号,得到前叠加符号,即所述第1个调制符号与所述m-1个调制符号中第k-1个调制符号依次累计叠加后的符号,从所述发射信号携带的符号中除去所述前叠加符号,对除去后得到的符号再进行一次解调,得到第k个符号的待优化符号。所述解调信息包括所述第1个调制符号以及所述m-1个调制符号中的前k-1个调制符号的调制方式和功率分配因子。解调信息通过信令发送给接收装置。
继续以其余m-1个调制符号中的第k个调制符号为例,k=1,…m-1,所述第二解调模块430是设置为采用以下方式对所述待优化符号进行反镜像得到原始调制符号:根据所述前叠加符号形成的星座点在虚拟星座坐标中的星座区位置确定对所述第k个调制符号的镜像操作方式,根据所确定的镜像操作方式对所述第k个调制符号形成的星座点进行反镜像操作。所述虚拟星座坐标的确定方式以及所述虚拟星座坐标中的每个星座区对应的镜像操作方式的确定方式同实施例一中描述。
发射信号中的m个调制符号分别对应m个用户设备,其中每个调制符号对应一个用户设备,所述m个用户设备分别属于不同类别,所述类别依据用户设备与同一网络侧设备的距离远近划分;每个用户设备根据自己与网络设备距离的远近采用对应的解调模块进行解调,例如,第1个调制符号为与所述网络侧设备距离最远的用户设备1对应的调制符号,则用户设备1中的接收装置采用解调模块1解调,其余m-1个用户设备中的接收装置采用解调模块2解调。
采用本实施例的接收方法和装置,由于在解调时先解调出部分符号,接收端用户只需要做1次SIC,可提高多址接入的性能,降低复杂度、时延。
下面通过几个应用示例对上述实施例进行具体说明。
应用示例一
图6是实施本发明实施例下行多用户信息传输方法的一种无线广播通信系统示意图。如图6所示,多用户信息被基站BS广播到多个用户设备。可选的,3类用户信息调制符号优化叠加后,形成发射信号,被同时发送给3类用户UE1、UE2、UE3,假设3类用户分别为边缘用户UE1,中间用户UE2,中心用户UE3。发射信号分别同时经过信道H1,H2,H3。UE1与BS间的信道至UE3与BS间的信道依次变得更好,表示为H1<H2<H3。
在无线广播通信系统的发送端,即在基站完成的操作如图7所示,包括以下步骤:
步骤一,多用户信息比特流被编码调制为具有一定功率的调制符号。编码方式包括Turbo编码(编码为可选操作)。由UE1的信息比特流采用QPSK调制方式得到第1类调制符号Sym1,由UE2的信息比特流采用QPSK调制方式得到第2类调制符号Sym2,由UE3的信息比特流采用16QAM调制方式得到第3类调制符号Sym3,其中,Sym1、Sym2、Sym3是由功率归一的调制符号乘以一个功率调整因子所得。假设Sym1的功率调整因子为
Figure PCTCN2016070484-appb-000001
Sym2的功率调整因子为
Figure PCTCN2016070484-appb-000002
Sym3的功率调整因子为
Figure PCTCN2016070484-appb-000003
则Sym1可以表示为
Figure PCTCN2016070484-appb-000004
Sym2可以表示为
Figure PCTCN2016070484-appb-000005
Sym3可以表示为
Figure PCTCN2016070484-appb-000006
Figure PCTCN2016070484-appb-000007
其中,(x+y·i)为复数表达方式。
步骤二,将前面2类调制符号优化叠加,即第1类调制符号和镜像优化后的第2类调制符号叠加,得到优化叠加后的符号S2。所述优化叠加后的符号S2形成的星座点具有格雷映射属性。
图8a和8b所示为未进行镜像优化符号星座和叠加后符号星座,其中图8a中的两个符号相加得到图8b中的符号。本文中的星座图为包含了所有可能情况下的星座图,如图8b所示,叠加后得到的符号星座没有格雷属性。
图9a和9b所示为优化叠加的符号星座,其中图9a中的符号1(图9a左侧符号星座)与符号2(图9a右侧符号星座)叠加得到图9b中的符号,符号2为镜像优化后的符号。某一时刻符号1为01,虚拟星座坐标与符号1的星 座坐标重合,假设本例中固定星座区为符号1星座图的第一象限,则由于符号1为01位于第二象限,即固定星座区的水平相邻星座区,因此镜像翻转方式为水平翻转,对符号2进行水平翻转,翻转后如图9a右侧星座图所示。符号1与镜像优化后的符号2叠加后得到的符号形成的星座图如图9b所示,在包含所有可能的情况下,叠加后得到的符号星座具有格雷映射属性。
步骤三,将前面3类调制符号优化叠加,得到优化叠加后的符号S3。包括先将第3类调制符号根据S2(如图10a所示)做镜像优化,得到如图10b所示星座,再与S2直接叠加,得到优化叠加后的符号S3,如图10c所示。所述优化叠加后的符号S3形成的星座点具有格雷映射属性。
可选地,首先,将第3类调制符号根据S2做镜像优化。即根据符号S2当前时刻星座点在虚拟星座坐标中的星座区位置确定镜像操作方式(星座区对应的镜像操作方式预先确定),将第3类调制符号做水平翻转和/或垂直翻转得到镜像优化后的第3类调制符号。所述水平翻转或垂直翻转是指在虚拟星座坐标上,以星座区的垂直中心线或水平中心线作为对称线,将第3类调制符号,即将16QAM星座做对称变化。
图10a为优化叠加后的S2,图中列出了所有可能的情况,任一时刻仅有一个星座点,以图中星座点“0101”为例,图10b中的虚线坐标为与S2星座图中坐标重合的虚拟星座坐标,图中每个小坐标视为一个星座区,在本例中初始固定星座区为左上角第一个星座区。由“0101”所在位置可以确定对应的星座区为图10b第一排第二个星座区,即图中第一个阴影区,该星座区对应的镜像操作为水平翻转,则对第3类调制符号进行水平翻转,图10b中第一个阴影区所示为翻转后的星座,S2与镜像优化后的第3类调制符号叠加后得到图10c第一个阴影区的符号即为S3。在另一个实施例中,初始固定星座区也可以是右上角第一个星座区,在某一时刻,S2为图10a中的“1101”,对应图10b中第二个阴影部分,该阴影部分对应的镜像操作为水平翻转,对第3类调制符号进行水平翻转,图10b中第二个阴影区所示为翻转后的星座,S2与镜像优化后的第3类调制符号叠加后得到图10c第二个阴影区的符号即为S3。
然后,将S2和优化后的第3类调制符号叠加,得到优化叠加后的符号 S3。
步骤四,将优化叠加后的符号S3形成发射信号,同时发送给第1类用户UE1、第2类用户UE2和第3类用户UE3。
对比图1直接叠加的情况,按本实施例方法优化叠加后的符号S3是格雷映射的,并且,更为重要的是,即使在接收机因为噪声误判了符号S2,对第3类优化的调制符号解调后再做一次镜像仍然能够正确解调出第3类调制符号,因而中心用户的性能有明显改善。
应用示例二
图11是根据一种接收机结构示意图。如图11所示,接收机包括:接收模块、解调模块和解码模块(可选)。(图11虚线框内表示该部分为可选模块)
假设发射机如应用示例一所述,则接收机完成的操作包括:
步骤一,接收叠加后的符号,所述叠加后的符号是前3类调制符号优化叠加后的符号S3,第m类调制符号由第m类用户设备的待发送信息调制而成,m=1,2,3。本例中UE1对应的调制符号为第一类调制符号,UE2对应的调制符号为第二类调制符号,UE3对应的调制符号为第三类调制符号。
步骤二,包括:
用户UE1接收机,通过解调模块1,带着除第一类调制符号外其他所有调制符号的干扰解调,得到用户UE1信息的调制符号;
用户UE2接收机,通过解调模块1,带着除第一类调制符号外其他所有调制符号的干扰解调,得到用户UE1信息的调制符号;
用户UE3接收机,通过解调模块1,带着用户UE3信息的调制符号的干扰解调,再根据前2类符号的调制方式和功率分配因子(用于确定前2类调制符号依次累计叠加后的符号形成的星座点在坐标中的位置),解调出用户UE1信息的调制符号和用户UE2信息的调制符号的优化叠加符号S’。
调制方式和功率分配因子可通过信令通知给UE3接收机。
步骤三,包括:
用户UE2接收机,通过解调模块2,做单次符号级SIC,除去用户UE1信息的调制符号,即除去平均功率最大的QPSK符号,分离出用户UE2信息的调制符号和用户UE3信息的调制符号的优化叠加符号,这个叠加符号可以看成是一个带着16QAM符号干扰的QPSK符号。然后中间用户UE2接收机带着UE3信息的调制符号的干扰解调,再根据步骤二中解出来的用户UE1信息的调制符号做镜像,所述的镜像方法与发射机中的镜像方法一致;
用户UE3接收机,通过解调模块2,做单次符号级SIC,除去符号S’,即除去用户UE1信息的调制符号和用户UE2信息的调制符号的优化叠加符号,即除去16点星座符号,所述16点星座符号包括16QAM星座符号。然后中心用户UE3接收机再根据符号S’做镜像,所述的镜像方法与发射机中的镜像方法一致。
步骤四,解码(或不解码)得到用户信息比特流。
本例虽然以不同UE的接收机分别进行说明,但由于UE可能位于任何位置,因此,UE1接收机也可具有UE2和UE3接收机的能力,同理UE2接收机也可具有UE1和UE3接收机的能力,UE3接收机也可具有UE1接收机和UE2接收机的能力。
在其他可选示例中,如果m=4,假设接收符号为S3,S3=S2+d’,其中d’为镜像优化后的调制符号d,S2=S1+c’,其中c’为镜像优化后的调制符号c,S1=a+b’,其中b’为镜像优化后的调制符号b,a为第1个调制符号,调制符号a、b、c、d分别对应UE1、UE2、UE3和UE4,UE1与基站的距离最远,其次是UE2,再次是UE3,UE4距离基站最近。在解调调制符号d时,根据a、b和c的解调信息(所述解调信息包括调制方式和功率分配因子),带调制符号d的干扰解调,得到S2,从S3中去除S2,得到d’,再做反镜像得到调制符号d。解调调制符号c时,根据a、b的解调信息,带调制符号c和d的干扰解调,得到S1,从S3中去除S1,再带调制符号d的干扰对去除S1后的符号进行解调得到c’,做反镜像得到调制符号c。解调调制符号b时,带调制符号b、c和d的干扰解调,得到调制符号a,从S3中去除调制符号a,再带调制符号c和d的干扰对去除a后的符号进行解调得到b’,做反镜像得 到调制符号b。解调调制符号a时,直接带调制符号b、c和d的干扰解调,得到调制符号a。
按传统SIC解调情况,中心用户UE3接收机需要做两次符号级SIC(K个用户时需做K-1次),而按本实施例方法接收端中心用户只需要做1次符号级SIC,可以提高多址接入的性能,降低复杂度、时延。
应用示例三
在本应用示例中,3类用户信息调制符号优化叠加后,形成发射信号,被同时发送给3类用户,假设3类用户分别为边缘用户UE1,中间用户UE2,中心用户UE3。发射信号分别同时经过信道H1,H2,H3。UE1与BS间的信道至UE3与BS间的信道依次变得更好,表示为H1<H2<H3。
步骤一与应用示例一的步骤一一致,UE1信息比特采用BPSK调制方式得到第1类调制符号Sym1,UE2信息比特采用QPSK调制方式得到第2类调制符号Sym2,UE3信息比特采用QPSK调制方式得到第3类调制符号Sym3。Sym1可以表示为
Figure PCTCN2016070484-appb-000008
Sym2可以表示为Sym3可以表示为
Figure PCTCN2016070484-appb-000010
步骤二与应用示例一的步骤二一致,将前面2类调制符号,即第1类调制符号和镜像优化后的第2类调制符号叠加,得到优化叠加后的符号S2,如图12a所示。
步骤三与应用示例一的步骤三一致,将前面3类调制符号优化叠加,得到优化叠加后的符号S3,如图12c所示。
可选地,首先,将第3类调制符号根据S2做镜像优化。即根据符号S2当前时刻星座点在虚拟星座坐标中的星座区位置镜像操作方式,将第3类调制符号做水平翻转和/或垂直翻转得到镜像优化后的第3类调制符号。所述水平翻转或垂直翻转是指在虚拟星座坐标上,以星座区的垂直中心线或水平中心线作为对称线,将第3类调制符号,即QPSK星座做对称变化。图12b中的两块阴影处所示星座区分别为两个示例中的镜像优化结果,两个示例中的初始固定星座区不同,该两个示例中的第3类优化调制符号分别与图12a中 S2叠加后得到的符号形成的星座如图12c中两块阴影处所示。
然后,将S2和优化后的第3类调制符号叠加,得到优化叠加后的符号S3。
步骤四,与应用示例一的步骤四一致,将优化叠加后的符号S3形成发射信号,同时发送给第1类用户UE1、第2类用户UE2和第3类用户UE3。
对比图1直接叠加的情况,按本实施例方法优化叠加后的符号S3是格雷映射的,并且,更为重要的是,即使在接收机因为噪声误判了符号S2,对第3类优化的调制符号解调后再做一次镜像仍然能够正确解调出第3类调制符号,因而中心用户的性能有明显改善。
本发明实施例提出一种多用户信息的调制符号优化叠加编码技术,以及接收端对应的单次符号级SIC解调技术。目的是为了在下行多用户信息传输系统中,发送端多用户信息的调制符号叠加后的符号形成的星座点具有格雷映射属性,且使接收端每个用户只需要做1次符号级SIC,提高多址接入的性能,降低复杂度、时延。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本发明不限制于任何特定形式的硬件和软件的结合。
本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。
工业实用性
上述技术方案使发送端多用户信息的调制符号叠加后的符号形成的星座点具有格雷映射属性,且使接收端中心用户只需要做1次SIC,可提高多址接入的性能,降低复杂度、时延。

Claims (30)

  1. 一种下行多用户信息发送方法,包括:
    对m个待发送信息分别进行调制,得到m个调制符号,m为大于2的正整数;
    将所述得到的m个调制符号依次累计叠加,叠加的过程中,除第1个调制符号外,其余m-1个调制符号在叠加前先进行镜像优化;
    将所述依次累计叠加后的符号形成发射信号,通过发射机发送。
  2. 根据权利要求1所述的发送方法,其中,
    所述将所述得到的m个调制符号依次累计叠加,叠加的过程中,除第1个调制符号外,其余m-1个调制符号在叠加前先进行镜像优化,包括:
    对第2个调制符号进行镜像优化,将第1个调制符号与镜像优化后的第2个调制符号叠加得到符号s1,对第3个调制符号进行镜像优化,将所述符号s1与镜像优化后的第3个调制符号叠加得到s2,以此类推,直到所有m个调制符号都叠加完。
  3. 根据权利要求1所述的发送方法,其中,
    所述其余m-1个调制符号在叠加前先进行镜像优化,包括:
    对于其余m-1个调制符号中的第k个调制符号,将所述第k个调制符号形成的星座点依据前叠加符号形成的星座点进行镜像操作,所述前叠加符号为所述第1个调制符号与所述m-1个调制符号中前k-1个调制符号依次累计叠加后得到的符号。
  4. 根据权利要求3所述的发送方法,其中,
    将所述第k个调制符号形成的星座点依据前叠加符号形成的星座点进行镜像操作,包括:
    根据所述前叠加符号形成的星座点在虚拟星座坐标中的星座区位置确定对所述第k个调制符号的镜像操作方式,以所确定的镜像操作方式对所述第k个调制符号形成的星座点进行镜像操作;所述虚拟星座坐标由所述前叠加符号形成的星座点得到,所述虚拟星座坐标中的每个星座区对应一种镜像操 作方式。
  5. 根据权利要求4所述的发送方法,其中,
    所述虚拟星座坐标由所述前叠加符号形成的星座点得到,所述虚拟星座坐标中的每个星座区对应一种镜像操作方式,包括:
    所述虚拟星座坐标与所述前叠加符号形成的星座图的坐标重合,所述虚拟星座坐标中包含多个大小相等的星座区,所述前叠加符号形成的星座点在虚拟星座坐标中的位置为其中一个星座区的中心点,每个星座区互不重叠;
    与初始固定星座区水平方向间隔一个星座区的星座区以及垂直方向间隔一个星座区的星座区为第一固定星座区,与所述第一固定星座区水平方向间隔一个星座区的星座区以及垂直方向间隔一个星座区的星座区为第二固定星座区,以此类推;所有固定星座区的镜像操作方式为不翻转,其他星座区的镜像操作方式包括:固定星座区的水平相邻星座区的镜像操作方式为水平翻转,固定星座区的垂直相邻星座区的镜像操作方式为垂直翻转,固定星座区的对角相邻星座区的镜像操作方式为水平翻转和垂直翻转。
  6. 根据权利要求1所述的发送方法,其中,
    所述对m个待发送信息分别调制,包括:
    对第1个待发送信息采用以下调制方式之一进行调制得到所述第1个调制符号:BPSK、QPSK、QAM,对其他待发送信息进行调制的调制方式包括以下之一:QPSK、QAM。
  7. 根据权利要求1-6中任一权利要求所述的发送方法,其中,
    所述m个待发送信息对应m个用户设备,在累计叠加时,将所述得到的m个调制符号按照所述调制符号对应的用户设备与所述网络侧设备距离由远及近的顺序依次累计叠加;
    所述第1个调制符号为与所述网络侧设备距离最远的用户设备对应的调制符号。
  8. 一种下行多用户信息接收方法,包括:
    接收发射信号,所述发射信号携带的符号由m个调制符号依次累计叠加得到,叠加过程中,除第1个调制符号外,其余m-1个调制符号在叠加前先 进行镜像优化,m为大于2的正整数;
    解调第1个调制符号时,直接解调发射信号携带的符号得到原始调制符号;解调其余m-1个调制符号时,先从发射信号携带的符号解调出部分符号,从发射信号携带的符号中去除所述部分符号后,再解调一次得到待优化符号,对所述待优化符号进行反镜像得到原始调制符号。
  9. 根据权利要求8所述的接收方法,其中,
    解调第1个调制符号时,所述直接解调发射信号携带的符号,包括:
    带其他m-1个调制符号的干扰解调所述发射信号携带的符号,直接得到所述第1个调制符号。
  10. 根据权利要求8或9所述的接收方法,其中,
    解调其余m-1个调制符号时,所述先从发射信号携带的符号解调出部分符号,从发射信号携带的符号中去除所述部分符号后,再解调一次得到待优化符号,包括:
    对于其余m-1个调制符号中的第k个调制符号根据解调信息,带第k个调制符号至第m-1个调制符号的干扰解调所述发射信号携带的符号,得到前叠加符号,所述前叠加符号为所述第1个调制符号与所述m-1个调制符号中前k-1个调制符号依次累计叠加后的符号,从所述发射信号携带的符号中除去所述前叠加符号,对除去后得到的符号再进行一次解调,得到第k个符号的待优化符号。
  11. 根据权利要求10所述的接收方法,其中,
    所述对所述待优化符号进行反镜像得到原始调制符号,包括:
    对于其余m-1个调制符号中的第k个调制符号,根据所述前叠加符号形成的星座点在虚拟星座坐标中的星座区位置确定对所述第k个调制符号的镜像操作方式,根据所确定的镜像操作方式对所述第k个调制符号形成的星座点进行反镜像操作;所述虚拟星座坐标由所述前叠加符号形成的星座点得到,所述虚拟星座坐标中的每个星座区对应一种镜像操作方式。
  12. 根据权利要求11所述的接收方法,其中,
    所述虚拟星座坐标由所述前叠加符号形成的星座点得到,所述虚拟星座 坐标中的每个星座区对应一种镜像操作方式,包括:
    所述虚拟星座坐标与所述前叠加符号形成的星座图的坐标重合,所述虚拟星座坐标中包含多个大小相等的星座区,所述前叠加符号形成的星座点在虚拟星座坐标中的位置为其中一个星座区的中心点,划分的每个星座区互不重叠;
    与初始固定星座区水平方向间隔一个星座区的星座区以及垂直方向间隔一个星座区的星座区为第一固定星座区,与所述第一固定星座区水平方向间隔一个星座区的星座区以及垂直方向间隔一个星座区的星座区为第二固定星座区,以此类推;所有固定星座区的镜像操作方式为不翻转,其他星座区的镜像操作方式包括:固定星座区的水平相邻星座区的镜像操作方式为水平翻转,固定星座区的垂直相邻星座区的镜像操作方式为垂直翻转,固定星座区的对角相邻星座区的镜像操作方式为水平翻转和垂直翻转。
  13. 根据权利要求10所述的接收方法,其中,
    所述解调信息包括所述第1个调制符号与所述m-1个调制符号中前k-1个调制符号的调制方式和功率分配因子。
  14. 根据权利要求8所述的接收方法,其中,
    所述m个调制符号分别对应m个用户设备,其中每个调制符号对应一个用户设备,所述m个用户设备分别属于不同类别,所述类别依据用户设备与同一网络侧设备的距离远近划分;
    所述m个调制符号依次累计叠加包括:所述m个调制符号按照所述调制符号对应的用户设备与所述网络侧设备距离由远及近的顺序依次累计叠加;
    所述第1个调制符号为与所述网络侧设备距离最远的用户设备对应的调制符号。
  15. 一种下行多用户信息发送装置,包括调制模块、优化叠加模块、发射模块,其中:
    所述调制模块,设置为对m个待发送信息分别进行调制,得到m个调制符号,m为大于2的正整数;
    所述优化叠加模块,设置为将所述得到的m个调制符号依次累计叠加, 叠加的过程中,除第1个调制符号外,其余m-1个调制符号在叠加前先进行镜像优化;
    所述发射模块,设置为将所述依次累计叠加后的符号形成发射信号,通过发射机发送。
  16. 根据权利要求15所述的发送装置,其中,
    所述优化叠加模块是设置为通过如下方式实现将所述得到的m个调制符号依次累计叠加,叠加的过程中,除第1个调制符号外,其余m-1个调制符号在叠加前先进行镜像优化:
    所述优化叠加模块对第2个调制符号进行镜像优化,将第1个调制符号与镜像优化后的第2个调制符号叠加得到符号s1,对第3个调制符号进行镜像优化,将所述符号s1与镜像优化后的第3个调制符号叠加得到s2,以此类推,直到所有m个调制符号都叠加完。
  17. 根据权利要求15所述的发送装置,其中,
    所述优化叠加模块是设置为通过如下方式实现将所述其余m-1个调制符号在叠加前先进行镜像优化:
    对于其余m-1个调制符号中的第k个调制符号,将所述第k个调制符号形成的星座点依据前叠加符号形成的星座点进行镜像操作,所述前叠加符号为所述第1个调制符号与所述m-1个调制符号中前k-1个调制符号依次累计叠加后得到的符号。
  18. 根据权利要求17所述的发送装置,其中,
    所述优化叠加模块是设置为通过如下方式实现将所述第k个调制符号形成的星座点依据前叠加符号形成的星座点进行镜像操作:
    根据所述前叠加符号形成的星座点在虚拟星座坐标中的位置确定对所述第k个调制符号的镜像操作方式,以所确定的镜像操作方式对所述第k个调制符号形成的星座点进行镜像操作;所述虚拟星座坐标由所述前叠加符号形成的星座点得到,所述虚拟星座坐标中的每个星座区对应一种镜像操作方式。
  19. 根据权利要求18所述的发送装置,,
    所述虚拟星座坐标由所述前叠加符号形成的星座点得到,所述虚拟星座 坐标中的每个星座区对应一种镜像操作方式,包括:
    所述虚拟星座坐标与所述前叠加符号形成的星座图的坐标重合,所述虚拟星座坐标中包含个大小相等的星座区,所述前叠加符号形成的星座点再虚拟星座坐标中的位置为其中一个星座区的中心点,每个星座区互不重叠;
    与初始固定星座区水平方向间隔一个星座区的星座区以及垂直方向间隔一个星座区的星座区为第一固定星座区,与所述第一固定星座区水平方向间隔一个星座区的星座区以及垂直方向间隔一个星座区的星座区为第二固定星座区,以此类推;所有固定星座区的镜像操作方式为不翻转,其他星座区的镜像操作方式包括:固定星座区的水平相邻星座区的镜像操作方式为水平翻转,固定星座区的垂直相邻星座区的镜像操作方式为垂直翻转,固定星座区的对角相邻星座区的镜像操作方式为水平翻转和垂直翻转。
  20. 根据权利要求15所述的发送装置,其中,
    所述调制模块是设置为通过如下方式实现对m个待发送信息分别调制:
    对第1个待发送信息采用以下调制方式之一进行调制得到所述第1个调制符号:BPSK、QPSK、QAM,所述调制模块对其他待发送信息进行调制的调制方式包括以下之一:QPSK、QAM。
  21. 根据权利要求15-20中任一权利要求所述的发送装置,其中,
    所述m个待发送信息对应m个用户设备,其中每个待发送信息对应一个用户设备,所述m个用户设备分别属于不同类别,所述类别依据用户设备与同一网络侧设备的距离远近划分;
    在累计叠加时,所述优化叠加模块将所述得到的m个调制符号按照所述调制符号对应的用户设备与所述网络侧设备距离由远及近的顺序依次累计叠加;
    所述第1个调制符号为与所述网络侧设备距离最远的用户设备对应的调制符号。
  22. 一种下行多用户信息接收装置,包括:接收模块,第一解调模块,第二解调模块,其中:
    所述接收模块,设置为接收发射信号,所述发射信号携带的符号由m个 调制符号依次累计叠加得到,叠加过程中,除第1个调制符号外,其余m-1个调制符号在叠加前先进行镜像优化,m为大于2的正整数;
    所述第一解调模块,设置为解调第1个调制符号,解调时,直接解调发射信号携带的符号得到原始调制符号;
    所述第二解调模块,设置为解调其余m-1个调制符号,解调时,先从发射信号携带的符号解调出部分符号,从发射信号携带的符号中去除所述部分符号后,再解调一次得到待优化符号,对所述待优化符号进行反镜像得到原始调制符号。
  23. 根据权利要求22所述的接收装置,其中,
    所述第一解调模块是设置为通过如下方式实现直接解调发射信号携带的符号:
    所述第一解调模块带其他m-1个调制符号的干扰解调所述发射信号携带的符号,直接得到所述第1个调制符号。
  24. 根据权利要求22或23所述的接收装置,其中,
    所述第二解调模块是设置为通过如下方式实现先从发射信号携带的符号解调出部分符号,从发射信号携带的符号中去除所述部分符号后,再解调一次得到待优化符号:
    对于其余m-1个调制符号中的第k个调制符号,根据解调信息,带第k个调制符号至第m-1个调制符号的干扰解调所述发射信号携带的符号,得到前叠加符号,所述前叠加符号为所述第1个调制符号与所述m-1个调制符号中前k-1个调制符号依次累计叠加后的符号,从所述发射信号携带的符号中除去所述前叠加符号,对除去后得到的符号再进行一次解调,得到第k个符号的待优化符号。
  25. 根据权利要求24所述的接收装置,其中,
    所述第二解调模块是设置为通过如下方式实现对所述待优化符号进行反镜像得到原始调制符号:
    对于其余m-1个调制符号中的第k个调制符号,根据所述前叠加符号形成的星座点在虚拟星座坐标中的星座区位置确定对所述第k个调制符号的镜 像操作方式,根据所确定的镜像操作方式对所述第k个调制符号形成的星座点进行反镜像操作;所述虚拟星座坐标由所述前叠加符号形成的星座点得到,所述虚拟星座坐标中的每个星座区对应一种镜像操作方式。
  26. 根据权利要求25所述的接收装置,其中,
    所述虚拟星座坐标由所述前叠加符号形成的星座点得到,所述虚拟星座坐标中的每个星座区对应一种镜像操作方式,包括:
    所述虚拟星座坐标与所述前叠加符号形成的星座图的坐标重合,所述虚拟星座坐标中包含多个大小相等的星座区,所述前叠加符号形成的星座点在虚拟星座坐标中的位置为其中一个星座区的中心点,划分的每个星座区互不重叠;
    与初始固定星座区水平方向间隔一个星座区的星座区以及垂直方向间隔一个星座区的星座区为第一固定星座区,与所述第一固定星座区水平方向间隔一个星座区的星座区以及垂直方向间隔一个星座区的星座区为第二固定星座区,以此类推;所有固定星座区的镜像操作方式为不翻转,其他星座区的镜像操作方式包括:固定星座区的水平相邻星座区的镜像操作方式为水平翻转,固定星座区的垂直相邻星座区的镜像操作方式为垂直翻转,固定星座区的对角相邻星座区的镜像操作方式为水平翻转和垂直翻转。
  27. 根据权利要求25所述的接收装置,其中,
    所述解调信息包括所述第1个调制符号与所述m-1个调制符号中前k-1个调制符号的调制方式和功率分配因子。
  28. 根据权利要求22所述的接收装置,其中,
    所述m个调制符号分别对应m个用户设备,其中每个调制符号对应一个用户设备,所述m个用户设备分别属于不同类别,所述类别依据用户设备与同一网络侧设备的距离远近划分;
    所述m个调制符号依次累计叠加包括:所述m个调制符号按照所述调制符号对应的用户设备与所述网络侧设备距离由远及近的顺序依次累计叠加;
    所述第1个调制符号为与所述网络侧设备距离最远的用户设备对应的调制符号。
  29. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1~7中任一项所述的方法。
  30. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求8~14中任一项所述的方法。
PCT/CN2016/070484 2015-02-15 2016-01-08 一种下行多用户信息发送、接收方法和对应装置 WO2016127747A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510084001.3A CN105991228B (zh) 2015-02-15 2015-02-15 一种下行多用户信息发送、接收方法和对应装置
CN201510084001.3 2015-02-15

Publications (1)

Publication Number Publication Date
WO2016127747A1 true WO2016127747A1 (zh) 2016-08-18

Family

ID=56614129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070484 WO2016127747A1 (zh) 2015-02-15 2016-01-08 一种下行多用户信息发送、接收方法和对应装置

Country Status (2)

Country Link
CN (1) CN105991228B (zh)
WO (1) WO2016127747A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018210095A1 (zh) * 2017-05-19 2018-11-22 华为技术有限公司 一种功率控制方法及设备
CN113114604A (zh) * 2021-03-11 2021-07-13 北京邮电大学 信号传输方法、装置及信号传输系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020181388A1 (en) * 2001-05-07 2002-12-05 Jain Vijay K. Communication system using orthogonal wavelet division multiplexing (OWDM) and OWDM-spread spectrum (OWSS) signaling
US20030232605A1 (en) * 2002-06-18 2003-12-18 Meng-An Peng Single side band transmitter having reduced DC offset
CN101103580A (zh) * 2004-11-03 2008-01-09 松下电器产业株式会社 用于减少所传送的码元的模糊电平的方法
US20100150269A1 (en) * 2008-12-16 2010-06-17 Electronics And Telecommunications Research Institute Signal modulating device, signal transmitting method, and code generating method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8289233B1 (en) * 2003-02-04 2012-10-16 Imaging Systems Technology Error diffusion
CN101557284B (zh) * 2008-04-09 2014-06-18 展讯通信(上海)有限公司 无线信号收发方法及装置
US20100046644A1 (en) * 2008-08-19 2010-02-25 Motorola, Inc. Superposition coding
CN102413094B (zh) * 2012-01-09 2014-04-30 桂林电子科技大学 多模式qam统一星座图标签的构建方法及调制器
CN104158620B (zh) * 2013-05-13 2019-03-12 中兴通讯股份有限公司 一种控制信息的传输方法及发送、接收装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020181388A1 (en) * 2001-05-07 2002-12-05 Jain Vijay K. Communication system using orthogonal wavelet division multiplexing (OWDM) and OWDM-spread spectrum (OWSS) signaling
US20030232605A1 (en) * 2002-06-18 2003-12-18 Meng-An Peng Single side band transmitter having reduced DC offset
CN101103580A (zh) * 2004-11-03 2008-01-09 松下电器产业株式会社 用于减少所传送的码元的模糊电平的方法
US20100150269A1 (en) * 2008-12-16 2010-06-17 Electronics And Telecommunications Research Institute Signal modulating device, signal transmitting method, and code generating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018210095A1 (zh) * 2017-05-19 2018-11-22 华为技术有限公司 一种功率控制方法及设备
CN108966333A (zh) * 2017-05-19 2018-12-07 华为技术有限公司 一种功率控制方法及设备
CN108966333B (zh) * 2017-05-19 2020-09-08 华为技术有限公司 一种功率控制方法及设备
CN113114604A (zh) * 2021-03-11 2021-07-13 北京邮电大学 信号传输方法、装置及信号传输系统
CN113114604B (zh) * 2021-03-11 2022-09-20 北京邮电大学 信号传输方法、装置及信号传输系统

Also Published As

Publication number Publication date
CN105991228A (zh) 2016-10-05
CN105991228B (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
CN105634654B (zh) 多用户信息传输的叠加编码、解调方法及装置
JP6388083B2 (ja) 無線通信システムにおける装置及び方法
JP7094883B2 (ja) 狭帯域モノのインターネット(NB-IoT)のためのデータ送信スキームのための方法および装置
WO2016086834A1 (zh) 多用户信息共道发送、接收方法及其装置
US9391747B2 (en) Dedicated reference signal design for network MIMO
CN108604972B (zh) 用于上行链路(ul)窄带物联网(nb-iot)的导频设计
JP2011142617A (ja) マルチユーザマルチ入力マルチ出力(mu−mimo)伝送方法
KR101727176B1 (ko) 강화된 물리적 다운링크 제어 채널에 대한 기준 신호들
EP3955701A2 (en) System and method for terminal cooperation based on sparse multi-dimensional spreading
CN105703877B (zh) 叠加编码、解码方法、装置、发射机及接收机
JP6312802B2 (ja) Lteにおけるepdcchのためのtpr管理
JP6814198B2 (ja) 複数ユーザー情報伝送の変調方法、復調方法及び装置
CN110870267B (zh) 一种被用于无线通信的用户、基站中的方法和装置
JP6313302B2 (ja) LTEにおけるePCFICHとePDCCHとの間の対話
JP6586762B2 (ja) 受信装置、送信装置、受信方法、送信方法及びプログラム
WO2009115022A1 (zh) 一种协调方法、装置及用户设备
CN109891766A (zh) 用于多用户叠加传输的dci设计
WO2016127747A1 (zh) 一种下行多用户信息发送、接收方法和对应装置
JP6893241B2 (ja) 信号の伝送方法、ネットワーク装置及び端末装置
WO2016184241A1 (zh) 一种多用户接入方法及装置
CN106160936B (zh) 一种多用户信息处理方法及其装置
WO2016065922A1 (zh) 双传输块的数据发送、接收方法、装置、发射机及接收机
CN105790816B (zh) 多天线下行数据传输方法及设备
CN112887068B (zh) 数据传输方法、发送设备和接收设备
WO2013056599A1 (zh) 一种实现数据传输的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16748548

Country of ref document: EP

Kind code of ref document: A1